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Abstract

The growth in demand for mobile communication systems has exponentially increased data
traffic during the last decade. Because this exponential growth consumes finite spectrum
resources, traditional spectrum utilization policies with exclusive resource allocation faces a
limit. In order to develop novel spectrum resources, many researchers have shown an interest
in spectrum sharing with cognitive radio (CR). This method allows secondary users (SUs) to
share spectrum bands with primary users (PUs) under interference constraints for PUs. SUs
are required to take into consideration the interference margin to the estimated interference
temperature at PUs in order to protect communication quality of PUs. On the other hand,
an excess interference margin decreases the spectrum sharing opportunity; therefore, it is
important to manage the interference power properly.

Spectrum estimation techniques in spectrum sharing can be categorized into two methods:
spectrum sensing and spectrum database. Spectrum sensing uses the detection of PU signals
to characterize radio environments. To provide good protection, signal detection must be
performed under the (strict) condition that the PU signal strength be below the noise floor,
even under low signal-to-noise ratios (SNRs) and fading conditions. These fluctuations make
it difficult for the SUs to achieve stable detection; thus, it is very challenging to accurately
estimate the actual activity of the PU. The second method is based on storing information
about spectrum availabilities of each location in spectrum databases. In this method, after
SUs query the database before they utilize the spectrum, the database provides spectrum
information to the SUs. Current databases usually evaluate white space (WS) based on
empirical propagation models. However, it is well known that empirical propagation models
cannot take into account all of the indeterminacies of radio environments, such as shadowing
effects. Because SUs must not interfere toward PUs, the conventional database requires the
SUs to set large margins to ensure no interference with PUs.

In this dissertation, we propose and comprehensively study a measurement-based spec-
trum database for highly efficient spectrum management. The proposed database is a hybrid
system, combining spectrum sensing and a spectrum database. The spectrum database
consists of radio environment information measured by mobile terminals. After enough
data are gathered, the database estimates the radio environment characteristics by statistical
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processing with the large datasets. Using the accurate knowledge of the received PU signal
power, spectrum sharing based on PU signal quality metrics such as the signal-to-interference
power ratio (SIR) can be implemented.

We first introduce the proposed database architecture. After we briefly discuss a theoreti-
cal performance of the proposed database, we present experimental results for the database
construction using actual TV broadcast signals. The experimental results show that the
proposed database reduces the estimation error of the radio environment.

Next, we propose a transmission power control method with a radio environment map
(REM) for secondary networks. The REM stores the spatial distribution of the average
received signal power. We can optimize the accuracy of the measurement-based REM using
the Kriging interpolation. Although several researchers have maintained a continuous interest
in improving the accuracy of the REM, sufficient study has not been done to actually explore
the interference constraint considering the estimation error. The proposed method uses
ordinary Kriging for the spectrum cartography. According to the predicted distribution of the
estimation error, the allowable interference power to the PU is approximately formulated.
Numerical results show that the proposed method can achieve the probabilistic interference
constraint asymptotically, and an increase in the number of measurement datasets improves
the spectrum sharing capability.

After that, we extend the proposed database to the radio propagation estimation in
distributed wireless links in order to accurately estimate interference characteristics from
SUs to PUs. Although current wireless distributed networks have to rely on an empirical
model to estimate the radio environment, in the spectrum sharing networks, such a path
loss-based interference prediction decreases the spectrum sharing opportunity because of
the requirement for the interference margin. The proposed method focuses on the spatial-
correlation of radio propagation characteristics between different wireless links. Using
Kriging-based shadowing estimation, the radio propagation of the wireless link that has
arbitrary location relationship can be predicted. Numerical results show that the proposed
method achieves higher estimation accuracy than path loss-based estimation methods.

The methods discussed in this thesis can develop more spatial WSs in existing allocated
bandwidth such as TVWS, and can provide these WSs to new wireless systems expected to
appear in the future. Additionally, these results will contribute not only to such spectrum
sharing but also to improvement of the spectrum management in existing systems. For
example, in heterogeneous networks (HetNets), a suitable inter-cell interference management
enables transmitters to reuse the frequency efficiently and the user equipment can select the
optimum base station. We anticipate that this dissertation strongly contributes to improving
the spectrum utilization efficiency of the whole wireless systems.
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Chapter 1

Introduction

This dissertation describes comprehensive studies on the measurement-based spectrum
database for highly efficient spectrum utilization. This chapter first introduces the research
background and the challenges. After the timeline of the spectrum sharing is summarized,
research motivations and contributions are stated. Finally, we give the organization of the
thesis.

1.1 Shortage of Spectrum Resources

Because of the growth in demand for mobile communication systems, data traffic has
significantly increased during the last decade. Reference [1] predicts an exponential increase
in data traffic that corresponds to a 7-fold increase in traffic between 2016-2021, as shown in
Fig. 1.1. Similarly, many industries forecast a 1,000-fold increase between 2010 and 2020.
In addition, the usage scenes are expanding to many purposes such as cellular, wireless
local area network (WLAN), bluetooth, machine-to-machine (M2M) communications. This
means wireless communication is an important infrastructure as well as water, energy, and
gas; it is not too much to say that we cannot return to the world where has no wireless
communications.

However, although the demands for wireless communications are explosively expanding,
we face a fundamental, but critical problem: severe shortage of the spectrum resources. In
wireless communication systems, because a signal is carried radially from the transmitter, the
signal interferes with the other communication systems that share the same spectrum. There-
fore, frequencies are exclusively assigned to each system in order to avoid the unanticipated
degradation of the communication quality today. Such an exclusive allocation, however,
causes the shortage of spectrum resources due to the explosive expansion of the demand for
wireless communication systems.



2 Introduction

Fig. 1.1 Forecasts by Cisco about global mobile data traffic, 2016 to 2021 [1].

Figure 1.2 summarizes the spectrum allocation in the US [2]. The figure clearly explains
that almost all bands from several kHz to several hundred GHz are already allocated to some
systems. In particular, several hundred MHz - several GHz bands, which are suitable for
mobile communication systems from the viewpoint of antenna design and radio propagation,
are in a situation where multiple systems share the same band. Thus, it is too difficult to
allocate such a band to new wireless systems appearing in the future.

In addition, paying attention to existing systems such as WLANs and cellular networks,
mobile terminals are overcrowded within a given band at the same time. Desired communi-
cation quality often cannot be obtained due to densely packing of wireless traffics beyond
the limits, thus, the lack of spectrum resources is a fundamental problem that the current
wireless communication systems have.

1.2 Countermeasures for Spectrum Shortage and Focus of
This Thesis

The shortage of spectrum resources has motivated many researchers to discuss the efficiency
of the spectrum use in last decades. Each researcher attacks the problem from different
viewpoint, and today’s countermeasures for the problem can mainly be classified into three
approaches, as follows.
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Fig. 1.2 Spectrum allocation in the US [2].

Improvement of Spectrum Utilization Efficiency in Existing System via Sophisticated
Low Layer Techniques

A simple direction is to improve the reliability of wireless communication via new low
layer technologies in the framework of the current exclusive frequency allocation. The
improvement of the reliability enables us to obtain the comparable reliability with lower
transmission power than the conventional systems. As a result, the inter-terminal interference
can be reduced, and we can improve the efficiency of the spectrum utilization. This direction
includes spatial modulation [6][7], full-duplex radio [8][9], non-orthogonal multiple access
(NOMA) [10][11], coded MAC [12], and new error correction coding such as polar codes
[13].

Development of Ultra High Spectrum

Next direction is to develop a new spectrum resources which are not used in current wireless
systems. Many researchers discuss how to communicate over ultra high bands such as
millimeter-wave [14] and THz [15], which have been considered difficult to use in wireless
communication from the viewpoint of device constraints and radio propagation characteristics.
In addition, optical wireless communication [16] might be categorized into this direction.
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Spectrum Sharing with Existing Wireless Systems

Most of the frequency bands suitable for mobile communication have already been allocated
exclusively to some system as shown above. However, many experimental results show that
the spatio-temporal usage rates in these bands are very low, and the other spectra are not
used effectively [17][18]. Therefore, spectrum sharing which uses these free bands while
guaranteeing the communication quality of existing communication systems is also widely
discussed over the last decades.

Of course, the techniques cultivated through these three strategies are not exclusive each
other, that is, further improvement in frequency utilization efficiency can be achieved by
combining them. The three major approaches are mainly focused for the spectrum shortage
today. However, from the viewpoint of fundamental physical characteristics such as antenna
size and radio propagation, it is preferable to use a several hundred MHz to several GHz
band, and this fact will be no change in the future. If these bands can also be used in the new
system, the new system can also intercept all the advantages mentioned above, in addition
to ease of hardware design and the development cost. Because only the spectrum sharing
enables to allocate such bands to new systems, this thesis mainly focuses on the improvement
of the spectrum sharing efficiency.

1.3 Brief Timeline

Spectrum sharing requires tight cooperation among industry, academia and government be-
cause secondary users (SUs) opportunistically utilize spectra which are exclusively allocated
to primary users (PUs). This feature has caused various works over 20 years including
theoretical analysis, experimental verification, and law maintenance. In this section, we
summarize the timeline of spectrum sharing.

-Late 1990s: Software Defined Radio as Enabler for Flexible but Low Cost Mobile
Terminals

Technical history of the spectrum sharing dates back more than 30 years ago. Since early
1980 an exponential blowup of cellular systems has been observed, which had produced the
definition of a plethora of analog and digital standards over the world [19]. This fact required
mobile terminals to implement multiple wireless functions such as multiple frequencies and
modulations. However, although many functions can be realized by hardware, such an imple-
mentation requires the same number of electronic circuits as the wireless communication
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Fig. 1.3 Transition of the number of published articles per year.

method, and has difficulty in miniaturization and cost. This background had motivated the
development of software defined radio (SDR) to realize the flexibility of mobile terminals
under low cost. SDR is a technology, thought to build flexible radio systems, multiservice,
multistandard, multiband, reconfigurable and reprogrammable by software [20–23].

End of 1990s: Proposal of Cognitive Radio

Discussions on SDR had been mainly focused on how the flexibility of hardware can be
improved until then, and few works on systems that adaptively control them are under way.
In 1999, a new term “cognitive radio” (CR) had been coined by Joseph Mitola as a control
model for SDR [24].

In the Mitola’s article, CR is described as follows.

Cognitive radio enhances the flexibility of personal services through a Radio
Knowledge Representation Language. This language represents knowledge of
radio etiquette, devices, software modules, propagation, networks, user needs,
and application scenarios in a way that supports automated reasoning about
the needs of the user. This empowers software radios to conduct expressive



6 Introduction

negotiations among peers about the use of radio spectrum across fluents of space,
time, and user context.

The idea of Radio Knowledge Representation Language was expanded further in his doctoral
dissertation in 2000 [25]. This dissertation describes a conceptual overview of CR.

CR had originally been proposed for enhancing the flexibility of personal wireless
services. However, because then the depletion of spectrum resources was regarded as a
severe problem, CR has attracted attention for improving the spectrum efficiency. In today’s
wireless communication field, the term “cognitive radio” is generally recognized as a concept
that “the terminal that recognizes the surrounding wireless environment and adapts its own
communication parameters adaptively”.

Figure 1.3 shows the transition of the number of published articles per year. Using
“Software Radio” and “Cognitive Radio” as search words, the number of achievements such
as conference papers, journal articles, and patents published within the year was searched on
the IEEE Xplore, and plotted in this figure. From early 2000 where the shortage of spectrum
resources was regarded as a problem, hundreds-thousands articles of CR are published per
year. At the same time, the figure shows that articles on SDR are also increasing year by year.
SDR and CR have been developed by the two wheels, and even now these continue to evolve.

Early 2000s: Observation of White Spaces and Attention to Cognitive Radio

Since 2000s, the number of wireless devices had explosively increased because of the gain of
demands for personal wireless devices such as WLAN, bluetooth, and cellular phone. Many
researchers had predicted that the demands will increase exponentially as the year goes on,
and these predictions showed a new social problem: severe scarcity of spectrum resources.
The US has aggressively discussed the spectrum access and management regimes. In early
2000s, governments in the US centered on FCC had investigated the usage status of existing
allocated spectra on time, space, and frequency axes. From the investigation, they reported
that the usage rate in the bands is about 20% at the most [26]. The fact sparked the active
discussion on the spectrum sharing.

In the spectrum sharing environment, secondary systems have to recognize the surround-
ing radio environment properly in order to guarantee the own communication opportunity
under the interference constraint. Because the strategy of spectrum sharing has to be deter-
mined according to multiple information including the usage rate of spectrum, the number of
primary and secondary systems, and expected channel capacity in secondary networks, the
concept of CR had attracted attention as an application for the spectrum sharing.
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Fig. 1.4 Basic cognitive cycle [3].

Mid 2000s-Early 2010s: Analyses of CR-oriented Spectrum Sharing

After CR-oriented spectrum sharing attracted attention, especially in mid 2000s-early 2010s,
many researchers had produced important results on this field. In 2005, Haykin compre-
hensively discussed the CR focusing on spectrum sharing [3]. In [3], the author simplifies
cognitive cycle defined by Mitola as shown in Fig. 1.4. The simplified cycle aims to discuss
the CR-oriented spectrum sharing, and mainly consists of following three tasks:

• Radio-scene analysis.

• Channel-state estimation and predictive modeling.

• Transmit-power control and dynamic spectrum management.

By introducing interference temperature as a new metric for the spectrum sharing, the author
discusses concrete measures and future issues in each task.

Achievable rates of CR channels had been shown by Devroye et al. in 2006 [27]. In
the paper, they define the CR channel as a two-sender, two-receiver interference channel
in which sender 2 obtains the encoded message sender 1 plans to transmit. By considering
additive white Gaussian noise (AWGN), they analyze achievable rates according to the
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cooperation states between the senders. The results are compared with inner bound, the
interference channel, and an outer bound, a modified Gaussian multiple-input and multiple
output (MIMO) broadcast channel.

In addition, other important theoretical results had been shown in 2007 by many re-
searchers such as Gastpar [28], Ghasemi and Sousa [29], and Jafar and Srinivasa [30][31].
As can be seen from the fact that the number of papers about CR dramatically increases after
2007, it is not a overstatement that these theoretical results strongly impact discussions on
spectrum sharing after that.

After Late 2000s, many studies mainly focus on the analysis on practical system design.
Liang et al. evident a relationship between sensing time and throughput of secondary
networks in 2008 [32]. In spectrum sensing, while a long sensing time can accurately acquire
the state of surrounding radio environment, excessive sensing time decreases the spectrum
sharing opportunity. The authors theoretically show the sensing time-throughput tradeoff in
the CR networks, and investigate optimal sensing time in realistic situations. In addition, it is
also this time that studies on the transmission power design of the secondary networks, e.g.,
comparison of peak and average interference power constraints by Zhang [33], was actively
performed.

Besides these practical discussions, some researchers have investigated the channel
capacity considering realistic scenarios. Especially, there has been a wide discussion about
impacts of imperfect channel state information (CSI) on the channel capacity represented by
results by Musavian and Aissa [34] and Suraweera et al.[35][36]. For example, in [35], they
derive the SU mean capacity in closed form under a peak interference power constraint. In
addition, they also discuss the impact of quantizing the imperfect CSI with a finite number of
quantization levels. The same authors theoretically claim that secondary networks achieve
higher channel capacity by utilizing the estimated instantaneous CSI even in the presence of
imperfection, compared to only the use of the mean CSI [36].

Here, it should be noted that theoretical results by Goldsmith and Varaiya in 1997 [37]
affects above discussions, although it is not the analysis targeting CR. They determine the
channel capacity of a fading channel with an average transmission power constraint under
different CSI conditions. Although the paper only considers a single peer-to-peer link, we can
extend the results to discussions in the channel capacity of secondary network by considering
interference constraints at the primary link. Many theoretical results, e.g., Ghasemi and
Sousa [29] and Suraweera et al.[35], stand on the system model in [37]; it can be said that
this paper has led to many analyzes on later CR.
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Early 2010s-: Toward Practical Spectrum Management

After theoretical investigations have been settled, discussions for practical spectrum sharing
have become the main field. For example, many countries are rapidly progressing adjustment
of law on existing allocated bands toward the spectrum sharing [38]. Some recent trends on
spectrum initiatives in the US are summarized as follows (details are well summarized in
reference [38]).

• TV Band: In September 2010, the FCC issued final rules to allow low power unlicensed
devices to operate on TVWSs in the US [39].

• AWS-3 Band: In January 2015, the FCC completed an auction of Advanced Wireless
Services (AWS)-3 licenses in the 1695-1710 MHz, 1755-1780 MHz, and 2155-2180
MHz bands [40]. The incumbents of this band are federal systems including the
federal meteorological-satellite systems. The bands will be shared with cellular service
providers based on manual coordination of protection zones to protect the federal
systems [41].

• 3.5 GHz Band: The FCC has opened up 3550-3700 MHz to SUs [42]. In this band, the
SUs will share the spectrum among themselves and PUs under a three-tiered access
model composed of the Incumbent Access (IA), Priority Access (PA) and General
Authorized Access (GAA) tiers. IA users include authorized satellite users; PA and
GAA users must not interfere toward the IA users. The PA tier consists of Priority
Access Licensees (PALs) that will be assigned using a competitive bidding process.
The GAA tier is licensed-by-rule to enable open, flexible access to the band for the
widest possible group of potential users.

• 5 GHz Band: In 2013, the FCC announced that it intends to modify rules that govern
the operation of Unlicensed National Information Infrastructure (U-NII) devices and
make available an additional 195 MHz in the 5 GHz band [43]. Recently, there is a
contention between unlicensed LTE and Wi-Fi stakeholders for access to the band;
the LTE-Unlicensed (LTE-U) and Wi-Fi stakeholders held a meeting to discuss these
coexistence issues [44].

These political trends have motivated many researchers in both academic and industrial
fields to discuss practical applications targeting an explicit spectrum sharing system [45–47].
Especially, because the government obliges SUs to utilize the spectrum database in many
cases, there are many discussions on the database-driven spectrum sharing approach [48–51].

In addition, recent rapid densification of terminals in own system, e.g., Wi-Fi and cellular
networks, has increased the importance of efficient inter-system spectrum management.
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Table 1.1 Typical path loss exponents [4].

Environment η

Urban macrocells 3.7-6.5
Urban microcells 2.7-3.5

Office building (same floor) 1.6-3.5
Office building (multiple floors) 2-6

Store 1.8-2.2
Factory 1.6-3.3
Home 3

These technologies that have been cultivated through developments for dynamic spectrum
access and CR also have attracted attention as enabler for the efficient inter-system spectrum
management [52, 53]. Therefore, in recent years, there are not only consideration for
spectrum sharing with the explicit term “cognitive radio” but also consideration on efficiency
improvement within own system that says “spectrum management” and “interference aware
communications” [54–56]. Developments for the CR-oriented communications over the past
20 years have now influenced the spectrum management in the whole wireless communication
systems.

1.4 Radio Propagation Issues in Spectrum Sharing

In the spectrum sharing environment, the SUs must satisfy the communication qualities in the
PUs because originally the PUs are allowed to occupy the band. For this reason, the SUs need
to suppress the interference amount of the signal power to the PUs to a certain level or less: the
prediction of the interference amount between the SUs and the PUs becomes a fundamental
important technology [57]. However, radio propagation characteristics irregularly fluctuates
according to the states of communication environment: e.g., location relationship between
the transmitter and the receiver, and heights and density of obstacle structures [4]. The
fluctuation factors can be categorized into following three factors.

• Path loss: Path loss shows mean received power variation over long distances (100-
1000 m). The attenuation is typically in proportion to

10η log10 d, (1.1)

in decibel domain. Here, d [m] is the link distance, and η is the path loss index that is
roughly determined by the obstacle structures and heights of transmitter and receiver.



1.4 Radio Propagation Issues in Spectrum Sharing 11

Table 1.2 Examples of well-known path loss models [5].

Name Category Coverage domain Cite Year
Friis Freespace Foundational d > 2a2/λ [58] 1946
Hata-Okumura Basic 1 < d < 10 km;150 ≤ f ≤ 1500; 30 ≤

hTx ≤ 200 m; 1 ≤ hRx ≤ 20 m
[59] 1968

Longley-Rice
Irregular Terrain
Model

Terrain 1 < d < 2000 km 0.02 < f < 20 GHz [60] 1982

COST-
Hata/COST-231

Basic 1 < d < 20 km [61] 1993

Walfisch-Ikegami Basic 0.2 < d < 5 km; 0.8 < f < 2 GHz;
4 < Tx < 50 m

[61] 1993

Two-Ray Foundational [62] 1994
ITU Terrain Terrain [63] 2001
IMT-2000 Basic Urban [64] 2007

Typical path loss indexes are summarized in Table 1.1. Depending on the environment,
η takes various values up from 2 to 6. The path loss is one of the most important
factors for efficient wireless communication system design. Many researchers have
worked on the path loss modeling because of its strong environmental dependence
and difficulty in theoretical modeling. Table 1.2 summarizes examples of well-known
path loss models. Many models have been developed from various approaches such as
theoretical approaches, measurement-based approaches, and approaches that considers
the influence of surrounding structures. In current wireless communication systems,
the system design is based on selecting an appropriate path loss model according to
the application.

• Shadowing: Variation due to shadowing occurs over distances that are proportional
to the length of the obstructing object (10-100m in outdoor environments and less in
indoor environments). The well-known statistical model for this attenuation is log-
normal shadowing. This model has been empirically confirmed to model accurately the
variation in received power in both outdoor and indoor radio propagation environments.
The standard deviation differs depending on the communication environment and it is
known to take various values from 4 to 13 dB.

• Multipath fading: Due to the sum of multipath components that passed various paths,
the instantaneous received power irregularly fluctuates over very short distances, on
the order of the signal wavelength. The statistical characteristics are roughly classified
according to presence / absence of visibility between the transmitter and the receiver.
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Most important models are Nakagami-Rice fading in line-of-sight (LOS) and Rayleigh
fading in non-line-of-sight (NLOS).

In the spectrum sharing, it is important to accurately estimate above factors for the
suitable communication strategy. However, as mentioned above, statistical characteristics of
the radio propagation highly depend on the communication environment. Figure 1.5 shows
several simplified path loss models. These curves follow a path loss equation

L(d) = 20log
λ

4πd0
+10η log

d
d0

[dB], (1.2)

where λ is the wavelength [m] calculated by the frequency f , and d0 is the reference dis-
tance [m]. For example, at d = 1000 [m], we can confirm a difference of 20 [dB] between
η = 2 and η = 3 and also between η = 3 and η = 4. If we have no information for the path loss,
because SUs must not interfere with PUs, their communication parameters are determined
based on the worst case scenario. In addition, uncertainties of the shadowing and multipath
fading make the spectrum sharing design more difficult. Although many path loss models are
established as shown in Table 1.2, the adopted path loss model does not necessarily ensure
accuracy in the actual communication environment [5]. Therefore, fundamental issues in the
spectrum sharing can be classified into following topics.

• Accurate estimation of radio propagation characteristics in both primary link and
interference link.

• Design of the communication parameters of SUs. We need to design the parameters
by integrally considering the desired communication qualities in the PUs and the
surrounding radio environment.

1.5 Radio Propagation Estimation Techniques in Spectrum
Sharing and Motivation of This Dissertation

Spectrum sharing including CR techniques has been widely discussed over the last decades.
Today’s major cognition techniques can be classified into following two methods.

Spectrum Sensing

Spectrum sensing uses the detection of PU signals to characterize radio environments [65].
To provide good protection, signal detection must be performed under the (strict) condition
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Fig. 1.5 Effect of path loss index η where f = 473 [MHz] and d0 = 10 [m].

that the PU signal strength be below the noise floor, even under low signal-to-noise ratios
(SNRs) and fading conditions. Fluctuations make it difficult for the SUs to achieve stable
detection; thus, although this technique can model the radio environment in real time, it is
very challenging to accurately estimate.

Spectrum Database

The second method is based on storing information about spectrum availabilities of each
location in spectrum databases [66]. In this method, SUs should query the database before
they utilize the spectrum. Then, the database provides spectrum information to the SUs.
The spectrum database is especially useful for fixed broadcasting PUs because the spatial
distribution of the average signal power does not change. The television (TV) band is a
suitable spectrum for database-aided spectrum sharing; its standardization has been discussed
in many countries including the US [67], the UK [68], and Singapore [69].

Current databases usually evaluate white space (WS) based on empirical propagation
models. For example, F-Curve, a propagation model that is utilized in the Federal Com-
munications Commission (FCC)-defined database, estimates the propagation loss based on
the percentage of locations, the percentage of time, frequency, and transmitting antenna
heights [70]. If the TVWS is exploited in Japan, Notice 640 [71] will be a candidate for the
radio propagation estimation. Notice 640 is a propagation model for Japanese TV broadcast
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Fig. 1.6 Main focus of each chapter.

systems. This propagation model is defined by the Japanese spectrum regulator, MIC; it
is virtually identical to the propagation model defined by the FCC. Japanese TV broadcast
operators often use this model to estimate the communication areas of TV transmitters
because MIC licenses the use of TV spectrums based on the estimation results for Notice
640. The propagation curve considers multipathing and diffraction due to terrain.

However, it is well known that such propagation models cannot take into account all of
the indeterminacies of radio environments. The error characteristics of propagation models
have been presented in [72][5]. In [72], the authors measured the field strength of radio waves
over TV bands using a highly accurate spectrum analyzer. The statistical results showed that
many propagation models perform biased estimation with wide error variances. Phillips et
al. [5] analyzed the efficacy of basic path loss models when predicting median path losses
in urban environments. By comparing results to those of many other path-loss models, the
authors identified the danger of using basic priori models to predict the vagaries of the radio
environment. It has also been claimed that complex models that consider a larger number of
variables (i.e., terrain models) do not necessarily make better predictions. To fit propagation
models to the regional radio environment, complex models often require a great deal of
information about the radio environment, e.g., terrain, antenna height, antenna pattern, and
some measurement data. The fitted curve can achieve near-unbiased estimation over a wide
area. However, the information increases the calculation complexities, but cannot improve
local accuracy due to shadowing effects.
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1.6 Organization

Figure 1.6 shows main focus of each chapter. We describe the detail of the proposed spectrum
database and discuss the database-assisted radio propagation estimation in primary networks
in chapters 2 and 3. Next, chapter 4 discusses how to manage the interference from SUs to the
PU in the presence of imperfect spectrum database. After we propose the database-assisted
radio propagation for distributed secondary networks in chapter 5, chapter 6 concludes our
works. The detailed organization of this thesis is summarized below.

Chapter 2: Concept of Measurement-based Spectrum Database

In this chapter, we propose a concept of measurement-based spectrum database. After the
concept is described, the effect of knowledge of the radio propagation on the spectrum sharing
is discussed from a theoretical aspect. Assuming a simple spectrum sharing environment, we
show that the uncertainties of the radio propagation notably degrade the average transmission
power allowed to the SU. At the same time, it is also shown that the knowledge of shadowing
effects can increase the spectrum sharing opportunity.

Chapter 3: Experimental Verification of Measurement-based Spectrum Database over
TV Bands

We present experimental results for the database construction using actual TV broadcast
signals. In order to evaluate the accuracy of measurement-based spectrum database, two one-
week measurement campaigns over TV bands were conducted in Kumagaya city, Saitama,
Japan. From the measurement results, we show that the proposed database dramatically
reduces the estimation error of the radio environment information.

Chapter 4: Transmission Power Control based on Spectrum Database

In the proposed database, because there are many locations where the measurement nodes
cannot enter, the constructed spectrum database has tooth missing information. Although
we need to interpolate the tooth missing information from the observed information, the
interpolation accuracy strongly depends on the number of measured datasets. This means
that SUs will cause a harmful interference if the database determines the transmission power
of SUs without considering the quality of the database. This chapter proposes a sophisticated
method with the measurement-based spectrum database for designing the appropriate trans-
mission power of the SUs. The proposed method uses ordinary Kriging interpolation for the
spectrum cartography. According to the predicted distribution of the estimation error, the
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allowable interference power to the PU is approximately formulated. Numerical results show
that the proposed method can achieve the probabilistic interference constraint asymptotically.
Additionally, it is also shown that the proposed method dramatically improves the outage
probability of the interference power compared to the conventional Kriging-based method.

Chapter 5: Database-assisted Radio Propagation Estimation for Wireless Distributed
Networks

Above chapters mainly focus on the radio propagation estimation in the primary link, and
we assume that SU only knows the path loss in the secondary link for simplicity. On
the other hand, if we can improve uncertainties of the interference signal, the spectrum
sharing efficiency will be improved further. In this chapter, we propose a spectrum database-
assisted radio propagation prediction for distributed SUs. The proposed method focuses
on the spatial-correlation of radio propagation characteristics between different wireless
links. Using maximum likelihood-based path loss estimation and Kriging-based shadowing
estimation, the radio propagation of the wireless link that has arbitrary location relationship
can be predicted. From numerical results, it is shown that the proposed method achieves
higher estimation accuracy than conventional path loss-based estimation method. After it is
shown that the proposed technique can predict the probability density function (PDF) of the
estimation error, we evaluate the effect of the proposed radio propagation estimation on the
spectrum sharing capability.

Chapter 6: Conclusions and Future Works

We conclude the research contribution of the thesis and discusses future works.



Chapter 2

Concept of Measurement-based
Spectrum Database

While the spectrum utilization in whole wireless systems is becoming toward the spectrum
database-assisted approach, conventional, path loss-based, database construction has the
problem concerning accuracy and is a cause of the degradation of spectrum sharing efficiency.
In this chapter, we propose a concept of measurement-based spectrum database. After the
concept is described, the effect of knowledge of the radio propagation on the spectrum
sharing is discussed from a theoretical aspect.

2.1 Database Architecture

In order to obtain a fully efficient spectrum sharing, we propose a novel concept of a
spectrum database that consists of measurement information reported by mobile SUs. Figure
2.1 shows the concept of the proposed spectrum database. The proposed database is a
hybrid system, combining spectrum sensing and a spectrum database. The spectrum database
consists of radio environment information that is measured by mobile SUs (e.g., vehicles
and smartphones). The SUs measure the received signals from the PUs while the SUs move
(without transmitting signals). The collected dataset is related to the measurement location,
and is reported to the database. After enough data are gathered, the database estimates the
radio environment characteristics of the PUs by statistical processing with the large created
dataset. Because the data include actual propagation losses and shadowing effects, accurate
channel statuses can be determined. SUs can connect the database to a wireless access
point such as a cellular network to estimate the radio environment around the SUs, and
adjust their own communication parameters, which causes no harmful interference to PUs.
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Fig. 2.1 Concept of the measurement-based spectrum database.

Today, there are huge numbers of vehicles and smart phones around the world. Because
these mobile terminals have high mobility, we consider them particularly suitable for use
as probing sensors. These features of mobile terminals enable the spectrum database to
gather measurement data rapidly and over a wide range. Thus, the radio environment can be
estimated accurately. In addition, using the accurate knowledge of the received PU signal
power, spectrum sharing based on PU signal quality metrics such as the signal-to-interference
power ratio (SIR) can be implemented.

Figure 2.2 summarizes the two spectrum database utilization methods: path loss model-
based spectrum databases and proposed measurement-based spectrum databases. For the
databases populated using propagation modeling, spectrum availability is determined in two
steps. First, the service area of a PU is estimated using the propagation model. Second, the
expected service area is extended by an additional margin to guarantee interference-free
operation for the PUs located at the boundary of the primary coverage area. Because the
margin is added without any regard for the actual propagation conditions, the SU transmission
power and the SU coverage area are unnecessarily reduced. As a result, the total spectrum
sharing performance is degraded. On the other hand, the proposed database can provide
accurate propagation information regarding the PU signals to the SUs. Therefore, if the
location of the PU receiver is known, aggressive spectrum sharing while controlling the
SU transmission power can be realized. This flexible and sophisticated transmission power
control method can obtain highly efficient spectrum sharing performance between PUs and
SUs because the spectrum database can help to accurately determine the received power of
PU signals at any location and any frequency if a perfect spectrum database can be generated.
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Fig. 2.2 Operation of the spectrum database.

The proposed spectrum database can realize highly efficient spectrum utilization with
strict interference management by employing measurement datasets. However, if all of the
measurement data are uploaded to the database covering a large area, a large amount of
data must be processed to estimate the primary coverage, which makes it difficult to provide
spectrum usage information to SUs. Therefore, we consider a hierarchical database structure
that supports storing data particles of flexible size in each layer, as shown in Fig. 2.3. In
the hierarchical architecture, the size of an area supported by the databases at each layer
is different. The databases at the lowest layers operate with high-resolution raw data, but
they can only support small areas. Higher layers, with information of lower resolution, are
statistically calculated from the lower-layer data. Because of the reduced size of the stored
information, the databases on higher layers can support wider areas.

As shown in Fig. 2.3, the lowest-layer database is located at each SU. SUs probe the
radio environment during displacement and store the most recent measurement results in
these databases at high resolution. However, because an individual local database cannot
cover a sufficiently large area, any comprehensive view of the primary signal propagation
must be derived from the locally collected data. Hence, a second-layer database is used
to store the stochastic information gathered from surrounding SUs. This layer consists of
many databases supporting small areas of a few square kilometers in size. SUs upload
measurement datasets when the second-layer database requires updates to its own statistical
information. After enough data are gathered, SUs can utilize the statistical information
provided by the second-layer database. We consider the second-layer database to be fixed
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Fig. 2.3 Hierarchical database architecture.

and to be managed by industry, which is permitted to manage the database by governments.
If there is an immediate demand for WS utilization, the second-layer database with mobility
can be added for the required area. Because it is difficult to store all of the measurement data,
stochastic information with lower resolutions is stored according to the location coordinates
based on a grid structure. A database of this size can gather information on signal power
from surrounding SUs and can store the average power for each frequency and location.
This database can support SU interference management so as to achieve strict transmit
power control without degradation of PU reception quality. The database at the highest
layer implements a spectrum utilization policy provided by the regulatory organization in
charge of a region, such as FCC in the US, Ofcom in the UK, or MIC in Japan. As a result,
metrological spectrum management can be realized with highly efficient spectrum sharing.

The proposed architecture can be used for various primary systems. Here, various
parameters of the database are constructed according to the spectrum characteristics of the
primary system. We assume that the frequency of data upload and the spectrum allocation
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period are the main parameters used for database construction, and that the database must
adjust these parameters based on the spectrum characteristics. In this thesis, we specifically
consider the compatibility with the current TVWS spectrum database design. According
to the current rules of TVWS utilization, SUs must access the database at intervals of
several hours: two hours in the UK and 24 hours in the US. We follow these time frames
for the spectrum allocation periods. Because broadcast TV transmitters are fixed, their
spectrum occupancies are static in the time domain. Therefore, in terms of TV protection, the
importance SUs need to know is the spatial distribution of the average received signal power.
Because the variation of the distribution is gradual in the time domain, the frequency of the
dataset upload by each measurement terminals is expected to be low. From the practical
standpoint of database access cost, frequent dataset uploading is undesirable. Dataset upload
should be conducted only when the node can access the wireless networks with sufficient
capacity, such as public WLAN, home WLAN, and cellular networks.

Of course the measurement-based database design can be applied to other networks with
frequent changes of spectrum usage: unlicensed bands, cellular systems, radar bands, and
so on. However, spectrum occupancies of these systems fluctuate drastically in the time
domain; thus, other characteristics of WSs, e.g., variance, duty cycle, and transition ratio, are
required.

2.2 Low-layer Configuration for Spatial Spectrum Shar-
ing

As already mentioned, the most important spectrum characteristic in TVWS is the average
received signal power. To estimate the spatial distribution effectively, we assume that
measurement nodes probe signals with short-term averaging. In addition, the second-layer
databases collect the datasets and average the data per short-size grid.

2.2.1 Lowest layer: Local database at node

A layer is implemented at each measurement node. Each node probes signals during displace-
ment and stores the signal data in its own database. Because each node moves with the user,
the explicit spatial border of this layer is not determined. To remove signal variations due to
small-scale fading, each node periodically measure signals (with short-term averaging), as
shown in Eq. (2.1).

Pi =
1
Nt

Nt−1∑
t=0

|hi[t]si[t]+ni[t]|2 , (2.1)
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Fig. 2.4 Structure of the local database.

where hi[t] represents the channel coefficient at the i-th node location, which includes
propagation loss, shadowing, and small-scale fading. s[t] is the signal from the primary user.
ni[t] is AWGN. Nt is the number of averaged samples of each sensor. The mobile terminal
equipped with a global positioning system (GPS) device stores the value Pi and the current
location, time, and observed TV channel in the local database of the node. These values are
uploaded to second-layer databases via wireless access networks. After upload, the node can
erase the dataset from its own database.

2.2.2 Second layer: Local database

The second layer typically consists of fixed multi-databases managed by industries which
are allowed to utilize it by governments. Each database supports a small area of a few
kilometers, which matches the typical coverage of TV transmitters. Higher-layer databases
divide datasets from mobile nodes into corresponding second-layer databases, based on
measurement location and the supported area of the second-layer databases. After the data
has been gathered, the spatial distribution of the average received signals can be estimated.
In addition to the difficulty of storing a large number of measurements in a single database,
another important problem to overcome is the limited accuracy of localization systems in the
mobile terminals. A typical GPS device experiences errors on the order of several meters
(up to more than 10 meters). For these reasons, we use a grid structure for location indexing,
as shown Fig. 2.4. We divide each area of a few square kilometers (which is assigned to a
database on the layer immediately above the local databases on the mobile terminals) into
a square grid with a side length of l [m]. Each square cell in the grid in the second-layer
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databases is represented by the average received signal power of all measurement data that
was collected from the cell described with coordinates x and y that satisfy the condition√

(x− xc)2+ (y− yc)2 ≤
l
√

2
, (2.2)

where xc and yc represent the coordinates of the grid field’s center. In other words, the PU
power in a given grid field is estimated as,

1
N

N∑
i=1

Pi, (2.3)

where N is the number of observations that satisfy Eq. (2.2).
Note that there are borders of the estimation areas between the databases. Thus, white-

space determination methods taking into account the information of databases, which are
located on the both ends of the boundary, are required. For example, average of two values
which are stored in the both ends of databases is a simple connection method.

2.2.3 Impact of Upload Cost on Existing Networks

When the terminal uploads the observation data to the database, the terminal will upload the
data via the existing network such as Wi-Fi or cellular. Thus, an important question that arise
here is how the introduce of the measurement-based spectrum database will affect on the
existing networks?

Table 2.1 summarizes an example of required data for measurements of an instantaneous
signal power. Considering the radio propagation estimation of a broadcast type transmitter
such as television broadcasting, an instantaneous measurement requires 52 byte [73]. In the
field measurement described in Chapt.3, the number of data observed by one vehicle in a day
was about 80,000 records: a terminal will upload about 4MB per day. Note that this file size
will be an upper limit because the vehicle measured signals from 9 AM to 7 PM almost all
the time except for meals and break time.

In Japan, an user uploads with average 46.6kbps, and files with roughly 500MB are
uploaded in a day. Thus, even if all the users upload the measured information everyday, the
traffic increase will be less than 1%. Actually, not all users perform mobile observations and
observable time zones are limited. Therefore, the effect of the upload on existing networks
will be sufficiently ignored. Furthermore, by uploading the observation results of one day
at the same time during low traffic such as midnight, further mitigation of the influence on
existing networks will be excepted.
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Table 2.1 Required data for measurements of an instantaneous signal power. Right two
columns are based on MySQL 5.7.

Name Data type Data size[byte]
Measurement time datetime 8
Latitude double 8
Longitude double 8
Measurement frequency [Hz] double 8
Number of Samples int 4
Sampling rate [sec] double 8
Received signal power [mW] double 8
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Fig. 2.5 Spectrum sharing model.

2.3 Analysis of Channel Capacity in Proposed Database-
aided Spectrum Sharing

Let us discuss the effect of knowledge of radio propagation information on spectrum sharing
from a theoretical perspective. We consider a typical spectrum sharing environment shown
in Fig. 2.5 where a secondary transmitter SU-Tx share a spectrum with a primary link. To
evaluate the spectrum sharing efficiency, we calculate the allowable transmission power at
SU-Tx under a given channel information. Note that following discussion does not consider
the knowledge of instantaneous multipath fading gain: SU-Tx only knows path loss gain and
shadowing gain. This is because the acquisition of the instantaneous factor requires some
feedbacks from PU-Rx generally In the spectrum sharing with legacy wireless systems, such
feedbacks are not realistic assumption. Aiming for the improvement of spectrum sharing
efficiency in the legacy systems, this thesis consider no instantaneous feedbacks from the
PUs. If the PU feedbacks such information to the SU, it is possible to further improve the
spectrum sharing efficiency [29].
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2.3.1 Spectrum Sharing Model

First, PRx [dBm] is defined as the received signal power at the primary receiver PU-Rx from
the primary transmitter PU-Tx. We assume the value fluctuates according to the path loss
and the log-normal shadowing, as follows:

PRx = PP,Tx−LP+WP [dBm] (2.4)

≜ PRx+WP, (2.5)

where PP,Tx [dBm] is the transmission power at PU-Tx, LP [dB] is the path loss in the
primary link, and WP [dBm] is the shadowing gain following i.i.d. log-normal distribution
with zero mean and standard deviation σP [dB].

Next, we assume that SU-Tx interferes to PU-Rx with the following power:

IRx = PS,Tx−LS+WS [dBm] (2.6)

≜ IRx+WS, (2.7)

where PS,Tx is the transmission power at SU-Tx, LS is the path loss in the interference link,
and WS is the shadowing gain. WS follows i.i.d. log-normal distribution with zero mean and
standard deviation σS [dB], and is statistically independent from WP. In addition, SU-Rx
receives the signal from SU-Tx with following received signal power,

PS,Rx = PS,Tx−LSU-SU+WSU-SU, (2.8)

where LSU−SU is the constant path loss between SU-Tx and SU-Rx, and WSU-SU is the
shadowing effect between SU-Tx and SU-Rx that follows i.i.d.log-normal distribution with
zero mean and standard deviation σS. According to Shannon-Hartley theorem, channel
capacity at SU-Rx can be derived as,

CSU-Rx = log2

(
1+10

PS,Rx−N0
10

)
[bps/Hz], (2.9)

where N0 [dBm] is the average AWGN at SU-Rx. Note that we do not consider the effect of
the interference from PU-Tx to SU-Rx.

Under the above condition, we utilize the signal-to-interference power ratio (SIR) as the
protection criterion for the primary communication according to a typical rule of spectrum
sharing over TVWS [74]. Here, the SIR at PU-Rx can be written as

Γ = PRx− IRx [dB]. (2.10)
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If the PU determines the desired SIR as Γd [dB], the outage event can be formulated as
Γd > Γ. Thus, considering the desired protection probability 1− pout, the SU must satisfy the
protection probability at PU-Rx, given by the following equation

Pr[Γ ≥ Γd] ≥ 1− pout. (2.11)

Using the channel information in both the primary and secondary links, SU-Tx estimates the
maximum transmission power

max PS,Tx ≜ PS,max [dBm], (2.12)

that is subject to Eq. (2.11). An example of this situation is spectrum sharing between a TV
transmitter and a white space device over TVWS.

2.3.2 Comparison Methods

According to the above model, we analyze the performances of the maximum allowed
transmission power at SU-Tx under following three conditions.

• Method 1: both PRx and LS+WS are estimated via the measurement-based spectrum
database (PU: path loss + shadowing, SU: path loss + shadowing). This can be
achieved by the method proposed in Chapt. 5.

• Method 2: in the primary channel, PRx is estimated via the measurement-based
spectrum database. On the other hand, in the interference channel, LS and σS are
estimated via the conventional spectrum database (PU: path loss + shadowing, SU:
path loss). This can be achieved by the method proposed in Chapt. 4.

• Method 3: PRx, σP, LS and σS are estimated via the conventional spectrum database
(PU: path loss, SU: path loss).

Let us define P̂Rx and L̂S,sum as estimated PRx and LS+WS, respectively. In order to discuss
the effect of imperfection of the measurement-based spectrum database on the spectrum
sharing, we assume that both P̂Rx and L̂S,sum have estimation error. These estimation error
factors are modeled as,

ϵP = PRx− P̂Rx

ϵS = (LS+WS)− L̂S,sum. (2.13)
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If the measurement-based spectrum database is utilized for the radio propagation estimation,
we can predict the variances of error factors, Var [ϵP] ≜σ2

ϵP
and Var[ϵS] ≜σ2

ϵS
, by considering

a characteristic of Kriging interpolation (see Chapt. 4.4 and Chapt. 5.4.3). Therefore, it
is also assumed that σ2

ϵP
and σ2

ϵS
can be predicted perfectly when the measurement-based

spectrum database is used.
In the situation where we use the conventional spectrum database, we assume that

estimated PRx, σP, LS and σS have no error.

2.3.3 Modeling Error Characteristics of Measurement-based Spectrum
Database

Before the performance comparison, we model the error characteristics of measurement-based
spectrum database. We assume that both P̂Rx and L̂S,sum are estimated by the Kriging-based
database construction proposed in Chapt. 4 and Chapt. 5, respectively. As can be seen from
some results in Sect. 4.4 and Sect. 5.4, these estimation error factors follow a log-normal
distribution with median zero [dB], and estimated and true values are highly correlated each
other in the log domain. Thus, PRx and P̂Rx, and (LS−WS) and L̂S,sum follow a bivariate
log-normal distribution respectively. Namely, PRx and P̂Rx follow the bivariate log-normal
distribution with median PRx and the covariance matrix, σ2

P ρPσPσP̂Rx

ρPσP̂Rx
σP σ2

P̂Rx

 , (2.14)

where σP [dB] is the standard deviation of WP, σP̂Rx
is the standard deviation of P̂Rx, and

ρP is the correlation coefficient between PRx and P̂Rx. The PDF of ϵP = PRx− P̂Rx can be
derived from the bivariate log-normal distribution. Because ϵP consists of the different of two
variables following a bivariate log-normal distribution and Kriging can perform unbiased
estimation, ϵP also follows a log-normal distribution with median zero (this also can be seen
from Fig. 4.3). In addition, its variance can be calculated by,

σ2
ϵP
= σ2

P+σ
2
P̂Rx
−2ρPσPσP̂Rx

. (2.15)

For simplicity, we approximate σP̂Rx
by σP. From this relationship, σ2

ϵP
can be derived as,

σ2
ϵP
≈ 2σ2

P (1−ρP) . (2.16)
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Using these characteristics, we can easily emulate the Kriging-based radio propagation
estimation by σP and ρP. Note that ρP strongly depends on the estimation condition such as
the number of datasets and the size of measurement circle, as mentioned in Sect. 5.4.

Similarly, (LS−WS) and L̂S,sum follow the bivariate log-normal distribution with median
LS and the covariance matrix,  σ2

S ρSσSσL̂S,sum

ρSσL̂S,sum
σS σ2

L̂S,sum

 , (2.17)

where σS is the standard deviation of WS, σL̂S,sum
is the standard deviation of L̂S,sum, and

ρS is the correlation coefficient between (LS−WS) and L̂S,sum. In addition, the PDF of
ϵS = IRx−

(
PS,Tx− L̂S,sum

)
can be derived by the log-normal distribution with median zero.

Then, the variance can be calculated by,

σ2
ϵS
= σ2

S+σ
2
L̂S,sum

−2ρSσSσL̂S,sum
. (2.18)

Finally, by approximating σL̂S,sum
as σS, σ2

ϵS
can be written as,

σ2
ϵS
≈ 2σ2

S (1−ρS) . (2.19)

Here, it should be note that both σ2
ϵP

and σ2
ϵS

can be directly estimated with the Kriging
variance (see Sect. 4.4 and Sect. 5.4).

2.3.4 Allowed Transmission Power

We derive the allowable transmission power of SU-Tx PS,max that satisfies the interference
constraint defined in Eq. (2.11).

Method 1 (PU: Path Loss + Shadowing, SU: Path Loss + Shadowing)

In this situation, both PRx and LS+WS are estimated by the measurement-based spectrum
database. When we estimate both PRx and IRx by the Kriging interpolation, the SIR Γ follows
a log-normal distribution with median P̂Rx−

(
PS,Tx− L̂S,sum

)
and variance σ2

ϵP
+σ2
ϵS

. Thus,
the maximum allowed transmission power at SU-Tx can be written as,

PS,max = P̂Rx+ L̂S,sum−Γd−

√
2
(
σ2
ϵP +σ

2
ϵS

)
erf−1 (1−2pout) . (2.20)
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Method 2 (PU: Path Loss + Shadowing, SU: Path Loss)

In this situation, only PRx is estimated by the measurement-based spectrum database, and
LS+WS is estimated by the conventional spectrum database. In this situation, the allowable
transmission power can be derived by,

PS,max = P̂Rx+LS−Γd−

√
2
(
σ2
ϵP +σ

2
S

)
erf−1 (1−2pout) . (2.21)

Method 3 (PU: Path Loss, SU: Path Loss)

This situation means that both PRx and LS+WS are estimated by the conventional spectrum
database: SU-Tx only knows PRx, σP, LS and σS. Thus, the SIR follows a log-normal

distribution with a median PRx− IRx and a standard deviation
√
σ2

P+σ
2
S. Therefore, its CDF

can be formulated as

FΓ(Γd|PRx,LS) =
1
2

1+ erf

Γd−
(
PRx− Imax

)
√

2
(
σ2

P+σ
2
S

)

 (2.22)

= pout. (2.23)

Therefore, the allowed transmission power can be calculated by,

PS,max = LS+PRx−Γd−

√
2(σ2

P+σ
2
S)erf−1(1−2pout). (2.24)

2.3.5 Theoretical Analysis of Average Channel Capacity

According to the allowed transmission power, we analyze the theoretical average channel
capacity E[CSU-Rx]. Here, PS,Rx in all the methods follows the log-normal distribution
because P̂Rx and ÎRx with the proposed spectrum database follow the log-normal distribution,
and the method 3 designs a constant transmission power according to Eq. (2.24). In addition,

because the channel capacity can be approximated as CSU-Rx ≈ log2

(
10

PS,Rx−N0
10

)
in high-SNR

region, CSU-Rx nearly follows a normal distribution. Thus, considering these characteristics,
we can approximately model the average channel capacity in all the methods as,

E[CSU-Rx] ≈
log210

10

(
LS−PRx−Γd−Aerf−1(1−2pout)−LSU-SU−N0

)
, (2.25)
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where A is the constant factor that depends on the method, and is derived as,

A =



√
2(σ2

ϵP +σ
2
ϵS) (PU:path loss+shadowing, SU: path loss+shadowing)√

2(σ2
ϵP +σ

2
S) (PU:path loss+shadowing, SU: path loss)√

2(σ2
P+σ

2
S) (PU:path loss, SU: path loss).

(2.26)

Finally, by concatenating and summarizing the above equations with inequalities, we can
derive the conditions that the proposed database outperforms the path loss-based radio
propagation estimation from the view point of average channel capacity E[CSU-Rx]. Each
condition is shown below.

• Method 1 outperforms method 2 when,

ρS ≥
1
2
. (2.27)

Note that we assume that both two methods take the same ρP.

• Method 2 outperforms method 3 when,

ρP ≥
1
2
. (2.28)

• Method 1 outperforms method 3 when,

ρS−
σ2

P

2σ2
S

(1−2ρP) ≥
1
2
. (2.29)

If σP = σS, this condition can be simplified as,

ρP+ρS ≥ 1. (2.30)

These conditions show that the proposed database can outperform the path loss-based
estimation if we can estimate with 0.5 or more correlation between estimated and true
received signal powers.

Performances of the estimation accuracy with practical techniques for the radio propaga-
tion estimation are evaluated in Sect. 4.4 and Sect. 5.4. In these sections, we show that such
an accuracy is realistically achievable value.
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2.3.6 Performance Comparison

We evaluate the effect of the proposed radio propagation estimation on the spectrum shar-
ing capability via Monte Carlo simulation. Figure 2.6 shows the average capacity where
pout = 0.10, Γd = 10 [dB], LS = 100.0 [dB], PRx = −90.0 [dBm], LSU−SU = 20.0 [dB], and
N0 = −100.0 [dBm]. Although the theoretical values are calculated with the approximation,
theoretical curves agree well with simulation values. In addition, comparing three meth-
ods each other, the magnitude relation of each capacity satisfies the conditions shown in
Sect. 2.3.5.

The characteristic of average transmission power at SU-Tx is shown in Fig. 2.7. We can
confirm that the measurement-based spectrum database can enhance the average transmission
power of SU-Tx, and the difference between the other methods increases according to the
increase of σP and σS, even if ρS is low. For example, in σP = σS = 8.0 [dB], the proposed
method can improve roughly 17.8 [dB] at maximum. Here, comparing Figs.2.6 and 2.7, we
can confirm that the magnitude relation of each curve is reversed in the region where ρP is
low. This is because the allowed transmission power PS,max follows a log-normal distribution.
In a log-normal distribution, the average value strongly depends on the value in the right
tail of the PDF. On the other hand, as Eq.(2.9) shows, the effect of the increase of PS,max

decreases as PS,max increases.
When evaluating spectrum sharing efficiency using average transmission power at the SU,

it is necessary to pay attention to the magnitude relation of channel capacity between curves.
On the other hand, because a correlation of 0.5 or more can be realistically achieved as
shown in Sect. 4.4 and Sect. 5.4, the average transmission power can sufficiently evaluate the
spectrum sharing efficiency. Therefore, for simplicity, we use the average transmission power
at the SU as the criterion for the spectrum sharing opportunity in the following chapters.

2.4 Chapter Summary

In this chapter, we have proposed the concept of the measurement-based spectrum database.
The spectrum database consists of radio environment information measured by mobile
terminals. After enough data are gathered, the database estimates the radio environment
characteristics by statistical processing with the large datasets.

Additionally, we have analyzed the channel capacity of the proposed database-aided
spatial spectrum sharing. It has been shown that the proposed spectrum database can
outperform the path loss-based spectrum database from the viewpoint of channel capacity.
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Fig. 2.6 Simulation and theoretical results of average capacity where pout = 0.10, Γd = 10 [dB],
LS = 100.0 [dB], PRx = −90.0 [dBm], LSU−SU = 20.0 [dB], and N0 = −100.0 [dBm]. Method
1 assumes ρP = 1.0.

Fig. 2.7 Simulation results of average allowed transmission power at SU-Tx where pout = 0.10,
Γd = 10 [dB], LS = 100.0 [dB], and PRx = −90.0 [dBm].



Chapter 3

Experimental Verification of
Measurement-based Spectrum Database
over TV Bands

We conducted a large-scale measurement campaign to evaluate the performance of the local
database in the proposed architecture. We used five vehicles with spectrum sensors. A
TV transmitter was treated as the primary system, and measured the signal power from the
transmitter. Two one-week measurement campaigns were conducted, in October 2013 and in
February 2014. The prior measurement datasets were stored in the spectrum database. On the
other hand, the posterior measurement datasets were treated as instantaneous measurement
data and were used for strict evaluation of the statistical estimation error characteristics.

3.1 Measurement Setup

3.1.1 Measurement Object and Measurement Area

Figure 3.1 shows the measurement area and the object of measurement. This figure describes
a 40 [km]× 45 [km] square area. In this experiment, Kumagaya relay station was treated
as the PU transmitter. This station is located in Kumagaya city, Saitama, Japan, which is a
suburban area near metropolitan Tokyo. We mainly measured the signal of 13CH (center
frequency of 473.14 MHz and bandwidth of 6 MHz). The signal is a vertical polarized signal
with an equivalent isotropic radiated power (EIRP) at 31 W.
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Fig. 3.1 Measurement area.

3.1.2 Experimental Structure

Figure 3.2 shows the sensing equipment used. The spectrum sensing function was imple-
mented on a software-defined radio platform, Universal Software Radio Peripheral (USRP)
N210, using GNU Radio software, and run on a laptop computer. The TV signal was sampled
using a fast Fourier transform (FFT) with a 200-kHz sampling rate; the number of samples M
was set to 2,048. Five vehicles measured the signal while driving on roads. The observation
results were stored on the laptop, together with location information collected using a Garmin
GPS18xUSB GPS unit. To allow data collection in a short time, we had two sensing devices
in each vehicle, as shown in Fig. 3.3. We used five vehicles in total; thus, ten measurement
units were utilized. Each USRP has individual (linear) differences in measurement values.
Therefore, we had to offset the difference by employing tone signals in the TV band, provided
by a signal generator (Rohde-Schwarz, SMU200A).

Here, the measurement parameters dictate that the measurement system probes only a
200-kHz wide band within the (total) 6-MHz bandwidth. Therefore, we need to understand
the relationship between the measured signal power and the full-band signal power to allow
calibration. To investigate this relationship, we measured the signal based on Integrated
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Fig. 3.2 Measurement equipment.

Services Digital Broadcasting-Terrestrial (ISDB-T). Figure 3.4 presents the experimental
system. The ISDB-T signals in 13CH were generated by the signal generator. After the
signals were attenuated, the USRP measured the signal with the parameters presented above.
The measurement result is shown in Fig. 3.5. In this figure, input power is defined as PTx−Γ

[dBm], where PTx is the transmission power of the signal generator in full band [dBm], and
Γ is the attenuated value at the output of the attenuator [dB]. The measurement value shows
the received signal power averaged over a sufficiently large set of FFT signals. In the linear
region, the difference between the full band signal and the measured signal is roughly -16.7
dB. Because of the 2.0-dB attenuation due to the two SMA cables, the measurement signal
power is 14.7 dB lower than that of the full-band signal power. Because the ratio of the
bandwidth between full band and limited band is 10log{(6.0×106)/(2.0×103)} ≃ 14.77 [dB],
the experimental result is considered to have the proper attenuation ratio.

3.1.3 Spectrum Database Construction

For statistical processing of the measurement dataset, we prepared a MySQL database server
at our university. The database server has two tables: a raw data table and a statistical
data table. The raw data table stores the large measurement dataset with no changes. Each
measurement datum is associated with measurement parameters: location, frequency, power,
and so on. The statistical data table has the average received signal power for each spatial
grid cell containing raw data. In addition, the database uses statistical processing functions
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Fig. 3.3 Experimental configuration in a vehicle.
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Fig. 3.4 Calibration equipment for investing the difference between the band-limited mea-
surement power and the full band signal power.

that generate the statistical data table from the raw data table. These functions produce
spatially-distributed average received signal information when the appropriate queries are
made.

After the field test, all measurement data were recorded on the MySQL database server. To
estimate the spatially-distributed average received signal information, the prior measurement
datasets were averaged over spatial grids with a 10-m side length.

3.2 Measurement Results

Figure 3.6 shows an average received signal map at 473.14 MHz. This map consists of
datasets measured in a prior measurement campaign and stored in the MySQL database
server. The strong trend of path loss increasing with increased distance from the transmitter
is clearly visible. The map also indicates that some regions have a received power value
significantly different from the received power value measured in adjacent cells. Because of
time variation factors, which include AWGN, are averaged out using long-term measurement,
these variations are attributed to shadowing effects.

In this section, we evaluate the estimation error performance of the constructed spectrum
database. The generated map is an instance of the proposed spectrum database. The dataset
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Fig. 3.5 Measurement power of USRP N210: Measurement of 6-MHz ISDB-T signal using
FFT with 200-kHz sampling rate.

that is measured a posteriori is used to obtain the most probable value and is compared with
both the map and a propagation model.

3.2.1 Comparison with a Propagation Model

To clarify the probabilistic error performances, we evaluated the CDF of the radio environ-
ment estimation error. As a comparison method, we used Notice 640, which is a propagation
model for Japanese TV broadcast systems. This propagation model is defined by the Japanese
spectrum regulator, MIC; it is virtually identical to the propagation model defined by the FCC.
Japanese TV broadcast operators often use this model to estimate the communication areas
of TV transmitters because MIC licenses the use of TV spectrums based on the estimation
results for Notice 640. According to MIC, the propagation curve considers multipathing
and diffraction due to terrain; however, the theoretical rationale is unclear. To estimate the
radio environment based on Notice 640, we used a radio propagation simulator called area
kakube [75]. This software was made for Japanese TV broadcast operators. Notice 640 based
electrical field strength can be calculated using stored Japanese terrain information. Note that
the measurement signal power is attenuated because of the band limit on the measurement.
Therefore, we subtracted 14.7 dB from the calculation results taken from area kakube.

Figure 3.7 shows a statistical comparison of residual-error performance. The first curve
indicates the CDF of differences between average values in the constructed radio environment
map and the dataset of instantaneous received signals, which are collected in the second
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Fig. 3.6 Generated radio environment map at 473.14 MHz.

measurement campaign. The second curve shows the residual error performance of Notice
640. This figure confirms that the curve of the proposed database rises rapidly from −10 dB.
On the other hand, the curve of Notice 640 rises slowly from −80dB to +80dB. Note that the
root mean squared errors (RMSEs) of these methods are 4.27dB in the proposed database and
26.7dB in Notice 640, respectively. In the proposed method, the influence of instantaneous
fluctuation is removed with the averaging process. This means that the influence of multipath
fading eventually remains as an error term even if the number of dataset is increased. For
example, in Rayleigh fading environment, the limit of the estimation of received signal power
can be derived as

RMS E = lim
N→∞

√√√
1
N

N∑
i=1

(
10log10xi

)2
≈ 6.13 [dB], (3.1)

where N is the number of compared instantaneous received signal power and xi is the channel
gain that follows the exponential distribution with mean 1.0. In the evaluation described in
Fig. 3.7, because the true value was obtained via the FFT-based analysis, the limit of accuracy
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Fig. 3.7 CDF of estimation error: Comparison with a propagation model, Notice 640.

in this experiment will be lower than Eq.(3.1). These facts explain that the estimation
accuracy of the proposed database is close to the limit.

Here, we show the CDF of the absolute error to confirm the residual error level, as shown
in Fig. 3.8. In the 90th percentile, the proposed database has a residual error of roughly 7.0
dB, and the propagation model has a residual error of roughly 37.0 dB. This figure shows the
poor accuracy of the propagation model. On the other hand, the proposed database is shown
to achieve high estimation accuracy.

3.2.2 Comparison between First and Second Measurement Results

Because the changes of building structure affect the radio propagation characteristics, it is
important to discuss the update frequency of the constructed spectrum database.

Figure 3.10 shows a comparison between averaged received signal powers obtained in
first and second measurement campaigns. Although three months have passed, The results
have a high, roughly 0.94, correlation. Therefore, in such a suburban area, the constructed
database will be able to perform a highly accurate radio propagation estimation without any
updates for several months.

On the other hand, the accuracy of the constructed database may be extremely deteriorated
if there is an extreme change in structure environment. To deal with such a problem, the
following process can be considered as a countermeasure.
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Fig. 3.8 CDF of absolute estimation error.

Fig. 3.9 Comparison between first and second measurement results where the mesh size is
10m.

1. The database compares the most recent dataset in the mesh with the probability
distribution of the past data set.

2. If a significant difference can be obtained, the database updates the average received
signal power by averaging only the recent dataset or by taking the weighted average
with forgetting factor.

3.2.3 Impact of the Database on Reduction of the Excess Interference
Margin

When SUs share a spectrum, they must set an interference margin after due consideration
of the probabilistic error performances based on the radio environment estimation. If
SUs estimate the radio environment with a low-precision method, SUs need to set exceed
margin. This means that SUs lose opportunities for spectrum sharing so as to protect primary
communications. Thus, the estimation error in cumulative probability indicates the extent
to which SUs determine the interference margin directly. For example, considering the
guarantee of SIR in PU-Rx as discussed in Chapt. 2, SU-Tx should satisfy the condition
Pr[(PRx− IRx) ≥ Γd] ≥ 1− pout. Here, when the database estimates PRx, the estimated value
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(b) Comparison result.

Fig. 3.10 Comparison between first and second measurement results where the mesh size is
10m.

can be expressed as P̂Rx = PRx+ ϵP, where ϵP [dB] is the error factor. Therefore, if IRx and
PRx are given, the above condition can be re-written as

Pr
[
IRx+Γd− P̂Rx ≤ ϵP

]
≤ 1− pout. (3.2)

This equation explains that the CDF of estimation factor can express the required interference
margin directly. This section evaluates the extent to which the proposed spectrum database
can improve the error performance in terms of cumulative probability. Figure 3.11 presents
the upside cumulative probability performance and downside cumulative probability perfor-
mance; the former shows underestimation characteristics, and the latter shows overestimation
characteristics. Each value is plotted with reference to Fig. 3.7. In the evaluation results, the
proposed database achieves more than 20 dB performance improvement, for both the upside
performance and the downside performance. The improvement in the estimation error is
shown in Fig. 3.12; this figure shows the difference between the proposed spectrum database
and Notice 640. This figure clarifies that the proposed spectrum database can mitigate the
excess interference margin by more than 20 dB.

3.3 Chapter Summary

In this chapter, to evaluate the estimation error characteristics of the local layer in the
measurement-based spectrum database, the field experiment for radio environment probing
over TV bands was presented. From the spectrum database construction results, we confirmed
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Fig. 3.11 Comparison of the residual error in cumulative probability.

Fig. 3.12 Impact of the proposed spectrum database on the improvement of estimation error.

that the proposed database dramatically reduces the estimation error of the radio environment
information. In addition, we showed that the proposed database can reduce the interference
margin.



Chapter 4

Transmission Power Control based on
Spectrum Database

Chapter 3 has shown that the local database in the proposed database architecture can
achieve the highly accurate radio propagation estimation. On the other hand, some important
questions may arise here:

• There are many locations where the SUs cannot enter: the generated local database
has tooth missing information. Therefore, after the reported signals are averaged, we
need to interpolate the tooth missing information.

• We need to discuss how the higher-layer database should perform, that is, how the
communication parameters of the SUs should be determined towards the efficient
spectrum sharing.

In this chapter, we consider these two problems together. In the spectrum sharing, the SUs
must not cause a harmful interference power at the PUs. However, because a low-accurate
spectrum database tends to overestimate the communication opportunity at the SUs, it is
important to design their communication parameters considering the accuracy of the database.

This chapter particularly discusses how the higher-layer database should design the
transmission power of the SUs so that the interference power at the PU belows a given
threshold.

4.1 Background

The interference power constraint between transmitters is a critical issue for spatial spectrum
sharing. A typical situation that requires strict interference management is spectrum sharing
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over TVWS. In a spectrum sharing environment, SUs must not interfere with the PUs. On
the other hand, an excess interference margin decreases the spectrum sharing opportunity;
therefore, it is important to manage the interference power properly [36]. Additionally,
HetNets need to efficiently manage inter-cell interference [76]. A suitable interference
management method enables transmitters to reuse the frequency efficiently and the UE can
select the optimum base station.

There has been a wide range of discussion concerning the interference power constraint
in the spectrum sharing environment. The channel capacity of spectrum sharing where a
primary link and a secondary link share the same spectrum is discussed in [29, 33, 77]. Based
on the theoretical analyses, several researchers have discussed the power control of multiple
SUs. References [78] and [79] discuss the power control method where the information
of SU-to-PU channels is limited to signal distribution. It is also assumed that the SUs
know the allowable interference power of each primary receiver, and each SU determines
its own transmission power based on the allowable interference power and the distribution
of the aggregate interference. However, these studies hardly give adequate accounts for the
estimation of the maximum allowable interference power for the PU. Although the maximum
allowable interference power strongly depends on the channel state in the primary link and
the desired QoS, these works assume that the PU determines a constant allowable interference
power. From the theoretical perspective, the allowable interference power needed to achieve
the desired QoS can be reduced if the primary link has a good channel state, and the SUs can
increase its own transmission power in this instance [36]. On the other hand, the transmission
power with a constant allowable interference power is limited to a constant value. These
facts motivate us to discuss the estimation of the maximum allowable interference power in
the spectrum sharing environment.

The REM is a tool for managing inter-transmitter interference. The REM stores the
spatial distribution of the average signal power received which is estimated by a path-loss
model or by a measurement dataset. For example, in TVWS systems, SUs usually estimate
white spaces and the allowable interference power based on the REM stored in a spectrum
database [67][68]. Using the REM, we can improve the efficiency of spectrum sharing
[80][81]. Because the estimation accuracy of the REM directly affects the spectral efficiency,
several researchers focus on building an accurate REM construction [5][72]. This has led to
the creation of various techniques for spectrum cartography. In particular, it is well known
that the measurement-based REM using Kriging interpolation, a geostatistical technique [82],
can achieve a highly accurate estimation [72][83][84]. In [72], the authors have measured
the field strength of radio waves over TV bands to improve the accuracy for spectrum
databases. Statistical results have demonstrated that several propagation models perform a
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biased estimation with a wide error variance. It is also shown that measurements with the
Kriging interpolation dramatically improve this estimation error.

However, although many researchers have maintained a continuous interest in improving
the accuracy of the measurement-based methods, sufficient study has not been done to
actually explore the transmitter parameter adaption methods based on the estimation results.
The estimation error is inseparable from the estimation methods, even if a measurement-based
method is utilized. The error depends upon the measurement methods such as the quantity of
the measurement data and the statistical conversion method. Therefore, we need to consider
the error characteristics when designing the transmission parameters. In [85], the authors
propose a REM-based downlink power allocation algorithm using Kriging interpolation and
compressive sensing. The proposed method determines the allowable transmission power
for the SU according to the constructed REM. However, because the estimated transmission
power ignores the estimation error of the REM, the interference property highly depends on
the number of measurement sensors. Reference [86] developed a distributed Kriging-based
spectrum cartography. In this method, distributed cognitive radio terminals preliminarily
collect radio environment information by exchanging training symbols with each other. The
time-varying shadowing is then tracked by utilizing Kriged Kalman filtering. The method
was applied to a cognitive radio resource allocation by considering a maximum interference
free power level [87] as the spectrum sharing criterion. However, the proposed resource
allocation also does not consider any estimation errors of the REM construction. Because
the authors have only provided an estimated map and an interference map to discuss the
spectrum sharing efficiency, whether or not the probabilistic interference constraint can be
achieved still remains unclear.

In this chapter, we propose a probabilistic interference power constraint method using
Kriging-based REM with the error distribution prediction. Kriging interpolation optimizes
the interpolation value by minimizing the error variance. The estimation error approximately
follows a log-normal distribution within a correlated shadowing environment; therefore, the
error distribution can be predicted using the minimized variance called the Kriging variance.
The proposed method estimates the maximum allowable interference power at the PU using
predicted error distribution. A suitable transmission power for the interference sources is
then designed by combining the allowable interference power with the interference channel
distribution. We compare the performance of the proposed scheme with three methods:
the perfect estimation, the path loss-based method, and Kriging-based method without the
error prediction. Comparison results show that the proposed method achieves a higher
transmission power for the interference source than the path loss-based method, even if only
a small amount of measurement data is available. It is also shown that the proposed method



46 Transmission Power Control based on Spectrum Database

x
0

R [m]

x
i

Measurement region

Protection area

defined by the PU

Measurement

point

Field of

interferers

RS [m]

I [dBm] dS [m]PU

x
P

P(x
0
)[dBm]

Fig. 4.1 Spectrum sharing model.

dramatically improves the primary protection performance compared with the conventional
Kriging-based method.

4.2 System Model

Figure 4.1 shows the spectrum sharing environment under consideration. Here, we consider a
situation where a cluster of SUs spatially share a spectrum with a fixed PU. The SUs can con-
nect to the spectrum database that stores the radio environment information, and the spectrum
database reads the allowable transmission power to the SUs based on a measurement-based
REM. The spectrum database only knows the number of SUs but has no knowledge of the
detailed location of the SUs. In addition, it is also assumed that the primary transmitter
preliminarily gives its own location and the communication protection area to the spectrum
database. An example of this situation is spectrum sharing between a TV transmitter and
Wi-Fi devices over TVWS. Note that the location of the primary transmitter can be obtained
from the measurement datasets, even if the PU gives no information about the location. This
can be achieved by utilizing received signal power-based localization methods such as [88].

We discuss the interference power constraint at the communication protection area
defined by the PU. The SUs transmit the secondary signal while considering the aggregate
interference power at the location xxx0, which is the closest edge of the protection area from
the interference cluster.
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4.2.1 Radio Propagation Model of Primary Signal

Let xxxP denote the location of the PU. We assume a received signal power in location xxx given
by the following equation:

P(xxx) = PTx−L(∥xxxP− xxx∥)+WP(xxx), (4.1)

where PTx is the primary transmission power [dBm] and WP(xxx) [dB] is the shadowing loss at
xxx. The shadowing loss WP(xxx) follows a log-normal distribution with a standard deviation σP

[dB]. L(d) [dB] is defined as the propagation loss with distance d [m] between the PU and
the receiver. We assume the propagation loss as,

L(d) = 10ηPlog10d, (4.2)

where ηP is the path loss index. According to the experimental result discussed in Sect. 3.2,
we do not consider effects of multipath fading on the measurement In this chapter, we assume
a spatially correlated shadowing. When two the locations xxxi and xxx j are exposed to the
shadowing values WP(xxxi) and WP(xxx j), the correlation coefficient ρi, j can be expressed by the
following equation:

ρi, j =
E[WP(xxxi)WP(xxx j)]

σ2
P

(4.3)

= exp
(
−
∥xxxi− xxx j∥

dcor,P
ln2

)
, (4.4)

where dcor,P is the correlation distance [m] which is defined as the distance satisfying
ρi, j = 0.50. It is well known that the distance depends on the surrounding structures [89]. To
simulate the correlated shadowing environment, the Monte Carlo Method [90] is used.

According to [72], we assume that small-scale fading and additive white Gaussian noise
(AWGN) are eliminated owing to long-term measurement. In [72], the authors measured
the field strength of the radio wave from TV transmitters to verify the improvement of the
TVWS prediction. Samples were created repeatedly with the smallest possible resolution of
the spectrum analyzer in order to average over the effects of small-scale fading and the noise
floor of the device. They observed that the datasets with this setup follows the Gaussian
process, and it was shown that ordinary Kriging can generate accurate REM.
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4.2.2 Radio Environment Map Construction

The measurement environment is also shown in Fig. 4.1. The area consists of a circle
with radius R [m] where the center point is located at xxx0. For the REM construction, N
nodes measure signals from the PU within the circle. Here, the measurement locations{
xxxi|i = 1, · · · ,N

}
are selected randomly, and each node is measured in each location.

In this chapter, the REM is defined as a map that has two-dimensional information of the
average received signal power. The task for the REM is to provide accurate P(xxx). The REM
is typically divided into a square grid in order to remove the effects of small-scale fading
and to reduce the quantity of information [80]. However, if the REM consists of larger grids
compared to the correlation distance dcor,P, the average received signal power P(xxx) obviously
fluctuates in the grid [91]. For simplicity, we assume that the grid is sufficiently small enough
that the shadowing correlation in the grid can be regarded as ρi, j ≈ 1. Using the measurement
datasets yyy = (P(xxx1),P(xxx2), · · · ,P(xxxN))T, the database interpolates P(xxx0).

4.2.3 Interference Model

We consider that an interference cluster with M SUs is located dS [m] away from xxx0. Each
SU is randomly distributed in the circle with radius, RS [m] according to the two-dimensional
uniform distribution. In addition, we assume that each SU transmits with a given power
PS [dBm].

As with the primary signal, each interference power at xxx0 transmitted by a SU i is
described by the path loss and the spatially correlated shadowing1:

ImW,i = 10
PS
10 d−ηS

S,i 10
WS,i
10 [mW], (4.5)

where ηS is the path loss index dS,i ≜ ||xxx0 − xxxS,i|| [m], and WS,i [dB] is the shadowing loss
that fluctuates according to a log-normal distribution with standard deviation σS [dB] and
correlation distance dcor,S [m]. We assume that WS,i is statistically independent from WP(xxxi).

1There is room for a consideration on whether or not it is better to assume such a generalized model rather
than a site-specific model as the propagation model for the interference power. However, the distance between
the transmitter and receiver will be on the order of several hundred meters to several kilometers because the
PU-Rx located in the edge of the coverage only accepts a very low interference power. In such an environment,
the interference signal is influenced by a myriad of structures. Therefore, the central limit theorem works for
the propagation attenuation, and this interference model will make sense.
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The total interference power at xxx0 is then given by,

ImW =

M∑
i=1

ImW,i [mW],

I = 10log10ImW [dBm]

= PS+10log10

M∑
i=1

d−ηS
S,i 10

WS,i
10 . (4.6)

The main focus of this chapter is the attainment of the protection criterion based on the
measurement-based REM. Therefore, we assume that the spectrum database can estimate σS,
ηS, dcor,S, and M perfectly. These values can be obtained by utilizing an empirical formula
[92] or measurement-based parameter estimation [93][94].

4.2.4 Spectrum Sharing Criterion

We utilize the SIR as the protection criterion for the primary communication. Here, the SIR
at xxx0 can be written as,

Γ(xxx0) = P(xxx0)− I [dB]. (4.7)

If the PU determines the desired SIR as Γd [dB], the outage event can be formulated as
Γd > Γ(xxx0). Thus, considering the desired protection probability 1− pout, the SU must satisfy
the protection probability at xxx0, given by the following equation,

Pr[Γ(xxx0) ≥ Γd] ≥ 1− pout. (4.8)

Using the generated REM and channel information of the SUs, the spectrum database
estimates the maximum median value of the interference signal max PS ≜ PS,max [dBm] that
is subject to Eq. (4.8).

4.3 Kriging Interpolation

We estimate PS,max according to the Kriging-based REM. Kriging interpolation is a minimum
mean squared error method of spatial prediction that depends upon the second order properties
of the process [82]. The goal is to estimate the unknown value at an arbitrary location xxx0

from the measurement datasets. This is achieved by assigning a weight factor ωi (i = 1, · · · ,N)
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to each value measured by the N nodes, as follows:

P̂(xxx0) =
N∑

i=1

ωiP(xxxi), (4.9)

where P̂(xxx0) is the interpolated value; the true value is P(xxx0). Further, to achieve the best
linear unbiased estimator (BLUE), the Kriging methods set a constraint,

N∑
i=1

ωi = 1. (4.10)

Kriging methods are subdivided on the basis of the decision rule of ωi, but all the
methods preliminarily estimate the spatial-covariance structure of the random process from
the datasets. In this chapter, the residual maximum likelihood (REML) method [95] is
utilized for estimating the spatial-covariance structure. Additionally, to determine ωi, we
apply ordinary Kriging that does not require a knowledge of the mean average of the field.

4.3.1 Residual Maximum Likelihood Method

This method assumes that the measurement vector yyy follows a Gaussian process described as
yyy ∼ N(XXXβββ,MMM). In the channel model defined in Eq. (4.1), XXX and βββ can be defined as follows:

XXX =


1 −10log10(d1)
1 −10log10(d2)
...

...

1 −10log10(dN)

 , βββ =
PTx

ηP

 . (4.11)

MMM is the variance-covariance matrix defined as MMM = α2
nIII +α2

s HHH(αr); its elements consist
of several covariance functions. α2

n, α
2
s , αr, the parameters of the covariance function, are

called nugget, sill, range, and the parameter vector θθθ consists of these parameters. III is the
N ×N identity matrix, and HHH(αr) is a N ×N correlation matrix that follows a theoretical
correlation function. From the assumption in Eq. (4.4), each correlation can be written as,

Hi, j = exp
(
−
||di, j||

αr

)
. (4.12)
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Then, the log-likelihood function of the measurement datasets can be formulated as,

l(yyy|βββ,θθθ) =−
N
2

ln2π−
1
2

ln |MMM| −
1
2

(yyy−XXXβββ)TMMM−1(yyy−XXXβββ). (4.13)

Although ML estimation can be achieved by maximizing Eq. (4.13), the estimators are
biased as a consequence of the loss in the degree of freedom from estimating βββ [95]. This
bias is substantial even for moderately sized datasets if either the spatial correlation is strong
or q, the dimensionality of βββ, is large.

The bias can be reduced by employing a variant of the maximum likelihood estimation
known as the REML estimation. The REML method linearly transforms Eq. (4.13) in order
to remove the dependence property between θθθ and βββ. Namely, the log-likelihood function
associated with N −q linearly independent linear combinations of the observations, rather
than the log-likelihood function associated with the observations, is maximized. Because
only θθθ is estimated, the bias due to estimating βββ can be mitigated.

In this method, yyy is multiplied by an idempotent matrix MMMXXX = [III−XXX(XXXTXXX)−1XXXT]. This
procedure removes βββ from Eq. (4.13) and generates the residual error vector. Then, the
log-likelihood function of the residual error can be written as,

lR(yyy|θθθ) =const.−
1
2

ln |MMM| −
1
2

ln |XXXTMMM−1XXX| −
1
2

yyyTPPP(θθθ)yyy, (4.14)

where

PPP(θθθ) =MMM−1−MMM−1XXX[XXXTMMM−1XXX]−1XXXTMMM−1. (4.15)

The maximization of Eq. (4.14) can determine θθθ.
Note that the method can easily be extended to a more complex path loss model. Several

researchers have proposed complex path loss models that have more than one parameter for
more accurate path loss estimation [92]. However, we can apply REML for such models
because most of the path loss models can be written as the vector XXXβββ. For example, reference
[96] proposes a path loss model that consists of four parameters:

L(d,β0,β1,β2,β3) = β0+β1log10d+β2d+β3log10h, (4.16)
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where h is the relative humidity percentage. In this case, XXX and βββ can be written as,

XXX =


1 −1 −log10(d1) −d1 −log10h1

1 −1 −log10(d2) −d2 −log10h2
...
...

...
...

...

1 −1 −log10(dN) −dN −log10hN

 ,

βββ =



PTx

β0

β1

β2

β3


. (4.17)

Using Eq. (4.17), REML can be applied to Eq. (4.16).

4.3.2 Ordinary Kriging

Ordinary Kriging assumes to be constrained in the local neighborhood of each estimation
point, i.e. E[P(xxx)] = µ for each nearby data value [97]. This method determines the weights
that minimize the variance of the estimation error σ2

k = E[{P̂(xxx0)−P(xxx0)}2] under the condi-
tion Eq. (4.10). Using the method of the Lagrange multiplier, the objective function ϕ(ωi,µ)
can be written as,

ϕ(ωi,µ) = σ2
k −2µ

 N∑
i=1

ωi−1

 , (4.18)

where µ is the Lagrange multiplier. Here, σ2
k can be written as the following equation:

σ2
k = −γ(d0,0)−

N∑
i=1

N∑
j=1

ωiω jγ(di, j)+2
N∑

i=1

ωiγ(di,0), (4.19)

where di, j ≜ ∥xxxi − xxx j∥. Note that γ(di, j) is a semivariogram. Because of the assumption
of correlated shadowing expressed in Eq. (4.4), we assume an exponential semivariogram
model:

γ(di, j) =
1
2

E[
(
P(xxxi)−P(xxx j)

)2
] (4.20)

= α2
n+α

2
s

{
1− exp

(
−

di, j

αr

)}
. (4.21)
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From the partial derivatives in Eq. (4.19), we can obtain N +1 simultaneous equations,

γ(d1,1) · · · γ(d1,N) 1
γ(d2,1) · · · γ(d2,N) 1
...

...
...

...

γ(dN,1) · · · γ(dN,N) 1
1 · · · 1 0





ω1

ω2
...

ωN

µ


=



γ(d1,0)
γ(d2,0)
...

γ(dN,0)
1


. (4.22)

From the above simultaneous equations, the weights that minimize σ2
k can be derived. Here,

the minimized σ2
k is called the Kriging variance, and σk is called the Kriging standard

deviation.
Note that the Kriging interpolation assumes that the semivariogram only depends on di, j.

The spatial correlation and the standard deviation of the aggregate received signal power
from multiple PUs fluctuate spatially; therefore, the number of PUs is implicitly limited to
one.

Here, we evaluate the semivariogram in the real environment by using the experiment
result obtained in Chapter 3. Figure 4.2a shows the evaluation area. The evaluation was
performed at Area A, Area B, and the entire area surrounded by the red line. To obtain the
semivariogram, the squared difference of all the pairs between average received powers within
the mesh was calculated and plotted for each distance between samples. After the values were
averaged every 5m, the averaged semivariograms were fitted to the theoretical semivariogram
defined in Eq. (4.21) via the non-linear least squares. The calculated semivariograms are
summarized in Fig.4.2b. The semivariogram well fits the exponential semivariogram in all
areas, and we can confirm that the semivariogram can be derived as a function of the distance.

On the other hand, these fitted curves have difference each other because of the difference
of surrounding obstacle structures. Since the accuracy of the semivariogram directly influ-
ences the accuracy of the spatial interpolation, it is preferable to model the semivariogram
using only the dataset around the area to be interpolated each time when the interpolation is
performed, rather than modeling in bulk for a wide area.

4.4 Kriging-based Interference Power Constraint

The ordinary Kriging can achieve the optimal interpolation of P(xxx0). On the other hand,
because the estimated value includes some estimation errors, the transmission power control
of the SUs without consideration for the error will generate a harmful interference for the
PU. The proposed method predicts the probabilistic distribution of the estimation error to
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(a) Evaluation area.
(b) Semivariogram.

Fig. 4.2 Semivariogram in Kumagaya city where the mesh size is 10m.

determine the suitable transmission power for the SUs that satisfy the spectrum sharing
criterion defined in Eq. (4.8).

4.4.1 Statistical Property of Estimation Error

In the ordinary Kriging method, the estimation error follows a Gaussian distribution if the
samples spatially fluctuate with a Gaussian process [82]. This behavior can be applied to
typical radio propagation because the variations in the radio signal follow a logarithmic
Gaussian process. Figure 4.3 shows three examples of the estimation error distribution:
N = 10,50,90. Each distribution indicates the estimation error ϵ ≜ P(xxx0)− P̂(xxx0) [dB]. The
simulation parameters are described in Table 4.1.

Note that this chapter defines a trial of the evaluation in the following procedure.

1. The PU is deployed at xxxP. Here, we determine the distance between xxxP and xxx0 so that
P(xxx0) is equal to the simulation parameter. This is achieved by the following.

||xxxP− xxx0|| = 10
PTx−P(xxx0)

10ηP [m]. (4.23)

In the simulation parameters, the distance is ||xxxP− xxx0|| ≒ 3727.6 [m].

2. N terminals are randomly deployed in the measurement circle without xxx0. Each mea-
surement location xxxi is selected according to a two-dimensional uniform distribution.
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Table 4.1 Simulation parameters.

Desired SIR Γd [dB] 20.0
Desired outage probability pout 0.10
Transmission power PTx [dBm] 30.0
Correlation distance dcor,P and dcor,S [m] 20.0
Shadowing σP and σS [dB] 8.0
Path loss index ηP and ηS 3.5
Median P(xxx0) [dBm] -95.0
Measurement radius R [m] 50, 100, 200
Number of SUs M 1,000
Radius of interference cluster RS [m] 1,000
Distance dS [m] 3,000
Number of trials 100,000

3. Each terminal measures the received signal power P(xxxi) according to Eq. (4.1) and
reports the value to the spectrum database.

4. P(xxx0) is estimated with the ordinary Kriging. ϵ is then calculated.

5. The spectrum database estimates PS,max based on the proposed method.

6. M SUs are deployed in the interference cluster and transmit interference signals.

7. The SIR at xxx0 is calculated.

The detailed procedure of estimating PS,max is presented in 4.4.3.
In Fig. 4.3, each curve clearly plots the log-normal distribution, and the variance becomes

narrow if the number of measurement points N are increased. Correlation and covariance
between P̂(xxx0) and P(xxx0) are summarized in Fig. 4.4. Because P̂(xxx0) and P(xxx0) are highly
correlated each other, we can model the PDF of P̂(xxx0) and P(xxx0) as a bivariate log-normal
distribution. In Sect. 2.3, we have shown that the measurement-based spectrum database
can outperform the path loss-based spectrum database from the view point of the channel
capacity if the correlation is more than 0.5. Because many numerical results in this figure
take 0.5 or more, such an advantageous region can be achieved realistically.

Here, the variance can be predicted by considering the property of the Kriging interpo-
lation. If the semivariogram can be estimated accurately, the minimized Kriging standard
deviation σk is approximately equal to the standard deviation of the estimation error. Fig-
ure 4.5 indicates E[σk] and the standard deviation of ϵ. Note that E[σk] is the expectation of
σk obtained from the Monte Carlo simulation. In this figure, as the number of measurement
points N increases, the Kriging standard deviation converges to the standard deviation of the
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Fig. 4.3 PDF of the estimation error ϵ where σP = 8.0, ηP = 3.5, PTx = 30.0 [dBm], P(xxx0) =
−95.0 [dBm], and R = 100.0 [m]. Each error follows a log-normal distribution.

estimation error. Therefore, if N is large enough, ϵ nearly follows a log-normal distribution
with a median value of zero and a standard deviation of σk. These characteristics permit the
prediction of the probabilistic distribution of the estimation error ϵ. Utilizing these behaviors,
we can estimate the maximum allowed transmission power based on the predicted error
characteristics.

Here, the reason the standard deviation of ϵ exceeds σk is that σk is the standard deviation
of the estimation error under a perfect semivariogram estimation. The Kriging method initially
applies a theoretical semivariogram model to the datasets; it is clear that this procedure has
an estimation error. Thus, the upper bound of E[σk] is equal to the standard deviation of ϵ
[82].

4.4.2 Statistical Property of Aggregate Interference

Next, we describe the statistical property of the aggregate interference I to estimate the
allowable transmission power. In large scale wireless networks, it is too difficult to find
the distribution of the aggregate interference in a closed form, and some researchers have
discussed the approximation method. Reference [98] shows that the sum of many signals with
correlated log-normal shadowing approximately follows log-normal distribution. In addition,
a simple calculation method for moments of the distribution is proposed in [99]. According
to [99], we approximate I as the log-normal distribution and calculate the moments.
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(a) Correlation. (b) Covariance.

Fig. 4.4 Correlation and covariance between P̂(xxx0) and P(xxx0) where σP = 8.0, ηP = 3.5,
PTx = 30.0 [dBm], P(xxx0) = −95.0 [dBm], and R = 100.0 [m].

First, the logarithmic mean of the aggregate interference E[lnImW] and the variance
Var[lnImW] can be written as

E[lnImW] =
3
2

lnM+ (0.1ln10)PS−ηSG1−
1
2

k, (4.24)

Var[lnImW] = (0.1ln10)2σ2
S− lnM+η2

S(G2−G2
1)+ k, (4.25)

where
k = ln

(
1+ (M−1)e

(
(0.1ln10)2σ2

S(Gcor−1)−η2
S(G2−G2

1)
))
. (4.26)

Gn and Gcor are to be found by numerical integration:

Gn = E[lnndS,i]

=

"
Ag

lnn(dS)dxxxS, (4.27)

Gcor =
E[WS,iWS, j]

σ2
S

(i , j)

=

"
Ag

"
Ag

h(xxxS,i, xxxS, j)g(xxxS,i)g(xxxS, j)dxxxS,idxxxS, j, (4.28)
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Fig. 4.5 Standard deviations where σP = 8.0, ηP = 3.5, PTx = 30.0 [dBm], and P(xxx0) = −95.0
[dBm]. As the number of measurement points N increases, the Kriging standard deviation
converges to the standard deviation of the estimation error.

where g(xxxS, j) is the interferer density, h(xxxS,i, xxxS, j) is the shadowing correlation, andAg is the
area over which g(xxxS, j) is non-zero. Finally, the mean and the variance of I can be written as

E[I] =
E[lnImW]
0.1ln10

= PS+15log10M−
1

0.1ln10

(
ηSG1+

1
2

k
)

≜ I, (4.29)

Var[I] =
Var[lnImW]
(0.1ln10)2

≜ σ2
sum. (4.30)

4.4.3 Allowed Transmission Power

Using both distributions of the primary signal and the interference signal, we determine the
allowable transmission power PS,max. First, we define Imax [dBm] as the maximum allowable
value of I that satisfies Pr[Γ(xxx0) ≥ Γd] = 1− pout. After Imax is calculated, using Eq. (4.29),
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PS,max can be written as follows:

PS,max = Imax−

(
15log10M−

1
0.1ln10

(
ηSG1+

1
2

k
))
. (4.31)

When the number of measurement points N is sufficiently large, the SIR at xxx0 can be
formulated as Γ(xxx0) =

{
P̂(xxx0)+ ϵ

}
− I [dB]. Thus, the distribution of the SIR approximately

follows a log-normal distribution with a median value P̂(xxx0)− I and a standard deviation√
σ2

k +σ
2
sum. Using the cumulative distribution function (CDF) of the SIR FΓ(t), we estimate

Imax that satisfies FΓ(Γd) = pout. Under the condition, FΓ(Γd) can be written as follows:

FΓ(Γd) ≈
1
2

1+ erf

Γd−
(
P̂(xxx0)− Imax

)
√

2(σ2
k +σ

2
sum)




= pout, (4.32)

where erf(·) is the error function. By solving Eq. (4.32), Imax can be determined as

Imax ≈ P̂(xxx0)−Γd+

√
2(σ2

k +σ
2
sum)erf−1(2pout−1). (4.33)

Then, we can determine PS,max by substituting Eq. (4.33) for Eq. (4.31).

4.5 Comparison of Different Estimation Methods

We compare the performances of the proposed method with three other methods: the perfect
estimation, the path loss-based interference power constraint without Kriging, and the
Kriging-based interference power constraint without consideration of the estimation error.
The first method assumes that the SU can perfectly estimate the signal power P(xxx0). This
situation implies that a measurement node directly probes the signal at xxx0. In the second
method, we assume that the SU only knows the median P(xxx0) ≜ PTx−L(||xxxP− xxx0||) and σP

of the PU link. The third method estimates P(xxx0) using the ordinary Kriging, but neglects
the estimation error. For simplicity, we assume that all methods know σS, ηS, and dcor,S

perfectly.
Note that this section only describes the estimation method of Imax. As with the proposed

method, all compared methods can obtain PS,max by assigning Imax to Eq. (4.31).
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4.5.1 Perfect Estimation

This situation is equal to method 2 defined in Sect. 2.3 with ρP = 1.0. In this situation,
because the SUs know the P(xxx0) and I, the SIR Γd(xxx0) follows a log-normal distribution
with a median P(xxx0)− I and a variance σ2

sum. Thus, based on the condition of Imax, we can
formulate FΓ(Γd) as

FΓ(Γd) =
1
2

1+ erf
Γd− (P(xxx0)− Imax)

√
2σsum


= pout. (4.34)

Therefore, Imax can be formulated as

Imax =
{
P(xxx0)+WP(xxx0)

}
−Γd−

√
2σsumerf−1(1−2pout). (4.35)

Here, in order to evaluate the spectrum sharing efficiency, we analyze the expected value of

the transmission power 10log10E
[
10

PS,max
10

]
. Let us rewrite Imax as a function of wP ≜ 10WP/10,

Imax(wP). From its PDF fwP(y), the expected value is shown as

E
[
10

Imax(wP)
10

]
=

∫ ∞

0
10

Imax(y)
10 fwP(y)dy

=

∫ ∞

0
Cy

10/ln10
√

2πσPy
exp

− (10log10y)2

2σ2
P

dy, (4.36)

where

C = 10
P(xxx0)−Γd+

√
2σsumerf−1(2pout−1)

10 . (4.37)

Solving the integration, we can formulate the allowable interference power as

10log10E
[
10

Imax
10

]
= P(xxx0)−Γd+

√
2σsumerf−1(2pout−1)+

σ2
P

20
(ln10)2 log10 e. (4.38)

Thus, from Eq. (4.31) and Eq. (4.38), the mean of PS,max can be written as

10log10E
[
10

PS,max
10

]
=P(xxx0)−Γd+

√
2σsumerf−1(2pout−1)+

σ2
P

20
(ln10)2 log10 e

−

(
15log10M−

1
0.1ln10

(
ηSG1+

1
2

k
))
. (4.39)
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The equation implies that the intensity of the shadowing variation in the primary channel
increases the transmission power in proportion to σ2

P in the log space. On the other hand, in
the secondary channel, the value decreases in proportion to −σsum.

4.5.2 Path Loss-based Interference Power Constraint without Kriging
Interpolation

This situation is equal to method 3 defined in Sect. 2.3. This method only knows P(xxx0), σP,
and I. Thus, the SIR follows a log-normal distribution with a median P(xxx0)− I and a variance
σ2

P+σ
2
sum. Therefore, its CDF can be formulated as

FΓ(Γd) =
1
2

1+ erf

Γd−
(
P(xxx0

)
− Imax)√

2
(
σ2

P+σ
2
sum

)



= pout. (4.40)

Because Imax depends only on the channel distribution information, the median and the

variance are 10log10E
[
10

Imax
10

]
= Imax. Thus,

10log10E
[
10

Imax
10

]
= P(xxx0)−Γd−

√
2(σ2

P+σ
2
sum)erf−1(1−2pout). (4.41)

Using Eq. (4.31) and Eq. (4.41), the mean of PS,max can be written as

10log10E
[
10

PS,max
10

]
=P(xxx0)−Γd−

√
2(σ2

P+σ
2
sum)erf−1(1−2pout)

−

(
15log10M−

1
0.1ln10

(
ηSG1+

1
2

k
))
. (4.42)

Unlike the perfect estimation, the intensity of the shadowing variation in the primary
channel also decreases the average transmission power. This phenomenon corresponds to
the perception that indeterminacies in the radio environment require SUs to set considerable
interference margins.

4.5.3 Kriging-based Interference Power Constraint without Error Dis-
tribution Prediction

For the comparison of the outage probability performance, the performance of the Kriging-
based interference power constraint without error distribution prediction is evaluated. In this
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Fig. 4.6 RMSE vs the number of measurement points.

method, the SU treats P̂(xxx0) as the true received signal power P(xxx0). Thus, the estimation of
Imax can be achieved by assigning P̂(xxx0) to

{
P(xxx0)+WP(xxx0)

}
in Eq. (4.35), as follows:

Imax ≈ P̂(xxx0)−Γd−
√

2σsumerf−1(1−2pout). (4.43)

However, because Eq. (4.43) neglects the estimation error of P̂(xxx0), it can be presumed that
the outage probability performance of the method is inferior to the proposed method.

4.6 Performance Evaluation

In this section, the performance evaluation of the interference constraint is presented. The
simulation procedure is the same as in Sec. 4.4 and the simulation parameters are defined in
Table 5.1.

4.6.1 Radio Propagation Estimation Accuracy

First, the root mean squared error (RMSE) of the estimation of P(xxx0) with the ordinary
Kriging is shown in Fig. 4.6. The path loss-based estimation cannot estimate the shadowing
factor WP(xxx0). Therefore, its RMSE is equal to the shadowing standard deviation σP. On the
other hand, the ordinary Kriging can provide a more accurate estimation than the path loss-
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Fig. 4.7 Outage probability of the desired SIR vs the number of measurement points N. The
proposed method almost achieves the desired protection criteria pout = 0.10.

based method because the interpolation utilizes the spatial correlation for estimating WP(xxx0).
Additionally, this figure indicates that measurements in a small circle can estimate the radio
propagation with a high accuracy; this is because the neighboring measurements can acquire
an accurate spatial correlation structure. The accurate structure provides a suitable weight
factor for the Kriging interpolation. Therefore, the neighboring measurements improve the
estimation accuracy.

Note that these results are nearly equal to the error standard deviation shown in Fig. 4.5
because the Kriging interpolation achieves an unbiased estimation in the dB domain.

4.6.2 Outage Probability of the Desired SIR

The outage probability of the desired SIR Pr[Γd > Γ(xxx0)] is shown in Fig. 4.7. In order to
confirm the impact of the radio propagation estimation error, the simulation was conducted
in three environments: R = 50, 100, 200 [m]. First, the Kriging-based method without
error distribution prediction obviously generates harmful interference with the PU. On the
other hand, each curve of the proposed method approximately satisfies the desired outage
probability and converges to the value. Additionally, the small measurement circle and the
highly accurate propagation estimation improve the outage probability. However, all the
curves of the proposed method cause some harmful interference, particularly in regions with
few measurement points. The cause of the harmful interference is the underestimation of the
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Fig. 4.8 Average transmission power vs the number of measurement points N. Each dot-curve
includes the interference margin that satisfies the strict desired protection criteria pout = 0.10.

estimation error that is shown in Fig. 4.5. In the proposed method, the estimation error ϵ is
predicted based on the Kriging standard deviation σk. However, the standard deviation of the
estimation error exceeds σk even if there are several measurement points as mentioned in
4.4.1. Considering this behavior, the proposed method should set a very slight interference
margin.

Note that the underestimation can be improved using a parametric bootstrap method.
The method predicts the distribution of the estimator by conducting repeated resampling and
estimations from the measurement data. In [100], it is shown that the method can reduce the
difference between the Kriging variance and the variance of the error. The implementation
procedure is summarized in appendix A.

4.6.3 Average Transmission Power

Under a peak interference power constrained spectrum sharing environment, it is important
to increase the average transmission power of the interference source with the interference
constraint in order to improve the spectrum usage efficiency. From this perspective, we have
evaluated the average transmission power characteristics.

The characteristics of the average transmission power are shown in Fig. 4.8. Note that
the Kriging-based interference power constraint without the error distribution prediction
obviously interferes with the PU, as shown in Fig. 4.7. Thus, the performance of the
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conventional Kriging-based method is not included in the figure in order to compare the
transmission capability. Because of the demand of the interference margin for a strict
interference constraint, we have evaluated the required margin using numerical simulations.
Here, each outage probability of the SIR is associated with Fig. 4.7. This figure shows that
an increase in the number of measurement points N improves the capability of the spectrum
sharing and reduces the required margin.

Additionally, the proposed method can achieve a higher spectrum sharing capability than
the path loss-based method even if there are only a few datasets. Note that achieving the limit
of the path loss-based method is difficult because the SUs cannot estimate the actual path
loss parameters and σP without the measurements. Model-tuning is an estimation method
for improving the accuracy of the path loss models [92]. Fitting several parameters of a
path loss model with the measurement data, the radio environment estimation accuracy can
be improved. However, because the limit of the model-tuning is equal to that of the path
loss-based method, the advantage is inferior to the Kriging-based method.

4.6.4 Effects of Radio Environment Parameters

Next, we show effects of the radio environment parameters on the spectrum sharing perfor-
mances. Figure 4.9 shows the effects of the standard deviation σP and σS. In the simulation,
both σP and σS are changed simultaneously. Figure 4.9a shows the standard deviation of
the estimation error and the Kriging standard deviation. First, it can be seen from Fig. 4.9b
that the outage probability with the conventional Kriging-based approach is clearly degraded
as the standard deviation increases. This is because such deep shadowing decreases the
estimation accuracy of P(xxx0) as shown in Fig. 4.9a. On the other hand, the proposed method
can almost achieve the desired outage probability even if the standard deviation becomes
large owing to the error prediction.

The average transmission power of the SUs is shown in Fig. 4.9c. In the figure, two
dot-curves, perfect estimation and path loss-based estimation, are plotted with Eq. (4.39) and
Eq. (4.42). Because the transmission power with the path loss-based method decreases in

direct proportion to
√

2(σ2
P+σ

2
sum), the curve is a monotonically decreasing function. On the

other hand, the curve of the perfect estimation increases in proportion to σ2
P because of the

knowledge of the shadowing variation in the primary signal WP. The proposed method also
has a similar property. Therefore, these results imply that the more the standard deviation of
the shadowing grows, the more the SUs can gain their own transmission capability using the
proposed method.
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(a) Standard deviation.

(b) Outage probability.

(c) Average transmission power.

Fig. 4.9 Effects of shadowing standard deviations, where dcor,P = 20 [m], ηP = 3.5, and
R = 50 [m]. Even though the standard deviation of the estimation error has a high value, the
proposed method can almost achieve the desired outage probability.
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(a) Standard deviation.

(b) Outage probability.

(c) Average transmission power.

Fig. 4.10 Effects of correlation distance, where σP =σS = 8.0 [dB], ηP = 3.5, and R = 50 [m].
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(a) Outage probability. (b) Average transmission power.

Fig. 4.11 Spectrum sharing performances in Hata model environment, where σP = σS =

8.0 [dB], N = 30, and R = 50 [m].

Figure 4.10 illustrates the effects of the correlation distance. In Fig. 4.7 and Fig. 4.8,
we confirmed that the small measurement radius R improves both the radio environment
estimation accuracy and the spectrum sharing capability under a given correlation distance.
This is because the measurement in the small area strengthens the correlation among the
datasets. The behavior can also be seen in Fig. 4.10; Fig. 4.10b and Fig. 4.10c show that the
proposed method performs well under a high correlation distance environment.

Next, we show the effects of the path loss environment. The above simulations generate
the path loss model according to Eq. (4.2) with the same path loss index. On the other hand,
in realistic situations, the path loss characteristics highly depend on the communication
environment such as antenna height and frequency. We evaluate the performance of the
proposed method under the Hata model environment in order to confirm the applicability in
realistic situations.

In the simulation, the path loss of the primary signal follows the Hata model for urban
areas [101]. Although the primary signal follows the Hata model, the proposed method
assumes Eq. (4.2). This model can be written as

L(d,hM,hB, f ) = 69.55+26.16log10 f −13.82log10hB−CH + (44.9−6.55log10hB)log10d,
(4.44)

where hb [m] is the height of the transmitter, hm [m] is the height of the receiver, and f [MHz]
is the signal frequency. CH is the antenna height correlation factor. In large cities, CH can be
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written as

CH =

 8.29(log10(1.54hM))2−1.1 (150 ≤ f ≤ 200),
3.2(log10(11.75hM))2−4.97 (200 < f ≤ 1500).

(4.45)

Figure 4.11 shows the outage probability and the average transmission power. We also
plot the results, where ηP = 3.5 represents the reference value. It can be confirmed that
the spectrum sharing performances are independent of each parameter hm, hb, and f ; the
proposed method has the robustness for the path loss environment.

4.6.5 Effects of Imperfect Channel Information

We show the effects of imperfect channel information on the spectrum sharing performances.
The above results assume that the spectrum database has perfect information of the interfer-
ence distribution. On the other hand, we should consider the imperfection of this information
when setting communication parameters because such information also has some estimation
errors. In the simulation, we consider the estimation error of both the path loss index in
secondary channel ηS, and the shadowing standard deviation σS.

According to some results for the maximum likelihood-based path loss estimation
[93][94], we assume that the spectrum database has the following imperfect path loss
information:

η̂S = ηS+ηerr, (4.46)

where ηerr is the estimation error component that follows the Gaussian distribution with
zero-mean and standard deviation σηS . Next, we assume that the spectrum database has the
following imperfect information of the shadowing standard deviation σS:

σ̂S = σS+σoff , (4.47)

where σoff [dB] is the constant offset value.
Using Eq. (4.25), (4.26), (4.30), η̂S, and σ̂S, we can write the imperfect variance of the

aggregate interference σ̂2
sum as follows:

σ̂2
sum = σ̂

2
S+

1
(0.1ln10)2

{
−lnM+ η̂2

S(G2−G2
1)+ k̂

}
, (4.48)

where
k̂ = ln

(
1+ (M−1)e

(
(0.1ln10)2σ̂2

S(Gcor−1)−η̂2
S(G2−G2

1)
))
. (4.49)
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Fig. 4.12 Outage probability with imperfect information of ηS and σS, where N = 50,
dcor,P = 20 [m], ηP = ηS = 3.5, σP = σS = 8.0, and R = 50 [m].

Then, Imax can be estimated, as follows:

Imax ≈ P̂(xxx0)−Γd+

√
2(σ2

k + σ̂
2
sum)erf−1(2pout−1). (4.50)

Finally, using Eq. (4.31), we can calculate the maximum allowed transmission power as
follows:

PS,max = Imax−

(
15log10M−

1
0.1ln10

(
η̂SG1+

1
2

k̂
))
. (4.51)

Figure 4.12 shows the outage probability under the imperfect channel information. We
evaluated the dependence property of the offset σoff where σηS = 0, 0.1, 0.2. Note that
the value of σηS considers the results in our previous work [94]. In the figure, the outage
probability decreases in proportion to the offset of the standard deviation σerr. This is because
the proposed method suppresses the interference power at xxx0 according to the amplitude of
σ̂S. Therefore, when σ̂S > σS, the estimated Imax is lower than its strict Imax.

Although the outage probability increases with increasing σηS , the harmful interference
can be mitigated by overestimating the shadowing standard deviation σS. The standard
deviation of the shadowing strongly depends on the communication environment, and the
value has the range of roughly 4-13 [dB] [4]. By setting σ̂S larger than the empirical (or
estimated) value, the proposed method can satisfy the protection criterion (e.g., σoff > 1 at
σηS = 0.1 and σoff > 2.5 at σηS = 0.2).
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4.7 Chapter Summary

In this chapter, for achieving highly efficient spectrum sharing, we have proposed an in-
terference power constraint method using a Kriging-based REM. We first showed that the
estimation error of the Kriging-based REM follows the log-normal distribution, and the mo-
ments can easily be estimated. The evaluation results demonstrated that the estimated error
distribution can be incorporated into the secondary parameter design. Unlike the conventional
Kriging-based method, the proposed method can almost achieve the probabilistic interference
constraint in the various radio propagation environments. Additionally, the comparison
results indicated that the proposed method can increase the secondary transmission power
compared with the path loss-based method, even if only a small amount of measurement data
is available.





Chapter 5

Database-assisted Radio Propagation
Estimation for Wireless Distributed
Networks

In previous chapters, we have focused on the radio propagation estimation in primary
networks; the knowledge of interference channels were only limited to path loss model and
shadowing distribution for simplicity. On the other hand, if we can improve uncertainties
of the interference signal, the spectrum sharing efficiency will be improved further. In this
chapter, we propose a spectrum database-assisted radio propagation estimation for wireless
distributed networks.

5.1 Background

In the dynamic spectrum access, SUs are often assumed as a distributed system. In such
wireless distributed networks (WDNs), numberless wireless devices construct ad-hoc wireless
links that both the transmitter and the receiver exist arbitrary locations, and have to share
finite spectrum resources under mutual signal interferences. In the spatial spectrum reuse
environment, excess transmission power increases the communication reliability in own
link, but decreases the one in other links. On the other hand, insufficient transmission
power naturally gets low communication quality in own link. The trade-off requires suitable
communication parameter setting based on the proper interference estimation for the highly
efficient spectrum use: accurate radio propagation prediction among distributed terminals is
a critical issue.
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Empirical propagation formula such as Okumura-Hata curve [101][59] can predict rough
propagation loss by combining suitable propagation model with knowledges of own com-
munication parameters: frequency, antenna heights, distance, and surrounding obstacle
information. However, because empirical models generalize radio propagation environments
to typical environments, urban, suburban, and rural, the propagation models cannot include
site-specific propagation dispersions [5]. Thus, the propagation model-based link design is
unsuitable for the WDN environment where small wireless links exist densely. Besides, path
loss parameter correction using measurement values can adjust own path loss formula to the
site-specific propagation characteristics [92]. This method unfortunately cannot estimate
shadowing fluctuation, therefore, its RMSE remains about 8 dB at best [5]. Ray tracing is a
well known method that can estimate the propagation loss with high-accuracy by calculating
multiple reflected paths. However, due to requirements of detailed obstacle information and
the computational complexity, the method is considered to be an unrealistic technique in
WDNs. Measurement-based REM also can achieve highly accurate propagation estimation
[72]. Applying the method, however, also be attended with difficulty in that WDNs have
infinite positional relationship of terminals: one positional relationship requires one plane of
REM with a focus on the transmitter. Taking these problems of conventional methods into
account, it is important to discuss a novel radio propagation prediction technique for WDNs
from a different perspective.

Incidentally, it is a well known fact that different wireless links have spatial correlation
about shadowing effects. Reference [89] empirically showed that the correlation exponentially
decreases in proportion as the receiver backs away from the fixed transceiver. Such correlated
stochastic process enables to apply spatial interpolation with Kriging interpolation [82].
Several studies have proved the advantage of the technique in wireless networks [72][84].
These existing works mainly focus on the fixed transmitter situation such as TVWS and
cellular networks. On the other hand, the propagation loss has similar spatial correlation
even if both of the transmitter and the receiver moves [102]. Reference [102] revealed the
spatial correlation exponentially decreases in proportion as the summation of respective
distances from original and other position of transmitter and receiver increases. Therefore,
the Kriging-based method can be applied for the radio propagation estimation in WDN
environments by taking the spatial correlation into account.

In this chapter, we propose the novel radio propagation prediction using spectrum database
which collects communication results from mobile terminals. In the proposed method, after
each signal transmission, the transmitter uploads the signal information: transmission time,
power, and location. If the signal was perfectly decoded at the paired receiver, the receiver
reports the measured information: received time, signal power, location, and the MAC



5.2 System Model 75

Database
Server

Estimation
Result

Estimation
Request

Information
Report

Estimated Link

TransmitterReceiver
x
i,Rx

x
i,Tx

x
d,Rx

x
d,Tx

[Measurement phase]

[Estimation phase]
(0, l )

(l, l )

(0, 0)

(l, 0) R
max

Fig. 5.1 System model.

information of the transmitter. The database server then calculates the radio propagation
loss in the positional relationship from the paired report information. After some propa-
gation losses are stored, the propagation loss in a wireless link with arbitrary positional
relationship is estimated from the stored results. Through numerical results, it is shown
that the proposed method has highly accurate RMSE characteristics compared with the path
loss-based estimation method. Furthermore, an important advantage other than the RMSE
improvement, the technique can stochastically predict the estimation error, is presented.
Because the PDF of estimation error follows log-normal distribution, it can be expected that
the proposed technique contributes to set suitable communication parameters by combining
with conventional mathematical tools that consider the log-normal propagation distribution.

5.2 System Model

Figure 5.1 shows the system model we treat. We consider WDNs that consist of N Peer-to-
Peer (P2P) distributed links. Each transmitter is randomly distributed in a square, l [m] each
side. Each receiver exists in a circle of Rmax [m] radius centered at the paired transmitter. To
store the communication results, all terminals share a same database server. After each signal
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Fig. 5.2 Positional relationship between two communication links.

transmission, the transmitter uploads the signal information: transmission time, power, and
location xxxi,Tx(i = 1,2, ...,N). If the signal was successfully decoded at the paired receiver, the
receiver reports the measured information: received time, signal power, location xxxi,Rx, and
the MAC information of the transmitter. The database server calculates the radio propagation
loss Li [dB] between xxxi,Tx and xxxi,Rx from the paired report information. After N propagation
losses are stored, the database calculates the propagation loss Ld between a transmitter at
xxxd,Tx and the paired receiver at xxxd,Rx.

In this section, we model the propagation loss Li as follows.

Li = 10ηlog10di−Wi, (di > 1.0) (5.1)

where η is the path loss index, and di = ||xxxi,Tx− xxxi,Rx|| [m] is the link distance between xxxi,Tx

and xxxi,Rx. Wi [dB] is the log-normal shadowing loss with the standard deviation σ [dB].
Although there is room for a consideration on whether or not it is better to assume such a

generalized model rather than a site-specific model as the propagation model of the mobile
terminal, some works (e.g., [103]) show that such a generalized model can derive the radio
propagation characteristics. Next, the estimated propagation loss Ld is modeled as following
equation, as same way as Eq. (5.1).

Ld = 10ηlog10dd−Wd, (5.2)

where Wd [dB] is the shadowing loss and dd = ||xxxd,Tx − xxxd,Rx|| [m] is the link distance. In
addition, we particularly assume the spatially correlated shadowing between different wireless
links. Let us consider two wireless links, as shown in Fig. 5.2. In this situation, the shadowing
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correlation ρi, j is exponentially decreased as the sum of distances between two transmitters
and between two receivers increases [102]:

ρi, j =
E[WiW j]
σ2

≈ exp
(
−
∆d(i, j),Tx+∆d(i, j),Rx

dcor
ln2

)
, (5.3)

where ∆d(i, j),Tx = ||xxxi,Tx− xxx j,Tx|| [m], ∆d(i, j),Rx = ||xxxi,Rx− xxx j,Rx|| [m], and E[·] is the expected
value of the random variable. In addition, dcor [m] is the correlation distance that depends on
the building structure around the link. For example, reference [102] reports dcor ≈ 20 [m] at
2.4 GHz and 5 GHz in the typical urban area.

5.3 Kriging-based Radio Propagation Prediction

We describe the radio propagation loss estimation method based on the reported results.
Using maximum likelihood estimation, the database server preliminarily determines the
probabilistic characteristics of the radio propagation: path loss index η, standard deviation
σ, and correlation distance dcor. We then exploit Kriging interpolation, a minimum mean
squared error method of spatial prediction, to predict the propagation loss Ld.

5.3.1 Maximum Likelihood-based Radio Propagation Parameter Esti-
mation

From Eq. (5.3), theoretical semivariogram between links i and j can be written as exponential
model:

γ(∆di, j) =
1
2

E
[(

Wi−W j
)2

]
= α2

n+α
2
s

{
1− exp

(
−
∆di, j

αr

)}
, (5.4)

where ∆di, j ≜ ∆d(i, j),Tx+∆d(i, j),Rx. Moreover, α2
n,α

2
s ,αr are Nugget, S ill, and Range, respec-

tively. We define the set of variables (α2
n,α

2
s ,αr) as a vector θθθ. As can be seen from the

comparison with Eq. (5.3) and Eq. (5.4), α2
n+α

2
s and αr correspond with σ2 and dcor/ln2,

respectively. By considering Eq. (5.4), the joint PDF of (w1,w2, ...,wN), the random variable
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of Wi, can be written as following multivariate normal distribution,

fWi(w1,w2, ...,wN) =
1

(2π)
N
2
√
|MMM(θθθ)|

exp
(
1
2

wwwTMMM(θθθ)−1www
)
. (5.5)

Note that |AAA| is the determinant of the matrix AAA, and AAAT is the transposed matrix. In addition,
www is a matrix of the random variables,

www =


w1

w2
...

wN

 =


10ηlog10d1−L1

10ηlog10d2−L2
...

10ηlog10dN −LN

 . (5.6)

In addition, the N ×N covariance matrix is written as

MMM(θθθ) = α2
nIII+α2

s HHH(αr), (5.7)

where III is the identity matrix of size N. HHH(αr) is the correlation matrix that consists of

Hi, j = exp
(
−
∆di, j

αr

)
. (5.8)

Next, the log-likelihood function about η and θθθ can be written as

l(www|η,θθθ) = −
N
2

ln2π−
1
2

ln|MMM(θθθ)| −
1
2

wwwTMMM(θθθ)−1www. (5.9)

Finally, the suitable parameters can determined by maximizing Eq. (5.9). Note that we have
to sufficiently give care to local solutions when maximizing Eq. (5.9), because the equation
is a multi-peak function. To avoid local solutions, referring to [95], we iterate Nealder-Mead
simplex method [104] with different initial values. Concretely speaking, the maximization
of Eq. (5.9) is iterated ten times with different initial values selected according to uniform
distribution that has maximum value 1.0 and minimum value 0.0. After that, sub-optimal
parameters η̂ and θ̂θθ can be determined by taking the maximum log-likelihood value in the
results of ten iterations.

5.3.2 Kriging-based Radio Propagation Loss Prediction

After the parameter estimation, Ordinary Kriging is applied to predict Ld. Kriging interpo-
lation is a minimum mean squared error method of spatial prediction that depends on the
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second order properties of the process. The goal is estimating the unknown radio propagation
gain at the arbitrary link from measurement datasets. This is reached by assigning weight
factor ωi (i = 1, · · · ,N) to each shadowing loss Wi, as follows:

Ŵd =

N∑
i=1

ωiWi, (5.10)

where Ŵd is the estimator for Wd. Here, shadowing factor Wi is estimated by eliminating the
estimated path loss factor from the measurement dataset:

Wi ≈ 10η̂log10di−Li. (5.11)

Ordinary Kriging determines the weights which minimize the variance of the estimation
error σ2

k = E[{Ŵd−Wd}
2] under the following constraint,

N∑
i=1

ωi = 1. (5.12)

Using a method of Lagrange multiplier, the objective function ϕ(ωi,µ) can be written as

ϕ(ωi,µ) = σ2
k −2µ

 N∑
i=1

ωi−1

 , (5.13)

where µ is Lagrange multiplier. Here, σ2
k can be written as following equation,

σ2
k = −γ(∆dd,d)−

N∑
i=1

N∑
j=1

ωiω jγ(∆di, j)+2
N∑

i=1

ωiγ(∆di,d), (5.14)

where the suffix d attached to ∆d means the estimated link. From partial derivatives of
Eq. (5.14), we can obtain N +1 simultaneous equations,

γ(∆d1,1) · · · γ(∆d1,N) 1
γ(∆d2,1) · · · γ(∆d2,N) 1
...

...
...

...

γ(∆dN,1) · · · γ(∆dN,N) 1
1 · · · 1 0





ω1

ω2
...

ωN

µ


=



γ(∆d1,d)
γ(∆d2,d)
...

γ(∆dN,d)
1


. (5.15)
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Table 5.1 Simulation parameters.

Standard deviation of shadowing σ [dB] 8.0
Pathloss index η 3.0
Length of simulation area l [m] 50.0
Maximum communication range Rmax [m] 50.0
Coordinate xxxd,Tx (10 [m], 25 [m])
Coordinate xxxd,Rx (40 [m], 25 [m])
Number of trials 10,000

From above simultaneous equations, the weights which minimize σ2
k can be derived. Note

that the minimized σ2
k and σk are called Kriging variance and Kriging standard deviation

respectively. Finally, we can derive the estimated L̂d as,

L̂d = 10η̂log10dd− Ŵd. (5.16)

5.4 Performance Evaluation

In this section, the estimation accuracy with the proposed method is evaluated via Monte Carlo
simulation. Simulation parameters are shown in Table 5.1. Here, a trial in the simulation is
defined as following procedure:

1. Radio environment is generated.

2. N distributed links report Li to the database server.

3. The database estimates L̂d based on the proposed method.

4. The estimation error Ld− L̂d [dB] is calculated.

After the sufficient trials, estimation accuracy characteristics such as RMSE and the dispersion
of pathloss estimation are evaluated.

We confirmed that Eq. (5.15) rarely has no solution due to nearly equal semivariograms
in the left member of Eq. (5.15). This problem is caused when the theoretical semivariograms
are estimated as α2

s

{
1− exp

(
−
∆di, j
αr

)}
≈ 0: γ(∆di, j) ≈ α2

n. For handling the problem, we

neglect nugget effect by assuming α2
n = 0. Because the assumption sets diagonal elements in

the left member of Eq. (5.15) as 0, the equation certainly has some sort of solution.
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Fig. 5.3 Effect of N on estimation accuracy of path loss index under dcor = 20 [m].

5.4.1 Estimation Accuracy of Path Loss Index η

Figure 5.3 shows the effect of the number of links N on the estimation accuracy of η under
dcor = 20 [m]. For confirming the estimation dispersion graphically, this characteristic was
evaluated using boxplots. In the boxplots, the bottom and top of the box show the first quartile
and the third quartile, respectively. The center line shows the average value. Furthermore, the
bottom and top of the whisker are the 2.5 percentile and the 97.5 percentile, respectively: the
region among two whisker lines includes 95 % of the estimation results. The figure clarifies
the unbiased estimation can be achieved regardless of N. In addition, increasing N reduces
the dispersion of η̂, thus the maximum likelihood technique can accurately estimates the
pathloss characteristics with large dataset.

The impact of the correlation distance dcor on the pathloss estimation under N = 50 is
shown in Fig. 5.4. The result shows that the proposed method can estimate η without the
estimation bias in any correlation distance.

5.4.2 Estimation Accuracy of Radio Propagation Loss Ld

Next, we evaluated the estimation accuracy of Ld. Figure 5.5 shows the effect of N on RMSE
[dB] under dcor = 20 [m]. We compared the proposed method with pathloss-based radio
environment prediction without Kriging method. Note that the RMSE of the compared
method is equal to the shadowing standard deviation σ. The comparison results show the
advantage of the proposed method: even if there are only few dataset, the accuracy is higher
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Fig. 5.4 Impact of dcor on estimation accuracy of path loss index under N = 50.

than the compared method, and be improved in proportion as N increases. The impact of
dcor on Ld under N = 10, 30, 50 is shown in Fig. 5.6. This result means the link gain can
be estimated with high accuracy under the gradual shadowing fluctuation situation. Here,
as shown in Fig. 5.4, the accuracy of the pathloss estimation is mostly constant in regions
where dcor exceeds 40 [m]. Therefore, the reason why the gradual fluctuation improves the
accuracy of Ld is that Kriging method can accurately predict the shadowing factor under the
long correlation distance environment. This result implies the highly accurate estimation can
be achieved if the shadowing fluctuates gradual compared with the measurement area size.
We hence can conduct the highly accurate estimation by setting the small measurement area,
even if terminals are under the short correlation distance environment.

5.4.3 Probabilistic Error Prediction

We discuss the advantage of the Kriging-based estimation other than the RMSE improvement.
As mentioned in Chapter 5, in ordinary Kriging method, the estimation error follows a
Gaussian distribution if the datasets fluctuate with a Gaussian process. This behavior can
be applied to the typical radio propagation. Figure 5.7 shows three PDFs of the estimation
error distribution: N = 10, 30, 50. In Fig. 5.7, each curve clearly plots the log-normal
distribution and the variance becomes narrow by increasing the number of measurement
points N. Correlation and covariance between L̂d and Ld are shown in Fig. 5.8. Because
many numerical results in this figure take 0.5 or more, the advantageous region can be
achieved realistically. the method proposed in this section can outperform the path loss-based



5.4 Performance Evaluation 83

Fig. 5.5 Effect of N on estimation accuracy of Ld under dcor = 20 [m].

spectrum database from the view point of the channel capacity (the relationship between the
channel capacity and correlation is discussed in Sect. 2.3).

From these figures and Fig. 5.7, we can consider that the PDF of L̂d and Ld follows a
bivariate log-normal distribution, as with the Kriging-based REM discussed in Chapter 5.
Additionally, if the semivariogram can be estimated perfectly, that means N is enough large,
the minimized Kriging standard deviation σk approximately equals to the standard deviation
of the estimation error. Figure 5.9 indicates E[σk] and the error standard deviations under
dcor = 20 [m]. In this figure, as the number of measurement points N increases, the Kriging
standard deviation converges to the standard deviation of estimation error. Therefore, if
the number of measurement points N is enormous, the estimation error nearly follows a
log-normal distribution with median value 0 and standard deviation σk. Note that Kriging
standard deviation σk means the standard deviation of the estimation error under the perfect
semivariogram estimation. Because Kriging method estimates the semivariogram model
from datasets, true estimation error exceeds σk. Therefore, the upper bound of E[σk] is equal
to the standard deviation of estimation error [82].

When the error ϵ is modeled as Ld = L̂d+ ϵ and L̂d is given, Ld approximately follows the
log-normal distribution with mean L̂d and standard deviation σk. We can easily understand
that this mathematical structure is equal to the shadowing-fluctuated radio propagation
written in Eq. (5.1). Therefore, the proposed method allows to improve the communication
efficiency, interference prediction in M2M networks, coverage estimation in HetNets, and
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Fig. 5.6 Impact of dcor on estimation accuracy of Ld.

suitable rooting in ad-hoc networks, using conventional mathematical tools considering the
log-normal channel fluctuation.

5.5 Chapter Summary

The geostatistical radio propagation estimation for WDNs have been proposed. Numerical
results have shown two advantages of the proposed method: RMSE improvement and
probabilistic error prediction. In addition, as can be seen from the analytical results in
Sect. 2.3, the Kriging-based radio propagation estimation can dramatically enhance the
average transmission power at the SU-Tx.
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Fig. 5.7 Example of PDF of estimation error ϵ under dcor = 20 [m]. Each curve follows
log-normal distribution.

(a) Correlation. (b) Covariance.

Fig. 5.8 Correlation and covariance between L̂d and Ld.
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Fig. 5.9 Comparison of error standard deviation and Kriging standard deviation.



Chapter 6

Conclusions and Future Works

This chapter concludes our research works on highly efficient spectrum sharing. First, we
summarize the conclusion and contribution of each chapter. After that, the potential future
research directions are discussed.

6.1 Conclusions

Motivated by the fact that the efficiency of spectrum sharing strongly depends on the accuracy
of radio propagation estimation, we have comprehensively investigated the highly efficient
spectrum sharing from the viewpoint of radio propagation estimation. Conclusions and
contributions of this thesis are summarized below.

Chapter 1 provided the demands for the spectrum sharing and the motivation for this
work. After the brief timeline of this field was given, the outline of this thesis and a list of
the contributions were summarized.

Chapter 2 introduced the concept of measurement-based spectrum database that consists
of radio environment measurement results from sensors on mobile terminals. After the
concept is described, the effect of the proposed database on the spectrum sharing was dis-
cussed from the theoretical aspect. We showed that the uncertainties of the radio propagation
strongly degrade the average transmission power allowed to the SU. At the same time, it was
also shown that the proposed method can improve the spectrum sharing capability.

In Chapter 3, we evaluated the accuracy of measurement-based spectrum database via
two one-week measurement campaigns over TV bands. The measurement campaign was
conducted in Kumagaya city, Saitama, Japan. The prior measurement datasets were stored in
the spectrum database, and the posterior measurement datasets were treated as instantaneous
measurement data. From the measurement results, we confirmed that the proposed database
dramatically reduces the estimation error of the radio environment information.



88 Conclusions and Future Works

In Chapter 4, we proposed the transmission power control method with a measurement-
based spectrum database for the secondary networks. The proposed method exploits ordinary
Kriging interpolation for the spectrum cartography. According to the predicted distribution
of the estimation error, the allowable interference power to the PU is approximately for-
mulated. Numerical results showed that the proposed method can achieve the probabilistic
interference constraint asymptotically. Additionally, it was also shown that the proposed
method dramatically improves the outage probability of the interference power compared to
the conventional Kriging-based method.

Chapter 5 proposed the spectrum database-assisted radio propagation estimation for
distributed SUs. The proposed method focuses on the spatial correlation of radio propagation
characteristics between different wireless links. Using maximum likelihood-based path loss
estimation and Kriging-based shadowing estimation, the radio propagation of the wireless
link that has arbitrary location relationship can be predicted. From numerical results, it was
shown that the proposed method achieves higher estimation accuracy than conventional path
loss-based estimation method.

The methods discussed in this thesis can develop more spatial WSs in existing allocated
bandwidth such as TVWS, and can provide these WSs to new wireless systems expected to
appear in the future. Additionally, these results will contribute not only to such spectrum
sharing but also to improvement of the spectrum management in existing systems. For
example, in HetNets, a suitable inter-cell interference management enables transmitters to
reuse the frequency efficiently and the user equipment can select the optimum base station.
Therefore, this thesis has the possibility to change the way of spectrum in the future. We
believe that the results in this thesis will be the cornerstone of contributing to the sustainable
development of future wireless communications.

6.2 Future Works

This thesis mainly aims to improve the efficiency of spatial spectrum sharing. On the other
hand, there still exist lots of research scopes for future works. At the end of this thesis, we
briefly discuss the remaining and potential future works.

Toward Completion of Measurement-based Spectrum Database

In this thesis, we have mainly focused on the spatial spectrum sharing between a fixed
primary transmitter and SUs, such as spectrum sharing over TV bands. A major contribution
in this paper is the proposal of Kriging-based interference power constraint discussed in
Chapter 4. Because the discussions were conducted via numerical simulations, we first need
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to experimentally conduct a database-assisted spectrum sharing between a PU and SUs. In
addition, in Chapter 4, we put some assumptions: path loss follows an isotropic model in
the area, and noise and instantaneous fading do not affect with measurement data. Effects of
such assumptions should also be discussed.

Discussions in Chapter 5 also have some important tasks including experimental verifica-
tion. For example, the system model in Chapter 5 does not consider any effects of PUs. On
the other hand, when the proposed method is applied for the radio propagation estimation
in secondary networks, the training phase has to consider the interference temperature at
PUs. Thus, the procedure of the database construction is an important task. Iteration be-
tween the radio environment training and the increase of the transmission power will be an
intuitive solution to this problem. Namely, SUs will be able to transmit the signal with a
low transmission power, even if the estimated interference characteristics have uncertainty.
Because the signal transmission can probe the radio environment and improve the estimation
uncertainty, by gradually increasing the transmission power and repeating the training of
the radio environment, we will be possible to construct the database while satisfying the
interference requirement for PUs.

Three-dimensional Radio Propagation Estimation

Although we have (implicitly) assumed two-dimensional radio environment, the radio propa-
gation characteristics strongly depend on transmitter/receiver heights. Thus, expansion to the
three-dimensional radio propagation estimation will be a challenging work.

Statistical Processing in Time Domain

This thesis do not consider time domain activities of the primary systems. On the other hand,
communication activities in many existing systems irregularly change over time domain.
Thus, statistical analysis in the time domain such as occupancy rate and transition rate will
improve the spectrum sharing efficiency.

More Efficient REM Construction

We will be able to construct the REM more efficiently. In Chapters 4 and 5, Kriging
interpolation have been applied for the radio propagation estimation. By exploiting the
spatial shadowing correlation, Kriging interpolation can obtain the optimal received signal
power. Here, some works have demonstrated that shadowing is highly frequency correlated
[105]. This fact will enable us to interpolate the received signal power over both frequency
and spatial domains.
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Appendix A

Parametric Bootstrap Method

We summarize the parametric bootstrap-based Kriging variance estimation proposed in [100].
The bootstrap method is a Monte Carlo method that estimates properties of the estimator
based on the approximated distribution of samples. According to whether or not we have
the knowledge of the distribution shape of samples, the approach can be categorized into
two methods: parametric and nonparametric bootstrap methods. In our system model, the
parametric bootstrap method can be implemented with following steps:

1. σP, ηP, and dcor,P are estimated from the measurement dataset yyy= (P(xxx1),P(xxx2), ...,P(xxxN)).
This can be achieved by maximizing Eq. (4.13). Each estimated value is defined as σ̂P,
η̂P, and d̂cor,P, respectively.

2. We assume that the received signal power from the PU follows the multivariate log-
normal distribution with PTx, σ̂P, η̂P, and d̂cor,P. The assumed received signal power is
defined as P∗b(xxx).

3. The received signal power at xxx0 and {xxxi|i = 1,2,3, ...,N} is generated according to the
assumed distribution.

4. P∗b(xxx0) is estimated using the ordinary Kriging and the dataset {P∗b,i(xxx)|i = 1,2, ...,N}.
The estimated received signal power is defined as P̂∗b(xxx0).

5. Step 3 and 4 are repeated B times.

6. The RMSE is evaluated with the following equation:

RMS E(P∗(xxx0)) =

√√√
1
B

B∑
b=1

(
P∗b(xxx0)− P̂∗b(xxx0)

)2
.
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Fig. A.1 Standard deviation with parametric bootstrap method where B = 1000. Other
parameters follow Table 4.1.

7. The estimated RMSE is treated as the Kriging standard deviation, σk.

Figure A.1 shows the standard deviation prediction characteristics of the parametric bootstrap.
Curves of the parametric bootstrap and Kriging standard deviation plot the expected value of
the results obtained from the Monte Carlo simulations. Using the procedure, we can improve
the gap between the error standard deviation and σk.
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