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Abstract. This study proposes the concept of families
of triangular norm (t-norm)-based kernel functions,
and discusses their positive-definite property and the
conditions for applicable t-norms. A clustering exper-
iment with kernel k-means is performed in order to
analyze the characteristics of the proposed concept, as
well as the effects of the t-norm and parameter selec-
tions. It is evaluated that the clusters obtained in terms
of the adjusted rand index and the experimental re-
sults suggested the following : (1) the adjusted rand
index values obtained by the proposed method were
almost the same or higher than those produced using
the linear kernel for all of the data sets; (2) the pro-
posed method slightly improved the adjusted rand in-
dex values for some data sets compared with the radial
basis function (RBF) kernel; (3) the proposed method
tended to map data to a higher dimensional feature
space than the linear kernel but the dimension was
lower than that using the RBF kernel.

Keywords: adjusted rand index; clustering; k-means;
kernel method; positive-definite kernel; t-norm

1. Introduction

A kernel method is a fundamental and important pattern
analysis approach based on a kernel function, which is
used in machine learning tasks such as classification, clus-
tering, and dimension reduction. A kernel function corre-
sponds to a similarity measure between two data points,
which map each to a feature space and the inner product
on that space.

Many kernel functions have been proposed for various
data types such as multidimensional real-valued vectors,
strings, and graphs. This study considers kernel functions
for multidimensional real-valued vectors, e.g., the linear
kernel, polynomial kernel, radial basis function (RBF)
kernel, χ2 kernel[1], and histogram intersection kernel[2].
The χ2 kernel and histogram intersection kernel are cal-
culated by an element-wise binary operation and their ac-
cumulation, where the binary operations are 2xy/(x+ y)
and min{x,y}, respectively. This kernel function is called

an additive kernel[3]. The linear kernel is also considered
to be an additive kernel (its binary operation is xy). In ad-
dition, the minimum and product operations are triangular
norms (t-norms) [4][5], which generalize intersection op-
erations on fuzzy logic; therefore, I consider various types
of additive kernels with t-norms as binary operators.

This study proposes the concept of a t-norm-based ad-
ditive kernel as well as discussing its positive-definite
property and the conditions for applicable t-norms. It is
evaluated that the characteristics of the proposed method
and the effects of the t-norm and parameter selections in
a clustering experiment with kernel k-means. In the ex-
periment, four datasets are applied to the proposed kernel
function using nonlinear cluster shapes and eight t-norms,
two of which were not parameterized t-norms. The eval-
uation measures the adjusted rand index (ARI) to quanti-
tatively evaluate the clustering accuracy. In addition, it is
measured that the computational time required for 1,000
random vectors with a sparse ratio in order to determine
the relationship between the processing time and cluster-
ing accuracy. Based on the results obtained, this study
validates and discusses the effects of changing the kernel
parameters and the t-norms selected.

The remainder of this paper is organized as follows.
Section 2 provides definitions of a triangular norm,
positive-definite kernel, and kernel k-means. Section 3
describes the t-norm-based additive kernel as well as its
positive-definite property and the conditions for applica-
ble t-norms. Section 4 explains the conditions for the
clustering experiment, and discusses the characteristics of
the proposed method based on the clustering experiment.
Section 5 compares each kernel function in terms of the
computational time required.

2. Definitions of a triangular norm and
positive-definite kernel

2.1. Definition of a triangular norm

A function T : [0,1]× [0,1] −→ [0,1] is called a trian-
gular norm (t-norm) if and only if ∀x,y,z ∈ [0,1],

1. T (x,1) = x;
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2. T (x,y)≤ T (x,z) if y ≤ z;

3. T (x,y) = T (y,x);

4. T (x,T (y,z)) = T (T (x,y),z).

From the definition, we get T (x,0) = 0. According to
fuzzy logic, t-norms represent intersection operations. If
T is strictly increasing on (0,1]× (0,1], then T is called
a strict t-norm. A t-norm T1 weakly dominates another
t-norm T2 if ∀x,y,z ∈ [0,1], and thus we have

T1(x,T2(y,z))≥ T2(T1(x,y),z). . . . . . . (1)

2.2. Definition of a positive-definite kernel
A function K : Ω×Ω −→R is called a positive-definite

kernel if and only if ∀x,y ∈ Ω, ∀x1,x2, · · · ,xn ∈ Ω,

1. K(x,y) = K(y,x);

2.
n

∑
i=1

n

∑
j=1

cic jK(xi,x j)≥ 0, ∀ci,c j ∈ R.

A kernel function provides the inner product on the fea-
ture space ϕ such that K(x,y) = ϕ t(x) · ϕ(y). In addi-
tion, for ∀x,y ∈ Rd , the sum of d positive-definite kernels
K1,K2, · · · ,Kd ∈ f : R×R−→ R,

K′(x,y) =
d

∑
k=1

K(k)(x
(k)
i ,y(k)i ) . . . . . . . (2)

is also a positive-definite kernel on Rd , where x(k)i is the
k-th element of a d-dimensional vector xi, which is shown
as

n

∑
i=1

n

∑
j=1

cic jK′(xi,x j) =
n

∑
i=1

n

∑
j=1

cic j

d

∑
k=1

K(k)(x
(k)
i ,x(k)j )

=
d

∑
k=1

n

∑
i=1

n

∑
j=1

cic jK(k)(x
(k)
i ,x(k)j )

≥ 0. . . . . . . . . . (3)

Kernel K′ is called an additive kernel.

3. t-norm-based positive-definite kernel

If a strict t-norm T satisfies T (x,y)≥ xy, where ∀x,y ∈
[0,1], then T is positive-definite of order two, which was
proved by [6]. If T satisfies the positive-definite require-
ment of order two, then the determinants of the principal
minors of the matrix

A =

(
T (x,x) T (x,y)
T (y,x) T (y,y)

)
. . . . . . . . (4)

are all greater than or equal to zero. The principal mi-
nors of the matrix A are A1 = (T (x,x)), A2 = (T (y,y)),
and A itself. Clearly, the determinants of A1 and A2
are greater than or equal to zero by the definition of t-
norm. From equation (1) and T (x,y) ≥ xy, T satisfies
zT (x,y) ≤ T (x,zy). If T (0,y) = 0 ≤ x ≤ y = T (1,y) and

z= T (x,y)/T (y,y), then w exists such that x= T (w,y) and
the inequality above can be rewritten as

T (x,y)
T (y,y)

T (w,T (y,y)) ≤ T (w,
T (x,y)
T (y,y)

T (y,y))

= T (w,T (x,y))

T (x,y)
T (y,y)

≤ T (w,T (x,y))
T (w,T (y,y))

=
T (T (w,y),x)
T (T (w,y),y)

=
T (x,x)
T (x,y)

. . . . . . . . . . . . (5)

This inequality means that T (x,x)T (y,y)− T 2(x,y) ≥ 0,
and this is the determinant of A; therefore, a strict t-norm
T , T (x,y)≥ xy, is positive-definite of order two.

The t-norm kernel Kt is proposed based on the additive
kernel:

Kt(x,y) =
d

∑
k=1

T (x(k),y(k)), x,y ∈ [0,1]d . . . (6)

The t-norm is positive-definite of order two, so Kt is also
positive-definite of order two:

2

∑
i=1

2

∑
j=1

cic jKt(xi,x j) =
2

∑
i=1

2

∑
j=1

cic j

d

∑
k=1

T (x(k)i ,x(k)j )

=
d

∑
k=1

2

∑
i=1

2

∑
j=1

cic jT (x
(k)
i ,x(k)j )

≥ 0. . . . . . . . . . (7)

In addition, if a symmetric matrix of order n, S = {si j},
is positive-definite, then an n-dimensional feature vector
ϕ(x) = (ϕ1(x),ϕ2(x), · · · ,ϕn(x))

t ∈Rn exists for any sam-
ples x1,x2, · · · ,xn ∈ Ω, and

si j = ϕ t(xi) ·ϕ(x j) = K(xi,x j). . . . . . . (8)

This means that any symmetric and positive-definite ma-
trix has a corresponding type of kernel function. A strict
t-norm T that satisfies T (x,y) ≥ xy is positive-definite of
order two, so a symmetric matrix (gram matrix) of order
two (

T (x1,x1) T (x1,x2)
T (x2,x1) T (x2,x2)

)
, . . . . . . . . (9)

is also positive-definite. For any samples x1,x2 ∈ [0,1], a
two-dimensional feature vector ϕ(x) = (ϕ1(x),ϕ2(x))t ∈
R2 exists, and equation (13) can be rewritten as(

ϕ t(x1) ·ϕ(x1) ϕ t(x1) ·ϕ(x2)
ϕ t(x2) ·ϕ(x1) ϕ t(x2) ·ϕ(x2)

)
. . . . . (10)

Therefore, a strict t-norm maps two input scalars onto
a two-dimensional feature space and calculates the inner
product on that space. The t-norms that satisfy T (x,y) ≥
xy are as follows (see [4]):
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• logical product

min{x,y}, . . . . . . . . . . . . (11)

• Mizumoto product

2
π

cot−1
(

cot
1
2

πx+ cot
1
2

πy
)
, . . . . (12)

• Dombi t-norm, p ∈ [1,∞)

1

1+ p

√( 1−x
x

)p
+
(

1−y
y

)p
, . . . . . . (13)

• Dubois t-norm, p ∈ [0,1]

xy
max{x,y, p}

, . . . . . . . . . . . (14)

• Frank t-norm, p ∈ (0,1)

logp

(
1+

(px −1)(py −1)
p−1

)
, . . . . (15)

• Hamacher t-norm, p ∈ [0,1]

xy
p+(1− p)(x+ y− xy)

, . . . . . . (16)

• Schweizer t-norm 2, p ∈ (0,∞)

1
p
√

1
xp +

1
yp −1

, . . . . . . . . . . (17)

• Schweizer t-norm 3, p ∈ [1,∞)

1− p
√

(1− x)p +(1− y)p − (1− x)p(1− y)p. (18)

4. Clustering experiment with kernel k-means

The kernel method can be applied to pattern analysis
tasks such as classification (supervised learning), cluster-
ing (unsupervised learning), and dimension reduction in
nonlinear data analysis. A clustering experiment using
kernel k-means (a clustering algorithm in kernel method)
is performed in order to analyze the characteristics of the
t-norm-based additive kernel as well as the effects of the
t-norm and parameter selections.

The k-means clustering algorithm finds the k-partition
of n individuals X =

{
x1,x2, · · · ,xn ∈ Rd

}
. The partition

minimizes the objective function. Kernel k-means, an ex-
tention of k-means with kernel function, partitions n indi-
viduals on feature space ϕ to k-clusters with representa-
tive points M =

{
µ1,µ2, · · · ,µk ∈ Rd

}
and the objective

function J

J = min ∑
µ∈M

∑
x∈Ci

||ϕ(x)−µ||2, . . . . . . . (19)

where

µ i =
1
|Ci| ∑

x∈Ci

ϕ(x), . . . . . . . . . . (20)

Ci =

{
x|µ i = argmin

µ∈M
||ϕ(x)−µ||2

}
. . . . (21)

The ||ϕ(x)−µ i||2 can be rewritten with a positive-definite
kernel K as follows:

||ϕ(x)−µ i||2 = ||ϕ(x)− 1
|Ci| ∑

x′∈Ci

ϕ(x′)||2

= K(x,x)− 2
|Ci| ∑

x′∈Ci

K(x,x′)

+
1

|Ci|2 ∑
x′∈Ci

∑
x′′∈Ci

K(x′,x′′). . (22)

The RBF kernel performs inner product on higher di-
mensions than the linear kernel, and it makes expecta-
tion of higher accuracy. The t-norm is a generalization
of intersection operations, and I guess that its characteris-
tics is close to the linear kernel since its binary operation
is algebraic product (= multiplication), one of t-norms.
Therefore, this study pays particular attention to the dif-
ference in clustering accuracy between the linear kernel
and t-norm kernel. The experiment uses data sets with
cluster shapes that are not linearly separable.

4.1. Experimental conditions
This experiment uses four data sets, as shown in Fig.

1. According to Fig. 1, data sets A and B comprised two
clusters, which were obtained from [7] and [8], respec-
tively. Data sets C and D in Fig. 1 comprised three clus-
ters, which were obtained from [9]. The cluster shapes
were intricate and linearly inseparable in each data set.
Data sets C and D were more complex compared with
data sets A and B according to Fig. 1. The execution
parameters for kernel k-means clustering were as follows:

• two clusters, k, for data sets A and B, and three for
data sets C and D;

• each clustering process was terminated when the
number of iterations reached 1,000, or the difference
between the latest and current objective function val-
ues was less than 10−4;

• one partition that minimized the objective function
was determined within 100 attempts using different
initial partitions.
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Fig. 1. Four data sets used to evaluate the clustering perfor-
mance

In this experiment, two standard kernels, i.e., linear
kernel Klin and RBF kernel Krbf, were used as the base-
line. The definitions of Klin and Krbf are shown with
x,y ∈ [0,1]d :

Klin(x,y) =
d

∑
i=1

xiyi

Krbf(x,y) = exp
(
−∑d

i=1(xi − yi)
2

σ2

)
.

The RBF kernel parameter σ was 0.01 to 10 (step size =
0.01). The t-norm kernel parameters, p, were as follows:
1 to 10 (step size = 0.01) for the Dombi t-norm; 0 to 1
(step size = 0.01) for the Dubois t-norm; 0.01 to 0.99 (step
size = 0.01) for the Frank t-norm; 0 to 1 (step size = 0.01)
for the Hamacher t-norm; 0.01 to 10 (step size = 0.01) for
the Schweizer t-norm 2; and 1 to 10 (step size = 0.01) for
the Schweizer t-norm 3.

ARI[10] was used to quantitatively evaluate the cluster-
ing results. For two partitions U = {u1,u2, · · · ,uM} and
V = {v1,v2, · · · ,vN}, the definition of ARI is

ARI =

M

∑
i=1

N

∑
j=1

ni jC2 −
ab

nC2

1
2
(a+b)− ab

nC2

, . . . . . . . . (23)

a =
M

∑
i=1

ni·C2, . . . . . . . . . . . . (24)

b =
N

∑
j=1

n· jC2, . . . . . . . . . . . . (25)

where ni j = |ui ∩ v j|, ni· =
N

∑
j=1

ni j, n· j =
M

∑
i=1

ni j, and n =

Table 1. Best ARI values for each kernel and data set

data set
A B C D

linear kernel 0.4535 0.5767 0.4650 -0.0054

RBF kernel 0.4880 0.5767 0.7611 0.1375
[σ=8.52] [σ=9.99] [σ=0.28] [σ=0.33]

t-norm kernel 0.0240 0.5146 0.2990 -0.0037
logical product

t-norm kernel 0.4997 0.5528 0.4650 -0.0050
Mizumoto product

t-norm kernel 0.5237 0.5612 0.4717 0.0462
Dombi t-norm [p=1.98] [p=3.81] [p=7.42] [p=8.95]

t-norm kernel 0.5117 0.5853 0.4757 0.0315
Dubois t-norm [p=0.82] [p=0.76] [p=0.37] [p=0.19]

t-norm kernel 0.4880 0.5767 0.4688 -0.0049
Frank t-norm [p=0.01] [p=0.99] [p=0.63] [p=0.43]

t-norm kernel 0.4880 0.5767 0.4650 -0.0046
Hamacher t-norm [p=0.33] [p=1.00] [p=1.00] [p=0.11]

t-norm kernel 0.5237 0.5767 0.4717 0.0477
Schweizer t-norm 2 [p=3.29] [p=0.55] [p=9.46] [p=4.32]

t-norm kernel 0.5237 0.5767 0.4717 0.0445
Schweizer t-norm 3 [p=2.48] [p=1.97] [p=9.99] [p=8.77]

M

∑
i=1

N

∑
j=1

ni j. In this evaluation, I assume that M = N, U

corresponded to a correct partition that was uniquely de-
termined from each data set, and V corresponded to a par-
tition predicted by kernel k-means clustering. ARI was
calculated for each of the clustering results.

4.2. Evaluation of the clustering results in terms of
the ARI and cluster shapes

The ARI values for each kernel and data set are shown
in Table 1. The performance was better when the ARI
value was higher. In Table 1, the best ARI values for each
data set are indicated by the underlined bold font.

The parameterized t-norms were the Dombi t-
norm, Dubois t-norm, Frank t-norm, Hamacher t-norm,
Schweizer t-norm 2, and Schweizer t-norm 3. Accord-
ing to Table 1, the ARI values for the parameterized t-
norm kernels were almost the same or higher than those
for the linear kernel with all of the data sets. The differ-
ences in the ARI values for the linear kernel and param-
eterized t-norm kernels were 0.0345 (Frank t-norm and
Hamacher t-norm) to 0.0702 (Dombi t-norm, Schweizer
t-norm 2, and Schweizer t-norm 3) for data set A, –
0.0155 (Dombi t-norm) to 0.0086 (Dubois t-norm) for
data set B, 0 (Hamacher t-norm) to 0.0107 (Dubois t-
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Fig. 2. Clustering results obtained with the linear kernel
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Fig. 3. Clustering results obtained with the RBF kernel us-
ing the parameters for each data set that achieved the best
ARI values

norm) for data set C, and 0.0008 (Hamacher t-norm) to
0.0531 (Schweizer t-norm 2) for data set D. The ARI val-
ues of the parameterized t-norm kernels for data sets A
and B were better than those for the RBF kernel, whereas
the values for data sets C and D are lower than those for
the RBF kernel.

The cluster shapes obtained with the linear kernel, RBF
kernel, and t-norm kernels are shown in Fig. 2, Fig. 3,
and Fig. 4, respectively. In Fig. 3, the best parameters
that maximized the ARI for each data set were determined
from Table 1. In Fig. 4, the best combinations of the t-
norm and its parameters that maximized the ARI for each
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Fig. 4. Clustering results obtained with t-norm kernels using
the combination of the t-norm and parameter for each data
set that achieved the best ARI values

data set were also determined from Table 1. According to
Fig. 2 (1), Fig. 3 (1), and Fig. 4 (1) (2) (3), the cluster
shapes were almost the same for the linear kernel and RBF
kernel, whereas they differed for the t-norm kernels. Ac-
cording to Fig. 2 (2), Fig. 3 (2), and Fig. 4 (4), the cluster
shapes were extremely similar for the linear kernel, RBF
kernel, and t-norm kernel with the Dubois t-norm.

Finding the cluster centers based on a two-dimensional
feature space requires that the cluster shapes are separa-
ble in terms of drawing a circle around each cluster center.
Separation of the cluster shapes is possible in Fig. 2 (3)
and (4), but not in Fig. 3 (3) and (4) because kernel k-
means using the RBF kernel maps the data points onto a
higher dimensional feature space and calculates the clus-
ter centers based on this feature space. Separation of the
cluster shapes is possible for the t-norm kernels in Fig. 4
(5) but not for those in Fig. 4 (6). Therefore, I consider
that t-norm kernels also map data points onto a higher di-
mensional feature space but the dimension is lower than
that used by the RBF kernel because the t-norm kernel
could not correctly detect the curve lined cluster shape in
data set C.
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Fig. 5. Kernel parameter - ARI value graphs for data set A

4.3. Evaluation of the kernel parameter selection
based on the ARI

The input-output relationship of parameterized t-norm
depends on the parameter, and we should treat it as a dif-
ferent t-norm if the parameter is different even with the
same t-norm. Hence, it is necessary to validate how to
set parameters. The Fig. 5, Fig. 6, Fig. 7, and Fig. 8
show the ARI values for each kernel and parameter, where
these figures present the kernel parameter ARI graphs cor-
responding to the seven parameterized kernels for data set
A, data set B, data set C, and data set D, respectively. In
Fig. 5, Fig. 6, Fig. 7, and Fig. 8, the term “parameter”
means σ for RBF kernel and p for parameterized t-norms.
A plotted point in each graph corresponds to an ARI value
for a parameter, and the number of plotted points differs
for each graph since the number of parameters differs for
each parameterized t-norm (please refer section 4.1). The
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Fig. 6. Kernel parameter - ARI value graphs for data set B

used kernel parameters are same as section 4.1.
The Fig. 5 (1), Fig. 6 (1), Fig. 7 (1), and Fig. 8 (1)

confirm that the RBF kernel achieved the highest ARI
values when the parameter selection was a success, but
these parameters were limited. In addition, even when the
parameter selection was a failure, the ARI values for the
RBF kernel were almost equal to the best results for the
t-norm kernels. Thus, the results suggest that the RBF
kernel performed better than the t-norm kernels in terms
of the clustering accuracy. In addition, I consider that the
utility value of t-norm kernels depends on the specific ap-
plication and task because: (1) the t-norm does not need
to be calculated if either input is zero; (2) some of the t-
norms, such as the Dubois t-norm and Hamacher t-norm,
require simple, low-cost operations and calculations so a
low computational cost is expected; and (3) t-norm ker-
nels perform better than linear kernels.
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Fig. 7. Kernel parameter - ARI value graphs for data set C

According to the parameter selections for the t-norm
kernels, Fig. 5, Fig. 6, Fig. 7, and Fig. 8 indicate the
following:

• t-norm kernels with the Frank t-norm and Hamacher
t-norm are robust to the parameters selected;

• t-norm kernels with the Dombi t-norm and
Schweizer t-norm (2) (3) are sensitive to the param-
eters selected;

• it seems better to set the parameter of t-norm kernel
with Dombi t-norm and Schweizer t-norm (2) (3) to
three or less;

• the recommended parameters for the t-norm kernel
with the Dubois t-norm are [0.7, 0.9].
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Fig. 8. Kernel parameter - ARI value graphs for data set D

5. Computational times required for kernel
function calculation

The property of t-norm, T (0,x) = 0, makes an advan-
tage that t-norm kernel calculation requires only sum-
mation of t-norm outputs whose inputs are not both 0.
Thus, it is effective to apply t-norm kernel to L1 nor-
malized sparse histograms in terms of computation costs.
In this study, the computational times were measured for
each kernel function with V = {v1,v2, · · · ,v1000}, a set of
1,000 random vectors. vi ∈V is a 500-dimensional vector,
which was randomly generated with a sparse ratio s that
represents the ratio of the number of zeroes in the vector.
The computational time of

999

∑
i=1

1000

∑
j=i+1

K(vi,v j) . . . . . . . . . . . . (26)
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Table 2. Average computational times for each kernel when applied to a set of 1,000 random vectors generated with a sparse ratio s

time [s]
s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6 s = 0.7 s = 0.8 s = 0.9 s = 1.0

linear kernel 3.2 ×10−9 3.0 ×10−9 2.8 ×10−9 3.5 ×10−9 3.6 ×10−9 3.4 ×10−9 3.4 ×10−9 2.9 ×10−9 2.6 ×10−9 2.9 ×10−9

RBF kernel 8.4 ×10−2 8.4 ×10−2 8.4 ×10−2 8.4 ×10−2 8.4 ×10−2 8.4 ×10−2 8.5 ×10−2 8.4 ×10−2 8.4 ×10−2 8.4 ×10−2

t-norm kernel 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.4 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9

logical product

t-norm kernel 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9 2.5 ×10−9

Mizumoto product

t-norm kernel 0.13 0.32 0.61 1.0 1.5 2.1 2.7 3.4 4.3 5.2
Dombi t-norm

t-norm kernel 2.5 ×10−9 2.4 ×10−9 2.4 ×10−9 2.4 ×10−9 2.3 ×10−9 2.3 ×10−9 2.1 ×10−9 2.1 ×10−9 2.1 ×10−9 2.1 ×10−9

Dubois t-norm

t-norm kernel 0.1 0.22 0.4 0.65 0.9 1.3 1.8 2.1 2.7 3.1
Frank t-norm

t-norm kernel 2.5 ×10−9 2.5 ×10−9 2.4 ×10−9 2.4 ×10−9 2.3 ×10−9 2.2 ×10−9 2.1 ×10−9 2.2 ×10−9 2.1 ×10−9 2.2 ×10−9

Hamacher t-norm

t-norm kernel 0.13 0.32 0.63 1.0 1.6 2.2 3.1 3.8 4.7 5.7
Schweizer t-norm (2)

t-norm kernel 0.13 0.31 0.61 1.0 1.5 2.1 2.8 3.5 4.3 5.2
Schweizer t-norm (3)

was measured on a workstation with a dual Intel Xeon
CPU E5-2650 v3 (2.30GHz × 10 cores), 64 GB RAM,
and Ubuntu Linux 16.04. The C++ language and GNU
Compiler Collection (version 5.4.0) are used for the im-
plementation. The computational times for equation
(30) were measured for 100 repeats of the three non-
parameterized kernels, which were measured using all of
the parameters shown in Section 4.1 for the seven parame-
terized kernels. The purpose of measuring computational
time is to evaluate the position of the proposal in terms
of computational cost. In kernel k-means case, measuring
computational time corresponds to measure the calcula-
tion speed of a kernel function K in equation (26), and
the measurement helps to select which kernel (or t-norm)
should be used.

Table 2 shows the average computational time for each
kernel when applied to a set of 1,000 random vectors
V generated with a sparse ratio of s. According to
Table 2, the linear kernel and t-norm kernels with the
logical product, Mizumoto product, Dubois t-norm, and
Hamacher t-norm had approximately the same average
computational time. Similarly, the t-norm kernels with
the Dombi t-norm, Frank t-norm, Schweizer t-norm (2),
and Schweizer t-norm (3) had approximately the same
average computational times. The RBF kernel is used
widely and it also achieved better performance in our
experiment using kernel k-means, but the average com-
putational time was reduced by 2.5 ×10−8 to 3 ×10−8

when using the t-norm kernel with the Dubois t-norm.
Moreover, the average computational times for the t-norm
kernel with the Dombi t-norm, Frank t-norm, Schweizer
t-norm (2), and Schweizer t-norm (3) increased with a
larger sparse ratio s. These kernels are unsuitable for

dense vectors.
According to the discussions in section 4.2, section 4.3,

and this section, the characteristics of t-norm kernel are
validated in terms of clustering accuracy, parameter se-
lection, and computational times, but after all what t-norm
should we use? In my opinion, while the proper t-norm
should be considered and selected after applying it to data,
I recommend the Dubois t-norm to use initially, because
of its low computational cost, better clustering accuracy
compared with the linear kernel, and the simple parameter
selection process. Then, the t-norm kernel with Dubois t-
norm can be a useful option when the clustering accuracy
of the linear kernel is insufficient and data size is huge
such as big data case.

6. Conclusion

This study proposed the concept of the t-norm-based
additive kernel, as well as discussing its positive-definite
property and the conditions for applicable t-norms. A
clustering experiment with kernel k-means was performed
to analyze the characteristics of the proposed method as
well as the effects of the t-norm and parameter selections,
where the clustering results obtained were evaluated in
terms of the ARI. The experiment used four data sets with
nonlinear cluster shapes and it was applied that eight t-
norms to the proposed kernel function, two of which were
non-parameterized t-norms. In addition, it was measured
that the computational times for 1,000 random vectors
with a sparse ratio to determine the relationship between
the processing time and clustering accuracy. The results
of the clustering experiment suggested that: (1) the ARI

8 Journal of Advanced Computational Intelligence Vol.21 No.3, 2017
and Intelligent Informatics



Families of Triangular Norm-based Kernel Functions and
their Application to Kernel k-means

values obtained by the proposed method were almost the
same or higher than those by the linear kernel with all of
the data sets; (2) the proposed method slightly improved
the ARI values for some data sets compared with the RBF
kernel; and (3) the proposed method maps data to a higher
dimensional feature space than the linear kernel but the di-
mension is lower than that of the RBF kernel. The t-norm
kernel with the Dubois t-norm had a low calculation cost
compared with the RBF kernel, and it obtained good ARI
values for some data sets with the evaluated kernel func-
tions; therefore, I consider that this kernel is useful de-
pending on the application and task. Then, I recommend
the Dubois t-norm to use initially, because of its low com-
putational cost, better clustering accuracy compared with
the linear kernel, and the simple parameter selection pro-
cess.

This study only performed clustering experiments us-
ing data sets with two dimensions. In future re-
search, I will perform clustering experiments using multi-
dimensional data sets or data sets with an extremely high
number of dimensions compared with the number of in-
stances, and the characteristics of the proposed method
should also be analyzed in other pattern analysis tasks
such as classification and dimension reduction.
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