
Efficient Algorithms for Finding Maximum
and Maximal Cliques and Their Applications

Etsuji Tomita∗

The Advanced Algorithms Research Laboratory,
The University of Electro-Communications,

Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
∗tomita@ice.uec.ac.jp

Abstract. The problem of finding a maximum clique or enumerating
all maximal cliques is very important and has been explored in several
excellent survey papers. Here, we focus our attention on the step-by-
step examination of a series of branch-and-bound depth-first search al-
gorithms: Basics, MCQ, MCR, MCS, and MCT. Subsequently, as with
the depth-first search as above, we present our algorithm, CLIQUES,
for enumerating all maximal cliques. Finally, we describe some of the
applications of the algorithms and their variants in bioinformatics, data
mining, and other fields.

1. Introduction

Given an undirected graph G, a clique is a subgraph in which all pairs
of vertices are mutually adjacent in G. The so-called maximum clique
problem is one of the original 21 problems shown to be NP-complete by
Karp [18]. The problem of finding a maximum clique or enumerating all
maximal cliques in G is very important and significant work has been
done on it, both theoretically and experimentally [34, 17, 7, 10, 49, 54].

An excellent review on recent various algorithms for the maximum
clique problems can be found in [54] by Wu and Hao. Herein, we focus our
attention on a series of branch-and-bound depth-first search algorithms
— Basics [13, 43], MCQ [45], MCR [47], MCS [48], and MCT [52] — for
finding a maximum clique, such that their progress can be understood
easily.

Subsequently, similarly to the depth-first searches above, we present
our O(3n/3)-time algorithm, CLIQUES [46], for enumerating all maximal
cliques, that is optimal with respect to the number of vertices n.

Finally, we outline some of the applications of the previous algorithms
or their variants to fields including bioinformatics, data mining, and image
processing.

2. Preliminaries

(1) Throughout this paper, we are concerned with a simple undirected
graph G = (V,E) with a finite set V of vertices and a finite set E of
unordered pairs (v, w) (= (w, v), v ̸= w) of distinct vertices called edges.
V is considered to be ordered, and the i-th element in V is denoted by
V [i]. A pair of vertices v and w are said to be adjacent if (v, w) ∈ E.



2 E. Tomita

(2) For a vertex v ∈ V, let Γ (v) be the set of all vertices adjacent to v in
G = (V,E), i.e., Γ (v) = {w ∈ V |(v, w) ∈ E}. We call |Γ (v)| the degree
of v. In general, for a set S, the number of elements in S is denoted by
|S|.
(3) For a subset R ⊆ V of vertices, G(R) = (R,E∩(R×R)) is an induced
subgraph. An induced subgraph G(Q) is said to be a clique if (v, w) ∈ E
for all v, w ∈ Q ⊆ V with v ̸= w. In this case, we may simply state that
Q is a clique. In particular, a clique that is not properly contained in any
other clique is called maximal. A maximal clique with the maximum size
is called a maximum clique. The number of vertices of a maximum clique
in an induced subgraph G(R) is denoted by ω(R).

3. Efficient algorithms for finding a maximum clique
3.1 Basic Algorithms

3.1.0 A basic branch-and-bound algorithm One standard ap-
proach for finding a maximum clique is based on the branch-and-bound
depth-first search method. Our algorithm begins with a small clique and
continues finding larger and larger cliques until one is found that can be
verified to have the maximum size. More precisely, we maintain global
variables Q and Qmax, where Q = {p1, p2, ..., pd} consists of vertices of a
current clique and Qmax consists of vertices of the largest clique found so
far. Let R = V ∩Γ (p1)∩Γ (p2)∩· · ·∩Γ (pd) ⊆ V consist of candidate ver-
tices that can be added to Q. We begin the algorithm by letting Q := ∅,
Qmax := ∅, and R := V (the set of all vertices). We select a certain

procedure Algorithm #0 (G = (V,E))
begin

global Q := ∅; global Qmax := ∅;
EXPAND(V );
output Qmax

end {of Algorithm #0}

procedure EXPAND(R)
begin

while R ̸= ∅ do
p := a vertex in R; { a vertex for expansion }
if |Q|+ |R| > |Qmax| then

Q := Q ∪ {p};
Rp := R ∩ Γ (p);
if Rp ̸= ∅ then EXPAND(Rp)
else {i.e., Rp = ∅} if |Q| > |Qmax| then Qmax := Q fi
fi
Q := Q− {p}
else return

fi
R := R− {p}

od
end {of EXPAND}

Fig. 1. Algorithm #0



Efficient Algorithms for Finding Maximum and Maximal Cliques 3

vertex p from R and add p to Q (Q := Q ∪ {p}). Then, we compute
Rp := R ∩ Γ (p) as the new set of candidate vertices. This procedure,
EXPAND(), is applied recursively while Rp ̸= ∅ .

Here, if |Q|+ |R| ≤ |Qmax| then Q∪R can contain only a clique that
is smaller than or equal to |Qmax|, hence searching for R can be pruned
in this case. This is a basic bounding condition.

When Rp = ∅ is reached, Q constitutes a maximal clique. If Q is
maximal and |Q| > |Qmax| holds, Qmax is replaced by Q. We then back-
track by removing p from Q and R. We select a new vertex p from the
resulting R and continue the same procedure until R = ∅.

This is a well-known basic algorithm for finding a maximum clique
and is shown in Fig.1. We call it Algorithm #0 [13] and it serves as
a reference algorithm. This process can be represented by a search tree
with root V ; whenever Rp := R ∩ Γ (p) is applied, then Rp is a child of
R.
3.1.1 Ordering of vertices If the vertices are sorted in an ascending
order with respect to their degrees prior to the application of Algorithm
#0 and the vertices are expanded in this order, then the above Algorithm
#0 is more efficient. This fact was experimentally confirmed in [13]. Al-
gorithm #0 combined with this vertex-ordering preprocessing is named
Algorithm #1 [13].

Carraghan and Pardalos [11] also employed a similar technique suc-
cessfully.

3.1.2 Pruning by approximate coloring: Numbering One of the
most important points for improving the efficiency of the basic Algorithm
#0 is to strengthen the bounding condition to prune unnecessary searches.

For a set R of vertices, let χ(R) be the chromatic number of R, i.e.,
the minimum number of colors such that all pairs of adjacent vertices
are colored by different colors, and χ′(R) be an approximate chromatic
number of R, i.e., a number of colors such that all pairs of adjacent
vertices are colored by different colors. Then we have ω(R) ≤ χ(R) ≤
χ′(R) ≤ |R|. An appropriate chromatic number χ′(R) could be a better
upper bound on ω(R) than |R|, and might be obtained with low overhead.
Here, we employ a very simple greedy or sequential approximate coloring
to the vertices of R, as introduced in [41]. Let positive integral numbers
1, 2, 3, ... stand for different colors. Coloring is also called Numbering.
For each vertex q ∈ R, sequentially from the first to the last, we assign a
positive integral Number No[q] which is as small as possible. That is, for
the vertices in R = {q1, q2, . . . , qm}, first let No[q1] = 1, and subsequently,
let No[q2] = 2 if q2 ∈ Γ (q1) else No[q1] = 1, . . ., and so on.

We select p (at the 4th line in procedure EXPAND(R) in Fig. 1)
so that No[p] = Max{No[q] | q ∈ R}, where No[p] is an approximate
chromatic number of R. Thus, we modify the basic bounding condition:

if |Q|+ |R| > |Qmax| then



4 E. Tomita

in Fig. 1 Algorithm #0, to the following new bounding condition:

if |Q|+No[p] > |Qmax| then.

In addition, to make the above bounding condition more effective, we
sort the vertices in R in descending order with respect to their degrees
prior to Numbering.

We have now an improved algorithm, named Algorithm #2 [13], as
follows: First, sort the vertices in R = V as above. Second, give Numbers
to the sorted vertices in R = V . Subsequently, apply the modified Algo-
rithm #0 as described above. Note that the sorting and Numbering are
applied only once prior to the first application of EXPAND() at depth 0
of the search tree and that the Numbers are inherited in the following
EXPAND(). In general, Algorithm #2 is more efficient than Algorithm
#1 [13].

We can reduce the search space more effectively by applying the sort-
ing and Numbering of vertices prior to every application of EXPAND(),
but with the potential for more overhead and thus, more overall com-
puting time. We confirmed that adaptive control of the application of
sorting and/or Numbering is effective in reducing the overall comput-
ing time [37, 29, 21]. By restricting the application of vertex sorting, as
in Algorithm #2, but applying the Numbering to vertices prior to every
EXPAND(), we obtain another efficient algorithm, MCLIQ [43].

3.2 Algorithms MCQ, MCR, MCS, and MCT

3.2.1 Algorithm MCQ The algorithm MCQ [45] is directly improved
from MCLIQ. At the beginning of MCQ, vertices are sorted in descending
order with respect to their degrees. Subsequently, we apply Numbering
and sorting prior to each EXPAND() operation, where vertices are sorted
in an ascending order with respect to their Numbers. Then, the last
vertex with the maximum Number is expanded step-by-step. This sorting
can be carried out with little overhead. Hence, MCQ is very simple and
efficient.

3.2.2 Algorithm MCR Algorithm MCR [47] is an improved version of
MCQ, where the improvements mainly address the initial vertex sorting.
First, we alter the order of the vertices in V = {V [1], V [2], . . . , V [n]}
so that in a subgraph of G = (V,E) induced by a set of vertices V ′ =
{V [1], V [2], . . . , V [i]}, it holds that V [i] always has the minimum degree
in {V [1], V [2], . . . , V [i]} for 1 ≤ i ≤ |V | as in [11]. Here, the degrees of
adjacent vertices are also considered. In addition, vertices are assigned
initial Numbers. This improvement is described precisely in the steps
from {SORT} to just above EXPAND(V,No) in Fig.4 (Algorithm MCR)
in [47], called EXTENDED INITIAL SORT-NUMBER to V .



Efficient Algorithms for Finding Maximum and Maximal Cliques 5

3.2.3 Algorithm MCS Algorithm MCS [39, 48, 50] is a further im-
proved version of MCR that introduces the following techniques:

Vertices : q                     r                        p

Numbers :               k1                                    k2                            Nop

New_Numbers : k2                                                                                  k1

1 ≤  k1 < k2   ≤ Noth

Ck1∩Γ (p)={q}

Γ (q) ∩Ck2=φ

(q, r) E

Fig. 2. Re-NUMBER

(1) Re-NUMBER Because of
the bounding condition mentioned
above, if No[r] = Max{No[q] | q ∈
R} ≤ |Qmax| − |Q| then it is not
necessary to search from vertex r.
Let Noth := |Qmax|−|Q|. When we
encounter a vertex p with No[p] >
Noth, we attempt to change its
Number as follows: Try to find a
vertex q in Γ (p) such that No[q] =
k1 ≤ Noth − 1, with |Ck1 | = 1. If
such q is found, then try to find Number k2 such that no vertex in Γ (q)
has Number k2. If such Number k2 is found, then exchange the Numbers
of q and p so that No[q] = k2 and No[p] = k1. When this is possible, it
is no longer necessary to search from p. See Fig.2 for an illustration.

The above procedure is named Re-NUMBER to p and is very effec-
tive.
(2) Adjunct ordered set of vertices for approximate coloring
The ordering of vertices plays an important role in the algorithms as
described in Sections 3.1.1 and 3.1.2. In particular, the procedure Num-
bering strongly depends on the order of vertices, since it is a sequential
coloring. In our new algorithm, we sort the vertices in the same way as
in the first stage of MCR [47]. However, the vertices are disordered in
succeeding stages, owing to the application of Re-NUMBER. To avoid
this difficulty, we employ another adjunct ordered set Va of vertices for
approximate coloring that preserves the order of vertices appropriately
sorted in the first stage.

We apply Numbering to vertices from the first (leftmost) to the last
(rightmost) in the order maintained in Va, while we select a vertex p for
expansion in R in which vertices are sorted in ascending order with respect
to their Numbers as in MCQ and MCR, for searching from the last
vertex with the maximum Number. Finally, we reconstruct the adjacency
matrix in MCR just after the EXTENDED INITIAL SORT-NUMBER
to establish a more effective use of the cache memory.

The individual contributions of the above techniques in MCS can be
found in Tables 2–4 in [50].

3.2.4 Algorithm MCT An improved algorithm MCT [15, 52] is ob-
tained by modifying MCS in the following ways:
(1) An approximate solution as an initial lower bound We turn
back to our original MCS [39] that initially employs an approximation
algorithm, init-lb, for the maximum clique problem, to obtain an initial
lower bound on the size of the maximum clique. When a sufficiently large



6 E. Tomita

near-maximum clique Q′
max is found, we let Qmax := Q′

max at the be-
ginning of MCS [39]. Then Noth := |Qmax| − |Q| becomes large and the
bounding condition becomes more effective. Our init-lb is a local search
algorithm based on our previous work [44]. Here, we choose another ap-
proximation algorithm, called k-opt local search (KLS) [19], by Katayama
et al. Recently, Batsyn et al. [6] and Maslov et al. [25] also demonstrated
the effectiveness of an approximate solution, independently.
(2) Adaptive application of the sorting and/or Numbering of
vertices The effectiveness of this approach was already confirmed, as
described at the end of Section 3.1.2 [37, 29, 21]. We modify MCS so that
we sort the set of vertices by the EXTENDED INITIAL SORT-NUMBER
at the first stage near and including the root of the search tree. Konc and

Table 1. CPU time [sec] for benchmark graphs

KLS MCR MCS MCT MCX MaxC I&M BG14
Graph [19] [47] [48] [52] [36] [23] [25] [6]

Name n d. ω sol t.

brock400 1 400 0.75 27 25 0.1 729 288 116 150 205 188 302
brock800 1 800 0.65 23 21 0.2 7,582 4,122 1,950 2,690 4,560 4,000 4,220
brock800 4 800 0.65 26 20 0.2 3,248 1,768 819 1,100 1,850 1,680 1,870
C250.9 250 0.90 44 44 0.1 15,386 1,171 404 713 268
gen400 p0.9 65 400 0.90 65 65 0.3 > 6× 106 57,385 0.74 66,100 36,700 2,130 19
gen400 p0.9 75 400 0.90 75 75 0.3 > 3× 106 108,298 0.33 47,200 9,980 84 7.8
MANN a45 1035 0.99 345 344 22 653.3 53.4 75.5 32.0 22.7 17.3 55.1
p hat700-3 700 0.75 62 62 0.5 25,631 900 216 680 879 552 767
p hat1000-3 1000 0.74 68 68 1.0 > 2× 106 305,146 38,800
p hat1500-1 1500 0.25 12 11 0.0 2.22 1.82 1.40 1.95 10.00 478 422
p hat1500-2 1500 0.51 65 65 0.7 268,951 6,299 1,560 3,850 8,030 5,350 5,430
san1000 1000 0.50 15 10 0.1 2.16 1.02 0.21 0.68 0.72 449 158
sanr400 0.7 400 0.70 21 21 0.1 158.7 77.3 40.7 44.5 81.2 86.2 81.4
DSJC500.5 500 0.50 13 13 0.0 1.9 1.5 1.2 0.8 2.8
DSJC1000.5 1000 0.50 15 15 0.1 182 141 93 102 265
keller5 776 0.75 27 27 0.3 45,236 82,421 10,000 30,300 4,980 5,780 82,500
r200.8 200 0.80 24-27 24-27 0.0 4.56 1.66 0.78 0.95 1.08
r200.95 200 0.95 58-66 58-66 0.1 218.2 21.1 10.3 30.2 2.5
r300.8 300 0.80 28-29 28-29 0.1 528 161 61 89 87
r400.7 400 0.70 21-22 20-22 0.1 150.1 73.9 34.9
r500.6 500 0.60 17-18 16-17 0.1 27.1 18.0 11.4 10.1 22.1
r500.7 500 0.70 22-23 21-22 0.1 1,533 723 340 423 564
r1000.5 1000 0.50 15-16 14-15 0.1 177 134 92 103 231
r2000.4 2000 0.40 13-14 12 0.2 548 460 366
r3000.2 3000 0.20 9 7-8 0.1 3.94 3.67 3.42 4.34 34.40
r3000.3 3000 0.30 11 10-11 0.2 138 121 107
r3000.4 3000 0.40 14 12-13 0.5 7,834 6,392 5,152
r5000.2 5000 0.20 9-10 7-8 0.2 46.8 44.6 39.0 69 578
r5000.3 5000 0.30 12 10-11 0.5 2,636 2,284 1,875
r10000.1 10000 0.10 7 5-6 0.6 15 14 14 20 684
r10000.2 10000 0.20 10 8-9 0.9 1,475 1,303 1,139
r15000.1 15000 0.10 8 6 1.3 80 62 62 115 2,749
r20000.1 20000 0.10 8 6-7 2.3 307 234 234



Efficient Algorithms for Finding Maximum and Maximal Cliques 7

Janežič [22] were also successful in improving MCQ in a similar way as
in [21], independently.

In contrast, mainly near the leaves of the search tree, to lighten the
overhead of preprocessing before expansion of vertices, we only inherit the
order of vertices from that in their parent depth, and we merely inherit
the Numbers from those assigned in their parent depth if their Numbers
are less than or equal to Noth. For vertices whose inherited Numbers are
greater than Noth, we give them new Numbers by sequential Numbering
combined with Re−Numbering.

Table 1 shows the progression of the running times required to solve
some benchmark graphs using the above algorithms within these ten years
[52]. Here, d. indicates the density of the graph, and sol and t. show the
solution and the computing time of KLS in MCT. In the last half of the
table, rn.p stands for a random graph, with the number of vertices = n
and the edge probability = p. The results of the state-of-the-art algorithm
BBMCX (MCX for short) [36] by Segundo et al. and of other algorithms
[23, 25, 6] are also included for reference [52]. Note that MaxCLQ (MaxC
for short) [23] by Li and Quan is fast for dense graphs. ILS&MCS (I&M
for short) [25] and BG14 [6] require more time than MCT for most of the
instances tested. One reason for this difference comes from the fact that
our approximation algorithm, KLS, takes only small portion of the whole
algorithm’s computing time, whereas their approximation algorithm, ILS,
[2] in I&M and BG14 consumes a considerable part of the whole comput-
ing time.

4. Efficient algorithm for enumerating all maximal cliques

In addition to finding one maximum clique, enumerating all maximal
cliques is also important and has diverse applications. We present a depth-
first search algorithm, CLIQUES [42, 46], for enumerating all maximal
cliques of an undirected graph G = (V,E). All maximal cliques enumer-
ated are output in a tree-like form. The basic framework of CLIQUES
is almost the same as that of Algorithm #0 without the basic bounding
condition. We maintain a global variable Q = {p1, p2, ..., pd} that consists
of the vertices of a current clique, and let SUBG = V ∩ Γ (p1) ∩ Γ (p2) ∩
· · · ∩ Γ (pd). We begin the algorithm by letting Q := ∅ and SUBG := V
(the set of all vertices). We select a certain vertex p from SUBG and
add p to Q (Q := Q ∪ {p}). Then, we compute SUBGp := SUBG ∩ Γ (p)
as the new set of candidate vertices. In particular, the initially selected
vertex u ∈ SUBG is called a pivot. This EXPAND() procedure is applied
recursively while SUBGp ̸= ∅ .

We describe two methods to prune unnecessary parts of the search
tree, which happen to be the same as in the Bron-Kerbosch algorithm
[8]. We regard the set SUBG (= V at the beginning) as an ordered set of



8 E. Tomita

procedure CLIQUES(G)
begin
1 : EXPAND(V ,V )
end {of CLIQUES}

procedure EXPAND(SUBG, CAND)
begin

2 : if SUBG = ∅
3 : then print (“clique,”)
4 : else u := a vertex u in SUBG which maximizes | CAND ∩ Γ (u) |;{pivot}
5 : while CAND − Γ (u) ̸= ∅
6 : do q := a vertex in (CAND − Γ (u));
7 : print (q, “,”);
8 : SUBGq := SUBG ∩ Γ (q);
9 : CANDq := CAND ∩ Γ (q);
10 : EXPAND(SUBGq, CANDq);
11 : CAND := CAND − {q};
12 : print (“back,”)

od
fi

end {of EXPAND}
Fig. 3. Algorithm CLIQUES

vertices, and we continue to enumerate maximal cliques from vertices in
SUBG step-by-step in this order

First, let FINI be a subset of vertices of SUBG that have already
been processed by the algorithm (FINI is short for finished). Then
we denote by CAND the set of remaining candidates for expansion:
CAND = SUBG − FINI. Initially, FINI := ∅ and CAND := SUBG.
In the subgraph G(SUBGq) with SUBGq := SUBG ∩ Γ (q), let

FINIq := SUBGq ∩ FINI,
CANDq := SUBGq − FINIq.

Then only the vertices in CANDq can be candidates for expanding the
clique Q ∪ {q} to find new larger cliques.

Second, for the initially selected pivot u in SUBG, any maximal clique
Q′ in G(SUBG ∩ Γ (u)) is not maximal in G(SUBG), since Q′ ∪ {u} is a
larger clique in G(SUBG). Therefore, searching for maximal cliques from
SUBG ∩ Γ (u) should be excluded.

Taking the previously described pruning method into consideration,
the only search subtrees to be expanded are from vertices in (SUBG −
SUBG∩Γ (u))−FINI = CAND−Γ (u). Here, to minimize |CAND−
Γ (u)|, we choose the pivot u ∈ SUBG that maximizes |CAND ∩ Γ (u)|,
which is crucial to establish the optimality of the worst-case time-complexity
of the algorithm. This kind of pivoting strategy was first proposed by
Tomita et al. [42].

The algorithm CLIQUES [42, 46] is shown in Fig.3, which enumer-
ates all maximal cliques based upon the above approach, where all max-
imal cliques enumerated are presented in a tree-like form. Here, if Q is
a maximal clique that is found at statement 2, then the algorithm only



Efficient Algorithms for Finding Maximum and Maximal Cliques 9

prints out the string of characters “clique,” instead ofQ itself at statement
3. Otherwise, it is impossible to achieve the optimal worst-case running
time. Instead, in addition to printing “clique” at statement 3, we print
out q followed by a comma at statement 7 every time q is picked out as
a new element of a larger clique, and we print out the string of charac-
ters “back,” at statement 12 after q is moved from CAND to FINI at
statement 11. We can easily obtain a tree representation of all the max-
imal cliques from the sequence printed by statements 3, 7, and 12. The
tree-like output format is also important practically, since it saves space
in the output file.

We have proved that the worst-case time-complexity of CLIQUES
is O(3n/3) for an n-vertex graph [42, 46]. This is optimal as a function
of n, since there exist up to 3n/3 cliques in an n-vertex graph [27]. The
algorithm was also demonstrated to run fast in practice through computa-
tional experiments [46]. An example run of CLIQUES can be found in [51]
together with those of [53] by Tsukiyama et al. and [24] by Makino-Uno
applied to the same graph. By combining a bounding rule with CLIQUES,
we obtained a simple O(2n/2.863)-time algorithm, MAXCLIQUE [38],
for finding a maximum clique. It was experimentally shown in [38] that
MAXCLIQUE runs faster than Tarjan and Trojanowsky [40]’s O(2n/3)-
time algorithm.

In this approach, Eppstein et al. [12] proposed an algorithm for enu-
merating all maximal cliques that runs in time O(dn3d/3) for an n-vertex
graph G, where d is the degeneracy of G which is defined to be the small-
est number such that every subgraph of G contains a vertex of degree at
most d. If the graph G is sparse, d can be much smaller than n; hence
O(dn3d/3) can be much smaller than O(3n/3).

Exact cliques are often too restrictive for practical applications as has
been pointed in [35]. A useful algorithm for enumerating pseudo-cliques
in large scale networks (graphs) has recently been proposed [57].

5. Applications
Many applications of maximum and maximal cliques can be found in [34,
7, 10, 49, 54], and others. Thefore, we refer only to some of the literature
in the following fields:
(a) Boinformatics

a-1) Analysis of protein structures [3–5, 1, 9]
a-2) Analysis of glycan structures [14, 28]

(b) Data mining
b-1) Basic algorithms

• Structural change pattern mining [31, 32]
• Pseudo clique enumeration [56, 33, 57]

b-2) Practical applications
• Data mining for related genes [26]
• Structural analysis of enterprise relationship [55]



10 E. Tomita

(c) Image processing
• Face detection [16]

(d) Design of quantum circuits [30]
(e) Design of DNAandRNAsequences for bio-molecular computation [20]

Acknowledgments
The author would like to express his sincere gratitude to H. Ito, T.
Akutsu, M. Haraguchi, Y. Okubo, T. Nishino, H. Takahashi and many
others for their fruitful joint work and kind help. This work was sup-
ported by JSPS KAKENHI Grant Numbers JP16300001, JP19300040,
JP19500010, JP21300047, JP22500009, JP25330009, Kayamori Founda-
tion of Informational Science Advancement, Funai Foundation for Infor-
mation Technologies, and others.

References
1. Akutsu, T., Hayashida, M., Bahadur D.K.C, Tomita, E., Suzuki, J., Horimoto,

K.: Dynamic programming and clique based approaches for protein threading
with profiles and constraints, IEICE Trans. Fundamentals of Electronics, Com-
munications and Computer Sciences, E89-A, 1215-1222 (2006).

2. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maxi-
mum independent set problem, J. Heuristics, 18, 525–547 (2012)

3. Bahadur D.K.C., Akutsu, T., Tomita, E., Seki, T., Fujiyama, A.: Point matching
under non-uniform distortions and protein side chain packing based on an efficient
maximum clique algorithm, Genome Informatics, 13, 143–152 (2002)

4. Bahadur D.K.C, Tomita, E., Suzuki, J., Akutsu, T.: Protein side-chain packing
problem: A maximum edge-weight clique algorithmic approach, J. Bioinformatics
and Computational Biology, 3, 103-126 (2005)

5. Bahadur, D.K.C., Tomita, E., Suzuki, J., Horimoto, K., Akutsu, T.: Protein
threading with profiles and distance constraints using clique based algorithms,
J. Bioinformatics and Computational Biology, 4, 19–42 (2006)

6. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P. M.: Improvements to MCS
algorithm for the maximum clique problem, J. Comb. Optim., 27, 397-246 (2014)

7. Bomze, I. M., Budinich, M., Pardalos, P. M., Pelillo M.: The maximum clique
problem, In; Du, D.-Z., Pardalos, P.M. (Eds.): Handbook of Combinatorial Op-
timization, Supplement vol. A, Kluwer Academic Publishers, 1–74 (1999)

8. Bron, C., Kerbosch, J.: Algorithm 457, Finding all cliques of an undirected graph,
Comm. ACM, 16, 575–577 (1973)

9. Brown, J.B., Bahadur, D.K.C., Tomita, E., Akutsu, T.: Multiple methods for
protein side chain packing using maximum weight cliques, Genome Informatics,
17, 3–12 (2006)

10. Butenko, S., Wilhelm, W.E.: Clique-detection models in computational biochem-
istry and genomics - Invited Review - , European J. Operational Research, 173,
1–17 (2006)

11. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique prob-
lem, Operations Research Lett., 9, 375–382 (1990)

12. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse
real-world graphs, J. Experimental Algorithmics, 18, 3.1:1–21 (2013)

13. Fujii, T., Tomita, E.: On efficient algorithms for finding a maximum clique, Tech.
Rep. IECE, AL81-113, 25–34 (1982)

14. Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., Akutsu, T.: A Clique-based
method for the edit distance between unordered trees and its application to anal-
ysis of glycan structure, BMC Bioinformatics, 12(S-1)S:13 (2011)

15. Hatta, T., Tomita, E., Ito, H., Wakatsuki, M.: An improved branch-and-bound
algorithm for finding a maximum clique, Proc. Summer LA Symposium, No.9,
1–8 (2015)



Efficient Algorithms for Finding Maximum and Maximal Cliques 11

16. Hotta, K., Tomita, E., Takahashi, H.: A view-invariant human face detection
method based on maximum cliques. Trans. IPSJ, 44, SIG14(TOM9), 57–70 (2003)

17. Johnson, D.S., Trick, M.A. (Eds.): Cliques, Coloring, and Satisfiability, DIMACS
Series in Discrete Math. and Theoret. Comput. Sci., vol.26, American Math.
Society (1996)

18. Karp, R.: Reducibility among combinatorial problems, In; Miller, R.E., Thatcher,
J.W. (Eds.): Comlexity of Computer Computations, Plenum Press, New York,
85–103 (1972)

19. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the
maximum clique problem, Information Processing Lett., 95, 503-511 (2005)

20. Kobayashi, S., Kondo, T., Okuda, K., Tomita, E.: Extracting globally structure
free sequences by local structure freeness. In: Chen, J., Reif, J. (Eds.): Proc. Ninth
International Meeting on DNA Based Computers, 206 (2003)

21. Kohata, Y., Nishijima, T., Tomita, E., Fujihashi, C., Takahashi, H.: Efficient
algorithms for finding a maximum clique, Tech. Rep. IEICE, COMP89-113, 1–8
(1990)

22. Konc, J., Janežič, D.: An improved branch and bound algorithm for the maximum
clique problem, MATCH Commun. Math. Comput. Chem., 58, 569–590 (2007)

23. Li, C.M., Quan, Z.,: Combining graph structure exploitation and propositional
reasoning for the maximum clique problem, Proc. IEEE ICTAI, 344–351 (2010)

24. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques, SWAT
2004, LNCS, 3111, 260–272 (2004)

25. Maslov, E., Batsyn, M., Pardalos, P.M.: Speeding up branch and bound algo-
rithms for solving the maximum clique problem, J. Global Optim., 59, 1-21 (2014)

26. Matsunaga, T., Yonemori, C., Tomita, E., Muramatsu, M.: Clique-based data
mining for related genes in a biomedical database, BMC Bioinformatics, 10:205
(2009)

27. Moon, J.W., Moser, L.: On cliques in graphs, Israel J. Math., 3, 23–28 (1965)
28. Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E., Akutsu, T.: A clique-

based method using dynamic programming for computing edit distance between
unordered trees, J. Computational Biology, 19, 1089-1104 (2012)

29. Nagai, M., Tabuchi, T., Tomita, E., Takahashi, H.: An experimental evaluation
of some algorithms for finding a maximum clique, Conf. Records of the National
Convention of IEICE 1988, D-348 (1988)

30. Nakui, Y., Nishino, T., Tomita, E., Nakamura, T.: On the minimization of the
quantum circuit depth based on a maximum clique with maximum vertex weight.
Tech. Rep. RIMS, 1325, Kyoto University, 45–50 (2003)

31. Okubo, Y., Haraguchi, M., Tomita, E.: Structural change pattern mining based
on constrained maximal k-Plex search, DS 2012, LNAI, 7569, 284–298 (2012)

32. Okubo, Y., Haraguchi, M., Tomita, E.: Relational change pattern mining based
on modularity difference, MIWAI 2013, LNAI, 8271, 187-198 (2013)

33. Okubo, Y., Haraguchi, M., Tomita, E.: Enumerating maximal isolated cliques
based on vertex-dependent connection lower bound, MLDM 2016, LNAI, 9727,
569–583 (2016)

34. Pardalos, P.M. and Xue, J.: The maximum clique problem, J. Global Optim., 4,
301–328 (1994)

35. Pattillo, J., Youssef, N. Butenko, S.: Clique relaxation models in social network
analysis, Thai, M. T., Pardalos, P. M. (eds.): Handbook of Optimization in Com-
plex Networks: Communication and Social Networks, Springer Optimization and
Its Applications 58, 143–162 (2012)

36. Segundo, P.S., Nikolaev, A., Batsyn, M.: Infra-chromatic bound for exact maxi-
mum clique search, Computers and Operations Research, 64, 293–303 (2015)

37. Shindo, M., Tomita, E., Maruyama, Y.: An efficient algorithm for finding a max-
imum clique, Tech. Rep. IEC, CAS86-5, 33–40 (1986)

38. Shindo, M., Tomita, E.: A simple algorithm for finding a maximum clique and
its worst-case time complexity, Systems and Computers in Japan, 21, Wiley, 1-13
(1990)



12 E. Tomita

39. Sutani, Y., Higashi, T., Tomita, E. Takahashi, S., Nakatani, H.: A faster branch-
and-bound algorithm for finding a maximum clique, Tech. Rep. IPSJ, 2006-AL-
108, 79–86 (2006)

40. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set, SIAM J.
Computing, 6(3), 537–546 (1977)

41. Tomita, E., Yamada, M.: An algorithm for finding a maximum complete subgraph,
Conf. Records of the National Convention of IECE 1978, 8 (1978)

42. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for finding
all the cliques, Tech. Rep. Univ. of Electro-Commun., UEC-TR-C5(2) (1988).
(Reference [238] in [34], Reference [308] in [7] ).
http://id.nii.ac.jp/1438/00001898/

43. Tomita, E., Kohata, Y., Takahashi, H.: A simple algorithm for finding a maximum
clique, Tech. Rep. Univ. of Electro-Commun., UEC-TR-C5(1) (1988). (Reference
[239] in [34], Reference [309] in [7] ).
http://id.nii.ac.jp/1438/00001899/

44. Tomita, E., Mitsuma, S., Takahashi, H.: Two algorithms for finding a near-
maximum clique, Tech. Rep. Univ. of Electro-Commun., UEC-TR-C1 (1988).
(Reference [240] in [34], Reference [310] in [7] ).
http://id.nii.ac.jp/1438/00001900/

45. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a max-
imum clique, DMTCS 2003, LNCS, 2731, 278–289 (2003)

46. Tomita, E., Tanaka, A. Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments, Theoret. Comput.
Sci., 363 (Special Issue on COCOON 2004), 28–42 (2006)

47. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments, J. Global Optimization, 37,
95–111 (2007), J. Global Optimization, 44, 311 (2009)

48. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique, WALCOM
2010, LNCS, 5942, 191-203 (2010)

49. Tomita, E., Akutsu, T., Matsunaga, T.: Efficient algorithms for finding maximum
and maximal cliques: Effective tools for bioinformatics, In: Laskovski, A.N. (Ed.):
Biomedical Engineering, Trends in Electronics, Communications and Software,
InTech, 625-640 (2011)
http://cdn.intechopen.com/pdfs-wm/12929.pdf

50. Tomita, E., Sutani, Y., Higashi, T., Wakatsuki, M.: A simple and faster branch-
and-bound algorithm for finding a maximum clique with computational experi-
ments, IEICE Trans. Information and Systems, E96-D, 1286-1298 (2013).
http://id.nii.ac.jp/1438/00000287/

51. Tomita, E.: Clique Enumeration, in Ming-Yang Kao (Ed.): Encyclopedia of Al-
gorithms, 2nd Edition, Springer, 313-317 (2016)

52. Tomita, E., Yoshida, K., Hatta, T., Nagao, A., Ito, H., Wakatsuki, M.: A much
faster branch-and-bound algorithm for finding a maximum clique, FAW 2016,
LNCS, 9711, 215–226 (2016)

53. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for gener-
ating all the maximal independent sets, SIAM J. Comput., 6, 505–517 (1977)

54. Wu, Q., Hao, J.K.: A review on algorithms for maximum clique problems - Invited
Review - , European J. Operational Research, 242, 693–709 (2015)

55. Yonemori, C., Matsunaga, T., Sekine, J., Tomita, E.: A structural analysis of
enterprise relationship using cliques, DBSJ Journal, 7, 55-60 (2009)

56. Zhai, H., Haraguchi, M., Okubo, Y., Tomita, E.: Enumerating maximal clique
sets with pseudo-clique constraint, DS 2015, LNAI, 9356, 324–339 (2015)

57. Zhai, H., Haraguchi, M., Okubo, Y., Tomita, E.: A fast and complete algorithm for
enumerating pseudo-cliques in large graphs, Int. J. Data Science and Analytics,
2, Springer, 145–158 (2016)


