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和文概要

この論文は，単一電子論理デバイスの非線形特性の強化，および単一電子デバイス作製

プロセスの開発を目的とするものである。

第一の目的に対しては，単一電子 4接合インバータや単一電子 NANDゲート等の単一

電子論理ゲートの非線形特性を数値計算手法により改善した。連続的な入力信号に対し

て，単一電子 4接合インバータや単一電子 NANDゲートは，高出力レベルと低出力レベ

ルの間の遷移が緩やかかつ連続的であり，これら遷移領域での出力状態決定が曖昧にな

る。この欠点を解消するため，入力端子と主たるデバイス（単一電子論理デバイス）の間

に単一電子入力離散化器を付加して，入出力特性のスイッチングを急峻にした。入力離散

化器では，連続的な入力信号が離散的な中間信号に変換され，それが主たるデバイスへの

入力となる。入力離散化器のパラメータを，各接合におけるクーロン閉塞条件を基に設計

した。モンテカルロ数値シミュレーションプログラム SIMON を用いて，設計した閾値

での急峻なスイッチングを確認した。また，入力離散化器を主たるデバイスの入力端子に

接続することで，主たるデバイスのスイッチングが急峻なものとなった。入力離散化器を

付加した単一電子 4接合インバータの遷移幅は，単一電子 4接合インバータ単体のそれの

1.1%にまで減少した。また，単一電子 NANDゲートの 2つの入力端子それぞれに入力

離散化器を付加した場合，単一電子 NANDゲート単体と比較して，遷移幅が 33%に減少

した。一方，単一電子 4接合インバータに 2個直列接続された入力離散化器を付加するこ

とで，ヒステリシス・インバータ特性が得られた。この 2入力離散化器付き単一電子 4接

合インバータでは，理想的なヒステリシス・インバータモデルと同様に，確率共鳴現象が

強化されることが示された。

第二の目的に対しては，単一電子デバイスを金ナノ粒子を用いて実現する新たなプロセ

スを開発した。まず，ドレイン，ソース，ゲートの各電極を，電子ビームリソグラフィと

蒸着法によって作製した。ドレインとソース電極間のギャップを広く（≥ 200 nm）する

ことで，作製プロセスにおける技術的困難さを低減した。電極作製後，金ナノ粒子溶液を

滴下することで，微小トンネル接合配列を形成した。77 Kの温度にて，容量結合ゲート

型，および抵抗結合ゲート型の単一電子トランジスタに似た特性が確認された。さらに，

室温（287 K）においても，電気的特性上にクーロン閉塞が現れ，また，ゲート電圧を印

加することによってクーロン閉塞領域が変調された。



Abstract

This thesis aims to enhance nonlinear characteristics of single-electron (SE)

logic devices and fabricate SE devices.

For the first main goal, the nonlinear characteristics of SE logic gates in-

cluding SE four-junction inverter (SE FJI) and SE NAND gates were improved

by using the numerical method. With a continuous input signal, the SE FJI

and SE NAND gates have a disadvantage of gradual switches between high

and low output levels, resulting in unclear decisions about output states in the

transition region. To overcome this disadvantage, the switching was enhanced

to become sharp by adding an SE input discretizer (ID) between an input ter-

minal and a main device (SE logic device). The ID discretizes the continuous

input signal into a discrete intermediate signal which is then forwarded into

the main device. Parameters of the ID were calculated from the conditions of

the Coulomb blockade (CB) phenomena and confirmed from Monte-Carlo sim-

ulation using SIMON program to achieve the sharp switching at the designed

threshold voltage. On the one hand, the addition of one ID to each input of

SE logic device exhibited the sharp switching. Namely, an SE FJI with an

ID (ID-FJI) achieved the sharp switching and its unclear region was reduced

to 0.011 times in comparison with the solo FJI. An SE NAND gate with two

separate IDs (ID-NAND) exhibited the sharp switches and its unclear regions

were decreased to 0.33 times in comparison with the solo NAND gate. On the

other hand, the addition of two serially-cascaded IDs to the SE FJI (2ID-FJI)

formed a hysteretic inverter. In addition, stochastic resonance was enhanced

remarkably by using the 2ID-FJI, which was equivalent to the use of an ideal

hysteretic inverter.

For the second main goal, SE devices were realized by using gold nanopar-

itcles (Au NPs). Drain, source, and gate electrodes were fabricated by com-

bining standard electron beam lithography (EBL) and evaporation techniques.

The technical difficulty in the fabrication process was reduced by forming the



wide (≥ 200 nm) gap between the drain and source electrodes. After that,

arrays of small tunnel junctions were formed by dropping solutions of Au

NPs. Characteristics like capacitively-coupled single-electron transistor (C-

SET) and resistively-coupled SET (R-SET) were confirmed at 77 K. Moreover,

the CB gap was not only observed but also modulated by applying the gate

voltage at room temperature (287 K).
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Chapter 1

Introduction

1.1 Background

1.1.1 The development trend from conventional semi-

conductor devices to single-electron devices

The trend improving the performance of integrated circuits (ICs) has gained

great achievements since 1970s [1]. The ICs have had lower cost, higher speed,

and ability of processing multiple tasks simultaneously. In 1965, G. Moore

presented an observation about the scaling trend of ICs. The Moore’s Law

shows that a new technology generation at which the size of the circuit is

reduced by half is introduced every 18 or 24 months [2]. On the other hand,

the International Technology Roadmap for Semiconductors (ITRS) provides a

guidance to transform this observation into reality. The ITRS indentifies the

requirements, challenges, and possible solutions for semiconductor researches

and industry [3].

Among semiconductor devices, MOSFET (Metal-Oxide-Semiconductor Field-

Effect Transistor) is the most prevalent device applied in ICs. The MOSFET

device has four terminals including source, drain, gate, and body (substrate).

There are two types of MOSFET including N-channel MOSFET (N-MOSFET)

and P-channel MOSFET (P-MOSFET). The difference between structures of

N-MOSFET and P-MOSFET is the type of semiconductor (N-type or P-type)
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Figure 1.1: a) Basic MOSFET configuration. b) Drain current Id versus

drain-source voltage Vds of the MOSFET.

used for source, drain, and body electrodes. In the N-type semiconductor, the

number of electrons is more than the holes whereas, in the P-type semicon-

ductor, the number of holes is more than the electrons. For the N-MOSFET,

the source and drain electrodes are N+ regions and the body is a P region. For

the P-MOSFET, the source and drain electrodes are P+ regions and the body

is an N region. A basic configuration and electrical characterisics of a classical

N-channel MOSFET are illustrated in Fig. 1.1 [4]. By applying the positive

gate-body voltage, distribution of electrons and holes in the body changes,

resulting in an inversion layer and a depletion layer between the source and

drain electrodes. The inversion layer containing high density of electrons plays

the role of a conductive channel where electrons can flow from the source to

drain electrode. When gate-source voltage Vgs is smaller than a threshold

voltage Vth, the transistor is switched off. However, there is still a leakage

current Ileak flowing between the drain and source electrodes, which is called

a substhreshold current. The substhreshold current contributes mainly to the
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Figure 1.2: Configuration of a CMOS inverter.

off-state current Ioff of the MOSFET [5]. When Vgs > Vth, the transistor turns

on (Fig. 1.1(b)). In the case of Vgs > Vth, when drain-source voltage Vds is

less than saturation drain-source voltage (Vds)sat, Vds < (Vds)sat, the MOSFET

operates in a linear region; when Vds is larger than (Vds)sat, Vds ≥ (Vds)sat, the

MOSFET operates in a saturation region.

Since the MOSFET has the oxide layer between the gate and body elec-

trodes, it has high input resistance resulting in a low input power consumption.

Therefore, semiconductor academia and industry has concentrated on develop-

ing ICs on the basis of MOSFET [5]. The method of the improvement of ICs

has been the MOSFET scaling. Two main objectives of the MOSFET scaling

are to increase density and speed of ICs [6]. A reduction in the size can in-

crease the density of transistors on a chip. In addition, the speed of circuit can

be increased by reducing the size of the MOSFETs. For instance, we consider

the propagation delay of a CMOS inverter composed of a P-MOSFET and an

N-MOSFET (Fig. 1.2). The propagation delay τd is the time delay for a signal

to propagate from the input to the output [4]. According to Ref. [4], τd is

proportional to CVs (τd ∝ CVs), in which C is the total capacitance connected

to the output of the inverter, Vs is the supply voltage. When the size of the

device reduces, the capacitances also reduces [5]. Then, the propagation delay

decreases, resulting in the rise of the speed of the circuit.
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For the conventional MOSFET which has the metal gate electrode, the

oxide layer made of SiO2, and the strucutre as shown in Fig. 1.1, the scaling

method has been associated with reducing dimensions of the MOSFET. The

reduced dimensions of the MOSFET have included the channel length, oxide

thickness, and the depletion layer width [2]. However, one of the serious prob-

lems of this method is the short-channel effects. When the MOSFET has the

channel length on the same order as the depletion region width of the source

and drain junctions, it is called a short-channel device [7]. The short-channel

effect causes a reduction ∆Vth of the threshold voltage [5],

∆Vth ∝ exp(−L/ld), (1.1)

in which, L is the channel length; ld is the characteristics length (ld ∝ (Tox)1/3,

Tox is the thickness of the oxide layer). For instance, the device with 0.25-µm

channel length has Vth of 0.7 V, whereas the device with 0.1-µm channel length

has Vth of 0.33−0.40 V [2]. Otherwise, Ileak ∝ exp(-Vth) [5]. Consequently, Ileak

and also Ioff increase. On the other hand, the static power consumption Pstatic

which is consumed in the static (standby) mode of the device is calculated

as [5],

Pstatic = VsIoff. (1.2)

The Eq. (1.2) indicates that the increase of the off current causes the rise

of the static power consumption. For example, Ioff is 100 nA per transistor,

then a chip contains 100 million transistors could consume 10 A in the standby

mode. For the high-speed device whose the channel length is reduced heavily,

this problem becomes more serious. The short-channel effect can be decreased

by forming the thin oxide layer (small Tox) which helps to decrease ∆Vth in Eq.

(1.1) [5]. However, when the SiO2 layer is thinner than 1.5 nm, the tunneling

leakage current through the oxide layer become significant [5]. For example,

the MOSFET with the 1.2-nm-thick SiO2 layer leaks 103 A/cm2.

To solve the problem in the MOSFET scaling, two ways have been applied.

One way has been the improvement of the semiconductor technology by in-
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troducing nonclassical CMOS structures [8]. The nonclassical CMOS has the

enhancement in the material and structure of the MOSFET. An example of

the material enhancement is that they have used the high dielectric material

for the oxide layer. The high dielectric material such as HfO2 with the rela-

tive dielectric constant of 24 which is six times larger than SiO2 can protest

against the tunneling leakage current [5]. Consequently, the very thin oxide

layer can be applied for the MOSFET to reduce the short-channel effect. In

addition, the new structures like untra-thin-body (UTB) and multigate MOS-

FET have been introduced to increase the controlling ability of the gate in

the off state [8]. Until now, this way has achieved remarkable advances. For

example, they could fabricate 14-nm transistor in 2014 and the number of

transistors could increase to 25 million per mm2 in 2016 [9, 10].

Another way is the development of nanodevices to replace MOSFET, such

as single-electron (SE) devices [11]. SE devices have two important advantages

as follows [12]. With small physical sizes on the order of nanometers, SE

devices have the possibility to make ultralarge scale integration. On the other

hand, the total power consumption of a device is sum of static and dynamic

powers which are dissipated in the off and on modes, respectively. The dynamic

power is the main contributor in the total consumption power. Because SE

devices can control the electric charge at the level of one electron, there are

only a few electrons used for a basic operation resulting in ultralow dynamic

power consumption. The advantages of SE devices make them prospective for

the future of ICs.

In the field of single electronics, the most important element is a tunnel

junction. The tunnel junctions have been realized by using a variety of mate-

rials and technologies such as metal-insulator-metal, silicon nanowires, GaAs

quantum dots, carbon nanotubes, aluminium nanodots, and gold nanopar-

ticles. The realized tunnel capacitances on the order of 10−16 F limits the

operation temperature to 1 K [13]. Recently, there have been experiments ex-

hibiting the tunnel capacitances in the range of 10−18−10−20 F, resulting in the

operation at liquid nitrogen temperature and room temperature [14–17]. How-
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ever, these devices have required the high complexity in the fabrication and

the difficulty for application in large-scale integrated circuits. Therefore, one

of the great expectations in the future is the fabrication of room-temperature

SE devices and then the realization of SE integrated circuits.

1.1.2 Early researches on single-electron devices

SE effects were investigated in the period from 1950s to 1970s. In 1951, Gorter

explained the increase of resistance of the thin granular metal films in terms

of the necessary energy for tranfering electron between the grains [18]. One

decade later, Neugebauer mentioned the activation energy required for elec-

trons travelling between two islands, where the activation energy was associ-

ated to the charging energy of a single electron [19]. Systems including thin

and thick insulators sandwiched between metal electrodes were evaluated by

measuring their resistances and C − V (capacitance-voltage) characteristics,

where the thin and thick insulators were used for tunnel barriers and capacitor

dielectrics [20], [21]. Until 1970s, knowledge about SE effects in granular metal

films had been developed well with the addtion of quantitative analyses.

Since 1980s, researches in the field of single electronics have been developed

dramatically. Behavior of a single tunnel junction was predicted by Likharev

and his co-workers in the mid-1980’s [22], [23]. By late 1980s, characteristic

like a Coulomb staircase was observed in the devices whose island and tunnel

junctions were well defined. The first SE transistor (SET) was demonstrated

by Fulton and Dolan [13]. They fabricated Al/Al2O3/Al tunnel junctions on

a SiO2/Si substrate. The 14-nm-thick island was made of an Al film while

the tunnel barriers were realized by the oxidized Al surface. The source and

drain electrodes were made of Al whereas Si substrate worked as the gate

electrode. The device measured at 1.1 K showed 1-mV-wide Coulomb gap in

current-voltage (I − V ) characteristics and Coulomb oscillations by applying

the gate voltage. From the viewpoint not of physical research but of real usage,

operation temperature of these devices were extremely low and not suitable

for many practical applications. Therefore, operation of SE devices at higher
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temperatures has been an important objective. The first device exhibiting

Coulomb staircase at room temperature was realized using a gold nanoparticle

and a scanning-tunneling microscopy technique [24].

In the analog applications, the possible applications of SE devices have been

reported such as the supersensitivity electrometry, the SE spectroscopy, the dc

current standards, the temperature standards, the resistance standards, and

the detection of infrared radiation [25]. For the digital applications, several

applications have been demonstrated such as SE logic circuits including volt-

age state logics where logical (“1” and “0”) bits are represented by high/low

dc voltage levels and charge state logics where the logical bits are presented

by the presence/absence of single electrons in conducting islands, SE memo-

ries, and electrostatic data storage using SETs and MOSFETs [25]. However,

there are two big problems limiting digital applications. The first one is the

fabrication of room-temperature SE devices. The number of reports on the

fabricated room-temperature SE devices has still been limited. The second

one is the randomness of the background charge which shifts the operation

point of SE devices composed of capacitively-coupled SETs (C-SETs). There

are several solutions for the second problem, for example the use of extremely

pure materials, resistively-coupled SET (R-SET) devices, and C-SET devices

working independently with the background charge. The solutions for these

problems are necessary for realizing the SE integrated circuits in the future.

1.1.3 Orthodox theory

The orthodox theory [25] plays an important role in the field of SE devices.

This theory is on the basis of three major assumptions as follows [25]. Firstly,

the electron energy quantization in the conductors is ignored. In other words,

the electron energy spectrum is considered as continuous. The condition re-

quired for this assumption is Ek � kBT , in which Ek, kB, and T are the

quantum kinetic energy of electrons, the Boltzman constant, and the electron

temperature, respectively. Secondly, time for tunneling through the barrier

is assumed to be negligible in comparison with other time scales (in fact, this
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time is on the order of 10−15 s). Finally, no cotunneling processes where several

electrons simultaneously tunnel through different barries are assumed. This as-

sumption is satisfied if all tunnel resistances are much larger than the quantum

resistance: R� RQ ≈ 25.8 kΩ.

The orthodox theory explains experiments very well if three assumptions

are satisfied. However, experimental conditions do not always fullfil the first

and third conditions. The first condition is broken by the existence of the

discrete energy levels. This happens for ultrasmall islands, resulting in quan-

tum kinetic energy Ek � kBT . The third condition is broken by the presence

of cotunneling processes. Nevertheless, the orthodox theory explains general

aspects of SE phenomena [25].

1.2 Single-electron transistor (SET)

A single-electron transistor (SET) is one of the most important devices which

have been used for many applications of single electronics. There are two

typical types of SETs so-called a capacitively-coupled SET (C-SET) and a

resistively-coupled SET (R-SET). The difference between the two types is the

coupling structure, capacitive or resistive, between the gate electrode and the

center island electrode.

Characteristics of C-SET and R-SET are introduced by my own simulation

using typical values. Below, capacitances of tunnel junctions are on the order

of 100 aF. The relationship between the tunnel capacitance and the junction

area depends on the method of fabrication. For example, Al/Al2O3/Al tunnel

junction fabricated by using shadow evaporation in Ref. [13] with the junction

area of (0.4 µm)2 has the tunnel capacitance on the order of 100 aF. Monte-

Carlo simulation was executed using the SIMON program [26] in the conditions

of 0 K and no cotunneling. Figure 1.3 shows an interface of the SIMON

program. In Fig. 1.3(a), the left-hand side of the interface shows elements

used to build the circuit. The right-hand side shows an example of a complete

circuit used for simulation. This simulation circuit is composed of tunnel

8



1.2. Single-electron transistor (SET)

(a)

Current 

meter

Voltage 

meter

Voltage 

source

Tunnel 

Junction

Capacitor

(b)

(c) (d)

Figure 1.3: Interface of SIMON program. (a) Simulation circuit model. (b)-

(d) Parameter boxes of tunnel junction, capacitor, and voltage, respectively.
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junctions, a gate capacitor, and voltage sources. Current and voltage meters

are used to measure the current and the voltage in the circuit, respectively.

Parameters of the tunnel junction, the capacitor, and the voltage are set by

using the parameter boxes in Fig. 1.3(b)-(d), respectively. After that, click

“start” option on the top of the interface in Fig. 1.3(a) to simulate the circuit.

1.2.1 Capacitively-coupled single-electron transistor (C-

SET)

A C-SET consists of two tunnel junctions (J1 and J2) and one gate capac-

itor (CG) as shown in Fig. 1.4(a). The tunnel junction Ji has capacitance

Ci and resistance Ri, with i = 1, 2. Three voltages including the drain volt-

age VD, source voltage VS, and gate voltage VG are applied to drain, source,

and gate terminals, respectively. The C-SET is biased symmetrically if VD

= −VS = VDS/2; and asymmetrically if VD = VDS and VS = 0. Below, only

the symmetrically biased C-SET is considered. Calculations for conditions

of Coulomb blockade (CB) phenomena use the same method as the previous

literature [27,28] as follows.

Charge quantization on the center island is given by

−ne = Q1 −Q2 +QG, (1.3)

in which, e is the elementary charge (e > 0); n is the number of excess electrons

on the center island; Qi (i = 1, 2) is the charge on the junction Ji; QG is the

charge on the capacitor CG.

Changes in electrostatic energy of the circuit, ∆Ei,add (i = 1, 2), when an

electron tunnels across the junction Ji onto the island are calculated as

∆E1,add = Efinal − Einitial + work1

=
e

CΣ

[
e

(
n+

1

2

)
+ VDS

(
C2 +

CG

2

)
− CGVG

]
, (1.4)
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Figure 1.4: a) Schematic diagram of C-SET. b) Stability diagram of C-SET.

∆E2,add = Efinal − Einitial + work2

=
e

CΣ

[
e

(
n+

1

2

)
− VDS

(
C1 +

CG

2

)
− CGVG

]
. (1.5)

Here, Einitial and Efinal are respectively the charging energy of the circuit before

and after the tunneling event; “work” is done by the drain, source, and gate

voltages; CΣ = C1 + C2 + CG.

Similarly, changes in electrostatic energy of the circuit, ∆Ei,sub (i = 1, 2),

when an electron tunnels off the island across Ji are in the form of

∆E1,sub =
e

CΣ

[
− e
(
n− 1

2

)
− VDS

(
C2 +

CG

2

)
+ CGVG

]
, (1.6)

∆E2,sub =
e

CΣ

[
− e
(
n− 1

2

)
+ VDS

(
C1 +

CG

2

)
+ CGVG

]
. (1.7)
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1.2. Single-electron transistor (SET)

The electron does not tunnel onto and off the island if ∆Eadd > 0 and

∆Esub > 0 [27]. Hence, the CB regions of J1 and J2 are respectively determined

as follows,

1

C2 + CG/2

[
CGVG − e(n+

1

2
)

]
< VDS <

1

C2 + CG/2

[
CGVG − e(n−

1

2
)

]
,

(1.8)

1

C1 + CG/2

[
−CGVG + e(n− 1

2
)

]
< VDS <

1

C1 + CG/2

[
−CGVG + e(n+

1

2
)

]
.

(1.9)

Combination of Eqs. (1.8) and (1.9) shows that the CB regions of the C-SET

have the diamond shapes on the VDS−VG plane, in which each diamond (gray

color) corresponds to one stable state of n as shown in Fig. 1.4(b) which is

similar to the previous work [28]. The stability diagram (Fig. 1.4(b)) is a

two-dimensional map of the stable states. On the VDS−VG plane, a horizontal

cut along the VG axis through the Coulomb diamonds (for small VDS) results

in periodic current oscillations with a period of ∆VG = e/CG, which is referred

to as a “Coulomb oscillation”. [28].

At the state n = 0, the conditions for CB regions of J1 and J2 are respec-

tively reduced to the following formulas,

2CG

2C2 + CG

VG −
e

2C2 + CG

< VDS <
2CG

2C2 + CG

VG +
e

2C2 + CG

(1.10)

− 2CG

2C1 + CG

VG −
e

2C1 + CG

< VDS < −
2CG

2C1 + CG

VG +
e

2C1 + CG

(1.11)

On the plane containing the positive vertical axis, the boundaries in Eqs.

(1.10) and (1.11) cut the positive vertical axis at A(0, e/(2C2 + CG)) and

B(0, e/(2C1 + CG)), and they cross at C(e(C2 − C1)/[2CG(C1 + C2 + CG)],

e/(C1 + C2 + CG)). The crosspoint C is called a peak of the diamond.
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Figure 1.5: ID − VDS characteristics of the symmetric C-SET (C1 = C2 = C

= 100 aF, R1 = R2 = R = 100 kΩ, CG = 100 aF) at VG = 0 and T = 0 K.

From the relationship between the parameters of the tunnel junctions, the

C-SET can be divided into two types including a symmetric C-SET and an

asymmetric C-SET. In the symmetric C-SET, the parameters of the two tunnel

junctions are the same, i.e., C1 = C2 and R1 = R2. In the asymmetric C-SET,

the parameters of the two tunnel junctions are different, namely, C1 6= C2

and/or R1 6= R2.

1.2.1.1 Symmetric capacitively-coupled SET

For a symmetric C-SET with C1 = C2 = C and R1 = R2 = R, its CB threshold

voltage for VG = 0 is |(VDS)th| = e/(C1 + C2 + CG). Characteristics of the

symmetric C-SET (C1 = C2 = 100 aF, R1 = R2 = 100 kΩ, CG = 100 aF) are

illustrated in Figs. 1.5 and 1.6. In Fig. 1.5, the CB threshold voltage |(VDS)th|

is 0.53 mV. Figure 1.6 shows current oscillation with a period of ∆VG = 1.6

mV. Absolute drain current |ID| on the VD−VG plane is illustrated in Fig. 1.7,

in which the Coulomb diamonds are represented by black areas surrounded by

yellow diamonds. Because of the symmetric structure, the points A, B, and

C in Fig. 1.4(b) converge to (0, e/(C1 + C2 + CG)). Hence, shapes of the

diamonds are symmetric to horizontal axis, i.e., they are not tilted relative to

13
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Figure 1.6: ID − VG characteristics of the symmetric C-SET (C1 = C2 = 100

aF, R1 = R2 = 100 kΩ, CG = 100 aF) at VDS = 0.2 mV and T = 0 K
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Figure 1.7: |ID| of the symmetric C-SET (C1 = C2 = 100 aF, R1 = R2 = 100

kΩ, CG = 100 aF) is plotted on VD − VG plane at T = 0 K.

the vertical axis.

It can be seen in Fig. 1.5 that there are two different slopes including slope1

= (1/2R) + (1/2R) at small VDS and slope2 = 1/(R + R) at large VDS [28].

14



1.2. Single-electron transistor (SET)

They can be explained as follows [28]. Firstly, at small VDS just beyond the

CB threshold, probability for tunneling of electrons through J1 (C, R) and

J2 (C, R) are the same. Therefore, electrons see two tunnel resistances as

like as two parallel channels. If no charges are assumed on the center island,

voltage aross J1 and J2 are the same VDS/2. Then effective resistances of two

parallel channels are 2R and 2R, resulting in slope of tunnel current: slope1

= (1/2R) + (1/2R). Secondly, at large VDS, the large voltage overshadows

Coulomb interaction. As a result, electrons see two tunnel resistances as R and

R in series. ID − VDS characteristics become linear with slope2 = 1/(R +R).

Applying this theory for a specific case of the C-SET with C1 = C2 andR1 =R2

= 100 kΩ (Fig. 1.5), theoritical and simulated results of slope1 are respectively

1/(1.00×105) and 1/(1.13×105); those of slope2 are respectively 1/(2.00×105)

and 1/(1.98×105). Therefore, the theoritical and simulated results are in good

agreement.

1.2.1.2 Asymmetric capacitively-coupled SET (C-SET)

1.2.1.2.1 Asymmetric C-SET (C1 6= C2) Here we deal with an asym-

metric C-SET that has different junction capacitances (C1 6= C2) but the iden-

tical junction resistances R1 = R2. Namely, the case I has C1 > C2 whereas

the case II has C1 < C2. In the simulation below, we assume that C1 = 2C2 for

case I and C2 = 2C1 for case II and that total capacitances of both cases are

same. ID−VDS and ID−VG characteristics are illustrated in Figs. 1.8 and 1.9,

respectively. The CB threshold voltage for VG = 0, |(VDS)th|, of case I is the

same as that of case II (Fig. 1.8). In addition, periods of current oscillations,

∆VG, are the same e/CG. However, in Fig. 1.9, the currents for these asym-

metric C-SET are shifted along the VG axis in comparison with the current

for the symmetric C-SET. The reason can be explained on the basis of Fig.

1.4(b). Because C1 6= C2, the peak C(e(C2 − C1)/[2CG(C1 + C2 + CG)] of the

diamond is not on the vertical axis, making the diamond tilted relative to the

vertical axis. If C1 > C2, the horizontal coordinate of the peak C is negative,

resulting in the diamond tilted to the left-hand side (Fig. 1.10(a)). If C1 < C2,
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Figure 1.8: ID − VDS characteristics of the asymmetric C-SET (C1 6= C2 and

R1 = R2 = 100 kΩ) at VG = 0 and T = 0 K. There are two cases: case I with

C1 > C2 (e.g., C1 = 200 aF and C2 = 100 aF) and case II with C1 < C2 (e.g.,

C1 = 100 aF and C2 = 200 aF).
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Figure 1.9: ID − VG characteristics of the asymmetric C-SET (C1 6= C2 and

R1 = R2 = 100 kΩ) at VDS = 0.2 mV and T = 0 K. There are three cases: case

I with C1 > C2 (e.g., C1 = 200 aF and C2 = 100 aF), case II with C1 < C2

(e.g., C1 = 100 aF and C2 = 200 aF), and case III with C1 = C2 (e.g., C1 = C2

= 150 aF).

16



1.2. Single-electron transistor (SET)

VG (mV)

V
D

S
(m

V
)

(a)

| ID
| (n

�

)
C1 > C2

VG (mV)

V
D

S
(m

V
)

(b)

| ID
| (n

�

)

C1 < C2

Figure 1.10: |ID| of the asymmetric C-SET (C1 6= C2 and R1 = R2 = 100 kΩ)

is plotted on VD − VG plane at T = 0 K. a) C1 > C2 (e.g., C1 = 200 aF and

C2 = 100 aF). b) C1 < C2 (e.g., C1 = 100 aF and C2 = 200 aF).
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Figure 1.11: ID−VDS characteristics of the asymmetric C-SET (R1 6= R2 and

C1 = C2 = 100 aF) at VG = 0 and T = 0 K. There are two cases: case I with

R1 > R2 (e.g., R1 = 5 MΩ and R2 = 100 kΩ) and case II with R1 < R2 (e.g.,

R1 = 100 kΩ and R2 = 5 MΩ).

the horizontal coordinate of the peak C is positive, resulting in the diamond

tilted to the right-hand side (Fig. 1.10(b)). As a result, current oscillations of

the cases C1 > C2 and C1 < C2 are respectively shifted to left-hand side and

right-hand side in comparation with the case C1 = C2 (Fig. 1.9).

1.2.1.2.2 Asymmetric C-SET (R1 6= R2) For an asymmetric C-SET

with R1 6= R2 and C1 = C2, the Coulomb staircase is observed in the ID−VDS

characteristics (Fig. 1.11). The current rises in a stepwise manner where

each complete step means that an electron finishes tunneling through the two

junctions. The change of the current in each step can be explained as follows

[28]. Let us assume that VDS > 0 and VG = 0. If R1 > R2, the tunneling rate

through J1 is smaller than that through J2. At small VDS just over the CB

region, an electron quickly tunnels across J2 onto the island and accumulates

on the island. A larger VDS is needed to push the electron off the island through

J1. In contrast, for the symmetric C-SET with R1 = R2, the tunneling rates

through J1 and J2 are the same, the electron tunnels across J2 onto the island

and immediately removes from island through J1. As a result, the current in
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Figure 1.12: ID − VG characteristics of the asymmetric C-SET (R1 6= R2 and

C1 = C2 = 100 aF) at VDS = 0.2 mV and T = 0 K. There are two cases: case

I with R1 > R2 (e.g., R1 = 5 MΩ and R2 = 100 kΩ) and case II with R1 < R2

(e.g., R1 = 100 kΩ and R2 = 5 MΩ).

the symmetric C-SET increases linearly.

ID − VG characteristics shows the current oscillations as illustrated in

Fig. 1.12. It is observed that the current oscillations are tilted to the left-

hand/right-hand side against the vertical axis. We consider the case of setting

VDS > 0 (VD > 0 and VS < 0) and applying VG > 0. When VG increases,

electron firstly tunnels through J2 and followed by tunneling through J1. If

R1 > R2 (dashed curves), the tunneling rate through J2 is larger that through

J1. Consequently, the first slope is sharper than the second slope. Hence,

the current oscillations are tilted to the left-hand side of the vertical axis.

If R1 < R2 (dotted curves), the tunneling rate through J1 larger than that

through J2. As a result, the second slope is sharper than the first slope.

Therefore, the current oscillations are tilted to the right-hand side of the ver-

tical axis.

Figure 1.13 illustrates the current magnitude of the asymmetric C-SET.

The CB regions surrounded by yellow diamonds for R1 > R2 (Fig. 1.13(a))

and for R1 < R2 (Fig. 1.13(b)) are the same since C1 = C2. An increase of
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Figure 1.13: |ID| of the asymmetric C-SET (R1 6= R2 and C1 = C2 = 100 aF)

is plotted on VD − VG plane at T = 0 K. a) R1 > R2 (e.g., R1 = 5 MΩ and R2

= 100 kΩ). b) R1 < R2 (e.g., R1 = 100 kΩ and R2 = 5 MΩ).
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Figure 1.14: (a) Schematic diagram of R-SET. b) ID − VDS characteristics of

R-SET (C1 = C2 = 100 aF, R1 = R2 = 100 kΩ, RG = 1 MΩ) at VG = 0 and

T = 0 K.

the current is shown by a change of colors from black to yellow. In one period

of the Coulomb oscillations ∆VG which is 1.6 mV, distributions of the colors

are observed as follows. For example, we consider the case of small VDS and

VG from 0 to 1.6 mV. In Fig. 1.13(a), the dark area (0 nA < |ID| < 0.05 nA)

between the yellow curves and the blue curves at small VG is narrower than

that at large VG. This agrees with the result for R1 > R2 in Fig. 1.12 where a

sharper slope is obtained at small VG. In Fig. 1.13(b), the dark area between

the yellow curves and the blue curves at the small VG is wider than that at the

large VG. This agrees with the result for R1 < R2 in Fig. 1.12 where a sharper

slope is observed at large VG.

1.2.2 Resistively-coupled single-electron transistor (R-

SET)

A structure of a resistively-coupled SET (R-SET) is illustrated in Fig. 1.14(a).

The R-SET is composed of two tunnel junctions and one gate resistor. Below,

we consider characteristics of R-SET biased symmetrically. (VD = −VS =

21
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1.2. Single-electron transistor (SET)
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Figure 1.15: Characteristics of R-SET (C1 = C2 = 100 aF, R1 = R2 = 100

kΩ, RG = 1 MΩ) at T = 0 K. a) ID−VDS characteristics when VG varies from

−0.4 mV to +0.4 mV in 0.2 mV steps (from bottom to top). b) |ID| is plotted

on VD − VG plane.
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1.3. Purpose of this thesis

VDS/2). The CB region should satisfy the following conditions [28],



∣∣∣VDS
2 − VG

∣∣∣ < e
2(C1 + C2)

∣∣∣VDS
2 + VG

∣∣∣ < e
2(C1 + C2)

(1.12)

According to Eq. (1.12), there is only one Coulomb diamond or no Coulomb

oscillations. It can be seen in Fig. 1.15(a), when the absolute gate voltage |VG|

increases, the CB region decreases to 0 without restoration. As a result, only

one Coulomb diamond is observed in Fig 1.15(b). When VG = 0, the CB

threshold voltage is |(VDS)th| = e/(C1 + C2). For VDS = 0, the CB diamond

disappears at |(VG)limit| = e/2(C1 + C2). For example, the R-SET with C1 =

C2 = 100 aF, R1 = R2 = 100 kΩ, and RG = 1 MΩ has following parameters:

|(VDS)th| = e/(C1 +C2) = 0.8 mV (Fig. 1.14(b)), |(VG)limit| = e/2(C1 +C2) =

0.4 mV (Fig. 1.15).

1.3 Purpose of this thesis

On the basis of the principle of the CB phenomena in arrays of small tunnel

junctions in SE devices, this thesis intends to reach two main goals as follows.

The first objective of the thesis is to improve the nonlinear characteristics

of SE logic devices by using simulation. SE logic devices including SE inverter

and SE NAND gates have a disadvantage of the gradual switches between

high and low output levels [29, 30]. Figure 1.16 shows an example of the

gradual switching. The SE inverter (Fig. 1.16(a)) has a continuous input

signal Vin, a source voltage Vs, and an output signal Vout. Schematic input-

output characteristics of the SE inverter at 0 K are shown in Fig. 1.16(b).

When Vin is low, Vout is high and vice versa. However, for Vin in the region

AB, while Vin increases, Vout gradually decreases from the high to low level,

resulting in a gradual switching as shown by the arrow in Fig. 1.16(b). Then,
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Figure 1.16: (a) Block diagram of a single-electron inverter. (b) Schematic

drawing of gradual switching of the SE inverter at 0 K.

the region AB is called the transition region where output states are unclear.

To improve the gradual switching of SE logic devices, a model of an input

discretizer (ID) [31] is added between an input terminal and a main device (SE

logic device) as shown in Fig. 1.17(a). The addition of the ID which discretizes

a continuous input signal into a discrete intermediate signal is expected to make

the switching sharp (Fig. 1.17(b)). Configuration of the ID is modified from

the previous work [31]. Parameters of the ID are calculated and then confirmed

by simulation to obtain the sharp switching at the designed threshold voltage.

The method and results of the enhancement of SE logic gates by using the ID

will be described in Chapter 2.
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Figure 1.17: (a) Model shows the addition of an input discretizer (ID) to the

main device (SE logic device). (b) Schematic drawing of sharp switching of

SE inverter at 0 K.

On the other hand, if two serially-cascaded IDs are added to the SE inverter

(Fig. 1.18(a)), the difference between the switching voltages for Vin increasing

and decreasing, VH and VL, can form hysteretic characteristics as shown in

Fig. 1.18(b). This SE hysteretic inverter is designed to improve stochastic

resonance phenomena, so that correlation coefficient between the input and

output signals of the SE hysteretic inverter is equivalent to that of the ideal

hysteretic inverter. The improvement of stochastic resonance by designing the

SE hysteretic inverter will be presented in Chapter 3.

The second objective of the thesis is to fabricate SE devices. Since, in the
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Figure 1.18: (a) Model shows the addition of two serially-cascaded input

discretizers (IDs) to the main device (SE inverter). (b) Schematic drawing of

hysteretic characteristics of SE inverter at 0 K.

simulation, SE logic devices are built on the basis of SETs, fabrication of SETs

is the key to realize the simulation results. Hence, the thesis tries to focus on

fabricating SE devices which have the characteristics like SETs. Because SET

consists of three terminals, three electrodes including source, drain, and gate

as shown in Fig. 1.19 are firstly formed. The gap size is defined as the distance

between the source and drain electrodes. The drain, source, and gate electrodes

are fabricated by combining standard electron beam lithography (EBL) and

evaporation techniques. Next, arrays of small tunnel junctions are formed by

dropping solutions of gold nanoparticles (Au NPs). After that, the fabricated
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DrainSource

Gate

Gap

Figure 1.19: Schematic drawing of drain, source, and gate electrodes of SE

device.

devices are measured to confirm their characteristics. The similar fabrication

process using Au NPs was reported in the previous works [14,32] whose devices

had the narrow (< 50 nm) gaps and exhibited the C-SET characteristics at

4.2 K [32] and 80 K [14]. Hence, the thesis tries to reduce the technical

difficulty by forming a wider (≥ 200 nm) gap to exhibit the characteristics

like C-SET at almost equivalent temperature (77 K) in comparison with the

previous work [14] (80 K). Besides, there were reports about realization of

the R-SET characteristics [33–35]. In these previous works, they did not use

Au NPs in the fabrication process and observed the R-SET characteristics

at sub-1-K. Therefore, the thesis tries to use a method with the presence

of Au NPs to obtain the characteristics like R-SET at higher temperature

(77 K) compared to the previous works [33–35] (sub-1-K). The fabrication

processes and typical experimental results of SE devices using Au NPs will be

demonstrated in Chapter 4.

In addition, Chapter 1 will give a background of SE devices and Chapter

5 will summarize the main results of the thesis.
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Chapter 2

Enhancement of single-electron

digital logic gates by using

input discretizers

2.1 Introduction

Single-electron (SE) devices have been developed by a plenty of researches over

three decades [25]. In comparison with conventional semiconductor devices,

SE devices have two important advantages as follows. The first one is the size

of SE elements on the order of nanometer. The second one is the possibility

of saving power consumption [36]. Hence, they are prospective for intergrated

circuit applications [37].

Applications of SE devices have been studied in both fields of analog and

digital electronics. For the former, several analog applications have been car-

ried out by using SE devices, such as the supersensitive electrometer [38], the

standard of dc current [39] using the SE pump [40], and the absolute thermome-

ter [41]. For the latter, fabrication of SE devices have been performed [42–46].

Nonetheless, in logic circuits, the prospect of SE logic (SEL) [47–50] and SE

transitor (SET) [51] has faced obstacles and uncertainty. Among these logic

devices, SET logic circuits have two following convenient factors. Firstly, SET

logic circuits on the basis of capacitively-coupled SET (C-SET) [52–54] use
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voltage levels to represent logic “0” and logic “1” as usual. Secondly, we

can use schematics of CMOS circuits to contruct functionality of SET logic

circuits [55]. Therefore, the development of SET logic circuits has been the

objective of the researches. Two of the basic elements of the SET logic gates

are SE four-junction inverter (SE FJI) [29, 56] and SE NAND gates [30].

On the one hand, the SE logic gates (SE FJI and SE NAND) have the

same typical disadvantage in common, which are gradual switches between

output logic levels (Fig. 1.16(b)) resulting in unclear decisions about output

states in the transition region. Hence, performance of the SE logic gates can

be improved by making their switches sharp.

On the other hand, it was confirmed that the addition of an input dis-

cretizer (ID) between the input terminal and the main device (SE transistor,

SE turnstile) resulted in the sharp switches in the input-output characteris-

tics [31]. Therefore, in this thesis, structure of the ID is modified to make the

switches of SE logic gates sharp. In addition, in the previous design [31], the

current played the role of the circuit output, which makes it difficult to increase

the number of fan-ins and fan-outs. To solve this problem, in this thesis, the

IDs are designed for SE devices whose outputs are the voltages charging the

output capacitors. The voltage-input and voltage-output scheme enables us to

connect devices in straightforward styles.

In comparison with the previous work [31], there are four significant en-

hancements as follows. Firstly, the structure of the ID is modified from one

to two output capacitors. Secondly, the main devices are changed from the

fundamental SE devices (SE transistor and SE turnstile) to SE logic gates (SE

inverter and SE NAND gates) which are composed of several SE transistors.

Thirdly, the main device has output voltage instead of output current. Finally,

parameters of the ID are calculated to satisfy that the sharp switching hap-

pens at the designed threshold voltage, which aims to enhance the reliability

of state decisions of the logic circuits.
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Figure 2.1: Schematic diagram of input discretizer (ID).

2.2 Analysis of parameters design of input

discretizer (ID)

A conventional ID has one output capacitor [31]. To couple the ID with logic

devices having two input gate capacitors (SE inverter and SE NAND), a con-

figuration of the ID is modified from one to two output capacitors as shown in

Fig. 2.1. The ID is composed of a tunnel junction J0 (tunnel resistance R0 and

tunnel capacitance C0), a grounded capacitor C01, and two output capacitors

C02 and C03. A continuous input voltage Vin is applied to the ID. There are

two output voltages V2 and V3.

Polarization charges on the junction and the individual capacitors can be

expressed as follows,

Q0 = C0(Vin − V1), (2.1)

Q1 = C01V1, (2.2)

Q2 = C02(V1 − V2), (2.3)

Q3 = C03(V1 − V3). (2.4)
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Here, Q0 is the charge on the junction; Qi (i = 1, 2, 3) is the charge on the

capacitor C0i; V1 is the voltage across the capacitor C01.

Charge quantization on the center island is written as

Q = −Q0 +Q1 +Q2 +Q3 = Ne+QP , (2.5)

in which, N , e (> 0), and QP are respectively the number of excess electrons

on the center island, the elementary charge, and the background polarization

charge [57]. In this chapter, the backround polarization charge is assumed to

be eliminated, i.e., QP = 0. (The origin of the backround polarization charge

drives from charged impurities in the insulating environment, for example on

the substrate surface. Several suggestions for solving this problem have been

carried out by Likharev [25], Lambe and Jaklevic [58].) To get the same V2

and V3, we set

C02 = C03. (2.6)

Voltage V0 across the junction J0 is calculated by combining Eqs. (2.1)-(2.6),

V0 = Vin − V1

=
Vin(C01 + 2C02)− C02(V2 + V3)−Ne

C
. (2.7)

Here the total capacitance C between the center island and its environment is

given by,

C = C0 + C01 + 2C02. (2.8)

Forward tunneling (the charge +e tunnels from left to right) through the junc-

tion happens when the voltage across the junction is larger than the following
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threshold voltage [29]

V0T = e/2C. (2.9)

Subsitution of Eqs. (2.8) and (2.9) into Eq. (2.7), the input threshold voltage

VinT for tunneling through the junction is as follows,

VinT =
(N + 1/2)e+ C02(V2 + V3)

C01 + 2C02

. (2.10)

The input voltage is assumed to be linear in the range from 0 to source voltage

Vs. A standard threshold voltage is defined as a half of Vs, i.e., (VT)Std = Vs/2.

When the tunneling event causes the switching between the output logic levels,

VinT is called VinS (the switching threshold voltage). According to Eq. (2.10),

since C02 (and C03), which is the output capacitor of the ID, also plays the

role of the input capacitor of the main device, value of C01 must be adjusted

to make VinS as close to (VT)Std as possible.

2.3 Improvement of single-electron four-junction

inverter (SE FJI) using input discretizer

(ID)

2.3.1 Characteristics of single-electron four-junction in-

verter (SE FJI)

A schematic diagram of an SE four-junction inverter (FJI) is shown in Fig.

2.2(a) [29]. The FJI consists of two SETs (an upper SET and a lower SET)

in series among the power supply and ground [29]. The upper SET (SET1)

of the FJI includes two junctions (J1 and J2), a gate capacitor (CG), and a

bias capacitor (CB). The lower SET (SET2) of the FJI is composed of two

junctions (J3 and J4) and two capacitors (CG and CB). The FJI is supplied
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Figure 2.2: (a) Schematic diagram of a single-electron (SE) four-junction

inverter (FJI). (b) Input-output characteristics of the FJI at T = 0 K.

by a source voltage Vs and its input terminal is applied by the signal voltage

Vin. An output signal Vout is the voltage across an output capacitor Cout.

Parameters of the FJI are similar to those in the previous literature [29]:

C1 = 2C2, CG = 8C2, CB = 7C2, C∗ = C1 + C2 + CG + CB, Vs = 1.5e/2C∗.

Here, CG is assumed to be larger than the junction capacitances (C1 and C2) so

that the voltage gain of the inverter can be greater than unity. The capacitance

relationships of CG > C1 and CG > C2 were realized in the previous experiment

[56]. The voltage Vs = 1.5e/2C∗, which is equivalent to CBVs ≈ 0.29e, is also

applied to the SET2 to make the transition region symmetrical to 0.5Vin/Vs

[29]. On the basis of the same capacitance relationships as in the previous

literature [29], we set a typical value of C2, C2 = 1 aF, and calculate the other

capacitances. Then, in the numerical simulation described in this chapter,

values of the FJI parameters are assumed that C1 = 2 aF, R1 = 50 kΩ, C2

= 1 aF, R2 = 100 kΩ, CG = 8 aF, CB = 7 aF, Vs = 6.7 mV, and Cout = 1

fF. Monte-Carlo simulation was executed by using SIMON program [26] in the

conditions of 0 K and no cotunneling [59,60].

33



2.3. Improvement of single-electron four-junction inverter (SE
FJI) using input discretizer (ID)

Input-output voltage (Vin−Vout) characteristics of the solo FJI is illustrated

in Fig. 2.2(b). A transition region between high and low output levels is defined

as the region between two operation points at which slopes are −1 [61]. The

FJI exhibits a gradual switching in the transition region between 2.48 mV

and 4.22 mV. As a result, decisions about output states of the FJI in the

transition region become of unclarity. The logic levels are defined as: logic “1”

corresponds to the high level of the voltage; logic “0” is equivalent to the low

level of the voltage.

2.3.2 Characteristics of a single-electron four-junction

inverter with an input discretizer (ID-FJI)

To improve the characteristics of the solo FJI, an input discretizer (ID) is

coupled to the FJI as shown in Fig. 2.3. Here, the output capacitances of

the ID play the role of gate capacitances of the FJI, i.e., C02(C03) ≡ CG. To

make the switching threshold voltage VinS of the ID-FJI close to the standard

threshold voltage (VT)Std, the appropriate parameters of the ID in Fig. 2.3 are

chosen as: C0 = 1 aF, R0 = 100 kΩ, C01 = 72 aF. The output capacitances of

the ID are 8 aF since CG = 8 aF.

The number of excess electrons, N = Q/e, and the voltage VID on the

center island versus the input voltage Vin are demonstrated by solid triangles

and open circles in Fig. 2.4, respectively. It is observed that the charge on the

center island is discretized into distinct states (N). A transistion between two

states is caused by a tunneling event.

The simulated Vin − Vout characteristics of the solo FJI and the ID-FJI

are respectively represented by open circle points and solid triangle points as

illustrated in Fig. 2.5. It can be seen that a sharper switching achieved by

the ID-FJI than by the solo FJI. Namely, the switching region of the solo FJI

expands from 2.48 mV to 4.22 mV, which is (4.22−2.48)×100%/6.7 ≈ 25.97%

of the input voltage range (Vin from 0 to 6.7 mV). In contrast, the ID-FJI

exhibits a sharp switching in the region between 3.38 mV and 3.40 mV, which

is (3.40− 3.38)× 100%/6.7 ≈ 0.30% of the input voltage range. The swiching
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Figure 2.3: Schematic diagram of a single-electron (SE) four-junction inverter

with an input discretizer (ID-FJI).

region of the ID-FJI is reduced to 0.011 times in comparison with that of the

solo FJI.

Besides, in Fig. 2.5, the sharp swiching of the ID-FJI appears at the

simulated threshold voltage (VinS)sim of 3.38 mV where there is a tunneling

event from N = 1 to N = 2 (Fig. 2.4). On the other hand, in Fig. 2.2, the

tunnel junctions J1 and J4 have the same parameters (C2 and R2). Then, the

absolute voltage |VAB| across J1 is approximately equal to the absolute voltage

|VCD| across J4 ( Fig. 2.2). In the transition region, the current flows through

the tunnel junctions with the same direction, resulting in VAB ≈ VCD. As a

result, the total voltage VBD +VCD is approximately Vs in the transition region

of the FJI. Applying this result for Fig. 2.3, the total output voltage of the ID

in the transition region, V2+V3, is approximately Vs. Subsituting the simulated

parameters of the ID and N = 1 to Eq. (2.10), the calculated threshold voltage

(VinS)cal is 3.34 mV. Therefore, the simulated threshold voltage (VinS)sim and
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of the ID and ground versus Vin.

the calcultated threshold voltage (VinS)cal are close to each other.

The enhancement of the sharpness of the ID-FJI can be explaind as follows.

For the solo FJI, the gradual swiching is observed between the high and low

output voltages because of the continuous input signal Vin. For the ID-FJI,

since the ID processes the continuous Vin into a discrete intermediate signal VID

forwarded to the main device FJI, the ID-FJI exhibits the sharp switching. In

addition, the operation principle of an inverter is still ensured in the ID-FJI as

follows. In the ID-FJI, the direct input voltage of the main device FJI is VID.

Hence, for the ID-FJI, the switching between the high and low output levels

only occurs when VID is in the switching region of the FJI which is between

2.48 mV and 4.22 mV. In Fig. 2.4, VID can be divided into three regions: under

2.48 mV, between 2.48 mV and 4.22 mV, and over 4.22 mV. In the first region,

since the levels of VID are less than 2.48 mV, the output of the ID-FJI (Fig.
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Figure 2.5: Input-output characteristics of the solo FJI and the ID-FJI at T

= 0 K.

2.5) remains high (logic “1”). In the third region, because the levels of VID

are greater than 4.22 mV, the output of the ID-FJI (Fig. 2.5) keeps low (logic

“0”). Hence, the discreteness of VID in both the first and the third regions

does not degrade the logic states of the inverter. Since the second region of

VID corresponds to the switching region of the solo FJI, changes of VID in this

region cause the switching of the ID-FJI. It is observed in Fig. 2.4 that in the

range of 2.48 mV and 4.22 mV, there is only one tunneling event, resulting in

only one switching between the high and low output states in the ID-FJI (Fig.

2.5).

2.3.3 Evaluation of switching characteristics of the solo

FJI and ID-FJI

Dynamic characteristics of the solo FJI and the ID-FJI are shown in Fig. 2.6.

A transient input signal in the shape of a triangle is applied to the solo FJI

and the ID-FJI for two periods (Fig. 2.6(a)). Transient output signals of the

solo FJI and the ID-FJI are respectively observed in Figs. 2.6(b) and (c).

The dynamic characteristics in Fig. 2.6(c) indicates that the ID-FJI is able
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K. (a) Transient input voltage. (b) Transient output voltage of the solo FJI.

(c) Transient output voltage of the ID-FJI.

to operate well in continuous time due to two following points. Firstly, the

result obeys the principle of an inverter where the states of the output signal

is inverse to those of the input signal. Secondly, the sharp switching is always
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obtained in the output. Therefore, the ID-FJI has possibility of achiving the

sharp switching without an ideal square input signal.

Figure 2.7 shows a schematic drawing of waveforms for analyzing the switch-

ing characteristics of an inverter [62]. The input signal Vin is assumed as a

square pulse with the amplitude Vs. Then, 50% of the input signal is given by

Vin(50%) = Vs/2. (2.11)

The output signal Vout has two levels including high level VH and low level VL.
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Figure 2.8: Histograms describe fall times of the output voltages of the solo

FJI and the ID-FJI.
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Figure 2.9: Histograms describe rise times of the output voltages of the solo

FJI and the ID-FJI.

The difference between two output levels is estimated as

∆Vout = VH − VL. (2.12)
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Figure 2.10: Histograms describe delay times between the input and output

voltages of the solo FJI and the ID-FJI.

The output signals at 10%, 50%, and 90% of the logic level difference are

respectively calculated as

Vout(10%) = VL + 10%∆Vout, (2.13)

Vout(50%) = VL + 50%∆Vout, (2.14)

Vout(90%) = VL + 90%∆Vout. (2.15)

Time parameters are defined similar to the previous work [62] as follows. Fall

time tf of the output signal is the time that the output signal falls from

Vout(90%) to Vout(10%). Rise time tr of the output signal is the time that

the output signal rises from Vout(10%) to Vout(90%). Delay time is the time

difference between the time at Vin(50%) and the time at Vout(50%). To describe

the switching characteristics of the solo FJI and the ID-FJI, historgrams were

made on the basis of 1000 transient simulations using an ideal square input

pulse in the conditions of 0 K and no cotunneling processes.
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The fall times of the solo FJI and the ID-FJI are illustrated in Figs. 2.8(a)

and (b), respectively. The average fall time (shown by the arrow) of the ID-

FJI is 0.04 ns shorter than that of the solo FJI. In the fall state of the output

signal, an increase of the input signal from 0 mV to Vs makes the lower part of

the solo FJI (SET2) turn on. Simulation for the SET2 shows the on-state fall

resistance Ron fall of 426 kΩ. Hence, the fall time of the ID-FJI is calculated as

0.32 ns ≈ 0.75Ron fallCout whereas that of the solo FJI is estimated as 0.36 ns

≈ 0.84Ron fallCout. In other words, to change the state of the output from high

to low, the ID-FJI switches 0.09Ron fallCout faster than the solo FJI. Therefore,

if the input signal is an ideal square pulse (For the ideal square pulse, the

transition between high and low input levels is instaneous. In fact, the ideal

square pulse is not realizable in physical system), the improvement of the ID-

FJI in the falling state is insignificant in comparison with the solo FJI.

The rise time of the solo FJI and the ID-FJI are shown in Figs. 2.9(a) and

(b), respectively. The average rise time (shown by the arrow) of the ID-FJI is

0.07 ns less than that of the solo FJI. In the rise state of the output signal,

a decrease of the input signal from Vs to 0 mV causes the upper part of the

solo FJI (SET1) switch on. Simulation for the SET1 indicates the on-state rise

resistance Ron rise of 434 kΩ. Therefore, the rise time of the ID-FJI is evaluated

as 0.30 ns ≈ 0.69Ron riseCout while that of the solo FJI is calculated as 0.37 ns

≈ 0.85Ron riseCout. In other words, to change the state of the output from low

to high, the ID-FJI switches 0.16Ron riseCout faster than the solo FJI. Hence,

in the rising state, if the input signal is an ideal square pulse, there is a little

improvement of the ID-FJI in comparison with the solo FJI.

Figures 2.10(a) and (b) illustrate the delay times of the solo FJI and the

ID-FJI. The average delay time of the ID-FJI is 0.04 ns longer than that of the

solo FJI. This situation arises from the addition of the ID, which makes the

logic transition from the input to the output of the ID-FJI longer than that of

the solo FJI.
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Figure 2.11: Block diagram of a parallel two-branch circuit which consists of

5 ID-FJIs in series on each branch.

2.3.4 Parallel two-branch array of the ID-FJIs

To evaluate the ability of combination of the ID-FJIs, the ID-FJIs are con-

nected to each other in series and parallel. Then, in the serial connection,

the output signal is compared to the input signal to determine whether the

ID-FJI still works as an inverter; in the parallel connection, output signals are

compared to each other to determine whether the operations of the parallel

branches are equivalent. We simulated the circuit shown in Fig. 2.11, where a

parallel two-branch circuit contains the five serially-cascaded ID-FJIs on each

branch. Simulation was implemented with following conditions: T = 0 K; no

cotunneling processes; the triangle input signal (Fig. 2.12(a)). The first out-

put voltage (1st Vout) and the second output voltage (2nd Vout) are described

as in Figs. 2.12(b) and (c), respectively.

It is clear that the operation of the circuit follows the principle of a digital

inverter since number of ID-FJIs on each branch is odd. Firstly, on each

branch, the output voltage is in inverse relation to the input voltage (in other

words, the high output voltage corresponds to the low input voltage and vice

versa). Secondly, the outputs of two parallel branches, 1st Vout (Fig. 2.12(b))

and 2nd Vout (Fig. 2.12(c)), are the same.

Two advantages of the circuit can be obtained as follows. The sharp switch-

ing between the high and low output levels is still ensured when the ID-FJIs

are connected to each other. In addition, the high and low output levels are
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Figure 2.12: Dynamic characteristics of the parallel two-branch circuit of the

ID-FJIs. (a) Input voltage Vin. (b) The first output voltage (1st Vout). (c) The

second output voltage (2nd Vout).

stable, resulting in stable states during the operation process of the circuit.
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Figure 2.13: Schematic drawing for determining noise margin of an inverter.

2.3.5 Margins of capacitances

Values of the capacitances in the ID-FJI affect its input-output voltage char-

acteristics. Since the noise margin is an important parameter for evaluating

the input-output characteristics [61], it is used as a criterion to determine the

capacitance margins of the ID-FJI. Figure 2.13 shows a schematic drawing

for determining the noise margin of an inverter [61]. In Fig. 2.13, VILmax and

VIHmin are respectively the maximum low input voltage and the minimum high

input voltage; VOLmax and VOHmin are respectively the maximum low output

voltage and the minimum high output voltage. (VIHmin, VOLmax) and (VILmax,

VOHmin) are the first and the second points where the slope becomes −1 for

Vin decreasing from Vs to 0 [61].

The noise margin is characterized by two terms including the low noise

margin NML and the high noise margin NMH . Definitions of these terms are

the same as in the previous literature [61]. NML is the difference in magnitude

between VILmax and VOLmax as follows,

NML = |VILmax − VOLmax|. (2.16)
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Table 2.1: Capacitance margins in the ID-FJI

Capacitances Origin (aF) Margins (aF)

Minimum Maximum

C0 (J0) 1 1× 10−4 100

C01 72 58 79

C1 (J2, J3) 2 0.90 5.3

C2 (J1, J4) 1 1× 10−4 19

CG 8 7.2 18

CB 7 6.6 9.8

Cout 103 30 5× 105

NMH is the difference in magnitude between VIHmin and VOHmin as follows,

NMH = |VIHmin − VOHmin|. (2.17)

NML and NMH should be larger than a minimum threshold voltage Vmin

to avoid switching errors induced by the noise on the input [61]. The value of

Vmin is chosen on the basis of the specific application of the circuit. Here, we

chose 0.1Vs as an example of Vmin to determine the capacitance margins of the

ID-FJI. We simulated input-output characteristics of the ID-FJI with different

capacitances under the conditions of 0 K and no cotunneling. NML and NMH

calculated from the input-output characteristics. The capacitance ranges were

chosen so that both NML and NMH are larger than 0.1Vs. The capacitance

margins obtained numerically are summarized in Table 2.1. In Table 2.1, the

“Origin” column lists the original values of the capacitances which were de-

scribed in Sects. 2.3.1 and 2.3.2; the “minimum” and “maximum” columns are

respecitvely the possibly minimum and maximum values of the capacitances.

The margins of C0 and Cout are wider than the others since the switching curve

of the ID-FJI mainly depends on the C01 of the ID (according to Eq. (2.10))
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Figure 2.14: Input-output voltage characteristics of the solo FJI and the ID-

FJI at finite temperatures. (a) T = 1 K. (b) T = 3 K.

and parameters of two SETs in the FJI (as illustrated in Eq. (32) of Ref. [29]).

2.3.6 Limiting operation temperature

One of the important parameters affects the operation of SE devices is the

temperature. To avoid thermal fluctuation which can smear out Coulomb

blockade states, SE devices are usually operated at temperatures where the

condition of kBT � EC is satisfied [25]. The charging energy in the ID (Fig.

2.1) can be calculated as

EC =
e2

2(C0 + C01 + C02 + C03)
. (2.18)

Using the parameters of the ID in Sect. 2.3.2: C0 = 1 aF, C01 = 72 aF,

C02 = C03 = CG = 8 aF, a ratio (EC/kB)limit is calculated to be 10.4 K.

Input-output characteristics of the solo FJI and the ID-FJI at finite tem-

peratures are respectively illustrated by dotted and dashed curves in Fig. 2.14.

At T = 1 K (Fig. 2.14(a)), the switching of the ID-FJI is still sharper than
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temperatures.

that of the solo FJI. However, at T = 3 K (Fig. 2.14(b)), the switching of

the ID-FJI has the same slope as that of the solo FJI. Therefore, when the

temperature increases, the switching of the ID-FJI gradually approaches to

that of the solo FJI.

To compare the effect of temperature on the input-output characteristics

of the solo FJI and the ID-FJI, gain characteristics are used as an evaluation

parameter. The gain is defined as the (VOLmax − VOHmin)/(VIHmin − VILmax)

(Fig. 2.13). (VIHmin, VOLmax) and (VILmax, VOHmin) are determined on Vin−Vout

characteristics which are obtained from simulating the solo FJI and the ID-FJI

at different temperatures and no cotunneling. Figure 2.15 shows the gain char-

acteristics of the solo FJI and the ID-FJI which are respecitvely represented

by solid circles and open squares. They exhibit a downward trend when the

temperature increases. It can be seen that at very low temperatures (T ≤ 1

K), the absolute gain of the ID-FJI, |G|ID-FJI, is much greater than that of

the solo FJI, |G|FJI, since 1 K is equivalent to 0.1(EC/kB)limit. Namely, under
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T = 1 K, the ratio |G|ID-FJI/|G|FJI is larger than 2. However, the absolute

gain of the ID-FJI reduces to that of the solo FJI at 3 K. Hence, T = 3 K

corresponding to 0.3(EC/kB)limit is the limiting operation temperature above

which the ID in the ID-FJI has no advantage from the gain viewpoint.

2.4 Improvement of single-electron NAND gate

using input discretizers (ID-NAND)

2.4.1 Characteristics of single-electron NAND gate

Figure 2.16 shows a schematic diagram of an SE NAND gate [30]. Two input

signals Vin1 and Vin2 are applied to the NAND gate. Source voltage Vs is

supplied to the NAND gate. The output signal Vout is the voltage on the output

capacitor Cout. The NAND gate is composed of two upper SETs (SET1 and

SET2) in parallel between Vs and Vout, and two lower SETs (SET3 and SET4)

in series between Vout and ground. To avoid fluctuations in the output voltage,

both capacitances Cout and CL should be chosen to be large enough [30].

Parameters of the NAND gate are similar to those in the previous literature:

C1 = 2C2, CG = 8C2, CB = 7C2, C∗ = C1 +C2 +CG +CB, Vs = 1.5e/2C∗ [30].

On the basis of these capacitance relationships, we set a typical value of C2,

C2 = 1 aF, and calculate the other capacitances. Then, in the numerical

simulation below, the parameters were assumed as: C1 = 2 aF, R1 = 50 kΩ,

C2 = 1 aF, R2 = 100 kΩ, CG = 8 aF, CB = 7 aF, CL = Cout = 1 fF, and Vs =

6.7 mV. Simulations were executed in the conditions of 0 K and no cotunneling.

Input-output characteristics of the NAND gate are described in 3-D splot

(Fig. 2.17(a)) and 2-D plot (Fig. 2.17(b)). Again, definitions of logic levels are

as follows: logic “1” equivalent to the high voltage level; logic “0” correspond-

ing to the low voltage level. When the input vector [Vin1 Vin2] changes from [0

1] to [1 1], the output Vout switches from logic “1” to logic “0” via a sloping

region in Fig. 2.17(a) or a gradual change of colors from yellow to black in

Fig. 2.17(b). This area expands from Vin1 of 2.7 mV to 4.1 mV, which occupies
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Figure 2.16: Schematic diagram of single-electron NAND gate.

(4.2− 2.7)× 100%/6.7 ≈ 22.39% of the input voltage range (Vin from 0 to 6.7

mV). Similarly, when the input vector [Vin1 Vin2] changes from [1 0] to [1 1],

Vout gradually switches from logic “1” to logic “0” in the region from Vin2 of

3.6 mV to 4.2 mV. This region corresponds to (4.2− 3.6)× 100%/6.7 ≈ 8.96%

of the input voltage range. As a result, in these transition regions, the output

of the NAND gate is not well-determined, resulting in unclear decisions about

the output states. This drawback is the same as that of the solo FJI. Hence,

operation of the NAND gate is also improved by the addition of the IDs.
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Figure 2.17: Input-output characteristics of the SE NAND gate. (a) 3-D splot.

(b) 2-D plot.

2.4.2 Improvement of single-electron NAND gate using

input discretizers (ID-NAND)

Combination of the NAND gate with the IDs into ID-NAND configuration is

illustrated in Fig. 2.18. Because the NAND gate has two inputs, two IDs

(ID1 and ID2) are added between the inputs and the main device NAND gate.
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The structures of the ID1 and the ID2 are similar to those in Fig. 2.1. The

ID1 consists of one junction J01, one grounded capacitor C01, and two output

capacitors. The ID2 is composed of one junction J02, one grounded capacitor

C∗01, and two output capacitors. Here, the output capacitors of the ID1 and

the ID2 play the role of the gate capacitors (CG) of the NAND gate.

Since the ID-NAND and the ID-FJI devices have the same structure of the

ID, the threshold voltages for tunneling through the junctions in the ID1 and

the ID2 can be calculated using Eq. (2.10). Then, threshold voltages of the

ID1 and the ID2 are respectively in the form of

VinT1 =
(N1 + 1/2)e+ CG(V2 + V3)

C01 + 2CG

, (2.19)

VinT2 =
(N2 + 1/2)e+ CG(V ∗2 + V ∗3 )

C∗01 + 2CG

, (2.20)

in which N1 and N2 are the number of exess electrons on the center islands

of the ID1 and the ID2, respectively; V2 and V3 are the output voltages of

the ID1; V ∗2 and V ∗3 are the output voltages of the ID2. When the tunneling

events through J01 and J02 cause the switches between the output logic levels

of the ID-NAND, VinT1 and VinT2 are called VinS1 and VinS2 (the switching

threshold voltages). Because VinS1 and VinS2 depend on C01 and C∗01 according

to Eqs. (2.19) and (2.20), values of C01 and C∗01 must be adjusted to make

VinS1 and VinS2 as close to (VT)Std as possible. In addition, for simplicity,

tunnel capacitances and resistances of the J01 and J02 are assumed to be the

same as those of the tunnel junction (C2, R2) in the NAND. The appropriate

parameters were chosen in the simulation as follows: ID1 (C0 = 1 aF, R0 =

100 kΩ, C01 = 67 aF), ID2 (C0 = 1 aF, R0 = 100 kΩ, C∗01 = 66 aF). The

output capacitances of the ID1 and the ID2 are 8 aF since CG = 8 aF.

The switching threshold voltages are calculated as follows. In the tran-

sition, the sum of the output voltages of the ID2 (Fig. 2.18), V ∗2 + V ∗3 , is

approximately Vs because the tunnel junction between Vs and V ∗2 and the tun-
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Figure 2.18: Schematic diagram of SE NAND gate with two IDs (ID-NAND).

nel junction between V ∗3 and ground have the same parameters (C2, R2). In

Fig. 2.18, the capacitance CL is much larger than the other capacitances ex-

cept Cout, then V3 is approximately V ∗3 . In addition, V2 ≈ V ∗2 since the SET1

is parallel to SET2 (Fig. 2.18). As a result, in the transition region, the sum

of the output voltages of the ID1, V2 + V3, is approximately Vs. Substituting

above parameters into Eqs. (2.19) and (2.20), the calculated switching thresh-

old voltages, (VinS1)cal and (VinS2)cal, for tunneling from Ni = 1 to Ni = 2 (i =

1, 2) are estimated as 3.54 mV and 3.58 mV, respectively.

Simulation was implemented in the conditions of 0 K and no cotunneling.

Input-output characteristics of the ID-NAND device are illustrated by 3-D

splot and 2-D plot in Figs. 2.19(a) and (b), respectively. When the input vector

[Vin1 Vin2] changes from [0 1] to [1 1], a sharp switching from logic “1” to logic
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Figure 2.19: Input-output characteristics of the ID-NAND. (a) 3-D splot. (b)

2-D plot.

“0” of the output is observed at (VinS1)sim of 3.6 mV. Similarly, when the input

vector [Vin1 Vin2] changes from [1 0] to [1 1], a sharp switching from logic “1”

to logic “0” of the output appears at (VinS2)sim of 3.5 mV. Thus, the calculated

threshold voltages, (VinS1)cal and (VinS2)cal, are in the reasonable agreement

with the simulated threshold voltages, (VinS1)sim and (VinS2)sim. Besides, since
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the NAND gate has two inputs, the objective to achieve the sharp switches with

the switching threshold voltages close to (VT)Std becomes more complicated

than the ID-FJI device. Hence, the difference between (VinSi)sim (i = 1, 2) of

the ID-NAND and (VT)Std is larger than the difference between (VinS)sim of the

ID-FJI and (VT)Std.

The switching regions between the high and low output levels of the ID-

NAND are calculated as follows. When vector [Vin1 Vin2] changes from [0 1]

to [1 1], the switching region appears from 3.6 mV to 3.7 mV, which occupies

(3.7 − 3.6) × 100%/6.7 ≈ 1.49% of the input voltage range (Vin from 0 to 6.7

mV). When vector [Vin1 Vin2] changes from [1 0] to [1 1], the switching region

appears from 3.5 mV to 3.7 mV, which corresponds to (3.7−3.5)×100%/6.7 ≈

2.99% of the input voltage range. In comparison with the switching regions of

the NAND gate which are calculated in Sect. 2.4.1, the switching regions of

the ID-NAND are reduced to 0.33 times.

2.5 Conclusion

With the addition of the IDs, the characteristics of the SE logic gates including

SE inverter and NAND gates were enhanced. The input-output characteristics

of the ID-FJI exhibit the sharp switching instead of the gradual switching as

in the solo FJI. The transition region of the ID-FJI is reduced to 0.011 times

that of the solo FJI. In dynamic characteristics, the average switching times

(the fall and rise times) of the ID-FJI are shorter than those of the solo FJI.

For the parallel two-branch circuit of the serially-cascaded ID-FJIs, the ID-

FJIs still operate well, which is prospective for the possibility of integration

of the ID-FJIs. The capacitance margins of the ID-FJI were also determined

numerically from the criterion of the noise margin. From the viewpoint of gain,

the operation of the ID-FJI is better than that of the solo FJI under 1 K (∼

0.1(EC/kB)limit) and same as that of the solo FJI at the limiting temperature of

3 K (∼ 0.3(EC/kB)limit). Besides, the ID-NAND achieves the sharp switches

between the high and low output levels. The transition regions of the ID-
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NAND are decreased to 0.33 times those of the solo NAND. On the whole,

the nonlinear characteristics of the SE inverter and SE NAND gates can be

improved by adding the IDs.
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Chapter 3

Improvement of stochastic

resonance by designing a

single-electron hysteretic

inverter

3.1 Introduction

Stochastic resonance (SR) has been attracted a large variety of researches. SR

is a nonlinear phenomenon whereby the addition of noise can enhance the de-

tectability of a weak signal [63]. This phenomenon requires three fundamental

ingredients including a form of threshold, a weak coherent input and a source

of noise [64]. With these ingredients, the response of the system versus the

noise level behaves like a resonance curve. Namely, the enhancement of the de-

tectability is the best at a sufficient noise level which is called the optimal noise

level, whereas it degrades if the noise level increases further [63]. SR does not

appear in the strictly linear systems where the additon of noise only degrades

the quality of the signal [63]. SR has been applied in many systems such as

nonlinear optics, solid state devices, and neurophysiology [64]. These systems

can be divided into the continuous systems (e.g the double-well system) and

the discrete systems (e.g the two-state system).
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On the one hand, one of the interesting characteristics which realizes stochas-

tic resonance well is the hysteretic characteristic [65,66]. The hysteresis has a

range of the input for which the circuit is bistable. For realization of stochastic

resonance, the switching time of the hysteresis is required to be fast enough,

that is, the hysteresis has sharp switches between output states.

On the other hand, SE devices with advantages of nanoscales and low power

consumption have become prospective candidates for many applications [25].

SR has been studied in the fields of nanometer-scale electronics including SE

devices [67, 68]. One example is a neural network of SE boxes where the SR

phenomenon was confirmed in the condition of thermal noise [68].

In this study, stochastic resonance is investigated in another SE device that

is an SE inverter. Evaluation of stochastic resonance in the inverter shows the

improvement of the hysteretic inverter in comparison with the non-hysteretic

inverter from the viewpoint of correlation coeffient CC. Moreover, CC is better

if the width of the hysteresis is wider. Therefore, an SE hysteretic inverter with

a wide hysteresis is designed to improve stochastic resonance.

On the other hand, the previous work [69] introduced an SE device which

exhibited the hysteretic characteristics by combining two serially-cascaded IDs

and an SE transistor. Hence, there is possibility that the combination of

two serially-cascaded IDs with the SE non-hysteretic inverter (SE FJI [29])

(2ID-FJI) can make a hysteretic inverter. In addition, the ID discretizes the

continuous input signal into the discrete output signal [31], so the switches of

the hysteresis are expected to be sharp.

In comparison with the SE hysteretic device in the previous work [69], the

2ID-FJI discussed in this chapter has four significant differences as follows.

Firstly, the main device is the FJI instead of SE transistor. Secondly, the

output of the 2ID-FJI is the voltage but not the current. Thirdly, the numbers

of excess electrons on the center islands of two IDs are determined by numerical

simulation but not assumed to be 0 or 1. Finally, parameters of the IDs

are designed to obtain a wide hysteresis. Stochastic resonance is significantly

improved by using the 2ID-FJI, which is better than stochastic resonance in the
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Inverter
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Figure 3.1: Model uses an inverter for stochastic resonance.

FJI and equivalent to that in the ideal hysteretic inverter from the viewpoint

of CC.

3.2 Method for improvement of stochastic res-

onance

Stochastic resonance phenomenon in an inverter is evaluated by using a model

as shown in Fig. 3.1. The inverter has a noisy input signal Vin and an output

signal Vout. Vin includes an input signal Vin signal and an input noise Vin noise.

Definitions of some parameters discussed in this chapter as follows. The

input signal is a unipolar rectangular wave with an ampitude Vin signal (low

level Vin signal low = 0, high level Vin signal high = Vin signal) and a period Ts =

200 ns (frequency fs = 1/Ts = 5 MHz). The input noise is a pseudo-random

white noise has uniform distribution in a range from −Vin noise/2 to +Vin noise/2.

Vin noise is called the noise level. The input noise has a discretized step ∆t = 1

ns. The noisy input signal Vin is expressed as the sum of Vin signal and Vin noise,

that is, Vin = Vin signal + Vin noise.

Schematic drawings of Vin signal, Vin, and Vout are illustrated in Figs. 3.2(a)−(c),

respectively. A threshold voltage Vth is defined as a minimum voltage at which

the output of an inverter responds to its input. Vin signal is a subthreshold

input signal which is less than Vth. Without noise, Vout is always high since
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Vin(= Vin signal) < Vth. With the sufficient addition of a noise source, at some

instants when Vin crosses Vth, Vout switches from high to low level, i.e., the

output responds to the input.

Characteristics of stochastic resonance are evaluated by using correlation

coefficient CC between the input signal and the output signal. CC is in the

form of

CC =

M∑
i=1

{[
Vin signal(i)− Vin signal

][
Vout(i)− Vout

]}
√√√√ M∑

i=1

[
Vin signal(i)− Vin signal

]2

√√√√ M∑
i=1

[
Vout(i)− Vout

]2

(3.1)

in which,

Vin signal(i) is the ith sample of the input signal;

Vout(i) is the ith sample of the output signal;

Vin signal =

M∑
i=1

Vin signal(i)

M is the averaged input signal;

Vout =

M∑
i=1

Vout(i)

M is the averaged output signal.

Because the output of an inverter is in inverse relation to its input, the ideal

CC for an inverter is −1. The excellent CC are assumed to be less than −0.90.

An inverter is categorized into hysteretic or non-hysteretic inverter on the

basis of whether or not its input-output characterisics exhibit a hysteresis.

The inverter is assumed to be ideal, i.e., its switching between high and low

output levels is sharp. The non-hysteretic inverter has input-output (Vin−Vout)

characteristics as shown in Fig. 3.3. When the input voltage Vin is smaller than

a threshold voltage Vth, the output voltage Vout is high; when Vin > Vth, Vout is

low. The ideal hysteretic inverter has input-output characteristics as shown in

Fig. 3.4. High and low threshold voltages, VH and VL (VH > VL), are defined

as the threshold voltages for switching from the high output level to the low

output level and vice versa. The ith sample of the output signal Vout(i) is
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Figure 3.2: (a) Input signal is a unipolar rectangular wave with an amplitude

Vin signal (a high level Vin signal high and a low level Vin signal low) and a period Ts.

Vin signal is a subthreshold input signal which is smaller than a threshold voltage

Vth. (b) Noisy input signal Vin including Vin signal and noise. (c) Output signal

Vout of an inverter in stochastic resonance.
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Figure 3.3: Input-output characteristics of an ideal non-hysteretic inverter.

expressed as follows,

Vout(i) =


0 if Vin(i) ≥ VH

Vout(i− 1) if VL < Vin(i) < VH

1 if Vin(i) ≤ VL

(3.2)

Here, Vout(i−1) is the (i−1)th sample of the output signal. This means that if

Vout(i) is the present state, Vout(i−1) is the previous state. For the hystereretic

inverter, several parameters are defined as follows. Normalized magnitudes of

the input signal and noise are respectively Vin signal/VH and Vin noise/VH. The

width and then normalized width of the hysteresis are WHys (= VH − VL) and

WHys/VH, respectively.

First of all, we consider stochastic resonance in the ideal non-hysteretic

inverter. Stochastic resonance was evaluated by simulating the model in Fig.

3.1 in the conditions: the normalized input signal Vin signal/Vth is set at 0.60,

0.70, 0.80, and 0.90; the normalized input noise Vin noise/Vth is swept from 0.00

to 5.00 with a step of 0.025. CC are plotted as functions of Vin noise/Vth in
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Figure 3.4: Input-output characteristics of an ideal hysteretic inverter.

Fig. 3.5. It can be seen that CC behave like resonance curves with dips at the

smallest values. All of dips of CC are larger than −0.6 which is far from −1.

Next, to determine which inverter is better for stochastic resonance, we

simulate the model in Fig. 3.1 for both non-hysteretic and hysteretic inverters.

When WHys/VH = 0, it is a non-hysteretic inverter; when WHys/VH 6= 0, it is

a hysteretic inverter. For the hysteretic inverter, the width of hysteresis can

be adjusted by changing WHys/VH. Simulation was executed in the following

conditions. Vin noise/VH was swept from 0.00 to 5.00 with a step of 0.025.

WHys/VH was varied from 0.00 to 1.00 with a step of 0.025. CC were calculated

at different Vin signal/VH of 0.50 (Figs. 3.6(a) and (b)), 0.70 (Figs. 3.6(c) and

(d)), and 0.90 (Figs. 3.6(e) and (g)). Behaviors of CC are like resonance

curves with dips at the smallest values (Figs. 3.6(a), (c), and (e)).

On the one hand, we compare stochastic resonance in the hysteretic inverter

with that in the non-hysteretic inverter. At the same Vin signal/VH, dips of CC

of the hysteretic inverter are closer to −1 than those of the non-hysteretic

inverter (Figs. 3.6(a), (c), and (e)). For example, at Vin signal/VH = 0.70 (Figs.

3.6(c) and (d)), dips of CC of the non-hysteretic are larger than −0.6 whereas
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Figure 3.5: Correlation coefficients CC between input and output signals of

the ideal non-hysteretic inverter are plotted as functions of normalized input

noise Vin noise/Vth at different normalized input signals Vin signal/Vth of 0.60,

0.70, 0.80, and 0.90.

those of the hysterertic inverter are approximately −1. This indicates that

stochastic resonance in the hysteretic inverter is better than that in the non-

hysteretic inverter from the viewpoint of CC.

On the other hand, we evaluate CC characteristics in the hysteretic in-

verter as follows. Firstly, as Vin signal/VH is increased, the dips of CC go to-

wards the ideal value (−1). For example, the dips for Vin signal/VH = 0.50

are approximately −0.60, whereas those for Vin signal/VH = 0.70 are −1. Sec-

ondly, the greater Vin signal/VH is, the wider the region of the excellent CC

is. Namely, the region of the excellent CC reperesented by black color does

not exist for Vin signal/VH = 0.50 (Figs. 3.6(a) and 3.6(b)) and increases as
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Figure 3.6: Correlation coefficients CC between input and output signals of

the ideal inverter (The ideal inverter means that it has the sharp switching at

the threshold voltage). They are plotted as functions of normalized input noise

Vin noise/VH and normalized width of the hysteresis WHys/VH in 3-D splots (a,

c, e) and 2-D plots (b, d, g) at different normalized input signals Vin signal/VH.

(a) and (b) Vin signal/VH = 0.50. (c) and (d) Vin signal/VH = 0.70. (e) and (g)

Vin signal/VH = 0.90.
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Figure 3.7: Schematic diagram of SE hysteretic inverter (2ID-FJI).

Vin signal/VH increases from 0.70 to 0.90 (Figs. 3.6(c)−(g)). Finally, with the

same Vin signal/VH, the larger WHys/VH is, the wider the range of Vin noise/VH

for the excellent CC is. For example, at Vin signal/VH = 0.90 (Fig. 3.6(g)), the

range of Vin noise/VH for the excellent CC at WHys/VH = 0.80 is wider than that

at WHys/VH = 0.60.

Thus, CC of stochastic resonance in an inverter can be enhanced by de-

signing the hysteretic inverter with a wide hysteresis (large WHys/VH).

3.3 A single-electron hysteretic inverter de-

signed for enhancement of stochastic res-

onance

On the basis of the analysis in Sect. 3.2, an SE hysteretic inverter should be

designed with WHys/VH as large as possible to realize stochastic resonance well.
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Figure 3.8: Simplified circuit model used for analysis of the 2ID-FJI.

An SE hysteretic inverter is designed by combining two IDs and the FJI (2ID-

FJI) as shown in Fig. 3.7. The FJI is composed of upper and lower parts [29].

The upper part consists of two junctions (J1 and J2), a gate capacitor (CG),

and a bias capacitor (CB). The lower part includes two junctions (J3 and J4),

a gate capacitor (CG), and a bias capacitor (CB). Two IDs consisting of two

junctions (J01 and J02 having the same capacitance C0 and resistance R0) and

two grounded capacitors (C01 and C02) are serially-cascaded and connected

to two gate capacitors (CG) of the FJI. Figure 3.8 shows a simplified circuit

model used for analysis of the 2ID-FJI. Looking from the second island of the

2IDs to the FJI, since Cout is much larger than the other capacitances, we

approximate FJI by two parallel branches. In each branch, CG is in series with

a group which is composed of C1, C2, and CB in parallel. Capacitance Ceq

equivalent to an FJI as follows,

Ceq ≈ 2
CG(C1 + C2 + CB)

CG + (C1 + C2 + CB)
(3.3)
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Polarization charges on the individual junctions and capacitors are in the form

of

QJ1 = (Vin − V1)C0, (3.4)

Q01 = V1C01, (3.5)

QJ2 = (V1 − V2)C0, (3.6)

Q02 = V2C02, (3.7)

Qeq = V2Ceq. (3.8)

Here

QJ1 and QJ2 are respectively the charges on the junctions J01 and J02;

Q01 and Q02 are the charges on the capacitors C01 and C02, respectively;

Qeq is the charge on the capacitor Ceq;

V1 and V2 are the voltages across the capacitors C01 and C02, respectively.

Quantization of the charges on the first and second center islands of the

2IDs can be expressed as follows,

−QJ1 +Q01 +QJ2 = N1e+QP1, (3.9)

−QJ2 +Q02 +Qeq = N2e+QP2. (3.10)

Here

N1 and N2 are the numbers of excess electrons on the first and second

center islands of the 2IDs, respectively;

QP1 and QP2 are respectively background polarization charges.

In this chapter, the background polarization charges are assumed to be zero,

i.e., QP1 = QP2 = 0.

Substitutions of Eqs. (3.4) − (3.6) to Eq. (3.9) and Eqs. (3.6) − (3.8) to

Eq. (3.10), Eqs. (3.9) and (3.10) are transformed respectively as the followings,
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−(Vin − V1)C0 + V1C01 + (V1 − V2)C0 = N1e, (3.11)

−(V1 − V2)C0 + V2C02 + V2Ceq = N2e. (3.12)

Eliminating V2 from Eqs. (3.11) and (3.12) gives

−VinC0 + V1

[
C0 + C01 +

(C02 + Ceq)C0

C0 + Ceq + C02

]
= N1e+

N2eC0

C0 + C02 + Ceq

. (3.13)

On the other hand, the condition for tunneling through the J01 has to

safisfy [29]

Vin − V1 = ± e

2C∗1
, (3.14)

where, signs “+” and “−” correspond to the forward tunneling (charge +e

tunneling from left to right) and backward tunneling (charge +e tunneling

from right to left) through the J01. C∗1 is the total capacitance between the

first center island and its environment [29], which is expressed as

C∗1 = C0 + C01 + C0//(C02 + Ceq)

= C0 + C01 +
C0(C02 + Ceq)

C0 + (C02 + Ceq)
. (3.15)

Combination of Eqs. (3.13) − (3.15), the input threshold voltage VinT for

single-electron tunneling through the J01 can be given by

VinT =
C0 + C02 + Ceq

C0C01 + (C0 + C01)(C02 + Ceq)
(±e

2
+N1e+

N2eC0

C0 + C02 + Ceq

). (3.16)

The high and low threshold voltages VH and VL of the 2ID-FJI are respectively

derived by selecting plus and minus signs in Eq. (3.16),

VH =
C0 + C02 + Ceq

C0C01 + (C0 + C01)(C02 + Ceq)

(
e

2
+N1e+

N2eC0

C0 + C02 + Ceq

)
, (3.17)
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VL =
C0 + C02 + Ceq

C0C01 + (C0 + C01)(C02 + Ceq)

(
− e

2
+N1e+

N2eC0

C0 + C02 + Ceq

)
. (3.18)

According to Eqs. (3.17) and (3.18), VH and VL of the 2ID-FJI depend on the

capacitances C01 and C02.

Parameters of the 2ID-FJI are determined as follows. Parameters of the

FJI are the same as the previous literature: C1 = 2C2, CG = 8C2, CB = 7C2,

C∗ = C1 +C2 +CG +CB, Vs = 1.5/2C∗ [29]. On the basis of these capacitance

relationships, we set a typical value of C2, C2 = 1 aF, and calculate the other

capacitances. Then, in the numerical simulation below, values of parameters

are assumed as: C1 = 2 aF, R1 = 50 kΩ, C2 = 1 aF, R2 = 100 kΩ, CG = 8

aF, CB = 7 aF, Vs = 6.7 mV, Cout = 1 fF. For simplication, C01 is set to be

equal C02. Since VH and VL of the 2ID-FJI depend on C01 and C02 (Eqs. (3.17)

and (3.18)), values of C01 and C02 must be adjusted to achieve the hysteresis

whose width is as wide as possible. The appropriate parameters of the 2IDs

were chosen as follows: C0 = 1 aF, R0 = 100 kΩ, and C01 = C02 = 72 aF.

The numbers of excess electrons on the first and second center islands,

N1 = Q1/e and N2 = Q2/e, of the 2IDs are determined by simulation as shown

in Fig. 3.9. Monte-Carlo simulation was executed using SIMON program [26]

with the conditions of 0 K and no cotunneling. In Fig. 3.7, voltage VID2 on

the second island of the 2IDs is the direct input voltage of the main device

FJI. In addition, in Sect. 2.3.1, the FJI switches between high and low output

levels when its input voltage is between 2.48 mV and 4.22 mV. Hence, the

switching between high and low output levels of the 2ID-FJI occurs when VID2

is in the range between 2.48 mV and 4.22 mV. In Figs. 3.9(a) and (b), for

Vin increasing from 0 to the source voltage Vs (6.7 mV), the switching occurs

from high to low output level when VID2 rises to 2.48 mV. VID2 = 2.48 mV

at (VH)sim = 5.53 mV where there are tunneling events from the states N1 =

2 (to 3) and N2 = 1 (to 3). In Figs. 3.9(c) and (d), for Vin decreasing from

Vs to 0, the switching occurs from low to high output level when VID2 reduces

to 4.22 mV. VID2 = 4.22 mV at (VL)sim = 1.15 mV where there are tunneling
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Figure 3.9: Number of excess electrons in the first and second center islands of

the 2IDs, N1 = Q1/e and N2 = Q2/e, are plotted as functions of input voltage

Vin. Voltage on the second center island of the 2IDs, VID2, is also plotted as a

function of Vin. (a) and (b) Vin increases. (c) and (d) Vin decreases.

events from the states N1 = 1 (to 0) and N2 = 2 (to 0).

The threshold voltages of the 2ID-FJI can be calculated from Eqs. (3.17)

and (3.18) as follows. Substituting N1 = 2 and N2 = 1 to Eq. (3.17), the

calculated high threshold voltage (VH)cal is 5.51 mV. Substitution of N1 = 1
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Figure 3.10: Input-output characteristics of the 2ID-FJI with C01 = C02 =

72 aF at T = 0 K. Dashed lines are inserted into the graph to show switching

trends between high and low levels of Vout.

and N2 = 2 to Eq. (3.18) obtains the calculated low threshold voltage (VL)cal of

1.15 mV. Thus the calculated and simulated threshold voltages of the 2ID-FJI

are in reasonable agreement.

Input-output characteristics of the 2ID-FJI with C01 = C02 = 72 aF are

described in Fig. 3.10. Vout for increasing and decreasing Vin are represented by

rectangles and triangles, repectively. Hysteretic characteristics are confirmed

with two threshold voltages VH and VL. The ratio of VL to VH is 0.208. The

width (WHys = VH−VL) and the normalized width (WHys/VH) of the hysteretic

region are 4.38 mV and 0.792, respectively. In addition, sharp switches between

high and low output levels are also observed.
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Figure 3.11: (a) Schematic diagram of single-electron four-junction inverter

(FJI) is used for evaluation of stochastic resonance. (b) Input-output voltage

characteristics of the FJI for the input signal increasing and decreasing between

0 and Vs (= 6.7 mV). No noise is included.

3.4 Enhancement of stochastic resonance us-

ing SE hysteretic inverter (2ID-FJI)

3.4.1 Stochastic resonance in single-electron four-junction

inverter (SE FJI)

A schematic diagram of the FJI used for the evaluation of stochastic resonance

is shown in Fig. 3.11(a). Output Vout is the voltage across the output capacitor

Cout. Parameters of the FJI are the same as those in Sect. 3.3. Monte-Carlo

simulation was executed in the conditions of 0 K and no cotunneling. Input-

output characteristics of the FJI where no input noise is added are illustrated

in Fig. 3.11(b). There is no hysteresis in its input-output characteristics.

One of the important ingredients of stochastic resonance is the threshold
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Figure 3.12: Example of simulated waveforms in the FJI. (a) Subthreshold

input signal Vin signal has a nomalized magnitude Vin signal/θS of 0.90. (b) Noisy

input signal Vin contains Vin signal and input noise Vin noise where the input noise

has a normalized magnitude Vin noise/θS of 1.80. (c) Output signal Vout.

at which the output of the system responds to the input. A strict threshold

is defined as the minimum level of the input signal which makes the device

respond. We have found that the strict threshold of the FJI, θS, is 2.83 mV.

A subthreshold input signal of the FJI is defined as a signal whose amplitude

is smaller than the strict threshold (Vin signal < θS). For the FJI, normalized

magnitudes of the input signal and noise are respectively defined as Vin signal/θS

and Vin noise/θS.

An example of simulated waveforms in the FJI, Vin signal, Vin (= Vin signal +

Vin noise), and the output Vout, are shown in Fig. 3.12. By adding the input

noise to the subthreshold input signal (Fig. 3.12(a)), the noisy input signal

has random fluctuations as described in Fig. 3.12(b). Figure 3.12(c) shows

that, at the specific noise level, the output of the FJI responds to the input.

CC of the FJI is plotted as a function of Vin noise/θS in Fig. 3.13. CC

at different Vin signal/θS of 0.60, 0.70, 0.80, and 0.90 are represented by solid

circles, open rectangles, solid triangles, and slashes, respectively. When the

input noise level increases, CC of the FJI behaves as a resonance curve with

a dip. In Fig. 3.13, the dips are around −0.60.
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Figure 3.14: 2ID-FJI used for evaluation of stochastic resonance.
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Figure 3.15: Example of simulated waveforms in the 2ID-FJI. (a) Subthreshold

input signal Vin signal has a nomalized magnitude Vin signal/VH of 0.90. (b) Noisy

input signal Vin contains Vin signal and input noise Vin noise where the input noise

has a normallized magnitude Vin noise/VH of 0.58. (c) Output signal Vout.

3.4.2 Enhancement of stochastic resonance by using

2ID-FJI

The 2ID-FJI used for evaluation of stochastic resonance is shown in Fig. 3.14.

The noisy input signal Vin including the input signal Vin signal and the input

noise Vin noise is applied to the 2ID-FJI. Normalized magnitudes of the input

signal and noise used in the 2ID-FJI are defined as similarly as those used in

the ideal hysteretic inveter (Sect. 3.2), which are respectively Vin signal/VH and

Vin noise/VH.

Figure 3.15 shows an example of simulated waveforms in the 2ID-FJI. By

adding the input noise to the subthreshold input signal (Fig. 3.15(a)), the

noisy input signal has random fluctuations as described in Fig. 3.15(b). Fig-

ure 3.15(c) shows that, at the specific noise level, the output of the 2ID-FJI

responds well to the input. Making a comparison between the output signals

of the FJI (Fig. 3.12(c)) and the 2ID-FJI (Fig. 3.15(c)) indicates the im-

provement of the 2ID-FJI as follows. With the same normalized magnitude of

the input signal (Vin signal/θS = Vin signal/VH = 0.90) and the noise levels cho-

sen to obtain the dips of CC, while the output signal of the FJI fluctuates,
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Figure 3.16: Correlation coefficients CC between input and output signals

of the 2ID-FJI are plotted as functions of normalized input noise Vin noise/VH

at different normalized input signals Vin signal/VH of 0.60, 0.70, 0.80, and 0.90.

The normalized width of the hysteresis of the 2ID-FJI, WHys/VH, is 0.792.

that of the 2ID-FJI keeps stable. The response of the output of the 2ID-FJI

can be explained on the basis of its hysteretic characteristics. Although there

are fluctuations in the noisy input signal (Fig. 3.15(b)), magnitudes of these

fluctuations are in the range between VL and VH of the hysteresis. Therefore,

these fluctuations do not cause the change of the output state.

Stochastic resonance in the 2ID-FJI is also evaluated via CC. Figure 3.16

describes CC of the 2ID-FJI versus Vin noise/VH at different Vin signal/VH of 0.60,

0.70, 0.80, and 0.90. The responses of CC look like resonance curves with dips

at the smallest CC.

From the viewpoint of CC (Figs. 3.16 compared to Fig. 3.13), the 2ID-FJI
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Figure 3.17: Correlation coefficients CC between input and output signals

of the ideal hysteretic inverter are plotted as functions of normalized input

noise Vin noise/VH at different normalized input signals Vin signal/VH of 0.60, 0.70,

0.80, and 0.90. The normalized width of the hysteresis of the ideal hysteretic

inverter, WHys/VH, is 0.792.

has the dips of CC better than the FJI. Namely, at small (0.60) Vin signal/VH,

the dips of the 2ID-FJI (CC ≈ −0.67) are slightly better than those of the

FJI (CC ≈ −0.52). At Vin signal/VH ≥ 0.70, the dips of the 2ID-FJI are close

to −1 whereas those of the FJI are less than −0.62. This advantage results

from the effect of the hysteretic characteristics.

With the same WHys/VH, stochastic resonance in the 2ID-FJI is as equiv-

alent as that in the ideal hysteretic inverter from the viewpoint of CC (Fig.

3.16 compared to Fig. 3.17). Figure 3.17 illustrates CC of the ideal hysteretic

inverter at different Vin signal/VH of 0.60, 0.70, 0.80, and 0.90. The method for
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.

calculating CC in Fig. 3.17 is quite similar to that in Sect. 3.2. The only

difference is that in Sect. 3.2, the normalized width of the hysteresis WHys/VH

is swept from 0.00 to 1.00, whereas in Fig. 3.17, WHys/VH is fixed to be equal

to that of the 2ID-FJI (WHys/VH = 0.792). At Vin signal/VH = 0.60, the 2ID-

FJI and the ideal hysteretic inverter have the same dips of CC around −0.60.

When Vin signal/VH ≥ 0.70, their dips reach near −1.

With the same Vin signal/VH (e.g 0.90) and different WHys/VH, making a

comparison between stochastic resonance in the 2ID-FJI and that in the ideal

hystertic inverter also confirms that their CC behave similar to each other,

as shown in Fig. 3.18. Namely, the dips of CC are close to −1. In addition,

when WHys/VH increases, the region of the noise levels for the excellent CC

(CC < −0.90) also increases.

Figure 3.19(a) shows a schematic drawing for determining the range of
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cients (CC ≤ −0.90). (b) (Vin noise2− Vin noise1)/VH versus normalized width of
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input noise levels (from Vin noise1/VH to Vin noise2/VH) to obtain the excellent

CC. The relationship between (Vin noise2 − Vin noise1)/VH and WHys/VH of the

ideal hysteretic inverter and the 2ID-FJI are respectively illustrated by solid

line and open circles in Fig. 3.19(b). It can be seen that this relationship

in the 2ID-FJI is similar to that in the ideal hysteretic inverter, in which

(Vin noise2−Vin noise1)/VH is proportional to WHys/VH. In addition, it is observed

that (Vin noise2−Vin noise1)/VH > 0 when WHys/VH is larger than a specific value

α (here, α = 0.20).

The value of α is determined as follows. Fluctuations in the output signal of

the 2ID-FJI can be eliminated if Vin satisfies two following conditions. Firstly,

for the low level of Vin, its maximum value (Vin low)max (= +(1/2)Vin noise) is

smaller than VH and its minimum value (Vin low)min (=−(1/2)Vin noise) is smaller

than VL. Secondly, for the high level of Vin, its maximum value (Vin high)max (=

Vin signal + (1/2)Vin noise) is larger than VH and its minimum value (Vin high)min

(= Vin signal − (1/2)Vin noise) is larger than VL. Figure 3.20 shows an example

of Vin which satisfies both conditions. The second condition results in that

2Vin signal > VH + VL and then WHys/VH > 2(VH − Vin signal)/VH. This requires

that α = 2(VH − Vin signal)/VH. When Vin signal/VH = 0.90, α = 0.20 which is

the same as in Fig. 3.19(b).

3.5 Conclusion

In conlusion, the SE hysteretic inverter (2ID-FJI) with the sharp switches

can be designed by the combination of two IDs and the solo FJI. A model

of the ideal hysteretic inverter was analyzed to determine the method for im-

provement of stochastic resonance. The analysis showed that CC of stochastic

resonance can be improved (near −1) by designing a hysteresis whose width

(WHys) is as large as possible. Therefore, the parameters of two IDs in the

2ID-FJI were chosen to achieve the large WHys. Numerical simulations demon-

strated that stochastic resonance in the 2ID-FJI is as good as that in the ideal

hysteretic inverter.
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Chapter 4

Fabrication of single-electron

devices by using gold

nanoparticles

4.1 Introduction

Single-electron (SE) devices have attracted numerous researches on both the-

ory and fabrication. In previous chapters, SE devices were analyzed theo-

ritically. In this chapter, fabrication processes of SE devices are discussed.

SE devices operate on the basis of Coulomb blockade (CB) phenomena which

require the charging energy of one electron EC to be much higher than the

thermal energy kBT : EC � kBT (kB is Boltzman constant, T is the absolute

temperature) [25]. Hence, EC is one of the important factors, which is related

to the possibility of practical applications of SE devices. If the island size

of SE devices is reduced, EC and also T can increase [25]. Operation of SE

devices at room temperature can be observed if the island size is decreased

to a few nanometers [25]. To form such the island, many techniques such as

silicon technologies [70], nano-oxidation process [71], carbon nanotube [16],

aluminium nanodots [17], and nanoparticles (NPs) [72] have been used in fab-

rication processes. The method using NPs as islands has the two following

advantages [73]. Firstly, NPs can be uniform in size with a standard deviation
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of approximate 5%. Secondly, size of NP can be formed in an extremely small

range from 1 nm. These advantages result in the ability of high-temperature

operation of NP-based SE devices.

Electric properties of NPs depend on the size and shape of particles, dis-

tance between particles, and nature of the protection organic shell [74]. Among

metal NPs, gold NPs (Au NPs) are the most stable metal NPs [74], which make

them become good candidates for the islands.

To fabricate SE devices using Au NPs, there have been two typical con-

figurations: with a probe tip and without a probe tip [72]. For the first con-

figuration (with the probe tip), scanning tunneling microscopy (STM) have

been used widely. The STM system uses a sharp conductive tip and Au NP

chemisorbed via thiols on a metal substrate [72,75]. The tip and the substrate

are brought into a distance small enough to let tunnel current flow. Another

type using the probe tip is the conductive-probe atomic force microscope (CP-

AFM) [72,76]. The CP-AFM system uses a sharp tip coated by metal and Au

NP chemisorbed via thiols on a metal substrate. The distance between the tip

and Au NP can be controlled by feedback electronics. Although, the STM and

CP-AFM use different methods to approach their tips to Au NPs, the realized

SE devices are essentialy the same. The second configuration (without the

probe tip), which is composed of drain, source, and gate electrodes, has an

advantage of the mechanical stability with fixed gemometry [77]. Hence, we

used this configuration to fabricate three-terminal SE devices.

On the one hand, the three-terminal SE devices having C-SET character-

istics were realized by using solutions of Au NPs [14, 32]. In the previous

works [14, 32], they formed the narrow (sub-50-nm) gaps which required the

high complexity in the forming the electrodes. On the other hand, the realiza-

tion of R-SET has been limited because of the difficulty in forming the gate

resistor. The gate resistor must satisfy both conditions of relative small size

and resistance much greater than the quantum resitance (RQ ≈ 26 kΩ) [78] to

minimize unwanted stray capacitance. Such gate resistors have been formed

in several works [33–35, 79]. However, the previous works [33–35] did not use
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Au NPs and had a very low operation temperature (sub-1-K).

In our experiment, we reduced the technical difficulty by designing wide

(≥ 200 nm) gaps and making connections between Au NPs randomly. Fabri-

cation processes were done basically as follows. Drain, source, and gate elec-

trodes were formed on a SiO2/Si chip by using standard EBL and evaporation

techniques. Then, arrays of small tunnel junctions were formed by dropping

solutions of Au NPs on the chip. Characteristics of the fabricated SE devices

are determined by observation of the CB phenomena in the measured data.

Namely, devices exhibiting periodic Coulomb oscillations are categorized into

the capacitively-coupled single-electron transistor (C-SET) type. In contrast,

the devices showing the CB region without Coulomb oscillations are catego-

rized into the resistively-coupled SET (R-SET) type.

Statistics of all devices formed by using Au NPs are shown in Table 4.1.

In Table 4.1, “nonlinear” means that the device had nonlinear current-voltage

characteristics but the CB phenomenon was not observed; “linear” means that

the device had linear current-voltage characteristics; “no current” is defined

for the case where all currents of the device were less than 0.5 nA and they

did not change when the voltages were applied to the device. There were

109 fabricated devices, in which 6 devices were measured at 4.2 K and 109

devices measured at 77 K and room temperature. The percentages of devices

exhibiting the CB phenomena at 4.2 K and 77 K are larger than 50%. In

Table 4.2, it was observed at 77 K that the “Linear” cases occurred when the

amount of Au NP solution was large, and the “No current” cases happened

when the amount of Au NP solution was small. Then, the percentage of CB

can be increased by using a sufficient amount of Au NP solution. For example,

in our experiment, the chip having 6 devices exhibited the CB phenomena in

total 6 devices when the total amount of 15-nm-diameter and 3-nm-diameter

Au NP solutions in a range from 2 µL to 3 µL was dropped on the chip.

Among the devices exhibiting the CB phenomena, two cases happened

when the gate voltages were applied to the devices. The first case was that

the CB region changed under the effect of the gate voltage, resulting in the
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Table 4.1: Statistics of devices formed by using Au NPs

Temperature Number of Percentage of Percentage of Percentage of Percentage of

(Temp.) measured devices CB nonlinear linear no current

(K) (%) (%) (%) (%)

4.2 6 83.3 16.7 0 0

77 109 58.7 11.9 8.3 21.1

Room Temp. 109 1.8 2.8 95.4 0

Table 4.2: Statistics of amount of Au NP solutions used for devices which were

measured at 77 K

Type of AuNPs Amount of Au NP solutions, x (µL)

CB Linear No current

15-nm diameter

(5-nm diameter)

0.1 ≤ x ≤ 9 5 ≤ x ≤ 9 0.1 ≤ x ≤ 0.5

3-nm diameter 0 ≤ x ≤ 3 0 ≤ x ≤ 3 0 ≤ x ≤ 1.2

type of devices (C-SET or R-SET) could be determined. The second case was

that the CB region did not change under the effect of the gate voltage, then

the type of the device was undetermined. The origin of the second case could

result from that the distance between the gate and the gap was large (a few

micrometers).

In this chapter, two typical fabricated devices including device I and device

II are introduced. The device I had characteristics like C-SET whereas the

device II had characteristics like R-SET at 77 K. For the device II, the CB

gap was also observed at room temperature (287 K) and could be modulated

by applying the gate voltage. In comparison with the previous C-SET devices

[14, 32] which had the narrow (< 50 nm) gaps, the device I had the wider

gap (1000 nm). In addition, operation temperature of the device I was almost
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4.2. Fabrication techniques

equivalent to that in the previous work (80 K in [14]). On the other hand,

the method of fabricating the device II was different from the previous works

[34, 35] which did not use Au NPs. In addition, the operation temperature of

the device II was higher than that in the previous works (sub-1-K in [34,35]).

4.2 Fabrication techniques

4.2.1 Introduction of fabrication processes

4.2.1.1 Processes for forming three electrodes

Fabrication processes include the following steps: design of electrode layouts on

a CAD, coating a resist on the chip, electron-beam (EB) drawing, development,

shadow evaporation, and lift-off.

I used EB resists made of PMMA and/or Copolymer [80]. PMMA (poly-

methy methacrylate) is used as a high resolution positive resist. Copolymer

is a combination of PMMA and PMAA. A solution of PMMA/Copolymer is

dropped on the clean SiO2/Si substrate, followed by the spinning at a certain

speed, and then prebaked at specific temperature and duration. The thick-

ness as well as the solubility of the resist are achieved by choosing appropriate

parameters of the spin speed, prebaking temperature and prebaking duration.

The relationships between the film thickness and the spin speed for Copolymer

and PMMA resists are represented in Figs. 4.1 and 4.2, respectively [80]. The

substrate coated by the resist is illustrated in Fig. 4.3. Due to the positive

resist, it is converted from low to high solubility by electron beam [81]. A

bi-layer resist combines a low layer and a high layer. The low and high layers

have a large difference in sensitivity.

Electron beam lithography (EBL) is one of the most important techiques

in nanofabrication [81]. EBL uses highly focused electron beam to write the

designed pattern in the resist. After EB drawing, polymer in the resist is

broken into smaller and more soluble fragments [81]. There are several factors

degrading the process of EB drawing, in which the main effects result from the
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Figure 4.1: Film thickness versus spin speed for Copolymer resist at different

Ethyl Lactate (EL) of 6%, 9%, and 11%. (After MicroChem datasheet [80].)
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Figure 4.2: Film thickness is plotted as a function of spin speed for PMMA

resist at different Anisole (A) of 2%, 4%, and 6%. (After MicroChem datasheet

[80].)

forward and backward scattering phenomena (Fig. 4.4) [81]. The electrons

entering the resist cause a series of low energy elastic collisions which deflect

the electrons, resulting in the forward scattering. This phenonmenon broadens

the beam and becomes significant with thick resist and low incident energy [81].

In addition, although most of the electrons penetrate into the substrate, some

of them re-emerge into the resist layer resulting in the backward scattering.
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Figure 4.3: Outline of EBL process steps to form a pattern from a positive

resist.

Resist

Substrate

Forward 

Scattering

Backward 

Scattering

Electron beam

Figure 4.4: The forward and backward scattering phenomena in EBL.

Substrate

Resist Resist

gel

Resist

Solvent

During

Development

Figure 4.5: Interactions happen during the development process. (After M.

A. Mohammad et al. [81].)
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This leads to the proximity effect which causes the exposure of the area nearby

the written patterns, causing the pattern distortion and overexposure [81].

After EB drawing, the pattern is immersed in a liquid developer to remove

the irrediated fragments [81]. The dissolution depends on the temperature and

duration of the development process. The hotter temperature or the longer

duration is, the faster dissolution is. Development process happens as shown in

Fig. 4.5 [81]. The solvent penetrates into the poly chain of the resist and sur-

round the fragments forming the gels. After the surrounding is complete, the

fragments detach from the chain and diffuse into the solvent. The long frag-

ments take long time for dissolution. Exposure and development are related to

each other. Namely, heavier exposure results in shorter development and vice

versa. In development, it can appear the underdevelopment/overdevelopment

which dissolution of the irradiated fragments is not enough or too much, caus-

ing undesired structure of the pattern.

Shadow evaporation technique is used to deposit metal in different angles
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as shown in Fig. 4.6. This technique helps to fabricate the small gap between

the drain and source electrodes. In the experiment discussed below, the first

layer is firstly deposited from an angle of α degrees, then the second layer is

deposited from another angle of β degrees. The bridge is the remained part of

the high layer of the resist after development (because it has low sensitivity and

no irradiation). If the width of the bridge is WBridge and the height from the

bridge to the substrate (thickness of the low layer of the resist) is H, the width

of the gap WGap between the drain and source electrodes can be calculated as

WGap = WBridge − (D1 +D2)

= WBridge −H
[∣∣tan(α)|+ |tan(β)

∣∣] (4.1)

Substitution of H = 800 nm, α = 14◦, and β = −14◦ into Eq. (4.1) gives that

WGap (nm) = WBridge− 400.

Lift off process uses acetone. Because the resist is dissolved in acetone,

both the remained resist and metal covering it are removed. The complete

electrodes are obtained after this process.

4.2.1.2 Formation of NP chains between electrodes to realize ar-

rays of small tunnel junctions

In the experiment described below, NP chains between electrodes were formed

by using one or two kinds of solutions: a citric solution consisting of 0.007% of

15-nm-diameter (or 5-nm-diameter) Au NPs and a toluene solution containing

0.1% of 3-nm-diameter Au NPs chemisorbed via decanethiol. Both of them

were bought from the company. Size distributions of 5-nm and 15-nm Au NPs

are shown in Fig. 4.7. The 15-nm Au NPs include a group of Au NPs with the

Gaussian size distribution, in which the size range is from 10 to 30 nm and the

mean is 15 nm. Figure 4.8 shows size distribution of 3-nm Au NPs without

decanethiol. For the type of 3-nm Au NPs, the size range is from 2 to 5nm

and the number of 3-nm Au NPs is more than 40%.
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Figure 4.7: Size distributions of Au NPs. This figure is provided by Tanaka

Kikinzoku Kogyo company [83].

Au NPs coated by decanethiol are formed on the basis of principle of self-

assembled monolayer (SAM). SAMs are molecular assemblies formed spon-

taneously as the surface of solid (substrate) absorbs molecules from solu-

tion or the gas phase [82]. The most popular class of SAM is based on

thiol (-SH) groups involving alkanethiols (HS(CH2)nCH3) and alkanedithiol

(HS(CH2)nSH) on a Au substrate. Alkanethiol SAM on the Au substrate is

schematically illustrated in Fig. 4.9 [76]. SAM consists of three parts including

a head group, a spacer/backbone, and an end group [82]. The head group is

the chemisorbed contact between sulfur (S) and Au (here, Au replaces H in

(H-S-) group). The backbone is the methylene (-CH2-) group. The end group

is the methyl (CH3-) group and constitutes the outer part of SAM. If the num-

ber of carbon in alkanethiol is 10 (n = 9), it will be SAM of decanethiol. A
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Figure 4.8: Size distribution of 3-nm-diameter Au NPs. The figure is provided

by Tanaka Kikinzoku Kogyo company.

combination of this SAM with the other metal such as Au forms a molecular

tunnel junction (Au-alkanethiol-Au) as shown in Fig. 4.10 [76]. In Fig. 4.10,

the connection between S and Au is the chemisorbed contact whereas the con-

nection between (CH3-) group and Au is the physisorbed contact. Between

the chemisorbed and physisorbed contacts, it is the tunnel barrier.

According to Ref. [76], two typical properties of SAM are reported as fol-

lows. Firstly, the contact resistance of the chemisorbed contact is smaller than

that of the physisorbed contact. Secondly, the current has an exponential

decrease with an increase of the barrier width (length of the molecule).

92



4.2. Fabrication techniques

Au

S

(CH2)n

CH3

S

(CH2)n

CH3

S

(CH2)n

CH3

Head group

End group

Spacer/ Backbone

Substrate
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4.2.2 Example of fabrication conditions

Fabrication steps to make devices having three electrodes are described below

via a specific example of the fabricated chip (chip 150706C). The devices were

formed on the Si chip covered by SiO2.

4.2.2.1 CAD design

A CAD layout is shown in Fig. 4.11. 16 electrodes were designed to have 12

devices. Each device was composed of a drain electrode, a source electrode,

and a gate electrode. The geometries of the drain and source electrodes were

divided into a straight type, a three-step round type, and a six-step round

type. The upper part includes 6 devices of the straight type (from No. 1 to

No. 6). The lower part includes 4 devices of the three-step round type (from

No. 7 to No. 10) and 2 devices of the six-step round type (No. 11, No. 12).
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Figure 4.12: Layouts of straight type.

Designs of the straight, three-step round, and six-step round electrodes are

respectively illustrated in Figs. 4.12 − 4.14. Values of all parameters in Figs.

4.12 − 4.14 are listed in Tables 4.3 − 4.5, respectively. The area between
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Table 4.3: Parameter values in Fig. 4.12

Devices Drain Source Gate-Bridge Narrow Pattern White area

Width Width Distance Width Horizontal

Position

Vertical

Positions

WD

(nm)

WS

(nm)

dGB

(nm)

WNP

(nm)

d0

(nm)

h1

(nm)

h2

(nm)

No. 1− 6 800 800 1000 20 20 100 600

Devices Bridge Narrow Pattern

Width Number Horizontal Postions

WB N d1 d2 d3

(nm) (nm) (nm) (nm)

No. 1 700 4 100 120 180

No. 2 600 2 200 160 x

No. 3 540 2 160 180 x

No. 4 500 2 140 180 x

No. 5 600 0 x x x

No. 6 500 0 x x x

the drain and source electrodes is called a bridge. Inside the bridge, there are

narrow patterns which help to increase the solubility of the low layer of the

resist during development process. The white area was designed to decrease

the proximity effect from EB drawing. All the devices had the same width

(WD = WS = 800 nm) of the drain and source electrodes, the same distance

from the gate to the bridge (dGB = 1000 nm), and the same width of the narrow

patterns (WNP = 20 nm). The widths of the gate electrodes were designed to

be equal to the widths of the bridge. The widths of the bridge were changed

from 700 nm to 500 nm, resulting in the expected equivalent gaps from 300

nm to 100 nm after shadow evaporation.

For the straight type, the number of narrow patterns N was decreased
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Figure 4.13: Layouts of three-step round type.

as the width of the bridge was reduced as shown in Table 4.3. Besides, the

narrow bridge (600 nm and 500 nm) were desiged in two cases of having narrow

patterns and without narrow patterns.

For the round type, all devices had the same N = 2. Shapes of the three-

step and six-step round types are shown in Figs. 4.13 and 4.14, respectively.

From the center of the bridge, the three-step round type has three upstairs

and three downstairs, whereas the six-step round type has six upstairs and six
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Table 4.4: Parameter values in Fig. 4.13

Devices Drain Source Gate-Bridge Narrow Pattern Vertical sizes

Width Width Distance Width of Bridge

WD

(nm)

WS

(nm)

dGB

(nm)

WNP

(nm)

h1

(nm)

h2

(nm)

No. 7− 10 800 800 1000 20 100 120

Devices Width of middle part Narrow Pattern

of Bridge Number Horizontal positions

WB0 N d d1 d2 d3 d4

(nm) (nm) (nm) (nm) (nm) (nm)

No. 7 700 2 200 860 660 460 260

No. 8 600 2 200 760 560 360 160

No. 9 540 2 160 780 580 380 180

No. 10 500 2 160 740 540 340 140

downstairs. In each device, positions of the narrow patterns and the white

areas are distributed symmetrically with repsect to the center of the bridge.

4.2.2.2 Fabrication steps

First of all, a SiO2/Si chip was coated by a bi-layer resist. The resist consisted

of a low layer and a high layer with a large difference in sensitivity. To have

high sensitivity, the low layer was made of Copolymer in 11% Ethyl Lactate

(EL11), spinned at 1500 rpm (rounds per minute), and prebaked at 170 ◦C in

2 minutes. Consequently, the thickness of the low layer was 800 nm (Fig. 4.1).

To have low sensitivity, the high layer was formed by PMMA in 2% Anisole

(A2), spinned at 4000 rpm, and prebaked at 170 ◦C in 3.5 minutes. As a result,

the thickness of the high layer was 60 nm (Fig. 4.2).
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Figure 4.14: Layout of six-step round type.

Table 4.5: Parameter values in Fig. 4.14

Devices Drain Source Gate-Bridge Narrow Pattern Vertical sizes

Width Width Distance Width of Bridge

WD

(nm)

WS

(nm)

dGB

(nm)

WNP

(nm)

h1

(nm)

h2

(nm)

h3

(nm)

No. 11, No. 12 800 800 1000 20 60 40 120

Devices Width of middle part Narrow Pattern

of Bridge Number Horizontal positions

WB N d d1 d2 d3 d4 d5 d6 d7

(nm) (nm) (nm) (nm) (nm) (nm) (nm) (nm) (nm)

No. 11 600 2 200 840 720 600 480 360 240 160

No. 12 500 2 140 860 740 620 500 380 260 180

Second, the chip coated by resist was written with the above CAD layouts
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10 µm

Figure 4.15: Optical micrograph of 16 electrodes after development.

(a) (b)

10 µm
10 µm

Figure 4.16: Optical micrographs of straight type (Devices No. 4, No. 5, and

No. 6) after development. (a) Upper layer. (b) Lower layer.

by using the standard EBL under the condition of 120-pA beam current and

5-µs/pixel dose time.

Third, Isoproponal alcohol (IPA) mixed with pure water (H2O) with a ratio
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(a) (b)

10 µm10 µm

Figure 4.17: Optical micrographs of three-step round type (Devices No. 10)

and six-step round type (Devices No. 11 and No. 12) after development. (a)

Upper layer. (b) Lower layer.

of 10 : 1 was used as development solvent. An ultrasonic bath was used to

make the solvent homogeneously. The development processes: the chip was

firstly immersed in the developer glass in 175 s, followed by being rinsed in

the first H2O glass in 30 s, and rinsed in the second H2O glass in 10 s. After

the development processes, the optical micrographs of the total 16 electrodes,

the straight-type devices, and the round-type devices are respectively shown

in Figs. 4.15 − 4.17.

Fourth, 16 electrodes were formed in vacuum less than 1 × 10−5 Torr by

using shadow evaporation of NiCr with a deposition rate of 0.1 nm/s. The first

layer of 20-nm thickness was evaporated from the angle of 166◦. The second

layer of 45-nm thickness was evaporated from the angle of −166◦.

Final, lift off process was done by immersing the chip in the acetone solution

for 1 hour. Then, the chip was dried by Nitrogen gas.

The scanning electron microscopy (SEM) images of the straight type, three-

step-round type, and six-step-round type devices are respectively illustrated

in Figs. 4.18 − 4.20. The width of the gap Wgap is defined as the distance

between the middle point of the drain electrode to the midlle point of the source
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Figure 4.18: Scanning electron microscopy (SEM) images of the straight type.

(a) Device No. 1. (b) Device No. 2. (c) Device No. 3. (d) Device No. 4

electrode as shown in Fig. 4.21. The measurement gap width is measured on

SEM images. The design gap width is calculated on the basis of the model of

shadow evaporation (Fig. 4.6). The design (triangle points) and meaurement

(circle points) gap widths are compared in Fig. 4.22. It can be seen that the

measurement results are close to the design results. This indicates that the

design and measurement results are in good agreement.

For straight type (Devices No. 1 to No. 6 in Fig. 4.22), the difference

between the measurement gap width and the design gap width can be driven

from the number of narrow patterns as follows. The device No. 1 had 4

narrow patterns, which could cause over-dose of EB. As a result, a part of
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4.2. Fabrication techniques

Figure 4.19: Scanning electron microscopy (SEM) images of the three-step

round type. (a) Device No. 7. (b) Device No. 8. (c) Device No. 9. (d) Device

No. 10.

high layer of resist in the bridge area was removed by development. This

is called overdevelopment, resulting in a smaller measurement gap than the

design gap. In contrast, the device No. 5 had a relatively wide bridge (600

nm) and no narrow patterns. Therefore, a part of low layer of resist under the

bridge still existed after development. This was judged as under-development

or insufficient undercut. Consequently, the measurement gap was larger than

the design gap.

For the round type (Devices No. 7 to No. 12 in Fig. 4.22), the measure-

ment gap widths were smaller than the design gap widths. Here, the origin of
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4.2. Fabrication techniques

Figure 4.20: Scanning electron microscopy (SEM) images of the six-step round

type. (a) Device No. 11. (b) Device No. 12

Figure 4.21: Definition of gap widths for straight and round types. (a) Straight

type. (b) Round type.
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Figure 4.22: Design and measurement gap widths of the devices composed

of three electrodes. Straight type includes the devices from No. 1 to No. 6.

Round type includes the devices from No. 7 to No. 12.

the overdevelopment phenomena can arise from the increase of the proximity

effects when the drain and source patterns were composed of many steps.

4.3 Device I

4.3.1 Fabrication Method

Fabrication processes of the device I consisted of two following steps.

Firstly, drain, source, and gate electrodes were simultaneously fabricated

by using EBL, shadow evaporation of 20-nm-thick and 45-nm-thick Au, and

lift off process. An optical micrograph of the device after lift off is shown in

Fig. 4.23(a). Widths of the drain, source, and gate electrodes are larger than

800 nm. The gap width Wgap is 1000 nm. Distance from the gate electrode to
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Figure 4.23: (a) Optical micrograph of the device I after lift off (chip 151202A

No. 2). (b) Measurement circuit using a seminconductor parameter analyzer

(SPA). Drain, source, and gate electrodes are illustrated by yellow rectangles.

Au NPs are distributed randomly between the electrodes.

the source electrode is approximatly 250 nm.

Secondly, arrays of small tunnel junctions were formed by dropping a so-

lution of Au NPs. Namely, 7 µL of an aqueous solution of citric acid contain-

ing 0.007 wt% of 15-nm-diameter Au NPs was dropped on the device. After

dropping, the solution of Au NPs was dried by keeping the chip at the room

temperature (289 K).

The fabricated device was cooled by dipping into liquid nitrogen and mea-

sured by using a semiconductor parameter analyzer (SPA). A model of set-up

measurement is illustrated in Fig. 4.23(b). Current values through all three

voltage-biased terminals were measured.

4.3.2 Results and Discussion

Figure 4.24 shows measured currents versus drain-source voltage VDS at 77

K. The currents at different gate voltages VG of 0.000 V, 0.015 V, and 0.030
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Figure 4.24: Measured currents of the device I at 77 K as gate voltage VG

varies from 0.000 V to 0.030 V in 0.015 V steps. For clarity, from VG = 0.000 V

to 0.030 V (from bottom to top), the curves are shifted from 0 nA to 2 nA with

an offset 1 nA for each 0.015 V step. (a) Drain currents ID versus drain-source

voltage VDS. (b) Gate currents IG are plotted as functions of VDS.
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Figure 4.25: Drain conductances of the device I, GD = dID/dVDS, are plotted

as functions of drain-source voltage VDS and gate voltage VG at 77 K.
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V are represented by solid, dahsed, and dotted curves, respectively. A region

is defined as Coulomb blockade (CB) if absolute drain current |ID| is smaller

than 0.05 nA. At VG = 0.000 V, the CB region is observed between VDS =

−0.2 and 0.15 V (Fig. 4.24(a)). The CB region disappears when VG increases

to 0.015 V, and appears again when VG rises further to 0.030 V. This indicates

the Coulomb oscillation. Figure 4.24(b) shows that all gate currents IG are

almost zero (|IG| < 15 pA). This means that there is no resistive connection

from the gate electrode to the gap between the drain and source electrodes.

Drain conductance, GD = dID/dVDS, plotted as functions of VDS and VG is

illustrated in Fig. 4.25. Blue areas represent the regions with small GD (GD <

0.5 nS). Periodic Coulomb oscillations are observed with a period ∆VG of 0.12

V. Such the characteristics are categorized into a C-SET type.

4.4 Device II

4.4.1 Fabrication Method

The fabrication processes of the device II consisted of four steps as follows.

Firstly, on the SiO2/Si chip, a narrow gate electrode was formed by using a

single PMMA resist, standard EBL, thermal evapration, and lift off process.

Secondly, on the chip containing the gate electrode, drain and source electrodes

were made by using PMMA/copolymer bi-layer resist, EBL, shadow evapora-

tion of 20-nm-thick Au and 45-nm-thick Au, and lift off process. CAD layouts

for EBL and optical micrographs after lift off in the first and the second steps

are respectively shown in Figs. 4.26 and 4.27. Thirdly, 5 µL of a citric acid

solution containing 0.007 wt% of 15-nm-diameter Au NPs was dropped on the

chip. Finally, 3 µL of a toluene solution consisting of 0.1 wt% of 3-nm-diameter

Au NPs was dropped on the chip. After dropping, the solutions of Au NPs

were dried by keeping the chip at the room temperature (287 K).

The measurement circuit using SPA was established as shown in Fig. 4.28.

Voltages were applied to the drain and source terminals have the same mag-

nitude and opposite polarity. The device was dipped into liquid nitrogen to
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(a) (b)

50 ��

50 ��

Gate electrode

Gate electrode

Figure 4.26: Gate electrode of the device II. (a) CAD layout for EBL. (b)

Optical micrograph after lift off.

(a) (b)

50 ��

50 ��

Drain and source 

electrodes

Device II

Figure 4.27: (a) CAD layout of drain and source electrodes of the device II.

(b) Optical micrograph of the device II after lift off.

measure its characteristics at 77 K.
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Figure 4.28: Measurement circuit of the device uses semiconductor parameter

analyzer (SPA). Drain, source, and gate electrodes are illustrated by yellow

rectangles. Au NPs are distributed randomly between the electrodes.

4.4.2 Results and Discussion at 77 K

4.4.2.1 Characteristics at 77 K

Figure 4.29 shows a SEM image of the device II. The gate electrode made of

10-nm-thick Au has a narrow width of 70 nm. The drain and source electrodes

have the same width of 800 nm. Between the drain and source electrodes, there

is the 200-nm-wide gap. The gate electrode penetrates 190 nm into the gap.

It is observed that an array of Au NPs consisting of parallel branches was con-

stituted between the drain and source electrodes (Fig. 4.29(c)). Additionally,

a part of the array connects to the gate electrode.

Currents versus drain-source voltage VDS of the device II measured at 77 K

are shown in Fig. 4.30. The currents at different gate voltages VG of −25 V, 0

V, and +25 V are respectively represented by dotted, solid, and dashed curves.

Figure 4.30(a) shows drain currents ID. Again, a CB region is defined as the

region where the absolute drain current is smaller than 0.05 nA (|ID| < 0.05

nA). At VG = 0, there is a CB region between VDS = −5.4 V and +4.2 V. The
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(a) (b)
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Gate
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Of Gate
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(c)

Source Drain

Gate

Figure 4.29: Scanning electron microscopy (SEM) images of the device II

(chip 151214 21B No. 3) after measurment at different scales. Top of gate

electrode is shown by a yellow arrow. Small white dots are Au NPs.

absolutely smaller value VDS of 4.2 V is chosen as an absolute threshold voltage

(VDS)th of the device II at 77 K. Besides, gate currents IG are illustrated in

111



4.4. Device II

-6

-4

-2

0

2

4

6

-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

-15 -10 -5 0 5 10 15

V
G

= �25 V

V
G

= +25 V

V
G

= � V

V
G

= �25 V

V
G

= +25 V

V
G

= � V

V
DS

(V) V
DS

(V)

I D
(n

A
)

I G
(n

A
)

(a) (b)

Figure 4.30: Measured currents of the device II at 77 K and at different gate

voltages of −25 V, 0 V, and +25 V. (a) Drain currents ID versus drain-source

voltage VDS. (b) Gate currents IG are plotted as functions of VDS.

Fig. 4.30(b). Although the absolute gate current |IG| is smaller than 0.03 nA

at VG = 0, it becomes large (a few nA) at VG = ±25 V. This indicates that

when non-zero VG was applied to the device II, IG flew through the device.

Therefore, the characteristics of the device II are categorized into those of R-

SET type. In addition, the relationship between ID and IG is not linear, in

which the absolute ratios |ID/IG| can be larger than unity at several values of

VDS and VG. For instance, |ID/IG| > 1.0 when VG = −25 V and VDS is in the

range from 2.0 V to 15 V.

The relationship between ID versus VG and VDS in details is illustrated in

Fig. 4.31(a). White and black areas show ID over +1.0 nA and under −1.0

nA. The CB region (|ID| < 0.05 nA) is depicted by a pink area surrounded by

light blue (ID = −0.05 nA) and blue (ID = +0.05 nA) contour curves. This

CB region mainly appears in the ranges of VG from −6 V to +6 V and VDS

from −4V to +4 V. Drain conductance, GD = dID/dVDS, is plotted on the
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Figure 4.31: Measured drain current and conductance of the device II at 77 K.

Defined colors of contour curves are different from those in the color bars. (a)

Measured drain currents ID versus gate voltage VG and drain-source voltage

VDS. ID from −0.1 nA to +0.1 nA are illustrated by contour curves (from

bottom to top) in 0.05 nA steps. (b) Drain conductances, GD = dID/dVDS,

are plotted as functions of VG and VDS. GD from 0.01 nS to 0.21 nS are shown

by contour curves in 0.05 nS steps.
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VDS − VG plane in Fig. 4.31(b). GD less than 0.01 nS is represented by a

black area surrounded by a yellow ellipse. At VDS = 0 V, GD > 0.1 nS (a pink

ellipse) when VG ≥ 25 V. Thus, the experimental results did not exhibit the

Coulomb oscillations.

4.4.2.2 Discussion

Effective charging energy of the device II, (EC)exp, is estimated from the char-

acteristics of the device at 77 K as follows. According to the calculation for

a symmetrically biased R-SET model in Ref [28], the total capacitance CΣ

becomes e/(VDS)th. In Sect. 4.4.2.1, the absolute threshold voltage (VDS)th of

the device II at 77 K is observed as 4.2 V. Therefore, (EC)exp is calculated as

(EC)exp =
e2

2CΣ

=
e(VDS)th

2

= 2.1 eV (4.2)

The Au NP array consisting of the parallel branches between the drain

and source electrodes in Fig. 4.29(b) is simply modelled into parallel branches

of tunnel junctions. Each branch consists of tunnel junctions in series. In

addition, 3-nm Au NPs chemisorbed via decanethiol are assumed to work as

islands whereas 15-nm Au NPs are assumed to be conductive bridges. Since

the 200-nm-wide gap of the device is over 60 times longer than the diameter

of one 3-nm Au NP, there should be tens of 3-nm Au NPs on each branch.

Effective charging energy of one island (3-nm Au NP) is calculated from

the geometry of the device II, EC1, as follows. The self-capacitance Cself of one

island is simply calculated as [84],

Cself = 4πε0εd1r, (4.3)

where

ε0 is the vacuum permittivity (8.854 ×10−12 F/m);
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εd1 is the dielectric constant of SiO2;

r is the radius of the island (1.5 nm).

Then, Cself is estimated as 0.667 aF. The mutual (tunnel) capacitance Cm

between two 3-nm Au NPs is simply calculated as below [84],

Cm = 2πε0εd2

√
d2 − r2

∞∑
i=1

1

sinh(iarcosh(d/r))
(4.4)

in which εd2 is the dielectric constant of decanethiol (2.6) [14]; d is a half of the

distance between two NP centers: 2d = 2r + w. Here, w is the space between

two Au NPs, working as a tunnel barrier. For simplification, w is assumed to

be 1 nm. Consequently, d is 2 nm. Hence, with the sum in Eq. (4.4) from i =

1 to 100, Cm is estimated as 0.363 aF. It is assumed that each island has two

neighboring islands, the total capacitance of one island C1 is given in the form

of Cself + 2Cm which is calculated as 1.393 aF. Then, the charging engery of

one island EC1 is given by

EC1 =
e2

2C1

= 0.057 eV. (4.5)

From the viewpoint of energies, the ratio (EC)exp/EC1 corresponding the

effective number of islands on a branch, which is 37. Otherwise, from the

viewpoint of geometry, if the branch is composed of only 3-nm Au NPs with

1-nm spacing, there should be at least 50 NPs in the 200-nm-wide gap between

the drain and source electrodes. The minimum number of NPs (50) larger than

the ratio (EC)exp/EC1 (37) indicates that not only 3-nm Au NPs, but also 15-

nm Au NPs participate in bridging the 200-nm gap. In a circuit composed of

parallel branches, the branch has the smallest charging energy should be the

branch whose (EC)exp calculated from the ID−VDS characteristics. The other

branches should have larger charging energy.

A simple simulation model was built on the basis of the structure of the

device II in Fig. 4.29 and its electrical characteristics. Firstly, the model

consisted of three terminals because of the three-terminal structure of the

device II. Secondly, the Au NP array was simplified to eight parallel branches
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Figure 4.32: Schematic diagram of the simulation model.

of tunnel junctions. Finally, since the gate electrode was connected to a part

of the NP array in Fig. 4.29, it was assumed to be resistively connected to one

of the branches. Simulation was executed by using Monte-Carlo method [26]

in the conditions of 77 K and no cotunneling.

Schematic diagram of the simulation model is described in Fig. 4.32. On

each branch, there are two tunnel junctions in series. Positions of the junctions

are like a matrix of elements Ji,j with i = 1, 2, ..., 8 and j = 1, 2. Here, i is
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Table 4.6: Paramters in the Simulation Model

Junctions Parameters

Ji,j J1,1 J1,2 J2,1 J2,2 J3,1 J3,2 J4,1 J4,2

Ci,j (aF) 0.020 0.018 0.018 0.016 0.016 0.014 0.014 0.012

Ri,j (GΩ) 20.0 30.0 30.0 40.0 40.0 50.0 50.0 60.0

Junctions Parameters

Ji,j J5,1 J5,2 J6,1 J6,2 J7,1 J7,2 J8,1 J8,2

Ci,j (aF) 0.012 0.010 0.010 0.008 0.008 0.007 0.007 0.006

Ri,j (GΩ) 60.0 70.0 5.0 7.0 7.0 8.0 8.0 9.0

Gate Resistor Parameter

RG (GΩ) 1.0

the position of the branch from top to bottom; j is the position of the junction

from left to right on each branch. The junction Ji,j has capacitance Ci,j and

resistance Ri,j. The gate resistor RG connects the gate terminal and the eighth

branch (J8,1, J8,2). The drain and source voltages have the same magnitude

and opposite polarity. Directions of the drain, source, and gates currents are

shown by arrows.

Since the model is built on the basis of the simple assumptions, values of

parameters are only reprsentative selections in order for the numerical char-

acteristics to fit to the experimental characteristics. The parameters listed in

Table 4.6 are determined as follows. Firstly, in the parallel-branch model, the

threshold voltage of the CB region (VDS)th is determined by the branch hav-

ing the lowest charging energy, so the largest total capacitance on one branch
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Figure 4.33: Simulated and measured drain currents ID versus drain-source

voltage VDS at gate voltage VG of 0 V and 77 K.

V
G

(V)

V
D

S
(V

) I
D

(n
A

)

Figure 4.34: Simulated drain currents ID are plotted as functions of gate

voltage VG and drain-source voltage VDS at 77 K. ID from −0.1 nA to +0.1

nA are illustrated by contour curves (from bottom to top) in 0.05 nA steps.

Definition of contour colors are different from those in the color bar.
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(CΣ)max is estimated as (CΣ)max = e/(VDS)th ≈ 0.038 aF (the formular is driven

from the symmetrically biased R-SET model). The first branch (J1,1, J1,2) is

assumed to have (CΣ)max. Secondly, tunnel resistances of the junctions are

selected so that the simulated slope of ID versus VDS fits the measured slope

in Fig. 4.30(a). Thirdly, effect of the gate voltage is considered as follows. The

Coulomb diamond in the R-SET model disappears at |VG|limit = e/(2C∗) [35].

On the other hand, in the experiment data in Fig. 4.31(a), the CB region

mainly appears in the range of |VG| less than 6 V, that is, |VG|limit = 6 V.

Hence, the total capacitance on the resistively-coupled branch C∗ is 0.013 aF.

This branch is assumed to be the eighth branch (J8,1, J8,2). Finally, the gate

resistance RG is adjusted to reproduce the slope of ID on the VDS − VG plane

in Fig. 4.31(a).

Simulated and measured ID versus VDS are represented by dotted and

dashed curves in Fig. 4.33. It is demonstrated that the simulation result

is in good agreement with the experiment data. Figure 4.34 illustrates ID

on the VDS − VG plane. The CB region (pink area) surrounded by light blue

(ID = −0.05 nA) and blue (ID = +0.05 nA) contour curves mainly appears in

the region of |VG| ≤ 6 V and |VDS| ≤ 4 V. This result reasonably agrees with

that in Fig. 4.31(a). Strictly speaking, the simulation model is valid in limited

conditions because the real device comprised a lot of Au NPs should have much

more tunnel junctions and gate resistors. Nonetheless, this model can repro-

duce quite well the experiment results from the viewpoint of current-voltage

characteristics.

4.4.3 Results and Discussion at Room Temperature

The device II was also measured at room temperature (287 K). The device was

exposed in the air and measured by using the SPA. A measurement circuit is

set as the same as in Fig. 4.28.

Current-voltage characteristics measured at 287 K are shown in Fig. 4.35.

Drain currents ID are plotted as functions of drain-source voltage VDS at differ-

ent gate voltages VG of −35 V, 0 V, and +35 V. At VG = 0 V, ID is reprensented
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Figure 4.35: Measured drain currents ID plotted as functions of drain-source

voltage VDS at room temperature (287 K) and different gate voltages VG of

−35 V, 0 V, and +35 V.

by a solid line. The CB region is defined as the region where |ID| < 0.1 nA.

Here, the threshold for the CB region at room temperature (0.1 nA) is assumed

to be larger than that at 77 K (0.05 nA) because of larger effects of thermal

fluctuations at room temperature. Then, the CB region is observed between

VDS of −3.6 V and +2.4 V, which is narrower than that at 77 K (between VDS

of −5.4 V and +4.2 V) due to thermal fluctuations [25]. A CB width WCB is

defined as the width of the CB region shown by arrows in Fig. 4.35. At VG

± 35 V, the CB regions disappear, which indicates the effect of VG on the CB

state.

The effect of VG on drain conductance, GD = dID/dVDS, is illustrated in

Fig. 4.36. Blue area shows the small GD which is less than 0.1 nS. By sweeping

VDS from −6 to +6V, the horizontal dimension of the blue area is modulated
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Figure 4.36: Drain conductances, GD = dID/dVDS, are plotted as functions

of gate voltage VG and drain-source voltage VDS at room temperature (287 K).
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Figure 4.37: Coulomb blockade width WCB is plotted as a function of gate

voltage VG at room temperature (287 K).
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by changing VG. This modulation can be seen more clearly in Fig. 4.37 where

the width of CB gap, WCB, is changed by applying VG. Therefore, at room

temperature, the CB region is observed at VG = 0 and modulated by changing

VG.

4.5 Conclusion

In this chapter, the fabrication processes were described in details. The drain,

source, and gate electrodes were formed on the SiO2/Si chip by using standard

EBL and evaporation techniques. The designed and fabricated geometries of

the electrodes were confirmed in good agreement by analyzing an example of

the fabricated chip. Arrays of tunnel junctions between the electrodes were

formed by dropping the solutions of Au NPs. After measurements, types of

the devices were determined by observing the CB phenomena. The fabrication

processes and charactersitics of two typical devices including the device I and

device II were introduced. The device I and the device II had the different

gaps between the drain and source electrodes, different relative positions of

the gate electrodes compared to the gaps, and the different amounts of Au

NPs, resulting in different electrical characteristics. At 77 K, the device I was

categorized into C-SET type whereas the device II was categorized into R-

SET type. Moreover, for the device II, the CB was observed and modulated

by applying the gate voltage at room temperature (287 K). Thus, our method

is able to be useful for the future of the fabrication of SE devices.
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Conclusions

The thesis achieved two main goals including the improvement of the nonlinear

characteristics of SE logic devices and the fabrication of SE devices having

characteristics like SET.

The first objective was gained by using numerical method. SE logic de-

vices such as SE four-junction inverter (SE FJI) and SE NAND gates have

the disadvantage of the gradual switches between high and low output lev-

els, resusting in unclear decision about output states in the transition region.

To improve the gradual switching, input discretizer (ID) was added between

the input terminal and the main device (SE logic device). Parameters of the

ID was calculated on the basis of the condition of CB phenomena to obtain

the sharp switching the designed threhold voltage. Monte-Carlo simulation

was used to confirm the improvement of the characteristics of the SE logic

device. The addition of the ID to the FJI (ID-FJI) made the switching of

the ID-FJI sharp. The transition region of the ID-FJI was reduced to 0.011

times that of the solo FJI. The combination of the ID and the NAND gate

(ID-NAND) made the switches of the ID-NAND sharp and its unclear re-

gions were reduced to 0.33 times those of the solo NAND gate. Furthermore,

two serially-cascaded IDs added between the input terminal and the SE FJI

created the SE hysteretic inveter, 2ID-FJI. Parameters of the 2IDs were also

calculated on the basis of the CB phenomena and confirmed by Monte-Carlo

simulation to exhibit the hysteretic characteristics. The 2ID-FJI was used to
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Figure 5.1: Simplified layout of a model composed of an input discretizer (ID)

and an SE device. The SE device consists of SET1 and SET2. (a) Large island

electrode. (b) Small island electrode.

improve stochastic resonance. The simulation results indicated that stochastic

resonance in the 2ID-FJI was better than that in the solo FJI and equivalent

to that in the ideal hysteretic inverter from the viewpoint of the correlation

coefficient between the input and output signals.

The second objective was achieved from the experiment process. Fabrica-

tion of SE devices consisted of two main steps. In the first step, drain, source,

and gate electrodes were fabricated by using standard EBL and evaporation

techniques. In the second step, arrays of small tunnel junctions between the

electrodes were formed by dropping solutions of Au NPs. To reduce the techini-

cal difficulty during the fabrication, the gap size between the source and drain

electrodes was designed to be at least 200 nm and the connections between Au

NPs occured randomly. The fabricated devices were measured to confirm their

characteristics. There were two typical configurations of the fabricated devices

including device I and device II. In comparison with the previous works [14,32]

which had narrow (sub-50-nm) gaps and operation temperature until 80 K, the
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device I had the wider (1000 nm) gap and characteristics like C-SET at al-

most equivalent temperature (77 K). The deive II exhibited the characteristics

like R-SET at 77 K. At room temperature, the CB gap was observed and

modulated by applying the gate voltage to the device II. Hence, the deivce II

used the different method and exhibited characteristics like R-SET at higher

temperature than the previous litterature [34, 35] (sub-1-K). The method of

fabrication might be useful for the realization of SE devices in the future.

Although the ID was designed for the improvement of the nonlinear char-

acteristics of SE logic devices by numerical method, it is difficult to fabricate

the total structure of the ID by using Au NPs. This can be explained as fol-

lows. The advantages of the ID mainly depend on the grounded capacitance

whose value must be formed relatively exact. This grounded capacitance is

difficult to form by using Au NPs because of the random distribution of Au

NPs after dropping. Therefore, a combination of the ID and the main device

might be done as shown in Fig. 5.1. The ID consists of the tunnel junction

J0 and the island electrode. The main device is composed of SET1 and SET2.

Parameters in Fig. 5.1 include a voltage source Vs and an output voltage Vout.

The electrodes can be fabricated by using EBL and shadow evaporation [85].

After that, solutions of Au NPs will be dropped to form the tunnel junctions

of the ID and the main SE device. The size of the circuit includes the size

of the ID and the size of the main device. In the simulation, the grounded

capacitance C01 of the ID is much larger than the tunnel capacitance, then

size of the C01 is main contributor. If we assume that the shape of the island

electrode is a sphere far from the ground (Fig. 5.1(a)), for the SiO2 substrate

and C01 = 72 aF, the diameter of the sphere is evaluated approximately 0.52

µm. In addition, if we fabricate the 100-nm-wide electrodes, the area of the

circuit (the ID and the main device) can be 1.0 µm × 1.0 µm. The size of

the circuit can be reduced by designing the model as shown in Fig. 5.1(b). In

Fig. 5.1(b), the size of the island electrode is reduced by making the island

electrode close to the ground.

The achivements of the thesis are prospective for future applications. Firstly,
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the correct operation of the SE logic devices requires that the output levels lie

in the certain ranges defined as the high and low levels. The output of the SE

logic device (the FJI and NAND gates) is continuous in the transition region,

causing the error decisions about the output states in this region. This error

can be reduced if the logic circuits are composed of the ID-FJI and/or the ID-

NAND because they have the narrower transition regions (the sharp switches).

Furthermore, the possibility of connecting the ID-FJIs in series and in parallel

allows us to implement various logic circuits, for example the interver string

and the flip-flop, and increase the number of fan-ins and fan-outs in the circuit.

Secondly, in the thesis, the SE hysteretic inverter which enhanced stochastic

resonance to be equivalent to the ideal hysteretic inverter can be used to im-

prove the detectability of the weak signals in sensory systems. Finally, in the

thesis, the device exhibiting characteristics like R-SET was fabricated. The

R-SET device is a potential candidate for eliminating the random background

charge which is one of the serious obstacles in digital applications. Moreover,

the observation of CB phenomenon at room temperature are prospective for

practical applications.
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Appendix A

Negative Differential Resistance

Characteristics

A.0.1 Fabrication Method

In our experiment, we also observed another interesting characteristcs: nega-

tive differential resistance (NDR). Below, we introduced device III as an ex-

ample of the device exhibiting the NDR phenomena.

Fabrication processes of the device III included three steps as follows.

Firstly, on the SiO2/Si chip, drain, source, and gate electrodes were formed

by using a single copolymer (PMMA and PMAA 11 %) resist, standard EBL,

thermal evaporation of 30-nm-thick Au, and lift off process. Secondly, 0.1 µL

of a toluene solution containing 0.1 wt% of 3-nm Au NPs coated by decanethiol

was dropped on the chip. Finally, 0.1 µL of a citric acid solution containing

0.007 wt% of 5-nm Au NPs was also dropped on the chip. Here, 3-nm Au

NPs were expected to work as islands whose charging energies should be large

enough for room temperature operation. In addition, 5-nm Au NPs were used

to make conductive bridges, which contributed to reduce resistance between

the drain and source electrodes.

The device III was measured by using SPA. The measurement circuit es-

tablished is the same as Fig. 4.28. Voltages applied to the drain and source

were the same in magnitude and opposite in polarity. The device was exposed
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1�m

Drain
Source

Gate

Figure A.1: Scanning electron microscopy (SEM) image of the device III (chip

160419A No. 4) after measurement.

to the air to measure its characteristics at room temperature (298 K).

Figure A.1 shows a SEM image of the device III after measurements. For

clarity, edges of the drain, source, and gate electrodes are shown by white

dashed lines. Between the drain and source electrodes, there is a 3.1-µm-wide

gap. The gate electrode is 7.3 µm far from the drain electrode. An array of

Au NPs was constituted between the electrodes.

A.0.2 Results and Discussion

Currents of the device III measured at room temperature (298 K) are shown

in Fig. A.2. Drain current ID, source current IS, and gate current IG at

gate voltage VG = 0.5 V are respectively represented by dotted, dashed, and

solid curves in Fig. A.2(a). ID and IS have the same magnitude but opposite

polarity. IG is less than 0.6 nA. It can be seen that a clear NDR phenonmenon

is observed in the region of VDS from 1.9 V to 2.5 V, which is shown by the

128



Appendix A. Negative Differential Resistance Characteristics

0

1

2

3

4

5

6

7

0 1 2 3 4

V
DS

(V)

I D
(n

A
)

(b)

P

V

V
G

= 0.0 V

V
G

= 0.5 V

V
G

= 1.5 V

-8

-6

-4

-2

0

2

4

6

8

-4 -2 0 2 4

V
DS

(V)

I
(n

A
)

(a)

I
S

I
G

I
D

NDR

Figure A.2: Measured currents versus drain-source voltage VDS of the device

III at room temperature (298 K). Currents are shifted by using the current

offsets at VG = VDS = 0.0 V. (a) Drain current ID, source current IS, and gate

current IG at VG = 0.5 V. Negative differential resistance (NDR) is shown by

an arrow. (b) ID at different VG of 0.0 V, 0.5 V, and 1.5 V. P and V stand for

peak and valley points of NDR, respectively.

V
G

(V)

P
 –

V
 H

ei
g
h

t 
(n

A
)

(a)

V
D

S
(V

) G
D

(n
S

)

V
G

(V)

(b)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

Figure A.3: Characteristics of the device III are observed at 298 K. (a) P-V

height is plotted as a function of gate voltage VG. (b) Drain conductances,

GD = dID/dVDS, are plotted as functions of VG and drain-source voltage VDS.
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arrow.

Effects of VG on the NDR behavior are described in Fig. A.2(b). All the

absolute IG are confirmed to be under 0.8 nA. ID at different VG of 0.0 V, 0.5 V,

and 1.5 V are illustrated by solid, dotted, and dashed curves, respectively. All

of three curves exhibit NDR phenomena, in which the most remarkable NDR

appears in the region of 1 V < VDS < 3 V. We use a “P-V height”, which is

the height of the peak (P) from the valley (V) indicated by the double arrow

in Fig. A.2(b), for characteristics of the NDR. The P-V height increases when

VG increases from 0.0 V to 0.5 V. It is reduced when VG rises further from 0.5

V to 1.5 V.

The relationship between the P-V height and VG are demonstrated in more

details in Fig. A.3(a), where the oscillation of the P-V height is observed. The

P-V height reaches a maximum (2.3 nA) at VG = 0.6 V, whereas it reaches a

minimum (0.29 nA) at VG = 0.0 V. Figure A.3(b) shows the drain conductance

GD plotted on the VDS−VG plane, where GD is defined as dID/dVDS. A white

area describes the region without NDR (GD > 0). Blue areas correspond to

the noticeable NDR regions where GD < −4 nS. Since the NDR phenonmena

could be controlled by applying VG, NDR is tunalbe.

Although it is difficult to observe the individual Au NP in Fig. A.1, it

can be observed that the Au NP array contains multi-directional paths with

different densities. The Au NP array suggests that there are many branches

of tunnel junctions whose parameters are different. These properties could be

a reason to generate the NDR phenomena in SE devices [86].
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