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概要

近年，データストリームに対するリアルタイム処理の重要性が高まってきている．特にストリー

ム処理に特化したデータストリーム管理システム（Data Stream Management System，DSMS）は，

理論的に無限のデータストリームに対して SQLライクな継続的クエリを実行することでリアルタ

イム処理を実現する．このような背景の中で，増加し続けるデータ量に対してリアルタイムなレ

スポンスを提供する手段として FPGA（field-programmable gate array）に代表されるプログラマブ

ル・デバイスをクエリ処理専用のアクセラレータとして活用する取り組みが注目されている．本

論文は，データストリーム処理におけるウィンドウ集約クエリの高速化を目的として，FPGAを

用いたクエリ・アクセラレータの設計・評価に関する研究について記述したものである．

本論文では，まず関連研究の説明を通して本研究の立ち位置を明確化した後，３つの研究課題

とそれぞれの解決方法を示している．1つ目の研究課題として，従来研究のデータストリーム処理

専用ハードウェアでは入力データ（タプル）の順序の乱れへの対応が考慮されていなかった問題

が挙げられる．そこで本研究は，順序の乱れた入力タプルを許容する効率的なハードウェア実装

方法を提案している．2つ目の研究課題は，オーバラップするスライディング・ウィンドウの増加

に対して性能及び面積の観点からスケールしない問題を解決するハードウェア設計方法を示すこ

とである．そこで，オーバラップするスライディング・ウィンドウをペイン（pane）と呼ばれる

サブ・ウィンドウに分割し，アグリゲーション（集約）処理を 2段階に分けてパイプライン実装

する．この際 FPGA内部のメモリ・ブロック（Block RAM, BRAM）を有効活用することで，従来

手法と比較して，性能と面積の両観点において優れたスケーラビリティを実現する．3つ目の研究

課題は，クエリ処理内容の変更に伴うオーバーヘッドによりクエリの実行時（ランタイム時）の

コンフィギュレーションが困難な点の解決である．本研究では，この問題を解決する動的再構成

可能なクエリ・アクセラレータ「Configurable Query Processing Hardware (CQPH)」のアーキテク

チャを提案している．提案アーキテクチャの実現可能性と有効性を示すことを目的として，Xilinx

の FPGA開発ボードを用いて CQPHのプロトタイプを実装・評価した．実機を用いた実験の結果，

ギガビット・イーサネットの実効速度で受信したパケットを取りこぼすことなく連続して処理でき

ることを確認した．また，より高速な入力インターフェイスとしてDRAMを用いた実機テストで

は，10Gbps以上の入力ストリームに対して，複数のクエリを並列処理できることを示している．



Abstract

An important and growing class of applications requires to process online data streams on the fly in

order to identify emerging trends in a timely manner. Data Stream Management Systems (DSMSs) deal

with potentially infinite streams of data that should be processed for real-time applications, executing

SQL-like continuous queries over data streams. In order to deliver real-time response for high-volume

applications, there is currently a great deal of interest in the potential of using field-programmable gate

arrays (FPGAs) as custom accelerators for continuous query processing over data streams.

One of the previous studies focuses on sliding-window aggregate queries and shows how these

queries can be implemented on an FPGA. Nevertheless, there still remain three practical issues related

to the implementation of sliding-window aggregation. The first issue is that it is necessary to consider

out-of-order arrival of tuples at a windowing operator. To address the issue, this work presents an order-

agnostic implementation of a sliding-window aggregate query on an FPGA. The second issue is that a

large number of overlapping sliding-windows cause severe scalability problems in terms of both perfor-

mance and area. Instead of replicating a large number of aggregation modules, each sliding window is

divided into non-overlapping sub-windows called panes. Results obtained in this work indicate that the

pane-based approach can provide significant benefits in terms of performance (i.e., the maximum allow-

able clock frequency), area (i.e., the hardware resource usage), and scalability. Finally, the third issue

is that there is a lack of run-time configurability, which severely limits the practical use in a wide range

of applications. To address the problem, the present study proposes a novel query accelerator, namely

Configurable Query Processing Hardware (CQPH). CQPH is an FPGA-based query processor that con-

tains a collection of configurable hardware modules, especially designed for sliding-window aggregate

queries. As a proof of concept, a prototype of CQPH is implemented on an FPGA platform for a case

study. Evaluation results indicate that the prototype implementation of CQPH with a Gigabit Ethernet

interface can process a packet stream at wire-speed without packet loss. Since the Gigabit Ethernet is not

sufficient to saturate the CQPH, a DDR3 SDRAM module is used as a high-speed data source. Results

indicate that the prototype of CQPH can execute multiple queries simultaneously without sacrificing the

performance (i.e., throughput) even if the data rate reached more than 10 Gbps.
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Chapter 1

Introduction

An important and growing class of applications requires to process online data streams on the fly in

order to identify emerging trends in a timely manner. Many data processing tasks, such as financial

application [23] and traffic monitoring [48], are required to process high-rate data sources with certain

time restrictions. To address the issue, database researchers have expanded the data processing paradigm

from the traditional “store-and-process” model toward the “stream-oriented processing” model [2, 4, 8].

Data Stream Management Systems (DSMSs) [3] deal with potentially infinite streams of data that

should be processed for real-time applications, executing SQL-like continuous queries [6] over data

streams. It is essential for DSMSs that incoming data be processed in real time, or at least near real-time,

depending on the applications’ requirements. In particular, low-latency and high-throughput processing

are key requirements of systems that process unbounded and high-rate data streams rather than fixed-size

stored data sets.

One of the key challenges for DSMSs is an efficient support for sliding-window queries [5] over

unbounded streams. Indeed, it is considered one of the eight key requirements in [41] that a stream

processing system must have a highly-optimized and minimal-overhead execution engine to deliver real-

time response for high-volume applications. In order to meet the above-mentioned requirement, there

is currently a great deal of interest in the potential of using field-programmable gate arrays (FPGAs) as

custom accelerators for continuous query processing over data streams [24, 26, 25, 44, 38, 40, 39, 29].

1.1 Motivating Issues

Mueller et al. consider the use of FPGAs for data stream processing as co-processors [25]. In particular,

they propose an implementation method for sliding-window aggregate queries on an FPGA. In fact, it is

a common approach that subsequence of data stream elements (hereafter tuples) is defined as a window.

In other words, windows decompose a data stream into possibly overlapping subsets of tuples (i.e., each
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tuple belongs to multiple windows). After that, according to a given query, window-aggregate operators

repeatedly calculate aggregate functions such as COUNT, SUM, AVERAGE, MIN, and MAX for each

window. Nevertheless, there still remain three practical issues related to the implementation of sliding-

window aggregation:

1. The first issue is that it is necessary to consider out-of-order arrival of tuples at a windowing

operator.

2. The second issue is that a large number of overlapping sliding-windows cause severe scalability

problems in terms of both performance and area.

3. The third issue is that there is a lack of run-time configurability, which severely limits the practical

use in a wide range of applications.

Unfortunately, the above issues are neither discussed nor addressed in the previous work [25], and to

the best of our knowledge, each of them is still an open question for hardware-based approaches. In the

following subsections, a brief explanation is given for each problem.

1.1.1 Out-of-order arrival of tuples

The implementation technique adopted in [25] relies on an implicit assumption about the physical order

of incoming tuples, that is to say, tuples arrive in correct order at a windowing operator. Obviously, this

assumption simplifies the definition and implementation of sliding windows; however, it does not always

fit into a realistic setting where some degree of disorder (i.e., out-of-order arrival of tuples) might be

expected.

It is mentioned in [21] that previous works on data streams commonly model a data stream as an

unbounded sequence of tuples arriving in order of some timestamp-like attribute; however, disorder

naturally occurs in real-world stream systems. This means that, in reality, we cannot always assume all

tuples to be ordered by their timestamp values when they arrive to a DSMS. For example, input tuples

arriving over a network from remote sources may take different paths with different delays. As a result,

some tuples may arrive out of sequence according to their timestamp values.

1.1.2 Scalability issue for overlapping sliding-windows

It is stated in [19] that sliding-window aggregate queries allow users to aggregate input streams at a

user-specified granularity and interval, and thereby provide the users a flexible way to monitor streaming

data. In other words, user-defined queries can determine the number of overlapping sliding-windows.

Nevertheless, the previous approach adopted in [25] relies on a simple replication strategy of aggregation

2
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units for overlapping sliding-windows. As a result, a large number of aggregation circuits are instantiated

on an FPGA, and this leads to serious scalability problems in terms of clock frequency (i.e., performance)

and hardware resource usage (i.e., area).

1.1.3 Lack of run-time configurability

A common limitation from which the most FPGA-based approaches suffer is that the existing approaches

impose significant overhead on run-time query registration/modification. It is mentioned in [29] that

while supporting query modification at run time is almost trivial for software-based techniques, they are

highly uncommon for custom hardware-based approaches such as FPGAs. Moreover, as stated in [15],

given the dynamic environment of data streams, queries can join and leave a streaming system at any

time. It is therefore imperative for a query processing accelerator to support on-the-fly configurability

for easy adaptation to the dynamic environment.

1.2 Objectives

There are three main objectives in this dissertation:

1. The first objective is to address the problem of out-of-order arrival of tuples and propose an alter-

native approach to implement a sliding-window aggregate query on an FPGA.

2. The second objective is to address the scalability problem and propose another approach to imple-

ment a sliding-window aggregate query on an FPGA in an efficient and scalable manner.

3. The third objective is to address the problem of the lack of run-time configurability and propose a

novel query accelerator, namely Configurable Query Processing Hardware (CQPH).

1.2.1 Order-agnostic implementation technique

First, the dissertation presents an order-agnostic implementation of a sliding-window aggregate query on

an FPGA, based on a one-pass query evaluation strategy called the Window-ID (WID) [20]. With the

proposed method, we can process out-of-order tuples at wire speed due to the one-pass query evaluation

strategy and simultaneous evaluations of overlapping sliding-windows by taking advantage of the hard-

ware parallelism. The proposed implementation can handle disorder by utilizing punctuations [47]. It is

stated in [20] that WID does not require a specific type of assumption about the physical order of tuples

in a data stream and can process out-of-order tuples as they arrive without sorting them into the “correct”

order. Since the proposed implementation is based on WID approach, it can also process input tuples on

the fly without reordering them into the correct order.

3
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1.2.2 Efficient and scalable hardware design

Secondly, the dissertation presents a scalable hardware design of sliding-window aggregation and its

implementation on an FPGA, by examining and integrating two key concepts: Pane [19] and Window-

ID (WID) [20]. Instead of replicating a large number of aggregation modules for overlapping sliding-

windows, we divide each sliding window into non-overlapping sub-windows called panes. For each

sub-window, or pane, we first calculate a sub-aggregate (i.e., pane-aggregate), which is then shared by

the aggregation of the multiple windows (i.e., overlapping sliding-windows). The pane-based approach

is originally proposed for software-based implementation to reduce the required buffer size and the com-

putation cost [19]. In this work, however, we show that the same idea can provide significant benefits for

hardware-based implementation, especially in terms of performance (i.e., the maximum allowable clock

frequency), area (i.e., the hardware resource usage), and scalability.

1.2.3 CQPH: Configurable Query Processing Hardware

Finally, the dissertation presents the design and evaluation of Configurable Query Processing Hardware

(CQPH), a highly-optimized and minimal-overhead query processing engine, especially designed for

sliding-window aggregate queries. CQPH is an FPGA-based query processor that contains a collection

of configurable hardware modules, each of which supports selection (i.e., filtering), group-by operation

(i.e., partitioning), and sliding-window aggregation. CQPH is highly optimized for performance with

a fully pipelined implementation to exploit the increasing degree of parallelism that modern FPGAs

support. In addition, the proposed design imposes minimal overhead on query configuration. More

specifically, CQPH can support registration of new queries as well as modification of existing queries,

without a time-consuming compilation process which is a common drawback of the previous approaches.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides necessary background and briefly

reviews related work. Chapter 3 presents an order-agnostic implementation of a sliding-window aggre-

gate query on an FPGA. Chapter 4 presents a scalable hardware design of sliding-window aggregation

and its implementation on an FPGA. Chapter 5 presents the design and evaluation of CQPH. Finally,

Chapter 6 concludes the dissertation by summarizing the results and identifying future work.
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Chapter 2

Background and Related Work

Chapter 2 briefly reviews related work and provides some background information.

2.1 Data Processing on FPGAs

2.1.1 Acceleration of Data-intensive Operations using FPGAs

As stated in [45], FPGAs are an increasingly attractive alternative to overcome the architectural lim-

itations of commodity hardware. Mueller et al. show the potential of FPGAs as an accelerator for

data-intensive operations [24]. It is demonstrated in [24] that FPGAs can achieve competitive perfor-

mance compared to modern general-purpose CPUs while providing remarkable advantages in terms of

power consumption and parallel stream evaluation. Indeed, recently a number of research efforts have

used FPGAs to target acceleration of data-intensive workloads. For instance, Putnam et al. propose an

FPGA-based reconfigurable fabric, called Catapult, to accelerate datacenter workloads [37]. They in-

troduce the Catapult fabric into 1,632 servers, and demonstrate its efficacy in accelerating the Bing web

search engine. Some other works focus on the idea of using custom hardware to accelerate database

queries [49, 9, 10, 53, 52]. Woods et al. propose an intelligent storage engine, called Ibex, which sup-

ports advanced SQL off-loading [49]. Dennl et al. propose partial reconfiguration-based approach to

accelerate a subset of SQL queries for traditional database systems [9, 10]. Yoshimi et al. present accel-

eration of OLAP workload on interconnected FPGAs with flash storage [53, 52].

2.1.2 Continuous Query Processing on FPGAs

FPGAs are used to process data streams due to their low-latency and high-throughput processing ad-

vantages. Most of the previous FPGA-based approaches require full circuit compilation to implement

dedicated hardware for different kinds of query workloads. In general, these query-tailored circuits are
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inherently very efficient in terms of performance, area and power consumption; however, static compi-

lation process is highly CPU-intensive and imposes significant overhead on dynamic workload changes.

For example, Sadoghi et al. propose an efficient event-processing platform called fpga-ToPSS [38], and

demonstrate high-frequency and low-latency algorithmic trading solutions [40]. These projects mainly

focus on queries with selection operator.

Window Joins

How to implement stream joins on FPGAs is indeed a challenging task. It is mentioned in [44] that the

M3Join proposed by Qian et al. [7] implements the join step as a single parallel lookup; however, this ap-

proach causes the significant performance drop for larger join windows. Alternatively, another study [39]

concentrates on the execution of SPJ (Select-Project-Join) queries with multi-query optimization. Ter-

ada et al. suggest another approach to implement window join operator on an FPGA [43]. Nevertheless,

only two join processes are concurrently executed since their approach is based on sequential execution.

To address the issue, Teubner and Mueller propose a new join algorithm called handshake join [44].

Data flow model of handshake join does not suffer from the limitation mentioned above and the previous

study such as [30, 31, 32, 33] focus on the acceleration of handshake join on FPGA. Finally, Kung and

Leiserson propose the idea of systolic array that is a structure composed of an array of processors for

VLSI implementation [18]. It is stated in [18] that processing units of a systolic array rhythmically

compute and pass data through the system. The data processing and communication model of join

cores [30, 31, 32, 33] are consistent with the properties of systolic arrays. In fact, the data flow model of

the handshake join is very similar to the join arrays proposed for relational databases [17].

Glacier: A query-to-hardware compiler

An important study closely related to this work is Glacier [25, 26]. Mueller et al. propose a query-to-

hardware compiler, called Glacier, for continuous queries [25]. The compiler takes a query plan as its

input and produces VHDL description of a logic circuit that implements the input plan. In particular,

it provides a library of components for basic operators such as selection, aggregation, grouping, and

windowing operators. Glacier can generate logic circuits by composing the library components on an

operator-level basis, and thereby can support a wide range of continuous queries involving the basic

operators (i.e., selection, aggregation, grouping, and windowing operators). The windowing operator

provides sliding-window functionality and aggregate operator includes four distributive (i.e., COUNT,

SUM, MIN, and MAX) and an algebraic (i.e., AVERAGE) aggregate functions [14]. As windowing and

aggregation operators are provided by the library, Glacier can compile sliding-window aggregate queries

into hardware circuits to be implemented on an FPGA.
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As described in Chapter 1, there are three issues regarding the sliding-window aggregate queries

implemented by Glacier:

• out-of-order arrival of tuples,

• scalability issue for overlapping sliding-windows, and

• lack of run-time configurability.

In the following chapters, three alternative approaches are presented in detail to address each issue.

2.1.3 Run-time Configuration of FPGAs

Most of the previous FPGA-based approaches suffer from a common limitation, namely, lack of flex-

ibility to adapt to dynamic workload changes. One possible solution is to exploit partial reconfigura-

tion technology of FPGAs along with prebuilt libraries of custom-designed components. For example,

Dennl et al. [9, 10] propose partial reconfiguration-based approach to accelerate a subset of SQL queries

for traditional database systems. It is stated, however, in [46] that the partial reconfiguration causes

another level of complexity which severely limits its use in real-world systems.

Another promising solution is the approach adopted in skeleton automata [45, 46] or Flexible Query

Processor (FQP) [29, 27, 28]. The main idea is to implement a generic template circuit along with a

number of configuration registers/memories. With this approach, the template circuit can be easily con-

figured for a specific type of workloads by changing the values of the configuration registers/memories

within the template design. For instance, the skeleton automata and FQP can support XML projections

and sliding-window join queries, respectively. The major advantage of both works is that they can offer

run-time configurability without long running static compilation or the partial reconfiguration. CQPH

shares similar motivation with skeleton automata and FQP; however, target workloads are quite differ-

ent. The main focus of the dissertation differs from these works as we are primarily concerned with

sliding-window aggregate queries which are not in the scope of [45, 46, 29].

2.2 Sliding-Window Aggregation

2.2.1 Example of a sliding-window aggregate query

Consider the following online auction example taken from Li et al. [19]. In this example, an online

auction system monitors bids on auction items. We assume an input stream that contains information

about each bid, the schema of which is defined as ⟨item-id, bid-price, timestamp⟩. In addition, assume

that the online auction system runs over the Internet, and each bid is streamed into a central auction
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SELECT max(bid-price), timestamp

FROM bids [RANGE 4 minutes

SLIDE 1 minute

WATTR timestamp]

Figure 2.2.1: Q1: “Find the maximum bid-price for the past 4 minutes and update the result

every 1 minute.”

server where a DSMS is running. Query Q1 (cited from [19]) shows an example of a sliding-window

aggregate query (see Fig. 2.2.1). This query can be used to find the maximum bid-price for the past 4

minutes and update the result every 1 minute.

Window specification

It is stated in [5] that since data streams are infinite, queries that execute over a data stream need to define

a region of interest (termed a window). Following the definition of window semantics [20], Query Q1

introduces a window specification which consists of a window type and a set of parameters that define a

window. In Query Q1, sliding windows have three parameters: RANGE, SLIDE, and WATTR. RANGE

indicates the size of the windows; SLIDE indicates the step by which the windows move; WATTR indi-

cates the windowing attribute—the attribute over which RANGE and SLIDE are specified [20].

It is important to note that the window specification can be user-defined values; therefore, as stated

in [19], sliding-window aggregate queries allow users to aggregate the stream at a user-specified granu-

larity (i.e., RANGE) and interval (i.e., SLIDE). Given the specification above, for example, the bid stream

is divided into overlapping 4-minute windows starting every minute, based on the timestamp attribute of

each tuple. Fig. 2.2.2 illustrates overlapping sliding-windows (only the first four windows) for Query Q1.

Notice that all windows in Fig. 2.2.2 have RANGE = 4 and SLIDE = 1, respectively.

Output generation

Window-aggregate operators are generally classified as a blocking operator in DSMSs; therefore, it is

necessary to unblock them at the end of each window. One of the common approaches for DSMSs

to unblock aggregate operators is to use timestamp attribute of each tuple. For example, in Query Q1,

a MAX aggregate operator can keep track of timestamp values of input tuples (i.e., bids) to identify

the end of each sliding-window. In this case, the maximum value of bid-price can be calculated at the

end of each window and Query Q1 produces an output tuple with schema ⟨max, timestamp⟩ where the

timestamp attribute specifies the end of the window. For interested readers, some key applications of
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Time
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Window0

Window1

Window2

Window3
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Window Range = 4

Figure 2.2.2: Overlapping Sliding-Windows for Query Q1 (RANGE = 4 minutes and SLIDE =

1 minute).

sliding-window queries are discussed in [5].

2.2.2 Handling out-of-order arrival of tuples

Abadi et al. [2] classifies types of operators as order-agnostic or order-sensitive. Order-agnostic oper-

ators can always process tuples in the order in which they arrive whereas order-sensitive operators can

only be guaranteed to execute with finite buffer space and in finite time if they can assume some ordering

(potentially with bounded disorder) over their input streams [2].

Window-ID (WID)

Li et al. presents a software-based implementation of order-agnostic window aggregation [20]. Their

approach is called Window-ID (WID), and it is stated in [21] that WID provides a method to imple-

ment window aggregate queries in an order-agnostic way, by using special annotations called punctu-

ations [47]. Informally, a punctuation can be regarded as a special tuple that contains some meta-data

about a given stream. For instance, punctuations can be used to indicate that no more tuples having

certain timestamp values will be seen in the stream [20]. In practice, punctuation tuples are embedded

into a data stream, and those tuples can be used to unblock some blocking operators such as group-by

and aggregation.

Slack Specification

Another approach to handle disorder is to use slack specification. Slack [2] defines an upper bound on

the degree of disorder which can be handled by an operator. As mentioned before, we cannot expect that
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all tuples always arrive in order of some timestamp-like attribute in a realistic setting. Instead, Aurora [2]

assumes some ordering (potentially with bounded disorder) over input streams. Any tuple arriving after

its corresponding period specified by a slack parameter is discarded. In Aurora, the slack parameter is

used to specify the number of tuples to be stored and sorted before an order-sensitive operator processes

input tuples. Aurora classifies window aggregation as an order-sensitive operation. In Aurora, therefore,

aggregate operators require buffering and reordering of tuples before computation in order to handle

disorder.
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Sliding-window Aggregate Operator over

Out-of-order Data Streams

3.1 Abstract

This chapter presents the design and evaluation of an FPGA-based accelerator for sliding-window ag-

gregation over data streams with out-of-order data arrival. We propose an order-agnostic hardware im-

plementation technique for windowing operators based on a one-pass query evaluation strategy called

Window-ID, which is originally proposed for software implementation. The proposed implementation

succeeds to process out-of-order data items, or tuples, at wire speed due to the simultaneous evalua-

tions of overlapping sliding-windows. In order to verify the effectiveness of the proposed approach,

we have also implemented an experimental system as a case study. Our experiments demonstrate that

the proposed accelerator with a network interface achieves an effective throughput around 760 Mbps or

equivalently nearly 6 million tuples per second, by fully utilizing the available bandwidth of the network

interface.

3.2 Design Concept

Although Glacie [25] is capable of compiling sliding-window aggregate queries into logic circuits, it

implements a windowing operator as an order-sensitive operator. In other words, its implementation

relies on an implicit assumption about the physical order of incoming tuples; that is to say, tuples arrive

in correct order at the windowing operator. Obviously, this assumption simplifies the definition and

implementation of sliding windows; however, it does not always fit into a realistic setting where some

degree of disorder can be expected. Glacier does not discuss the issue regarding out-of-order arrival of

tuples.
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In order to address the problem, this dissertation proposes an alternative implementation technique

for sliding-window aggregate queries. The proposed implementation follows the same approach as

WID [20] to handle disorder. In other words, aggregation operation is order-agnostic, and punctuations

are used to unblock window-aggregate operators. On the other hand, WID is proposed for a software-

based implementation. The main interests of WID [20] are to calculate window aggregates with the

one-pass evaluation strategy and to handle disorder by using punctuations. However, hardware-based

implementation of order-agnostic window aggregation is neither provided nor discussed in [20].

Contrary to the software-based implementation proposed in [20], this dissertation presents hardware-

based implementation which handles multiple windows with a single clock cycle. The proposed imple-

mentation instantiates multiple window-aggregation modules by taking advantage of hardware paral-

lelism. Upon arrival of a new tuple, each of the window-aggregation modules can simultaneously evalu-

ate the tuple within the same clock cycle. This is the main difference between software-based WID [20]

and our proposed approach.

The number of the window-aggregation modules is determined by using window parameters (RANGE

and SLIDE) and a slack [2] specification. As mentioned in Chapter 2, Aurora [2] uses a slack param-

eter to determine the number of tuples to be buffered and reordered before aggregation. The proposed

approach, however, relies on punctuations to handle disorder, and the slack parameter is used to calcu-

late the number of the window-aggregation modules required to be instantiated. This is a significant

difference between the approach adopted in this work and that of Aurora.

3.3 Motivating Application

Glacier [25] demonstrates how to implement a window aggregate query on an FPGA. For example, the

implementation of the third query of [25] includes a windowing operator which implicitly relies on the

arrival sequence of input tuples. Contrary to Glacier, the proposed approach permits windowing on any

attribute, allowing a bounded disorder of the tuples. This work focuses on the same query (i.e., the third

query of [25]) as a case study and shows how to implement the query in an order-agnostic manner. It

should be noted that the proposed approach is general enough to apply a wide range of window aggregate

queries which include the primitive aggregate functions such as COUNT, SUM, AVERAGE, MIN, and

MAX (i.e., the same aggregate functions supported by Glacier).

This work assumes the same financial application as that of the previous work [25]. Our approach,

however, requires an explicit timestamp attribute to define windows over an input stream. Instead of a

simple sequence number considered in [25], a timestamp attribute has been added to the schema of the

input stream. The schema of the stream, called Trades, is defined in Fig. 3.3.1. This schema describes

the structure of an input tuple. Each tuple of the stream consists of four attributes (i.e., Symbol, Price,
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CREATE INPUT STREAM Trades(

Symbol char[4], -- valor symbol

Price int, -- stock price

Volume int, -- trade volume

Time int) -- timestamp

Figure 3.3.1: The schema of the input stream. Each tuple of the stream consists of four

attributes: Symbol, Price, Volume, and Time.

SELECT Time, count(*) AS Number

FROM Trades [RANGE 600 seconds

SLIDE 60 seconds

WATTR Time]

WHERE Symbol = "UBSN"

Figure 3.3.2: Q2: “Count the number of trades of UBS (Union Bank of Switzerland) shares

for the past 10 minutes (600 seconds) and update the result every 1 minute (60 seconds).”

Volume, and Time) each of which is represented as a 32-bit value. Based on the definition of window

semantics [20], the example query can be written as in Fig. 3.3.2.

In Query Q2, WATTR indicates the windowing attribute (i.e., Time) over which RANGE and SLIDE

are specified. Given the window specification of Query Q2, the input stream is divided into overlapping

10-minute windows starting every minute, based on the Time attribute of each tuple. For each window,

Q2 counts the number of tuples which satisfy the condition (i.e., WHERE Symbol = “UBSN”), and it

generates an output stream with schema ⟨Time, Number⟩ where the Time attribute indicates the end of

the window. The details of the implementation of Query Q2 are provided in the following section.

3.4 Implementation Details

3.4.1 Wiring Interface

In this work, the same wiring interface as that of the previous work [25] is adopted to represent data flow.

That is to say, each n-bit-wide data is regarded as a set of n parallel wires. Furthermore, additional punc-

tuation flag and data valid lines each of which is a one-bit signal indicate the presence of a punctuation

and a tuple, respectively. For example, datum on the multiple lines (i.e., n parallel wires) is considered

13



CHAPTER 3. SLIDING-WINDOW AGGREGATE OPERATOR OVER OUT-OF-ORDER DATA
STREAMS

Query q

data

valid

punctuation

flag

data

fields

Figure 3.4.1: Wiring Interface for a query q.

as a punctuation when their punctuation flag is asserted (i.e., set to logic “1”). Similarly, the data lines

are regarded as a tuple when their data valid field is asserted.

Following the notation of [25], Fig. 3.4.1 shows a black box view of the hardware implementation

for a given query q. In Fig. 3.4.1, the gray-shaded boxes represent flip-flop registers. It is mentioned

in [25] that their circuits are all clock-driven (i.e., synchronized), and each operator writes its output into

a flip-flop register after processing. The present work follows the same approach and implements a fully

pipelined hardware for the sliding-window aggregate query.

3.4.2 Hardware Execution Plan

Hardware execution plan for Query Q2 is illustrated in Fig. 3.4.2. As shown in Fig. 3.4.2, the proposed

implementation adopts a 4-stage pipeline architecture. Intermediate results are stored into flip-flop reg-

isters (i.e., the gray-shaded boxes) at the end of the each stage. In other words, these registers can be

regarded as pipeline registers, and each stage of the pipeline can use the result of the previous stage.

It should be noted that each stage requires only one clock cycle to complete. The arrows indicate the

connections between the pipeline stages, as well as between hardware components. According to the

notation adopted in the previous work [25], name of a specific field in the data fields is explicitly identi-

fied with its label wherever appropriate. It should be also mentioned that the label “∗” means “all of the

remaining fields” in the data bus.

Selection Operation

The beginning two stages of Fig. 3.4.2 correspond to a selection operation. In Stage 1, Symbol field of

the data bus is compared to a constant value (“UBSN”) which is specified in the WHERE expression of

Query Q2 (indicated as = in Fig. 3.4.2). At the same time, the result of the comparison is labeled as

a one-bit is_equal flag and added to the data bus. In Stage 2, a logical AND gate (indicated as & in

Fig. 3.4.2) computes whether an input tuple is valid or not. If the tuple should be discarded, the data

valid flag is negated (i.e., set to logic “0”) for the next pipeline stage. Actually, these two stages can be
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Figure 3.4.2: Hardware execution plan for Query Q2.

implemented in a straightforward way based on the approach proposed in the previous work [25]. The

main difference, however, is the presence of the punctuation flag field which is required for Stage 3.

It is stated in [20] that some operators, such as selection, simply pass punctuations through to the next

operator in a query plan. Stage 1 and Stage 2 meet the above requirement since punctuation flag field is

directly connected to the next stage of the pipeline as shown in Fig. 3.4.2.
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Figure 3.4.3: Block diagram of a window-aggregation module.

Windowing and Aggregation

The next step is Stage 3 of the pipeline which corresponds to windowing and aggregation operators.

In Stage 3, a number of window-aggregation modules are instantiated as shown in Fig. 3.4.2. They

provide sliding-window functionality and can concurrently compute aggregate functions. The number

of window-aggregation modules to be instantiated is calculated by using RANGE, SLIDE, and SLACK

parameters (see the following Equation 3.4.1 and 3.4.2).

NWIN =

⌈
RANGE
SLIDE

⌉
+ x, where x ∈ Z+ (3.4.1)

x ≥ SLACK + RANGE
SLIDE

−
⌈
RANGE
SLIDE

⌉
(3.4.2)

We should determine the number of the window-aggregation modules required to handle disorder

specified by a slack parameter. For example, assume that SLACK value is set to 60 seconds for Query Q2.

Recall from Query Q2 that window parameters are specified as RANGE = 600 seconds and SLIDE = 60

seconds, respectively. Applying Equation 3.4.2, we obtain x ≥ 60+600
60 −

⌈
600
60

⌉
⇒ x ≥ 1. After that, using

Equation 3.4.1 with x = 1, we can calculate NWIN =
⌈

600
60

⌉
+ 1⇒ NWIN = 11.

Aggregation Module. Each instance of window-aggregation module consists of aggregation module and

control module as shown in Stage 3 of Fig. 3.4.2. A more detailed block diagram of a single window-
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aggregation module is depicted in Fig. 3.4.3. It is stated in [25] that primitive aggregate functions such

as COUNT, SUM, AVERAGE, MIN, and MAX can be implemented in a straightforward fashion on an

FPGA. Glacier [25] supports the above five aggregate functions, and in this work, we also focus on the

same aggregate operators. In fact, AVERAGE can be obtained with the combination of two aggregate

values: SUM and COUNT. It is therefore necessary to implement the other four aggregate operators as

shown in Fig. 3.4.3. When it comes to the implementation of Query Q2, a standard counter component

can be used inside the aggregation module. Since Query Q2 requires count(∗) function, the result of the

COUNT operator is selected as the output value (indicated as the broken line in Fig. 3.4.3).

Aggregation module maintains partial aggregates and only stores the current (partial) result of aggre-

gation instead of buffering all input tuples belonging to the current window. In other words, it incremen-

tally computes the aggregate result as new tuples arrive and always keeps the latest result. In order to

maintain the aggregate value, it requires two control signals: enable input stream (eis) and end of stream

(eos). These signals are provided by the control module as illustrated in Fig. 3.4.3. Both eis and eos are

asynchronous signals each of which is a one-bit flag. The eis signal indicates whether or not datum on

the data fields should be considered as a valid tuple for the current window. Whenever eis is asserted,

the aggregation operator accepts input tuple and records its contribution to the partial result. If eis is

negated, the aggregation operator simply ignores the input data and waits for the next tuple to arrive. The

other signal, eos, indicates whether an input stream reaches the end of the current window. When eos is

asserted, it means that the current window is no longer active, and the aggregate operator should reset its

internal state to be ready for input tuples belonging to the next window.

Control Module. Each control module maintains its own window states and provides two control signals

(i.e., eis and eos) to the aggregation module. The control module maintains window states by updating

its internal registers called winbegin and winend. These registers represent the beginning and the end of

the current window, respectively. The control module uses winbegin and winend registers to generate the

two control signals, eis and eos. Details about how to maintain these registers and to generate the control

signals are provided in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 describes how to initialize winbegin and winend registers. Recall from Query Q2 that

windowing attribute (i.e., WATTR) is specified as TIME. Therefore, WATTRstart can be considered as

TIMEstart which means the start time of the execution of the query. It can be determined in several

ways. For example, if one knows when to start the query (e.g., market opening times for Query Q2), this

information can be used to determine TIMEstart value. Another option is to use the most recent value

of the punctuation. One can also use the timestamp value of the first tuple with the SLACK parameter

(e.g., TIMEstart = TIMEfirst tuple − SLACK). The other parameters (i.e., NWIN, RANGE, SLIDE) can be

determined before the execution of the query; thus, they are regarded as constant parameters.
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Algorithm 1 Maintain window states (winbegin and winend)

State Registers:

winbegin(i): the beginning of the i-th window instance

winend(i): the end of the i-th window instance

Initialization:

for all i such that 1 ≤ i ≤ NWIN do

winbegin(i)← WATTRstart + (i − 1) × SLIDE

winend(i)← WATTRstart + (i − 1) × SLIDE + RANGE

end for

Synchronous Update:

for all i such that 1 ≤ i ≤ NWIN do

for each clock cycle do

if punctuation flag is asserted and

WATTR ≥ winend(i) then

winbegin(i)← winbegin(i) + NWIN × SLIDE

winend(i)← winend(i) + NWIN × SLIDE

end if

end for

end for

In addition to initialization, Algorithm 1 shows the update operation of the registers. Initialization

or update operation described in Algorithm 1 can be completed in one clock cycle. It should be empha-

size that the control module included in each window instance has its own window states. Notice that

winbegin(i) and winend(i) are correspond to the i-th window instance. All window instances concurrently

perform the same operation on each cycle in a synchronous manner.

The generation of the asynchronous control signals is described in Algorithm 2. Notice that eis(i)

and eos(i) are correspond to the i-th window instance. The control module included in each window

instance generates these signals, using its own window states as well as input signals. It is important to

notice that the implementation of eis(i) and eos(i) signals is fully asynchronous. The aggregation module

can use the control signals as soon as they are generated within the same clock cycle. In other words, all

of the operations performed in both the control module and the aggregation module can be completed in

a single clock cycle.
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Algorithm 2 Generate asynchronous signals (eis and eos)

Asynchronous Signals:

eis(i): input enable signal for the i-th window instance

eos(i): output enable signal for the i-th window instance

Asynchronous Update:

for all i such that 1 ≤ i ≤ NWIN asynchronously do

if punctuation flag is negated then

negate eos(i) signal

if data valid is asserted and

winbegin(i) ≤ WATTR < winend(i) then

assert eis(i) signal

else

negate eis(i) signal

end if

else {punctuation flag is asserted}

negate eis(i) signal

if WATTR ≥ winend(i) then

assert eos(i) signal

else

negate eos(i) signal

end if

end if

end for

Union Operation

It is stated in [25] that, from a data flow point of view, the task of an algebraic union operator is to merge

the outputs of several source streams into a single output stream. As shown in Fig. 3.4.2, the n-way union

operator merges the outputs of n window-aggregation modules and generates a single result stream.

The implementation of the union operator is based on a multiplexer component. According to a

select signal, the multiplexer component transfers the result of i-th window-aggregation module to the

output registers of Stage 4. As illustrated in Fig. 3.4.2, the select signal is provided by a binary encoder

component. It should be also mentioned that Stage 4 requires only one clock cycle to complete its

operation.
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Table 3.1: Specifications of the Virtex R⃝-6 FPGA (XC6VLX240T).

# of Slice Registers 301,440

# of Slice LUTs 150,720

# of Slices 37,680

# of BRAM (36Kbit) 416

Glacier [25] evaluates the complexity and performance of the resulting circuits in terms of latency

and issue rates. Issue rate is defined as the number of tuples that can be processed per clock cycle.

The overall latency and the issue rate of the proposed implementation are 4 cycles and 1 tuple/cycle,

respectively.

3.5 Evaluation

The proposed design is implemented on a Virtex R⃝-6 FPGA (XC6VLX240T) included in the Xilinx

ML605 Evaluation Kit [51]. The specification of the FPGA used to implement the design is given in

Table 3.1. Xilinx ISE 14.7 is used as an FPGA development environment during the implementation

process (e.g., synthesis, map, and place & route).

3.5.1 Resource Utilization and Performance

In order to evaluate the resource utilization and performance of the proposed design, Query Q2 is imple-

mented with different sizes of sliding windows. The RANGE of a window is increased from 10 minutes

to 60 minutes, by increments of 10 (i.e., a total of six different configurations). It should be also noted

that all of the implemented queries have the same SLIDE parameter as Query Q2 (i.e., 60 seconds). A

baseline design is implemented with SLACK = 0 as a reference point and the proposed design is imple-

mented with SLACK = 60, respectively. Each design is synthesized with a timing constraint of 6.37 ns,

which yields the target clock frequency of 157 MHz.

Resource Utilization

The circuit size of each design is measured in terms of the number of slice registers, the number of slice

LUTs (Look-Up Tables), and the number of occupied slices. The resource usage is expected to increase

with respect to the number of the window-aggregation modules instantiated on the target device. The

number of these modules can be easily calculated by Equation 3.4.1 and Equation 3.4.2, using RANGE,
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Table 3.2: Number of the window-aggregation modules with respect to the window size.

Size of the Time-based Sliding Window (i.e., RANGE)

10 min 20 min 30 min 40 min 50 min 60 min

Baseline (SLACK = 0) : 10 20 30 40 50 60

Proposed (SLACK = 60) : 11 21 31 41 51 61
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(a) Baseline implementation with SLACK = 0.
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(b) Proposed implementation with SLACK = 60.

Figure 3.5.1: Overall resource consumption as a percentage of the total available resources on

the target FPGA (Xilinx XC6VLX240T) with respect to the window size (i.e., RANGE).

SLIDE, and SLACK parameters. For a reference, Table 3.2 summarizes the number of the window-

aggregation modules for both baseline (SLACK = 0) and proposed (SLACK = 60) implementations.

Overall resource consumption is plotted in Fig. 3.5.1. The x-axes of Fig. 3.5.1a and Fig. 3.5.1b

represent the size of the time-based sliding window (i.e., RANGE) from 10 to 60 minutes. The y-axes of

the same figures indicate the resource consumption as a percentage of the total available resources on a

Xilinx XC6VLX240T FPGA device. As shown in Fig. 3.5.1a or Fig. 3.5.1b, all three graphs (i.e., Slice

Registers, Slice LUTs, and Occupied Slices) are almost linearly increased with increasing window size,

as expected. The increase in window size results in a higher RANGE
SLIDE ratio. This implies an increase in the

number of the window-aggregation modules (see Table 3.2). This is the main reason for the increased

resource utilization. It should be also emphasized that a relatively small percentage of the overall FPGA

resources is required to implement the query. For example, when the size of window is 10 minutes, slice

usage is particularly low (less than 2%) for both baseline (SLACK = 0) and proposed (SLACK = 60)

implementations. Even if the size of window is increased up to 60 minutes, overall slice utilization is
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(b) Comparison of the number of LUTs.
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(c) Comparison of the number of slices.

Figure 3.5.2: Comparison of the resource usage between the baseline implementation

(SLACK = 0) and the proposed implementation (SLACK = 60).

still less than 9%.

In order to evaluate the resource overhead of the proposed design, Fig. 3.5.2 summarizes the results

of the comparison of the hardware-resource usage between the baseline implementation and the proposed

implementation. The x-axes of Fig. 3.5.2a (registers), Fig. 3.5.2b (LUTs), and Fig. 3.5.2 (slices) represent

the size of the time-based sliding window (i.e., RANGE) from 10 to 60 minutes. The y-axes of the same

figures indicate the actual number of each resource (i.e., registers, LUTs, or slices) required to implement

the design on the target FPGA device. Results indicate that the proposed implementation does not impose

significant overhead on the resource usage over the baseline implementation. More specifically, the

overhead is only a few percent of the total available resources on the target FPGA device. This means

that the proposed implementation can handle a disordered stream (SLACK ≤ 60 seconds) with a very

reasonable hardware cost.
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(a) Baseline implementation with SLACK = 0.
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(b) Proposed implementation with SLACK = 60.

Figure 3.5.3: Maximum clock frequencies of the implemented design on the target FPGA

(Xilinx XC6VLX240T) with respect to the window size (i.e., RANGE).

Performance Evaluation

The performance of the implemented design is evaluated in terms of the maximum clock frequency of

the circuit for each window size. The clock frequency can be obtained from post-place & route static

timing report, which is provided by Xilinx’s Timing Analyzer tool. The obtained results are summarized

in Fig. 3.5.3 for baseline (SLACK = 0) and proposed (SLACK = 60) implementations, respectively. The

x-axes of Fig. 3.5.3a and Fig. 3.5.3b represent the size of the time-based sliding window (i.e., RANGE)

from 10 to 60 minutes. The y-axes of the same figures indicate the maximum clock frequencies of the

implemented design on the target FPGA device.

As shown in Fig. 3.5.3a and Fig. 3.5.3b, each implementation achieves the target clock frequency of

157 MHz. Equivalently, this means that all implementations meet the timing constraint of 6.37 ns. Since

the issue rate of the implemented queries is equal to 1 tuple/cycle, the proposed implementation can

process up to 157 million tuples per second for different sizes of windows. It is also important to note

that we obtained almost the same results for both baseline and proposed implementations as indicated in

Fig. 3.5.3a and Fig. 3.5.3b. This means that an additional window-aggregation module of the proposed

implementation does not impose any overhead on the performance of the overall circuit.

We can calculate the peak throughput by multiplying the data width of an input tuple by the clock

frequency. Recall that the data width of a tuple is 128 bits; therefore, multiplying 157 million tuples/s

by 128 bits/tuple yields 20,096 Mbps. Thus, the peak throughput can be estimated at 20 Gbps. As for

latency, recall that the latency of the implemented queries is equal to 4 cycles, and the clock period is

6.37 ns if we assume a clock rate of 157 MHz. Hence, multiplying 4 by 6.37 ns yields 25.48 ns. These

data lead us to the conclusion that the proposed approach can accomplish both high throughput (over 150
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Figure 3.5.4: Overview of the Experimental System.

million tuples per second) and low latency (the order of a few tens of nanoseconds) which are essential

for stream processing systems to handle a huge volume of data for real-time applications.

3.5.2 Experimental Measurement

An overview of the experimental system is depicted in Fig. 3.5.4. The experimental system consists of

a Xilinx ML605 FPGA board and a host computer which are directly connected by a dedicated Gigabit

Ethernet cable (indicated as “GbE” in Fig. 3.5.4). To simulate a disordered input stream, we implement

a synthetic data generator to produce an input stream with bounded disorder. The schema of the input

stream is defined as follows: Trades = ⟨Symbol : char[4],Price : int,Volume : int,Time : int⟩. The

Symbol attribute contains either a constant string “UBSN” or other randomly generated strings of 4

characters (4 bytes). The Price and Volume attributes contain uniformly distributed random integers from

the interval 1–100 and 1–1000, respectively. The Time attribute contains sequential numbers starting

from 0 with an incremental interval of 1. The data generator on the host computer first generates 147,200

input tuples in non-decreasing order with respect to their Time attribute. After that, the positions of the

tuples are randomized in such a way that no tuples are to be late or out-of-order more than 60 seconds

(i.e., a predefined SLACK value) in the stream.

We measured the number of clock cycles elapsed from when the first tuple arrived at the UDP Rx

module until the last result was transferred from the UDP Tx module. For each configuration (i.e.,

RANGE = 10 ∼ 60 minutes), we calculated the maximum throughput achieved by the experimental

system, using the measured values. It should be noted that all results generated by the query circuit

have been verified by the host computer. This has been confirmed by comparing expected results with

those sent from the UDP Tx module. In our experiments, we obtained exactly the same results as those
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expected. This means that the proposed implementation can properly handle out-of-order tuples.

Results of the experiments show that the proposed implementation achieves an effective throughput

up to around 760 Mbps, which is the upper bound of the available bandwidth that the network inter-

face (i.e., the UDP Rx module) could handle. This is equivalent to nearly 6 million tuples per second,

which means that the proposed implementation can process significantly high tuple rates at wire speed.

Furthermore, we have also conducted experiments on other aggregation functions, such as SUM, MIN,

and MAX instead of COUNT, and obtained almost the same performance as Query Q2 (i.e., around

760 Mbps and nearly 6 million tuples/s). In other words, the proposed design provides the same constant

performance regardless of the choice of the aggregate function, which is another favorable property of

the proposed design.
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Chapter 4

Scalable Implementation of

Sliding-window Aggregate Operator

4.1 Abstract

This chapter presents an efficient and scalable implementation of an FPGA-based accelerator for sliding-

window aggregates over disordered data streams. With an increasing number of overlapping sliding-

windows, the window aggregates have a serious scalability issue, especially when it comes to im-

plementing them in parallel processing hardware (e.g., FPGAs). To address the issue, we propose a

resource-efficient, scalable, and order-agnostic hardware design and its implementation by examining

and integrating two key concepts, called Window-ID and Pane, which are originally proposed for soft-

ware implementation, respectively. Evaluation results show that the proposed implementation scales

well compared to the previous FPGA implementation in terms of both resource consumption and per-

formance. The proposed design is fully pipelined and our implementation can process out-of-order data

items, or tuples, at wire speed up to 200 million tuples per second.

4.2 Scalability Issue

4.2.1 Glacier

One of the most important design issue is the scalability in terms of both resource consumption and

performance. Glacier relies on simultaneous evaluations of overlapping sliding-windows by instantiating

a number of aggregation modules on an FPGA. Given a sliding-window aggregate query, the number

of the aggregation modules (NGlacier) required to be instantiated by Glacier is calculated based on two

parameters: RANGE and SLIDE (see the following Equation 4.2.1).
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NGlacier =

⌈
RANGE
SLIDE

⌉
+ 1 (4.2.1)

Although this approach may be considered as a possible solution for a relatively small RANGE
SLIDE ratio

(e.g., a few tens of the aggregation modules), the approach suffers from the scalability issues for a large
RANGE
SLIDE ratio (e.g., several hundreds or thousands of the aggregation modules). Due to the replication

strategy of the aggregation modules for overlapping sliding-windows, the number of replicas linearly

increases with increasing RANGE
SLIDE ratio. As a result, a large number of aggregation circuits should be

instantiated on an FPGA to implement only a single query. This leads to serious scalability problems

especially for large RANGE and/or small SLIDE values. In fact, even if a small RANGE
SLIDE ratio is considered,

the replication strategy discussed above leads to extremely inefficient resource utilization.

4.2.2 WID-based Implementation

In order to implement WID-based approach on an FPGA, we need an upper bound for the required

hardware resources. For the purpose of determining the upper bound, we introduce a new parameter,

called slack [2], in Chapter 3. Slack defines an upper bound on the degree of disorder and any tuple

arriving after its corresponding period is discarded. It is stated in [2] that some aggregate operators,

such as COUNT, SUM, AVERAGE, MIN, and MAX, can simply delay closing windows according to

the slack specification. This approach enables us to handle disordered streams appropriately for sliding-

window aggregation.

The WID-based implementation (presented in Chapter 3) basically relies on punctuations to handle

disorder, and the slack parameter is used to calculate the number of the window-aggregation modules

required to be instantiated. Based on Equation 3.4.1 and Equation 3.4.2 from Chapter 3, the minimum

number of the aggregation modules (NWID) is determined by using window parameters (i.e., RANGE and

SLIDE) and a slack specification (see the following Equation 4.2.2).

NWID =

⌈
RANGE + SLACK

SLIDE

⌉
(4.2.2)

Equation 4.2.2 suggests that the required number of the aggregation modules (NWID) linearly increase

with increasing RANGE
SLIDE ratio, assuming a constant SLACK value. Thus, the WID-based implementation

also suffers from the same scalability problem as Glacier. This is because both Glacier and the WID-

based approach rely on simultaneous evaluations of overlapping sliding-windows by simply replicating
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the window-aggregation modules. Since this approach causes the scalability issues in terms of the maxi-

mum clock frequency and the hardware resource usage, it is crucial to design and implement a scalable

hardware accelerator for sliding-window aggregate operator that can handle large RANGE
SLIDE ratios. In this

chapter, we adopt a two-step aggregation method using panes [19] and address the scalability problem

of the previous implementations even if a large RANGE
SLIDE ratio is considered.

4.3 Design Concept

4.3.1 Sliding Windows and Panes

In this chapter, we first divide each sliding-window into disjoint sub-windows, called panes, instead of

replicating the window-aggregation modules for overlapping windows. For example, Fig. 4.3.1a illus-

trates overlapping sliding-windows (only the first four windows) for Query Q1 from Chapter 2. Recall

from Query Q1 that the bid stream is divided into overlapping 4-minute windows, each of which starts

every 1 minute. Accordingly, in Fig. 4.3.1a, all windows have RANGE = 4 and SLIDE = 1, respectively.

How we divide these four sliding-windows into panes is illustrated in Fig. 4.3.1b. It is stated in [19]

that RANGE and SLIDE of panes equal to the same value (i.e., RANGEPane = SLIDEPane) and, given

a sliding-window aggregate query, they are calculated as the greatest common divisor (GCD) of the

RANGE and SLIDE of the original query. Since the original query (i.e., Query Q1) has RANGE = 4 and

SLIDE = 1, we obtain RANGEPane = SLIDEPane = GCD(4, 1) = 1 minute. Thus, the number of panes

per window is RANGEQ1/RANGEPane = 4. This can be easily noticed that each 4-minute window is

composed of four consecutive panes as shown in Fig. 4.3.1b.

4.3.2 Two-Step Aggregation: PLQ and WLQ

In addition to dividing each sliding-window into multiple panes, the original aggregate query is decom-

posed into two sub-queries: a pane-level sub-query (PLQ) and a window-level sub-query (WLQ) [19].

We adopt this two-step aggregation approach and our hardware implementation of sliding-window ag-

gregation is based on these two sub-queries. It should be also mentioned that Li et al. [19] use the term

pane-aggregates and window-aggregates for the results of the PLQ and the WLQ, respectively. In the

dissertation, the same terms are used to signify the difference between the results of the sub-queries (PLQ

and WLQ).

In order to evaluate a sliding-window aggregate query by using panes, we need to determine window

specifications and aggregate functions of the PLQ and WLQ, respectively. We can use the same win-

dowing attribute (i.e., WATTR) as that of the original query for both sub-queries. In addition, we have

already discussed how to determine the RANGE and SLIDE of panes in Section 4.3.1. As for the WLQ,
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(a) Overlapping Sliding-Windows for Query Q1 cited from Chapter 2 (RANGE = 4 minutes
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panes), each of which has RANGE = 1 minute and SLIDE = 1 minute, respectively.

Figure 4.3.1: Relationship between overlapping sliding-windows and non-overlapping panes.

we use the same RANGE and SLIDE values as those of the original query.

Li et al. point out that aggregate functions of the two sub-queries depend on the aggregate function

of the original query [19]. In the dissertation, we focus on the same aggregate functions as those of

Glacier to implement sliding-window aggregate queries on an FPGA. In fact, AVERAGE function can

be obtained with the combination of two aggregate values: SUM and COUNT, by simply dividing SUM

by COUNT for each window. Therefore, we should consider the remaining four distributive aggregate

functions (i.e., COUNT, SUM, MIN, and MAX). Table 4.1 summarizes the relation between the aggre-

gate function of the original query and the corresponding aggregates of the PLQ and WLQ. It turns out

that, except for COUNT, we use the same aggregate function as the original query for both of the PLQ
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Table 4.1: Relation between Original Query, PLQ, and WLQ.

Aggregate Functions

Sliding-window Aggregate Query : COUNT SUM MIN MAX

↓ ↓ ↓ ↓ ↓

Pane-level Sub-query (PLQ) : COUNT SUM MIN MAX

+ + + + +

Window-level Sub-query (WLQ) : SUM SUM MIN MAX

SELECT max(bid-price) as p-max, timestamp

FROM bids [RANGE 1 minute

SLIDE 1 minute

WATTR timestamp]

Figure 4.3.2: Q3: “Find the maximum bid-price as p-max for the past 1 minute and update

the result every 1 minute.”

and WLQ. When the original query is COUNT, the PLQ is also COUNT and the WLQ should be SUM,

respectively.

Example of Pane-level Sub-query (PLQ)

It is stated in [19] that PLQ is a simple tumbling-window aggregation, which can be regarded as a spe-

cial case of a sliding-window aggregate query whose window size (i.e., RANGE) is equal to the hop

size (i.e., SLIDE). For each non-overlapping sub-window (i.e., pane), the PLQ calculates an aggregate

value, which is an intermediate result for the original sliding-window aggregate query. For example,

Fig. 4.3.2 shows the PLQ (Query Q3) of the original sliding-window aggregate query (i.e., Query Q1

from Chapter 2). In Query Q3, the bid stream is divided into non-overlapping 1-minute windows starting

every 1 minute. For each window, the maximum value of bid-price is calculated and Query Q3 gener-

ates pane-aggregates with schema ⟨p-max, timestamp⟩ where the timestamp attribute indicates the end of

each pane.
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SELECT max(p-max) as w-max, timestamp

FROM panes [RANGE 4 minutes

SLIDE 1 minute

WATTR timestamp]

Figure 4.3.3: Q4: “Find the maximum p-max value for the past 4 minutes and update the

result every 1 minute.”

Example of Window-level Sub-query (WLQ)

The other sub-query, WLQ, is a sliding-window query over the intermediate results of the PLQ and

produces the final result for each window. For example, Fig. 4.3.3 shows the WLQ (Query Q4) of the

original sliding-window aggregate query (i.e., Query Q1 from Chapter 2). Query Q4 accepts the pane-

aggregates as its input and runs over the output stream of Query Q3 (i.e., the PLQ). In the WLQ, each

pane (except for the first three panes) contributes four windows. For example, as shown in Fig. 4.3.1b,

Pane3 contributes to Window0 through Window3. Similarly, Pane4 contributes to Window1 through

Window4 and so forth. For each window, the WLQ computes the max of p-maxes of the last four panes

and generates the window-aggregate with schema ⟨w-max, timestamp⟩where the timestamp indicates the

end of the window.

4.3.3 Hardware Cost Model

Number of the Aggregation Modules

The hardware design of PLQ is based on the WID-based approach discussed in Section 4.2.2. The main

difference, however, is that the RANGE of the PLQ is always equal to its SLIDE value. As a result, we

can simplify Equation 4.2.2 to calculate the number of the PLQ aggregate modules (NPLQ) required to

be instantiated (see the following Equation 4.3.1).

NPLQ =

⌈
RANGEPane + SLACK

SLIDEPane

⌉
(4.3.1)

By substituting RANGEPane = SLIDEPane, we obtain Equation 4.3.2.

NPLQ =

⌈
SLACK

SLIDEPane

⌉
+ 1 (4.3.2)
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The hardware design of WLQ is based on a sequential evaluation of the pane-aggregates. That is to

say, given a sufficient buffer space for the pane-aggregates, we merely require to instantiate a single ag-

gregation module to implement the WLQ. Therefore, the number of the WLQ aggregate module (NWLQ)

is always equal to one (i.e., NWLQ = 1). Finally, by adding NPLQ and NWLQ, one obtains the total num-

ber of the aggregation modules (NTotal) required to implement the proposed design (see the following

Equation 4.3.3).

NTotal = NPLQ + NWLQ =

⌈
SLACK

SLIDEPane

⌉
+ 2 (4.3.3)

Equation 4.3.3 suggests that the number of the total aggregation modules of the proposed pane-based

hardware design is not affected by RANGE
SLIDE ratio. In other words, contrary to Glacier (Equation 4.2.1) and

WID-based implementation (Equation 4.2.2), the proposed design can handle large RANGE
SLIDE ratios on the

order of, say, hundreds or even thousands.

It should be also mentioned that there is a trade-off between accuracy and latency. Recall from

Section 4.2.2 that SLACK defines an upper bound on the degree of disorder in order to wait for late

tuples to arrive before finishing aggregate calculations. It is however stated in [2] that, given the real-

time requirements of many stream applications, it is essential that it be possible to “time out” aggregate

computations, even at the expense of accuracy. Since larger SLACK values result in longer latencies, we

should restrict ourselves to a relatively small SLACK value. For example, assuming a slack value of 60

seconds for Query Q1 (i.e., exactly the same duration as SLIDE of Query Q1), one obtains NPLQ = 2 and

NWLQ = 1, which yield NTotal = 3. This means that the required number of the aggregation modules (i.e.,

NTotal) remains constant with increasing RANGE
SLIDE ratio. Thus, the proposed pane-based hardware design

does not suffer from the scalability problems observed in Glacier and the WID-based implementation,

both of which rely on the simple replication of a large number of the aggregation modules.

Pane-Buffer

In addition to the PLQ and WLQ, we also need to consider the design of pane-buffer when it comes to

implementing the two-step aggregation on an FPGA. The pane-buffer is a cyclic first-in first-out (FIFO)

buffer with support for sequential read access. As its name suggests, it stores the intermediate results of

the PLQ (i.e., pane-aggregates). It should be also noted that, by using panes, a sliding-window aggregate

query can be evaluated with constant buffer space in dependent of the number of input tuples. Given a
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set of window specifications (i.e., RANGE, SLIDE, and WATTR), we can determine the size of the pane-

buffer (Sbuffer) in terms of the number of pane-aggregates. In fact, the required buffer space is equal to the

number of panes per window; therefore, the following Equation 4.3.4 gives us the size of the pane-buffer.

Sbuffer =
RANGE

GCD(RANGE, SLIDE)
(4.3.4)

Given a set of window specification, we can easily calculate Sbuffer as a constant value. With the

constant bound on the size of the pane-buffer, we can efficiently implement the buffer using on-chip

Block RAMs (BRAMs) on an FPGA. This is a significant difference between the approach adopted in

this work and that of Glacier. While Glacier and the WID-based implementation (presented in Chapter 3)

are not able to utilize BRAMs and only use the limited logic resources on an FPGA, the proposed pane-

based design balances logic and BRAM utilization. This results in a considerable area reduction and a

higher maximum frequency.

4.4 Implementation Details

In this Section, we focus on the same financial trading application as that of Chapter 3 (described in

Section 3.3). In particular, Query Q2 is considered as a target query to describe an implementation of

the pane-based hardware design. The details of the implementation of Query Q2 are provided in the

following subsections.

4.4.1 Hardware Execution Plan

An overview of a hardware execution plan for Query Q2 is illustrated in Fig. 4.4.1. In this Section, we

adopt the same wiring interface as that of Chapter 3 to represent data flow (recall from Fig. 3.4.1 in

Chapter 3). In particular, the gray-shaded boxes in Fig. 4.4.1 represent flip-flop registers which can be

regarded as pipeline registers. As indicated in Fig. 4.4.1, Query Q2 is implemented as a synchronous

5-stage pipeline.

The pipeline stages share a common clock signal and they are inserted between each stage as shown

in Fig. 4.4.1. These registers buffer intermediate results at the end of each stage and the successive stages

can use the result of the previous stage. The arrows in Fig. 4.4.1 indicate the connections between the

pipeline stages. The first three stages correspond to pane-level sub-query (PLQ) and the remaining two

stages are related to window-level sub-query (WLQ). The implementation details of PLQ and WLQ are

discussed in Section 4.4.2 and Section 4.4.3, respectively.
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Figure 4.4.1: Hardware execution plan for Query Q2.
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4.4.2 Implementation of Pane-Level Sub-Query (PLQ)

The pane-level sub-query (i.e., PLQ) of Query Q2 is implemented as a 3-stage pipeline and the first three

stages of Fig. 4.4.1 (i.e., Stage 1, Stage 2, and Stage 3) show its data flow. In Stage 1, Symbol field

of the data bus is compared to a constant string, “UBSN”, which is specified in the WHERE expression

of Query Q2 (indicated as = in Fig. 4.4.1). At the same time, a logical AND gate (indicated as & in

Fig. 4.4.1) computes whether an input tuple is valid for the query, using the result of the comparison. If

the tuple should be discarded (i.e., not satisfy the WHERE condition), the data valid flag is negated (i.e.,

set to logic “0”) for the next PLQ control modules. The PLQ control modules correspond to windowing

operators that provide sliding-window functionality. Notice that each PLQ control module of Stage 1 is

paired with a PLQ aggregate module of Stage 2 as shown in Fig. 4.4.1.

Each PLQ control module maintains pane states and provides two control signals, eis and eos, to

the next stage of the pipeline (i.e., Stage 2). The eis stands for enable input stream and it indicates

whether or not data on the data fields should be considered as a valid tuple for the current pane. The

other signal, eos, stands for end of stream and it indicates whether an input stream reaches the end of the

current pane. The PLQ control module is responsible for its own states by updating its internal registers

called panebegin and paneend. These registers represent the beginning and the end of the current pane,

respectively. The control module uses panebegin and paneend registers to generate the two control signals,

eis and eos. Details about how to maintain these registers and to generate the control signals are provided

in Algorithm 3 and Algorithm 4, respectively.

Algorithm 3 describes how to initialize and update the two registers, panebegin and paneend. Since the

windowing attribute (i.e., WATTR) of Query Q2 is defined as TIME, WATTRstart is equivalent to TIMEstart

which indicates the start time of the execution of the query. Initialization or update operation described in

Algorithm 3 can be completed in one clock cycle. All of the PLQ control modules concurrently perform

the same operation on each cycle in a synchronous manner.

Algorithm 4 describes how to generate the two control signals, eis and eos. It is important to em-

phasize that the implementation of eis and eos signals is fully asynchronous. As shown in Fig. 4.4.1, eis

and eos signals are connected to the data valid and punctuation flag registers, respectively. This means

that these pipeline registers can be updated within the same clock cycle as soon as eis and eos signals are

changed. In other words, all of the operations performed in Stage 1 can be completed in a single clock

cycle.

The next step is Stage 2 of the pipeline which corresponds to aggregate operators for the PLQ.

In Stage 2, two PLQ aggregate modules are instantiated as shown in Fig. 4.4.1. A more detailed block

diagram of a single PLQ aggregate module is depicted in Fig. 4.4.2. The PLQ aggregate module includes

four aggregate operators as shown in Fig. 4.4.2. It is stated in [25] that aggregate functions such as
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Algorithm 3 Maintain pane states for PLQ

State Registers:

panebegin(i): the beginning of the i-th pane instance

paneend(i): the end of the i-th pane instance

Initialization:

for all i such that 1 ≤ i ≤ NPLQ do

panebegin(i)← WATTRstart + (i − 1) × SLIDEPLQ

paneend(i)← WATTRstart + i × SLIDEPLQ

end for

Synchronous Update:

for all i such that 1 ≤ i ≤ NPLQ do

for each clock cycle do

if punctuation flag is asserted and

WATTR ≥ paneend(i) then

panebegin(i)← panebegin(i) + NPLQ × SLIDEPLQ

paneend(i)← paneend(i) + NPLQ × SLIDEPLQ

end if

end for

end for

COUNT, SUM, MIN, and MAX can be implemented in a straightforward fashion on an FPGA. Since

the PLQ requires count(∗) function, the result of the COUNT operator is selected as the output value

(indicated as the broken line in Fig. 4.4.2).

The aggregate operator incrementally computes aggregate value and only stores the current (partial)

result of the aggregation. It requires two control signals (i.e., eis and eos) to maintain its aggregate value.

Whenever eis is asserted, the aggregate operator accepts input tuple and records its contribution to the

partial result. If eis is negated, the aggregate operator simply ignores the input data and waits for the next

tuple to arrive. When eos is asserted, it means that the current pane is no longer active and the aggregate

operator should reset its internal state. It is important to note that all operations performed in Stage 2

can be completed in a single clock cycle just as in Stage 1.

We adopt a similar approach as that of the WID-based implementation (presented in Chapter 3) to

implement a union operator, which is based on a multiplexer component. The main difference however

is the required size of the multiplexer. In the WID-based implementation (Chapter 3), the size of the
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Algorithm 4 Generate asynchronous control signals for PLQ

Asynchronous Signals:

eis(i): input enable signal for the i-th pane instance

eos(i): output enable signal for the i-th pane instance

Asynchronous Update:

for all i such that 1 ≤ i ≤ NPLQ asynchronously do

if punctuation flag is negated then

negate eos(i) signal

if data valid is asserted and

panebegin(i) ≤ WATTR < paneend(i) then

assert eis(i) signal

else

negate eis(i) signal

end if

else {punctuation flag is asserted}

negate eis(i) signal

if WATTR ≥ paneend(i) then

assert eos(i) signal

else

negate eos(i) signal

end if

end if

end for

multiplexer increases with increasing RANGE
SLIDE ratio and hence leads to scalability problems. On the other

hand, the pane-based approach is not affected by the RANGE
SLIDE ratio; in other words, the proposed design

requires a constant-size multiplexer. This is a significant difference between the proposed pane-based

hardware design and the WID-based implementation (Chapter 3).

According to a select signal, the multiplexer component transfers the result of i-th PLQ aggregate

module to the output registers of Stage 3. As illustrated in Fig. 4.4.1, the select signal is provided by a

binary encoder component. It is stated in [25] that, from a data flow point of view, the task of an algebraic

union operator is to merge the outputs of several source streams into a single output stream. As shown in

Fig. 4.4.1, the 2-way union operator merges the outputs of two PLQ aggregate modules and generates a

single result stream. It should be also mentioned that Stage 3 requires only one clock cycle to complete
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Figure 4.4.2: Block diagram of a PLQ aggregate module.

its operation.

4.4.3 Implementation of Window-Level Sub-Query (WLQ)

The window-level sub-query (i.e., WLQ) of Query Q2 is implemented as a 2-stage pipeline and the last

two stages of Fig. 4.4.1 (i.e., Stage 4 and Stage 5) show its data flow. Stage 4 includes a single WLQ

control module and a pane-buffer. Similar to a PLQ control module, the WLQ control module maintains

its internal states and provides two control signals, eis and eos, to the final stage of the pipeline (i.e.,

Stage 5). In addition, the WLQ control module also provides read and write addresses to the pane-

buffer.

Details about how to maintain the window states and to generate the control signals are provided

in Algorithm 5 and Algorithm 6, respectively. Algorithm 5 describes how to initialize and update four

internal registers: wr_addr, rd_addr, rd_addr_prev, and pane_counter. It should be mentioned that

wr_addr and rd_addr registers are connected to the write_addr and read_addr ports of the pane-buffer

(see Stage 4 of Fig. 4.4.1), respectively. Algorithm 6 describes how to generate the two control signals,

eis and eos, for the WLQ aggregate module.

As discussed in Section 4.3.3, the pane-buffer is a cyclic first-in first-out (FIFO) buffer and its im-

plementation is based on on-chip Block RAMs (BRAMs). BRAMs support dual-ports and each port has

its own data-in, data-out, and address bus. We use simple dual-port mode, that is to say, one port can

only write and the other port can only read data. As illustrated in Fig. 4.4.1, the data field of Stage 3 is

connected to the data-in port (i.e., write-only port) of the pane-buffer. Similarly, the data-out port (i.e.,
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Algorithm 5 Maintain window states for WLQ

State Registers:

wr_addr: write-address register of the pane-buffer

rd_addr: read-address register of the pane-buffer

rd_addr_prev: previous value of the read-address register

pane_counter: pane counts in the current window

Initialization:

wr_addr ← 1

rd_addr ← 0

rd_addr_prev← 0

pane_counter ← 0

Synchronous Update:

for each clock cycle do

rd_addr_prev← rd_addr

if pane_counter < PANES_PER_WINDOW then

if rd_addr , wr_addr and rd_addr + 1 , wr_addr then

rd_addr ← rd_addr + 1

pane_counter ← pane_counter + 1

end if

else

rd_addr ← rd_addr − PANES_PER_WINDOW + 2

pane_counter ← 1

end if

if punctuation flag is asserted then

wr_addr ← wr_addr + 1

end if

end for

read-only port) of the pane-buffer is directly connected to the next stage (i.e., Stage 5).

Stage 4 requires a total of three clock cycles to complete its operation when the last pane-aggregate

of each window arrives from the previous stage (i.e., Stage 3). Specifically, when the punctuation flag

is asserted, one clock cycle is required to update the wr_addr register. After that, another clock cycle

is consumed to update the rd_addr and pane_counter registers. Finally, the third clock cycle is used to
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Algorithm 6 Generate asynchronous control signals for WLQ

Asynchronous Signals:

eis: input enable signal for the WLQ aggregate module

eos: output enable signal for the WLQ aggregate module

Asynchronous Update:

if rd_addr , rd_addr_prev then

assert eis signal

else

negate eis signal

end if

if pane_counter < PANES_PER_WINDOW then

negate eos signal

else

assert eos signal

end if

retrieve data from the pane-buffer, which is implemented using BRAM primitives.

When it comes to the implementation of Stage 5 of Fig. 4.4.1, the WLQ aggregate module is im-

plemented almost in the same way as PLQ aggregate module (see Fig. 4.4.2). Hence, all operations

performed in Stage 5 can be completed in a single clock cycle. In Chapter 3, the performance charac-

teristics of the implemented circuit is analyzed in terms of latency and issue rate. Recall from Chapter 3

that the issue rate is defined as the number of tuples that can be processed per clock cycle. The over-

all latency and the issue rate of the proposed pane-based implementation are 7 cycles and 1 tuple/cycle,

respectively.

4.5 Evaluation

The pane-based hardware design is implemented on a Virtex R⃝-6 FPGA (XC6VLX240T) included in the

Xilinx ML605 Evaluation Kit [51] (i.e., the same evaluation board as that of Chapter 3). The specification

of the FPGA used to implement the design is given in Table 3.1 (Chapter 3). Xilinx ISE 14.4 is used

as an FPGA development environment during the implementation process (e.g., synthesis, map, and

place & route).

40



CHAPTER 4. SCALABLE IMPLEMENTATION OF SLIDING-WINDOW AGGREGATE
OPERATOR

Registers (proposed)

LUTs (proposed)

Slices (proposed)

Registers (baseline)

LUTs (baseline)

Slices (baseline)

0.1

1

10

100

64 128 256 512 1024 2048 4096

R
e

s
o

u
rc

e
 C

o
n

s
u

m
p

ti
o

n
 [

%
]

RANGE-to-SLIDE Ratio

Figure 4.5.1: Comparison of the overall resource consumption between the pane-based im-

plementation (labeled “proposed”) and the WID-based implementation presented in Chapter 3

(labeled “baseline”).

4.5.1 Resource Utilization and Performance

In order to evaluate the scalability of the proposed approach, the pane-based hardware design (i.e.,

Fig. 4.4.1) and the WID-based approach (presented in Charpter 3) are implemented for the same tar-

get query (Query Q2) with a wide range of different window parameters. We have modified the RANGE

parameter of the query and the RANGE
SLIDE ratio is increased by multiples of 2, beginning with 64 up to 4096

(i.e., a total of seven different configurations). The proposed implementation is synthesized with a timing

constraint of 5 ns for each configuration, which yields the target clock frequency of 200 MHz.

Resource Utilization

The comparison of the overall resource consumption is shown in Fig. 4.5.1. The x-axis represents RANGE
SLIDE

ratio of the time-based sliding window. The y-axis indicates the resource consumption (in log scale)

in terms of percentages of the total available resources on the target FPGA device. In Fig. 4.5.1, the

proposed implementation and the WID-based implementation (Chapter 3) are labeled “proposed” and

“baseline”, respectively.

Results of Fig. 4.5.1 suggest that the proposed implementation achieves significant area reduction

compared to the baseline. For instance, when RANGE
SLIDE = 512, the baseline consumes over 70% of the

available slices on the target FPGA whereas the proposed implementation only requires 0.6% of the
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Table 4.2: Block RAM (BRAM) Utilization.

RANGE-to-SLIDE ratio (i.e., RANGE
SLIDE )

64 128 256 512 1024 2048 4096

Number of BRAMs : 1 1 1 2 4 8 17

Overall BRAM usage : 0.2% 0.2% 0.2% 0.5% 1.0% 1.9% 4.1%

available slices, by using only two BRAMs on the same FPGA (i.e., about 0.5% of the total available

BRAMs). The required number of BRAMs for each configuration is given in Table 4.2.

Moreover, as indicated in Fig. 4.5.1, all three graphs of the baseline almost linearly increases with

increasing RANGE
SLIDE ratio. As a result, when RANGE

SLIDE = 768, the baseline utilizes over 90% of the available

slices and if we increase the ratio (i.e., RANGE
SLIDE ≥ 1024), the query cannot be implemented on the target

device due to finite area of the FPGA. On the other hand, however, the proposed implementation does not

suffer from this limitation as shown in Fig. 4.5.1. All three graphs of the proposed implementation are

almost constant and do not increase with increasing RANGE
SLIDE ratio; therefore, the proposed design provides

better scalability compared to the baseline.

It is stated in [19] that one of the most important benefits of using panes is considerable reduc-

tion of required buffer space. Although this is true for software-based approach, it is not the case for

hardware-based implementation. This is the main difference between the software- and hardware-based

approaches. In fact, the baseline does not require any on-chip memory resource (i.e., BRAMs) as buffer

space, whereas the proposed implementation requires a few BRAMs to implement pane-buffers (see

Table 4.2). The results, however, indicate that the proposed implementation does not impose signif-

icant overhead on the BRAM usage. For example, when RANGE
SLIDE = 4096, the overhead is only 4.1

percent of the total available BRAMs on the target FPGA device as shown in Table 4.2. This means

that when SLIDE = 60 seconds, the proposed implementation can handle large window sizes up to

RANGE = 60 × 4096 seconds with a very reasonable hardware cost.

Performance Evaluation

The comparison of the maximum clock frequency is shown in Fig. 4.5.2. The x-axis and the y-axis

represent RANGE
SLIDE ratio and the clock frequency, respectively. The clock frequency is obtained from post-

place & route static timing report, which is provided by Xilinx’s Timing Analyzer tool. As shown in

Fig. 4.5.2, the clock frequency of the baseline drops sharply with increasing RANGE
SLIDE ratio. In contrast, the
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Figure 4.5.2: Comparison of the maximum clock frequency between the pane-based imple-

mentation (labeled “proposed”) and the WID-based implementation presented in Chapter 3

(labeled “baseline”).

clock frequency of the proposed design remains largely unaffected by the RANGE
SLIDE ratio. Specifically, the

proposed implementation meets the timing constraint of 5 ns and maintains the target clock frequency

of 200 MHz for each configuration. The fact that the proposed design can still sustain high frequencies

is a good indication for the scalability. For instance, when RANGE
SLIDE = 512, the baseline can operate

at only up to 50 MHz on the target FPGA whereas the proposed implementation can operate at over

200 MHz. This means that the proposed approach achieves over 4× performance improvement (i.e.,

higher clock frequency means better performance, especially in terms of throughput) with significantly

reduced hardware cost.

Since the issue rate of the proposed design is equal to 1 tuple/cycle, the proposed implementation can

process 200 million tuples per second. As for latency, recall that the latency of the implemented queries is

equal to 7 cycles, and the clock period is 5 ns if we assume a clock rate of 200 MHz. Hence, multiplying

7 by 5 ns yields 35 ns. These data lead us to the conclusion that the proposed design is scalable against
RANGE
SLIDE ratio and can accomplish both high throughput (over 200 million tuples per second) and low

latency (the order of a few tens of nanoseconds).

4.5.2 Experimental Measurement

It is stated in [25] that a key aspect of using an FPGA for data stream processing is its flexibility that

enables us to insert custom hardware logic into an existing data path. For example, the proposed sliding-

window aggregate circuit can be directly connected to the physical network interface. In order to verify

the effectiveness of the proposed method, we implement the same experimental system as that of Chap-

ter 3.
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Our experiments are based on a Xilinx ML605 FPGA board, which includes the Virtex-6 FPGA

and a Gigabit Ethernet interface. An overview of the experimental system is depicted in Fig. 3.5.4

(Chapter 3). The experimental system consists of the ML605 FPGA board and a host computer, which are

directly connected by a dedicated Gigabit Ethernet cable (indicated as “GbE” in Fig. 3.5.4). To simulate

a disordered input stream, we use the same data generator as that of Chapter 3 to produce an input stream

with bounded disorder. The schema of the input stream is defined as follows: Trades = ⟨Symbol :

char[4],Price : int,Volume : int,Time : int⟩. The Symbol attribute contains either a constant string

“UBSN” or other randomly generated strings of 4 characters (4 bytes). The Price and Volume attributes

contain uniformly distributed random integers from the interval 1–100 and 1–1000, respectively. The

Time attribute contains sequential numbers starting from 0 with an incremental interval of 1. The data

generator on the host computer first generates 753,664 input tuples in non-decreasing order with respect

to their Time attribute. After that, the positions of the tuples are randomized in such a way that no tuples

are to be late or out-of-order more than 60 seconds (i.e., a predefined SLACK value) in the stream.

We have measured the effective throughput of the proposed pane-based implementation on the ML605

FPGA board. Results of the experiments show that the proposed implementation achieves an effective

throughput up to around 760 Mbps for different RANGE
SLIDE ratios. This is the upper bound of the available

bandwidth that the network interface (i.e., the UDP Rx module [11]) could handle. This is equivalent to

nearly 6 million tuples per second, which means that the proposed implementation can process signif-

icantly high tuple rates at wire speed, even if large RANGE
SLIDE ratios are considered (e.g., RANGE

SLIDE ≥ 1024).

Furthermore, we have also conducted experiments on other aggregation functions, such as SUM, MIN,

and MAX instead of COUNT in a similar way to Chapter 3, and obtained almost the same performance

as Query Q2 (i.e., around 760 Mbps and nearly 6 million tuples/s). In other words, the pane-based design

also provides the same constant performance regardless of the choice of the aggregate function, which is

another favorable property of the proposed design.
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Chapter 5

Configurable Query Processing Hardware

for Data Streams

5.1 Abstract

This Chapter presents Configurable Query Processing Hardware (CQPH), an FPGA-based accelerator

for continuous query processing over data streams. CQPH is a highly-optimized and minimal-overhead

execution engine designed to deliver real-time response for high-volume data streams. Unlike most of

the other FPGA-based approaches, CQPH provides on-the-fly configurability for multiple queries with

its own dynamic configuration mechanism. With a dedicated query compiler, SQL-like queries can be

easily configured into CQPH at run time. CQPH supports continuous queries including selection, group-

by operation and sliding-window aggregation with a large number of overlapping sliding-windows. As a

proof of concept, a prototype of CQPH is implemented on an FPGA platform for a case study. Evaluation

results indicate that a given query can be configured within just a few microseconds, and the prototype

implementation of CQPH can process over 150 million tuples per second with a latency of less than a

microsecond. Results also indicate that CQPH provides linear scalability to increase its flexibility (i.e.,

on-the-fly configurability) without sacrificing performance (i.e., maximum allowable clock speed).

5.2 Hardware Design Issue

A common limitation from which the most FPGA-based approaches suffer is that the existing approaches

impose significant overhead on run-time query registration/modification. It is mentioned in [29] that

while supporting query modification at run time is almost trivial for software-based techniques, they are

highly uncommon for custom hardware-based approaches such as FPGAs. In fact, both the WID-based

implementation (presented in Chapter 3) and the pane-based implementation (presented in Chapter 4) can
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be characterized as a static FPGA-based query processor, fully tailored for a specific query. Therefore, it

has a disadvantage when it comes to reconfiguring for a new query because the compilation steps (e.g.,

synthesis and place-and-route) can take on the order of minutes or even up to hours to complete.

On the other hand, given the dynamic environment of data streams, queries can join and leave a

streaming system at any time [15]. It is therefore imperative for a query processing accelerator to support

on-the-fly configurability for easy adaptation to the dynamic environment. In order to overcome the

limitation of the previous approaches, this Chapter proposes a fundamentally novel approach compared

to those presented in Chapter 3 and Chapter 4. In particular, the main contributions of the Chapter are

summarized as follows.

• Three configurable hardware modules are designed to execute sliding-window aggregate queries:

1. selection module with efficient support for multiple selection conditions,

2. group-by module based on a scalable systolic architecture, and

3. window-aggregation module supporting a large number of overlapping sliding-windows.

• Two-phase configuration approach is adopted to provide on-the-fly configurability for given queries:

1. a fully automated integration of the hardware modules to implement CQPH on FPGA, and

2. run-time query configuration with a dedicated query compiler implemented for CQPH.

• The proposed approach is evaluated in terms of

1. latency, throughput, and configuration time;

2. resource utilization and maximum clock frequency with a case study; and

3. performance measurement of a prototype system implemented on a Xilinx FPGA platform.

The proposed approach overcomes the limitations of the previous work such as [25, 26, 34, 35, 36], by

offering a great degree of flexibility for on-the-fly query configuration. To the best of our knowledge, this

is the first work that presents an FPGA-based query processor that can support run-time configuration of

sliding-window aggregate queries with a large number of overlapping sliding-windows.

5.3 Design Concept

5.3.1 On-the-fly Query Configuration

Two-phase Configuration Approach

In this Chapter, we adopt two-phase configuration approach to support on-the-fly configuration of con-

tinuous queries, instead of implementing a static query processing hardware that is fully tailored for a
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(a) Static Configuration: One-time-only configuration of an FPGA to implement CQPH by

using a standard FPGA tool chain. The first phase (i.e., static configuration) typically

requires a relatively long period of time. In particular, the compilation steps (i.e., synthesis

and place-and-route) can take on the order of minutes or even up to hours to complete.

(b) Dynamic Configuration: On-the-fly configuration of continuous queries by updating inter-

nal registers of CQPH at run time. In contrast to the first phase, the second phase (i.e.,

dynamic configuration) only requires a very short period of time (e.g., in the order of mi-

croseconds).

Figure 5.3.1: Two-phase configuration: static configuration of FPGA (Fig. 5.3.1a) and dy-

namic configuration of CQPH (Fig. 5.3.1b).

specific query. The basic idea of the two-phase configuration approach is illustrated in Fig. 5.3.1. The

proposed approach is based on static and dynamic configuration mechanisms.

Static Configuration of FPGA

The first phase is static configuration of FPGA (see Fig. 5.3.1a). CQPH is designed as a highly pa-

rameterized HDL model; therefore, static configuration parameters should be provided to generate an

application-specific CQPH instance. Without any hardware design experience, users only need to pro-

vide a few static parameters according to their applications’ need (see Table 5.1). In addition, advanced

users can provide more detailed configuration parameters to make trade-offs between area and flexibility,

by scaling the number of each configurable module included in CQPH template design.

The implementation of CQPH follows a normal FPGA design flow as shown in Fig. 5.3.1a. Given a

set of static configuration parameters, VHDL description of CQPH is fed to a standard FPGA tool chain

(e.g., synthesis, place-and-route) to generate the actual low-level representation of the FPGA-specific

circuit. After that, the generated circuit is used to program an FPGA, by downloading a bit-stream file

into the FPGA. It should be noted that users are required to go through the static configuration process

47



CHAPTER 5. CONFIGURABLE QUERY PROCESSING HARDWARE FOR DATA STREAMS

Table 5.1: List of Statically-configured Parameters.

Stream schema (i.e., Tuple Width & the Number of Attributes)

Pane Buffer Size (i.e., Data Width & the Number of Entries)

# of Selection Predicate Modules (see Section 5.4.2 for details)

# of Boolean Expression Trees (see Section 5.4.2 for details)

# of Group-by Manager Modules (see Section 5.4.3 for details)

# of Aggregation Pipelines (see Section 5.4.4 for details)

# of Pipeline Stages of Union (see Section 5.4.5 for details)

only once to implement CQPH prior to run-time execution of continuous queries.

Dynamic Configuration of CQPH

The second phase is dynamic configuration of CQPH (see Fig. 5.3.1b). Once CQPH is implemented

on an FPGA through the static configuration process, it is now ready for CQPH to execute continuous

queries. In order to support run-time configuration of continuous queries, we have implemented a dedi-

cated parser/compiler, CQPH-compiler, which can compile continuous queries into query configuration

data for CQPH. In the proposed design, query configuration data are divided into a set of configuration

tuples which are then streamed into CQPH. Fig. 5.3.1b illustrates the compilation process of continuous

queries to create query configuration data for CQPH.

It is mentioned in [29] that a common limitation of FPGA-based approaches relates to the inherent

complexity of the design synthesis process, such as logic optimization and technology mapping, which

leads to the drastic increase in synthesis time as applications grow in size. CQPH-compiler does not

suffer from this limitation because the query compilation process of CQPH does not require a time-

consuming synthesis process of FPGA. As a result, CQPH can provide a significant degree of flexibility

for run-time query configuration.

CQPH template design consists of a number of configurable hardware modules. Fig. 5.3.2 illustrates

a black-box view of a configurable hardware module and its wiring interface. Each hardware module has

its own bit flag field and data field as a connection interface. Bit flag field consists of one-bit signals one

of which is a configuration flag. In addition, data field represents n-bit-wide data which is regarded as a

set of n parallel wires. It should be noted that each hardware module adheres the same wiring interface

to connect another module. For example, datum on the input data field is considered as a part of the

query configuration data (i.e., a configuration tuple) when the configuration flag of the previous module
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Figure 5.3.2: Black-box view of a configurable hardware module.

is asserted (i.e., set to logic “1”).

Each configuration tuple consists of two main parts: (i) configuration data field, and (ii) target ID

field. As its name suggests, configuration data field contains query configuration data for a specific

hardware module. Target ID field contains a unique identifier assigned to each configurable hardware

module. Given a configuration tuple, each hardware module evaluates whether the target ID field matches

its own ID number. In accordance with the result, configuration data is stored to configuration registers

inside a configurable hardware module, or the configuration tuple is simply forwarded to the next module.

It should be emphasized that each hardware module can be dynamically configured in just one clock

cycle by a single configuration tuple. With the proposed approach, users can easily update or modify

configuration registers of each hardware module to change the behavior of a programmable hardware

block at run time.

5.3.2 Supported Capabilities of CQPH

The current prototype of CQPH can be configured to execute continuous queries that follow certain

patterns. In particular, CQPH supports queries from simple filtering to window-based aggregation (see

Fig. 5.3.3 and Fig. 5.3.4). As indicated in Query Q5 and Q6, the main focus of this work is on those

queries that process a single data stream without joins. For those interested in the implementation of

joins, we refer readers to handshake join algorithm [44] and our previous works [30, 31, 32, 33] for the
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SELECT * FROM Stream WHERE <boolean expression >

Figure 5.3.3: Q5: Template of selection-based filtering.

SELECT <windowing attribute >,

<grouping attribute >,

<aggregate function >

FROM Stream [RANGE <window size>

SLIDE <hop size>

WATTR <windowing attribute >]

WHERE <boolean expression > (optional)

GROUP BY <grouping attribute > (optional)

Figure 5.3.4: Q6: Template of window-based aggregation.

details of our implementation of the join algorithm on an FPGA.

Note that, in Query Q5 and Q6, any expression between ’<’ and ’>’ can be configured at run time (i.e.,

dynamically configurable via configuration registers). This is a significant difference between CQPH and

a static FPGA-based query processor. In fact, CQPH enables users to add, modify or remove continu-

ous queries at negligible cost compared to previous approaches such as Glacier [25], the WID-based

implementation (Chapter 3), and the pane-based implementation (Chapter 4).

It should be also emphasized that available resources (i.e., configurable hardware modules) do not

have to be separated into queries statically. For example, one can assign an arbitrary number of aggre-

gation pipelines for a specific query at run time. The resource allocation of CQPH is somehow similar

to those of skeleton automata [45, 46]. As stated in [45], this lets us make efficient use of resources.

In our case, the same circuit can be utilized for either many queries each of which is assigned to single

aggregation pipeline or fewer queries with multiple aggregation pipelines. In either case, the total num-

ber of configurable hardware modules provisioned in the CQPH limits the number of queries that can be

processed simultaneously.
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Figure 5.4.1: Overview of the data flow of CQPH Architecture.

5.4 CQPH Architecture

5.4.1 Overview of CQPH

In this section, we present the details of CQPH architecture. An overview of the CQPH architecture is

illustrated in Fig. 5.4.1. CQPH contains a collection of configurable hardware modules each of which

is designed for selection, group-by, or sliding-window aggregate operator. In the proposed design, we

adopt push-based processing model with a fully-pipelined implementation of the configurable hardware

modules. Arrows in Fig. 5.4.1 represent the direction of data flow between each module, and there is no

loopback connections between any two modules.

It should be emphasized that CQPH architecture designed this way remains fully pipelined and oper-
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SELECT key, SUM(value)

FROM KeyValue [RANGE 1 minute

SLIDE 1 minute

WATTR time]

WHERE value > 10

GROUP BY key

Figure 5.4.2: Q7: “Given an input stream KeyValue = ⟨key, value, time⟩, first filter out all

the tuples that do not satisfy the condition in WHERE clause (i.e., value > 10). After that

calculate the sum of value for each different key for the past 1 minute and update the result

every 1 minute.”

ates in a strict streaming fashion at wire-speed rate. This guarantees wire-speed performance and CQPH

can accept one input tuple per clock cycle independent of the query workload. As a simple example,

CQPH architecture is capable of processing queries like Query Q7 (see Fig. 5.4.2) in a strict streaming

fashion at wire-speed rate (for ease of presentation, this example assumes RANGE = SLIDE = 1 minute).

CQPH processes incoming tuples in a series of pipeline stages, which are designed for filtering,

grouping, and aggregation operations as shown in Fig. 5.4.3. In Fig. 5.4.3, input tuples are simple key-

value pairs with a timestamp attribute. The schema of the input stream is defined as follows: KeyValue =

⟨key, value, time⟩. The key and value attributes contain string (e.g., “KEY_X”, “KEY_Y”, or “KEY_Z”)

and integer (e.g., 5, 10, 15, 20, 30, or 40) values, respectively. First, the filtering operator filters out all

the tuples that do not satisfy the condition in WHERE clause (i.e., value > 10). As shown in Fig. 5.4.3,

4 tuples (t1, t6, t8, and t9) are filtered out and the other tuples (t2, t3, t4, t5, t7, t10, t11, and t12) are

bypassed by the filtering operator. After that, the grouping operator splits the bypassed tuples into 3

different groups according to their key attributes (i.e., “KEY_X”, “KEY_Y”, and “KEY_Z”). As shown

in Fig. 5.4.3, the first group (“KEY_X”) contains 3 tuples (t4’, t7’, and t10’). Similarly, the second group

(“KEY_Y”) contains 3 tuples (t2’, t5’, and t11’). Finally, the third group (“KEY_Z”) contains 2 tuples

(t3’ and t12’). The last step is to calculate the sum of values for each group separately. As shown in

Fig. 5.4.3, the aggregation operator calculates those values and generates an output tuple for each group

with the following schema: ⟨key, SUM(value)⟩. In particular, the sum of the value of t4’, t7’, and t10’

yields a result of 85 (i.e., 15 + 30 + 40 = 85) for the first group (“KEY_X”). Similarly, the sum of the

value of t2’, t5’, and t11’ yields a result of 55 (i.e., 15+ 20+ 20 = 55) for the second group (“KEY_Y”).

Finally, the sum of the value of t3’ and t12’ yields a result of 50 (i.e., 20 + 30 = 50) for the third group

(“KEY_Z”) as indicated in the top of Fig. 5.4.3.
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Figure 5.4.3: An example of filtering, grouping, and aggregation operations for Query Q7 for

the first window (between 12:00:00 and 12:01:00 p.m.).

Inside CQPH, the filtering, grouping, and aggregation opertions are performed by (i) Shared Selec-

tion Module, (ii) Group-by Managers, and (iii) Aggragation Pipelines, respectively. As illustrated in

Fig. 5.4.1, each Agggregation Pipeline includes pane-level and window-level sub-queries along with a

pane buffer. The following subsections describe each hardware module in more detail.
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<boolean expr.> ····= True | False | <tree>
<tree> ····= <predicate >

| (<tree> AND <tree>)

| (<tree> OR <tree>)

<predicate > ····= <attribute > <op.> <literal>
<op.> ····= = | , | > | ≥ | < | ≤

Figure 5.4.4: Boolean expressions supported by CQPH.

5.4.2 Selection Operator

Shared selection module (see the bottom of Fig. 5.4.1) determines whether or not an incoming tuple

satisfies a given set of selection predicates. A selection predicate, or simply a predicate, specifies a

condition that is either true or false about an input tuple. In SQL-like queries, a selection predicate is

typically given as a Boolean expression in WHERE clauses. The current prototype of CQPH only accepts

predicates on fixed-length attributes; however, it can still support different kinds of selection conditions,

ranging from a single predicate to complex Boolean expressions (see Fig. 5.4.4).

In the proposed design, the shared selection module consists of two types of configurable hardware

modules: (i) selection predicate module, and (ii) binary reducer module. These hardware modules do

not have to be allocated to queries statically. Rather, one can assign an arbitrary number of selection

predicates for a specific query at run time. In other words, the same circuit can be utilized for either

many queries each of which is assigned to a single predicate or fewer queries with complex Boolean

expressions. In either case, the total number of the selection predicate modules limits the number of

Boolean expressions that can be processed simultaneously. For example, Fig. 5.4.5 illustrates a simplified

block diagram of the shared selection module, which is assigned to Query Q8 ∼Q10 (see Fig. 5.4.6).

With the proposed design, each Boolean expression tree (i.e., Stage 2 of Fig. 5.4.5) can be configured

to evaluate a selection condition, by sharing the results of the selection predicate modules (i.e., Stage 1

of Fig. 5.4.5). For this purpose, CQPH-compiler keeps track of information about the conditions that

are already assigned to each module. When a new query is registered, CQPH-compiler compares the

new Boolean expression with currently registered ones and decides whether it is possible to share any of

selection predicates. In contrast, when a registered query is removed, corresponding modules are cleared

unless these modules are shared by the other queries.

Recall from Fig. 5.3.2 that the wiring interface of each module consists of a bit flag field and data

field. The valid flags of Boolean expression trees are integrated into the bit flag field of the shared

selection module. It should also be mentioned that the shared selection module simply forwards data
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Figure 5.4.5: A simplified block diagram of the shared selection module instantiated with the

following parameters: (i) # of selection predicate modules = 4 (Stage 1) and (ii) # of Boolean

expression trees = 3 (Stage 2).

.

Q8: SELECT * FROM S WHERE A=1

Q9: SELECT * FROM S WHERE A=1 AND B>2

Q10: SELECT * FROM S WHERE (A=1 OR B>2) AND C<3

Figure 5.4.6: Q8 ∼Q10: “Given an input stream S = ⟨A : int,B : int,C : int⟩, select all tuples

that satisfy predicates of each query.”

field to the next module. Therefore, for example, when valid flag 0 and 2 are asserted (i.e., set to logic

“1”) and valid flag 1 is negated (i.e., set to logic “0”), datum on the data field is considered as a valid

tuple for Query Q8 and Q10, but not for Q9.

Note that even though the Boolean expression trees provide a certain degree of flexibility, probably

the most flexible approach is to use truth tables as proposed in the Ibex system [49]. In fact, the same

technique as that of Ibex could be used to implement the shared selection module of CQPH. Nevertheless,
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Figure 5.4.7: Wiring interface of a Group-by Manager module. Each module accepts its input

from West_in port and transfers its output to East_out and/or North_out ports.

there is always a trade-off between flexibility and hardware cost. In particular, Ibex consumes on-chip

block memories (i.e., BRAMs) to store complex Boolean expressions as explicit truth tables. In our

case, however, a large number of BRAMs are required to implement multiple aggregation pipelines as

shown in Fig. 5.4.1 (each pane buffer is implemented using BRAM primitives). In this work, therefore,

we choose binary tree-based approach (which requires no BRAMs) to implement the shared selection

module, rather than BRAM-based truth tables.

5.4.3 Group-by Operator

In SQL-like queries, a GROUP-BY clause can be used along with an aggregate function to calculate an

aggregate value for each group of tuples. As shown in Query Q6, the template query can optionally sup-

port GROUP-BY clause. The group-by operation is regarded as a tuple-routing problem in the proposed

CQPH architecture. The routing logic basically relies on the valid flag fields and grouping-attribute value

of each tuple. Recall from Fig. 5.4.5 that valid flags are generated by the Boolean expression trees of

the shared selection module. The grouping-attribute value can simply be extracted from the data field of

each tuple.

As indicated in Fig. 5.4.1, CQPH architecture includes a number Group-by Manager (GM) modules

that provide grouping functionality. The number of the GM modules can be given as a configuration

parameter in the static configuration phase of FPGA. Therefore, an arbitrary number of GM modules can

be instantiated in CQPH architecture where the only limit is the available area on an FPGA.

Each GM module accepts a new tuple from West port and forwards it to either (i) East port or (ii)

both of the two output ports (i.e., North and East ports) as shown in Fig. 5.4.1. Fig. 5.4.7 illustrates
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the wiring interface of a GM module in more detail. Each GM module includes two sets of the wiring

interface: East_out and North_out, respectively. As shown in Fig. 5.4.7, GMn takes its input from GMn−1

and forwards its output to either one or both of the output interfaces. As indicated in Fig. 5.4.7, East_out

port of GMn is connected to GMn+1 In addition, North_out port of GMn is connected to an aggregation

pipeline as shown in Fig. 5.4.1.

As mentioned above, we consider the group-by operation as a tuple-routing problem; therefore, GM

modules require a routing logic to provide grouping functionality. In fact, there are two kinds of routing

logic inside a GM module: one for queries with a GROUP-BY clause (see Fig. 5.4.8) and the other

for queries without a GROUP-BY clause (see Fig. 5.4.9). Since the latter is a simplified version of the

former, we focus on the former case in the following example.

Fig. 5.4.10 illustrates the basic idea of how input tuples are processed by GM modules. Each GM

module includes a Query ID (qid) register which can be configured at the dynamic-configuration phase.

The example in Fig. 5.4.10 assumes that GMn−1 and GMn have already been configured for qid = 0.

Similarly, GMn+1 has been configured for qid = 1. These IDs are related to the valid flag fields of each

tuple, which means that both GMn−1 and GMn are assigned to valid flag 0 (i.e., qid 0) while GMn+1 is

assigned to valid flag 1 (i.e., qid 1).

According to the given routing logic, input tuples are processed based on the valid flag fields and

grouping-attribute value. For instance, at the time t = t0, GMn−1 receives a new tuple which belongs to

Group X. Notice that valid flag 0 is asserted and this means that the input tuple is valid for qid 0. Since

GMn−1 is not yet assigned to any group (i.e., Grp=Null), Group X is registered to GMn−1 at the next

clock cycle (i.e., t = t0 + 1). At the same time, the input tuple is forwarded to both North (aggregation

pipeline) and East (next GM module) ports. It is also important to note that valid flag 0 is negated to

indicate that the corresponding tuple has already been processed for qid 0.

Note that after the time t = t0, GMn−1 takes responsibility for tuples with Group X and the other

tuples are simply bypassed to GMn. For example, when t = t0 + 1, GMn−1 receives a new tuple with

Group Y, which is simply bypassed to GMn at the next clock cycle (i.e., t = t0 + 2). In contrast, when

t = t0 + 2, GMn−1 receives a new tuple with Group X. In this case, the input tuple (with Group X) is

forwarded to both North and East ports with valid flag 0 negated as shown in Fig. 5.4.10.

For those queries with a GROUP-BY clause, each aggregation pipeline receives tuples from one

group only. In addition, incoming tuples are always processed on a first-come-first-served basis, by ag-

gregation pipelines independently of each other. It should be also mentioned that, for those queries with-

out a GROUP-BY clause, GM modules use the simplified version of the routing logic (i.e., Fig. 5.4.9).

In this case, input tuples are routed based only on valid flag fields; therefore, an aggregation pipeline can

receive different kinds of tuples.
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Input:

1: West_in port

Output:

2: East_out port

3: North_out port

Initialization (dynamically-configurable registers):

4: qidreg ← a specific Query ID

5: groupreg ← NULL
Synchronous Update:

6: for each clock cycle do

7: extract valid_flag[qidreg] from West_in port

8: if valid_flag[qidreg] = 1 then

9: extract grouping_attribute from West_in port

10: if groupreg = NULL then

11: groupreg ← grouping_attribute

12: North_out←West_in

13: valid_flag[qidreg]← 0

14: else if groupreg = grouping_attribute then

15: North_out←West_in

16: valid_flag[qidreg]← 0

17: end if

18: end if

19: East_out←West_in

20: end for

Figure 5.4.8: Pseudo code of the routing logic for queries with a GROUP-BY clause.

It should also be emphasized that GM modules perform the same operation on every single clock

cycle (in a synchronous manner). In fact, all operations described lines between 7∼ 19 of Fig. 5.4.8 (or

6∼ 11 of Fig. 5.4.9) can be completed in just one clock cycle. In addition, each GM module requires

only local communication for transferring tuples to its adjacent modules. From this point of view, GM

modules and their connections can be regarded as a one-dimensional linear systolic array [16]. The

data processing and communication model of GM modules are consistent with the properties of systolic

architectures.
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Input:

1: West_in port

Output:

2: East_out port

3: North_out port

Initialization (dynamically-configurable registers):

4: qidreg ← a specific Query ID

Synchronous Update:

5: for each clock cycle do

6: extract valid_flag[qidreg] from West_in port

7: if valid_flag[qidreg] = 1 then

8: North_out←West_in

9: valid_flag[qidreg]← 0

10: end if

11: East_out←West_in

12: end for

Figure 5.4.9: Simplified version of the routing logic for queries without a GROUP-BY clause.

In the current implementation of CQPH-compiler, the compiler requires the maximum number of

groups that should be handled by CQPH. In practice, the total number of GM modules provisioned in

the CQPH limits the number of groups (or queries) that can be processed simultaneously. Note that

CQPH can support the same order of groups as Glacier [25] (e.g., less than a hundred). If the number

of groups exceeds the limit of CQPH at run time, these groups can be obtained from East port of the

last GM module (see the dashed arrow of GMN in Fig. 5.4.1). By using a similar approach as that of

Ibex [49], these groups could be bypassed to a host system for further processing (though the processing

of bypassed tuples is out of scope of this work).

5.4.4 Window-aggregation Operator

CQPH architecture supports the same aggregate functions as previous Chapters (i.e., Chapter 3 and

Chapter 4). In particular, the current version of CQPH can support the following aggregate functions:

COUNT, SUM, MIN, and MAX. Recall from Table 4.1 (Chapter 4) that these aggregate functions can

be decomposed into pane-level and window-level sub-queries (i.e., PLQ and WLQ), respectively.

The proposed CQPH architecture adopts the two-step aggregation technique using panes. In Chap-
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Figure 5.4.10: A simple example for the group-by operation.

ter 4, we have presented a pane-based implementation of a sliding-window aggregate query. This can

be characterized as a static FPGA-based query processor, especially tailored for a specific query. On the

other hand, in the proposed CQPH architecture, the same idea (i.e., the two-step aggregation technique)

is implemented based on the configurable hardware modules (recall from Fig. 5.3.2). This is the main

difference between the pane-based implementation presented in Chapter 4 and the CQPH architecture.

As shown in the overview of the CQPH architecture (Fig. 5.4.1), a pair of PLQ and WLQ is im-

plemented in a pipelined fashion with a pane buffer for each pair of two sub-queries. As described in

Section 5.4.3, each of the aggregation pipelines can be mapped to a group or query at run time. With the

proposed design, the multi-pipeline architecture of CQPH allows users to execute multiple continuous

queries concurrently.

It is important to note that each aggregation module processes incoming tuples immediately after

arrival, rather than batching them up until a pane or window closes. In particular, PLQ and WLQ modules
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Figure 5.4.11: A simplified block diagram of the aggregation module that includes four sub-

modules (i.e., aggregate circuits): COUNT, SUM, MIN, and MAX.

do not store all of the incoming tuples. Instead, CQPH adopts a similar approach as that of Glacier [25]

and the input tuples are directly forwarded to aggregation circuits inside PLQ or WLQ module (see

Fig. 5.4.11). In fact, as mentioned in [25], this approach has the advantage that each aggregation circuit

needs to provide storage just for the amount of state it requires (i.e., a fixed amount of state), rather than

maintaining the entire pane or window. In other words, each aggregate circuit incrementally computes

its own aggregate value and only stores the current (i.e., partial) result of the aggregation.

Each aggregation module requires two control signals: enable input stream (eis) and end of stream

(eos) as shown in Fig. 5.4.11. Note that these signals can be generated with a simple counter for count-

based windows whereas time-based windows require additional logic to generate the control signals. For

example, Fig. 5.4.12 describes how eis and eos signals can be generated for a time-based window (e.g.,

PLQ). Whenever eis is asserted, data field should be considered as a valid tuple and the aggregation

module accepts the input tuple. Once the input stream reaches the end of the current pane, eos is asserted

and the aggregate value is emitted to the upstream data path.

5.4.5 Union Operator

From a data flow point of view, a union operator accumulates several source streams into a single output

stream [25]. CQPH adopts a similar approach as that of Glacier [25] to implement a union operator. That

is to say, all source streams (i.e., output streams of the aggregation pipelines) are buffered by FIFOs as

indicated in Fig. 5.4.1, and the union module forwards output tuples in a round-robin fashion from the

FIFO buffers.
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Initialization (dynamically-configurable registers):

1: panebegin ← timestart

2: paneend ← timestart + RANGEPLQ

3: panemove ← SLIDEPLQ

Synchronous Update:

4: for each clock cycle do

5: eos← 0 (default value)

6: eis← 0 (default value)

7: if punctuation_flag = 1 then

8: if paneend ≤ timestamppunc. then

9: eos← 1

10: panebegin ← panebegin + panemove

11: paneend ← paneend + panemove

12: end if

13: else if valid_flag = 1 then

14: if panebegin < timestamptuple ≤ paneend then

15: eis← 1

16: end if

17: end if

18: end for

Figure 5.4.12: Generation of eis and eos signals for PLQ.

The average input rate of all source streams should not exceed more than 1 tuple/cycle, which is

the maximum tuple rate of the output port of the union operator. This constraint is necessary to prevent

possible data loss due to a buffer overflow. In the proposed design, the union module provides an admis-

sion control signal for the input interface of CQPH when any of the FIFO buffers is close to overflow.

With the admission control mechanism, the union module takes responsibility for input tuples accepted

by CQPH. This means that no data loss occurs inside the union module (i.e., between each aggregation

pipeline and the output channel).

On the other hand, this does not always prevent loss of the actual query results. Strictly speaking,

a lossless flow of all query results is impossible when the output channel could not keep up with a

high input data rate. In such a situation, load shedding [42] or distribution [1] techniques can be used,

even though the implementation of such a technique is beyond the scope of this work. Note that the
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admission control mechanism is consistent with load shedding techniques because CQPH can produce

more valuable results with the appropriately filtered inputs once a load shedding mechanism reduces the

input load.

It should be mentioned that the union module is implemented in a pipelined fashion, and the number

of pipeline stages (NS) can be given as a static configuration parameter. A typical value of NS is one or

two, depending on the size of the union module. Note that there is a trade-off between latency and the

maximum clock frequency. A large value of NS imposes a latency cost (i.e., two clock cycles per stage);

however, this can increase the allowable operating-frequency range by reducing the critical path delay of

the union module.

5.5 Evaluation

5.5.1 Latency and Throughput

Performance Metrics

In this Section, we evaluate the circuit characteristics of the proposed CQPH architecture. As stated

in [25], the performance characteristics of a query processing circuit can accurately be derived by solely

analyzing the circuit design. We follow a similar approach and evaluate the circuit characteristics of

CQPH in terms of latency and issue rate. Latency and issue rate are important metrics to determine the

performance of hardware circuit. In particular, latency directly corresponds to the observable response

time, whereas issue rate determines throughput [25].

Latency

Table 5.2 summarizes latencies and issue rate of each operation in CQPH. Latency is measured in terms

of the number of the clock cycles between the time when a tuple enters the circuit and the time when a

result item is produced. In Table 5.2, NG and NS represent the number of Group-by Manager modules

and the number of pipeline stages of Union module, respectively. Recall from Table 5.1 that both of

these parameters are provided in the static configuration phase of FPGA.

Note that grouping and windowing operators cannot produce their outputs before they have seen the

last tuple of the respective window [25]. For these operators, therefore, latency is defined as the number

of clock cycles between the closing of the input window and the generation of the first output tuple.

In Table 5.2, the lower bound indicates the latency of the first output tuple whereas the upper bound

corresponds to the last output tuple of each window. For instance, assuming NS = 1, CQPH can produce

the first output tuple of each window in just 13 clock cycles. In other words, the proposed design can

respond with a latency of only 130 nanoseconds when clocked at 100 MHz.
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Table 5.2: Latency and Issue Rate of Each Operation.

Latency† Issue Rate‡

Lower Upper

Selection 2 2 1

Group-by 1 NG 1

Window Aggregation 6 6 1

Union 2NS + 2 2NS + 2 1

Overall Operations 2NS + 11 NG + 2NS + 10 1

† In this table, latencies are given in terms of the number of clock cycles.
‡ Issue rate is defined as the number of tuples that can be processed per

clock cycle.

Throughput

Issue rate is defined as the number of tuples that can be processed per clock cycle. As shown in Table 5.2,

issue rate of each operation is 1 tuple/cycle, which means that each operator can accept a new tuple every

clock cycle. The overall issue rate of CQPH is determined by the slowest operation (i.e., the minimum

issue rate); thus, the issue rate of the overall operation is also 1 tuple/cycle. It is important to note

that CQPH operates in a strict streaming fashion independent of the query workload, and the maximum

throughput of the circuit is directly dependent on its clock rate. For example, the proposed design can

process up to 100 million tuples per second when clocked at 100 MHz.

5.5.2 Dynamic Configuration Time

Table 5.3 summarizes dynamic configuration time of CQPH for a given query. In Table 5.3, NG and NSP

represent the number of Group-by Manager modules and the number of Selection Predicate modules, re-

spectively. Recall from Section 5.3.1 that query configuration data are divided into a set of configuration

tuples each of which corresponds to a single hardware module. Given the configuration tuples, dynamic

configuration time can be measured in terms of the number of clock cycles required to send all of these

tuples to CQPH.

The lower bound of Table 5.3 corresponds to a simple sliding-window aggregate query without

WHERE or GROUP-BY clause. On the other hand, the upper bound represents a more generic form of

the aggregate query with WHERE and GROUP-BY clause (e.g., Query Q6). In either case, the proposed
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Table 5.3: Dynamic Configuration Time† for a Given Query.

Lower Upper

Selection Predicate 0 NSP = 2n, n ∈ Z+

Binary Reducer 1 NSP − 1

Group-by Manager 1 NG

Pane-level Sub-query 2 2NG

Window-level Sub-query 2 2NG

Total Configuration Time 6 2NSP + 5NG − 1

† In this table, configuration times are given in terms of the

number of clock cycles.

CQPH architecture can offer run-time configurability at negligible cost compared to query-tailored cir-

cuits such as Glacier [25], the WID-based implementation (presented in Chapter 3), and the pane-based

implementation (presented in Chapter 4).

5.5.3 Case Study

Evaluation Setup

In this Section, we evaluate hardware resource utilization and performance of the proposed CQPH archi-

tecture through a case study. This case study considers the same financial trading application as that of

Chapter 3 and Chapter 4. In this application, over a million tuples can arrive per second, and at the same

time, latency is critical and measured in units of microseconds (µs) [25]. It is therefore crucial for CQPH

to meet these performance requirements.

In the evaluation, we assume an input stream with the following schema: ⟨Symbol,Price,Volume,Time⟩
as explained in Section 3.3 (Chapter 3). Note that, in practice, a stream schema may consist of a num-

ber of different attributes, and input tuples can be delivered using an application-specific protocol (e.g.,

FIX protocol [13] for algorithmic trading). In such a case, input streams should be pre-processed before

delivery to CQPH. For example, in the previous work [25], a stream de-multiplexer is implemented to

process a compressed variant of the FIX protocol and dispatch each tuple to the proper query-processing

circuit. A similar approach can be applied for CQPH. Moreover, if necessary, a projection and selection

operator can be implemented with a segment-at-a-time processing model [29] to extract only necessary

attributes for CQPH. However, the implementation of such an operator is beyond the scope of this case
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Table 5.4: Specifications of the Kintex R⃝-7 FPGA (XC7K325T).

# of Slice Registers 407,600

# of Slice LUTs 203,800

# of Slices 50,950

# of BRAM (36Kbit) 445

Table 5.5: Static Configuration Parameters.

Stream schema 128 bits, 4 attributes

Pane Buffer Size 64 bits, 2048 entries

# of Selection Predicate Modules NSP ∈ {2, 4, 8, 16, 32, 64}

# of Boolean Expr. Trees NG ∈ {2, 4, 8, 16, 32, 64}

# of Group-by Manager Modules NG

# of Aggregation Pipelines NG

# of Pipeline Stages of Union NS =

 1 if NG ≤ 8

2 otherwise

study.

For the above application, we have implemented CQPH on a Kintex-7 XC7K325T FPGA [50] with

different parameter settings. The specification of the Kintex-7 FPGA and the configuration parameters

are given in Table 5.4 and Table 5.5, respectively. Xilinx ISE 14.4 is used during the implementation

process (e.g., synthesis and place-and-route). The proposed CQPH architecture is synthesized with a

timing constraint of 6.37 ns for each configuration, which yields the target clock frequency of 156 MHz.

Note that when sufficient I/O bandwidth is available, the theoretical peak performance of CQPH can be

calculated as follows (see Equation 5.5.1).

Tpeak = d × f (5.5.1)

where:

Tpeak = theoretical peak throughput

d = data width of input tuple

f = operating clock frequency
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(a) Static Configuration Parameters:

NSP = 4 and NG = 2 ∼ 64.
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(b) Static Configuration Parameters:

NSP = 16 and NG = 2 ∼ 64.
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(c) Static Configuration Parameters:

NSP = 64 and NG = 2 ∼ 64.

Figure 5.5.1: Overall resource consumption of FPGA to implement CQPH with an increasing

value of NG = 2 ∼ 64.

For example, data width is 128 bits in the case study (see Table 5.5) and if we assume a clock rate of

156 MHz, the peak performance is equivalent to nearly 20 Gbps (i.e., 128 bits × 156 MHz= 19,968 Mbps).

Hardware Resource Utilization and Performance

Hardware Resource Utilization. The overall resource consumption is shown in Fig. 5.5.1 and Fig. 5.5.2.

Each graph of Fig. 5.5.1 and Fig. 5.5.2 represents the resource consumption in terms of percentages of

the total available resources on the target FPGA device. These graphs indicate trade-offs between area

(i.e., resource utilization) and flexibility of CQPH. For example, all four graphs (i.e., Registers, LUTs,

Slices, BRAMs) of Fig. 5.5.1a, 5.5.1b, and 5.5.1c linearly increases with increasing NG values. Results of

these graphs suggest that CQPH provides linear scalability in terms of the hardware resource utilization.

Furthermore, each graph of Fig. 5.5.2a, 5.5.2b, and 5.5.2c indicates a relatively small increase with
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(a) Static Configuration Parameters:

NSP = 2 ∼ 64 and NG = 4.
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(b) Static Configuration Parameters:

NSP = 2 ∼ 64 and NG = 16.
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(c) Static Configuration Parameters:

NSP = 2 ∼ 64 and NG = 64.

Figure 5.5.2: Overall resource consumption of FPGA to implement CQPH with an increasing

value of NSP = 2 ∼ 64.

respect to NSP values. This means that we can easily pre-allocate a large number of selection predicate

modules to support complex Boolean expressions.

Performance. Each implementation meets the timing constraint of 6.37 ns and achieves the target clock

frequency of 156 MHz. Since we have obtained almost similar results for each configuration, a typical

result of the maximum clock frequency is shown in Fig. 5.5.3. The clock frequency is obtained from post-

place & route static timing report, which is provided by Xilinx’s Timing Analyzer tool. Since the issue

rate is equal to 1 tuple/cycle, CQPH can process up to 156 million tuples/second. As for latency, CQPH

can respond in the order of microseconds with a cycle time of 6.37 ns. Moreover, even if we consider the

worst-case configuration time (i.e., NSP = 64 and NG = 64), a given query can be configured within 447

clock cycles. With a cycle time of 6.37 ns, this is equivalent to less than 3 microseconds. These data lead

us to the conclusion that the proposed design can accomplish both high-throughput (over 150 million
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Figure 5.5.3: Maximum clock frequency of CQPH implemented with the following parame-

ters: NSP = 64 and NG = 2 ∼ 64.

tuples/second) and low-latency (in the order of microseconds) requirements of the application.

It is also important to emphasize that the maximum clock frequency remains unaffected by the in-

creasing number of NSP or NG. The fact that CQPH can still sustain a given clock rate is a good indication

for the scalability as indicated in Fig. 5.5.3. In other words, by increasing NSP or NG, we can easily in-

crease the flexibility and the workload capacity of CQPH. For example, if we use a larger FPGA and

increase NG value, the maximum number of groups can be increased for GROUP-BY aggregate queries.

Moreover, the number of aggregation pipelines (i.e., NG) determines the upper limit on the number of

parallel queries that can be executed by CQPH at one time. For instance, if we assume simple aggre-

gate queries (without a GROUP-BY clause) and increase NG from 64 to 128, CQPH can simultaneously

execute up to 128 parallel queries without sacrificing the performance (i.e., throughput).

Experimental Measurement

As mentioned in Chapter 4, a key aspect of using an FPGA for data stream processing is its flexibility that

enables us to insert custom logic into an existing data path. For example, the proposed CQPH architecture

can be tightly integrated with a physical network interface [11] inside an FPGA. Our experiments are

based on a KC705 board [50], which includes a Gigabit Ethernet interface and a 1 GB DDR3 SDRAM.

The experimental system consists of a KC705 board and a host pc, which are directly connected by a

dedicated Ethernet cable. In this experiment, input stream is generated based on historical stock data

for securities traded on NASDAQ∗. In particular, we have focused on a subset of the stock symbols (25

different companies) of the market data as listed in Table 5.6. The schema of the input stream is same

as that of Chapter 3 and Chapter 4, which is defined as follows: Trades = ⟨Symbol : char[4],Price :

int,Volume : int, Time : int⟩. The Symbol attribute contains one of the constant strings listed in Table 5.6

∗The historical data was obtained on June 13, 2014 from the following URL: http://thebonnotgang.com/tbg/.
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Table 5.6: List of Symbols.

“AAPL” “AMAT” “BPOP” “BRCD” “CALP”

“CMCS” “CSCO” “DELL” “EBAY” “FITB”

“GOOG” “HBAN” “INTC” “LVLT” “MSFT”

“MU␣ ␣” “NVDA” “NWSA” “ORCL” “QCOM”

“RIMM” “SIRI” “SNDK” “WIN␣” “YHOO”

SELECT Time, Symbol, <AGGREGATE >

FROM Trades [RANGE <WIN_RANGE > seconds

SLIDE <WIN_SLIDE > seconds

WATTR Time]

WHERE Symbol in (<SYMBOL_LIST >)

GROUP BY Symbol

Figure 5.5.4: Q11: Template of a benchmark query for CQPH.

(4 bytes). The Price attributes contains price data in fixed-point number representation (they are treated

as 32-bit integers internally). The Volume attributes contains volume data as 32-bit integers. The Time

attribute contains timestamp (i.e., epoch time) as 32-bit integers. A data generator on the host computer

merges the historical stock data of 25 different securities into a single stream. The test data includes

6,337,580 input tuples in non-decreasing order with respect to their Time attribute. In the following

series of experiments, the SLACK value is set to zero.

As for the query workload, we use random query sets each of which consists of 1, 2, 4, 8, 16, 32, or

64 queries. Each query is based on a template query given in Fig. 5.5.4. From Table 5.7, a single value

is selected for each of <AGGREGATE>, <WIN_RANGE>, and <WIN_SLIDE>. As for <SYMBOL_LIST>, we

choose 1, 4, or 16 different symbols at random, respectively.

Experiment 1. We have measured the effective throughput of CQPH (NSP = 64 and NG = 64) on the

KC705 FPGA board. Results of the experiments show that sliding-window aggregate queries on the

CQPH achieves an effective throughput up to around 760 Mbps for each query set. This is the upper

bound of the available bandwidth that the network interface [11] can handle without packet loss. It

should be emphasized that this is equivalent to nearly 6 million tuples per second, which means that the

proposed setup can process significantly high tuple rates at wire-speed with zero packet loss.
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Table 5.7: Query Parameters.

<AGGREGATE> : count(*), max(Price), min(Price),

sum(Price), max(Volume),

min(Volume), sum(Volume)

<SYMBOL_LIST> : subset of symbols

e.g., “GOOG”, “AAPL”, “YHOO”, etc.

<WIN_RANGE> : 60, 300, 600, 1800

<WIN_SLIDE> : 1, 5, 10, 30

Experiment 2. Since the Gigabit Ethernet is not sufficient to saturate CQPH, we use the DDR3 memory

as a data source (6,337,580 tuples) to emulate a 10 Gigabit Ethernet speed. In this setup, we have im-

plemented a dedicated AXI master interface for CQPH, and a Xilinx AXI Interconnect core IP is used

to connect the CQPH and the DDR3 memory. It should be mentioned that bus width of the AXI inter-

connect and data width of the AXI master interface are both set to 128 bits. In addition, we set 100 MHz

of clock frequency for all hardware components including (i) the AXI interconnect, (ii) the AXI master

interface of the CQPH, and (iii) the CQPH itself to achieve over 10 Gbps throughput; namely, the theo-

retical peak throughput of this setup is 128 bits × 100 MHz = 12,800 Mbps (recall from Equation 5.5.1).

By design, CQPH can accept one input tuple per clock cycle; therefore, in order to achieve the

theoretical peak performance, it is important to provide the CQPH with a new tuple every clock cycle.

In practice, however, the AXI interconnect and the AXI master interface become a critical bottleneck

due to the AXI protocol overhead. In fact, when input tuples are transferred from the DDR3 memory

via the AXI interconnect, the CQPH can achieve over 10,400 Mbps effective throughput for each query

set in our experiments. This corresponds to the memory access speed of the evaluation setup; thus, in

effect, the CQPH is limited by the memory read speed of the AXI master interface. Nevertheless, these

results suggest that the CQPH can still support even faster 10 Gigabit Ethernet at line rate when clocked

at 100 MHz.

Experiment 3. Finally, we focus on query processing performance of HW- and SW-based solutions,

by comparing the performance for sliding-window aggregate queries. For the comparison, two different

approaches are considered as SW-based solutions. The first option is to use Esper v5.1.0 [12], a software-

based event processing engine with efficient support for in-memory query processing. Esper supports

SQL-based continuous query language, called Event Processing Language (EPL), and it is well capable

71



CHAPTER 5. CONFIGURABLE QUERY PROCESSING HARDWARE FOR DATA STREAMS

SELECT Time, Symbol, <AGGREGATE >

FROM Trades(Symbol in (<SYMBOL_LIST >)).win

↪→ :ext_timed(Time, <WIN_RANGE > seconds)

GROUP BY Symbol

OUTPUT last every <WIN_SLIDE > seconds

Figure 5.5.5: Q12: Template of Esper EPL query.

10
5

10
6

10
7

10
8

1 2 4 8 16 32 64

T
h
ro
u
g
h
p
u
t
[t
u
p
le
/
se
c]

Number of Queries

CQPH

C++ (1 symbol)

C++ (4 symbols)

C++ (16 symbols)

Esper (1 symbol)

Esper (4 symbols)

Esper (16 symbols)

Figure 5.5.6: Performance comparison of multi-query execution between HW- and SW-based

solutions.

of processing sliding-window aggregate queries. The second option is a prototype of a query processor

written in C++, especially optimized for sliding-window aggregations. For these SW-based solutions,

all experiments are conducted on a desktop PC featuring a modern Intel CPU (i7-4790K, 8 MB cache,

4.00 GHz) with 32 GB of main memory on a CentOS 6.6 (64-bit) platform. As for HW-based solution

(i.e., FPGA), a KC705 Evaluation Board [50] is used to implement the proposed CQPH architecture with

NSP = 64 and NG = 64 values.

In this evaluation, we use a memory-cached file as a data source (6,337,580 tuples) and random query

sets each of which consists of 1, 2, 4, 8, 16, 32, or 64 queries. Each query is based on a template query

written in Event Processing Language (EPL) [12] for Esper (see Fig. 5.5.5), or its equivalent for the other

solutions. As in the previous experiments (i.e., Experiment 1 and Experiment 2), appropriate values are

selected for each of <AGGREGATE>, <WIN_RANGE>, <WIN_SLIDE>, and <SYMBOL_LIST> from Table 5.7.

The performance comparison of CQPH, the C++-based system, and Esper is illustrated in Fig. 5.5.6.

By design, CQPH can accept one input tuple per clock cycle; therefore, the throughput of the proposed

system is independent of the query workload. This was confirmed by the measurements on the real
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evaluation board for those queries with 1, 4 or 16 symbols (plotted as a single graph in Fig. 5.5.6 for

brevity). We observed a maximum throughput of more than 78 million tuples per second on the KC705

board. This corresponds to the memory access speed of the evaluation setup; thus, in effect, CQPH is

limited by the memory read speed (as explained in Experiment 2). On the other hand, the performance

of the SW-based solutions (i.e., C++ and Esper) is significantly degraded with respect to the number of

queries as shown in Fig. 5.5.6. For example, when the number of queries equals to 64, CQPH outperforms

the SW-based approaches by about two orders of magnitude (≈ 100×).

These results lead us to the conclusion that the proposed CQPH architecture can process significantly

high tuple rates even with increased workload—something which is not possible with the SW-based

approaches. In the actual application, the Trades stream includes a subset of the stock indexes of market

data [25]. In particular, with less than a hundred different stock symbols per stream (e.g., NG = 64

symbols), CQPH architecture implemented on a moderate-sized FPGA (Kintex-7 XC7K325T) can be

regarded as a promising application-specific accelerator for the window-aggregate workload.
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6.1 Summary

Data Stream Management Systems (DSMSs) deal with potentially infinite streams of data that should

be processed for real-time applications, executing SQL-like continuous queries over data streams. It is

essential for DSMSs that incoming data be processed in real time, or at least near real-time, depending

on the applications’ requirements. In order to meet the above-mentioned requirement, there is currently

a great deal of interest in the potential of using field-programmable gate arrays (FPGAs) as custom

accelerators for continuous query processing over data streams. In particular, Mueller et al. consider

the use of FPGAs for data stream processing as co-processors [25], and they propose an implementation

method for sliding-window aggregate queries on an FPGA. Nevertheless, there still remain three practical

issues related to the implementation of sliding-window aggregation:

1. The first issue is that it is necessary to consider out-of-order arrival of tuples at a windowing

operator.

2. The second issue is that a large number of overlapping sliding-windows cause severe scalability

problems in terms of both performance and area.

3. The third issue is that there is a lack of run-time configurability, which severely limits the practical

use in a wide range of applications.

In the present study, we have addressed the above issues and proposed alternative approaches to

implement FPGA-based query accelerator, especially optimized for sliding-window aggregate queries.

The first objective of the dissertation is to address the problem of out-of-order arrival of tuples and

propose an alternative approach to implement a sliding-window aggregate query on an FPGA. To this

end, we have proposed the WID-based implementation of an FPGA-based accelerator for sliding-window
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aggregates over disordered data streams (Chapter 3). With the proposed approach, a sliding-window

query can be implemented on an FPGA as an order-agnostic operator, which can process input tuples

in their arrival order without sorting them into the “correct” order. The proposed accelerator utilizes

punctuations, and this significantly reduces the input-to-output latency because there is no need to buffer

and reorder incoming tuples. Our experiments demonstrate that nearly 6 million tuples can be processed

per second directly from the network interface. To the best of our knowledge, this is the first work that

proposes design and implementation of a punctuation-aware sliding-window aggregate operator on an

FPGA device.

The second objective of the dissertation is to address the scalability problem and propose another ap-

proach to implement a sliding-window aggregate query on an FPGA in an efficient and scalable manner.

To this end, we have proposed the pane-based hardware design of sliding-window aggregate operator

and its implementation on an FPGA (Chapter 4). The proposed design adopts a two-step aggregation

method using panes and supports disordered data arrival with punctuations. The proposed implemen-

tation is scalable with the increasing RANGE
SLIDE ratio and significantly reduces the required logic elements

by efficiently utilizing Block RAMs. Results show that the proposed implementation can achieve con-

siderable performance improvement over the baseline implementation for large RANGE
SLIDE ratios. To the

best of our knowledge, this is the first work that proposes design and implementation of an FPGA-based

sliding-window aggregate operator by using panes.

The third objective of the dissertation is to address the problem of the lack of run-time configurability.

To this end, we have presented Configurable Query Processing Hardware (CQPH), a highly-optimized

and minimal-overhead query processing engine for data streams (Chapter 5). CQPH can support multiple

continuous queries with a large number of overlapping sliding-windows. The two-phase configuration

approach provides the fully automated integration of CQPH and dynamic configuration mechanism for

given queries. With CQPH-compiler, SQL-like queries can be easily configured into CQPH at run time.

Evaluation results indicate that CQPH can deliver real-time response (in the order of microseconds) for

high-volume data streams (over 150 million tuples per second). It is also indicated that CQPH provides

linear scalability in terms of area with a constant clock rate. Finally, our experiments demonstrate wire-

speed performance by directly manipulating the network packets.

6.2 Future Work

This work focuses on the sliding-window aggregate queries that process a single data stream. In particu-

lar, the current version of CQPH architecture can be configured to execute continuous queries that follow

a certain pattern, and does not provide any support for those queries including join operation that pro-

cess multiple data streams. Therefore, one direction for future work is to provide support for processing

75



CHAPTER 6. CONCLUSTIONS

multiple data streams. Specifically, sliding-window join queries should be considered to complement the

proposed CQPH architecture.

Another direction for future work is to expand the proposed CQPH architecture into multiple FP-

GAs. Since the present work mainly focuses on using a single FPGA chip, the capability of the CQPH

architecture is limited by the available on-chip resources of an FPGA device. In order to address the

limitation, the proposed idea in this work can be expanded by using multiple FPGAs. Efficient use of

off-chip memory resources should also be considered as an important future work in this context. This

enables us to achieve further scalability and flexibility.

Finally, the proposed CQPH architecture should be thoroughly evaluated for a wide range of applica-

tions. In this work, the current prototype of CQPH architecture is evaluated on a single case study only.

Since the proposed CQPH is categorized as a co-processor for stream processing systems, integration

of the CQPH with a general-purpose software-based DSMS is required to conduct experiments with a

variety of real applications and real data streams.
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