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1 Introduction

Multi-digit arithmetic is used by various

applications in recent years, including numerical

calculation [1], high-performance primality testing

[2], chaos arithmetic [3], and cryptography. Several

methods for fast multi-digit multiplication have been

proposed, such as Karatsuba method [4], Toom-Cook

method, and FFT multiplication, the computational

complexities of which are given by O(m1 .585),

O(m1.465), and O(m・logm・log logm),respectively,

where m stands for number of digits. Here we focus

our attention to the FFT multiplication.

Hardware implementation of multi-digit multipli-

cation algorithms is effective for realizing high

performance arithmetic. However, VLSI implementa-

tion of Karatsuba method, for example, could only be

used for multi-digit multiplication. On the other

hand, VLSI implementation of FFT multiplication can

be realized by using FFT hardware [5, 6] as its main

component which is used in many application areas

as DSP. This implies that hardware FFT multiplier

can easily be retargeted to many applications.

In this paper we describe an optimum VLSI design

of FFT multiplier with high performance at minimum

cost. For this purpose we perform an experimental

error analysis to obtain a data representation with

minimum bit length. We evaluate the design in terms

of performance and area cost by comparing with

software implementations of multi-digit multi-

plication.

This paper differs from previous paper [7] in

several points: details of hardware modules, discus-

sions on using existing floating-point multipliers, and

considerations of applying FFT processors to

multiplication are presented. In addition, compar-

isons with software were made by using faster

processor.

Section 2 briefly explains FFT multiplication

algorithms. Section 3 presents a hardware structure

for FFT multiplication. Section 4 describes an opti-

mization of the hardware FFT multiplier based on an

experimental error analysis. In Section 5 results are

presented and discussions are given. We present

some concluding remarks in Section 6.

2 FFT Multiplication Algorithm

Let r be the radix, and m be the number of digits

such that 2m = 2k for some nonnegative integer

k. We represent two integers a = (am-1 … a0)r 

and b = (bm-1…b0)r by 2m dimension complex vectors
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with the imaginary parts of all zeros, u =

(0 ... 0am-1 ...a0)r and v = (0 ... 0bm-1 ...b0)r. Let the 

product of u and v be h = u . v = (c2m-1 ...c0)r, F (.) be

an FFT, and F -1(.) be an inverse FFT. Then we have

(1)

where ⊗ denotes multiplying two arrays to obtain an

array each element of which is the product of the

elements with the same index. In addition, we need

to round each digit to the nearest integer, adjust it to

be within the range of radix r, determine the carry

received from the lower digit, and send the carry to

the upper digit if necessary. 

3 Design of FFT Multiplier

Fig. 1 outlines the structure of the FFT multiplier we

designed. The solid and broken lines mean the data

and operation flows, respectively. We employ floating-

point as data representation. All data-path modules

share a memory. Each module repeats fetching data

from the memory, calculating them, and writing back

the results. The following subsections explain the

circuit construction of each module.

3.1 complex multiplier

When two complex numbers, sr + sii and tr + ti i are 

given, this module performs their multiplication

based on Eq. (2). 

(2)

Because the cost of adder is lower than that of

multiplier, the number of multiplications is decreased

at a sacriflce of increasing the number of add-

subtract operations according to Eq. (2). The

resulting module structure is shown in Fig. 2, where

fpmul and fpaddsub submodules perform floating-

point multiplication and add-subtract, respectively.

The buffer module is used for synchronization. 

3.2 butterfly and inv-butterfly modules

The butterfly and inv-butterfly modules are used for

FFT forward and inverse transforms, respectively.

Their structures depend on the type of FFT

algorithm being used. Here we employ the Cooley-

Tukey algorithm [8] for simplicity. 

The butterfly operation for Cooley-Tukey FFT 

is given by X = x + yW, Y = x – yW , where W

represents one of the primitive 2m-th roots of unity.

The module structure is shown in Fig. 3.

The inverse butterfly operation is given by X’ = x ’ +

y’, Y ’ = (x ’ – y’)W. The module is structured

similarly and is shown in Fig. 4. 
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Figure 1: Structure of FFT multiplier.

Figure 3: Structure of butterfly module.

Figure 4: Structure of inv-butterfly module.Figure 2: Structure of complex multiplier.



3.3 scaler module

After the inverse butterfly, each digit is divided by

2m. For this operation only the exponent part of the

result needs to be subtracted by k because 2m = 2k ,

where k is an integer. This operation is called scaling.

Due to the symmetric characteristics of FFT, the

values fed into the scaler should be real numbers,

although finite small errors would appear in their

imaginary parts which are allowed to be neglected.

The scaler module is thus comprised by a subtracter

of the exponent bit length. 

3.4 rounder-carrier module

This module rounds each digit of a real number to

the nearest integer and adjusts it within the range of

radix r. The rounding is correct only if the absolute

error is within ±0.5. 

Fig. 5 shows the structure of the rounder-carrier

module. The module consists of fpaddsub and carry

calc submodules. The fpaddsub adds the digit with a

carry from the lower digit, rounds the results, and

determines the carry to the upper digit. The carry

calc submodule consists of a multiplexer and an

adder for rounding. 

3.5 memory module

The data storage area required for multi-digit

arithmetics is very large. If the whole storage were

implemented on a single chip, the area would become

huge. As a solution to this, we store the whole data in

an external large-scale off-chip memory device and

carry out the arithmetic operations in a cache. The

memory module in Fig. 1 behaves as a cache which

stores only a part of the data. To avoid structural

hazard caused by pipelining, the cache should have

two data ports each for reading and writing the data.

The values of W are calculated and written in a look

up table in advance, which is also included in this

memory module. 

3.6 controller

This module controls the data-path of the multiplier

by sending control signals to submodules at

appropriate times. 

4 Optimum Data Representation

We employ floating-point as the data representation.

Because floating-point arithmetic circuits tend to be

very large we minimize the bit length of floating-point

data representation required for performing correct

FFT multiplication. 

The minimum length of the exponent part can

simply be determined by making sure that overflow

does not occur during the operation. On the other

hand, the minimum length of the fraction part must

be determined based on the required minimum pre-

cision which is obtained through error analysis. An

error analysis of FFT multiplication was performed

by Henrici [9] in the past. He showed that to obtain

correct products through FFT multiplication, the

following inequality must be satisfled: 

(3)

where r, m, and εM are the radix, the number of

digits, and the machine epsilon, respectively. 

On the other hand, an observation indicated that

Henrici’s analysis was based on a worst case scenario

and the condition could be more relaxed in actual

situation [10]. The observation implies that the

maximum error occurs when multiplying the

maximum values represented by m digits. In the

following an experiment to verify the observation is

described. The radix r = 16 is used hereafter. 

We measured errors produced by FFT multiplica-

tion u = 16 and v = 16,when

varying a and b from 0 to F. The Cooley-Tukey

algorithm and 64-bit floating-point data

representation such as IEEE754 were used in the

experiment. The result is shown in Fig. 6 for m = 1024

and 2048, where the vertical axis represents absolute

errors associated with u . v. It was thus verified that

the maximum error occurs when multiplying the

maximum values represented by m digits. A similar

result was obtained for m = 4096 and 8192.
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Based on the above experimental error analysis, we

defined a floating-point representation with variable-

length exponent and fraction parts, and carried out a

numerical calculation to obtain the least bit lengths

required for performing correct FFT multiplication.

The result is shown in Fig. 7, where horizontal axis

represents the base 2 logarithm of number of digits m,

and the points marked by + and × represent the least

length of the exponent and fraction parts,

respectively. The solid line represents a linear

function best fit to the experimental data by the least-

mean square method. Note that the fraction length

(the broken line in the figure) obtained from the

inequality (3) is much longer than the experimentally

obtained one. Also note Fig. 7 implies that if 64-bit

floating-point data representation were used, FFT

multiplication of up to 230 digits could be executed.

5 Implementation Results and Discussions

We designed an FFT multiplier using an optimal data

length based on the results obtained in the previous

section, and evaluated the area and performance of

the VLSI implementation. We described the design in

Verilog-HDL and performed a logic synthesis of the

descriptions using Design Compiler (Synopsis

Inc.,ver. 2003.6-SP1). For the synthesis we used the

CMOS 0.18μm technology cell library developed by

VDEC (VLSI Design and Education Center) [11]

based on Hitachi’s speciflcations. We gave a delay-

optimization restriction to the Design Compiler. 

We evaluated the FFT multiplier with respect to

the total area and critical path delay of the syn-

thesized logic for m = 25 to 213 . The controller’s area

was excluded in the evaluation because it did not

depend on bit length of the data representation and

in fact was very small compared to other modules.

For the memory module (cache) we allocated 8

entries each of which can hold data used by one

butterfly operation. The result is shown in Fig. 8,

where the right and left vertical axes represent the

total area and critical path delay of the synthesized

logic, respectively. For m = 213, the multiplier with

the optimum data representation (sign bit, 7-bit

exponent, and 27-bit fraction) was found to be

realized with the total area of 6.55mm2 and critical

path delay of 7.63ns. We also evaluated FFT

multiplier with 64-bit data representation (sign bit,

exponent:11-bit, fraction:52-bit), and found that total

area and critical path delay were 16.0mm2 and 10.3ns,

respectively. Thus for m = 213 we can reduce the total
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area by 59% and critical path delay by 26% using the

optimum data representation. 

We can replace floating-point multipliers used in

the described FFT multiplier by alternatives [12, 13,

14, 15]. In that case, using an optimum data length

based on the proposed error analysis will also lead to

reducing the total area and critical path delay. 

The FFT multiplier described so far was not op-

timally pipelined. An optimum version of pipelined

FFT multiplier for m = 213 was designed as follows.

Firstly, the critical path which exists in Wallace tree

multiplier [16] was divided into several stages

considering the area and performance trade-off. After

that, the amounts of critical paths among pipeline

stages was made as even as possible. The imple-

mentation result is summarized in Table 1. The

maximum path delay was thus reduced to 1.89ns

with the area cost of 9.05mm2 .

The pipeline latencies of the resulted modules are

summarized in Table 2, where Tbutterfly, Tcmul,

Tscl, and Trc represent pipeline latencies of (inv-)

butterfly, complex multiplier, scaler, and rounder-

carrier modules, respectively. Number of clocks

required for an FFT multiplication is given by

(4)

Requiring 541,563 clocks for an FFT multiplication of

213 digit numbers, the execution time is estimated to

be 1.02ms (541,563×1.89ns). 

We compared the performance of hardware and

software implementations of FFT multiplier for m ≤
213 . We used FFTW 3.0.1 for software FFT, Pentium

4 1.7GHz CPU with the same design rule as our

hardware implementation, FreeBSD 5.4 OS, and gcc

3.4.2 compiler. (We refer to the software im-

plementation as FFTW multiplier hereafter.) The

maximum path delay employed for the comparison

was 1.89ns for all digits. The result is shown in

Table 3.

The performance of the hardware FFT multiplier

was found to be 19.7 to 34.3 (25.7 in average) times

better than FFTW multiplier. The reason that the

performance ratio varies depending on digits is that

FFTW is tuned to operate best for 1,000 to 10,000

samples [17].

We also compared the performance of FFTW

multiplier and a software implementation of

Karatsuba method. We used a multi-digit arithmetic

software library called exflib [18] which implements

Karatsuba method. The result is that FFTW multi-

plier was faster than exflib for m ≤ 221 . At m = 221

the execution time of FFTW multiplier was 13.9s.

Here we consider hardware FFT multiplier at m = 221.

By extrapolating the linear functions in Fig. 7 to m = 221

we have 9 and 40 bits for the minimum exponent and

fraction parts, respectively, taking the deviation into

account. The pipelined version of FFT multiplier with

the optimum data representation obtained as above

yields a critical path delay of 1.96ns, leading to 0.39s

FFT multiplication at an area cost of 16.1mm2. From

the result, it is found that hardware FFT multiplier is

35.7 times faster than FFTW multiplier at m = 221 . 

Hardware implementation of Karatsuba method

would be an alternative for m ≥ 221 . However,
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Table 2: Latency of FFT multiplier modules.

Tbutterfly Tcmul Tscl Trc
Latency 22 17 2 10

Tfftmul = 3(Tbutterfly + m −1)log2m + (2Trc +7)m 

              + (3Tbutterfly + Tcmul + Tscl − Trc − 3).

Digits Soft[ms] Hard[ms] Soft/Hard
25 0.0917 0.0033 27.8
26 0.1242 0.0063 19.7
27 0.3924 0.0126 31.1
28 0.8854 0.0258 34.3
29 1.4930 0.0535 27.9

210 2.6840 0.1116 24.1
211 5.2400 0.2337 22.4
212 10.8000 0.4893 22.1
213 22.6200 1.0236 22.1

Table 3: Comparison of FFT multiplication performance
of software and hardware implementations.

Table 1: Area and critical path delay of the optimally
pipelined FFT multiplier (m = 213).

module area[mm2] delay[ns]

complex mul 2.01 1.89
butterfly 2.98 1.81

inv-butterfly 3.06 1.81
scaler 0.02 1.26

rounder-carrier 0.38 1.74
memory 0.60 1.60

total 9.05 1.89



Karatsuba method applies only to multi-digit multi-

plication. A multi-digit multiplier using FFT hardware

has an advantage that the FFT module can be utilized

for various applications. 

In this paper, we designed a simple FFT hardware

of Cooly-Tukey FFT. However, there are many FFT

processors implemented so far which have high per-

formance at low cost by applying following features: a

memory architecture to avoid memory conflict in

mixed-radix (MR) algorithm [5], multipath pipeline

architecture to achieve high-throughput rate [6], and

so on. By applying these features, we could design an

FFT multiplier with high performance. However,

these processors employ data representations for

DSP use. For example, FFT processors described in

[5] and [6] employ 16-bit block floating-point and

10bit flxed-point data representations, respec-

tively. The data representations limit FFT multipli-

cation to small digits. Thus, these FFT processors in

the original can not be applied to multiplying large-

digit integers. They could be applied to multiplication

of large-digit integers if the accuracy required by FFT

multiplication is guaranteed by using the proposed

error analysis. 

6 Conclusion

We described a VLSI design of FFT multiplier with

floating-point number representation the bit length of

which was minimized based on an experimental error

analysis. Using HITACHI CMOS 0.18μm technology

cell library for logic synthesis the performance of the

hardware FFT multiplier based on simple Cooly-

Tukey FFT was found to be 19.7 to 34.3 (25.7 in

average) times better than software FFTW multiplier

when multiplying m-digit hexadecimal numbers, m ≤
213, with an area cost of 9.05mm2 . The hardware FFT

multiplier was 35.7 times faster than software FFTW

multiplier of 221 digit hexadecimal numbers where

FFTW multiplier exceeds Karatsuba method in

performance, with an area cost of 16.1mm2 . A multi-

digit multiplier using FFT hardware has an advantage

over hardware Karatsuba multiplier in that the FFT

component can be utilized for various applications.

Advantage of hardware FFT multiplier over software

will increase when more sophisticated FFT

architectures are applied to the multiplier. The

quantitative evaluation belongs to future work. 
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