
 Bulletin of the University of Electro-Communications, 20-1·2, pp. 23-30（2007）〔Regular Paper〕

1　Introduction

　Consider source coding of source letter sequences
to another letter sequences. In particular we consider
the lossless coding, where encoding is one-to-one and
hence there is a decoding rule which inver ts the
coded sequence into the original source sequence.
　A practical design method of lossless source coding
is to allow the decoder to keep track of the encoder’s
states. This method can be realized when the encoder
employs relatively a small instantaneous code. The
code parses an input source sequence into words and
transforms each into a codeword. The decoder also
employs the same instantaneous code which recovers
the source word from the transmitted codeword. The
codec, i.e., the pair of the encoder and the decoder,
can be dependent on the previously parsed words.
Perfect recovery of the source word enables the codec
to keep track of the same states. Thus both the

encoder and the decoder can maintain, in particular,
the same instantaneous code.
　Each instantaneous code can be a variable-to-
variable(VV) length code, and hence the above
method allows a sequential and dynamic use of the VV
code. A VV code is an one-to-one map between two
complete codes. In such case, we can design the VV
code in an elucidative principle of enumerative code[1]
[2]. Namely, a VV coding can be designed in a
concatenation of a variable-to-fixed length code and a
fixed-to-variable length code. (For coding scheme
terminology, we refer to [3])
　However, one problem is that if the input length is
arbitrary the last word may be incomplete and may
need special post-processing. This will sacrifice coding
rate and increase the complexity of the codec. In the
following, we show that this problem can be resolved
distinctly by an idea of enumerative coding. We will
give an implementation which is commonly effective in

 A Post-Processing Mechanism for Sequential
 Use of Static and Dynamic Enumerative Code

Tsutomu Kawabata

 Abstract

A bijection between a complete set of source words and a complete set of codewords defines a
variable-to-variable length (VV) source code. Such code is used to parse sequentially a source
sequence into codewords. In a naive parsing of a finite source sequence, the last incomplete source
word requires a separate post-processing. However, if the sizes of the source and the code alphabet
are the same and an end-offile is available, we show that there is an abstract and compact method for
the post-processing. Furthermore, when a VV code is a concatenation of VF (variable-to-fixed
length) source code and a complete FV (fixed-to-variable length) integer code, we propose a simple
enumerative code implementation, which can be used for processing the last word before the end-of-
file. This reduces the programming complexities compared with a naive post-processing.
Furthermore, we apply the implementation to a dictionary trie based method for lossless data
compressions, in particular, to the Ziv-Lempel incremental parsing algorithm. Finally, we extend the
description in the binary alphabet to the one in a non-binary alphabet.

Keywords: variable-to-variable length source code, enumerative coding, Ziv-Lempel algorithm, post-
processing issue.

Received on August 6, 2007.
The University of Electro-Communications, Department of Information and Communication Engineerring

24 Tsutomu Kawabata （December 2007）

both the instantaneous code and the post-processing,
thus both can be superposed. This will reduce the
programming complexity due to the post-processing.
　The organization of the paper is as follows. In
Section 2, we introduce again the above motivation in a
formal way, and show that the word left in an
incomplete parsing can be encoded into an incomplete
codeword, thus the decoder knows the occurrence of
an end-of-file in the input. In Section 3, we show that an
enumerative implementation of the function defined in
Section 2 in the case of fixed, namely static, binary
code. This section is an extraction of Section 4, thus
can be skipped for reading. In Section 4, we show the
enumerative implementation of the function defined in
Section 2 in the case of the Ziv-Lempel incremental
parsing. Here, the VV code is dynamic namely
dependent on the previous parsing histor y. The
section can be continued from Section 2 directly. In
Section 5, we generalize the base of the algorithm from
binary alphabet into non-binary alphabet. In the final
section, we conclude.

2　A Scheme of VV Coding for File Transaction

　In the following, denote by A a finite alphabet and fix
during the following arguments. Let denote by Al a set
of length l words. In general, a superscript ＊ operated
to an arbitrar y set A, i.e. A＊, designates the set
∪∞l=0 Al . Thus in our case, A＊ consists of words of
arbitrary length. Let ♯ of a set denote its size. Hence,
e.g., it holds that♯Al = (♯A)l. Thus the set A0 consists
only of an empty word λ.
　A subset T⊂ A＊ is called a trie, if any prefix of its
element is also in T. For a trie T, we denote by ∂T the
set ({λ} ∪ TA) － T, which can be interpreted as the
external leaves of T.
　Let A be a binary alphabet {0, 1}. Then an example
of T is {λ, 0}, and for this, ∂T = {00, 01, 1}.
　Over the same alphabet, let T and U be tries of the
same size. We assume that a bijection

　　c : T ∪ ∂T → U ∪ ∂U

which satisfies

　　c(∂T) = ∂U

can be constructed. Then necessarily a relation

　　c(T) = U

holds. Let c0 denote the restriction of c to ∂T and let
c1 denote the restriction to T ; that is c0 :∂T → ∂U,
and c1 : T → U. Since A＊ = (∂T)＊T = (∂U)＊U, any x ∈
A＊ is decomposed (or parsed) uniquely as w1 · · ·wk-1
w̃k, where w1 ∈ ∂T, · · · ,wk-1 ∈ ∂T, w̃k ∈ T. The
output of the encoder

　　c : A＊ → A＊

for a finite input x is defined as

　　c(x) = c0(w1) · · · c0(wk-1)c1(w̃k).

　This output is uniquely decoded as follows provided
an external file control, like the end-of-file is used. If
the decoder completes parsing a codeword in∂U, then
it applies the function c0

-1 , and otherwise, it switches
to apply c1

-1 . Here a point of the idea is that when we
process an incomplete source word, we report the
decoder by the combination of an incomplete
codeword and the end-of-file.
　The total code for the inputs of fixed length n = |x| is
a concatenation of VV codes. For a fixed T, the overall
rate of a FV (Fixed-to-Variable length) coding scheme
is given by

　A probabilistic analysis of this rate is related to the
renewal theor y, since the expected value of k is a
renewal function (of n) for a memoryless source or a
Markovian source.

3　Enumerative Implementation of the VV
Code– A Binary Case–

　The purpose of this section is to realize the idea of
the previous section and construct a mapping c for a
general VV code, in which the coding of c0 and c1 are
unified and simplified.
　We use the binary alphabet A = {0, 1}.
　First we define c0 so that w∈∂T and c(w)∈∂T have
the same lexicographic order I in ∂T and ∂U respec-
tively. Let the order start from 0 and hence I be in the
range 0 ≤ I < N, where N = ♯∂T = ♯∂U. Thus, c0 can

 A Post-Processing Mechanism for Sequential Use of Static and Dynamic Enumerative Code 25

be decomposed as Dec∂U◦Enc∂T, where

　　Enc∂T : ∂T → {0, 1, . . . ,N － 1}

and

　　Dec∂U : {0, 1, . . . ,N － 1} → ∂U.

Enc∂T(w) can be calculated by using an enumerative
structure.
　First we draw a trie A ＊ = {λ} ∪ ({0}A＊) ∪ ({1}A＊) in
our image by placing the root λ at the top, and all the
other trie nodes down. A subtrie {0}A＊ represents the
set of nodes which can be reached by descending from
λ through the left branch with the label 0. Likewise a
subtrie {1}A＊ represents the set of nodes which can be
reached by descending from λ through the right
branch with the label 1.
　Let left_leaves(v) be a counter at v, which counts all
the leaves, in ∂T, which have the common ancestor
v0. Then the lexicographic order of w in ∂T is cal-
culated, while descending T from λ along the path
specified by w, as the sum of left_leaves(v) over every v
for which v1 is on the path. Next, for a given I = Enc∂
T(w), we can find Dec∂U(I) ∈ ∂U, by descending
from λ . Basic descending step at each node v is as
follows. If I ≥ left_leaves(v), then we set new I to be I －
left_leaves(v) and takes the right branch. Otherwise we
keep the same I and take the left branch. Finally, we
arrive at the Dec∂U(I) = c0(w), which becomes the VV
codeword for w ∈ ∂T.
　In a similar manner, we define c0

-1 as a composition
Dec∂U◦Enc∂U,
where

　　Enc∂U: ∂U → {0, 1, . . . ,N － 1}

and

　　Dec∂T : {0, 1, . . . ,N － 1} → ∂T.

　Example 1: Let T = {0, λ, 10, 1}, where nodes are
listed in the inorder, i.e., in the order of leftleaves.
Then ∂T = {00, 01, 100, 101, 11}, where the leaves are
listed in the lexicographic order. Thus the counter
values are left_leaves[0] = 1, left_leaves[λ] = 2, left_
leaves[10] = 1, and left_leaves[1] = 2. Given a sequence
101, we set I = 0 and descend from λ down the trie
along the sequence. We add left_leaves[λ] and left_
leaves[10] to I and reaches to the leaf 101. Here we

obtain I = 3, which is the lexicographic order of 101 in
∂T.
　Let U = {00, 0, λ, 1}. Then ∂U = {000, 001, 01, 10,
11}. On U, the counter values are left_leaves[00] = 1,
left_leaves[0] = 2, left_leaves[λ] = 3, and left_leaves[1] =
1. Given I = 3, we start from λ and descend the trie U
∪∂U. Since I ≥ left_leaves[λ], we take the right branch
to decode 1, and at this moment I becomes 0. Next we
take the left branch and decode 0 and reaches to the
leaf 10. Thus c0(101) = 10. The calculation of c0

-1goes
similarly, only by changing the role of T and U. ■
　Next we define c1 so that each of v in T and c1(v) ∈
U have the same inorders in T and U respectively. For
T, the in-order I(v) counts the leaves in ∂T which has
the lexicographic order smaller than v. Thus the
computation of c1 follows the same procedure as c0.
Formally, the c is given as DecU◦EncT , each of which
is defined as follows.

　　EncT : T → {1, . . . ,N － 1},

and

　　DecU : {1, . . . ,N － 1} → U.

　General procedure for EncT is as follows. For a
given w ∈ T, we set I = 0 initially. Starting from the
root λ we descend T down to w. At a node v we add
left_leaves(v) to I when we take the right branch.
When we arrived at w, we add left_leaves(w) to I and
exit. This is equivalent to the situation of taking the
right branch and after that taking all left branches until
it reaches to a leaf in ∂T. After we exit, we move to the
U and start the procedure DecU. For a given I, we find
u ∈ U whose in-order is I, as in the following. We
decode each bit of u while descending from λ to u. At
each descending step at a node v, we attempt to
subtract left_leaves(v) from I, as long as the result is
non-negative. If the result is positive, we have a new
value for I, and takes the right branch. If it is negative,
we keep the value of I unchanged and take the left
branch. If the resulted I value is zero, then we stop and
output v as c(w) ∈ U.
　Example 2 : Let the input be 10 followed by the
end-of-file. Setting I = 0, we start to descend T from λ.
We add left_leaves[λ] = 2 to I and reach the node 10.
Here we read the end-of-file. The algorithm terminates
after adding left_leaves[10] = 1 to I. Thus I becomes 3,
which is the in-order of 10 in T. Next in U, we start

26 Tsutomu Kawabata （December 2007）

with I = 3 and attempt to descend U from λ. Since I =
left_leaves[λ], subtraction makes I zero, thus we stop
and exit, with the output c1(10) = λ. In the decoder, we
input λ followed by the end-of-file. Thus we switch to
c1

-1(). However,we do not need to know the existence
of the end-of-file. Actual steps are as follows. On U, we
set I = 0 and starts descending from λ. Since we read
the end-of-file, we exit the trie U, after adding left_
leaves[λ] = 3 to I. Next on T, in the decoder’s second
step we starts from I = 3 and descend T from λ while
decoding each bit. In the decoder, we first compare I
with left_leaves[λ] = 2, and output the bit 1, and set I =
1. Then we decode the bit 0, and leave the value I
unchanged. Next we attempt to output the bit 1.
However at this point I becomes zero. Thus we simply
stops. The output thus becomes 10. ■

4　Application to Ziv-Lempel Incremental Parsing

　The scheme used so far can be extended to a dynamical
case, that is, to the case that the set T and U are dependent
on the past histor y. A good example is the Ziv-Lempel
incremental parsing. In this section, we concede the subject
to the nature in the algorithm description. Thus the name of
a procedure/circuit will be the subject of the operations in its
body.
　The Ziv-Lempel incremental parsing algorithm [4]
decomposes a sequence of letters from left to right into
words such that a new word is the shortest one which differs
from any of the previously parsed words. It organizes the
parsed words into a trie (which we call a dictionary trie), and
based on which it encodes/decodes the new word[6][5].
(Due to this fundamental simplicity, the coding rate and the
redundancy is analyzed deeply not only in Shannon
theoretical studies, e.g. [2][9][13], but also in algorithm
analyses, e.g. [11][14][12].) This trie has the set of external
leaves, that corresponds to the set of possible new parsing
words. An algorithm proposed by [8] calculates an
enumerative index[2] of the new word as the lexicographic
order of the word in the set of external leaves.
　To argue more in detail, let us consider a binary source
alphabet and a binary code alphabet. Thus the enumerative
index must be encoded into a binary sequence. The encoder
does parsing in two phases, as in IntEnc◦DicEnc,
where

　　　　DicEnc : {0, 1}＊ → N ∪ {0} (1)

　　　　IntEnc : N ∪ {0} → {0, 1}＊, (2)

where we denoted by {0, 1}＊ the set of all binar y
sequences and by N the set of natural numbers.
　Correspondingly, decoder recovers the parsing as in
DicDec◦IntDec, where

　　　　IntDec : {0, 1}＊ → N ∪ {0} (3)

　　　　DicDec : N ∪ {0} → {0, 1}＊. (4)

　Here DicEnc/DicDec abbreviates a pair of
dictionary source codecs, and IntEnc/IntDec does a
pair of integer source codecs.
　Example 3: Let us give an example of the above
scheme. Let an input be 001. The algorithm sets {w0 =
λ} as an initial dictionary trie. The associated external
leaves are {0, 1}.
　Now DicEnc first reads 0, and finds a new word w1 =
0. DicEnc outputs I = 0 as an enumerative index of w1
in {0, 1}. The index takes values in the range 0 ≤ I < ♯
{0, 1}. The dictionary trie becomes the set {w0 = λ ,w1
= 0}, with the set of external leaves {00, 01, 1}. IntEnc
reads I and outputs its integer codeword, i.e. a binary
representation. At the decoder, IntDec reads the
integer codeword and returns I, and from which
DicDec reproduces 0.
　In the next parsing, DicEnc reads 01, and finds w2 =
01, and outputs I = 1 as an enumerative index of w1 in
{00, 01, 1}. The index is in 0 ≤ I < ♯ {00, 01, 1}. The
IncEnc takes I as its input and outputs its integer
codeword. The dictionary trie becomes {w0 = λ ,w1 =
0,w2 = 01} with the set of external leaves {00, 010, 011, 1}.
At the decoder, DicEnc takes the codeword as its
inputs and retur ns I , and from which DicDec
reproduces 01. ■
　In the work [8], a detailed implementation of
DicEnc/DicDec is given. The main idea of the
implementation is to introduce an enumerative
mechanism in the dictionary trie. At every inner node,
a counter keeps the number of external leaves of its
left subtrie. (The counter has been named as left_
leaves .) DicEnc calculates the variable I while
descending the trie along a new word w, such that I is
the sum of the counters associated with the inner
nodes for which the next bit is 1. DicEnc maintains the
counter values at the same time. DicDec receives I and
outputs w. The idea of the procedure is as follows.

 A Post-Processing Mechanism for Sequential Use of Static and Dynamic Enumerative Code 27

Starting from the root while descending along the
unknown w, at each inner node v, DicDec holds the
value I as the enumerative index of the remaining
suffix of w in the external leaf set of the subtrie with
the root v. At the inner node v DicDec attempts to
subtract left_leaves from I. The next bit must be 1 if
the subtraction is possible and 0 otherwise, in the
latter case I is left unchanged. For example I is
annihilated at the moment when DicDec decodes the
last 1. DicDec easily maintains the counters at the
same time.
　However, the work [8] describes DicEnc/DicDec
but not IntEnc/IntDec, and does not mention the case
when the input does not f inish on the parsing
boundary.
　Let us explain this below. At each parsing, IntEnc/
IntDec knows that the index I is in a range, say, 0 ≤ I <
ρ. In such a case, a typical IntEnc/IntDec employs the
set of ρ leaves of a complete binary tree with the
maximal depth k = log2 ρ and with the minimal depth
at least k － 1 [7]. However, if the last word ends off at
an inner node, then the IntEnc has no way to tell to
IntDec about this event due to the compactness of the
code.
　The remedy to this problem is the main purpose of
this study. If we assume a complete binary tree code
for IntEnc/IntDec, it is imagined that there is no
elegant solution, if the total code is restricted to an
instantaneous code. (A naive post-processing method,
which does completing the last word and making
correction, would require an extra routine and
additional information bits.) However, as far as the
codecs are allowed to use the end-of-file, which is
available when the file transmission is managed in a
different level, a solution is found. (This is the case in
usual applications.) Let the dictionary trie consist of a
set of inner node T, let the IntEnc/IntDec tree consist
of a set of inner node U, and let assume that both of T
and U are the same size. Then there is a bijection c1 : T
→ U, as well as a bijection between the two sets of
corresponding leaves. Thus an image c1(v) of an
incomplete source word v, transmitted with an end-of-
file, can report the decoder on this incomplete event,
and can activate the inverse c1

-1 : U → T.
　Now, based on the above idea, we go more in detail.
Since DicEnc/DicDec already have prepared a counter
at the inner node in the dictionary trie[8], the in-order
becomes a good candidate for making the bijection.

The in-order of an inner node is defined as the
lexicographic order of the leftmost external leaf, in the
set of external leaves, of the right subtrie of the inner
node. This is just the value of I plus the counter at the
inner node. Equivalently it is the value of I that DicEnc
will calculate when it fur ther reads 1. Thus, on
detecting the end-of-file, the IntEnc switches and
inputs the sum of I and the counter. IntEnc outputs the
associated complete binary tree codeword and deletes
from which the suf fix 10＊(meaning 1 followed by
arbitrary number of zero). The encoder sends this
output.
　Before we go to the decoder, we pause to give some
remarks. First, IntEnc/IntDec can employ the same
type of trie structure as DicEnc/DicDec does. Next,
we note that a suf fix can be deleted always, i.e., 1
always exists in the complete binary tree codeword,
since the integer for IntEnc can never take zero. This
is due to the following fact for binary complete trees
that the number of inner nodes are one less than the
number of leaves.
　Now, the decoder does the converse. First IntDec
will fail to find a leaf of a complete codeword. IntDec
appends a suf fix 10＊ to a received bits to obtain a
complete codeword, which represents the in-order of
the inner node. IntDec informs DicDec of the value I
and switch DicDec into the function c1

-1 . However the
difference in the procedure is minimal. In fact, DicDec
starts to decode I as the normal case, and simply stops
just before decoding the last 1, that is, the moment
when I is annihilated.
　Example 4: We give a simple example. Let 01 and
an end-of-file follows the inputs in the previous
example. On encountering the end-of-file while
decoding the t = 3rd word, DicEnc will output (I = 1) +
(le f t_leaves = 1) for IntEnc and repor t on the
occurrence of the end-of-file. The complete binary tree
for 0 ≤ I < (3+1) has the external leaves {00, 01, 10, 11},
among which IncEnc will select 10 as usual, but will
delete a suf fix 10. Thus, IntEnc will output λ and
transmit with the end-of-file. Based on this the
decoding starts. The IntDec encounters the end-of-file
after λ. Since λ apparently is not a complete code
word, the IntDec appends 10 to the λ to recover an
integer I = 2 and reports DicDec that it should be
interpreted as an in-order. DicDec then star ts
decoding from I = 2 as usual, outputs 01, and attempts
to decode another 1. However, since I would then be

28 Tsutomu Kawabata （December 2007）

annihilated, DicDec stops there. ■
　T h e d e t a i l e d i m p l e m e n t a t i o n i s g i v e n i n
Appendix[16].

5　Application to the Non-Binary Alphabet
Sources

　The basic scheme given in Section 2 holds for any
finite alphabet. The enumerative algorithm designed
for the binary case almost apply to the finitealphabet
case. In this section we study the enumerative
algorithm for them-ary case and give remarks on the
difference from the binary case.
　Let the source alphabet be A = {0, 1, . . . ,m－1}, thus
T is an m-ary tree. Let the code alphabet be B = A.
Thus U is also an m -ar y tree. The enumerative
implementation of Enc∂T/Dec∂T is mostly the same.
The only difference is that we prepare a counter on
every v ∈ T which holds the number L[v] of external
leaves, for which v is the common ancestor. The basic
computation is as follows. We start with I = 0 and from
the root node λ . While descending along the word w
we are parsing, at every inner node u ∈ T for which
uk is a prefix of w, we add to I the cumulative counts

　Thus the basic procedure for decoding k at u is to
locate I, to a level in a staircase whose step sizes given
by a list {L[u0],L[u1], . . . ,L[u(m － 1)]}.
　Next, we consider the post-processing case. A
bijection T → U can be obtained similarly. The in-order
o f v in T i s equated wi th the in -or der o f the
corresponding u in U. Thus let us see how the in-order
can be calculated. The in-order J of v ∈ T is calculated
as follows. Starting from the root we first initialize J to
zero. While descending a parsed word, at every inner
node v, we acquire the in-order (J + 1) + (L[v0] － 1)/
(m － 1), where the second term means the number of
inner nodes of the subtrie with the root v0, and 1 in
the first term is for the node itself. Thus when we
descends the path vk we should update J by adding a
number (Ck － k)/(m － 1), plus 1 only when k ≥ 1. In
the binary case, the calculation is simplified, as was
described before.
　In the above, we assumed implicitly that m is small.
When m is large, we should reduce the complexity for

computing Ck. In the case of m = 2d, we can introduce a
binary complete trie of depth d. Let bd

1(k) ∈ {0, 1}d
denote a binary representation of k. For each
{0, 1}l, we associate an integer C[k] holding the sum of
all the Lk for which bd

1(k) has a prefix c0. Then Ck can
be calculated, while changing c over the proper prefix
of bd

1(k), by accumulating C[c0] only when c1 is a
prefix of bd

1(k).

6　Conclusion

　Enumerative method is useful in lossless and lossy
data compressions. We illustrated this method in the
implementation of sequential use of lossless Variable-
to-Variable(VV) code. One of a practical problem in the
VV code is the post-processing problem. We showed
that the method of enumerative coding is still effective
in the detailed design of VV code, by showing that
transactions of complete code and that of incomplete
code can be superposed and hence that programming
complexity is apparently reduced, provided that an
end-of-file character is available. We have first shown
this method in the static VV code and then further
applied to a dynamic VV code, in particular to the Ziv-
Lempel incremental parsing algorithm. Although all
the above were illustrated in the binar y alphabet
source, we noticed on the extension to the non-binary
alphabet.

Acknowledgments

　The author thanks the anonymous reviewer for
careful reading and the comments which improved the
manuscript.

References

[1] J. P. M. Schalkwijk: An Algorithm for Source
Coding, IEEE Trans. on Information Theory, 18,
395-399(1972).

[2] Cover, T. M. : Enumerative Source Coding, IEEE
Trans. on Information Theory, 19,1,73-77(1973).

[3] Pasco, R.: Source coding algorithms for fast data
compression, Ph.D Disser tation, Stanford
University (1976).

[4] Ziv, J. and Lempel, A.: Compression of Individual
Sequences via Variable-rate Coding, IEEE Trans.
on Information Theory, IT-24, 5, 530-536 (1978).

 A Post-Processing Mechanism for Sequential Use of Static and Dynamic Enumerative Code 29

[5] Ma, J. S.: Data Compression, Ph.D Dissertation,
Dept. Electrical and Computer Eng., Univ. of
Massachusetts, Amherst (1978).

[6] Rissanen, J.: A Universal Data Compression
Systems, IEEE Trans. on Information Theory,
IT-29, 5, 656-664, (1983).

[7] Bell, T. C., Cleary, J. G., and Witten, I. H.: Text
Compression, Prentice Hall(1990).

[8] Kawabata , T. and Yamamoto , H . : A New
Implementation of Ziv-Lempel Incremental
Parsing Algorithms, IEEE Trans. on Information
Theory, 37,5, 1439-1440,(1991).

[9] Plotnik, E., Weinberger, M., and Ziv, J.: Upper
bounds on the probability of sequences emitted
by finite state sources and on the redundancy of
the Lempel-Ziv algorithm, IEEE Trans. on
Information Theory, 38, 2, 66-72, (1992).

[10] Sheinwald, D.: On Binary Alphabetical Codes,
P r o c e e d i n g s o f t h e D a t a C o m p r e s s i o n
Conference, IEEE Computer Society Press, 112-
121,(1992).

[11] Kawabata, T.: Exact Analysis of the Lempel-Ziv
algorithm for I.I.D. source, IEEE Trans. on
Information Theory, 39, 2, 698-702, (1993).

[12] Jacquet, P. and Szpankowski, W.: Asymptotic
behavior of the Lempel- Ziv parsing scheme and
digital search trees, Theoretical Computer
Science, 144, 161-197 (1995).

[13] Savari, S. A.: Redundancy of the Lempel-Ziv
incremental parsing r ule, IEEE Trans. on
Information Theory, 43, 2, 9-21, (1997).

[14] Kawabata, T.: A Note on a Sequence Related to
the Lempel -Ziv Parsing, IEICE T rans. on
Fundamentals, E83, 10, 1979-1982, (2000).

[15] Cover, T. M. and Thomas, J. A.: The Elements of
Information Theory, 2nd. Ed., Wiley(2006).

[16]Kawabata , T. : A Post -Pr ocess ing for the
Enumerative Code Implementation of Ziv-Lempel
I n c r e m e n t a l P a r s i n g , I E I C E T r a n s . o n
Communications, E90,11,3263-3265,(2007).

Appendix to §4[16]

　In the following, we describe a part of the algorithm.
There are four procedures DicEnc,IntEnc,IntDec,
and DicDec. Those were defined in the main section.
　Algorithmic descriptions of DicEnc and DicDec
appeared in [8] first. In this appendix we modify those

according to our current purpose. DicEnc depends on
IntEnc , and DicDec depends on IntDec . The
functions of IntEnc and IntDec are apparent, thus the
detailed descriptions are omitted.
　Let us describe the data structure, of the dictionary
trie. Each node has a record with three fields, called
left_leaves, left and right, which designate the number
of leaves of the left subtree, the pointer to the left
child, and to the right child, respectively. The
procedure make generates the node, by initializing the
left_leaves to unity and the other two pointers both to
nils, and finally returns the pointer to the node. Both
root and q are pointers to the node, and r is an indirect
pointer(i.e. the pointer to the pointer) to the node.
　We denote the destination of a pointer by the pointer
name followed by↑. A complete binar y tree is
represented by the set of inner nodes. Therefore, in
our algorithm no leaves are actually created. The
encoder will first initialize the root node and then
repeat the parsing process. For each repetition, q will
descend a path from the root down to the leaf, as
directed by the value of the input bit. We use r to refer
indirectly to the left or the right child of the node that
q points to, depending on whether the input bit is zero
or one. The variable I, initialized to zero, is used to
calculate the enumerative index of w by summing up
the left_leaves of the node, only when the input bit is 1.
When the input bit is 0, we just add one to the left_
leaves of the node. When q becomes nil, this means
that we have reached a leaf, thus that a parsing has
completed.
　Let CBT : {I : 0 ≤ I < ρ } → {0, 1}＊ represent a
procedure, for a known ρ , which returns a complete
binar y tree representation of I . The method is
described in Appendix A.2. of [7]. Let an inverse of
CBT be given by CBT -1 : CBT({I : 0 ≤ I < ρ }) → N ∪
{0}.
　In the following, IntEnc(I,Final) simply returns
CBT(I) ∈ {0, 1}＊ but with deleting a postfix 10 ＊ only
when the logical variable Final is true. For CBT
normal codewords, IntDec(var Final) sets Final←
false and applies
　CBT-1(). For a CBT incomplete node, it sets
Final← true, and then completes the input sequence
into a CBT codeword by appending a postfix 10＊, and
applies CBT-1() to the modified inputs.

30 Tsutomu Kawabata （December 2007）

DicEnc:

make(root);
repeat
 q ← root; I ← 0;
 repeat
 if get(bit) =EOF then
 IntEnc(I+q↑.left_leaves,true);
 else if bit = 0 then
 begin
 q↑.left_leaves ← q↑.left_leaves + 1;
 r ← the pointer to q↑.left;
 end
 else
 begin
 I ← I + q↑.left_leaves;
 r ← the pointer to q↑.right;
 end;
 q ← r↑ ;
 until q=nil;
 IntEnc(I,false);
 make(r↑);
until false;

DicDec:

make(root);
repeat
 q ← root; I ← IntDec(Final);
 repeat
 if q↑.left_leaves > I then
 begin
 output(0);
 q↑.left_leaves ← q↑.left_leaves + 1;
 r ← the pointer to q↑.left;
 end
 else if(q↑.left_leaves <I)or not Final then
 begin
 output(1);
 I ← I − q↑.left_leaves;
 r ← the pointer to q↑.right;
 end;
 else Exit();
 q ← r↑ ;
 until q=nil;
 make(r↑);
until false;

