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1　Introduction

　Consider source coding of source letter sequences 
to another letter sequences. In particular we consider 
the lossless coding, where encoding is one-to-one and 
hence there is a decoding rule which inver ts the 
coded sequence into the original source sequence.
　A practical design method of lossless source coding 
is to allow the decoder to keep track of the encoder’s 
states. This method can be realized when the encoder 
employs relatively a small instantaneous code. The 
code parses an input source sequence into words and 
transforms each into a codeword. The decoder also 
employs the same instantaneous code which recovers 
the source word from the transmitted codeword. The 
codec, i.e., the pair of the encoder and the decoder, 
can be dependent on the previously parsed words. 
Perfect recovery of the source word enables the codec 
to keep track of the same states. Thus both the 

encoder and the decoder can maintain, in particular, 
the same instantaneous code.
　Each instantaneous code can be a variable-to-
variable(VV) length code, and hence the above 
method allows a sequential and dynamic use of the VV 
code. A VV code is an one-to-one map between two 
complete codes. In such case, we can design the VV 
code in an elucidative principle of enumerative code[1]
[2]. Namely, a VV coding can be designed in a 
concatenation of a variable-to-fixed length code and a 
fixed-to-variable length code. (For coding scheme 
terminology, we refer to [3])
　However, one problem is that if the input length is 
arbitrary the last word may be incomplete and may 
need special post-processing. This will sacrifice coding 
rate and increase the complexity of the codec. In the 
following, we show that this problem can be resolved 
distinctly by an idea of enumerative coding. We will 
give an implementation which is commonly effective in 
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both the instantaneous code and the post-processing, 
thus both can be superposed. This will reduce the 
programming complexity due to the post-processing.
　The organization of the paper is as follows. In 
Section 2, we introduce again the above motivation in a 
formal way, and show that the word left in an 
incomplete parsing can be encoded into an incomplete 
codeword, thus the decoder knows the occurrence of 
an end-of-file in the input. In Section 3, we show that an 
enumerative implementation of the function defined in 
Section 2 in the case of fixed, namely static, binary 
code. This section is an extraction of Section 4, thus 
can be skipped for reading. In Section 4, we show the 
enumerative implementation of the function defined in 
Section 2 in the case of the Ziv-Lempel incremental 
parsing. Here, the VV code is dynamic namely 
dependent on the previous parsing histor y. The 
section can be continued from Section 2 directly. In 
Section 5, we generalize the base of the algorithm from 
binary alphabet into non-binary alphabet. In the final 
section, we conclude.

2　A Scheme of VV Coding for File Transaction

　In the following, denote by A a finite alphabet and fix 
during the following arguments. Let denote by Al a set 
of length l words. In general, a superscript ＊ operated 
to an arbitrar y set A, i.e.  A＊, designates the set 
∪∞l=0 Al . Thus in our case, A＊ consists of words of 
arbitrary length. Let ♯ of a set denote its size. Hence, 
e.g., it holds that♯Al = (♯A)l. Thus the set A0 consists 
only of an empty word λ.
　A subset T⊂ A＊ is called a trie, if any prefix of its 
element is also in T. For a trie T, we denote by ∂T the 
set ({λ} ∪ TA) － T, which can be interpreted as the 
external leaves of T.
　Let A be a binary alphabet {0, 1}. Then an example 
of T is {λ, 0}, and for this, ∂T = {00, 01, 1}.
　Over the same alphabet, let T and U be tries of the 
same size. We assume that a bijection

　　c : T ∪ ∂T → U ∪ ∂U

which satisfies

　　c(∂T ) = ∂U

can be constructed. Then necessarily a relation

　　c(T ) = U

holds. Let c0 denote the restriction of c to ∂T  and let 
c1 denote the restriction to T ; that is c0 :∂T → ∂U, 
and c1 : T  → U. Since A＊ = (∂T )＊T  = (∂U)＊U, any x ∈ 
A＊ is decomposed (or parsed) uniquely as w1 · · ·wk-1 
w̃k, where w1 ∈ ∂T, · · · ,wk-1 ∈ ∂T, w̃k ∈ T. The 
output of the encoder

　　c : A＊ → A＊

for a finite input x is defined as

　　c(x) = c0(w1) · · · c0(wk-1)c1(w̃k).

　This output is uniquely decoded as follows provided 
an external file control, like the end-of-file is used. If 
the decoder completes parsing a codeword in∂U, then 
it applies the function c0

-1 , and otherwise, it switches 
to apply c1

-1 . Here a point of the idea is that when we 
process an incomplete source word, we report the 
decoder by the combination of an incomplete 
codeword and the end-of-file.
　The total code for the inputs of fixed length n = |x| is 
a concatenation of VV codes. For a fixed T, the overall 
rate of a FV (Fixed-to-Variable length) coding scheme 
is given by 

　A probabilistic analysis of this rate is related to the 
renewal theor y, since the expected value of k is a 
renewal function (of n) for a memoryless source or a  
Markovian source.

3　Enumerative Implementation of the VV 
Code– A Binary Case–

　The purpose of this section is to realize the idea of 
the previous section and construct a mapping c for a 
general VV code, in which the coding of c0 and c1 are 
unified and simplified.
　We use the binary alphabet A = {0, 1}.
　First we define c0 so that w∈∂T and c(w)∈∂T have 
the same lexicographic order I in ∂T and ∂U respec-
tively. Let the order start from 0 and hence I be in the 
range 0 ≤ I < N, where N = ♯∂T = ♯∂U. Thus, c0 can 
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be decomposed as Dec∂U◦Enc∂T, where

　　Enc∂T : ∂T → {0, 1, . . . ,N － 1}

and

　　Dec∂U : {0, 1, . . . ,N － 1} → ∂U.

Enc∂T(w) can be calculated by using an enumerative 
structure.
　First we draw a trie A ＊ = {λ} ∪ ({0}A＊) ∪ ({1}A＊) in 
our image by placing the root λ at the top, and all the 
other trie nodes down. A subtrie {0}A＊ represents the 
set of nodes which can be reached by descending from 
λ through the left branch with the label 0. Likewise a 
subtrie {1}A＊ represents the set of nodes which can be 
reached by descending from λ through the right 
branch with the label 1.
　Let left_leaves(v) be a counter at v, which counts all 
the leaves, in ∂T, which have the common ancestor 
v0. Then the lexicographic order of w in ∂T is cal-
culated, while descending T from λ along the path 
specified by w, as the sum of left_leaves(v) over every v 
for which v1 is on the path. Next, for a given I = Enc∂
T(w), we can find Dec∂U(I ) ∈ ∂U, by descending 
from λ . Basic descending step at each node v is as 
follows. If I ≥ left_leaves(v), then we set new I to be I － 
left_leaves(v) and takes the right branch. Otherwise we 
keep the same I and take the left branch. Finally, we 
arrive at the Dec∂U(I) = c0(w), which becomes the VV 
codeword for w ∈ ∂T.
　In a similar manner, we define c0

-1 as a composition 
Dec∂U◦Enc∂U,
where

　　Enc∂U: ∂U → {0, 1, . . . ,N － 1}

and

　　Dec∂T : {0, 1, . . . ,N － 1} → ∂T.

　Example 1: Let T = {0, λ, 10, 1}, where nodes are 
listed in the inorder, i.e., in the order of leftleaves. 
Then ∂T = {00, 01, 100, 101, 11}, where the leaves are 
listed in the lexicographic order. Thus the counter 
values are left_leaves[0] = 1, left_leaves[λ] = 2, left_
leaves[10] = 1, and left_leaves[1] = 2. Given a sequence 
101, we set I = 0 and descend from λ down the trie 
along the sequence. We add left_leaves[λ] and left_
leaves[10] to I and reaches to the leaf 101. Here we 

obtain I = 3, which is the lexicographic order of 101 in 
∂T. 
　Let U = {00, 0, λ, 1}. Then ∂U = {000, 001, 01, 10, 
11}. On U, the counter values are left_leaves[00] = 1, 
left_leaves[0] = 2, left_leaves[λ] = 3, and left_leaves[1] = 
1. Given I = 3, we start from λ and descend the trie U 
∪∂U. Since I ≥ left_leaves[λ], we take the right branch 
to decode 1, and at this moment I becomes 0. Next we 
take the left branch and decode 0 and reaches to the 
leaf 10. Thus c0(101) = 10. The calculation of c0

-1goes 
similarly, only by changing the role of T and U. ■
　Next we define c1 so that each of v in T and c1(v) ∈ 
U have the same inorders in T and U respectively. For 
T, the in-order I(v) counts the leaves in ∂T which has 
the lexicographic order smaller than v. Thus the 
computation of c1 follows the same procedure as c0. 
Formally, the c is given as DecU◦EncT , each of which 
is defined as follows.

　　EncT : T → {1, . . . ,N － 1},

and

　　DecU : {1, . . . ,N － 1} → U.

　General procedure for EncT is as follows. For a 
given w ∈ T, we set I = 0 initially. Starting from the 
root λ we descend T down to w. At a node v we add 
left_leaves(v) to I when we take the right branch. 
When we arrived at w, we add left_leaves(w) to I and 
exit. This is equivalent to the situation of taking the 
right branch and after that taking all left branches until 
it reaches to a leaf in ∂T. After we exit, we move to the 
U and start the procedure DecU. For a given I, we find 
u ∈ U whose in-order is I, as in the following. We 
decode each bit of u while descending from λ to u. At 
each descending step at a node v, we attempt to 
subtract left_leaves(v) from I, as long as the result is 
non-negative. If the result is positive, we have a new 
value for I, and takes the right branch. If it is negative, 
we keep the value of I unchanged and take the left 
branch. If the resulted I value is zero, then we stop and 
output v as c(w) ∈ U.
　Example 2 : Let the input be 10 followed by the 
end-of-file. Setting I = 0, we start to descend T from λ. 
We add left_leaves[λ] = 2 to I and reach the node 10. 
Here we read the end-of-file. The algorithm terminates 
after adding left_leaves[10] = 1 to I. Thus I becomes 3, 
which is the in-order of 10 in T. Next in U, we start 
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with I = 3 and attempt to descend U from λ. Since I = 
left_leaves[λ], subtraction makes I zero, thus we stop 
and exit, with the output c1(10) = λ. In the decoder, we 
input λ followed by the end-of-file. Thus we switch to 
c1

-1( ). However,we do not need to know the existence 
of the end-of-file. Actual steps are as follows. On U, we 
set I = 0 and starts descending from λ. Since we read 
the end-of-file, we exit the trie U, after adding left_
leaves[λ] = 3 to I. Next on T, in the decoder’s second 
step we starts from I = 3 and descend T from λ while 
decoding each bit. In the decoder, we first compare I 
with left_leaves[λ] = 2, and output the bit 1, and set I = 
1. Then we decode the bit 0, and leave the value I 
unchanged. Next we attempt to output the bit 1. 
However at this point I becomes zero. Thus we simply 
stops. The output thus becomes 10. ■

4　Application to Ziv-Lempel Incremental Parsing

　The scheme used so far can be extended to a dynamical 
case, that is, to the case that the set T and U are dependent 
on the past histor y. A good example is the Ziv-Lempel 
incremental parsing. In this section, we concede the subject 
to the nature in the algorithm description. Thus the name of 
a procedure/circuit will be the subject of the operations in its 
body.
　The Ziv-Lempel incremental parsing algorithm [4] 
decomposes a sequence of letters from left to right into 
words such that a new word is the shortest one which differs 
from any of the previously parsed words. It organizes the 
parsed words into a trie (which we call a dictionary trie), and 
based on which it encodes/decodes the new word[6][5]. 
(Due to this fundamental simplicity, the coding rate and the 
redundancy is analyzed deeply not only in Shannon 
theoretical studies, e.g. [2][9][13], but also in algorithm 
analyses, e.g. [11][14][12].) This trie has the set of external 
leaves, that corresponds to the set of possible new parsing 
words. An algorithm proposed by [8] calculates an 
enumerative index[2] of the new word as the lexicographic 
order of the word in the set of external leaves.
　To argue more in detail, let us consider a binary source 
alphabet and a binary code alphabet. Thus the enumerative 
index must be encoded into a binary sequence. The encoder 
does parsing in two phases, as in IntEnc◦DicEnc, 
where

　　　　DicEnc : {0, 1}＊ → N ∪ {0}                          (1)

　　　　IntEnc : N ∪ {0} → {0, 1}＊,                         (2)

where we denoted by {0, 1}＊ the set of all binar y 
sequences and by N the set of natural numbers.
　Correspondingly, decoder recovers the parsing as in 
DicDec◦IntDec, where

　　　　IntDec : {0, 1}＊ → N ∪ {0}                           (3)

　　　　DicDec : N ∪ {0} → {0, 1}＊.                        (4)

　Here DicEnc/DicDec abbreviates a pair of 
dictionary source codecs, and IntEnc/IntDec does a 
pair of integer source codecs.
　Example 3: Let us give an example of the above 
scheme. Let an input be 001. The algorithm sets {w0 = 
λ} as an initial dictionary trie. The associated external 
leaves are {0, 1}.
　Now DicEnc first reads 0, and finds a new word w1 = 
0. DicEnc outputs I = 0 as an enumerative index of w1 
in {0, 1}. The index takes values in the range 0 ≤ I < ♯
{0, 1}. The dictionary trie becomes the set {w0 = λ ,w1 
= 0}, with the set of external leaves {00, 01, 1}. IntEnc 
reads I and outputs its integer codeword, i.e. a binary 
representation. At the decoder, IntDec reads the 
integer codeword and returns I, and from which 
DicDec reproduces 0.
　In the next parsing, DicEnc reads 01, and finds w2  = 
01, and outputs I = 1 as an enumerative index of w1  in 
{00, 01, 1}. The index is in 0 ≤ I < ♯ {00, 01, 1}. The 
IncEnc takes I as its input and outputs its integer 
codeword. The dictionary trie becomes {w0 = λ ,w1  = 
0,w2  = 01} with the set of external leaves {00, 010, 011, 1}. 
At the decoder, DicEnc takes the codeword as its 
inputs and retur ns I , and from which DicDec 
reproduces 01. ■
　In the work [8], a detailed implementation of 
DicEnc/DicDec is given. The main idea of the 
implementation is to introduce an enumerative 
mechanism in the dictionary trie. At every inner node, 
a counter keeps the number of external leaves of its 
left subtrie. (The counter has been named as left_
leaves .) DicEnc calculates the variable I while 
descending the trie along a new word w, such that I is 
the sum of the counters associated with the inner 
nodes for which the next bit is 1. DicEnc maintains the 
counter values at the same time. DicDec receives I and 
outputs w. The idea of the procedure is as follows. 
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Starting from the root while descending along the 
unknown w, at each inner node v, DicDec holds the 
value I as the enumerative index of the remaining 
suffix of w in the external leaf set of the subtrie with 
the root v. At the inner node v DicDec attempts to 
subtract left_leaves from I. The next bit must be 1 if 
the subtraction is possible and 0 otherwise, in the 
latter case I is left unchanged. For example I is 
annihilated at the moment when DicDec decodes the 
last 1. DicDec easily maintains the counters at the 
same time.
　However, the work [8] describes DicEnc/DicDec 
but not IntEnc/IntDec, and does not mention the case 
when the input does not f inish on the parsing 
boundary.
　Let us explain this below. At each parsing, IntEnc/
IntDec knows that the index I is in a range, say, 0 ≤ I < 
ρ. In such a case, a typical IntEnc/IntDec employs the 
set of ρ leaves of a complete binary tree with the 
maximal depth k = log2 ρ  and with the minimal depth 
at least k － 1 [7]. However, if the last word ends off at 
an inner node, then the IntEnc has no way to tell to 
IntDec about this event due to the compactness of the 
code. 
　The remedy to this problem is the main purpose of 
this study. If we assume a complete binary tree code 
for IntEnc/IntDec, it is imagined that there is no 
elegant solution, if the total code is restricted to an 
instantaneous code. (A naive post-processing method, 
which does completing the last word and making 
correction, would require an extra routine and 
additional information bits.) However, as far as the 
codecs are allowed to use the end-of-file, which is 
available when the file transmission is managed in a 
different level, a solution is found. (This is the case in 
usual applications.) Let the dictionary trie consist of a 
set of inner node T, let the IntEnc/IntDec tree consist 
of a set of inner node U, and let assume that both of T 
and U are the same size. Then there is a bijection c1 : T 
→ U, as well as a bijection between the two sets of 
corresponding leaves. Thus an image c1(v) of an 
incomplete source word v, transmitted with an end-of-
file, can report the decoder on this incomplete event, 
and can activate the inverse c1

-1 : U → T.
　Now, based on the above idea, we go more in detail. 
Since DicEnc/DicDec already have prepared a counter 
at the inner node in the dictionary trie[8], the in-order 
becomes a good candidate for making the bijection. 

The in-order of an inner node is defined as the 
lexicographic order of the leftmost external leaf, in the 
set of external leaves, of the right subtrie of the inner 
node. This is just the value of I plus the counter at the 
inner node. Equivalently it is the value of I that DicEnc 
will calculate when it fur ther reads 1. Thus, on 
detecting the end-of-file, the IntEnc switches and 
inputs the sum of I and the counter. IntEnc outputs the 
associated complete binary tree codeword and deletes 
from which the suf fix 10＊( meaning 1 followed by 
arbitrary number of zero). The encoder sends this 
output.
　Before we go to the decoder, we pause to give some 
remarks. First, IntEnc/IntDec can employ the same 
type of trie structure as DicEnc/DicDec does. Next, 
we note that a suf fix can be deleted always, i.e., 1 
always exists in the complete binary tree codeword, 
since the integer for IntEnc can never take zero. This 
is due to the following fact for binary complete trees 
that the number of inner nodes are one less than the 
number of leaves.
　Now, the decoder does the converse. First IntDec 
will fail to find a leaf of a complete codeword. IntDec 
appends a suf fix 10＊ to a received bits to obtain a 
complete codeword, which represents the in-order of 
the inner node. IntDec informs DicDec of the value I 
and switch DicDec into the function c1

-1 . However the 
difference in the procedure is minimal. In fact, DicDec 
starts to decode I as the normal case, and simply stops 
just before decoding the last 1, that is, the moment 
when I is annihilated.
　Example 4: We give a simple example. Let 01 and 
an end-of-file follows the inputs in the previous 
example. On encountering the end-of-file while 
decoding the t = 3rd word, DicEnc will output (I = 1) + 
( le f t_leaves = 1) for IntEnc and repor t on the 
occurrence of the end-of-file. The complete binary tree 
for 0 ≤ I < (3+1) has the external leaves {00, 01, 10, 11}, 
among which IncEnc will select 10 as usual, but will 
delete a suf fix 10. Thus, IntEnc will output λ and 
transmit with the end-of-file. Based on this the 
decoding starts. The IntDec encounters the end-of-file 
after λ. Since λ apparently is not a complete code 
word, the IntDec appends 10 to the λ to recover an 
integer I = 2 and reports DicDec that it should be 
interpreted as an in-order. DicDec then star ts 
decoding from I = 2 as usual, outputs 01, and attempts 
to decode another 1. However, since I would then be 
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annihilated, DicDec stops there. ■
　T h e d e t a i l e d i m p l e m e n t a t i o n i s  g i v e n i n 
Appendix[16].

5　Application to the Non-Binary Alphabet
Sources

　The basic scheme given in Section 2 holds for any 
finite alphabet. The enumerative algorithm designed 
for the binary case almost apply to the finitealphabet 
case. In this section we study the enumerative 
algorithm for them-ary case and give remarks on the 
difference from the binary case.
　Let the source alphabet be A = {0, 1, . . . ,m－1}, thus 
T is an m-ary tree. Let the code alphabet be B = A. 
Thus U is also an m -ar y tree. The enumerative 
implementation of Enc∂T/Dec∂T is mostly the same. 
The only difference is that we prepare a counter on 
every v ∈ T which holds the number L[v] of external 
leaves, for which v is the common ancestor. The basic 
computation is as follows. We start with I = 0 and from 
the root node λ . While descending along the word w 
we are parsing, at every inner node u ∈ T for which 
uk is a prefix of w, we add to I the cumulative counts

　Thus the basic procedure for decoding k at u is to 
locate I, to a level in a staircase whose step sizes given 
by a list {L[u0],L[u1], . . . ,L[u(m － 1)]}.
　Next, we consider the post-processing case. A 
bijection T → U can be obtained similarly. The in-order 
o f v in T i s equated wi th the in -or der o f the 
corresponding u in U. Thus let us see how the in-order 
can be calculated. The in-order J of v ∈ T is calculated 
as follows. Starting from the root we first initialize J to 
zero. While descending a parsed word, at every inner 
node v, we acquire the in-order ( J + 1) + (L[v0] － 1)/
(m － 1), where the second term means the number of 
inner nodes of the subtrie with the root v0, and 1 in 
the first term is for the node itself. Thus when we 
descends the path vk we should update J by adding a 
number (Ck － k)/(m － 1), plus 1 only when k ≥ 1. In 
the binary case, the calculation is simplified, as was 
described before.
　In the above, we assumed implicitly that m is small. 
When m is large, we should reduce the complexity for 

computing Ck. In the case of m = 2d, we can introduce a 
binary complete trie of depth d. Let bd

1(k) ∈ {0, 1}d 
denote a binary representation of k. For each  
{0, 1}l, we associate an integer C[k] holding the sum of 
all the Lk for which bd

1(k) has a prefix c0. Then Ck can 
be calculated, while changing c over the proper prefix 
of bd

1(k), by accumulating C[c0] only when c1 is a 
prefix of bd

1(k).

6　Conclusion

　Enumerative method is useful in lossless and lossy 
data compressions. We illustrated this method in the 
implementation of sequential use of lossless Variable-
to-Variable(VV) code. One of a practical problem in the 
VV code is the post-processing problem. We showed 
that the method of enumerative coding is still effective 
in the detailed design of VV code, by showing that 
transactions of complete code and that of incomplete 
code can be superposed and hence that programming 
complexity is apparently reduced, provided that an 
end-of-file character is available. We have first shown 
this method in the static VV code and then further 
applied to a dynamic VV code, in particular to the Ziv-
Lempel incremental parsing algorithm. Although all 
the above were illustrated in the binar y alphabet 
source, we noticed on the extension to the non-binary 
alphabet.
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Appendix to §4[16]

　In the following, we describe a part of the algorithm. 
There are four procedures DicEnc,IntEnc,IntDec, 
and DicDec. Those were defined in the main section.
　Algorithmic descriptions of DicEnc and DicDec 
appeared in [8] first. In this appendix we modify those 

according to our current purpose. DicEnc depends on 
IntEnc , and DicDec depends on IntDec . The 
functions of IntEnc and IntDec are apparent, thus the 
detailed descriptions are omitted.
　Let us describe the data structure, of the dictionary 
trie. Each node has a record with three fields, called 
left_leaves, left and right, which designate the number 
of leaves of the left subtree, the pointer to the left 
child, and to the right child, respectively. The 
procedure make generates the node, by initializing the 
left_leaves to unity and the other two pointers both to 
nils, and finally returns the pointer to the node. Both 
root and q are pointers to the node, and r is an indirect 
pointer( i.e. the pointer to the pointer) to the node.
　We denote the destination of a pointer by the pointer 
name followed by↑. A complete binar y tree is 
represented by the set of inner nodes. Therefore, in 
our algorithm no leaves are actually created. The 
encoder will first initialize the root node and then 
repeat the parsing process. For each repetition, q  will 
descend a path from the root down to the leaf, as 
directed by the value of the input bit. We use r to refer 
indirectly to the left or the right child of the node that 
q points to, depending on whether the input bit is zero 
or one. The variable I, initialized to zero, is used to 
calculate the enumerative index of w by summing up 
the left_leaves of the node, only when the input bit is 1. 
When the input bit is 0, we just add one to the left_
leaves of the node. When q becomes nil, this means 
that we have reached a leaf, thus that a parsing has 
completed.
　Let CBT : {I : 0 ≤ I < ρ } → {0, 1}＊ represent a 
procedure, for a known ρ , which returns a complete 
binar y tree representation of I . The method is 
described in Appendix A.2. of [7]. Let an inverse of 
CBT be given by CBT -1 : CBT({I : 0 ≤ I < ρ }) → N ∪ 
{0}.
　In the following, IntEnc(I,Final) simply returns 
CBT(I) ∈ {0, 1}＊ but with deleting a postfix 10 ＊ only 
when the logical variable Final is true. For CBT 
normal codewords, IntDec(var Final) sets Final← 
false and applies
　CBT-1(). For a CBT incomplete node, it sets 
Final← true, and then completes the input sequence 
into a CBT codeword by appending a postfix 10＊, and 
applies CBT-1() to the modified inputs.



30 Tsutomu Kawabata （December 2007）

DicEnc:

make(root);
repeat
         q ← root; I ← 0;
       repeat
                 if get(bit) =EOF then
                           IntEnc(I+q↑.left_leaves,true);
                 else if bit = 0 then
                   begin
                               q↑.left_leaves ← q↑.left_leaves + 1;
                               r ← the pointer to q↑.left;
                         end
                 else
                         begin
                                I ← I + q↑.left_leaves;
                                r ← the pointer to q↑.right;
                   end;
                 q ← r↑ ;
         until q=nil;
         IntEnc(I,false);
         make(r↑ );
until false;

DicDec:

make(root);
repeat
         q ← root; I ← IntDec(Final);
       repeat
                 if q↑.left_leaves > I then
                   begin
                               output(0);
                               q↑.left_leaves ← q↑.left_leaves + 1;
                               r ← the pointer to q↑.left;
                   end
                 else if(q↑.left_leaves <I)or not Final then
                               begin
                                   output(1);
                                   I ← I − q↑.left_leaves;
                                   r ← the pointer to q↑.right;
                               end;
                 else Exit();
                 q ← r↑ ;
       until q=nil;
       make(r↑ );
until false;


