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Chapter 1

Introduction

1.1 Problem Definition

Rigid-planar physical limitations of conventional displays has brought many
restrictions when the user handles or interacts with the data that has a three-
dimensional shape or tactile information. For example, in order to view or edit
three-dimensional shape on a planar display, complex GUI operations such as fre-
quent viewpoint movement and/or vertex operations are required. Using a stereo-
scopic display, however, a three-dimensional image is displayed to the user but
direct touch or physical contact with the displayed shape is not possible.

In order to address this problem, non-planar, deformable surface that allow the
user to directly modify the data like modifying a physical object has been explored
recently[11]. Vertagaal et. al refer these type of interface that ”Uses a non-planar
display as a primary means of output, as well as input. ” and "Have the ability
to become the data on display through deformation, either via manipulation or
actuation.” as an Organic User Interface(OUI) [37].

Flexible materials such as such as cloth [3], elastomer [31], sand and clay [27]
has been utilized as display surface to provide a organic element with the surface
input/output methods. These displays generally show the images on a tangible
surface or convex shape, and the user can touch or deform this shape freely with
his/her hands. However, the shapes that can be produced on the surface are limited
due to flexibility limitations of the surface material. Similarly, physical parameters

of the surface such as stiffness or smoothness can be changed only by modifying
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the underlying hardware configuration. Thus, interaction methods that the same
system could provide to the user were limited.

In attempt to achieve surface with the ability to create and deform physical
shapes, many researches have implemented and developed pin array display[13][17].
In this researces number of small pins mounted into actuators (motors, SMA, piston
, etc ) made it possible to change the display shape and height dynamically. Most of
this researches also allow graphical projection haptic feedback to user hands input.
Even though some of these researches has introduced a significance advancement
in term of scalability and application. However, generally these type of shaped

display still have limitation as follow:

e Type of shapes that can generated
Most fundamentally they do not allow overhanged shape due to the pin array

structure.

e Shapes height limitation
Actuators have a limited linear range. If the shape formed by the interface

exceeds this range, it will be clipped.

e Resolution of the actuated points
Due to the size and complexity of the actuators, they cannot be packed
densely enough to create a resolution capable of outputting a perceived con-

tinuous shape.

1.2 Research Objective

Our research goals is to realize the "ultimate” Organic User Interface(OUI) :
e Capable to visualize data both with graphical output and shape deformation

e Allow for user input through hand touch, gesture, deformation (either via

manipulation or actuation) directly on the display output.
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e Have ability to adapt and change both the shape and mechanical properties

according to the contexts of use.

Considering both the current technology problem and these research goals, we

define our research objective as follow:

1. Development and implementation of deformable surface with controllable
softness properties, allowing for varied shape deformation (rough and de-

tailed) and shape fixing.

2. Implementation of fool-proof application to explore the capabilities of the
display with softness change included with graphical output and direct touch

input.

3. Proposal of particles display shape actuation that compatible with the soft-

ness control properties.

1.3 Research Outline

In this research, we focused on the dynamic changing capability of display stiff-
ness (softness) and developed novel shape changeable display that has high flexi-
bility and supports variety of different interaction styles.

We propose ”ClaytricSurface” an interactive surface with dynamically control-
lable softness. By enabling controllable stiffness, this surface can be functioned as
both a traditional rigid planar surface and also a flexible shaped surface. More-
over, by changing the degree of surface softness, this surface also allows for the
generation of various touch sensations as well as tactile feedback on direct touch
input.

We demonstrate the usability and accessibility of our display by developing a
3D modeling application. Our system use touch input to control the softness so
that the user can immediately feel the softness change while make adjustments on

the fly. When the display at soft state user can significantly deformed the surface
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shape. At malleable clayley state, user can create more detailed shape. And when
the display is stiff, display will maintain its shape despite of external force(touch
input) added.

In this research, we also propose a new display actuation called ”LivingClay”
where surface volume and stiffness can be controlled using a single pneumatic
conveying method. The display is able to function as both a flat rigid display
surface as well as a variable height deformable surface.

In addition, we also proposed 2 type of actuator array configurations, allowing
a slightly more complex shape generation. The first design is an improvement of
the hClaytricSurfaceh allowing an automated shape reset and low resolution shape
deformation. While, the second design proposed a low-cost, effective way to control

an array of actuators using a multiplexed grid configuration.
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Chapter 2

Research Background

Vertagaal et. al. define an Organic User Interface(OUI) characteristics as follow

[37]:

1. Input Equals Output: Where the display is the input device.
In future, when displays are curved, flexible or any other form, current point-
and-click interfaces designed for fixed planar coordinate systems, and con-
trolled via mouse etc. will not be adequate. Rather, input will depend on
multi-touch gestures and 3D-surface deformations that are performed directly

on and with the display surface itself.

2. Function Equals Form: Where the display can take on any shape.
Today planar, rectangular displays, such as LCD panels, will eventually be-
come secondary when any object, no matter how large, complex, dynamic
or flexible will be wrapped with high resolution, full-color, interactive graph-
ics. Therefore, designers need to tightly coordinate the physical shape of the
display with the functionality that its graphics afford.

3. Form Follows Flow: Where displays can change their shape.
When the display, or entire device, is able to dynamically reconfigure, move,
or transform itself to reflect data in physical shapes, the 3D physical shape it-
self will be a form of display, and its kinetic motion will become an important

variable in future interactions.

In this chapter we introduce a few works on Organic User Interface where the

display has variable mechanical properties, shape changing ability, or both.
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2.1 Display with Variable Mechanical Properties

Here we introduce few projects that investigate computationally controlled ma-

terial properties, such as viscosity, magnetical attraction-repellence, and stiffness.

2.1.1 Controllable Viscosity

Viscosity is resistance of a fluid to a change in shape, or movement of neighbour-

ing portions relative to one another.

MudPad

Figure 2.1: Mudpad system

MudPad [14], is a system that capable of localized active haptic feedback on
multi-touch surfaces. An array of electromagnets locally actuates a tablet-sized
overlay containing magnetorheological (MR) fluid. MR fluid is a smart fluid whose
viscosity can be altered linearly by applying a magnetic field of variable strength.
Viscosity levels range from fluid like water to viscous like peanut butter.

The reaction time of the fluid is fast enough for real time feedback ranging
from static levels of surface softness to a broad set of dynamically changeable
textures. As each area can be addressed individually, the entire visual interface
can be enriched with a multi-touch haptic layer that conveys semantic information

as the appropriate counterpart to multi-touch input. The usage scenarios of this
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surfaces including virtual keyboard, music squencer, and secure touchpad input.

HapticCanvas

Finger movement

Figure 2.2: HapticCanvas system

Other research that focuses on providing dynamic viscosity control is
HapticCanvas[40]. HapticCanvas utilizes dilatant fluid under the water to pro-
vide the users fingers with variable fluid resistant. Dilatant fluid is slurry made
from water and starch which is the change in the external force influence the state
from liquid-like to solid-like properties. If the user put their hand into the dila-
tant fluid, the device(sucking tube with the filter) equipped on the users fingertips

vacuum up the water, changing the viscosity state of the dilatant fluid.

2.1.2 Controllable Magnetic Attraction and Repellence

FingerFlux

FingerFlux[38] is an output technique to generate near-surface haptic feedback
on interactive tabletops. This system combines electromagnetic actuation with per-
manent magnets attached to the user hand. FingerFlux lets users feel the interface
before touching, and can create both attracting and repelling forces. This en-
ables applications such as reducing drifting, adding physical constraints to virtual

controls, and guiding the user without visual output. The users can feel vibration
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Figure 2.3: FingerFlux system

patterns up to 35 mm above the table, and that FingerFlux can significantly reduce

drifting when operating on-screen buttons without looking.

Magnetosphere

Figure 2.4: Magnetosphere system

Magnetosphere[16] is an interactive work of art that provides novel tactile sen-
sations by changing the display texture. It utilizes small ( 1.2mm diameter) steel
balls as a projection screen and array of the electromagnetic magnets placed under
the table. The texture is changed by controlling magnetic attraction between elec-

tromagnets and steel balls partially. The aim of this development is to experiment
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with the depiction of video images together with actual tactile sensations.

2.1.3 Controllable Stiffness

Unive Grlppe

Figure 2.5: Upper: Universal Robot Gripper, Bottom: JSEL system

Stiffness control using vacuum jamming technique (ability to switch granular
material state between soft and rigid) has been applied in various areas due to the
capability of changing/fixing shape and rigidity controlled by only air pressure.
E.g. for packing of coffee, pressure gypsum for firefighters or a fingerless robot arm
that can grasp various objects without requiring complex mechanical structure[1],

and as movement actuation of soft flexible ball shaped robot[34].
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ClaytricSurface

Our research earlier works by Sato et. al[20] have presented the capability jam-
ming technique for interactive surfaces and demonstrating prototypes at several
international conferences. They developed an interactive interface for entertain-
ment use, allowing the user to experience the possibilities of variable stiffness dis-
play. They first proposed the basic concept and implemented a prototype system
at ACM ITS2011 and ACM SIGGRAPH2012 with a shape modeling application.

Jamming User Interface

(a) Tunable Clay (b) Transparent Haptic Lens

_ > 5 xk
(c) Behind-the-Tablet Jamming (d) ShapePhone

Figure 2.6: Jamming User Interface system

Follmer et al.[4] discussed potential applications of the adopted jamming tech-
nique in the HCI field and presented different types of application examples in-

cluding future mobile devices, physical input devices or interactive surfaces. They
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proposed, in particular, the use of capacitive shape sensing and rear-projection

techniques.

2.2 Display with Controllable Geometry

Shape displays are haptic interfaces with the ability to create and deform physical
shapes in real time. The idea of computationally controlled matter to create an
immersive visual and haptic sensation was first described by Sutherland in 1965 as
the ultimate display[35]. Most shape displays are not only output devices, but also
allow user input. The approach of interacting with computers through physical
embodiments of information is similar to the concept of Tangible User Interfaces

(TUI) introduced by Ishii et al.[12].

2.2.1 Pin Array

Pin array display has been a popular method to generate 2.5D geometry on
shaped display. The surface display created by Hirota and Hirose in 1993 [9]
consists of a 4 x 4 linear actuator array. The actuators form a physical surface
from the depth buffer of arbitrary 3D geometry.

Iwata et al. developed FEELEX in 1995 to overcome short-comings they identi-
fied in their previously constructed haptic interfaces tethered to the human body
[13]. FEELEX consists of a malleable surface deformed by an array of 6 x 6 linear
actuators. A top-down projector is used to create visual feedback on the surface.
Through embedded pressure sensors the system reacts to the users push. An ex-
ample application renders a moving creature reacting to touch input of a single
user. A second version, FEELEX 2 decreases the spacing between the actuators
for use as a medical palpation simulation device. While FEELEX displays are able
to sense user input through touch, they do not allow additional input techniques.

Digital Clay is a research initiative at Georgia Tech investigating various shape

rendering devices and their application as human computer interfaces. One of the
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Name Actuation Number of Display size | Maximum
method actuator height

FEELEX Motor driven 6x6 240 x 240 mm | 8 cm
screws

FEELEX 2 Piston crank 23 50 x 50 mm 1.8 cm
mechanism

Lumen Nitinol actuator | 13 x 13 84 x 84 mm 6 mm
(SMA)

Digital Clay Hydraulic 5x5 25 x 25 mm 48 mm

Surface Slider crank 4 x4 120 x 120 mm | 5cm

display mechanism

XenoVision Electric 7000 91 x 122 cm 15 cm

Mark III

Relief Belt actuation |12 x 12 45 x 45 cm 13 cm

inForm motorized slide | 30 x 30 381 x 381 mm | 100 mm
potentiometer

Table 2.1: Comparison of pin array display

proposed mechanisms is a 2.5D shape display [29], with applications proposed for
3D modeling by sculpting with fingers. A functional prototype with a 5 x 5 array
of hydraulically driven actuators was developed. The proposed interactions are not
evaluated on an actual 2.5D shape display, as they would require resolution and
sensing capabilities that have not yet been achieved.

Lumen by Poupyrev et al. [28] is a shape rendering apparatus driven by a 13 x 13
nitinol actuator array, similar to the apparatus of Pop-Up [23] . Graphic overlay
is integrated into the device by lighting each actuated pin with a monochrome
LED. Applications for Lumen include animated shapes, reconfigurable tangible
user interface elements, and connected shapes for remote presence. The input
mode is similar to that of a touch screen with tactile feedback, thus it does not
explore additional interactions, beyond direct touch.

The XenoVision Mark III Dynamic Sand Table trades out- put speed for a
simplified actuation mechanism, which enables a high resolution through 7000

actuators [26] . As rendering a complete shape on the current system takes more
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Photonastic Hyposurface

Figure 2.7: Pin Array display
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than 30 seconds, users cannot interact with the physical shape in real-time.

Gemotion Screen by Niiyama and Kawaguchi [24] utilizes pneumatically actuated
flexible fabric screens with front projected graphics to display organic art.

Glowbits[10] by Daniel Hirschmann is a 2D array of rods with attached LEDs;
the motorized rods can move up and down and LEDs can change their colors.

Photonastic Surface by Oguchi et al. proposes a novel mechanism to address
individual actuators of 2.5D shape displays using projected light [25] .

Relief, developed by Leithinger and Ishii [17] proposes an actuator apparatus
based on commercial hardware and open-source components for low cost and scal-
ability.

InForm, by Folmer et al. explore the utilization of shape displays in three dif-
ferent ways to mediate interaction: to facilitate by providing dynamic physical
affordances through shape change, to restrict by guiding users with dynamic phys-
ical constraints, and to manipulate by actuating physical objects[5].

On a significantly larger scale Aegis Hyposurface[22] is a wall-sized structure
constructed out of interconnected metallic plates actuated by an array of pneu-
matic pistons. The surface of the wall can dynamically change its shape, either
autonomously or in response to external events such as human movement captured
by a camera. Images can be projected onto the surface. The Aegis Hyposurface
is an example of an actuated device on the scale of a building. Direct haptic

interaction with such devices is not possible and they are difficult to use at home.

2.2.2 Magnet

ForceForm

ForceForm [36] by Jessica et. al use an array of electromagnets and a deformable
membrane with permanent magnets attached to produce a deformable interactive
surface. ForceForm supports user input by physically deforming the surface ac-
cording to the users touch and can visualize data gathered from other sources as a

deformed plane. They explore this interface for usage scenarios such as: on screen
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Figure 2.8: HapticCanvas System

keyboard and terrain modeling. They also outlined the performance of the system,
including original method to increase electromagnets power without extra energy

consumption.

2.2.3 Ferromagnetic Liquid

Another example of shape display is the art installation Protrude, Flow by Ko-
dama and Takeno [15] . In that installation ferromagnetic liquid was actuated by
an array of magnets to dynamically create a variety of beautiful, organic-looking
shapes (Figure 2.9 left). Similarly, the Snoil device by Martin Frey|[6] , uses an ar-
ray of magnets located under the magnetic fluid to create arbitrary low-resolution
bitmap images(Figure 2.9 left). Although both devices are very interesting and
impressive, direct interaction with them is difficult: we cannot expect people to

touch the magnetic fluid with their hands.
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Figure 2.9: Left: Protrude Flow, Right: Snail

2.2.4 Pneumatic Actuator

Figure 2.10: Dynamic Changeable Button system

Harrison et. al. [8] developed button overlays that consisted of inflatable but-
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tons, with rear-projection multi-touch display. This device allow display surface
buttons that can be positively or negatively inflated for tactile feedback. However,
the buttons cannot be altered once the overlay has been made. Additionally, each

button requires a pneumatic control to be able to operate independently.

2.2.5 Vacuum Jamming Method

Figure 2.11: Left: HoverMesh system, Right: Haptic Jamming system

HoverMesh[21] implements a jamming-like stiffness control in an attempt to
achieve a self-deforming tangible user interface. It consists of an array of mesh
that has selectively controlled stiffness. The mesh can transform into different
shapes through pressure controlled air chambers and the surface mesh solidifies
given the state of the air chambers. This research suggested a new techniques for
jamming-inspired surface mesh deformation.

Haptic Jamming implements both shape deformation and variable stiffness prop-
erties for a device using a combination of particle jamming methods with pneu-
matic actuation[33]. Similar to HoverMesh, the shape deformation is achieved by
controlling the pressure of the air chamber and pneumatic actuators inside the
display to solidify each mesh respectively. They also conducted an evaluation of

the obtainable geometry shapes with this method.
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2.3 Summary

Organic User Interfaces (OUls) embrace the advances of new technology and
materials to enable deformable and actuated interfaces of arbitrary shapes. Ma-
jor enabling technologies for such interfaces have included advances in sensing,
display technology[27] and mechanical actuation[13], but few projects investigate

computationally controlled material properties, such as stiffness.

Recently, the potential of jamming to control material stiffness has been explored
in various engineering fields such as robotic [1][34], deformable Interface[4] and
shaped display [21][33]. However, most of these work only utilized the jamming
to instantly stiffening granular material without exploring the jamming ability to
exhibit a various state of softness. We, on the other hand, explored the possibility of
modeling tools with capability to change the softness by utilizing vacuum jamming

method.

Lot of research has implemented actuated pin array structure to allow shape
deformation. These research, however, still have a lot of limitation such as shape
resolution and overhanged shape expression. In this research, we introduce a parti-
cles based deformable display, allows for detailed shape deformation while allowing
easy massive deformation and shape fixing by changing display softness respec-
tively. In addition, we also introduce a new type of shape actuation method that

has high compatibility with vacuum jamming method.

HoverMesh and Hapting Jamming also introduced a combination of vacuum
jamming with mechanical actuation (pneumatic and cylinder piston) to allow both
shape deformation and stiffness control. These researches, however, still have some
limitation such as: complex system, resolution degradation, and compatibility with
vacuum jamming. In this research, we developed a particles volume change actu-
ation using pneumatic conveying method. This technique allow for both stiffness
control and shape actuation with one closed simple system and ability to maintain

the shape while changing the softness.
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2.4 Research Positioning

We define our contribution in this research as follow:

1. Implementation of variable stiffness display with a high range and detailed

softness variation using vacuum jamming technique.
2. Evaluation of pressure vs stiffness relation.

3. Implementation of depth camera based touch detection, that allow dynamic

surface deformation.

4. Evaluation of depth camera based touch detection on flat-rigid, flat-soft,

convex and concave display.

5. Development of modeling application that allow stiffness change correspond-

ing the modeling work.

6. Proposal of new display shape actuation that allow both volume change using

pneumatic conveying method, as well as stiffness control.

7. Design of array actuator system allows for complex shape deformation and

low-cost scalable control system.
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Chapter 3

Stifiness Control Propossal

With deformable displays, surface stiffness is a significant parameter to be con-
sidered. For example, soft surface is deformable and have a high flexibility. On the
other hand, rigid surface is stiff and resistant to deformation from external forces
such as gravity, or direct user touch. Furthermore malleable surface such as clay
has a reversible shape deformation and preserve the shape against weak external
force (gravity).

Though surface stiffness has a great influence to the possible interaction and
shape representation of deformable surface, however, until recent years this stiffness
parameter has been regarded as a material-dependent, static parameter. In this

research, we focused on the jamming techniques[19] to control the surface stiffness.

3.1 Stiffness control theory

Jamming is the mechanism by which particulate material can transition between
a liquid-like and a solid-like state. The most commonly experienced form of jam-
ming can be achieved by raising the density of granular material through confining
and reduce the container volume. However, in systems comprised of more micro-
scopic constituents, such as colloids or molecular liquids, temperature is another
relevant control parameter and jamming coincides with the temperature-dependent
glass transition. Furthermore, jamming and unjamming can be driven by applied
stresses, such as shear. The phase diagram introduced by Nagel and Liu (Figure

3.1)[19] shows how jamming in its most general form is controlled by three key
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parameters: the degree of geometrical confinement (given by the particle packing

density), the temperature, and the applied stress.

Temperature

/Jammed
grains etc.

Loose grains,

bubbles, droplets etc.

1/Density

Figure 3.1: Possible phase diagram for jamming particles

In this research, the focus will be on jamming occurring due to a pressure dif-
ferential or can be called vacuum jamming[34]. Vacuum jamming is commonly
experienced in products such as vacuum packed coffee which is shipped in a stiff
(solid-like) brick(Figure 3.2). When this brick is punctured, releasing the confin-
ing vacuum, the coffee particles behave liquid-like. Though jamming itself can do
no net external work on the environment to enable mobility, it can be used to
modulate the work performed by another actuator.

For instance, consider the simple case of confined small light particles such as
sand inside a flexible container. At atmospheric pressure, it shows a smooth liquid-
like properties due to the particles flow freely inside the container (figure3.3 left)
. However, if the air between the particles is reduced (decompressed). Pressure
different with ambient air apply stress into the container, condensing the partincles

density and raising the frictional forces between the particle grain. At this state,
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Figure 3.2: Coffe vacuum pack

the surface show a clay-like mellaeble property (figure3.3 midlle ). Finally, when
the pressure decreased any further, the particle density will excess the material
thresshold, resulting the particles interlocked as one rigid object(figure3.3 right).
At this state, the surface exhibit a stiff properties maintain the shape againts
external force. The surface can then be unjammed by increasing the internal

pressure, releasing the particles from external stress.

Clayey State (Deformable)

Vacuum Pump Vacuum Pump Vacuum Pump

Figure 3.3: Vacuum jamming based stiffness control

3.2 particle material selection

Basically, all granular material exhibits the phenomenon of vacuum jamming.
However, the strength of the effect can vary based on the size, shape, and compress-
ibility of the particles. Fig. 3.4 shows the effective flexural modulus vs. vacuum
level for several commonly available particulate materials[34]. ( Flexural modulus

is the flexural strength of a material to resist deformation under load). This figure
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show us how the flexural modulus increase along with the vacuum level. This figure
also show that the change in flexural modulus is different depent on the particle

material, size, shape, etc.

A()Effective Flexural Modulus vs Vacuum Level

<
ol
=S
n
=
=
)
o)
=
=3
~
=
"
=
~
)
>
:‘:1
3
&®=
€3

ot
T
|

4, 4

Salt
0

N

—_

5 10 15 20
Vacuum Level (in. Hg)

=

Figure 3.4: Effective modulus vs Vacuum Level for various granular material

| Material | Average Diameter | Shape |
Large Glass Spheres’ 1.9mm spherical
Fine Glass Spheres’ 100pm spherical
Aluminum Oxide? 100pm rough and angular
Table Salt> 0.3mm cubic
Ground Corn Cob* 0.8mm rough and angular

Table 3.1: Granular materials physical characteristics

Overall, salt particle has the biggest flexural modulus change (due to the small
size and cubical shape) and the 1.9mm glass sphere has the lowest change (due to
the big size and spherical shape). However, maximum flexural modulus is not the
only variable of interest in designing a surface with controllable softness.

Also Important factor to determine the expresiveness and usability of the surface
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interest is how liquid-like or how smooth the particle flow in its unjammed state.
We found this characteristic of granural material is expressed in the angle of repose
(angle of repose is the maximum angle to the horizontal at which granural particles
will remain without sliding). Table 3.2 show the average angle of repose for the five
materials that were measured in flexural modulus[34]. From this table, in contrast
with the flexural modulus result, the 1.9mm glass spheres has the most liquid-like
properties(21.4°). Meanwhile, the ground corn cob and table salt is the least in

term of liquid-like properties.

| Material | Angle of Repose(°) |
1.9mm Glass Spheres 21.4
100pm Glass Spheres 26.6
Aluminum Oxide 35.9
Table Salt 37
Ground Corn Cob 40

Table 3.2: Angle of Repose Table

By comparing both the flexural modulus and Angle of Repose of several granular

materials, we can conclude that particle choice is an important factor to determine

1. The expressiveness of the shape
Smaller particles have bigger flexural modulus change, making it able to
exhibit a wide range of stiffness level. One of our display requirement is the
ability to be hardened high enough to exhibit rigid object, therefore a small

particle is better.

2. The usability of display
Smoother, rounder, and lighter particles have greater angle of repose value,
indicating the capability to exhibit a liquid-like softness. One of our research

requirement is an easy to use, therefore it required to be as soft as possible.

3. Application
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One of our research objective is to create a modeling application with softness

change capability.

Considering the above factor, in this research we selected 1mm diameter
polysteryne particles as particles material, because of it’s light-weight, smooth
properties, round shape and small size. One of our consideration is, this

polysteryne particles materials have Angle of Repose of 21.4° [18].

3.3 Pressure vs softness experiment

In this study, we conducted an experiment to investigate the relationship be-
tween pressure inside the display and the change surface softness when using 1mm
polystyrene beads as particle material.

In this experiment, pressure was changed gradually from vacuum (maximum
vacuum reached was -18kPa) to atmospheric pressure levels. At each step, constant
force that simulates touch contact of user finger is applied into surface and the
displacement is measured. (This displacement value is parameter that represent

the softness state of the surface at each vacuum level).

Finger
Shaped Tip

Figure 3.5: Pressure vs softness ecperiment setup

For measurement, we used an oval shaped acrylic plate and fixed it to the end
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of a single dimension pressure sensor rod that is then pressed into the display. The
plate size was decided by measuring the index fingers of 10 university students.
For the pressing force, we considered 2 types of pressing methods: light touch and
hard press. These pressing force were also decided with user study by measuring
the pressing force of 10 univertisty student when asked to touch force gauge lightly
as also to press it hardly. Based on this user study, the average force of light touch

is 1.5kgm/s?, while the hard press is 4.5kgm/s?. Figure3.6 show the result of these

measurement.
30 6
25 5 T
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Width Length Light Touch Hard Press
Finger size measurement Pressing Force measurement

Figure 3.6: Finger size measurement results

Each weight was added as the force to weigh down the rod for 5 seconds, and
displacement of the rod was taken for each measurement. The display pressure
was decompressed in steps of 0.12kPa from -18kPa to OkPa. Figure 2 shows the
results of the experiment.

The following observations can be seen from the results. The display becomes
harder as the internal pressure decreases, however a shift of about 2-5 mm was
found to be always occur even when the pressure is at maximum pressure (limited
by vacuum pump: - 18kPa). It could be considered that the factor influencing the
shift was due to the soft characteristics of particles and surface fabric material.
These characteristics show us the limitation of our system softness: when the
pressure falls below a certain value, the display will not become any harder. To

improve this limitation, further consideration of using alternative materials for the
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Figure 3.7: Display Displacement vs Internal Pressure graph

internal filling (particles) as well as the surface material should be made.

Also, the transition change is significantly smaller when the display pressure is
below -2kPa in the case of a weak press, or below -4kPa in case of strong press. To
achieve the plateau point, a vacuum level of -4kPa is suggested, which can easily
be achieved by an inexpensive vacuum pump ( 10USD). This suggests that it is
inexpensive to prevent substantial shape changing due to finger pressure as the
vacuum demand is not great (-4kPa is ideal).

Based on these obeservation, we can conclude the polystyrene particles selected

for our display has caractheristics as follow:

e Resistance change to hard hand press load varied from 32mm to 4mm in

surface displacement.

e Resistance change to soft finger touch load varied from 19mm to 2mm in

surface displacement.
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e Controllable surface displacement change with minimum resolution of

4.55mm for hard press load.

e Controllable surface displacement change with minimum resolution of 1.9mm

for soft touch load.
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Chapter 4

Implementation of Display with
Controllable Softness

We identify the requirements of our system as follows:

1. The surface is able to present the gradual dynamic translation of stiffness

properties from soft to hard and vice versa.

2. The user can use the surface as a traditional planar surface as also as a

2.5-dimensional non-planar surface.

3. The user is able to change the surface shape using direct user interaction

(hand interaction) and fix this deformed shape on the surface.

In order to achieve a display that meets these requirements, we developed prototype
system called ” ClaytricSurface”, an interactive display with controllable stiffness

properties. Here we describe the implementation of our system.
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4.1 Hardware configuration

Figure 6.6 describes the hardware configuration of our prototype system. This

system consists of: Display unit, Pressure control unit, Camera-projector unit.

Projector
& Depth Camera

Particle Table

Pressure
Sensor

SW Micro- —
SW controller SwW PC

Figure 4.1: Hardware Configuration

4.1.1 Display unit

The display unit is composed of 655mm x 505mm x 35mm box frame made
of wood, filled with 1mm expanded polystyrene particle. It is then covered and
sealed with non-breathable spandex material. The spandex allows for elasticity in
the vertical and horizontal directions. Additional rubber material is attached to the
back of the fabric to further increase the airtightness. The display is then installed

with three nozzles for compression, decompression and connection to sensors.
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Figure 4.2: Configuration in appearance

4.1.2 Pressure controller unit

The Pressure controller unit is generally consist of 4 parts.

e Vacuum pump : vacuum source to decompress the display.
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We use Medo VP0625 a linear motor piston pump that has pump speed of

40L/min and maximum vacuum level attainment of -33.3kPa.

e Solenoid valve : to control the pressure.
We use CKD 3PB2 3 ports solenoid valve that has maximum vacuum dura-
bility to -100kPa. This solenoid valve working voltage is DC 24V, controlled

with 5V relay circuit connected into micro controller.

e Pressure sensor: to monitor the display internal pressure.
We use Fujikura XFPN-03PGVR pneumatic pressure sensor that can mea-

sure relative pressure from atmospheric (0kPa) up to -24.5kPa.

e Electronic vacuum regulator: to control the vacuum speed.
We use CKD EV2100V that control range from atmospheric (OkPa) up to
-101.3kPa.

e Micro Controller: to control and connect the pressure controller unit into the
PC.
We use Arduino Uno that has A/D conversion resolution of 10 bit and clock-

speed of 16MHz.

Each of the pressure controller are linked with a 4mm inner-diameter tube.

Figure 4.3 our pressure controller unit in appearance.

4.1.3 Projector and camera

As graphical output, we used a projector(Epson EMP-1715) that has resolution
of 1024x680 pixels mounted at about 1.5m above the display. Also for touch
detection purpose, we use Microsoft Kinect, a light coding based depth-sensing
camera that has resolution of 480 x 640 pixels and frame rate of 30fps. The light
coding technology is based on a PrimeSense design, projects a fixed pattern of
infrared light. An offset infrared camera is used to calculate the precise manner in

which this pattern is distorted as a function of the depth of the nearest physical
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Figure 4.3: Display Displacement vs Internal Pressure

surface. Because the depth calculations are based on triangulating features in
the image, depth precision decreases as the distance from the camera to subject
increases. In this case we mounted the camera at 0.7m away above the display,
based on the measurement by Smisek et. al[32], the depth resolution is about

1.3mm.

4.2 Stiffness control system

In this system, the display pressure can be changed and controlled by choos-
ing available pressure settings offered by the system. In this prototype system,
the pressure setting available are ranging from 0kPa to -18kPa, with interval of
0.027kPa. The pressure set are then sustained and adjusted using additional pres-

sure control measures.

4.2.1 Ideal configuration control system

Assuming that the system in perfectly airtight, the set up pressure is attained

by the adjustment of air pressure through: the increase of pressure via the opening
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of a solenoid valve connecting to ambient air (compression), and the decrease of
pressure via a vacuum pump (decompression). Figure 4.4 show the flow chart of

the pressure control algorithm.

Input Command
Pressure

Pressure Sensor
Measurement

Sensor Pressure Sensor Pressure

= >

Command pressure

Close all Valve,
Stop Vacuum Pump

Command pressure

Open Vacuum Valve,
Close External Valve,
Start Vacuum Pump

Close Vacuum Valve,
Open External Valve,
Stop Vacuum Pump

Update Pressure
Sensor Measurement

Figure 4.4: Pressure control flow chart

First, after the setting pressure is inputted, the system then compare it the
pressure monitored from the sensor. If the sensor pressure is higher than the
setting pressure, the system will switch on the vacuum pump as well open the
solenoid valve connecting the pump into the display, starting decompression of
the display. Meanwhile, if the sensor pressure is lower than the setting pressure,
the system will open the solenoid valve connecting the display into the ambient
air, letting the air flow into the display due to pressure difference. Otherwise, if

the sensor pressure is matching the setting pressure, the display pressure will be
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kept by closing all solenoid valves connected into the display. Figure 4.5 show, the

actual display stiffness change.

- A

Figure 4.5: Left: display at soft state (OkPa), right: display at rigid state (-18kPa)

4.2.2 Air leakage countermeasure

However, in practice, the display experiences an amount of air leakage due to the
un-airtightness of the configuration, eg: small hole in spandex material, untight
connection between pressure controllers unit, etc. Therefore the pressure can not
be kept even when all of the solenoid being closed. This air leakage also cause
the maximum vacuum level can be attained by the system drop into -18kPa (the
capability of the vacuum pump is up to -33kPa). This air leakage is then resulting
unstable pressure change when the system trying to keep the setting pressure.
Figure 4.6 show how the monitored air pressure change when the system trying to
maintain the pressure at -36kPa.

Figure 4.6 show when valve is closed, the pressure start to increase due to air
leakage, then the system will start to decompress again, making a wave-like change
in pressure. This repetition of compressing and decompressing is also resulting a
noisy system where the solenoid valve and vacuum pump actuate and unactuated

repetitively.



4.2 Stiffness control system 36

Air leakage
d ) 9,

5.400 pa

/ /
5.373

o
w
5
o

5.319

5.292 }

o
)
=3
@

Pressure (-KPa)

0 20 40 60 80 100 120
Time (ms)

Figure 4.6: Pressure change due to air leakage

To counter measure this shortcoming of both noisy and unstable system, we
also implemented an electronic vacuum regulator based pressure control into the
system. Using this electronic vacuum regulator, we were able to kept the pressure
stabile and stop the solenoid from repetitive actuation. In addition using control
algorithm as shown in figure 4.7, we were also able to control the speed of pressure

decompression as also pressure compression.

. + Display

i Pressure

Y 5 Electric ressur
Regulator

Sensor Value

Command
Pressure

Figure 4.7: Electronic vacuum regulator control

Changing Kp with positive value will make a faster compression or decompres-

sion. In contrast, changing the Kp with negative value, resulting in a slower com-

pression or decompression.
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4.3 Depth camera based Input System

As one of our system requirement is a direct user interaction (hand input). In this
research, we implemented a multi-touch detection using a depth camera mounted
1m above the surface. We build our touch detection system based on technique
introduced by Wilson et. al[39]. We chose this depth camera based input technique

due to the following reason:

1. Simple and easy to implement.

We do not need to fabricated any sensor into display surface.

2. Applicable for non-flat surface.
One of our surface objective is to allow hand interaction in both flat and

shaped state.

3. Multipurpose.
Other than touch detection, the depth data can also be used for other use

and application, such as 3D shape scan, and object detection.

In practice, though wilson et. al method allow a multi-touch detection on non-
flat surface, it does not cover a dynamical change in surface shape, which is a very
important factor of our display surface. Therefore, in this implementation we also
propose a new method that allow touch detection on dynamically changing surface.

Figure show the flow chart of our touch detection algorithm.
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Figure 4.8: Touch detection flow
4.3.1 Touch detection based on depth data

One of this touch detection limitation, is that this method can not detect the real

finger contact with the display. Instead, this method is using an approximation of
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the touch point based on the depth of finger surface (as seen by camera) compared

to the touch surface. Figure 4.9 show how the touch is defined in this method.

surface

Figure 4.9: Finger touch segmentation

Basically, the touch identified when the finger surface measured is closer than
dsur face, but further than d,,;, threshold. However, to eliminate misdetection due
to depth error measurement, a second threshold d,,,, is also used. Therefore the

relation is defined as:

dmaz > dz,y > dmin (41)

The approach outlined above relies on good estimates of the distance to the sur-
face at every pixel in the image. The value of d,,,, should be as great as possible
without miss-classifying too many non-touch pixels. The value can be chosen to
match the known distanced dgy; fece to the surface, with some margin to accommo-
date any noise in the depth image values. Setting this value too loosely risks cutting
the tips of fingers off, which will cause an undesirable shift in contact position in
later stages of processing. Based on few trial, for our current implementation the

the best dyq, value is 5mm (bigger than Kinect depth resolution : 1.3mm).

Setting d,ui, is less straightforward: too low of a value (too near) will cause
contacts to be generated well before there is an actual touch. Too great of a value
(too far) may make the resulting image of classified pixels difficult to group into
distinct contacts. Setting d,.;, too low or too high will cause a shift in contact

position.
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4.3.2 Touch detection for non-flat surface

To be able to detect touch input on non flat surface, the system need to first
create a surface model when the surface is empty. The touch at current frame is
detected then, by calculating the d,,q, and d,,;, relation (6.1) at each pixels of the
surface. Figure 4.10 show how the touch detected on our shaped surface.

The background image is initialized by taking depth image when the surface is
empty (fig.4.10 left). The user hand area (fig.4.10 upper right) can be detected by
subtracting current depth image (fig.4.10 center) with the background image. Next,
touch area is identified by binarizes regions only within the range of 5mm(d,,az)
to 15mm(d,,;,) from the surface 4.10 bottom right). Finally, the touch point

determined by calculating the centeroid of touch area that has some certain size.

This method allow for multi touch as long as the finger not obsecured (fig.4.11).

Figure 4.10: Left: Background image, Center: Finger touch, Upper right: Hand
area, Bottom right: Touch point
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Figure 4.11: Multi finger touch detection

4.3.3 Touch detection for shape changing surface

However, because our surface can be soft and deformable the surface shape and
thus the background depth data can actively change due to direct user input.
Therefore the approach explained above alone will not sufficient to implement
touch input on our deformable surface. Figure 4.12 show how the shape change

affected the touch detection.

To overcome this problem, we also developed a method to adaptively updating
the background image at each frame. When the surface is empty, the system will
automatically renew the background image at each frame. However, when user is
manipulating the surface, their arm will obscured part of the background surface.
Therefore, the user arms need to be distinquished from the background surface
first, then the area excluding user arm can be updated as new background image.
Figure 4.13 and show how the background is updated while user manipulating the

surface.
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Figure 4.12: Shape deformation problem

First, the user arm is detected as an areas that not fully enclosed by background
values and seems to extends in from outside the display into the inner boundaries of
the display (fig. 4.13 upper left). This approach was already described by Harrison
et al. in [7]. Then an exclude mask created using the detected hand area(fig.
4.13 upper right). Next, we exclude this hand area from the current frame depth
image(fig. 4.13bottom left). Finally, the latest background is updated by masking
previous background with the current frame with no hand area. The sequence of

this updating process can be defined as following:

[background = (Idepthimage - [handmask ) + (Ibackgroundf 1 &[handmask ) (4 . 2)

Figure 4.13 show how our proposed method allow an adaptive background up-

date despite the hand occlusion at every frame.
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Figure 4.14: Display deformation with background update
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4.4 Pen Input Detection

Other than direct touch input, we also consider using a tool such as pen for
the display input interaction. For this purpose, we also implemented a pen tip
detection using pen tablet placed under the display. For the detection, we use
an inductive based tablet device(Wacom Intuos4) that can sense a stylus pen coil
up to 2 cm above the device. Thus, we also build a specialized particle display
with thickness of lem and placed the stylus tablet under the display (Figure 4.15).
Using this configuration, the device can detect the pen touch location through the

display even when the surface is not flat.

Projector ’;

Pen Pen

Reading Height
(10mm)

/I\ Pen Tablet

Regurator acuum
Circuit ump PC

Figure 4.15: Pen input hardware configuration

4.5 Pressure sensor based gesture detection

As described at the softness control section, in this research we use a vacuum
pressure sensor (Fujikura XFPN-03PGVR) as feedback control of the display pres-
sure. However, we found that the monitored pressure value can also be utilized

to detect the user hand manipulation (due to the capability of pressure sensor to
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measure small pressure change up to 0.027kPa). In this case, the softness control
required to be set as keeping at soft pressure state (0 - 1kPa). Here we define 3
types of interaction that can be detected based on the pressure change and the

touch detection output.

4.5.1 Pressing gesture

Contrary to the pulling gesture, when the user depressed display surface, pressure
inside being compressed from the stress. Therefore, we can identify this pressing
gesture as a positive jump in display pressure and touch detection as shown in

figure 4.16.
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Figure 4.16: Pressing gesture detection
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4.5.2 Pulling gesture

When a user pinching and stretching out the surface cloth, pressure inside the
display is decompressed due to the sudden expansion in display volume. Using
this reaction, we can successfully identify the user pulling gesture when the system

detect both this negative pressure jump(fig. 4.17 bottom) and user touch detection
(fig. 4.17 upper right).
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Figure 4.17: Pulling gesture detection

4.5.3 No-force touch gesture

Aside from the fluctuation, the static state in pressure value can also be a useful
information in determining user input operation. In this case, we can we distinguish

when the user softly touch the display without changing the display shape, as the
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Figure 4.18: No-force gesture detection

Although this feature is in an early stage of development, we have identified

several ways this gesture detection could be utilized eg: to detect user deform-

ing works or to control display softness. In addition, the amplitude of pressure

change is directly related to surface displacement distance. Shallower presses or

pulls yield smaller pressure change, while deeper ones produce higher pressure fluc-

tuation (Figure 4.19). The force required to depress the elastic layer increases as

it is stretched (Hookefs law), and so displacement distance (and thus pressure) is

directly related to press force.
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Figure 4.19: Press and pull force change
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Chapter 5

Controllable softness display for
Modeling Tools

In comparison with other interactive surface, we identified our surface has fol-

lowing advantages:

1. Capability to control surface softness with precision.
On the current implementation, we were able to control precise pressure at

unit of 0.0.27kPa and surface displacement at average of 1.28mm.

2. Direct touch input on the surface, regardless of the change in the shape.
We also have evaluate the usability of our touch detection on variable shape

and describe the details on evaluation chapter.

3. Variation in surface elasticity and spring force.
The surface show both a high elasticity(due to surface material) on soft state,

and very low elasticity on stiffer state.

4. Capabilities to imitate a clay-like tactile sense
Due to the jamming stiffness change and the spandex material spring force
properties, at certain pressure level, combination of both of these character-

istics resulting in a viscousness and stickiness feel of a clay.

Considering all the characteristics mentioned above, we developed a 72.5-
dimensional shape modeling tools” as an application to demonstrate the usability

of our surface. This application allows the user to design a 2.5-dimensional shape
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that can be deformed directly by kneading a display surface with both hands. The
shape can then be fixed by changing the stiffness into the rigid state. In addition,
combining with the surface touch detection and graphical projection, it also pos-
sible to draw textures on top of the surface. For the first step, in this research we

build a prototype modeling tools that can be use for entertainment.

5.1 Softness control Interface design

Since the purpose of our application is for entertainment, the user interface is
required to be intuitive and easily understandable. Thus, we proposed a simple
slider and buttons for GUI control. This GUI that can be operated with touch
input directly on display surface. We also included a 4-step tutorial that enables
navigated control for beginners, and gesture based control to help a modeling

operation with both hands.

5.1.1 Slider and Button design

In this system, stiffness level can be manipulated specifically with pressure con-
trol allowing for full range control from soft state (OkPa) up to hardened state
(-18kPa). However considering the softness and pressure relationship as mentioned
at chapter 3, the softness change is not linear to the pressure controlled. Therefore,
to provide user with a smooth continuous softness change, we assigned the slider
at different portion to disparate vacuum level, make it as linear as possible to the
softness change. In this case, we use the relation data of measurement at 4.5 Kg
(hard press). Figure 5.1 show the detailed assignment of the pressure to the slider
portion.

In addition, we also designed 2 supplemental buttons that offer the user direct
stiffness switching including ”Soft Button” (assigned to 0kPa) and ”"Hardened But-
ton” (assigned to -18kPa). Both of this button an slider GUI are projected into

the display surface, and the user can then operate the GUI directly with touch



5.1 Softness control Interface design 51

35

=== 0% ( 0kPa)

Displacement (mm)

—--- 88%(-2.5kPa)

=== 96% (-4.2 kPa)
== 99% (-18 kPa)

Display Pressure (-kPa)

Figure 5.1: Pressure to slider assignment

input. We found that this capability of control the softness directly with touch
input also has a merit in allowing the user to feel the softness change while operat-
ing the GUI. Therefore, the user can choose the suitable softness more intuitively
compared to operating interface that separated from the display eg: mouse and
keyboard. Figure 5.2 show the GUI view that projected into the display, and figure

5.3 show the actual scene when user operating the slider on the display.

5.1.2 Gesture base freehand control

This system’s softness control is operated using a slider or button. However, this
was found inconvenient in the case of a modeling works with both hands due the
user needing to release one hand to operate the UL

Here we developed three different simple gesture based control methods to sup-
port modeling work that do not require button operation. This automatic control
technique is implemented for the modeling application and could be activated or

deactivated freely.

Initial hardening assistance
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Figure 5.2: Projected GUI control

Figure 5.3: GUI operation scene

In modeling, users will first make a rough shape as the base of the model,

to supper this, user will use the soft state of the display and gather the
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Figure 5.4: From left to right: Initial Hardening Assistance, Pull up assistance,

Reset assistance

necessary display material with both hands. However, to fix the base model
they will then need to harden the display. This becomes a problem as users
will need to support the base shape with both hands while operating the UI.
Therefore, we developed a function detect user actions when the display is
soft to automatically harden the display accordingly(5.4(left). The system is
first detects if both user hand are in contact with the display and the display
is in its softest state. If, after 3 seconds, the hands are still in contact with
the display, and there is no fluctuation in monitored air pressure, it is safe
to assume that the user is holding the shape in place and the system will

automatically harden the display to maintain the user-created rough shape(-

15kPa).

Pull up assistance
To create a shape with substantial height or one with overhanging sections,
the surface needs to be pulled up little by little using both hands. However,
higher shapes require higher stiffness levels to maintain the height, which
is a very difficult challenge in this area. Therefore, we added a function to

measure the model height with depth camera. If the user creates a model
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with substantial height and the monitored pressure level is decreased by more
than 0.3kPa ( due to pulling up of particles creating a ’suction’ like effect in
the volume), the system will change stiffness levels according to the model

height

Reset assistance
When users want to reset the display and remove the shape from the surface,
they will need to change the surface softness to soft and flatten the display
with hands. Also, a more efficient way to reset the shape is to shake the
display like sieving with both hands. In this system we add a function to
detect the user hand movement when sieving the display with a accelerometer
sensor built-in the display. The system will automatically change the stiffness
into the softest state (figure5.4(right)). This stiffness change happens only
when acceleration is applied, and the user can adjust the flatness with the

applied strength.

Temporal change
We also introduced a function of stiffness changing with time. In this func-
tion we implement two types of modes. The first being is ” Gradual Surface
Hardening”, and the second "Hardening after Countdown”. This type of
function can simulate a modeling work using real clay (such as curing, or

drying), as well as adding entertainment element into the modeling process.

5.2 Modeling application

Our system is a projection-based display that has deformable surface. The sur-
face stiffness is programmable and can be controlled by the user or by the system
in real time. The user can also interact with the fixed surface not only by ”touch-
ing” or "pushing”, but also by ”pinching” convex shapes that can be molded into
the surface while experiencing dynamically changing tactile sensations. In this

section, we describe two design tools for prototyping or entertainment use as first
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applications of our system.

5.2.1 Modelling works on variable stiffness display

Here we define the correlation of our display for modelling works

The physical behavior of the display surface is a correlation between the elas-
tic force of stretched spandex material and the frictional force of the internal
polystyrene particles under pressure. First, if the display is at atmospheric pres-
sure, the display indicates the soft particles behavior that can be moved smoothly
in the display (figure left). Therefore, users can easily move or gather particles
from the above of the surface cloth with both hands. However, due to the restor-
ing force of the cloth, If the user has made the shape that has height and fine

detail, it causes the collapsing of shape when the user release their hands.

Then, as the pressure gradually reduces the friction force of the particles grad-
ually become stronger. Due to the jamming stiffness change and the spandex
material spring force properties, at certain pressure level, combination of both of
these characteristics resulting in a viscousness and stickiness feel like those of a clay
(figure center). In this state, the frictional force of the particles become stronger
than the restoring force of the cloth, resulting the surface has enough tension to

maintain its shape.

Finally, when the pressure is close to vacuum, the external stress due to the
pressure different is high enough to deform each particle, resulting in closely inter-
locking particle chain, exhibit one rigid object properties(figure right).

However, in the case the shape has a detailed shape or has substantial height

(including overhanged shapes), stronger vacuum is required to maintain the shape.

By considering the above properties, the suitable modeling style of this system
is modeling using graduate softness changes from rough shape to detailed shape.
This is not the same as cut and pasting like with actual clay modeling, but close

to the sculpturing that gradually preparing the material.
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Figure 5.5: Particle display softness change

5.2.2 Modelling works procedure

To demonstrate our system, we developed shape modeling tool focusing on pro-
totyping for entertainment use for our application. Our application enables the
user to make the shape directly by hand rather than complex GUI actions re-
quired by a keyboard mouse in 3D modeling programs. Users are also able to
apply texture by simply touching the shape directly with their fingers, much like
painting a sculpture.

We define, the modeling procedure suitable for our display are as follow:

Rough shape modeling
Firstly, the user performs work to collect the first particle materials to create
a rough shape. This rough shape is also used as a base shape for a more
complex shape. This action will be easy to perform in low hardness state

near the atmospheric pressure.

Detailed shape modeling
This work is to create detailed shape on the rough shape that is modeled
in rough modeling state. In order to maintain the detailed shape on this

system, it is necessary to set a higher hardness than the hardness of rough
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Figure 5.6: Modeling procedure

modeling state.

Fixing the shape
The next step is to then fix and keep the shape to allow for user’s touch. In
this application, we expect that the texture drawing work is performed by
the user after fixing. So it is necessary to harden the surface does not change

even when touched by the user.

Reset the shape
To reset the shape that has been created is an equivalent operation to return
to the original flat state. Note that, this prototype does not have a capability
to make the surface flat automatically. So the system only supports the user
to make a remodel the surface flat using their hands by resetting the display

pressure to atmospheric pressure.

In addition, the created shape can be easily captured and converted to 3D CAD
data using the depth camera (Kinect) mounted for touch detection. However, some

shapes created such as those with overhanged shape, can be not be fully scanned
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due to obstruction by the shape itself. In this case, additional Kinect camera
can be used to capture generate model surface geometry while moving the camera
around the model. In our current implementation, the capturing and converting
functionality was implemented using the Microsoft Kinect SDK ” Kinect Fussion”.

The captured model CAD can then regenerated using 3D printer, showing our

system capability to be used as a fast simple model prototyping purpose.

Figure 5.8: 3D printer output

This modeling application is also an example of a visual and tactile rich enter-
tainment application as the user can perform modeling whilst experiencing various
dynamic tactile feedback as the surface state transitions between soft and hard.
Aside from the unique and artistic expression of our system, the system presents a
simple reset transition, collapsing the shape and removing any traces by resetting

the internal pressure to atmosphere.
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5.2.3 Modeling support tool

Using a pre-prepared mold, a detailed 3D shape can be easily copied and formed.
While in the soft state, user can place the molding tool on the desired location of
the display. By activating the pump that is connected to the tool, the air between
the mold and display surface will be vacuumed and the surface will be pulled into
the mold shape (Figure 5.9). Hardening the display in this state will result in the

mold shape being transferred and maintained on the surface.
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Figure 5.9: Configuration in appearance

Figure 5.10: Configuration in appearance
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5.3 Pen based input application

To supplement our modeling application, we also developed a paint application
using dynamic stiffness control(Figure ). This application has a lcm thin particle
layer installed upon a pen input device(Wacom Intuos4) which can detect pen
input through the particle layer. In this application, the user can set stiffness of
the display using a GUI slider on the display to make three-dimensional texture
on the surface by hand. The user can manipulate tactile sensation felt through the
pen whilst drawing to represent different types of brush. Furthermore, by drawing
at a high input pressure, a pen trajectory is left as a three dimensional path on

the surface. This trajectory can directly sensed by touch which implies possible

applications for users with visual disabilities.

Figure 5.11: Configuration in appearance
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Chapter 6

Particle display shape actuation

Though vacuum jamming is an effective way to control the surface stiffness
properties, the jamming itself can do no external work on the surface material
to enable shape deformation. Therefore, even though the user can fix or change
the surface shape at freewill, the shape itself depend entirely on the user hand
manipulation.

Recently, other researches that also have utilized vacuum jamming method on
deformable interface have demonstrated how the self-actuated surface deformation
is possible by combining it with another actuator e.g.: pressured cell and cylinder

piston as presented by Hovermesh [21] and Haptic Jamming [33](Figure 6.1).
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Figure 6.1: Left: HoverMesh pneumatic actuation, Right: Haptic Jamming piston

actuation

Even though these presented methods have potential to accommodate shape

deformation, they also has following problem:

1. System can become complex and hard to implement.
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Because the shape actuation and stiffness control hardware are systematically

different, the system can become complex and hard to implement.

2. Resolution degradation.
One of the particle jamming superiority is the ability to represent a shape
with high details. However, due to the design requiring surface to be sepa-

rated into mesh structure, the shape expresiveness itself must be sacrificed.

3. Weak compatibility with vacuum jamming
Because the actuators and stiffness control are systematically different, the
control need to be perfectly synchronized e.g.: actuator motion when display

is stiff might damage the display.

4. Softness change vs Surface change
Based on the system design, the surface need to be hardened to change the
shape. Therefore, when display is shaped, the softness can not be changed

other than rigid state.

To overcome this problem, in this research we proposed a new display actuation
method that allow both shape deformation and stiffness control using a pneumatic
conveying particle transport technique called ” LivingClay”. Display geometries can
be changed by transporting an amount of particles between display cells and the
particle tank using a controlled air flows.(This method allow for a more simple and
effective way to change surface shape. This method also have high compatibility

with jamming method because using same line of pneumatic actuation.)
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6.1 Particle transport using pneumatic convey-
ing

Particle transport using pneumatic conveying technique has been a common
method used in the agriculture (flour, sugar), mine and chemical industry. Cur-
rently, there also other techniques such as belt conveyors, screw conveyors, vibrat-
ing conveyors, drag conveyors to carry and transport granular material. However,
compared to other techniques pneumatic conveying has the following 3 basic ad-

vantages [2] :

1. First, pneumatic systems are relatively economical to install and operate

2. Second, pneumatic systems are totally enclosed and if required can operate
entirely without moving parts coming into contact with the conveyed mate-

rial.

3. Third, they are flexible in terms of rerouting and expansion. A pneumatic

system can convey a product at any place a pipe line can run.

However, pneumatic conveying also has some limitation which is the materials
transported required to be lightweight and small. Based on [2] the particles can
be can be used for pneumatic conveying ranging from fine powders to pellets and
bulk densities of 16 to 3200 kg/m?. In this research, we use polystyrene particle
with lmm in diameter and densities of 1000kg/m?.

There are several methods of transporting materials using pneumatic conveying.
In general, they seem to fall into three main categories: dilute phase, dense phase,
and air conveying[2]. In this research, we will focus on dilute phase methods which
is the most common used method of transporting materials.

Dilute phase conveying is the process of pushing or pulling air-suspended mate-
rials from one location to another by maintaining a sufficient airstream velocity(fig.

6.2).This process uses a relatively large amount of air to convey a relatively small
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amount of material and at lower pressures than dense phase systems. The material

is transported at high velocities through the system while being suspended in air.

Figure 6.2: Dilute phase pneumatic conveying

It is often referred to as suspension flow because the particles are held in sus-
pension in the air as they are blown or sucked through the pipeline. To keep
the material in suspension, it is necessary to maintain a minimum conveying air
velocity that, for most materials, is of the order of 2500 to 6000 fpm.

Dilute phase system is characterized by:

e High velocity conveying 3,200 to 8,000 feet per minute

e Operating pressures in range of 5-12 PSIG (positive) or negative pressures of

4- 12 Hg
e High air to solids loading ratios (;, 2.0)

Material velocity In dilute phase conveying, with particles in suspension in the

air, the mechanism of conveying is one of drag force. The velocity of the particles,
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therefore, will be lower than that of the conveying air. It is a difficult and complex
process to measure material velocity, and apart from research purposes, particle
velocity is rarely measured. It is generally only the velocity of the air that is ever

referred to in pneumatic conveying.

e In a horizontal pipeline the velocity of the particles will typically be about
80% of that of the air. This is usually expressed in terms of a slip ratio,
defined in terms of the velocity of the particles divided by the velocity of the

air transporting the particles, and in this case it would be 0.8.

e In vertically upward flow in a pipeline a typical value of the slip ratio will be

about 0.7.

Air Volume vs Velocity Relationship For any given material, there is a minimum
transport velocity required to convey the material, therefore, the airflow rate (vol-
ume) will depend on the size of the pipe. The airflow - velocity relationship is

governed by equation:

v="V/(pxA) (6.1)
where
e V = volumetric air flow rate in ft3/min (cfm)
e p = density of air (lbs/ft3)
e A = conveying pipe area ft2
e v = conveying velocity in ft/min (fpm)

Even though this particle pneumatic conveying method has been applied in
various field of engineering, the adoption of this technique for user interface has

been yet to be explored.
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6.1.1 Time vs volume change

In this research, we use the pneumatic conveying method to transport and con-
trol the volume of particle inside the display. Therefore to allow a smooth and
precise volume control, we conducted an experiment to investigate the consistency
of controlled particle volume while changing the pneumatic actuation time.

In this experiment, we connected 2 jar(jar A and jar B) using a tube with internal
diameter of 10mm. Next, we filled jar A with 1mm polystyrene particles until 80%
of the jar volume. Then, using dilute phase conveying method, air from pneumatic
pump blown into the jar A to jar B and back into the pump. As the air circulated
inside the closed system, particles material also blown and transported from jar A
to jar B. In this experiment we use a pneumatic pump with flow rate of 40L/min,

and the measured pressure inside the system is kept at OkPa. Figure 6.3 show the

configuration of the experiment.

Pneumatic —JJ

Pump

Figure 6.3: Time vs volume change experiment

After the pump activated for 100ms, then we measured the transported particle
weight at jar B using a digital weight scale. After measured weight is recorded,

we put back the particle from jar B into jar A. We repeated the measurement 20
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times and record the weight data. We also changed the activation time in step
of 100ms from 100ms to 500ms, and in step of 200ms from 600ms to 1600ms and
repeated the measurement at each step. The volume change is then calculated
using polystyrene particles density of 32g/mm?. Figure 6.4 shows the results of

the experiment.
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Figure 6.4: Time vs volume change relation

Based on the result, the following observation can be seen.

e The particle volume transported is consistent with average standard devia-

tion of 1.7 cm3.

e The volume is increased in accordance with the in raise in pump actuation

time, close to linear relation.

This result proof that the volume can be controlled specifically by changin the

actuation time respectively.
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6.1.2 Initial volume vs volume change

Based on the observation at the Time vs volume experiment, we also found
that the initial volume at jar A also affect the volume of transported particles.
Therefore, we also conducted an experiment to investigate the relation of initial
volume with the controlled volume change. In this experiment, we use the same
configuration as the time vs volume measurement. However, instead of the pump
actuation time, here we change the initial particle volume relevant to jar volume
(maximum 20g of particle) from 4% up to 100% with step of 2% . Then we
conducted the measurement at 2 fixed pump actuation time (200ms and 500ms)
and record the weight data at each measurement. Figure 6.5 shows the results of

the experiment.
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Figure 6.5: Initial volume vs volume change relation

Based on this result, we conclude that for reliable and stabile volume control,

the initial tank volume need to be kept at about 40% to 80% of the tank.
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6.2 Hardware configuration

Figure 6.6 show the design of our display actuator.

display cell

(% pressure sensor

vacuum pump

)

solenoid valve compressor

solenoid valve

Figure 6.6: System configuration

Our hardware configuration generally consist of 2 unit: display unit and pneu-
matic unit. We also can add projector and camera unit to allow graphical input

and output as we did in ClaytricSurface.

6.2.1 Particle cell

The display unit consists of a hollow layer of flexible cell and a particle tank under
it. The display cell and particle tank are linked with a 10mm inner-diameter tube.
The particle tank is filled with an amount of polystyrene particle up to 80% of its
volume. Using the pneumatic conveying this particle can then be transported into
the display cell vice versa. For the first prototype we created the display cell with
size of 150x 150 mm with maximum height of 50mm. For the particle tank, we
used a cylinder with diameter of 150 mm and height of 180mm. Based on a trial,
we found that the appropriate volume ratio between particle tank and display cell

is respectively 3:1.
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6.2.2 Pneumatic unit

The pneumatic unit consists of:

e Pneumatic vacuum pump.
We use Medo VP0625 a linear motor piston pump that can be used as a source
for both vacuum (negative pressure) and compression (positive pressure).
The pump speed is 40L/min and maximum vacuum level attainment is -

33.3kPa.

e Solenoid valve.
Both the cell and particle tank are connected to a 3 ports solenoid valve able
to select a connection between positive or negative air flow to vacuum pump.

Here we use CKD 3PB2 3 ports solenoid valve.

e Pressure sensor.
We use Fujikura XFPN-03PGVR pneumatic pressure sensor that can mea-

sure relative pressure from atmospheric (0OkPa) up to -24.5kPa.

e Micro Controller.
We use Arduino Uno that has A/D conversion resolution of 10 bit and clock

speed of 16MHz.

Each of the pressure controller are linked with a 4mm inner-diameter tube.
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6.3 Particle volume control

In this research, we use pneumatic conveying method to control the particle
volume inside the display. Generally, the control can be divided into : raising

volume, and shringking volume.

6.3.1 Raising volume

The display volume is raised by transporting an amount of particles from par-
ticles tank into the display cell. First, an air flow from particle tank into display
cell is created by connecting the particle tank with compression line and the dis-
play cell with vacuum line through the operation of solenoid valve. The created
airstream then become a suspension, carries particles through connecting tube into
the upper display cell, raising the particles volume inside display cell (figure 6.7).
Specific surface volume can be controlled by altering the actuation time of the air
flow.

To allow a smooth particles transports, the pressure need to be kept at positive
compressed pressure (0.1 0.5kPa). Therefore, the display cell will be inflated,
creating opening space to be filled with particles. Conversely, if pressure kept at
negative vacuum pressure, the display cell will be sucked, blocking the particles

from entering the cell.

Figure 6.7: Volume raise proccedure
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6.3.2 Shrinking volume
We identify two ways to shrinking the display volume.

1. Create a reversing air flow By creating an air flow from display cell into
particle tank (while keeping a positive air pressure), will allow the particles to
blown back into the tank below, reducing the display volume(figure 6.8left).
In contrast with raising volume control, the particle tank is connected into

compression line while display cell is connected into vacuum line.

2. Sucking particles with vacuum Different from the raising volume control,
the particle inside the display can be sucked deliberately into particle tank
by connecting the tank with vacuum line while sealing the connection into
display cell(figure 6.8right). In this case, the pressure inside is kept at nega-
tive pressure. This method reducing the volume slower than the reverse air

method, but allow for a more specific volume control.

Figure 6.8: Volume shrink proccedure
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6.3.3 Stiffness control

In this system, the particle-filled display softness can also be controlled using
vacuum jamming technique. First, the air connection into particle tank need to be
sealed, next by connecting vacuum line into the display cell, the pressure can be

controlled using the same method as described in ClaytricSurface(figure 6.9).

Figure 6.9: Stiffness control proccedure

6.4 Display actuation state

In this system, the display can be actuated into 3 state: flat surface, convex
surface filled with particles, and convex surface inflated with air. In addition,
when display is filled with particles, the softness also can be controlled using the

vacuum jamming technique.

L

i} it

Figure 6.10: LivingClay display state: Flat, Convex particles filled, Convex
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Flat surface
To create a flat surface, first the display cell required to be emptied and all
the particles is stored inside the particle tank. Then, by applying vacuum
through the display cell connection, the thin flexible surface material will fit

the display base shape and create a flat rigid surface (figure 6.10 left).

Convex air-inflated surface
The convex air-inflated surface can be created by applying compressed air
into the display when display is flat or when the display filled with parti-
cles(figure 6.10 right). In this state, due to the surface flexible material, the
shape is deformable when force applied. However, the shape will turn back
into convex when the deforming force is released. When touched, the surface

has a balloon like bouncy tactual feel.

Convex particles-filled surface
The convex particles-filled surface can be created by conveying an amount
of particles from particles tank into the display cell using the pneumatic
conveying method(figure 6.10 center). Here, because the particle transfer line
is quite small, applied external force into the cell will cause the particle to be
jammed at the tube entrance. Therefore the particles will stay from returning
to the particle tank even when the user manipulating the surface. In addition,
similar to ClaytricSurface, in this state the shape can be deformed by the

user hand and the softness also can be controlled at freewill.
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Figure 6.11: Actual display actuation
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Chapter 7

Interactive surface with control-

lable softness and shape

We identify our vision of display as follow:

1. Surface softness and flexibility can be changed dynamically.
2. Both self-actuated shape change and also deformation by user direct input.
3. High resolution (detailed shape).

4. Low-cost and efficient.

However, with our current technology, it is nearly impossible to realize a display
that fulfill all these requirement. Therefore, we plan to implement some special-
ized display that able to attained some of the requirement to allow a particular
application. Here, we propose the design of interactive surface with controllable

softness and shape change.

7.1 Array actuated display

On previous chapter, we describe how a pneumatic conveying actuation (Liv-
ingClay) can allow controlled volume change. However, the geometry that can be
represented using one actuation is very limited to a convex and flat shape. Here,
we propose an implementation of array arranged LivingClay actuation which is
able to both render and animate 2.5 dimensional shapes and changing the surface

softness.
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7.1.1 System configuration

Figure 7.1 show the configuration of the display system.

Figure 7.1: System outline

In general, the system consist of :

Display cell. The display unit consists of a hollow layer of flexible cell with
multiple particle tanks arranged in matrix linked with 10mm inner-diameter

tube.

Pneumatic control. The display cell is connected to 2 solenoid valve, able to
select a connection between vacuum, compressed air, or ambient air. Each
of the particle tanks also connected to one solenoid valve and another one
before connection to blower, allow for select a connection between vacuum,

compressed air, or sealed.

Figure 7.2 show the configuration of system hardware viewed from side.
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Figure 7.2: Hardware configuration

7.1.2 Display actuation state

In this system, generally the display can be actuated into 3 state: flat empty
surface, convex particles-filled surface, and geometry rendered surface. Depending

on the state, we define the display purpose as:

1. Changeable softness display. When the display is fully filled with particle, the
surface can be used like ClaytricSurface display e.g.: modeling application,

etc.

2. Approximately rendered shape display. Using the LivingClay actuation, a
selected area in the display can be shrink, rendering some low resolution

shape.

3. Traditional flat surface. When the surface is empty of particle, the surface

can be functioned as a normal flat surface.
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In this system, the actuation state is changed in one directional flow, starting
with convex particles-filled surface( figure 7.3 upper), next to shaped surface( figure
7.3 bottom left), then to flat empty surface( figure 7.3 bottom right), and back to

convex ones.

J0000000000]
000000000

1000000000 ¢
)00 0000000 ¢
0000000000
)000000000.¢
0000000000
0000000000
)0 00000000
[0000000000]
)OO 0000000
[0000000000]
)OO 0000000
[0000000000]
)O00000000(
[0000000000]
)O00000000(
[0000000000]
)O00000000(

Softness Changed
Deformable Display

)0000000000]
0000000000

XXX

— — —— "\

| ] [ ] | ] | | | ]
Shape Actuated Traditional Rigid
2.5D Display Flat Display
L I : ﬁa st

Figure 7.3: Display actuation state

7.1.3 Implementation

To demonstrate the usability of our design, we implemented a prototype system
with 2x3 actuator attached. The display size is 160x120mm, maximum height of
35mm, and the surface area for each actuator is 50x50mm. Figure 7.4 show our
prototype display.

For particle tank, we use 160mm length and 50mm diameter PVC pipe with
pressure durability up to 202kPa. For the pneumatic control, we use 11 solenoid

valve (6 connected to each particle tank, 1 into display cell, and 4 for pressure
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Figure 7.4: Prototype display appearence

control), a pressure sensor, and a vacuum pneumatic pump (with inlet and outlet).

Figure 7.5 show the implemented hardware system.

Figure 7.5: System hardware appearance
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7.1.4 Shape actuation control

In this implementation, generally the shape actuation is similar to ” LivingClay”
actuation method. First, the surface initialized as a flat particle-filled surface
kept at hardened state(Figure 7.6 left). Next, using vacuum shrinking method (as
described in 6.3.2), connection to display cell is sealed, and vacuum line connection
applied to the selected particle tank. This will resulting in a specific area above

the selected particle tank to be shrink (Figure 7.6 right).

Hardened

Figure 7.6: Shape shrinking actuation

We found that the particle collapse only in vertical direction when the surface
kept at hardened state first. It can be considered that due to the vacuumed state,
the ambient air pressure is stressing the display mostly from the upper side(because
the top surface created from flexible material). This pressing force combined with
the vacuum from particle tank under, resulting in straight forward shrink down

movement (figure. 7.7 left).

Also, as the cell surface is shrinking down and contacting the linking tube, the
surface material is getting sucked, blocking the tube from sucking particle any

further (fig 7.7 right).
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Figure 7.7: Left: straight shrink, Right: Blocked tube

7.1.5 Shape and softness copy application

To demonstrate the capability of this system, first we propose an application of

shape and softness approximation copy application.

In this application, first the user can place a physical object at the top of the
surface. Then, using Kinect camera mounted above the surface with background

subtraction method, the object surface geometry can be captured.

Next, the user need to press the object at certain force using their hand. At
this time, the monitored pressure change by pressure sensor value can be used
to calculate the surface negative deformation. Using this pressure change data,
system can then approximately determine the object stiffness level (with same

pressing force, soft object deforming the surface less).

Next, the display can generate the approximation copy (adjusted to display
resolution) of the object geometry and the approximated softness using stiffness
control. For final procedure, user can then deform the shape accordingly, adjusting

the shape and adding the detail.

Figure 7.8 show the outline of the application.
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Figure 7.8: Shape and softness copy application

7.1.6 2D to 3D paint application

The purpose of this prototype application is for entertainment use, allowing the
user to experiment with possibilities of a physical 3D shape generation from a mere
2D painted image.

In this application, when surface is flat and filled with particles, the user can
draw a texture on display surface. The system then detect the drawn 2D shape

and generate a 3D model based on the 2D shape and color. Figure 7.8 show the
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outline of the application.

Figure 7.9: 2D to 3D paint application
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7.2 Multiplexed mesh display

One of our research interest is to achieve a high resolution shape display with
low-cost implementation. Here we propose an effective multiplexed grid air flow
connection to control a matrix configured multi-cell display.

Compared to previously described self-actuated shape display (7.1 ), this system
biggest characteristics is the reduction in the usage of solenoid valve while maintain
the ability to control specific cell shape deformation. In addition, the display can
be manufactured in separated module and then joined into a bigger resolution,

making for a great scalability.

7.2.1 System configuration

In this system, a separated display cell arranged in matrix configuration. Each
display cell is connected in vertical line while the particle tank is connected on the

horizontal line(fig. 7.10).

a)

Figure 7.10: System design of array display: a) surface cell, b) transfer tube, c)
particle tank

Different from previously described (7.1 ) system, because the display cell and

particle tank connected in multiplexed grid, each particle tank not required to be
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connected to a solenoid valve. Instead, the solenoid valve only need to be connected
into the edge of each display cell and the edge of each particle tank.

In example of a squared matrix arranged display, f(n) is the minimum required
solenoid valve, and the matrix size is n x n pixels. In case of (7.1 )system, the

sequence can be defined as

f(n)=n*+3 (7.1)

while, for this multiplexed channeled system the sequence is

f(n)=2%xn+2 (7.2)

Both of the cell line and particle tank line is then connected to solenoid valve
at the end of line, able to select a connection between vacuum, compressed air, or

ambient air. Figure 7.11 show the hardware system configuration.

@
oS0
20202
ogege ST
002 e 202
020 202090
2020 9990
= e 0e®
99 9e® ~ 9990
9 Q. @ o202
9990 & 9990
e e @ L
9 Q. @ 09202
e ®e® o @
R
~ 5
4 D
a®a®@a
a®a®@a
Ss3el -/

Figure 7.11: System hardware configuration
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7.2.2 Implementation

To demonstrate the usability of our design, we implemented a prototype system
with 3x3 matrix module. Each module has the size of 30x30mm and maximum
height of 30mm. It then attached to a particle tank with diameter of 5mm and
length of 200mm made of PVC pipe. Lastly, the module surface is adjoined together
using tape to allow a continuous shape. Figure 7.12 show our prototype display in

appearance.

Figure 7.12: Prototype display system

7.2.3 Shape actuation control

In this system, to actuate a specific mesh of the display, special procedure of
valve control is needed. Here we describe an actuation procedure in example of
3x3 mesh arrangement.

To raise a single cell in the middle of the matrix (figure 7.13 upper left), first, all
the mesh other than the middle require to be jammed. This achieved by a applying
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a vacuum line into both the particle tank line and display cell line while applying
compression line into the middle mesh. Resulting the middle mesh is inflated
with air (figure 7.13 upper right). Next, while keeping the other mesh jammed,
compression line is applied into the middle particle tank line and ambient air line
into the middle cell line. This will resulting an air stream through middle particle

tank to above cell, raising the display volume (figure 7.13 bottom left).

<

Target '
Mesh |:>

<4
Display cell solenoid * * *
valve

Particle tank solenoid valve

x Empty cell =J» Compression
line
Jammed cell <= Vacuum
Line
- Inflated cell
- Particle filled
cell
Closed line

Figure 7.13: Cell raising procedure

Actually, air stream are also flowing at the surroundings mesh. However, due to
the mesh jammed state, the particle flow into the display cell is blocked, resulting
particle flow only at the middle mesh.

To shrinking the mesh is a more straightforward process. First, all the other
mesh is also jammed, then applying compression line into the middle cell column
and ambient air into the middle tank row(figure 7.14). . Apart from localized

actuation, this system can also create a localized stiffness change. Similar to the
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Figure 7.14: Cell shrinking procedure

mesh actuating process, by creating an air flow through a specific cells, this cells

can be softened while keeping the other cells jammed and stiff.

7.2.4 Usage scenarios

Figure 7.15) show the actual actuation of this display system. .

Due to the separated mesh structure, the shape generated is discrete and parti-
cles flow between the mesh is not possible. Therefore, this type of display system
is not suitable for a modeling application. Compensating the shape limitation
this display has a great scalability, allow for a high resolution mesh with low-cost
implementation.

We characterized this display usage scenarios as: can be utilized as a haptic

display to represent a 2.5D geometry
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Figure 7.15: Prototype display shape actuation state

e On screen keyboard
Studies have found that haptic feedback significantly improves performance
with keyboards on touch surfaces [8]. This display can raise a specific mesh to
be used as keyboard button on flat surface. Additionally, the softness change

can also be utilized as tactile feedback, resembling keyboard key pushing feel.

e Terrain model generation
Because of this display scalability properties, in the future we plan to im-
plemented a high resolution mesh (up to 50 x 50 mesh) display. This high
resolution display can then be used to generate and visualize landscape ter-

rain, to used for urban planning etc.
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Chapter 8

Evaluation

8.1 Touch detection evaluation

8.1.1 Touch position error evaluation

In this research, we carried an experiment to evaluate the finger touch detection
accuracy on different shape of surface. The experiment comprises of four types of
surfaces, including touch detection on soft flat, rigid flat, rigid convex hemispherical
and rigid concave hemispherical surfaces. Hemispherical surfaces have 5cm height
and are 15cm in diameter (Figure 8.1). We recruited 10 university student as
participants (1 female, 1 left handed), which all are experienced with touch devices;
Participants were asked to touch a cross mark target that appears in random order
of 9 fixed locations on the display surface with their right hand at first, and left
hand at the second trial. The 8 targets are oriented in a ring with radius 50mm
(linear distance) around the center target (Figure 8.2) . On convex and concave

surfaces the targets are located at about 45 zenith angle.

To minimize the impact of other potential factors, we took the following mea-
sures. First, participants were instructed to touch the target without hooking with
their index finger, which insures the contact point is not occluded, as noted in [7]
[30]. Second, to avoid misdetection due to inadvertent motion during touching,
we requested that the participants hold the finger still after the touch and then
record the location 200ms after the first contact. At this time, a buzzer signals

the completion of the data recording as well as indicates to the user a successful
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'Sf'ﬁgf convex surfag{\

surface

Figure 8.1: Surface state for evaluation

measurement. Finally, participants also asked to keep their head in fixed position
above the surface where all the target clearly visible, controlling for parallax issues.
This procedure produced 486 pointing trials(4 surfaces x 2 hands x 9 targets x 6

trials) per participant.

Figure 8.2 shows the recorded touches point during the study. The red point
represents touch points by the right while blue represents those generated by the
left hand. We also visualized the area that covers % of the points with confidence
ellipses. Here, all contact points of all target combined showed an offset of 3.9mm
(standard deviation of 1.7mm) biased to the right of target center, and there were
barely any offset different between the right and left hand touch input . Figure 8.3
displays the minimum button diameter needed to cover 95% of touches point for
each surface. We also grouped the target on hemispherical surface based on the

slope type(uphill or downhill) and calculate the button diameter. We considered
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Figure 8.2: Pointing data result with 95% confidence ellipses

both of the offset and minimum button size results of rigid surfaces are in agreement
with previous work on touch detection using depth camera [7](offset = 11.7mm ,

button diameter = 16 - 25mm) .

Based on Figure 8.3 the least accurate surface is the flat soft surface with min-
imum button diameter of 30.2mm. We found that the participants finger press is
making the surface at tip of user finger to be sticking out. We considered this to be

resulting a miscalculation of touch area due to the surface under user hand mask
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Figure 8.3: Error bars denote standard deviation across all trials

not being updated4.14 . However, with a little training a user can achieve more
accurate touch detection by adjusting the touch strength accordingly with surface

softness.

For the hemispherical surfaces, the convex surface has slightly more accuracy
than the concave surface (23.9mm vs 25.2mm). And if we compare it based on the
slopes, the uphill slope is far more accurate than the downhill slope (21.1mm vs
28.0mm). Our system determines a touch with a region within 5-15 mm from the
surface. When the user finger touches a uphill slope, this region is smaller due to
the angle of incidence to the finger. Conversely, when touching a downhill slope,
the touching region becomes larger and the centroid is shifted from the real touch
point. Both of these results are also in agreement with the previous work on touch
detection on curved surfaces[30] despite a different type of touch detection (Depth
camera vs FTIR).
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8.2 Shape evaluation

8.2.1 Evaluation of Softness Range Variation for Modeling
Modes

The most significant feature of this system is that the hardness of the display can
vary continuously and freely by controlling of the pressure value. This allows the
user to set the optimal hardness value according to the purpose of his/her work.

However, we do not have a direct way to perceive the hardness of unknown
objects without having to directly interact with them. In addition, a general user
without special training cannot imagine the hardness from the numerical values or
its appearance, and so hardness control is a very blind and time consuming action.

Therefore, it is needed to design user interface that can provide the user with
a more intuitive control method. In this research, we focused on those three op-
erations: ”"Rough shape modeling”, ”Detailed shape modeling” and ”Tall shape
modeling”, and performed an experiment to find out the hardness(pressure) range
that is suited for each activity.

In this experiment, the participants have a task to copy three different types of
sample models that is made by actual clay to our particle display. The sample
shapes include ”Simple Triangle Shape”, "Face Shape” and ”"Bowl Shape with
an overhang” as shown in the figure8.4. Then, we examined the range of the
hardness(pressure) that the user uses while copying the shape to our display.

We employed eight participants(in our laboratory except the authors, 19-24 years
old, six males and two females) and provide them with simple pressure up and down
buttons usable for copying shapes. These two buttons can gradually increment
or decrement the pressure value, one push is 1/1024 of the width range of the
pressure sensor (about 0.25kPa) In addition, we requested the participants to copy
the sample shape in the order of triangle, face and bowl after explaining how to
use the buttons and providing 1 minute of practice.

Then, we also requested each copying task to be done "fast and as accurately
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Figure 8.4: Sample models

M.

Figure 8.5: Created models by participants

as possible” and "increase and decrease the hardness as necessary for your task”.

The result of this experiment is shown in the figure8.6.

This graph shows the average pressure value that is used by each participant to
copy three different shapes with standard deviation. According to these graphs,
we found the low softness value(-1kPa) has been used for modeling a simplest
triangle shape, in contrast, higher softness value(-2.6kPa) is used for modeling of
other two complex shapes. Based on this result, we also adding a color range into
the modeling stiffnes control slider, indicating the user the suitable softness range

for each modeling procedure (blue for rough shape, and red for detailed shape
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modeling) (Figure 8.7).
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Chapter 9

Discussion

9.1 Limitation

9.1.1 Shape Limitation

The shape modeling capability of our system is subject to some limitations
stemming from limited particle amounts and area/flexibility of the display surface
fabric. For example, if the user made large convex shape at one part of the display,
the user need to gather large amount of surrounding particles. This prevent the

user(or another user) from creating new shape at another part of the display.

In current prototype, the maximum height of the shape is about 15cm. When
creating a high convex shape in the display, it is necessary to pull the surface
fabric with substantial force. Since a stronger force is required for tall shapes,
the system cannot decrease the stiffness state of the surface to sustain the height
of the shape. In order to address these limitations, more flexible cloth will be
needed. This however may lead to decreased surface elasticity due to permanent
fabric stretching and increased durability loss. To address this problem, we are
developing new mechanisms for dynamic change of both surface volume and surface
fabric area.

Display stiffness also depends on the thickness of the particle layer. If the user
makes a shape that is quite detailed having parts of less than 3cm in width, the
shape may be easily deformed mistakenly by hand or gravity even if the system is

in the hardest state.



9.1 Limitation 99

In order to make modeling operation easier and more efficient, vacuum molding
tool can provide some primitive shapes(circle, rectangle, triangle, etc...) that can
be used as design foundation. In particular, in the case that the target shape
is clearly specified, the system can have pre-shaped molding to support ease of
shaping. This enables the user to design the shape changing only the details of
the preset shape. Furthermore, visual geometry information such as dimension
or current height can be directly projected on the shape and could be used for

modeling navigation.

9.1.2 Touch Detection

In the process of updating the background, we used a rectangular area larger
than that of the actual hand as a mask image to avoid the noise at the boundary of
the hand region in the depth image. This became a problem when a user performs
modeling work without moving his/her hands as the region below the users hands
may have not yet been updated. In order to reduce the occurrence frequency of this
problem, reducing the size of the hand mask area by introducing noise reduction
processing to current algorithm is suggested.

We move on to discuss the limitations or potentials of the overhead depth cam-
era. First, it is impossible to use an overhead camera to capture the contact surface
(base) of the finger. In this implementation, we detect finger touch by detecting
the top side of the finger surface that is less than 15mm away from the surface.
This may result in false-positive/false-negative detections if the userfs fingertip
is thinner/thicker than the height threshold. In order to address this problem,
we consider the method of using multiple low height depth cameras fixed on the
boundary of the display to increase visibility of contact side of the fingertip. Mul-
tiple cameras may also be needed to capture the whole area of the convex/concave
shapes that have overhanged parts or steep angle surfaces relative to the camera
angle.

The offset between the position detected and that of the intended position of
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user touch was found to be a result of many variables: individual differences in the
thickness of the finger, the parallax occurring from viewing angle, or other reasons
(calibration errors, etc...). To address this problem, visual feedback can be used
by displaying current fingertip position on the surface using visual effects when the

users finger approaches the surface.

9.1.3 Responsivenese

The responsiveness of pressure control speed depends on the air volume(size of
the display) and the displacement of the vacuum pump. In this current prototype
system, which utilizes a single linear piston pump(with 40L/min displacement
capability), it takes about three seconds to fully harden the soft surface. Although
current linear-piston pumps have enough decompression capability to harden the
surface, the decompression speed was not found to be of acceptable levels due to the
low displacement capabilities of the pumps. Therefore, we plan to employ different
types of pumps, such as an air blowers that have high displacement capability in
combination with the current vacuum pump to allow for fast air displacement.

In addition, a vacuum tank and an air compressor can be used together decrease
response time of changing stiffness. High response pressure control can generate
even more tactile sensations when the user pushes a button on the surface making

haptic vibrations from sudden pressure changes possible.

9.1.4 DMaterial and Durability

First, we discuss the characteristics of particle materials choice. Particle size is
a very significant factor to determine tactile characteristics. A small/light particle
is well suited for the display material filler. The size of the particle and thickness
of the surface fabric affect the resolution of the shape that the user can create on
the surface. Smaller particles and a thin surface material would allow the user to
create a finer, more detailed shape on the surface.

Also, if an external force is applied to the display, the smaller/lighter particles
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would react in a smoother fashion, giving a more aesthetic look and feel to surface
manipulation. It also leads to reducing manipulation load on the users finger for
long term operations. In addition, light weight particle prevents the surface from
collapsing its own weight due to gravity.

If the display pressure is reduced, the shape of the individual particles will ap-
pear on display surface due to the space between the particles and surface fabric
coming into very close contact. If the particle size is larger, it will result in visu-
ally unpleasant textures (similar to goose bumps) as well as increases the friction
experienced when dragging the finger across the display surface.

The size of the particle also affects the air volume inside the display volume.
Using smaller particles reduces the overall volume shrinkage of the display under
decompression and increases the response time of internal pressure change. On the
other hand, non-spherical particles can be used to create various levels of friction
against finger movements and even provide the user with different and unique
tactile sensations. Therefore we plan to continue this study in regards to particle
material.

We demonstrated this prototype system at an international conference for five
days (about five hours total use per day) and no substantial damage were found on
the particles and display surface. There were slight darkening and fabric stretching,
as well as an increase the amount of air leakage all considered to be due to the
deterioration in lining and general wear and tear. The maintenance in this case is

not difficult due the material being inexpensive and easily replaced.

9.1.5 Modeling works

How good are people in using this device to generate geometry. To be able
to create or copy a fairly complex geometry i.e. human face, user need to first
understand a few limitations of our surface.

First, after creating the model base and make the surface harder (to maintain the

shape) ,it is rather difficult to move more volume into the model base. Therefore,
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the user needs to estimate the required total volume while building the base (most
of the user we observed were making the base as big as they can so they don’t need

to think about the volume margin).

Second, to modify a detailed shape, user needs to lower the hardness first and
then start over the detailed part. However, some people were able to modify the
detailed shape using brute force without lowering the hardness. This method will
resulting with wrinkles appear on the surface, making the look not so neat. By
considering all these measures, some people did a really great job on creating or

copying a complex shapes.

9.2 User Feedback

In this research, we conducted a preliminary user study to observe how a first
time user performed with our device. We employ 7 participants to operate our
modeling application, and asked them the feedback. Initially, some of the par-
ticipants commented that it was hard to control the appropriate hardness at the
first time, because the relation between the hardness and the slider was not clearly
apparent. However, after a few attempts of manipulating the slider and obtaining
a feel for the hardness using physical touch, the user was able to use the model-
ing application from model shaping (early stage) to texturing (finishing touches).
Participants also commented that dividing the slider with color area based on the
suitable hardness for different type work i.e.: blue for rough shape and red for
detailed shape modeling was helpful for choosing the surface malleability. Finally,
most of the participants stated right away that the tactile feeling when the hard-
ness changes dynamically was quite appealing, making the surface feeling like an

organic material than an artificial material.
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Figure 9.1: Sample of model created by user

9.3 System Comparison

In this research, we introduced a deformable display with stiffness control called
”ClaytricSurface” system, and proposals of a particles display shape actuation
called " LivingClay” system.

We summarised and compared both the systems cappabilities and limitation as

shown in table 9.1.

9.4 Future application and Possibilities

In the future, we plan to extend current single particle layer to multi-layered
and individually controlled structures. For instance, in two-layered particle dis-
play, if the upper layer is softened and the lower layer is hardened, the user can
change the general shape of the model whilst leaving the fine details on the surface.

Multi-layered particle volumes also have a possibility of generating complex tactile
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LivingClay
Properties ClayticSurface Array Multiplexed
actuator mesh
Variable stiffness O O O
Traditional flat-rigid
surface O O O
Over-hanged shape O O X
Shape actuation X O O
Scalability - low high
Mobility (size reduction) possible very difficult (Sjll;:gﬁr;m;
Modeling application suitable suitable not suitable
Substantial shape
hand deformation O O X
Detailed shape
hand deformation O O O
Localized stiffness
change X X O
Table 9.1: System comparison
sensations.

For future applications, we also plan to develop interactive visual/tactile displays
that can support training or rehabilitation of finger muscles. We also want to look
into the possibility of controlling the applied load to the fingers during operation
to prevent finger stress by dynamically changing the local stiffness of the display

according to touch pressure.
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Chapter 10

Conclusion

10.1 Summary

At first chapter, we introduced the nature of the research, including the problem
that are observed/assumed to exist. It also has look at the objective of the research
in regards to the defined problem

In second chapter, we discussed related research and previous work on Organic
User Interface with capabilities of mechanical properties change and shape defor-
mation.

In third chapter, we introduced vacuum jamming as an effective method to
control display stiffness. We also described the particles selection consideration
and evaluate the pressure-softness relationship.

In fourth chapter, we described the implementation of our proposed display,
including the stiffness control, touch input detection, and gesture detection.

In fifth chapter, described the implementation of modeling application for inter-
active surface with controllable stiffness.

In sixth chapter, we explored the usability of particles pneumatic conveying
technique as a new display actuation method allows for both volume change and
stiffness control.

In seventh chapter, we introduced design of interactive surface with controllable
softness and shape deformation including application and usage scenarios.

In eighth chapter, we evaluated our implemented system, including the touch

detection and appropriate stiffness for modeling works.
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In ninth chapter, we discussed our proposed systems limitation and capabilities.
In tenth chapther, we concluded the research and comments on this research
contributions.

The contribution of this research can be summarized as follows:
1. Evaluation of pressure vs stiffness relation for shape deforming purpose.

2. Implementation of variable stiffness display with a high range and detailed

softness variation.

3. Implementation of depth camera based touch detection, that allow dynamic

surface deformation.

4. Development of modeling application with capability to change surface stiff-

ness coressponding the modeling work.

5. Proposal of new display shape actuation that allows volume change using

pneumatic conveying method including stiffness control.

6. Design of array actuator system allows for complex shape deformation and

low-cost scalable control system.
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