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SUMMARY One of the significant issues of processor architecture is to
overcome memory latency. Prefetching can greatly improve cache perfor-
mance, but it has the drawback of cache pollution, unless its aggressiveness
is properly set. Several techniques that have been proposed for prefetcher
throttling use accuracy as a metric, but their robustness were not sufficient
because of the variations in programs’ working set sizes and cache capac-
ities. In this study, we revisit prefetcher throttling from the viewpoint of
data lifetime. Exploiting the characteristics of cache line reuse, we propose
Cache-Convection-Control-based Prefetch Optimization Plus (CCCPO+),
which enhances the feedback algorithm of our previous CCCPO. Evalua-
tion results showed that this novel approach achieved a 30% improvement
over no prefetching in the geometric mean of the SPEC CPU 2006 bench-
mark suite with 256 KB LLC, 1.8% over the latest prefetcher throttling,
and 0.5% over our previous CCCPO. Moreover, it showed superior stabil-
ity compared to related works, while lowering the hardware cost.
key words: microarchitecture, cache, prefetch

1. Introduction

One of the most important issues related to microarchitec-
ture is the design of a memory hierarchy to conceal mem-
ory latency and to make the functional units busy [1]. Cur-
rently, microprocessors have a large last-level cache (LLC),
the size of which is generally several megabytes. Off-chip
memory bandwidth has been relatively increased because of
the introduction of on-chip memory controllers. Moreover,
several 3D manufacturing techniques are expected to signif-
icantly extend memory bandwidth in the near future. The
current high performance execution of multicore processors
is supported by such powerful features of cache, large ca-
pacity and bandwidth.

However, LLC is generally shared by multiple cores,
and therefore, the available size for each process will vary
at execution time. Besides, several studies have reported
that the access behavior for LLC has little locality because
locality is absorbed in the higher level cache [2], [3]. This
means that a large capacity may not always contribute to the
cache hit rate. Currently, microprocessors still suffer from
huge off-chip memory latency. For each LLC miss, sequen-
tial performance will be severely degraded. Consequently,
hardware prefetching [4], [5] is a natural approach to deal
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with such LLC trends, and have been widely adopted by
commercially-produced processors [6]. However, the intro-
duction of prefetching also introduces several complicated
side effects.

For today’s large LLC, aggressive prefetching is of-
ten effective [7], [8] because there are plenty of cache lines.
Moreover, because the latency is so long, prefetching must
start faster, even in the exchange of prefetch accuracy. To
make the prefetcher aggressive, prediction becomes deep
(to prefetch n times ahead of address) and wide (to prefetch
multiple candidates at once or prefetch by region). The sim-
pler prediction algorithms are also effective for aggressive-
ness by reducing the learning time and sending prefetch re-
quests earlier. It often happens that the simple prediction
algorithms show greater performance rather than the com-
plicated Markov-based prefetch algorithms [9].

However, the proper aggressiveness of a prefetcher de-
pends on the application behavior and the cache capacity.
Aggressive prefetching is powerful, but it generates a large
amount of prefetch access in exchange of accuracy. It may
cause cache pollution, where useful cache lines are swept
away by large amount of useless prefetched lines. Use-
less prefetches also abuse memory bandwidth. Thus, recent
prefetch techniques generally involve mechanisms that dy-
namically optimize the amount of prefetching. However, in
the existing adaptive prefetching, the accuracy of address
prediction is used as a metric because the current data in
the cache should be valuable [10]–[12]. This is not always
true in LLC because aggressive depths and widths of the ef-
fective prefetching are gained in exchange of accuracy. A
new approach for evaluating the properness of prefetching
is required.

This study proposes a novel prefetcher throttling tech-
nique called Cache-Convection-Control-based Prefetch-
Optimization Plus (CCCPO+), which exploits cache line
reuse. Unlike existing techniques, it does not trace the
prefetch usefulness, so the hardware is simple. Figure 1 il-
lustrates our goal. The solid line shows the typical capacity
vs. performance behavior of caches. Discussions regarding
this behavior is important because the capacity of LLC will
vary dynamically by multicore execution and power saving.
The cache performance for all possible capacities must be
examined. In the solid line, performance first increases with
capacity, and it then saturates at a given performance, which
depends on the program characteristics. Multiple plateaus
will appear, and the line has a step-like shape in some cases
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because of program’s control or data structures. The be-
havior will shift to the thin line when the prefetcher is in-
troduced. Prefetching can reduce compulsory misses, but it
also requires extra capacities. Thus, the line is stretched to
the upper-right. Our goal is to stretch this line to the upper-
left, thereby realizing higher performance and saturation at
lower capacity.

This study is organized as follows. Section 2 discusses
the control techniques for prefetcher aggressiveness, while
Sect. 3 provides observations about data convection in a
cache, and shows that this behavior can guide the optimal
control of prefetcher aggressiveness. Section 4 describes
our throttling mechanism. Section 5 presents the evalua-
tion environment, while Sect. 6 shows the results. Section 7
concludes this study.

Fig. 1 Enhancement of prefetcher efficiency.

Fig. 2 The effect of prefetcher throttling.

2. Prefetcher Throttling

2.1 The Effect of Prefetcher Throttling

Figure 2 shows an example of the effect of prefetcher ag-
gressiveness. The relative IPC performance of various
prefetcher settings is shown for each SPEC CPU 2006
benchmark program. Each program has six bars that indi-
cate the performance of lower aggressiveness to higher ag-
gressiveness from left to right, respectively. In this graph,
the cache capacity is 256 KB, which is likely to be a portion
of the multicore LLC for a process. Processor and prefetcher
parameters are the same as in subsequent evaluations.

The geometric mean gradually increases with increas-
ing aggressiveness. However, each benchmark program has
its own optimum aggressiveness, which implies that each
program phase has its own optimum prefetcher settings. The
effect of the aggressiveness selection ranges from the lower
limit −30% to the upper limit +250%, which is as significant
as that of the address prediction algorithm.

2.2 Adaptive Prefetching Techniques

Related studies of adaptive prefetching are roughly divided
into two approaches, namely, per access control and per pe-
riod control. The first group determines whether proceeds
the prefetching access or not for each predicted address.
Zhuang et al. [10] proposed a technique that estimates the
accuracy of each address prediction. The history regarding
whether previous prefetched lines were actually accessed
are stored in a table of 2-bit saturation counters. This ta-
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ble is accessed for each predicted address to predict the
usefulness of that prefetch using the load instruction’s PC
or predicted address as a key. The prefetch access is can-
celed when it is predicted as being useless. This approach
requires additional tables to maintain the past prefetch his-
tories. Liu et al. [13] exploited the dead block detection to
avoid the negative-effect of prefetching. Prefetching is per-
formed only when the new dead block is detected.

The second group observes prefetcher performance for
a period whose length typically involves more than one
thousand LLC misses. The estimated performance is used to
adjust the prefetcher aggressiveness for the next period. The
number of prefetches is controlled by periodically changing
the parameters of the prefetcher, mainly depth, as opposed to
cancelling a certain prefetch access. This technique is gen-
erally called “prefetcher throttling” and is suitable for con-
trolling prefetchers that generate many prefetches at once.
Hur et al. [11] proposed an adaptive stream prefetching that
statistically estimates the most frequent stream length, and
cancels prefetch accesses that exceed this length. This
technique improves the prefetch efficiency by canceling the
prefetch overruns that occur at the end of each stream.
Srinath et al. [12] proposed Feedback Directed Prefetching,
which estimates prefetcher accuracy, lateness, and pollution
of every period, and compares them to the predetermined
thresholds. The aggressiveness of the next period is up-
dated according to the comparison. Using three metrics, it
achieves detailed adaptive controlling that suppress the low
accuracy prefetches, suppresses pollution (but without accu-
rate prefetches), and accelerates accurate but late prefetches.
However, the technique does not include a provision to pro-
mote low accuracy, but effective prefetches. Also, it re-
quires a history table with thousands of bits (implemented
in a bloom filter) for the detection of pollution.

In one of the latest related studies, Ebrahimi et al. [14]
proposed Coordinated Prefetcher Throttling, which is simi-
lar to Feedback Directed Prefetching but uses prefetcher ac-
curacy and coverage as metrics. One of the features of this
technique is that it introduces the coverage as a metric. In
LLC, a dependence on only the accuracy may reduce the
chances of exploiting aggressive prefetches. The introduc-
tion of coverage encourages the exploitation of the latest ag-
gressive prefetchers that gain coverage in exchange for ac-
curacy. Ebrahimi et al. also proposed a prefetcher throttling
technique for multicore processors with Feedback Directed
Prefetching [15].

2.3 Limitation of Prefetch Usefulness Based Approach

Existing throttling techniques increase the aggressiveness of
prefetchers when either the accuracy or coverage is greater
than the fixed threshold, and decrease the aggressiveness
when they are less than the threshold. Thus, the higher
threshold value implies better braking, while a lower thresh-
old value implies larger acceleration. However, it is hard to
determine the threshold value that can properly control var-
ious applications, especially for the following cases: i) al-

though the prefetch accuracy is high, useful lines are pushed
out from the cache when the cache has no vacancies, ii) al-
though the prefetch accuracy is low, aggressive prefetching
improves performance when the cache has vacancies, iii) al-
though both the accuracy and coverage are low, prefetching
is still effective because of the poor locality of the applica-
tion access pattern. These examples indicate that we must
estimate the cache condition to properly throttle the LLC
prefetching.

3. Cache Convection: Novel Metric for Prefetcher
Throttling

3.1 Optimum Prefetcher Throttling

When a certain cache line is transferred to the cache ear-
lier by prefetching, the swapped line is also evicted earlier
from the cache. Moreover, if several lines are prefetched to
the cache at the same time, several lines are evicted at the
same time. The gain realized in prefetching is the difference
between the values of the prefetched lines and the evicted
lines. However, in general, previous techniques assume that
the evicted lines have the same value, while they deliber-
ately estimate the value of the prefetched line, for example,
using accuracy statistics.

Instead, we focus on the cache contents. The basic idea
behind our throttling is that useless prefetches are not actu-
ally useless. Conversely, they are necessary to encourage
deep and wide prefetching, which is effective for poor local-
ity access patterns. Our goal is to prefetch aggressively as
far as no line is swept away before its last use. For example,
if the locality of the program is low, aggressive prefetching
is required even if the accuracy is low, because the cache
may contain many dead blocks. However, in general, dead
block prediction is costly. Srinath et al. tried to predict the
usefulness of the evicted lines by storing the eviction his-
tory in a bloom filter [12]. However, the filter requires a
table containing several thousand bits. Therefore, we pro-
pose another statistical technique for estimating the cache
margin.

3.2 Line Reuse and Prefetcher Throttling

For example, let us assume a program that accesses the same
cache line four times on an average. When the prefetcher
aggressiveness is too low (Fig. 3 (a)), the first access may
miss because the prefetch access began too late or was not
performed. The subsequent three accesses are hit within the
same lifetime. Then, the line will be evicted after the last
use. Consider that the prefetcher aggressiveness is gradu-
ally increased. For certain degrees of aggressiveness, the
prefetch for the first access meets the time (Fig. 3 (b)). Thus,
four accesses are hits within the same lifetime. The reuse
number saturates at this point because of the program char-
acteristics. Here, the aggressiveness is the optimum. If the
aggressiveness is further increased, pollution begins because
a lot of data is loaded to the cache within the time in which
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Fig. 3 Prefetcher aggressiveness and line reuse.

the line is evicted before the last use. This situation re-
sults in a significant degradation of reuse numbers for each
cache line (Fig. 3 (b)). Consequently, we can maintain the
prefetcher aggressiveness optimum to maximize the cache
line reuse. The number of reuses per line is easier to esti-
mate than the dead block prediction.

3.3 Cache Convection

We statistically estimate the reuse characteristics of each pe-
riod. The basic idea is to divide the total cache hit count
during a line’s lifetime by the number of cache lines to be
accessed. Using the following equation, this can be approxi-
mated by counting the events during a period which are trig-
gered by a certain number of evictions of cache lines.

CC =
hitcount

( accessed evicted
evicted ) × N

(1)

where hitcount is the number of cache hits, accessed evicted
is the number of evicted lines, which is accessed in the cache
at least once, evicted is the number of evicted lines, and N is
the number of cache entries. We define this value as “Cache
Convection” or CC as the image of the cache line convection
between the MRU side and the LRU side. The denominator
of Eq. (1) approximates the number of cache lines that are
to be accessed, and thus, CC indicates the hit count per de-
mand line of that period. Note that the cache hits at a live
block and not at all lines in the cache. Cache lines will be
evicted without gaining access when at the demand misses
of streaming access patterns, or at useless prefetches. A di-
rect estimation of the reuse is possible by observing the ac-
cess count of each evicted line. However, we instead use the
proposed CC because the direct way requires a hit counter
for each cache line, which uses a significant percentage of
the entire cache capacity.

CC will show the best value when the proper aggres-
siveness is selected for the program phase. To confirm this,
we examined the CC behavior of SPEC CPU 2006 bench-
mark suites. Figure 4 and Fig. 5 show typical examples of
the relationship between CC and prefetcher aggressiveness.

Fig. 4 CC and prefetcher aggressiveness (437.leslie3d).

Fig. 5 CC and prefetcher aggressiveness (458.sjeng).

The processor and prefetcher parameters are the same as in
Fig. 2. CC is calculated at every 2,048 evictions, and is plot-
ted on the graph. The Y axis represents CC, and the X axis
indicates the program’s execution point by the number of
retired instructions. CC behaviors with different levels of
aggressiveness are overlapped. In Fig. 4, for the behavior
of 437.leslie3d, CC is obviously different for the cases with
no prefetching when compared to the cases with a differ-
ent aggressiveness. With no prefetching, CC shows a con-
tinuously low value while the others show higher values.
This behavior indicates that any aggressiveness related to
prefetching is effective, and corresponds to the IPC behav-
ior of Fig. 2. Moreover, this graph shows that a phase change
has a direct impact on the CC behavior.Conversely, in Fig. 5,
for the behavior of 458.sjeng, the values are distributed over
a relatively wide range, and the CC becomes low when the
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aggressiveness is increased. This indicates that the lower ag-
gressiveness achieves better performance, and corresponds
to Fig. 2. We examined the CC behavior for all programs
in the suite and confirmed that the prefetcher is optimized
by choosing an aggressiveness that results in a higher CC.
Thus, CC effectively determines the prefetcher aggressive-
ness.

4. Throttling Mechanism

4.1 Improvement over our previous CCCPO

Previously, we proposed CCCPO, which exploits CC to
determine the prefetcher aggressiveness [16], [17]. In this
technique, CC is calculated periodically, and the prefetcher
aggressiveness is set to indicate higher CC. The feedback
algorithm was simple; in that, it decreases the prefetcher
aggressiveness if the CC is degraded form the last period,
and vice versa. To mitigate the sampling noise, several hys-
teresis factors were introduced. CCCPO showed stable per-
formance with simple hardware, but it tends to be too ag-
gressive in several programs because of its simple feedback
algorithm. For example, once the prefetcher becomes too
aggressive, it is difficult for the above algorithm to decrease
the aggressiveness. To achieve the best performance, we
revise it to CCCPO+ with more intelligent control, which
searches for the best aggressiveness while maintaining sim-
ple hardware and rapid response.

4.2 Hardware Outline

Figure 6 shows the outline of our CCCPO+. The cache
behavior is counted by several counters, and CC is calcu-
lated at the end of every period from the counter values.
The throttling algorithm determines the aggressiveness for
the next period by using the CC values of recent periods,
which are stored in the scoreboard. The prefetcher setting
is updated at the end of every period. The proposed tech-
nique only requires several registers to be implemented, and
it does not need any large tables for feedback.

Fig. 6 Outline of the proposed technique.

To count the number of cache hits and other events, the
following three counters are added:

• num hits, which counts the number of cache hits. The
counter value is used to calculate CC.
• num evictions accessed, which counts the number of

lines that have been pushed out from the cache after
being accessed at least once. The counter value is used
to calculate CC.
• num evictions, which counts the number of evicted

lines. The throttling algorithm is triggered when this
counter becomes a predetermined threshold, and the
new period starts with a new prefetcher aggressiveness.

These counters are reset to zero at the start of every pe-
riod, and are incremented at each cache access or line evic-
tion. In addition, the following registers are added to store
the control values:

• reg aggressiveness, which indicates the current aggres-
siveness of the prefetcher.
• scoreboard, which stores the CC values of recent pe-

riods. As described later, at most three CC values are
stored to scan for the best aggressiveness.

In addition to these unique counters and registers, the
proposed technique requires 1-bit “access bit” on each line
of the cache tag table. The “access bit” is initialized to zero
when new data is transferred to the corresponding cache
line, and is set to one when any accesses are performed on
that line. Prefetching or cache replacement techniques of-
ten require such bits, and in those cases, a new budget for
the “access bit” is not required. Moreover, a divider is used
to calculate CC, but this division is not critical for latency,
accuracy, or conflicts; so many approaches, such as exploit-
ing the divider in the functional units or approximating with
multiple saturation counters are available for reducing the
divider’s budget. In this study, an additional divider is used
for the performance evaluation, but the difference in perfor-
mance is negligible. CCCPO+ is able to independently in-
troduce any cache hierarchy. The counters count only events
of the corresponding cache.

4.3 Feedback Algorithm

The aggressiveness that makes CC highest for the program
phase is unknown before the execution. The feedback al-
gorithm searches for the best aggressiveness for each phase
through the program execution. From Fig. 4 and 5, it can be
seen that CC is somehow distributed, but makes clusters for
each value of aggressiveness. It can also be seen that phases
comprise many periods. Therefore, we can approach the
best aggressiveness by comparing the result of short execu-
tions (periods). There are also enough periods to gradually
update the aggressiveness to an optimum value.

The feedback algorithm has two modes, the scan mode
and the hold mode. First, it starts with the scan mode, which
consists of three periods. The aggressiveness is set to −1,
±0, and +1 from the current aggressiveness, and each CC
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value is stored to the scoreboard. At the end of the scan
mode, the best of three is selected as the current aggres-
siveness, and the mode shifts to hold mode. An exception
occurs if the value of aggressiveness +1 > previous aggres-
siveness > aggressiveness −1, in which case the scan mode
is restarted with an increased current aggressiveness.

In hold mode, the current aggressiveness is held un-
less a phase change is detected. The algorithm detects phase
changes when CC changes significantly. To distinguish the
phase change from sampling noises, we introduce accumu-
lation and hysteresis. First, the calculated CC is accumu-
lated as follows:

accumulatedCC =
previousCC

2
+

newCC
2

(2)

Then, accumulatedCC is compared to the value of the CC
when this hold mode was started. If the changing ratio ex-
ceeds a certain threshold, the algorithm again shifts to scan
mode. The hold mode also ends at certain consecutive peri-
ods to avoid local optimal.

5. Evaluation Method

5.1 Baseline Processor

A performance evaluation is done using the cycle accurate
simulator, which models out-of-order super scalar in detail,
including the prefetcher and the proposed throttling tech-
niques. The instruction set architecture and microproces-
sor parameters are shown in Table 1. In the evaluation, a
single thread is executed in a single core. Prefetching is ap-
plied to LLC, that is, the L2 cache in this model, because the
prefetcher’s ability to hide the large memory access latency
is focused on.

5.2 Prefetcher

The proposed throttling was applied to the sequential
prefetcher (stream-based prefetcher) [5] for evaluation. The
prefetch is performed on the sequential addresses of the
missed address on a cache miss. The aggressiveness was
set to seven levels (Table 2), which included the addition
of two more aggressive levels “level5” and “level6” to the
5-level setting that was used by Ebrahimi et al. [14].

5.3 Throttling Parameters

In the evaluation, CCCPO+ was configured as follows.
When we observe the throttling timeline in Sect. 6.1, feed-
back is performed for every 2048 cache line evictions, and
for every 16 K evictions in a later performance evaluation.
The hysteresis threshold of the hold mode is set to 20%.

5.4 Compared Models

The most recent related studies are implemented and evalu-
ated for comparison purposes [12], [14], [17]. Feedback Di-

Table 1 Parameters of baseline processor.

Instruction Set Architecture Alpha AXP
Front-end 4 way, 7 cycle
Instruction Window i64 entry, f32 entry
LSQ 32 entry
Functional Units 2 iALU, 1 iMUL/DIV, 2 LD/ST, 1

fpADD, 1 fpMUL/DIV/SQRT
L1 I-Cache 32 KB, LRU, 8 way, 64 B line, 1

cycle latency
L1 D-Cache 32 KB, LRU, 8 way, 64 B line, 1

cycle latency
L2 I/D-Cache 64 KB–2 MB, LRU, 16 way, 64 B

line, 20 cycle latency
memory access 200 cycle

Table 2 Settings of prefetcher aggressiveness.

aggressiveness 0 no prefetching
aggressiveness 1 sequential depth 4
aggressiveness 2 sequential depth 8
aggressiveness 3 sequential depth 16
aggressiveness 4 sequential depth 32
aggressiveness 5 sequential depth 64
aggressiveness 6 sequential depth 128

Table 3 Threshold values for related works models.

Accuracy High (FDP) 0.75
Accuracy Low (FDP) 0.40
Lateness (FDP) 0.01
Pollution (FDP) 0.05
Accuracy (CPT) 0.60
Coverage (CPT) 0.20
Coverage (CPT) 0.20
Hysteresis (CCCPO) 0.25
Phase Detection (CCCPO) 0.05
Period (FDP, CPT, CCCPO) 2k eviction

rected Prefetching (FDP) and Coordinated Prefetcher Throt-
tling (CPT) are both throttling techniques that are guided
by prefetcher performance. Moreover, FDP has the feature
that detects polluting prefetches, and CPT has the feature
that can encourage aggressive prefetching. To verify the im-
provement in the feedback algorithm, we also performed a
comparison with our previous CCCPO. From the prelimi-
nary evaluation, we set the threshold as Table 3.

5.5 Benchmarks for the Evaluation

We evaluated all of the benchmark programs of SPEC CPU
2006 (except for 453.povray because of simulator issues).
Each program was compiled using gcc version 4. 2. 2 with
the -O3 option. A cycle accurate execution of 100 million
instructions after skipping 10 billion instructions from the
program head was simulated.

6. Evaluation

6.1 Throttling Behavior

First, Fig. 7 and Fig. 8 show how our throttling works. A
prefetcher aggressiveness of 437.leslie3d and 458.sjeng are
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Fig. 7 Throttling timeline (437.leslie3d).

Fig. 8 Throttling timeline (458.sjeng).

Fig. 9 Performance comparison between fixed aggressiveness and CCCPO+ (IPC).

shown in a manner similar to Fig. 4 and Fig. 5. In Fig. 7,
the prefetcher aggressiveness is set to high and is held dur-
ing each phase. In this example, the CCCPO+ promotes
aggressive prefetching. In Fig. 8, CCCPO+ repeats the
scan mode and gradually suppresses the aggressiveness. In
this example, CCCPO+ avoids polluting prefetching. This
shows that the CCCPO+ is available to correctly suppress
the prefetcher even when the aggressiveness become too
high, which is the case that could not be suppressed by CC-
CPO.

6.2 The Performance of CCCPO+

Figure 9 shows the execution performance of various
degrees of prefetcher aggressiveness and CCCPO+ at a
256 KB LLC. Here, the bar that indicates the performance
of CCCPO+ is added to the right-most side of each program
bar. Aggressive prefetching is generally effective, and CC-
CPO+ was able to promote aggressive prefetching in many
programs. Moreover, it properly suppressed prefetching for
programs for which higher aggressiveness is not effective,
such as 400.perlbench, 416.games, 436.cactusADM, and
458.sjeng. The performance is increased by 32.6% from the
baseline in geometric mean, and also shows the best per-
formance over fixed aggressiveness. Figure 10 shows the
MPKI (miss per kilo instructions) for each level of aggres-
siveness. CCCPO+ almost achieves a reduction in MPKI to
a minimum level, and the behavior of the graph is similar to
that of the IPC graph.

6.3 Comparing Throttling Techniques

Next, Fig. 11 shows the performance of CCCPO+ and
various prefetcher throttling techniques. Basically, all
of the techniques have a similar performance, which
means that the aggressiveness is properly determined by
each technique. However, in several programs, such as
416.gamess, 429.mcf, 436.cactusADM, 471.omnetpp, and
483.xalancbmk, a difference is seen in the algorithms. Even
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Fig. 10 Performance comparison between fixed aggressiveness and CCCPO+ (MPKI).

Fig. 11 Performance comparison of prefetcher throttling algorithms.

in these cases, CCCPO+ shows the best performance among
the techniques (with the exception of 483.xalancbmk). For
example, the performance is 17% better than that of FDP
and CPT at 429.mcf. For the geometric mean, it has a per-
formance that is 1.8% better than that of FDP and CPT, and
is 0.5% better than that of CCCPO.

For further evaluation, we examined the performance
of CCCPO+ and other existing throttling algorithms in var-
ious cache capacities. We focused on the characteristics of
performance vs. size, as previously mentioned. Our CC-
CPO+ is expected to achieve robustness because it dynam-
ically estimates the line-reuse frequency, and therefore, can
adapt to various capacities and phases. In contrast, previous
techniques, which are guided by the prefetcher accuracy or
coverage, may not always work well because the threshold
value will not always be valid for various capacities.

Figure 12 shows the results for 436.cactusADM for
the example of polluting programs. The x-axis indicates

Fig. 12 Performance comparison of prefetcher throttling algorithms
(436.cactusADM).

the LLC capacities and the y-axis indicates the relative IPC
when compared to the IPC with perfect LLC (always hits).
The effect of cache pollution is seen at smaller LLC regions
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Fig. 13 Performance comparison of prefetch throttling algorithms
(483.xalancbmk).

Fig. 14 Performance comparison of prefetch throttling algorithms
(429.mcf).

in this graph. The performance of aggressive prefetching
bellows even the performance of no prefetching at 128 KB.
CPT and CCCPO show behavior that is similar to Aggres-
sive 6, which is affected by cache pollution. We can see
that FDP mitigates the pollution and performs proper level
prefetching. CCCPO+ shows an average performance be-
tween FDP and others at 64 KB, but exhibits similar per-
formance to FDP from the region of 128 KB. It shows that
CCCPO+ and FDP properly accelerate the prefetcher better
than both the no-prefetch and most-aggressive cases. In the
larger LLC area, the effect of pollution decreases, and all of
the techniques have a similar performance. We also observe
poor locality because the performance of the no prefetch
case exhibits no relation to the capacity. Proper prefetch-
ing is quite effective in such programs.

In Fig. 13, we see an example, in which even inaccurate
prefetches are effective. Aggressive prefetching achieves a
performance that is almost twice than that of no prefetch-
ing. Here, we see that CPT and CCCPO promoted the ag-
gressiveness. Conversely, FDP fails to exploit prefetching
because the prefetching accuracy is low in this program.
CCCPO+ exhibits an average performance. It mostly ac-
celerates the prefetcher, but the performance at 512 KB and
2 MB are somewhat limited.

Another example is shown in Fig. 14, which is the re-

Fig. 15 Performance comparison of prefetch throttling algorithms (ge-
omean).

Fig. 16 Distance from the best throttling.

sult of 429.mcf. This program also shows poor locality
because the behaviors of the no prefetch and aggressive
prefetching cases are relatively effective. However, only
CCCPO+ and CCCPO were able to exploit the aggressive
prefetching. In this program, both accuracy and coverage
are below the threshold. This shows that there are cases
when inaccurate and low coverage prefetchers still lead to
improved performance. Our technique can adequately pro-
mote such cases.

Figure 15 shows the geometric means of all the bench-
marks. The result showed that FDP is superior at braking
and CPT is superior at accelerating. This is considered to be
the expected result considering their characteristics. Thus,
FDP shows better performance at lower capacity, and CPT
shows better performance at larger capacity. However, it
depends on the programs to determine the technique that is
most suited for a given capacity. CCCPO+ shows the best
performance, especially at the lower region, which is sen-
sitive to pollution and aggressive prefetching. CCCPO ex-
hibits an intermediate position between FDP and CPT, and
shows that the improved control algorithm of CCCPO+ was
able to enhance the CC-based throttling.

Moreover, the distinguishing feature of CCCPO+ is its
stability. Figure 16 shows the performance distance for the
best aggressiveness at 256 KB LLC. The existing threshold-
based approach sometimes shows a large distance from the
correct aggressiveness. In the worst case, both FDP and
CPT show more than 17% performance degradation, while
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Table 4 Hardware budget.

FDP 11 counters (16 bit), 1 pollution filter
(4,096 entries)
1 bit prefetched bit each tag and
MSHR entry

total cost 20,784 bit/1 MB LLC
CPT 11 counters (16 bit)
(with single prefetcher) 1 bit prefetched bit each tag and

MSHR entry
total cost 16,688 bit/1 MB LLC
CCCPO 5 counters (16 bit)

1 bit accessed bit each tag and MSHR
entry

total cost 16,592 bit/1 MB LLC
CCCPO+ 6 counters (16 bit)

1 bit accessed bit each tag and MSHR
entry

total cost 16,608 bit/1 MB LLC

CCCPO+ shows at most 14% degradation. By focusing
on the number of programs that show a degradation that is
larger than 5%, CCCPO+ is found to be 1, while FDP is
4, and CPT is 5. Because it is important for the worst-case
performance to be introduced into the processor design, CC-
CPO+ is effective with respect to cost, performance, and
stability, and is suited to current incoming LLC prefetchers.

6.4 Hardware Budgets

Note that CCCPO+ does not require large tables or addi-
tional tag array bits to trace the result of prefetching, as
are required with existing throttling approaches. As shown
in Table 4, CCCPO+ and CCCPO require fewer registers
because they do not trace the line to determine whether it
is prefetched. Of the related studies, FDP requires several
thousand bit tables for the pollution filter [12]. CCCPO+
achieves superior throttling with a smaller hardware budget.

7. Conclusion

Hardware prefetching can efficiently hide the long mem-
ory latency, but it requires proper aggressiveness. This
study proposed CCCPO+ as a novel approach to control
prefetcher aggressiveness. Based on our previous CCCPO,
the feedback algorithm is enhanced to dynamically scan
the CC for neighbor aggressiveness, and to determine the
best yet simple hardware. Evaluation results showed that
the performance had improved by 30% when compared to
no prefetching at 256 KB LLC. It also showed its supe-
rior stability when compared to other existing throttling ap-
proaches. The main reason is that we focused on cache
line reuse, as opposed to the conventional way of achieving
prefetcher accuracy or coverage. We also used an enhanced
scan algorithm for the feedback. This approach effectively
enhances current shared LLCs by improving their prefetcher
efficiencies. Attempts are now being made to introduce this
CC approach to other cache enhancement techniques, such
as replacement and partitioning.
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