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Computation-Communication Overlap of Linpack on a
GPU-Accelerated PC Cluster
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SUMMARY In this paper, we propose an approach to obtaining en-
hanced performance of the Linpack benchmark on a GPU-accelerated PC
cluster connected via relatively slow inter-node connections. For one node
with a quad-core Intel Xeon W3520 processor and a NVIDIA Tesla C1060
GPU card, we implement a CPU–GPU parallel double-precision general
matrix–matrix multiplication (dgemm) operation, and achieve a perfor-
mance improvement of 34% compared with the GPU-only case and 64%
compared with the CPU-only case. For an entire 16-node cluster, each node
of which is the same as the above and is connected with two gigabit Ether-
net links, we use a computation-communication overlap scheme with GPU
acceleration for the Linpack benchmark, and achieve a performance im-
provement of 28% compared with the GPU-accelerated high-performance
Linpack benchmark (HPL) without overlapping. Our overlap GPU accel-
eration solution uses overlaps in which the main inter-node communication
and data transfer to the GPU device memory are overlapped with the main
computation task on the CPU cores. These overlaps use multi-core pro-
cessors, which almost all of today’s high-performance computers use. In
particular, as well as using a CPU core for communication tasks, we also
simultaneously use other CPU cores and the GPU for computation tasks.
In order to enable overlap between inter-node communication and com-
putation tasks, we eliminate their close dependence by breaking the main
computation task into smaller tasks and rescheduling. Based on a scheme in
which part of the CPU computation power is simultaneously used for tasks
other than computation tasks, we experimentally find the optimal compu-
tation ratio for CPUs; this ratio differs from the case of parallel dgemm
operation of one node.
key words: parallel processing, multi-core processor, GPU, computation-
communication overlap

1. Introduction

The graphic processing unit (GPU) has become an inte-
gral part of today’s mainstream computing systems. Re-
cently, there has been a substantial improvement in the per-
formance and capabilities of GPUs. The modern GPU is a
powerful graphics engine as well as a highly parallel pro-
grammable processor featuring peak arithmetic and mem-
ory bandwidths that are substantially superior to those of
its CPU counterpart. Many studies on the use of GPUs for
numerical computations, such as matrix–matrix multiplica-
tions, have been reported.

Organizing PC clusters with multi-core processors and
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Fig. 1 A ratio of execution time occupied by communication tasks to
overall elapsed time when using HPL in our experimental environment (see
Tables 1 and 2, and Fig. 11 for details).

GPUs is also getting popular. This makes the efficient par-
allel use of CPUs and GPUs more important. Meanwhile,
in respect of inter-connects, faster ones, such as Inifiniband,
are commonly used in highend supercomputers. However,
compared to the GPUs, which are also widely shipped as
graphics engines in the consumer market, the latest inter-
connects are relatively costly. So, our experimental envi-
ronment utilizes two gigabit Ethernet links to connect 16
GPU-accelerated PCs, each of which has a quad-core Intel
Xeon W3520 processor and a NVIDIA Tesla C1060 GPU
card. For this type of clusters connected via relatively slow
inter-connects, its bandwidth might be a potential bottle-
neck. This bottleneck in our experimental environment can
be recognized from Fig. 1.

As we discuss in 3.3, CPUs provide 35% of computa-
tion power in our experimental environment. Therefore, it
is important to overlap computation and communication. In
our present work [1], we examined an efficient implementa-
tion of Linpack. Our approach is based on the Hybrid MPI-
OpenMP with thread-to-thread communication (Hybrid TC)
model introduced by [9].

This paper show further performance improvement of
Linpack by carefully tuning the overlap not only among
nodes but also between CPU and GPU on a single node.
Our Linpack implementation results in 28% performance
improvement compared with the nonoverlap GPU acceler-
ation case introduced by Fatica [5] on the above-mentioned
cluster environment.

The rest of the paper is organized as follows. Sec-
tion 2 introduces related studies that also examine GPU-
accelerated PC clusters. Section 3 describes the local
dgemm operation that uses CPU–GPU parallel processing.
In Sect. 4, we discuss computation-communication overlap
of the Linpack benchmark and explain our proposed ap-
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proach in detail. Section 5 shows the differences between
other Linpack implementations and ours, Sect. 6 the experi-
mental results, and Sect. 7 concludes the paper.

2. Related Studies

The HPL is a well-known example of numerical compu-
tations; it solves random dense linear systems in double-
precision arithmetic, and involve time-consuming tasks to
deal with matrix–matrix multiplication. Recent studies deal-
ing with general-purpose computing on GPUs (GPGPU)
introduce accelerations by utilizing the GPUs on a GPU-
accelerated PC clusters.

Ohshima et al. examined CPU and GPU parallel
matrix–matrix multiplications on a single node [2], a pro-
cedure that improves the local dgemm performance. There
are several frameworks and libraries to exploit the power of
CPU and GPU, such as StarPU [3] and MAGMA [4]. Al-
though these works successfully utilize computation power
on a single node, computation resources distributed over
many nodes connected via slow inter-connects are not con-
sidered.

Fatica showed the performance enhancement of HPL
by only spreading each matrix–matrix multiplication op-
erations (dgemm and dtrsm) over CPUs and GPUs [5].
Endo et al. presented implementations and evaluation results
on TSUBAME 1.2 [6], [7] and TSUBAME 2.0 [8]; These
works assumed fast but expensive inter-connects, such as
Infiniband. Meanwhile, because one of the advantages of
GPGPU is its low cost, it is important to consider good use
of CPU computation powers during inter-node communi-
cations on clusters utilizing inexpensive but basic and rel-
atively slow inter-connects. Unlike their approaches, we in-
troduce a smart intra-node task assignment to exploit these
CPU computation powers. More detailed differences are
discussed in Sect. 5.

Meanwhile, in multi-core cluster systems without GPU
accelerators, some other contributions have been made for
improving the computing power by applying hybrid MPI-
OpenMP models [9], [10]. It can exploit the power of
CPU cores even if slow inter-communication tasks consume
many CPU times. In our approach, we employ this model as
a base strategy. In the case of clusters with GPU accelera-
tors, we must consider the granularity of tasks. We describe
it in Sect. 4.

3. Local Parallel dgemm

In basic linear algebra subprograms (BLAS), matrix–matrix
multiplication is defined as a C = α × A × B + β × C com-
putation, where A, B, and C are matrices and α and β are
scalars [11].

3.1 CPU-Only dgemm

As shown in Fig. 2, if A(M,K), B(K,N), and C(M,N) are in-
put matrices, a dgemm call will compute C = αAB + βC.

Fig. 2 Matrix–matrix multiplication: C := α ∗ op(A) ∗ op(B) + β ∗C.

Several high-performance BLAS implementations are avail-
able: ATLAS [12], MKL [13], AMD ACML [14], and Goto-
BLAS2 [15]. All these procedures include implementation
of matrix–matrix multiplication in level 3, with which users
can develop their own applications using the library. We
use GotoBLAS2 for our experiments because of its power-
ful performance and simplicity of installation.

3.2 GPU-Only dgemm

For GPU computing, compute unified device architecture
(CUDA [16]) is a parallel programming model and software
environment designed to expose the parallel capabilities of
GPUs. CUDA extends C by allowing the programmer to
define C functions, called kernels, which, when called, are
executed N times in parallel by N different CUDA threads,
as opposed to only once as in the case of regular C func-
tions. The software environment also provides a BLAS li-
brary (CUBLAS), which includes matrix–matrix multipli-
cation. In this paper, GPU-only dgemm is performed by the
CUBLAS library instead of by specialized kernels.

3.3 CPU–GPU Parallel dgemm

The basic concept of CPU–GPU parallel matrix–matrix
multiplication is very simple. The original matrix A has
K × (Mc + Mg) elements, and matrix B has N × K ele-
ments. After the dgemm operation, there should therefore
be N × (Mc + Mg) elements in matrix C. Mc and Mg are
scalars that depend on the capabilities of a CPU and a GPU.
Matrices A and C can be viewed as the union of two sub-
matrices A = Ag ∪ Ac and C = Cg ∪ Cc, where Ag and Cg
denote the parts of A and C allocated to a GPU, and Ac and
Cc denote the parts of A and C allocated to a CPU.

In other words, we can divide the dgemm operation into
two completely independent parts (a CPU side and a GPU
side), and execute it in parallel (Fig. 3).

Figures 4 and 5 show the flow and pseudocode of the
local parallel dgemm. In this implementation, we first send
the matrices needed from the GPU to the device memory.
Once the data have been transferred, we call the CUBLAS
function and the GotoBLAS2 function in this order. Be-
cause the CUBLAS call returns immediately without block-
ing (the following cublasGetMatrix(), instead of this non-
blocking call, does not return until the dgemm computation
on the GPU is completed), this simple implementation en-
ables the overlap.

Figure 6 shows the performance of the CPU–GPU par-
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allel dgemm operation and the optimum experimental values
of the computation ratio R = Ac/A = Mc/(Mc+Mg) for ma-
trix sizes 4096. For this matrix size, the optimal R value is
around 0.34. We conducted similar experiments for various
matrix sizes, e.g., 2048 and 8192, but the optimal R value
is fixed. The hardware and software experimental environ-
ments are summarized in Table 1 and Table 2, respectively.

Note: It is known that the dgemm function call in
CUBLAS maps to several different kernels, depending
on the size of the matrices, and the best performance is
achieved when M is a multiple of 64. So the experiments
use computation ratios that satisfy this condition.

The calculation used to obtain the theoretical value of
R is as follows.

PCPU performance of CPU (GFlops)
PGPU performance of GPU (GFlops)
TCPU dgemm execution time on CPU
TGPU dgemm execution time on GPU

Fig. 3 A model of CPU–GPU parallel dgemm.

Fig. 4 A flow of the local parallel dgemm.

cublasSetMatrix(Mg, K, A, devptrA) // sends matrix Ag to the device memory

cublasSetMatrix(K , N, B, devptrB) // sends matrix B to the device memory

cublasSetMatrix(Mg, K, C, devptrC) // sends matrix Cg to the device memory

cublasDgemm(Mg, N, K, devptrA, devptrB, devptrC) // dgemm on the GPU (non-blocking)

dgemm (Mc, N, K, A+Mg , B , C+Mg) // dgemm on the CPU

cublasGetMatrix(Mg, K, devptrC, C) // receives updated matrix Cg from the device memory

Fig. 5 A pseudocode of the local parallel dgemm.

TCPU(M,K,N) =
2MKN
PCPU

TGPU(M,K,N) =
2MKN
PGPU

Note: A dgemm call results in 2MKN operations.

Fig. 6 CPU–GPU parallel dgemm performance for a matrix size of 4096.

Table 1 Hardware experimental environment (single node).

CPU Intel Xeon W3520
CPU clock rate 2.67 GHz
CPU number of cores 4
Memory 6 GB
L2 cache 1 MB
L3 cache 8 MB
CPU IPC 4 (double precision)
CPU peak performance 42.72 GFlops
GPU Tesla C1060
GPU clock rate 1.30 GHz
GPU number of cores 240
GPU memory 4 GB
GPU IPC 30 (double precision)
GPU peak performance 78 GFlops
Graphics Bus PCI-Express 2.0
Quick Path Interconnect 25.6 GB/s

Table 2 Software experimental environment (single node).

OS CentOS release 5.3
Compiler Intel C compiler 11.1
CPU BLAS GotoBLAS2 1.13 (USE OPENMP=1)
GPU BLAS CUBLAS 2.3
MPI library Open MPI 1.4.1 (–enable-mpi-threads)
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Fig. 7 CPU–GPU parallel dgemm performance versus that of CPU-only
and GPU-only dgemm on a single node.

As Fig. 4 shows, the highest performance is achieved
when the time for the CPU side is the same as that for the
GPU side dgemm:
{

TCPU(Mc,K,N) = TGPU(Mg,K,N)
M = Mc + Mg

Therefore,

2McKN
PCPU

=
2MgKN

PGPU

R =
Mc
M
=

PCPU

PCPU + PGPU

In our experimental environment,

R =
PCPU

PCPU + PGPU
=

42.72
42.72 + 78

≈ 0.35

The experimental value of R is nearly the same as the theo-
retical value; we can therefore predict the optimal division
point using the above equation.

The performance of the CPU–GPU parallel dgemm op-
eration is compared with that of the CPU-only and GPU-
only dgemm operations; this comparison is shown in Fig. 7.
The parallel dgemm operation is more effective than both
CPU-only and GPU-only operations. In the case of the par-
allel dgemm operation, the execution time of matrix–matrix
multiplication in a single node is reduced by 34% compared
with the GPU-only case, and by 64% compared with the
CPU-only case.

4. Computation-Communication Linpack Overlap

4.1 Equation System

The benchmark used in Linpack is solution of a dense sys-
tem of linear equations. One of the Linpack benchmark
implementations is the HPL. The system of linear algebra
equations has the following form:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

. . . . . .
an1x1 + an2x2 + . . . + annxn = bn

(1)

where the vectors x1 . . . xn are unknown values that need to
be determined. The coefficients ai j and the vectors bi on the
right-hand side are all generated randomly. The accuracy of
the solution is double precision for 64-bits of double-data
type.

4.2 LU Decomposition Algorithm

Several types of algorithm are used to solve linear problems.
Of these, the LU decomposition algorithm is considered to
be the most suitable. This algorithm is based on a simple
principle, and it is also effective in terms of computing per-
formance. Both the original HPL benchmark and our ap-
proach for GPU acceleration of the Linpack solutions em-
ploy the LU decomposition algorithm.

The system can be expressed in matrix form as follows:

A × x = b (2)

where A is the matrix of the coefficients and b is a column
vector. We can consider matrix A as two submatrices:

LU = A (3)

where L is a lower triangular matrix and U is an upper tri-
angular matrix. We can use this decomposition to solve the
set:

L × (U × x) = b (4)

First, we determine the vector y such that

L × y = b (5)

Next, we solve

U × x = y (6)

to determine the unknowns x.
The two equations above (5 and 6) can be solved by

forward and backward functions. When the problem size N
is sufficiently large, these equations take relatively less com-
putation time than that for LU decomposition. We therefore
focus solely on the LU decomposition algorithm.

4.3 Block Right-Looking LU Decomposition Algorithm

A square matrix A can be decomposed into lower and upper
components using various methods. The block right-looking
LU decomposition algorithm is one of the most effective
methods for parallelization. We decompose the matrix A
stepwise, using this algorithm. At each step, we set nb, the
block size at which we perform the decomposition, the nb
columns of the lower triangular matrix, and the nb rows of
the upper triangular matrix.

A undergoes partial factorization at a certain point,
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Table 3 Nonoverlap task list.

No. Description Cur. dep. Prev. dep.
1+ Bcast(D) - 7
2 Decom(D) 1 -
3* dtrsm(L) 2 -
4* dtrsm(U) 2 -
5+ Bcast(L) 3 -
6+ Bcast(U) 4 -
7* dgemm(T) 5,6 -

*: GPU-accelerated tasks.
+: Communication tasks.

Fig. 8 A nonoverlap task flow of an iteration in the block right-looking
LU decomposition algorithm.

from which the first nb columns of L and the first nb rows
of U are evaluated. A is then expressed as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
L11

L21 I
L31 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎢⎣

U11 U12 U13

A22 A23

A32 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (7)

where L11 and U11 are nb × nb matrices; the blocks Ai j are
matrices that should be factorized from this point onward in
the experiment.

We then factorize the next nb columns of L and nb rows
of U in advance.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
L11

L21 L22

L31 L32 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎢⎣

U11 U12 U13

U22 U23

A′33

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (8)

Our aim is to determine L22, L32, U22, and L23, and
submatrix A33. From the two equations above (7 and 8),
this can be done by solving the following equations using
BLAS:

L22U22 = A22 (9)

L32U22 = A32 (10)

L22U23 = A23 (11)

A′33 = A33 − L32U23 (12)

4.4 Nonoverlap Task Flow and GPU Acceleration

The tasks of an iteration, and the data dependence of these

tasks on the iteration, are listed in Table 3, data related to
the iteration (submatrices D, L, U, and T ) are outlined in
Fig. 8 (a), and the task graph is depicted in Fig. 8 (b). In the
table, “No.” refers to the task number, “Cur. dep.” refers to
the operation in this iteration on which the current operation
depends, and “Prev. dep.” refers to the operation in the last
iteration on which the current operation depends.

There are several broadcast tasks (1, 5, and 6) because
the matrix A is divided into several nb×nb blocks distributed
by a block cyclic scheme on the process grid. Using this
approach, we can minimize the cost of inter-node commu-
nication. Submatrix D is the ith block of the main diagonal.
Submatrices L, U, and T represent the current parts of the
lower, upper, and trailing matrices, respectively. Tasks 2
(Decom(D)), 3 (dtrsm(L)), 4 (dtrsm(U)), and 7 (dgemm(T))
are for Eqs. (9), (10), (11), and (12), respectively.

Of these tasks, all matrix–matrix multiplication com-
putation tasks (two dtrsm tasks and one dgemm task) can be
accelerated with the GPU by employing local parallel dtrsm/
dgemm methods; the dgemm case is mentioned in Sect. 3.
This acceleration is achieved by a simple replacement of
the dtrsm and dgemm calls. Fatica exemined the perfor-
mance of an HPL accelerated with GPUs by this replace-
ment method [5].

As mentioned above, we also split each dtrsm opera-
tion into CPU-side and GPU-side computations in a similar
way to the dgemm case. However, the optimal value of R
which we obtained experimentally is 0.31; very slight im-
provement (less than 0.2% compared to the result for 0.35)
of the overall performance is achieved. Implementation de-
tails of the GotoBLAS2 and/or the CUBLAS seems to result
in this.

4.5 Computation and Inter-Node Communication Overlap

There are two overlap techniques employed for our accel-
eration. In this subsection, we describe one of them: an
overlap between the computation and the inter-node com-
munication.

Among all the tasks in a certain iteration, tasks 5 and 6
consume more than 90% of the overall communication cost,
and task 7 consumes more than 90% of the overall compu-
tation cost. We use a small cluster for computation, and,
hence, the matrix cannot be very large. Thus, the cost to
dtrsm(L) and dtrsm(U) is very small. We can simply focus
on tasks 5, 6, and 7, as they are also our main target for over-
lap between computation and inter-node communication. In
order to enable the overlap, we first need to eliminate the
dependence of the operation on these tasks.

As Fig. 8 (b) shows, all tasks of the current iteration in
the nonoverlap case depend on task 7 of the previous iter-
ation that updates the “previous” trailing matrix, including
the “current” D, U, L, and T . In order to break this de-
pendence into several smaller ones, we split task 7 into 71,
73, 74, and 77, which update D, U, L, and T , respectively.
The new task list is shown in Table 4, the task dependence
graph is shown in Fig. 9 (b), and the data pattern is shown in
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Table 4 Computation-communication overlapped task list.

No. Description Cur. dep. Prev. dep.
1+ Bcast(D) - 71

2 Decom(D) 1 -
3* dtrsm(L) 2 73

4* dtrsm(U) 2 74

5+ Bcast(L) 3 -
6+ Bcast(U) 4 -
71 * dgemm(D1) 5,6 77

73 * dgemm(L1) 5,6 77

74 * dgemm(U1) 5,6 77

77 * dgemm(T1) 5,6 77

*: GPU-accelerated tasks.
+: Communication tasks.

Fig. 9 A computation-communication overlapped task flow of an itera-
tion in the block right-looking LU decomposition algorithm.

Fig. 9 (a).
Since tasks 5 and 6 (major communication) and the

previous task 77 (major computation) are data independent,
we can reconstruct the loop such that they are in the same it-
eration (shaded polygon in Fig. 9 (b)) and make them occur
simultaneously.

4.6 Computation and CPU-to-GPU Data Transfer Overlap

In this subsection, we describe the other overlap between
computation on the CPU and data transfer from the main
memory to the device memory on the GPU.

As we showed in Sect. 3, in order to use the GPU for
the computation, we first need to transfer the data of matri-
ces Ag, B, and Cg. During this transmission, only one CPU
core is working and the other CPU cores are not working.
So we can enhance the usage rate of the CPU computational
power by assigning these CPU cores to perform the compu-
tation during this period.

This technique can produce an advanced performance
only when we use a hardware environment which ensures
that data transfer to a GPU via the PCI-e, and the main mem-
ory accesses required by the computations, are done with no
bandwidth constraints. In our cluster processors, the cores
are able to access main memory and transfer data to the de-
vice through a quick path interconnect (QPI) at the same

Fig. 10 Detailed task assignments for each implementation.

time. There are separate buses connected to the main mem-
ory and PCI-e slots. We can therefore obtain a performance
improvement.

4.7 Intra-Node Task Assignment

We can use multiple CPU cores for computations by using
the latest BLAS libraries, such as GotoBLAS2, as shown
in Fig. 10 (a), (b) and (c). However, this method does not
execute any other tasks on the CPU core instead of the com-
putation task. We therefore use OpenMP #pragma directives
to make our own computation threads, and let the inter-node
communication and data transfer to the GPU device mem-
ory be executed on the master thread before it is used for
the dgemm computations. CPU side dgemm operations are
divided into smaller GotoBLAS2 tasks each of which is ex-
ecuted on either one CPU thread, and in order to make a
lower overhead and a balanced workload distribution, last
several tasks are relatively small.

In order to use GotoBLAS2 and OpenMPI together
with OpenMP, we use the GotoBLAS2 library built with the
setting USE OPENMP=1, and the OpenMPI library config-
ured with the –enable-mpi-threads option. These supports
have an insignificant impact on the performance.
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Moreover, we have a only one large GPU-side task for
each iteration instead of dividing it into smaller ones, in or-
der to minimize the number of the overheads of GPU-side
task executions. Unlike Fig. 10 (b) and (c), it does not re-
quires CPU cores dedicated for data transfers between CPU
and GPU.

These our approaches result in exploiting more com-
putation power of not only GPUs but also CPUs without
any complex implementations. Finally, our detailed task as-
signment for tasks 5, 6, and 77 has become like depicted in
Fig. 10 (d).

5. Differences between Implementations

Figure 10 depicts differences in overlapping schemes among
four implementations of the Linpack benchmark. In this fig-
ure, each white arrow represents a data flow between nodes,
and each black arrow a data flow between CPU and GPU in
a single node.

Figure 10 (a) is the case of the original HPL optimiza-
tion called “look-ahead.” With look-ahead, the dgemm calls
are fragmented into small pieces to check incoming mes-
sages periodically. When a message comes, the process re-
ceives an entire message (during this time, neither CPUs nor
GPUs perform any computation tasks) and then performs
the remaining computation task at a time. However, frag-
mented dgemm calls to GPUs cause the performance degra-
dation.

In the TSUBAME 1.2 and 2.0 implementations, Endo
et al. avoid this disadvantage by creating a separate thread
per process that makes dgemm calls for coarse grain sub-
matrix portions (Fig. 10 (b) and (c) figure out examples
when using them in our experimental environment). How-
ever, there exist idle times on CPU cores especially which
are not responsible for communication. Moreover, TSUB-
AME 2.0 implementation does not use CPUs for dgemm due
to the much smaller computation power of CPUs, which is
8% of the entire computation power, compared to that of
GPUs.

In our experimental environment, CPUs contribute
35%, which is much greater than that in TSUBAME 2.0, and
the inter-connects are relatively slow; therefore this types of
idle time on the CPU cores are not negligible. So, our im-
plementation depicted by Fig. 10 (d) carefully exploits these
computation powers.

6. Results

An image of the GPU-accelerated PC cluster is shown in
Fig. 11. In the figure, all the nodes denoted by rectangles
are connected by two gigabit switches. The four small cir-
cles within the dark rectangle represent four cores of the
processor. The hardware and software experimental envi-
ronments are the same as in the case of the local parallel
dgemm (Table 1 and Table 2).

Fig. 11 An experimental GPU-accelerated PC cluster.

Fig. 12 Linpack performance with varying computation ratios R for the
overlapping part.

Table 5 Optimal computation ratios for each task.

No. Description Ratio
3 dtrsm(L) 0.31 (see Sect. 4.4)
4 dtrsm(U) 0.31 (see Sect. 4.4)
71 dgemm(D1) 0.35 (see Sect. 3)
73 dgemm(L1) 0.35 (see Sect. 3)
74 dgemm(U1) 0.35 (see Sect. 3)
77 dgemm(T1) 0.31 (see Fig. 12)

6.1 Optimal Computation Ratios

Because part of the CPU time is assigned to tasks other than
the dgemm operation in the overlapping part (see Fig. 10 (d),
this part corresponds to the inter-node communication task
and the CPU-to-GPU data transfer task in the OpenMP par-
allel region), we must reconsider the optimal computation
ratio R for the overlapping part. We take different compu-
tation ratios, depending on the type of matrix–matrix multi-
plication and whether or not computation is overlapped with
communications. We conducted experiments with varying
computation ratios for the overlapping part and a fixed prob-
lem size N = 90,000. The experimental results are shown
in Fig. 12, and the experimentally obtained optimal compu-
tation ratios are listed in Table 5.

6.2 Overall Performance

According to our experiments, the highest performance for
our overlap GPU-accelerated Linpack benchmark can be
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Fig. 13 Linpack performance with varying N.

achieved when the block size NB = 576.
The experimental results for different problem sizes are

shown in Fig. 13. Our implementation (3 in Fig. 13) out-
performs both implementations introduced by Fatica (1 in
Fig. 13) and Endo et al. (2 in Fig. 13) at all problem sizes.
The implementation of Endo et al. is one for the TSUBAME
2.0 but modified to use 3 CPU cores not involving a core for
communication with GPU.

We perform about 69% of the computation on the GPU
side. We use a 4 × 4 process grid, where each process has
four threads; our implementation achieve 62% of the the-
oretical peak performance, while those of Fatica and Endo
et al. are 48% and 54%, respectively. Our implementation
outperforms that of Fatica by about 28% and that of Endo
et al. about 16% thanks to the increase in the rate of the uti-
lization of CPUs by an overlap between computation and
inter-node communication and an overlap between compu-
tation and data transfer to the GPU device memory. How-
ever, the effect of the latter ovarlap is relatively small: 3%
improvement in performance.

7. Discussion and Conclusion

We show that an implementation using the thread-level over-
lapping scheme can exploit the higher rate of the utilization
of the entire computation power. However, when using the
GPUs, it is also required to use efficient task breakdown and
assignment to avoid performance degradation. We intro-
duced our breakdown and assignment method and showed
its efficiency.

We believe the proposed parallelizing scheme is also
effective for the other data-parallel applications. Following
is a procedure to apply the proposed scheme;

1. Select blocks for parallelization which should include
both communication and computation and occupy a
noticeable percentage of the execution time.

2. For each block, build a task-dependency graph which
should also include the dependencies concerning the
previous and next iteration.

3. Enlarge the available overlapping part by trying one

or more techniques mentioned in [9], such as splitting
tasks into small ones and so on.

4. Rebuild the task-dependency graph with the modifi-
cations caused by above steps, and build a new task-
schedule using the hybrid MPI-OpenMP thread-level
overlapping.

5. Divide computation tasks into CPU and GPU parts ac-
cording to the capabilities of them. To avoid degrada-
tion of GPU calls and complex implementations, make
sure that each overlapping part has a only one large
GPU task instead of ones divided, and the CPU-to-
GPU data transfer added to the thread-level overlap-
ping.

6. Due to the communication tasks performed on a
CPU core, available CPU computation power may be
smaller than the theoretical values. Make an adjust-
ment of the computation ratio of GPUs experimentally.

Our future work includes applying the proposed
scheme for other applications based on this procedure.
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