修士論文の和文要旨

研究科	・専攻	大学院情報システム学研究科 情報シス	テム基盤学専巧	攻 博士前期課程
氏	名	吉川貴博	学籍番号	1153027
論 文	題目	注入同期における引き込み能力を最適化	する外部周期作	言号の設計

要 旨

近年,同期現象の1つである注入同期を無線通信端末における発振器など工学分野へ応用する 研究が注目されている.注入同期とは,振動子に外部より周期信号を与えることで,周期信号の 周波数に振動子の周波数が引き込まれ,同調する現象である.

注入同期において,実環境を想定するとノイズ等の周辺環境の影響により,振動子の周波数は 揺らぎ,同期が外れてしまう事がある.したがって,振動子の引き込み能力を最適化する周期信 号を設計する事は重要な課題の1つであるといえる.また,この周期信号を設計するために,振 動子の外部入力への応答の影響を示す位相応答曲線を正確に推定する事も重要な課題である.従 来,田中によってノイズのない理想的な環境下,ノイズ環境下での最適外部信号を設計するアル ゴリズムが構築されている.また,PRC推定によっても菊地らがノイズ耐性の強い位相応答曲線 の推定手法を提案している.しかし,菊地らは振動子への数値シミュレーションにおけるノイズ 環境下での確率微分方程式の解き方に誤りがあった.そのため,菊地らの手法のノイズ耐性を再 検証する必要がある.

そこで本研究ではまず,代表的な振動子系を想定して,正しい設定で菊地らによる位相応答曲 線の推定手法のノイズ耐性の検証を行う.次に,推定した位相応答曲線を用いて,理論的に最適 周期信号を設計する.また,最適周期信号の設計の別のアプローチとして遺伝的アルゴリズムを 設計し,遺伝的アルゴリズムによる探索解でも上記の信号を得る.その結果,従来手法より精度 よく位相応答曲線を推定できるノイズの大きさの範囲を得た.そして,遺伝的アルゴリズムの結 果と比較する事により,理論解の妥当性を示した.

平成24年度 修士論文

注入同期における引き込み能力を最適化する 外部周期信号の設計

学籍番号1153027氏名吉川貴博情報システム学研究科情報システム基盤学専攻主指導教員田中久陽准教授指導教員大森 匡教授指導教員近藤 正章 准教授提出日平成25年1月24日

概要

近年,同期現象の1つである注入同期を無線通信端末における発振器など工学分野へ応用 する研究が注目されている.注入同期とは,振動子に外部より周期信号を与えることで,周 期信号の周波数に振動子の周波数が引き込まれ,同調する現象である.注入同期において, 実環境を想定するとノイズ等の周辺環境の影響により,振動子の周波数は揺らぎ,同期が外 れてしまう事がある.したがって,振動子の引き込み能力を最適化する周期信号を設計する 事は重要な課題の1つであるといえる.また,この周期信号を設計するために,振動子の外 部入力への応答の影響を示す位相応答曲線を正確に推定する事も重要である.従来,田中に よってノイズのない理想的な環境下,ノイズ環境下での最適外部信号を設計するアルゴリズ ムが構築されている.また,PRC推定によっても菊地らがノイズ耐性の強い位相応答曲線の 推定手法を提案している.しかし,菊地らは振動子への数値シミュレーションにおけるノイ ズ環境下での確率微分方程式の解き方に誤りがあった.そのため,菊地らの手法のノイズ耐 性を再検証する必要がある.

そこで本研究ではまず,代表的な振動子系を想定して,菊地らによる位相応答曲線の推定 手法の再検証を行う.次に,推定した位相応答曲線を用いて,理論的に最適周期信号を設計 する.また,別のアプローチとして遺伝的アルゴリズムを設計し,遺伝的アルゴリズムによ る探索解でも上記の信号を得る.

その結果,従来手法より位相応答曲線を推定できるノイズの大きさを得た.そして,最適 周期信号の設計において,理論の適用内である振動子については,遺伝的アルゴリズムの結 果と比較する事により,理論解の妥当性を示した.

目 次

第1章	序論	1
1.1	同期現象と実例	1
1.2	対象とするモデル	1
	1.2.1 Hodgkin-Huxley 方程式	1
	1.2.2 Rössler 方程式	5
1.3	位相応答曲線	6
1.4	振動子の位相記述法	6
	1.4.1 弱い摂動を受けた時の振動子	6
	1.4.2 弱い周期外力を受けた時の振動子	7
	1.4.3 ランダム外力を受けた時の振動子	8
1.5	本研究の目的	9
第2章	理想的な環境下での位相応答曲線の推定及び最適な外部周期信号の設計	10
2.1	理想的な環境下での位相応答曲線の推定	10
2.2	ヘルダーの不等式による最適周期信号の理論的導出	11
	2.2.1 ヘルダーの不等式による最適化アルゴリズム	11
	2.2.2 Hodgkin-Huxley 振動子の最適周期信号の理論的導出	23
2.3	Genetic Algorithm を用いた最適周期信号の探索	36
	2.3.1 Genetic Algorithm の設計	36
	2.3.2 理論解と Genetic Algorithm による探索解の比較	37
2.4	設計した最適外部周期信号の引き込み能力のシミュレーション検証	39
2.5	逓倍動作時の最適外部周期信号の引き込み能力のシミュレーション検証	43
	パワー一定の場合....................................	43
	振幅一定の場合	44
	面積一定の場合....................................	47
第3章	ノイズ環境下での位相応答曲線の推定及び最適な外部周期信号の設計	50
3.1	数値シミュレーションにおけるノイズの与え方	50
3.2	ノイズ環境下での位相応答曲線の推定............................	51
	3.2.1 菊地らによる位相応答曲線の推定手法の原理	52
	$n \ge 1$ の場合	52
	n=0の場合	53
	注入正弦波の角周波数が振動子の自然角周波数の整数倍でない場合	53
	3.2.2 位相応答曲線の推定手順	54
	3.2.3 位相応答曲線の推定のノイズ耐性の検証	57
	Hodgkin-Huxley 方程式の位相応答曲線の推定	57

		Rössler 方程式の位相応答曲線の推定	61
3.3	ノイズ	『環境下での最適波形の導出	62
	3.3.1	確立分布のピーク値を最大化する周期信号の理論的導出	62
	3.3.2	確立分布のピーク値を対象とした時の理論解と Genetic Algorithm の探索解の	
		比較	70
		Hodgkin-Huxley 振動子を対象とした時の理論解と GA による探索解の比較	70
		Rössler 方程式を対象とした時の理論解と GA による探索解の比較	74
笠ィ音	<u>≪±=</u> ≏		01
第4章	結論		81
第4章 謝辞	結論		81 82
第 4 章 謝辞	結論		81 82
第4章 謝辞 参考文献	結論 t		81 82 83
第4章 謝辞 参考文献	結論 t		81 82 83

第1章 序論

1.1 同期現象と実例

自然界には固有のリズムを持つ振動子が数多く存在する.このような振動子はリミットサ イクル振動子と呼ばれ,複数の振動子が相互に影響し合うと,互いの周波数が一致する.こ の現象を同期現象といい,古くから実例が発見されている.例えば,ホタルの集団同期明 滅,メトロノームの集団同期などが知られており,これらは理論的な解析も行われている. 工学分野においては,無線端末の発振器の位相雑音を低減させるために,注入同期と呼ばれ る現象が利用されている.注入同期とは,振動子に外部より周期信号を与えることで,周期 信号の周波数に振動子の周波数が引き込まれ,同調する現象である.

本論文では、振動子の数理モデルを対象に、以上の同期現象の解析を行う.

1.2 対象とするモデル

本研究で対象とする振動子のモデルとして, Hodgkin-Huxley 方程式, Rössler 方程式を採 用する.本節では, Hodgkin-Huxley 方程式 [1], Rössler 方程式 [2] の概要を説明する.

1.2.1 Hodgkin-Huxley 方程式

Hodgkin-Huxley 方程式は神経細胞に見られる活動電位について現象論的に記述した式で、 時間変数*V*, *m*, *h*, *n*の4つの方程式からなる連立方程式であらわされる.

$$C \cdot \frac{dV}{dt} = G_{Na}(E_{Na} - V) + G_K(E_K - V) + G_L(E_L - V)$$
(1.1)

ここで、 G_{Na} 、 G_K はそれぞれナトリウムイオンとカリウムイオンの濃度で決まるコンダク タンス、 G_L はリークチャネルを表す抵抗のコンダクタンスである.これらのコンダクタン スは、さらに各コンダクタンスのピーク値を表す定数 g_{Na} , g_K , g_L , 時間変数 m, n, hを 導入して次のように表せる.

$$G_{Na} = g_{Na}m^3h \tag{1.2}$$

$$G_K = g_K n^4 \tag{1.3}$$

$$G_L = g_L \tag{1.4}$$

ただし、文献 [3] に倣い、コンデンサの容量を表す定数 C、平衡電位を表す定数 E_{Na} 、 E_K 、 E_L 、各コンダクタンスのピーク値を表す定数 g_{Na} 、 g_K 、 g_L 、及び時間変数 m、n、hの方程 式は次のように設定した.

$$C = 1[\mu F/cm^2] \tag{1.5}$$

$$E_{Na} = 50[\mathrm{mV}] \tag{1.6}$$

$$E_K = -77[\mathrm{mV}] \tag{1.7}$$

$$E_L = -54.4 [\text{mV}]$$
 (1.8)

$$g_{Na} = 120 [\text{mS/cm}^2]$$
 (1.9)

$$g_K = 36 [mS/cm^2]$$
 (1.10)

$$g_L = 0.3 [\text{mS/cm}^2]$$
 (1.11)

$$\frac{dm}{dt} = 0.1 \cdot \frac{V + 40}{1 - \exp\left(-\frac{V + 40}{10}\right)} \cdot (1 - m) - 4 \cdot \exp\left(-\frac{V + 65}{18}\right) \cdot m \tag{1.12}$$

$$\frac{dh}{dt} = 0.07 \cdot \exp\left(-\frac{V+65}{20}\right) \cdot (1-h) - \frac{1}{1+\exp\left(-\frac{V+35}{10}\right)} \cdot h$$
(1.13)

$$\frac{dn}{dt} = 0.01 \cdot \frac{V + 55}{1 - \exp\left(-\frac{V + 55}{10}\right)} \cdot (1 - n) - 0.125 \cdot \exp\left(-\frac{V + 65}{80}\right) \cdot n \tag{1.14}$$

V, *m*, *h*, *n*の時間変化と*V*, *m*からなるリミットサイクルは以下のようになる.以下の図より, Hodgkin-Hoxkley 振動子は周期的に運動している振動子であることがわかる.

図 1.1: V

図 1.2: *m*

図 1.3: h

図 1.4: n

図 1.5: リミットサイクル

1.2.2 Rössler 方程式

Rössler 方程式とは、対流のモデルとして知られているローレンツ方程式を簡単化したもので、以下の3式で表される.

$$\frac{dx}{dt} = -\alpha y - z \tag{1.15}$$

$$\frac{iy}{dt} = \alpha x + 0.15y - Cy \tag{1.16}$$

$$\frac{dz}{dt} = 0.2 + z(x-2) \tag{1.17}$$

x, y, zの時間変化とx, yからなるリミットサイクルは以下のようになる.以下の図より, Rössler 振動子は周期的な定常解に落ち着く振動子であることがわかる.

図 1.6: x

図 1.7: y

図 1.8: z

この方程式の非線形性は,式(1.17)のみである.このような単純な非線形性を有する方程式 でありながら,天体物理学,化学など広範囲で適用される.

以上の2つの方程式を対象に本研究でシミュレーション検証を行なった.

図 1.9: リミットサイクル

1.3 位相応答曲線

注入同期において,振動子の周波数は外部周期信号の影響を受けて変化している.これ は,振動子の周期的運動における周期中の位置を位相と定義すると,振動子は外部周期信号 の影響により位相を変化させているともいえる.振動子の位相の変化は外部周期信号を受け る位相によって異なる.この位相変化の位相依存性を表したものを位相応答曲線と呼ぶ.位 相応答曲線は各位相に対し,その位相で受けた振動子の位相変化量を表す周期関数である. したがって,位相応答曲線によって,外部周期信号を受けた振動子の振る舞いを知ることが できるので振動子の位相応答曲線を正確に推定する事は重要である.

1.4 振動子の位相記述法

振動子の振る舞いを解析する際,位相記述法がよく用いられる [4].本節では,様々な外力を 受けた場合における振動子の振る舞いを示す.

1.4.1 弱い摂動を受けた時の振動子

リミットサイクル振動子は以下のn次元力学系で表される.

$$\frac{d\mathbf{X}}{dt} = \mathbf{F}(\mathbf{X}) \tag{1.18}$$

ここで、**X** = (X_1, X_2, \dots, X_n) はn 次元ユークリッド空間のベクトルであり、t は時間、**F** は **X** の非線形のベクトル関数である.また、リミットサイクル振動子の周期を T とすると、 任意の点 **X** の位相 ϕ (**X**) と1 周期後の位相 ϕ (**X** + T) は ϕ (**X**) = ϕ (**X** + T) の関係となる.つ まり、振動子の角周波数を ω とすると、位相 ϕ はリミットサイクル起動 C 上のある位置を表 し、C上の周回運動と共に ϕ が $\frac{d\phi}{dt} = \omega$ に従うものと定義する. ϕ は**X**を通じてのみ時間変 化するため、 $\frac{d\phi}{dt} = \operatorname{grad}_{\mathbf{X}} \phi \mathbf{F}(\mathbf{X})$ となり、上記の ϕ の定義より、以下が成り立つ.

$$\frac{d\phi}{dt} = \operatorname{grad}_{\mathbf{X}}\phi\mathbf{F}(\mathbf{X}) = \omega \tag{1.19}$$

ここで、外部から弱い摂動 p(t) を受けた振動子の時間変化は以下で表される.

$$\frac{d\mathbf{X}}{dt} = \mathbf{F}(\mathbf{X}) + \varepsilon \mathbf{p}(t) \tag{1.20}$$

ただし, εは摂動の弱さを表すための微小パラメータである.式 (1.20) のとき,式 (1.19) を 用いると位相の時間変化は以下で表される.

$$\frac{d\phi}{dt} = grad_{\mathbf{X}}\phi \cdot [\mathbf{F}(\mathbf{X}) + \mathbf{p}(t)] = \omega + \operatorname{grad}_{\mathbf{X}}\phi \cdot \mathbf{p}(t)$$
(1.21)

 $\mathbf{p}(t)$ は弱い摂動のため、X はリミットサイクル起動から外れないと考える事が出来る.よって、式 (1.21)の位相変化量 grad_X ϕ は同じ位相 ϕ をもつ周期関数 $Z(\phi)$ で近似できる.この $Z(\phi)$ が 1.3 節で述べた位相応答曲線である.したがって、位相応答曲線を用いると (1.21) は以下の式で表される.

$$\frac{d\phi}{dt} = \omega + \mathbf{Z}(\phi) \cdot \mathbf{p}(t) \tag{1.22}$$

式(1.22)より,弱い摂動を受けた振動子の振る舞いを記述できた.

1.4.2 弱い周期外力を受けた時の振動子

前説では弱い外力を受けた振動子の振る舞いを示した.本節では、外力が平均角周波数 Omegaの周期的な信号 $\varepsilon f(\Omega t)$ である場合を考える.振動子の自然角周波数を ω_0 としたと き、振動子と周期外力の周波数差を $\varepsilon \Delta \omega = \omega - \Omega$ とおき、これを周波数離調という. varepsilon は微小なパラメータのため、離調周波数は十分小さいものとする.このとき、式 (1.22) より移送方程式は以下のようになる.

$$\frac{d\phi}{dt} = \omega + Z(\phi) \cdot \varepsilon f(\Omega t) \tag{1.23}$$

ここで、 $\phi = \Omega t + \psi$ として新しい位相変数 ψ を導入すると、式 (1.23) を以下のように表せる.

$$\frac{d\psi}{dt} = \omega_0 - \Omega + Z(\psi + \Omega t) \cdot \varepsilon f(\Omega t)$$
(1.24)

$$= \varepsilon \Delta \omega + \varepsilon Z(\psi + \Omega t) f(\Omega t) = \varepsilon [\Delta + Z(\psi + \Omega t) f(\Omega t)]$$
(1.25)

 ψ は振動子の周期外力の位相差を表しており、位相差が時間的に一定なら、あるいは ψ の変 動が有限の範囲に収まるとき、 $\frac{d\psi}{dt} = 0$ となる.このとき、振動子は周期外力に同期したとい える.逆に、 ψ がドリフトし続けてしまうとき、非同期という.式(1.25)より、 ψ の時間的 変化量は、 ϕ に比べて非常にゆっくりとした変動になる.

1.4.3 ランダム外力を受けた時の振動子

本節では,振動子に与える外力をランダム外力,つまりノイズ *ξ*(*t*) である場合を考える.ノ イズ *ξ*(*t*) は定常確率分布であるとし,以下を満たすホワイトガウスノイズとする.

$$\langle \xi(t) \rangle = 0 \tag{1.26}$$

 $\langle \xi(t_0)\xi(t_0+t)\rangle = 2D\delta(t) \tag{1.27}$

ここで、 $\langle \cdots \rangle$ は平均を表しており、式 (1.27)、(1.27) は $\xi(t)$ の確率分布が0を中心として分散値 Dのガウス分布となることを示している.このとき、振動子の位相の時間発展は式 (1.22) より以下のように表せる.

$$\frac{d\phi}{dt} = \omega_0 + Z(\phi) \cdot \xi(t) \tag{1.28}$$

確率的に揺らぐ量 $\xi(t)$ を含む式 (1.28)のような確率微分方程式を Langevin 方程式という. 以上より,式 (1.28)よりランダム外力を受けた時の振動子の振る舞いを示した.前節と同様 に $\phi = \omega_0 t + \psi$ とおき、ゆっくり変化する変数 ψ を導入すると、Langevin 方程式は以下のよ うな Fokker-Planck 方程式に変換される.

$$\frac{\partial P(\psi,t)}{\partial t} = -M_1 \frac{\partial P(\psi)}{\partial \psi} + \frac{M^2}{2} \frac{\partial^2 P(\psi,t)}{\partial \psi^2}$$
(1.29)

ここで、 $P(\psi,t)$ は ψ の確率分布であり、時刻tにおいて位相が ψ から $\psi + \Delta \psi$ に飛躍する確 率を表している.また、 M_1 及び M_2 は確率繊維の1次、2次モーメントを表しており、式 (1.29)の右辺第一項はドリフト項、第二項は拡散項である.ランダム外力の影響がないか、 極めて弱い場合に振動子と周期外力が同期すればそのとき両者の位相差は一定となるため $P(\psi,t)$ は $\psi = 0$ に鋭いピークを持つ、一方、ランダム外力の影響が強い場合、分布の粗野 は広がり、ピークは $\psi = 0$ で固定されない、よって、位相差の確率分布のピークが高いほど、 その周期外力は振動子の位相をよく固定できる信号と言える.

1.5 本研究の目的

本研究では、位相応答曲線の推定と最適周期信号の設計の2つの問題に注目した. 位相応答 曲線を用いる事でその振動子の挙動を解析しやすくなるため、位相応答曲線を精度よく推定 する事は本研究で注目する外部周期信号の最適化など工学分野において必要不可欠な問題で あることがわかる.また、最適周期信号を設計する事で、高速無線通信端末の位相雑音の低 減を可能にするなど、これも重要な問題となっている.上記2つの問題は、個々では広く研 究されている.しかし、上記2つの問題を同時に注目した研究、つまり、現実的な環境下で 位相応答曲線の推定を行い、そこから最適周期信号の設計を行った例はない.そこで本研究 では、振動子系を対象にノイズがない理想的な環境とノイズのある現実的な環境の環境下両 方を想定して、位相応答曲線の推定及び最適周期信号の設計をシミュレーションで行なった.

第2章 理想的な環境下での位相応答曲線の推定及 び最適な外部周期信号の設計

2.1 理想的な環境下での位相応答曲線の推定

理想的な環境下を想定した位相応答曲線の推定手法として、インパルス応答法がある [5]. インパルス応答法とは、発振器に微小インパルスを注入し、その結果生じる応答を計測する ことにより位相応答曲線を求めるという単純な手法である。例えば、位相シフト量が0で あった場合、その時間での位相応答曲線の取る値も0であり、位相シフトが発生すれば、そ の時間での位相応答曲線の取る値は位相シフト量である。そして、横軸をインパルスを注入 した時間、縦軸を位相シフト量とすれば、位相応答曲線を推定する事ができる。 実際にシミュレーションにより得た Hodgkin-Huxley 振動子の位相応答曲線を以下に示す。 注入したインパルスはパルス幅を Hodgkin-Huxley 振動子の約 1/100 である 0.14[ms]、パル スの高さを振動子の約 1/30 である 0.2 と十分微小なインパルスを用いた。

図 2.1: Hodgkin-Huxley 振動子の位相応答曲線

図 2.1 の PRC を用いて、本章では最適周期信号の設計を行う.

2.2 ヘルダーの不等式による最適周期信号の理論的導出

2.2.1 ヘルダーの不等式による最適化アルゴリズム

弱い外部周期信号を受けた振動子の発振位相 ψ の挙動は、一般的に位相縮約法を用いて表される.この時、外部周期信号の影響を受けた振動子の振る舞いは位相応答関数 $Z(\psi)$ で表される.ここで、外部周期信号 $f(\theta)$ の発振位相を $\theta = \Omega t$ とすると、 ψ の時間変化は式 (2.1)で表される.

$$\frac{d\psi}{dt} = \omega + Z(\psi)f(\theta) \tag{2.1}$$

このモデルは Winfree モデルという.式 (2.1) に対し,振動子と外部周期信号の位相差を表 す変数 $\phi = \psi - \theta を$ 導入する.一般的に,m:n 同期は $\frac{\alpha}{m} - \frac{\Omega}{n} \sim O(\epsilon)$ が正の相対的な整数 mと n で満たされるときに起こる.この場合,振動子と外部周期信号の周波数差 $\Delta \omega$ が比較的 小さいとすると,式 (2.1) を外部周期信号の1周期で平均化することにより, ϕ の時間変化は 式 (2.2) で表される.

$$\frac{d\phi}{dt} = \Delta\omega + \Gamma_{m/n}(\phi) \tag{2.2}$$

ここで、 $\phi \ge \Delta \omega$ はそれぞれ $m\phi = \psi - \frac{m}{n}\Omega t \ge \Delta \omega = \frac{\omega}{m} - \frac{\Omega}{n} \ge U$ て定義され、相互作用関数 $\Gamma_{m/n}(m\phi)$ は (2.3) 式のように $f \ge Z$ によって与えられる.

$$\Gamma_{m/n}(m\phi) = \frac{1}{T} \int_0^T \frac{1}{m} \left(\frac{m}{n}\Omega t + m\phi\right) f(\theta)dt$$

= $\frac{1}{2\pi m} \int_{-\pi}^{\pi} Z(m\theta + m\phi) f(n\theta)d\theta \equiv \langle Z(m\theta + m\phi)f(n\theta)\rangle$ (2.3)

ここで、外部周期信号の周期*T*は*T* = $\frac{2\pi n}{\Omega}$ で、 $\theta \in [-\pi,\pi]$ は $\frac{\Omega t}{n}$ を表す.本研究では主に m = n = 1のケースの1:1同期を考え、簡単のために $\Gamma_{m/n}$ を Γ として表わすこととする. また、 $\frac{d\phi}{dt} = 0$ となると、振動子と外部周期信号の位相差は一定となり同期している. $\Delta \omega$ は 定数なので、その値が $\Gamma(\phi)$ の最大値と最小値の範囲内であり、そこで $\Gamma' < 0$ ならば、振動 子と外部周期信号は安定に同期可能である.そのため、 $\Gamma(\phi)$ の最大値を $\Gamma(\phi_+)$ 、最小値を $\Gamma(\phi_-)$ とおくと、ロッキングレンジ*R*は式 (2.4) で表される.

$$R[f] = \Gamma(\phi_{+}) - \Gamma(\phi_{-}) = \langle Z(\theta + \phi_{+})f(\theta) - Z(\theta + \phi_{-})f(\theta) \rangle$$
(2.4)

本研究では外部周期信号に対して2つの制約を課す.一つは

$$\langle f(\theta) \rangle = 0 \tag{2.5}$$

である. すなわち, 外部周期信号は直流成分のない周期信号である. もう一つは,

$$\|f\|_p \equiv \langle |f(\theta)|^p \rangle^{\frac{1}{p}} = M \tag{2.6}$$

を満たすことであり、これをpノルムという.ここで、 $p \ge 1$ は必ず正の実数で、Mは正の 定数であると想定する.特に、p = 2のケースで、制約の式 (2.6) は $\langle f^2 \rangle = M^2$ となり、fの パワーが M^2 で固定されるということである.一方、 $p = \infty$ のケースで、制約式 (2.6) の $\|f\|_{\infty} = M$ は |f|の最大値(絶対値)がMという制約を与える.また、p = 1のケースで、 制約式 (2.6) の $\|f\|_1 = M$ はfの1周期面積がMであるといういう制約を与える.このよう にpの値を変えることにより、異なる制約条件下での外部周期信号を設計できる. 制約条件を満たす外部周期信号 $f(\theta)$ の最適波形を得るために、式 (2.7) に示す汎関数 J[f] を 定義する.

$$J[f] = R[f] - \lambda_1 \langle f(\theta) \rangle - \lambda_2[\|f(\theta)\|_p - M]$$
(2.7)

 λ_1, λ_2 はラグランジュ未定乗数である.ところが一般に,式(2.8)に示すヘルダーの不等式が 成立し,

$$||fg||_1 \le ||f||_p ||g||_q \tag{2.8}$$

式 (2.8) において等号が成立する時に左辺が最大化される. ここで, $p, q \wr 1 \le p, q \le \infty \ge p^{-1} + q^{-1} = 1$ を満たす実数である.中でも、 $1 < p, q < \infty$ で式 (2.8) での等式 $\|fg\|_1 = \|f\|_p \|g\|_q \iota$, 0 でない定数 $\alpha \ge \beta$ を用いて $\alpha |f(\theta)|^p = \beta |g(\theta)|^q (\theta \in S)$ であるとき に限り成り立つ.

本研究で想定している問題において,式(2.8)での $f(\theta)$ は式(2.1)式の外部周期信号 $f(\theta)$ としてみなせる.従って,式(2.8)は式(2.6)から次のようになる.

$$\langle fg \rangle \leq \langle |fg| \rangle = ||fg||_1 \leq ||f||_p ||g||_q = M ||g||_q$$
(2.9)

この式 (2.9) より,等式条件 $\alpha |f(\theta)|^p = \beta |g(\theta)|^q$ を満たす fを探すことは,今得たい最適周 期信号を設計することと等価である.この時, $q = \frac{p}{p-1}$ を用いて $\alpha |f(\theta)|^p = \beta |g(\theta)|^q$ より,式 (2.10)を得る.

$$|f(\theta)| = \left(\frac{\beta}{\alpha}\right)^{\frac{1}{p}} |g(\theta)|^{\frac{1}{p-1}} > 0 \ \text{\ddagger}\ \text{\hbar}\ \text{t}\ t, \ f(\theta) = \pm \left(\frac{\beta}{\alpha}\right)^{\frac{1}{p}} |g(\theta)|^{\frac{1}{p-1}} \tag{2.10}$$

ここで, $(\beta/\alpha)^{1/p}$ は $\alpha \|f\|_p^p = \beta \|g\|_q^q$ なので, 式(2.11)が得られる.

$$\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p}} = \frac{\|f\|_{p}}{\|g\|_{q}^{\frac{p}{p}}} = \frac{M}{\|g\|_{q}^{\frac{1}{p-1}}}$$
(2.11)

式(2.10)と式(2.11)より、式(2.12)最適周期信号 f_{opt.p}(θ)の成分を形成する.

$$f(\theta) = \pm \left(\frac{\beta}{\alpha}\right)^{\frac{1}{p}} |g(\theta)|^{\frac{1}{p+1}} = \pm M \left(\frac{|g(\theta)|}{\|g\|_q}\right)^{\frac{1}{p-1}}$$
(2.12)

また, ヘルダーの不等式の式 (2.8) と式 (2.7) を対応づけるために,式(2.7)の第1,2項を式 (2.13)のように書き換える.

$$R[f] - \lambda_1 \langle f(\theta) \rangle = \langle f(\theta)(\bar{Z}(\theta) + \lambda_1) \rangle = \langle fg \rangle$$
(2.13)

ここで $\bar{Z}(\theta) = Z(\theta + \Delta \phi) - Z(\theta), \ \Delta \phi = \phi_+ - \phi_-$ である. J[f]の最適化は (2.6) 式の制約下 での $R[f] + \lambda_1 \langle f(\theta) \rangle = \langle fg \rangle$ の最適化となることは自明である. そして, このケースで (2.13) 式の $g(\theta)$ は (2.14) 式のように与えられる.

$$g(\theta) = \bar{Z}(\theta) + \lambda_1 \tag{2.14}$$

このとき、 $\|g\|_q$ はfの選択から独立である. つまり、この $\|g\|_q$ は $Z(\theta)$ と $\Delta \phi = \phi_+ - \phi_-$ と λ_1 にのみによって決定される. さらに、 $\|g\|_q$ と関係のあるパラメータ $\Delta \phi$ と λ_1 は $Z(\theta)$ のみ によって決まる. $\Delta \phi$ と λ_1 がどのように得られるかについては次節で説明する.

この節で,次の3つのケース (i) 1 (i) 1 < p < ∞ の場合

この場合,最適な周期信号 fopt,p の候補は式 (2.15) のように構築できる.

$$f_{*,p}(\theta) = \begin{cases} M\left(\frac{|g(\theta)|}{||g||_q}\right)^{\frac{1}{p'}} & (g(\theta) \ge 0) \\ -M\left(\frac{|g(\theta)|}{||g||_q}\right)^{\frac{1}{p'}} & (g(\theta) \le 0) \end{cases} \end{cases} = M \operatorname{sig}[g(\theta)]\left(\frac{|g(\theta)|}{||g||_q}\right)^{\frac{1}{p'}}$$
(2.15)

明らかに、この式 (2.15) は式 (2.12) を満たし、このときヘルダーの不等式の等式状態を満た す. もちろん、すでに式 (2.9) で $||f||_p = M$ を想定しているので、 $||f_{*,p}||_p = M$ は満たされ る. しかし、もし式 (2.10) と式 (2.12) の負の部分よりもう一つ候補となり得る解を構築する と、つまり、もし $f_{*,p}$ を -Msig $[g(\theta)](g(\theta)/||g||_q)^{\frac{1}{p'}}$ とおくと、 $f_{*,p}(\theta)g(\theta)$ は常に負で式 (2.9) の最初の等号を満たさない、したがって、この候補は不要であり、式 (2.15) での $f_{*,p}$ は最適 周期信号のための唯一つの候補となる、今、もしこの式 (2.15) での $f_{*,p}$ が存在し、式 (2.8) での $||g||_q$ が固定されるならば (つまり、 $||g||_q$ は fと独立)、この時 $f_{*,p}$ は関数 (fg)の唯一 の最大を与えることとなる. なぜなら、 $\langle fg \rangle$ の上限は式 (2.15) での $f = f_{*,p}$ の時のみに達成 される $\|f\|_p \|g\|_q = M \|g\|_q$ だからである.

一般に、 $f \geq g$ の周期は必ずしも一緒ではない. それらの比はm:nになり、これはm:n同期のケースである. この時、この一般的なm:n同期での最適周期信号は式 (2.15) によって得られるわけではない. 明らかに、このm:nのケースは当たり前の $g(\theta) = 0$ のケースを除いて、 $\alpha |f(\theta)|^p = \beta |g(\theta)|^q$ が $\theta \in S$ を反するので、成り立たない. したがって、式 (2.8)の最適周期信号はm = nのケースである1:1同期だけであり、 $m \neq n$ のケースでこの理想的な最適周期信号である式 (2.15) は得られない.

に、 $p = \infty \& p = 1$ の場合への見識を与える、式 (2.15) での (a) $p' \to \infty$ の場合と (b) $p' \to +0$ の場合の2つの制限を考える. q が Zに関連するとき、以下は g で自然に想定される.

$$0 < \|g\|_q < \infty, \ \ge \ 0 \le |g(\theta)| < \infty \quad (\forall \theta \text{ in } S).$$

$$(2.16)$$

式 (2.16) より, (a) $p' \to \infty$ の場合で,式 (2.15) での $0 \le |g(\theta)| / ||g||_q$ と式 (2.17) を得る.

$$\left(\frac{|g(\theta)|}{\|g\|_q}\right)^{\frac{1}{p'}} \to \begin{cases} 1 & (\text{if } |g(\theta)| > 0) \\ 0 & (\text{if } |g(\theta)| = 0). \end{cases} \quad (p' \to \infty)$$

$$(2.17)$$

この式 (2.17) を踏まえると、式 (2.15) より式 (2.18) が得られる.

 $f_{*,p}(\theta) \to M \operatorname{sig}[g(\theta)], \text{ for } \forall \theta \in S \ (p \to \infty)$ (2.18)

次に (b) の $p' \to +0$ の場合について考える. ここで $|g(\theta)|$ が最大化される S 内の点を θ_* と示 すことにする.まず $\theta = \theta_*$ のケースと $\theta \neq \theta_*$ のケースを分けて考える. 今,式 (2.15) での $|g(\theta)|/||g(\theta)||_q \epsilon \bar{g}(\theta) = g(\theta)/|g(\theta_*)|$ と置くことによって変更する.

$$\left(\frac{|g(\theta)|}{\|g\|_{q}}\right)^{\frac{1}{p'}} = \left(\frac{|C\bar{g}(\theta)|}{\|C\bar{g}\|_{q}}\right)^{\frac{1}{p'}} = \frac{|\bar{g}(\theta)|^{\frac{1}{p'}}}{\langle|\bar{g}(\theta)|^{1+\frac{1}{p'}}\rangle^{\frac{1}{1+p'}}} = \left(\frac{|\bar{g}(\theta)|}{||\bar{g}||_{q}}\right)^{\frac{1}{p'}}$$
(2.19)

ここで, Cは $|g(\theta_*)|(<\infty)$ を示す.明らかに, 任意のp'で $|\bar{g}(\theta_*)|_{p'}^{\frac{1}{p'}} = 1$ となる.一方, Sの範囲で $|\bar{g}(\theta)| < 1$ であり, $\frac{1}{1+p'} \to 1(p' \to +0)$ だから, この時 $\langle |\bar{g}(\theta)|^{1+\frac{1}{p'}} \rangle^{\frac{1}{1+p'}} \to +0(p' \to +0)$ である.したがって,式(2.19)から我々は $\left(\frac{|g(\theta_*)|}{||g||_q}\right)^{\frac{1}{p'}} \to +\infty (p' \to +0)$ を得る. 一方,式(2.19)での $\frac{|g(\theta)|}{||g||_q} = \frac{|\bar{g}(\theta)|}{||\bar{g}||_q} < 1$ はp'が0となる時に保たれるから, $\theta \neq \theta_*$ である.なぜなら, $\|\bar{g}\|_q \to \|\bar{g}\|_{\infty} = |\bar{g}(\theta_*)| (p' \to +0)$ で, $|\bar{g}(\theta)| < \|\bar{g}\|_{\infty}$ だからである.したがって,式 (2.15) より式 (2.20) を得る.

$$f_{*,p}(\theta) \to \begin{cases} +0 & (\text{if } \theta \neq \theta_*) \\ +\infty & (\text{if } \theta = \theta_*) \end{cases} \quad (p \to 1)$$

$$(2.20)$$

ここで,式(2.14)のように $g(\theta) = \overline{Z}(\theta) + \lambda_1$ として式(2.15)の $f_{\text{opt},p}$ のようにfを選んだら, ヘルダーの不等式が成立している前提なので式(2.13)は最大化される.

$$f_{\text{opt},p}(\theta) = M \text{sig}[\bar{Z}(\theta) + \lambda_1] \left(\frac{|\bar{Z}(\theta) + \lambda_1|}{\|\bar{Z}(\theta) + \lambda_1\|_q} \right)^{\frac{1}{p'}}$$
(2.21)

ここで、p' t p' = p - 1を示す. そして、 $\langle fq \rangle$ の上限は次のように与えられる.

$$\langle f_{\text{opt},p} g \rangle \leq \langle |f_{\text{opt},p} g| \rangle = \| f_{\text{opt},p} g \| = \| f_{\text{opt},p} \|_p \|_q$$

$$= M \langle |\bar{Z}(\theta) + \lambda_1|^q \rangle^{\frac{1}{q}} = M \langle |\bar{Z}(\theta) + \lambda_1|^{\frac{p'+1}{p'}} \rangle^{\frac{p'}{p'+1}}$$

$$(2.22)$$

このとき,2つのパラメータ $\Delta \phi \geq \lambda_1$ を調整することで得られる式 (2.22) の最大化は $\langle |\bar{Z}(\theta) + \lambda_1|^{\frac{p'+1}{p'}} \rangle$ を最大化することと等価である.なぜなら, $M \geq p'$ は固定の正の定数と見 なせるからである.このとき,次の関数を定義する.

$$F(\Delta\phi,\lambda_1) \equiv \left\langle \left| \bar{Z}(\theta) + \lambda_1 \right|^{\frac{p'+1}{p'}} \right\rangle = \left\langle \left| Z(\theta + \Delta\phi) - Z(\theta) + \lambda_1 \right|^{\frac{p'+1}{p'}} \right\rangle$$
(2.23)

ここで, $\bar{Z}(\theta) = Z(\theta + \phi_+) - Z(\theta + \phi_-)$ で, $\Delta \phi = \phi_+ - \phi_-$ である. つまりロッキングレン ジ R[f] である $\langle fg \rangle$ を最大化することは $F(\Delta \phi, \lambda_1)$ を最大化することと同じである. また, 式 (2.21) から $\|\bar{Z}(\theta) + \lambda_1\|_q$ は $Z \ge \lambda_1$ によって与えられる定数なので, このとき $f_{\text{opt},p} \sim \text{sig}[\bar{Z}(\theta) + \lambda_1][\bar{Z}(\theta) + \lambda_1]^{\frac{1}{p'}}$ だから, 式 (2.5) の制約は次のようになる.

$$\left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\frac{1}{p'}} \right\rangle = 0$$
(2.24)

ここで、次のように外部周期信号 f の一周期平均という意味をもつ関数 $G(\Delta\phi, \lambda_1)$ を定義 する.

$$G(\Delta\phi,\lambda_1) \equiv \left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 | \frac{1}{p'} \right\rangle$$
(2.25)

本研究では $G(\Delta\phi, \lambda_1) = 0$ の制約下で $F(\Delta\phi, \lambda_1)$ を最大化したい.これを達成するために, ラグランジュの未定乗数法より次のような関数 $H(\Delta\phi, \lambda_1)$ を導く.

$$H(\Delta\phi,\lambda_1) \equiv F(\Delta\phi,\lambda_1) + \lambda G(\Delta\phi,\lambda_1)$$
(2.26)

 λ はラグランジュの未定定数である.ここで、独立した最適解のみを持つ*H*を想定し、その 導関数 $\frac{\partial^2 H}{\partial \Delta \phi^2}, \frac{\partial^2 H}{\partial \Delta \phi \partial \lambda_1}, \frac{\partial^2 H}{\partial \lambda_1 \partial \Delta \phi}, \frac{\partial^2 H}{\partial \lambda_1^2}$ は少なくとも最適解の周りで連続になる.そして、 $\frac{p'+1}{p'} \ge \frac{1}{p'}$ をそれぞれ次のように $\alpha \ge \beta(=\alpha-1)$ と省略することにする.

$$\alpha \equiv \frac{p'+1}{p'}, \ \beta \equiv \frac{1}{p'}$$
(2.27)

 $\left(\frac{\partial G}{\partial \Delta \phi}, \frac{\partial G}{\partial \lambda_1}\right) \neq \mathbf{0}$ だから, ラグランジュの未定乗数法のルールから λ が存在し,式 (2.26)の最 適解 ($\Delta \phi_*, \lambda_{1,*}$) が存在するならば,この最適解は式 (2.28) を満たす.

$$\left(\frac{\partial H}{\partial \Delta \phi}, \frac{\partial H}{\partial \lambda_1}\right) = \mathbf{0} \tag{2.28}$$

つまり、 $\Delta\phi$, λ_1 , λ のために式 (2.28) と $G(\Delta\phi, \lambda_1) = 0$ を解くことによって式 (2.26) の最適解 の候補を決定することが出来る. これは次のように実行される.

式 (2.23) から, $F(\Delta \phi, \lambda_1)$ は次のように微分される.

$$\frac{\partial F}{\partial \Delta \phi} = \frac{\partial}{\partial \Delta \phi} \langle |\bar{Z} + \lambda_1|^{\alpha} \rangle = \langle \frac{\partial}{\partial \Delta \phi} |\bar{Z} + \lambda_1|^{\alpha} \rangle$$

$$= \alpha \left\langle |\bar{Z} + \lambda_1|^{\beta} \frac{\partial}{\partial \Delta \phi} |\bar{Z} + \lambda_1| \right\rangle \equiv a(\Delta \phi, \lambda_1)$$

$$\frac{\partial F}{\partial \lambda_1} = \frac{\partial}{\partial \lambda_1} \langle |\bar{Z} + \lambda_1|^{\alpha} \rangle = \langle \frac{\partial}{\partial \lambda_1} |\bar{Z} + \lambda_1|^{\alpha} \rangle$$
(2.29)

$$= \alpha \langle |\bar{Z} + \lambda_1|^{\beta} \frac{\partial}{\partial \Delta \phi} |\bar{Z} + \lambda_1| \rangle = \alpha \langle \operatorname{sig}(\bar{Z} + \lambda_1) |\bar{Z} + \lambda_1|^{\beta} \rangle \equiv b(\Delta \phi, \lambda_1) \quad (2.30)$$

面白いことに、この $b = \alpha \left\langle \operatorname{sig}(\bar{Z} + \lambda_1) | \bar{Z} + \lambda_1 |^{\beta} \right\rangle = 0 \ \operatorname{tr} G(\Delta \phi, \lambda_1) = 0 \ \operatorname{tr} \sigma$ さない.また、 $G(\Delta \phi, \lambda_1) \ \operatorname{tr} \infty$ ように微分可能である.

$$\frac{\partial G}{\partial \Delta \phi} = \frac{\partial}{\partial \Delta \phi} \langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\alpha} \rangle$$

$$= \beta \langle |\bar{Z}(\theta) + \lambda_1|^{\beta - 1} Z'(\theta + \Delta \phi) \rangle \qquad (2.31)$$

$$\frac{\partial G}{\partial \lambda_1} = \frac{\partial}{\partial \lambda_1} \langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\alpha} \rangle$$

$$= \beta \langle |\bar{Z}(\theta) + \lambda_1|^{\beta - 1} \rangle > 0 \qquad (2.32)$$

今,式(2.28)は $\frac{\partial F}{\partial \lambda_1} = \alpha G(\Delta \phi, \lambda_1) = 0 \geq \frac{\partial G}{\partial \lambda_1} > 0$ において $\frac{\partial H}{\partial \lambda_1} = \frac{\partial F}{\partial \lambda_1} + \lambda \frac{\partial G}{\partial \lambda_1} = 0$ を得る.こ のとき, λ は $\lambda = 0$ として唯一に決まる.これは λG の項が式(2.26)で消えたとき,少し矛 盾があるように見える.しかし,この $\lambda = 0$ で式(2.28)は $a(\Delta \phi, \lambda_1) = b(\Delta \phi, \lambda_1) = 0$ とな り,そしてa = 0とb = 0の解はラグランジュ乗数のルールを否定しなければ,式(2.5)の制 約を自動的に満たすしたがって,最適解候補はa = b = 0より簡単に決定される¹.

¹もし, $\frac{\partial F}{\partial \lambda_1} = 0$ は制約の G = 0 にすぎないという性質を利用すれば、問題はこの特定の設定で F の最適化に縮約される. ここで、一般的に F の代わりに H の最適化を行う

次に, 様々な ($\Delta \phi, \lambda_1$) のペアの最適ではない解から最適解を見分けるために, H の境界付き のヘッセ行列を考える.

$$\mathcal{H}(H) = \begin{bmatrix} 0 & \mathcal{H}_{12} & \mathcal{H}_{13} \\ \mathcal{H}_{21} & \mathcal{H}_{22} & \mathcal{H}_{23} \\ \mathcal{H}_{31} & \mathcal{H}_{32} & \mathcal{H}_{33} \end{bmatrix}$$
(2.33)

このヘッセ行列の各要素は次のように与えられる.

$$\mathcal{H}_{12} = \mathcal{H}_{21} = \frac{\partial G}{\partial \Delta \phi} = \beta \left\langle |\bar{Z}(\theta) + \lambda_1|^{\beta - 1} Z'(\theta + \Delta \phi) \right\rangle$$
(2.34a)

$$\mathcal{H}_{13} = \mathcal{H}_{31} = \frac{\partial G}{\partial \lambda_1} = \beta \left\langle |\bar{Z}(\theta) + \lambda_1|^{\beta - 1} \right\rangle > 0 \tag{2.34b}$$

$$\mathcal{H}_{22} = \frac{\partial^2 F}{\partial \Delta \phi^2} = \alpha \beta \left\langle \left| \bar{Z}(\theta) + \lambda_1 \right|^{\beta - 1} Z'(\theta + \Delta \phi)^2 \right\rangle + \alpha \left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\beta} Z''(\theta + (2\Delta \phi)^2) \right\rangle$$

$$\mathcal{H}_{23} = \frac{\partial^2 F}{\partial \Delta \phi \partial \lambda_1} = \alpha \beta \left\langle |\bar{Z}(\theta) + \lambda_1|^{\beta - 1} Z'(\theta + \Delta \phi) \right\rangle = \alpha \mathcal{H}_{12}$$

$$(2.34d)$$

$$\mathcal{H}_{23} = \frac{\partial^2 F}{\partial \Delta \phi \partial \lambda_1} = \alpha \beta \left\langle |\bar{Z}(\theta) + \lambda_1|^{\beta - 1} Z'(\theta + \Delta \phi) \right\rangle = \alpha \mathcal{H}_{12}$$

$$\mathcal{H}_{32} = \frac{\partial I}{\partial \lambda_1 \partial \Delta \phi}$$

= $\alpha \frac{\partial}{\partial \Delta \phi} \left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\beta} \right\rangle = \alpha \beta \left\langle | \bar{Z}(\theta) + \lambda_1 |^{\beta - 1} Z'(\theta + \Delta \phi) \right\rangle = \alpha \mathcal{H}_{12} (2.34e)$
 $\frac{\partial^2 F}{\partial \Delta \phi} = \alpha \mathcal{H}_{12} (2.34e)$

$$\mathcal{H}_{33} = \frac{\partial^2 F}{\partial \lambda_1^2} = \alpha \frac{\partial}{\partial \lambda_1} \left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^\beta \right\rangle = \alpha \beta \left\langle |\bar{Z}(\theta) + \lambda_1|^{\beta-1} \right\rangle = \alpha \mathcal{H}_{13} > 0 \quad (2.34f)$$
このとき、 ヘッシアン $|\mathcal{H}(H)|$ は式 (2.35) のように得られ、

$$|\mathcal{H}(H)| = \mathcal{H}_{13}(\alpha \mathcal{H}_{12}{}^2 - \mathcal{H}_{13}\mathcal{H}_{22})$$
(2.35)

 $|\mathcal{H}(H)| > 0$ を満たすときa = b = 0となる解が最大となり、もし $|\mathcal{H}(H)| < 0$ なrば最小となる

以上のことをまとめると、式 (2.23) での最適解 ($\Delta \phi, \lambda_1$) は次の条件を満たすときに存在する.

$$\left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\beta} Z'(\theta + \Delta \phi) \right\rangle = 0$$
(2.36)

$$\left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\beta} \right\rangle = 0 \tag{2.37}$$

$$|\mathcal{H}(H)| = \mathcal{H}_{13}(\alpha \mathcal{H}_{12}^2 - \mathcal{H}_{13}\mathcal{H}_{22}) > 0$$
(2.38)

ここで,式(2.36)と式(2.37)の積分内の $\bar{Z}(\theta) = Z(\theta + \phi_+) - Z(\theta + \phi_-)$ は $Z(\theta + \Delta \phi) - Z(\theta)$ と等価である. 今,この最適解において次の式(2.39)の不等式を満たさなければいけないことに注意する.

$$\left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\beta} Z''(\theta + \Delta \phi) \right\rangle < 0$$
(2.39)

ここで、Γを特徴づけることが重要である.

つまり,式 (2.32)の $|\bar{Z}(\theta) + \lambda_1|^{\beta-1}$ に関する積分は2 ,言い換えると

 $0 < \beta = \frac{1}{p-1} < 1$ である時に特異になることに注意する.なぜなら, $\bar{Z}(\theta) + \lambda_1$ は θ_* で0になり, $|\bar{Z}(\theta) + \lambda_1|^{\beta-1}$ は $\theta = \theta_*$ で無限大となるからである.しかし,もし $\bar{Z}(\theta)$ が有限調波を用いたフーリエ級数によって表現され,例として $\bar{Z}'(\theta) \neq 0$ であると想定すると,このような積分は全て有限な値を持つ.

続いて,式(2.36),(2.37),(2.39)の解の対称性を考える.まず,式(2.23)から $F(\Delta\phi,\lambda_1) = F(-\Delta\phi,-\lambda_1) \geq G(\Delta\phi,\lambda_1) = G(-\Delta\phi,-\lambda_1) = 0$ は任意の $\Delta\phi \geq \lambda_1$ で保持されることを注意する.このとき,もし($\Delta\phi_*,\lambda_{1,*}$)は式(2.36)と式(2.37)の解であるならば, $(-\Delta\phi_*,-\lambda_{1,*})$ もまた式(2.36)と式(2.37)の解である.そして,両方の解 $(\Delta\phi,\lambda_1) = (\pm\Delta\phi_*,\pm\lambda_{1,*})$ において $g(\theta),f_{\text{opt},p}(\theta)$ はそれぞれ次のように与えられる.

$$g(\theta) = \pm [\bar{Z}(\theta) + \lambda_{1,*}]$$
(2.40a)

$$f_{\text{opt},p}(\theta) = \pm M \text{sig}\left[\bar{Z}(\theta) + \lambda_1\right] \left(\frac{|\bar{Z}(\theta) + \lambda_{1,*}|}{\|\bar{Z}(\theta) + \lambda_{1,*}\|_q}\right)^{\frac{1}{p'}}$$
(2.40b)

以上より、 $1 の場合のロッキングレンジを最大化する最適周期信号 <math>f_{\text{opt},p}(\theta)$ を理論的に導出することができる.

(ii) $p = \infty$ の場合

 $p = \infty$ の場合を考える.まず、 $\|f\|_{\infty} = M$ となるので、次の式が得られる.

 $||fg||_1 \leq ||f||_{\infty} ||g||_1 = M ||g||_1$ (2.41)

この時,定数 $||g||_1$ で $||fg||_1$ を最大化するために, $f_{*,\infty}$ が何かを定める. $f_{*,\infty}$ の候補は簡単に以下のように見つかる.

$$f_{*,\infty}(\theta) = M \operatorname{sig}[g(\theta)] \tag{2.42}$$

これは,式(2.18)にすぎず, $p \to \infty$ の場合で得られる.実際,この特定の $f_{*,p}$ で $||fg||_1$ は最大化される.なぜなら,式(2.43)のようになるからである.

$$\|f_{*,\infty}g\|_1 = \langle M \operatorname{sig}[g(\theta)] g(\theta) \rangle = M \langle \operatorname{sig}[g(\theta)]g(\theta) \rangle = M \langle |g(\theta)| \rangle = M \|g\|_1$$
(2.43)

また、この候補 $f_{*,\infty}$ の一意性は次のように証明される. $\|\bar{f}_{*,\infty}g\|_1 = M\|g\|_1$ を最大化するも う一つの候補 $\bar{f}_{*,\infty}$ が存在すると想定する. この時、式 (2.44) は任意の g で満たされる.

$$\|f_{*,\infty}g\|_1 - \|\bar{f}_{*,\infty}g\|_1 = 0 \tag{2.44}$$

そして,式(2.44)は式(2.45)と等価である.

$$\left\langle \left(1 - \frac{|\bar{f}_{*,\infty}|}{M}\right) f_{*,\infty}g\right\rangle = 0 \tag{2.45}$$

なぜなら,

$$\begin{aligned} |f_{*,\infty}(\theta)g(\theta)| - |\bar{f}_{*,\infty}(\theta)g(\theta)| &= f_{*,\infty}(\theta)g(\theta) - |\bar{f}_{*,\infty}(\theta)||g(\theta)| \qquad ((\dagger) \ \mathcal{O} \ \texttt{x} \ \texttt{L} \ \texttt{y} \) \\ &= f_{*,\infty}(\theta)g(\theta) - \frac{|\bar{f}_{*,\infty}(\theta)|}{M} f_{*,\infty}(\theta)g(\theta) \qquad ((\ddagger) \ \mathcal{O} \ \texttt{x} \ \texttt{z}. \ \texttt{46}) \end{aligned}$$

だからである.ここで、この式(2.46)では以下の関係式を使った.

$$f_{*,\infty}(\theta)g(\theta) = M \operatorname{sig}[g(\theta)] \cdot g(\theta) \ge 0 \qquad (\dagger)$$
$$|g(\theta)| = f_{*,\infty}(\theta)g(\theta)/M \qquad (\ddagger)$$

したがって, (2.45)から式 (2.47)を得る.

$$|\bar{f}_{*,\infty}(\theta)| = M \quad \text{a.e. in } S \tag{2.47}$$

しかし, M か -M の値のみを持つこのような関数で, $f = M \operatorname{sig}[g(\theta)] (= f_{*,\infty})$ のみが $\langle fg \rangle$ を最大化する. したがって, $\bar{f}_{*,\infty}$ は存在できず, 最適な $f_{*,\infty}$ の一意性は証明された. 1 の場合と同様に, この一意的な最適周期信号の式 (2.42) は 1 : 1 同期の場合のみ

有効である.

これより $p = \infty$ の場合,式 (2.13) は $g(\theta) = \overline{Z}(\theta) + \lambda_1$ を用いて式 (2.48) によって最大化される.

 $f_{\text{opt},\infty}(\theta) = M \text{sig}[\bar{Z}(\theta) + \lambda_1]$ (2.48)

〈fg〉の上限は次のように与えられる.

$$\langle f_{\text{opt},\infty}g\rangle = M\langle |\bar{Z}(\theta) + \lambda_1|\rangle$$
(2.49)

このとき, $F(\Delta\phi, \lambda_1) \ge G(\Delta\phi, \lambda_1)$ を次のように定義する.

$$F(\Delta\phi,\lambda_1) \equiv \langle |\bar{Z}(\theta) + \lambda_1| \rangle \tag{2.50}$$

$$G(\Delta\phi,\lambda_1) = \langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] \rangle \tag{2.51}$$

 $G(\Delta\phi,\lambda_1) = 0$ は式 (2.6) と式 (2.17) から得られる制約である. このとき, $H(\Delta\phi,\lambda_1)$ を式 (2.26) のように導入し, Hに同じ想定をおく. $(\frac{\partial G}{\partial \Delta\phi}, \frac{\partial G}{\partial \lambda_1}) \neq 0$ だから, λ は存在し,

 $\left(\frac{\partial H}{\partial \Delta \phi}, \frac{\partial H}{\partial \lambda_1}\right) = \mathbf{0}$ は最適解 ($\Delta \phi_*, \lambda_{1,*}$) で満たされる. これより, $1 の場合と同じ手順 で次のように <math>\lambda_{1,*}, \Delta \phi_*, \lambda$ を決定する.

まず, $F(\Delta \phi, \lambda_1)$ は次のように微分される.

$$\frac{\partial F}{\partial \Delta \phi} = \langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] Z'(\theta + \Delta \phi) \rangle$$

$$\frac{\partial F}{\partial \lambda_1} = \langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] \rangle = G(\Delta \phi, \lambda_1)$$
(2.52)
(2.53)

そして, $G(\Delta\phi, \lambda_1)$ は次のように微分される.

$$\frac{\partial G}{\partial \Delta \phi} = \frac{1}{\pi} \sum_{i=1}^{n} \frac{Z'(\theta_i + \Delta \phi)}{|\bar{Z}'(\theta_i)|}$$
(2.54)

$$\frac{\partial G}{\partial \lambda_1} = \frac{1}{\pi} \sum_{i=1}^n \frac{1}{|\bar{Z}'(\theta_i)|} > 0 \tag{2.55}$$

ここで、 $\theta_i \operatorname{id} \overline{Z}(\theta) + \lambda_1 = 0 \text{ on } i$ 番目の根を表し、 $n \operatorname{id} \overline{Z}(\theta)$ が周期関数であることから偶数 となる根の数である.このとき、 $\lambda \operatorname{id} \lambda = 0$ と決定される.そして、 $\Delta \phi \ge \lambda_1$ は $\langle \operatorname{sig}(\overline{Z} + \lambda_1) Z'(\theta + \Delta \phi) \rangle = 0 \ge \langle \operatorname{sig}(\overline{Z} + \lambda_1) \rangle = 0$ によって決定される.境界付きヘッセ行列 は次のように得られる.

$$\mathcal{H}_{12} = \mathcal{H}_{21} = \frac{\partial G}{\partial \Delta \phi} = \frac{1}{\pi} \sum_{i=1}^{n} \frac{Z'(\theta_i + \Delta \phi)}{|\bar{Z}'(\theta_i)|}$$
(2.56a)

$$\mathcal{H}_{13} = \mathcal{H}_{31} = \frac{\partial G}{\partial \lambda_1} = \frac{1}{\pi} \sum_{i=1}^n \frac{1}{|\bar{Z}'(\theta_i)|} > 0$$
(2.56b)

$$\mathcal{H}_{22} = \frac{\partial^2 F}{\partial \Delta \phi^2} = \frac{1}{\pi} \sum_{i=1}^n \frac{Z'(\theta_i + \Delta \phi)^2}{|\bar{Z}'(\theta_i)|} + \langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] Z''(\theta + \Delta \phi) \rangle$$
(2.56c)

$$\mathcal{H}_{23} = \frac{\partial^2 F}{\partial \Delta \phi \partial \lambda_1} = \frac{1}{\pi} \sum_{i=1}^n \frac{Z'(\theta_i + \Delta \phi)}{|\bar{Z}'(\theta_i)|} = \mathcal{H}_{12}$$
(2.56d)

$$\mathcal{H}_{32} = \frac{\partial^2 F}{\partial \lambda_1 \partial \Delta \phi} = \frac{1}{\pi} \sum_{i=1}^n \frac{Z'(\theta_i + \Delta \phi)}{|\bar{Z}'(\theta_i)|} = \mathcal{H}_{12}$$
(2.56e)

$$\mathcal{H}_{33} = \frac{\partial^2 F}{\partial \lambda_1^2} = \frac{1}{\pi} \sum_{i=1}^n \frac{1}{|\bar{Z}'(\theta_i)|} = \mathcal{H}_{13} > 0$$
(2.56f)

したがって, (2.50) 式の最適解 $(\Delta \phi, \lambda_1)$ は次の条件を満たすときに存在する.

$$\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] Z'(\theta + \Delta \phi) \rangle = 0$$
 (2.57a)

$$\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] \rangle = 0$$
 (2.57b)

$$|\mathcal{H}(H)| = \mathcal{H}_{13}(\mathcal{H}_{12}^2 - \mathcal{H}_{13}\mathcal{H}_{22}) > 0$$
(2.57c)

今,我々はもし(2.57c)が満たされるならば,次の式が成り立つことを示す.

$$\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1] Z''(\theta + \Delta \phi) \rangle < 0$$

$$(2.58)$$

 $\mathcal{H}_{13} > 0$ だから、 $\mathcal{H}_{12}^2 - \mathcal{H}_{13}\mathcal{H}_{22}$ が正となる条件を考える.まず、次の2つの式を得る.

$$\mathcal{H}_{12}^{2} = \left[\frac{1}{\pi} \sum_{i=1}^{n} \frac{Z'(\theta_{i} + \Delta\phi)}{|\bar{Z}'(\theta_{i})|}\right]^{2}$$
(2.59)

$$\mathcal{H}_{13}\mathcal{H}_{22} = \left[\frac{1}{\pi}\sum_{i=1}^{n}\frac{1}{|\bar{Z}'(\theta_i)|}\right] \left[\frac{1}{\pi}\sum_{i=1}^{n}\frac{Z'(\theta_i + \Delta\phi)^2}{|\bar{Z}'(\theta_i)|} + \left\langle \operatorname{sig}[\bar{Z}(\theta) + \lambda_1]Z''(\theta + \Delta\phi)\right\rangle \right] \quad (2.60)$$

そして、コーシー・シュワルツの不等式から、次の式が成り立つ.

$$\left[\sum_{i=1}^{n} \frac{Z'(\theta_i + \Delta\phi)}{|\bar{Z}'(\theta_i)|}\right]^2 - \left[\sum_{i=1}^{n} \frac{1}{|\bar{Z}'(\theta_i)|}\right] \left[\sum_{i=1}^{n} \frac{Z'(\theta_i + \Delta\phi)^2}{|\bar{Z}'(\theta_i)|}\right] = (X \cdot Y)^2 - |X|^2 |Y|^2 < 0$$

ここで、
$$X = \left(1/\sqrt{|\bar{Z}'(\theta_1)|}, \cdots, 1/\sqrt{|\bar{Z}'(\theta_n)|}\right)$$
で、
 $Y = \left(Z'(\theta_1 + \Delta\phi)/\sqrt{|\bar{Z}'(\theta_1)|}, \cdots, Z'(\theta_n)/\sqrt{|\bar{Z}'(\theta_n)|}\right)$ である. したがって、

(2.57c),(2.59),(2.60) 式から、 $\langle \operatorname{sig}(\overline{Z}(\theta) + \lambda_1)Z''(\theta + \Delta \phi) \rangle < 0$ は満たされなければならない. 今、 $(\Delta \phi, \lambda_1) \longleftrightarrow (-\Delta \phi, -\lambda_1)$ 下で $F \ge G$ はそれぞれ対称であることは明らかである. この とき、 Γ は (2.57a),(2.57a),(2.57c) 式を満たす最適解のために定義される.

以上より、 $p = \infty$ の場合の最適周期信号 $f_{opt,\infty}$ を理論的に導出することができる.

(iii) *p* = 1 の場合

式 (2.41) と同様に、式 (2.5) から f は $||f||_1 = M$ を満たすので、式 (2.61) を得る.

$$\|fg\|_{1} \le \|f\|_{1} \|g\|_{\infty} = M \|g\|_{\infty} \tag{2.61}$$

このp = 1の場合で、我々はfが前出のp > 1のケースでは許されない任意のパルスのよう な鋭い関数になることに注意する.もし、このp = 1の場合で任意の理想の候補 $f_{ideal,1}$ が存 在するならば、 $f_{ideal,1}$ は次のように満たされるべきである.

$$\langle f_{\text{ideal},1} g \rangle \leq \langle |f_{\text{ideal},1} g| \rangle = \|f_{\text{ideal},1}g\|_1 = \|f_{\text{ideal},1}\|_1 \|g\|_{\infty} = M \|g\|_{\infty}$$
 (2.62)

ここで、
$$\langle f_{*,1}f \rangle = \|f_{*,1}g\| \to M\|g\|_{\infty}$$
を満たす式 (2.63) のような $f_{*,1}$ を構築する.

$$f_{*,1}(\theta) = M \sum_{i=1}^{n} \operatorname{sig}[g(\theta_{*,i})] \Delta(\theta - \theta_{*,i}),$$
(2.63)

ここで、 $\theta_{*,i}$ は $|g(\theta)|$ を最大化する *i* 番目の点を示す.(言い換えると、 $1 \le i, j \le n$ で $|g(\theta_{*,i})| = |g(\theta_{*,i})| = |g(\theta_{*})|$ となる.)そして、 $\Delta(\theta - \theta_{*,i})$ は次のように定義される鋭いパルスである.

$$\Delta(\theta - \theta_{*,i}) = \begin{cases} \frac{1}{2n\epsilon} & \text{if } |\theta - \theta_{*,i}| \le \epsilon \\ 0 & \text{otherwise} \end{cases}$$
(2.64)

 $1 の場合と<math>p = \infty$ の場合では導出した最適周期信号は1:1同期のみで実現される. 対照的に、このp = 1の場合では、式 (2.63)の任意の"良い"周期信号の種類は $m \neq n$ の ケースでさえも実現される.この特性は実用の応用にとって特に重要である. これより、 $\epsilon \to 0$ の制限での式 (2.63)から我々は次の式を得る.

$$\Gamma(\phi) = \langle Z(\theta + \phi) f_{*,1}(\theta) \rangle = \langle Z(\theta + \phi) M \sum_{i=1}^{n} \operatorname{sig}[g(\theta_{*,i})] \Delta(\theta - \theta_{*,i}) \rangle$$

$$\rightarrow M \sum_{i=1}^{n} \operatorname{sig}[g(\theta_{*,i})] Z(\theta_{*,i} + \phi) \qquad ({ { { { I} } } }) \rightarrow S) \qquad (2.65)$$

このとき, $\epsilon \to 0$ の制限での R[f] は式 (2.65) の $M \sum_{i=1}^{n} \operatorname{sig}[g(\theta_{*,i})]Z(\theta_{*,i} + \phi)$ の最大値 – 最 小値によって与えられる.ここで,式(2.65) での均一の収束は $g(\theta)$ が連続的に微分可能であ るという事実と式 (2.64) から簡単に証明されることに注意する.

もし制約 $\langle f_{*,1} \rangle = 0$ が課されれば、 $g(\theta) = \overline{Z}(\theta) + \lambda_1$ は式 (2.14) からわかる. ここで、一般性 の欠落を除いて、 $\overline{Z}(\theta)$ は $\theta = \theta_{\max}$ 、 θ_{\min} でそれぞれ最大値と最小値をもつと想定する. この とき、この特定の $\overline{Z}(\theta)$ で、 $\theta = \theta_{\max}$ 、 θ_{\min} でそれぞれ $g(\theta)$ の最大値と最小値のペアとなるよ うな θ において、 $\lambda_{1,*} = -\frac{1}{2}[\overline{Z}(\theta_{\max}) - \overline{Z}(\theta_{\min})]$ と置けることは明らかである. ここで、 $g(\theta_{\min}) < 0 < g(\theta_{\max})$ を満たし、 $|g(\theta_{\min})| = |g(\theta_{\max})|$ である. このとき式 (2.64) から、この $\lambda_{1,*}$ は次の $f_{*,1}(\theta)$ を与える.

$$f_{*,1}(\theta) = M[\Delta(\theta - \theta_{\max}) - \Delta(\theta - \theta_{\min})], \qquad (2.66)$$

そして,この特定の f_{*,1} で次の式が得られる.

$$\Gamma(\phi) \to M[Z(\theta_{\max} + \phi) - Z(\theta_{\min} + \phi)] \equiv \Gamma_0(\phi) \quad (\mathfrak{Y} - \mathfrak{l} \in \epsilon \to 0)$$
(2.67)

今,式(2.67)の周期信号で引き込まれる範囲の最大化は, $R = (\Gamma_0 \, \sigma \oplus \chi(\bar{\mu}) - (\Gamma_0 \, \sigma \oplus \chi(\bar{\mu})) - (\Gamma_0 \, \sigma \oplus \chi(\bar{\mu}))$ であるロッキングレンジを最大化するための $\Delta \theta = \theta_{\max} - \theta_{\min}$ を見つけることとなる.これ は $\Delta \theta = \theta_{\max} - \theta_{\min} \ge \bar{\phi} = \phi + \theta_{\min} \bar{\sigma} \Gamma_0(\bar{\phi}) = M[Z(\bar{\phi} + \Delta \theta) - Z(\bar{\phi})] \ge \Xi$ くことと、様々な $\Delta \theta \in [-\pi, \pi] \sigma$ 値での $\Gamma_0(\bar{\phi}) \sigma$ グラフを描くことによって任意に与えた $Z(\theta)$ で数値的に分 かる. $\Delta \theta$ に関連する $R \sigma$ グラフの結果はRを最大化する $\Delta \theta$ を見つける.

つまり,次のように $\Delta \theta$ の項で $\Delta \phi$ を特徴づけることはできる.まず,その定義によって 我々は $\Delta \phi$ は $\Gamma_0(\phi) \sim Z(\theta_{\max} + \phi) - Z(\theta_{\min} + \phi)$ の(最大点; ϕ_+) - (最小点; ϕ_-)であると思 い出す.そして,最大のロッキングレンジ R_{\max} は

 $\bar{R} = Z(\theta_{\max} + \phi_{+}) - Z(\theta_{\max} + \phi_{-}) - Z(\theta_{\min} + \phi_{+}) + Z(\theta_{\min} + \phi_{-})$ によって与えられる. これ は,上記で得られた R_{\max} と等価である. そして,もし $\Delta \phi = \phi_{+} - \phi_{-}$ と $\bar{\theta} = \theta + \phi_{-}$ をおく と, $\bar{Z}(\theta)$ は $\bar{Z}(\bar{\theta}) = Z(\bar{\theta} + \Delta \phi) - Z(\bar{\theta})$ と等価である. もし $\bar{\phi}$ が $\bar{\theta}$ で置き換えられたら, $\bar{Z}(\bar{\theta})$ は $\Gamma_{0}(\bar{\phi})$ にすぎないことに注意する. 加えて,一般的なZで $R_{\max}(\Delta \phi)$ が最大化される唯一 の $\Delta \phi$ があると想定される. したがって,上記の事実から, $\Gamma_{0}(\bar{\phi})$ での $\Delta \theta$ と $\bar{Z}(\bar{\theta})$ での $\Delta \phi$ は一致すべきで,その関連した $\bar{\phi}_{\pm}$ と $\bar{\theta}_{\max,\min}$ もまたそれぞれ一致する.

以上より、p=1の場合の最適周期信号 $f_{*,1}(\theta)$ を理論的に導出することができる.

2.2.2 Hodgkin-Huxley 振動子の最適周期信号の理論的導出

実際に, 2.2.1 節で説明したヘルダーの不等式による最適化アルゴリズムを用いて, ロッキ ングレンジを最大化する最適周期信号を理論的に導出する.対象とする振動子は Hodgkin-Huxley 振動子とする. Hodgkin-Huxley 振動子の位相応答関数 *Z*(θ) はインパルス 応答法より求めた以下の式 (2.68) を用いる.

$$Z(\theta) = \frac{a_0}{2} + \sum_{n=0}^{4} a_n \cos(n\theta) + b_n \sin(n\theta)$$
(2.68)

n	a_n	b_n
0	0.352231	_
1	0.371736	-0.740283
2	-0.819478	0.00225226
3	0.181875	0.403816
4	0.111464	-0.0892503

図 2.2: Hodgkin-Huxley 振動子の位相応答曲線

1 の場合

 $1 の場合について考える.最適波形 <math>f_{opt,p}$ を得るには、まず (2.21) 式内の 2 つのパ ラメータ ($\Delta\phi, \lambda_1$)を決定する必要がある.そのために、(2.36) 式と(2.37) 式の連立方程式を 解き、2 つのパラメータ ($\Delta\phi, \lambda_1$)の解候補 ($\Delta\phi_*, \lambda_{1,*}$)を求める.このとき、解候補 ($\Delta\phi_*, \lambda_{1,*}$)が(2.39) 式を満たすかを確認する.(2.36),(2.37) 式の解の全体像を知るために、($\Delta\phi, \lambda_1$)をパラメータをある範囲で変動させ、(2.36) 式と(2.37) 式のそれぞれについて解曲 線を描く.そして、(2.36) 式と(2.37) 式より得られた 2 つの解曲線の交点を全て記録する. この記録した交点が(2.36) 式と(2.37) 式の連立方程式の解であり、今得たい解候補 ($\Delta\phi_*, \lambda_{1,*}$)となる.Hodgkin-Huxley 振動子を対象とした際の(2.36) 式と(2.37) 式の解曲線 を図 2.3,2.4,2.5 に示す.pの値は p = 1.01, 2, 5 の 3 通り とした.ここで,(2.36) 式と(2.37)式において、 $\langle sig[\bar{Z}(\theta) + \lambda_1] | \bar{Z}(\theta) + \lambda_1 |^{\beta} Z'(\theta + \Delta\phi) \rangle \equiv S_p(\Delta\phi, \lambda_1)$,

 $\langle \text{sig}[\bar{Z}(\theta) + \lambda_1]|\bar{Z}(\theta) + \lambda_1|^{\beta} \rangle \equiv T_p(\Delta\phi, \lambda_1)$ と置くことにする. 図 2.3, 2.4, 2.5 を見て分かるように, $T_p(\Delta\phi, \lambda_1)$ は $\Delta\phi$ の連続関数であり, $S_p(\Delta\phi, \lambda_1)$ は λ_1 の連続関数である. また本研究では, $f_{\text{opt},p}$ は周期 2π の周期関数であると仮定しているので, $\Delta\phi \in [-\pi, \pi]$ として, 解曲線を描いた.

図 2.3: (2.37) 式の T_p と (2.36) 式の S_p の解曲線 (p = 1.01)

(2.37) 式の T_p と (2.36) 式の S_p の解曲線の交点より得られる解候補 ($\Delta \phi_*, \lambda_{1,*}$) をより正確な ものとするために,ニュートン法を用いた.ニュートン法で使用する (2.36) 式と (2.37) 式に 対するヤコビ行列はそれぞれ (2.34) 式である. (2.34) 式を用いてニュートン法を解く際に, ($\Delta \phi, \lambda_1$) の初期値が必要となるが,この初期値は (2.37) 式の T_p と (2.36) 式の S_p の解曲線の

図 2.4: (2.37) 式の T_p と (2.36) 式の S_p の解曲線 (p = 2)

図 2.5: (2.37) 式の T_p と (2.36) 式の S_p の解曲線 (p = 5)

交点である $(\Delta\phi, \lambda_1)$ とした. ニュートン法より得られた解候補 $(\Delta\phi_*, \lambda_{1,*})$ のリストを表 2.1, 2.2, 2.3 に示す. ここで, 2.2.1 節で述べたように $(\Delta\phi, \lambda_1) \leftrightarrow (-\Delta\phi, -\lambda_1)$ と対称性を 持つ.

次にニュートン法より得られた全ての解候補 ($\Delta \phi_*, \lambda_{1,*}$) について, M = 1とし (2.22) 式よ りロッキングレンジ R と (2.38) 式より $|\mathcal{H}(H)|$ を求める. ロッキングレンジ R と $|\mathcal{H}(H)|$ を 求めた結果を解候補 ($\Delta \phi_*, \lambda_{1,*}$)と並べて表 2.1, 2.2, 2.3 に示す. また, $\Delta \phi \in [-\pi, \pi]$ に対す る T_p の全ての解について, M = 1とし (2.22) 式よりロッキングレンジ $R(\Delta \phi)$ を求めた結果 を図 2.6, 2.7, 2.8 に示す.

表 2.1: (2.36) 式と (2.37) 式を満たす解 ($\Delta \phi, \lambda_1$) とロッキングレンジ R(p = 1.01)

	$(\Delta \phi, \lambda_1)$	R	$ \mathcal{H}(H) = \mathcal{H}_{13}(\alpha \mathcal{H}_{12}^2 - \mathcal{H}_{13}\mathcal{H}_{22})$
solution 1	(-3.1415927, 0.0)	2.2585700	$-6.4861331 \times 110^{110} \ (<0)$
solution 2	(-1.3649363, 0.57040837)	2.7613265	$5.7290424 \times 10^{137} \ (> 0)$

図 2.6: T_p における $R(\Delta \phi)$ を求めた結果 (p = 1.01)

p = 1.01の場合, solution2 の ($\Delta \phi, \lambda_1$) ~ (-1.364936336, 0.5704083690) は $|\mathcal{H}(H)| > 0$ であ るため, $F(\Delta \phi, \lambda_1)$ の極大値, つまり R[f] の極大値となる. 他に R[f] の極大値となる解候 補はないため, 最適解は solution2 となる. また, solution1 の ($\Delta \phi, \lambda_1$) ~ (-3.1415927, 0.0) は $|\mathcal{H}(H)| < 0$ であるため, $F(\Delta \phi, \lambda_1)$ の極小値, つまり R[f] の極小値となり, 今得たい最 適解ではない. これらの関係は図 2.6 を見ても明らかである.

 $p = 2 \mathcal{O}$ 場合, solution $2 \mathcal{O}(\Delta \phi, \lambda_1) \sim (-1615065266, 0.0)$ は $|\mathcal{H}(H)| > 0$ であるため,

	$(\Delta \phi, \lambda_1)$	R	$ \mathcal{H}(H) = \mathcal{H}_{13}(\alpha \mathcal{H}_{12}^2 - \mathcal{H}_{13}\mathcal{H}_{22})$
solution 1	(-3.1415927, 0.0)	1.3287487	$-0.54999893 \ (< 0)$
solution 2	(-1.6150653, 0.0)	1.4926698	$2.153595723 \ (> 0)$

表 2.2: (2.36) 式と (2.37) 式を満たす解 ($\Delta \phi, \lambda_1$) とロッキングレンジ R(p=2)

図 2.7: T_p における $R(\Delta \phi)$ を求めた結果 (p=2)

 $F(\Delta\phi,\lambda_1)$ の極大値,つまり R[f]の極大値となる.他に R[f]の極大値となる解候補はない ため,最適解は solution2 となる.また,solution1 の $(\Delta\phi,\lambda_1) \sim (-3.1415927,0.0)$ は $|\mathcal{H}(H)| < 0$ であるため, $F(\Delta\phi,\lambda_1)$ の極小値,つまり R[f]の極小値となり,今得たい最適 解ではない.これらの関係は図 2.7 を見ても明らかである.

	$(\Delta \phi, \lambda_1)$	R	$ \mathcal{H}(H) = \mathcal{H}_{13}(\alpha \mathcal{H}_{12}^2 - \mathcal{H}_{13}\mathcal{H}_{22})$	
solution 1	(-3.1415927, 0.0)	1.21853096	0.017074170 (> 0)	
solution 2	(-2.5085617, -0.23864305)	1.209864499	-0.080256775(<0)	
solution 3	(-1.948572843, -0.23837645)	1.2161630	0.18880119(> 0)	

表 2.3: (2.36) 式と (2.37) 式を満たす解 ($\Delta \phi, \lambda_1$) とロッキングレンジ R(p=5)

図 2.8: T_p における $R(\Delta \phi)$ を求めた結果 (p = 5)

p = 5の場合, solution1,3 の ($\Delta \phi, \lambda_1$) ~ (-3.1415927,0.0), (-1.948572843, -0.23837645) は $|\mathcal{H}(H)| > 0$ であるため, $F(\Delta \phi, \lambda_1)$ の極大値, つまり R[f]の極大値となる. solution1,3 の Rの値を比較すると solution1 のほうが大きいため, 最適解は solution1 となり, solution3 は 2 番目の最適解となる.また, solution2 の ($\Delta \phi, \lambda_1$) ~ (-2.5085617, -0.23864305) は $|\mathcal{H}(H)| < 0$ であるため, $F(\Delta \phi, \lambda_1)$ の極小値, つまり R[f]の極小値となり, 今得たい最適 解ではない. これらの関係は図 2.8 を見ても明らかである.

以上の結果より得られた最適解 ($\Delta \phi, \lambda_1$) を (2.21) 式に代入し,理論的に導出した

Hodgkin-Huxley 振動子の最適周期信号 $f_{opt,p}$ を示す. p = 1.01 の場合における最適周期信号 は図 2.12, p = 2の場合における最適周期信号は図 2.13, p = 5の場合における最適周期信号

図 2.10: solution2 の拡大図

図 2.11: solution3 の拡大図

は図 2.14, 図 2.15 である.

図 2.12: p = 1.01の場合の最適周期信号 $f_{\text{opt},1.01}$ (($\Delta \phi, \lambda_1$) = (-1.364936336, 0.5704083690))

図 2.13: p = 2の場合の最適周期信号 $f_{\text{opt},2}$ (($\Delta \phi, \lambda_1$) = (-1615065266, 0.0))

図 2.14: p = 5の場合の最適周期信号 $f_{\text{opt},5}$ (($\Delta \phi, \lambda_1$) = (-3.1415927, 0.0))

図 2.15: p = 5の場合の2番目の最適周期信号 $f_{\text{subopt},5}$ (($\Delta \phi, \lambda_1$) = (-1.948572843, -0.23837645))

$p = \infty$ の場合

 $1 の場合と同様に、<math>p = \infty$ の場合の最適周期信号を導出する.まず、(2.48)式の最 適波形 $f_{opt,\infty}$ 内の2つのパラメータ ($\Delta\phi, \lambda_1$)を決定するために、(2.57a)式と(2.57b)式の連 立方程式を解き、2つのパラメータ ($\Delta\phi, \lambda_1$)の解候補 ($\Delta\phi_*, \lambda_{1,*}$)を求める.(2.57a),(2.57b) 式の解の全体像を知るために、($\Delta\phi, \lambda_1$)をパラメータをある範囲で変動させ、(2.57a)式と (2.57b)式のそれぞれについて解曲線を描く.(2.57a)式と(2.57b)式より得られた2つの解曲 線の交点を全て記録する.この記録した交点が(2.57a)式と(2.57b)式の連立方程式の解であ り、今得たい解候補 ($\Delta\phi_*, \lambda_{1,*}$)となる.求めた(2.57a)式と(2.57b)式の解曲線を図2.16に 示す.ここで、(2.57a)式と(2.57b)式において、(sig[$\bar{Z}(\theta) + \lambda_1$] $Z'(\theta + \Delta\phi)$) = $S_{\infty}(\Delta\phi, \lambda_1)$, (sig[$\bar{Z}(\theta) + \lambda_1$]) = $T_{\infty}(\Delta\phi, \lambda_1)$ と置くことにする.1 の場合と同様に、図2.16より $<math>T_{\infty}(\Delta\phi, \lambda_1)$ は $\Delta\phi$ の連続関数であり、 $S_{\infty}(\Delta\phi, \lambda_1)$ は λ_1 の連続関数である.また本研究では、 $f_{opt,\infty}$ は周期2 π の周期関数であると仮定しているので、 $\Delta\phi \in [-\pi, \pi]$ として、解曲線を描 いた.

(2.57b) 式の T_{∞} と (2.57a) 式の S_{∞} の解曲線の交点より得られる解候補 ($\Delta \phi_*, \lambda_{1,*}$)をより正 確なものとするために,ニュートン法を用いた.ニュートン法で使用する (2.57a) 式と (2.57b) 式に対するヤコビ行列はそれぞれ (2.56) 式である. (2.56) 式を用いてニュートン法を 解く際に, ($\Delta \phi, \lambda_1$) の初期値が必要となるが,この初期値は (2.57b) 式の T_p と (2.57a) 式の S_p の解曲線の交点である ($\Delta \phi, \lambda_1$) とした.ニュートン法より得られた解候補 ($\Delta \phi_*, \lambda_{1,*}$) の リストを表 2.4 に示す.ここで,2.2.1 節で述べたように ($\Delta \phi, \lambda_1$) \leftrightarrow ($-\Delta \phi, -\lambda_1$) と,対称性 を持つ.

図 2.16: (2.57b) 式の T_{∞} と (2.57a) 式の S_{∞} の解曲線 ($p = \infty$)

次にニュートン法より得られた全ての解候補 ($\Delta \phi_*, \lambda_{1,*}$)について, $M = 1 \ge 0$ (2.49)式よ りロッキングレンジ $R \ge (2.57c)$ 式より $|\mathcal{H}(H)|$ を求める. ロッキングレンジ $R \ge |\mathcal{H}(H)|$ を 求めた結果を解候補 ($\Delta \phi_*, \lambda_{1,*}$)と並べて表 2.4 に示す. また, $\Delta \phi \in [-\pi, \pi]$ に対する T_{∞} の 全ての解について, $M = 1 \ge 0$ (2.49)式よりロッキングレンジ $R(\Delta \phi)$ を求めた結果を図 2.17 に示す.

	$(\Delta\phi,\lambda_1)$	R	$ \mathcal{H}(H) = \mathcal{H}_{13}(\mathcal{H}_{12}^2 - \mathcal{H}_{13}\mathcal{H}_{22})$
solution 1	(-3.1415927, 0.0)	1.1784578	0.012231488 (> 0)

表 2.4: (2.57a) 式と (2.57b) 式を満たす解 ($\Delta \phi, \lambda_1$) とロッキングレンジ $R(p = \infty)$

 $p = \infty$ の場合, solution1の($\Delta \phi, \lambda_1$) ~ (-3.1415927, 0.0)は $|\mathcal{H}(H)| > 0$ であるため,

 $F(\Delta\phi,\lambda_1)$ の極大値,つまり R[f]の極大値となる.他に R[f]の極大値となる解候補はない ため,最適解は solution1 となる.この関係は図 2.17 を見ても明らかである. 以上の結果より得られた最適解 ($\Delta\phi,\lambda_1$)を (2.48)式に代入し,理論的に導出した Hodgkin-Huxley 振動子の最適周期信号 $f_{\text{opt},\infty}$ を図 2.18 に示す.

p = 1 **の**場合

p = 1の場合では、2.2.1節で述べたように2つのパラメータ ($\Delta \phi, \lambda_1$) は既にわかっていて、 $\Delta \phi = \Delta \theta \ge \lambda_1 = -\frac{1}{2} [\bar{Z}(\theta_{\text{max}}) - \bar{Z}(\theta_{\text{min}})]$ である. この $\Delta \theta$ は次のように計算的に求めること

図 2.17: T_p における $R(\Delta \phi)$ を求めた結果 $(p = \infty)$

図 2.18: $p = \infty$ の場合の最適周期信号 $f_{\text{opt},\infty}$ (($\Delta \phi, \lambda_1$) = ($-\pi, 0.0$))

ができる.まず、 $\Delta \theta \in [-\pi, 0]$ として (2.69) 式の $\Gamma_0(\bar{\phi})$ を求める.

$$\Gamma_0(\bar{\phi}) = M[Z\bar{\phi} + \Delta\theta) - Z(\bar{\phi})] \tag{2.69}$$

ここで,ロッキングレンジRは(2.70)式より求めることができる.

$$R(\Delta\theta) = (\text{the maximum of } \Gamma_0) - (\text{the minimum of } \Gamma_0)$$
(2.70)

この (2.70) 式を $\Delta \theta \in [-\pi, 0]$ をパラメータとして求めた結果を図 2.19 に示す.

図 2.19: 理論的に求めた $\Delta \theta \in [-\pi, 0]$ に対する R

図 2.19 より、 $\Delta \theta$ の最適解は $\Delta \theta \sim -1.36094$ なる.また、図 2.19 は既に求めた p = 1.01 における図 2.6 の $R - \Delta \phi$ のグラフとほぼ一致していることが分かる.

次に、この理論的に求めた $\Delta \theta \in [-\pi, 0]$ に対する *R* を検証するために、以下の 2 つのことを 行う.

1. (2.65) 式の Γ₀(φ) を用いて,位相方程式 (2.2) から直接ロッキングレンジ R を求める.

2. (2.66) 式の弱いインパルス状のパルス波形を用いて, Winfree モデル式 (2.1) からロッキ ングレンジ *R* を求める. このとき, パルス幅は 0.07 とし, パルスの高さは 1.14 とする.

1.,2. の方法で*R*を求めた結果を図 2.20 に示す. 図 2.20 中の黒実線は (2.70) 式より求めた結 果,+点は1. の方法で*R*を求めた結果,×点は2. の方法で*R*を求めた結果である.

図 2.20 より、どの方法で求めた Rの結果も全て精度よく一致していることが分かる.した がって、p = 1の場合の最適周期信号はパルス間の位相差 $\Delta \theta \ge \Delta \theta = -1.36094$ とした正負 一対のパルスとなる.

図 2.20: 数値計算によって求めた $R - \Delta \theta$ の結果

2.3 Genetic Algorithm を用いた最適周期信号の探索

2.3.1 Genetic Algorithmの設計

遺伝的アルゴリズム(Genetic Algrithm,以下 GA)は汎用性の高さから,最適化問題を解 くアプローチとして広く知られている[?].このGAでは解の候補を遺伝子で表現した「個 体」を複数個用意し,各個体に付けられる評価値の高い個体を優先的に選択して,遺伝,増 殖,突然変異といった操作を繰り返しながら最適な解を探索する.つまり,評価値の高い個 体ほど次の世代にその遺伝子が引き継がれやすく,生き残っていくのである.この操作は, 自然界の生物の進化過程をヒントとしたものである.

GAによる最適周期信号の探索手順を図 2.21 に示す.

本研究で使用する GA において探索する解は、ロッキングレンジを最大化する最適周期信号 である.従って、この最適周期信号を探索パラメータとして設定する.設定する際、探索す る周期信号 $f_{GA}(\theta)$ を $\theta \in [-\pi, \pi]$ の範囲で N 点のベクトルを等間隔に配置し、ベクトル点に よって $f_{GA}(\theta)$ を表現する.この N 個のベクトル点全てが探索パラメータとなる.

このとき,各パラメータは遺伝子情報として 20 ビットの 2 進数で与えられる.したがって, 各個体が持つ遺伝子情報は 20 × N ビット数となる.

ここで、2.2節と同様に周期信号 $f_{GA}(\theta)$ には $\|f_{GA}(\theta)\|_p = M$ と $\langle f_{GA}(\theta) \rangle = 0$ という制約を 課す.そのため、各探索パラメータはこの制約を満たすように決定されるようにした. GA において、一番重要な書く個体における評価値の設定についてだが、本研究では、ロッ

図 2.21: 本研究での GA による解探索の手順

キングレンジを最大化する最適周期信号を探索するため,評価値としてロッキングレンジの 値を採用する.今回,周期信号のパワーはそれほど大きく設定しないため,ロッキングレン ジは式の相互作用関数より導出することとする.

以上のように設計した GA よりロッキングレンジを最大化する最適周期信号を探索してい く.しかし,次節を見れば明らかだが,GA は局所的な解に収束するため,初期探索パラ メータによって異なる解が出てきてしまう事がある.そのため,出てきた複数の解に対して ロッキングレンジを求め,大域的な最適解を見極める必要がある.

GAによる探索解と理論解の結果が一致すれば,理論解の妥当性を示すことになる.ただ, GAでは最適解を出すために時間がかかるため,GAはあくまで理論解の妥当性を示すため の検証ツールの1つである.

2.3.2 理論解と Genetic Algorithm による探索解の比較

Hodgkin-Huxley 振動子を対象とし、2.2.2節で理論的に導出した最適周期信号(以下、理論 解)とGAより求めた探索解を比較する. GAによる最適解の探索において、pノルムの制 約条件をM = 1,探索世代数を10万世代、個体数1000個体とした.

まず, p=1.01の場合の比較結果を図 2.22 に示す.

図 2.22 より, *p* = 1.01 の場合の理論解と探索解は高い精度で一致している.また理論解の ロッキングレンジは 2.7613265,探索解のロッキングレンジは 2.7609771 であり,誤差率は

図 2.22: 理論解と探索解の比較結果 (p = 1.01)

0.01265 となった. この結果, 全く異なるアプローチにより得た2つの解が一致することを 確認できた.

次に, p=2の場合の比較結果を図 2.23 に示す.

図 2.23: 理論解と探索解の比較結果 (p = 2)

図 2.23 より, *p* = 2 の場合の理論解と探索解は高い精度で一致している.また理論解のロッキングレンジは1.4926698,探索解のロッキングレンジは1.4925093 であり,誤差率は 0.01075 となった.

p=5の場合の比較結果を図 2.24, 2.25 に示す.

図 2.24, 2.25 より、p = 5の場合の理論解と探索解は高い精度で一致している.また図 2.24 の solution1 に対する理論解のロッキングレンジは 1.21853096,探索解のロッキングレンジ は 1.2177683 であり、誤差率は 0.06263 となった.図 2.25 の solution3 に対する理論解のロッ キングレンジは 1.2161630,探索解のロッキングレンジは 1.2162259 であり、誤差率は 0.005171737 となった.

最後に *p* = ∞ の場合の比較結果を図 2.26 に示す.

図 2.24: 理論解と探索解の比較結果 (p = 5, solution1)

図 2.25: 理論解と探索解の比較結果 (p = 5, solution3)

図 2.26: 理論解と探索解の比較結果 $(p = \infty)$

図 2.26 より, $p = \infty$ の場合の理論解と探索解は高い精度で一致している.また理論解のロッキングレンジは 1.1784578,探索解のロッキングレンジは 1.1783933 であり,誤差率は 0.005473555 となった.

2.4 設計した最適外部周期信号の引き込み能力のシミュレーション検証

本節では,前節で設計した外部周期信号の引き込み能力をシミュレーション検証した. シミュレーション検証方法としては位相応答方程式 (1.25) を用いる.式 (1.25) において,位 相差が一定となる時,振動子は外部信号に引き込まれたといえる.逆に,位相差が一定とな らなかった場合,振動子は外部信号に引き込まれなかったといえる.よって,振動子の位相 応答関数 Z(ψ) に信号を注入し,十分時間がたった後の位相差の時間変化をみることで,注 入した信号の引き込み能力を検証できる.

比較するために用いた信号は以下の7つである.

(a) 正弦波(図 2.27)

- (b) 位相差を π としたときの正負一対のパルス (パルス幅 0.2π) (図 2.28)
- (c) 位相差を $\frac{\pi}{2}$ としたときの正負一対のパルス (パルス幅 0.2π) (図2.29)
- (d) $\frac{\pi}{4}$ の区間正となり、残りの $\frac{3\pi}{4}$ の区間負となる矩形波(図 2.30)
- (e) p=1の時の最適波形 (パルス幅 0.07) (図 2.31)
- (f) *p* = 2 の時の最適波形 (図 2.32)
- (g) $p = \infty$ の時の最適波形(図 2.33)

図 2.27: a

図 2.28: a

⊠ 2.29: b

⊠ 2.30: c

⊠ 2.31: d

⊠ 2.32: e

図 2.33: f

上記の注入信号を用いてロッキングレンジを比較した.その際,横軸を注入信号の周波数, 縦軸を注入信号の大きさを表す指標とすることで,引き込み周波数帯を求める事ができ,こ れをアーノルドタングと呼ぶ.

今回,注入信号の大きさを表す指標として,パワー,振幅,面積を用いた.本研究で設計し た外部信号が最適であれば,パワーを指標とした時はp = 2の時の最適外部信号,振幅を指 標とした時は $p = \infty$ の時の最適外部信号,面積を指標とした時はp = 1の時の最適外部信号 が最もロッキングレンジが大きくなる,つまり引き込み能力が最適な外部信号といえる. 以上のシミュレーション設定により得たアーノルドタングを以下に示す.

図 2.34: アーノルドタング (パワー一定)

図 2.34, 2.35, 2.36 より,本研究で得られた最適外部信号が引き込み能力を最適とすること を示すことができた.

図 2.35: アーノルドタング (振幅一定)

図 2.36: アーノルドタング (面積一定)

2.5 逓倍動作時の最適外部周期信号の引き込み能力のシミュレーション

検証

前説までは,振動子の周波数:外部信号の周波数が1:1 同期となるときについて考えてきた. 本節では,m:1同期(mは整数)について議論する.m:1同期を達成できれば,小さい周波 数の外部信号を用いて,大きい周波数の発振器を制御できれば,低コストが期待できる.簡 単なm:1同期である2:1同期のロッキングレンジのシミュレーション検証の結果を示す.

パワーー定の場合

パワーー定の場合,つまりp = 2の時の最適周期信号 $f_{opt,2}(\theta)$ を用いる.また,比較する 注入信号として以下の4つを考える.

(P0) 1:1 同期を想定した時の信号(図 2.37)

(P1) 外部信号の周期を振動子の周期の半分にし、残りの半分を0とした信号(図2.38)

(P2) 外部信号の周波数を2分の1とした信号(図2.39)

(P3) P0 に微小摂動を加えた時の信号(図 2.40)

図 2.37: P0

🗵 2.38: P1

図 2.40: P3

図 2.41: 2:1 同期の時のアーノルドタング (パワー一定)

以上の注入信号を用いて求めたアーノルドタングを図 2.41 に示す.

図 2.41 において, パワー *P* = 0.1,0.5 とした時のロッキングレンジを棒グラフにして比較したものを図 2.42 に示す

図 2.42: ロッキングレンジの比較 (パワー一定)

図 2.41 より,各信号のロッキングレンジを R_{p0} , R_{p1} , R_{p2} , R_{p3} とすると, $R_{p0} = \sqrt{2}R_{p1} > R_{p3} \gg R_{p2}$ となっていることがわかる.

振幅一定の場合

振幅一定の場合,つまり $p = \infty$ としたときの注入信号を用いる.比較する信号として, パワー一定の場合と同様に図 2.43 のように設定した.

以上の注入信号を用いて求めたアーノルドタングを図 2.44 に示す.

図 2.44 において, *M* = 0.5, 1 とした時のロッキングレンジを棒グラフにして比較した結果 を図 2.45 に示す.

図 2.45 より、各信号のロッキングレンジを R_{M0} , R_{M1} , R_{M2} , R_{M3} とすると、

 $R_{M0} = 2R_{M1} > R_{M3} \gg R_{M2}$ となっていることがわかる.

面積一定の場合

面積一定の場合,つまり p=1としたときの注入信号を用いる.比較する信号として,パ ワー一定,振幅一定の場合と同様に図 2.46 のように設定した.以上の注入信号を用いて求め たアーノルドタングを図 2.47 に示す.

図 2.47 において, *A* = 0.5, 1 とした時のロッキングレンジを棒グラフにして比較した結果を 図 2.48 に示す.

図 2.43: 注入信号 M0~M3 (振幅一定)

図 2.44: アーノルドタング (振幅一定)

図 2.45: ロッキングレンジの比較(振幅一定)

図 2.46: 注入信号 A0~A3 (面積一定)

図 2.47: アーノルドタング (面積一定)

図 2.48: ロッキングレンジの比較(面積一定)

図 2.48 より,各信号のロッキングレンジを R_{A0} , R_{A1} , R_{A2} , R_{A3} とすると, $R_{A0} = R_{A1} > R_{A3} \gg R_{A2}$ となっていることがわかる.

第3章 ノイズ環境下での位相応答曲線の推定及び 最適な外部周期信号の設計

より現実的な環境を想定する場合,シミュレーションによるノイズの与え方を適切に設定し なくてはならない.しかし,菊地らはシミュレーションにおいて,間違ったノイズの与え方 を行っていた.そのため,ノイズの与え方を正しくしてシミュレーションをやり直し,菊地 らの手法のノイズ耐性を再検証する事には手法の有用性を示すため,また,理論へ拡張した 時の裏付けのために価値があると考えられる.

3.1 数値シミュレーションにおけるノイズの与え方

Hodgkin-Huxley 振動子を例に,確率微分方程式を解く方法を以下に記載する [7,8]. ノイズ を含む振動子の時間発展を表す式として,1.4.3 節で述べたランジュバン方程式を用いる.

$$\frac{dV}{dt} = f(V, m, h, n) + \sigma \cdot \xi(t) \tag{3.1}$$

ただし, *V*, *m*, *h*, *n*は HH 振動子のパラメータ, ξ はホワイトノイズ, σ はノイズの大き さである標準偏差を表している. 白色ノイズ $\xi(t)$ は, 次式のように Wiener 過程 W(t)の導 関数で表される.

$$\xi(t) = \frac{dW(t)}{dt} \tag{3.2}$$

以上より,式(3.1)のLangevin 方程式は以下の確率微分方程式で表される.

$$dV = f(V, m, h, n)dt + \sigma \cdot dW(t)$$
(3.3)

ここで、Wiener 過程 W(t) とはガウス過程(正規過程)の事であり、以下の性質を持つ.

$$P(W(0) = 0) = 1 \tag{3.4}$$

$$\mathbf{E}(W(t)) = 0 \quad \forall t \in [0, \infty) \tag{3.5}$$

$$\mathbf{E}(W(t)W(s)) = \min(t, s) \tag{3.6}$$

ここで、**P**は確率測度、**E**は平均である.また、Wiener 過程は次の性質を持つことも知られている.

$$\mathbf{E}(W(t) - W(s)) = 0, \quad \mathbf{E}((W(t) - W(s))^2) = t - s, \quad 0 \le s \le t$$
(3.7)

$$\mathbf{E}(\{W(t_2) - W(t_1)\}\{W(t_4) - W(t_3)\}) = 0, \quad t_1 \le t_2 \le t_3 \le t_4$$
(3.8)

以上の Wiener 過程の性質 (3.7) より, $W(t) - W(s)(0 \le s \le t)$ は平均 0, 分散 t - s の正規分 布 N(0; t - s) に従う. すなわち, 独立変数 t によるステップ点を $t_k(k = 0, 1, 2...N)$, ス テップ幅を $h = t_{k+1} - t_k$, ウィナー過程の増分を $dW_k = W(t_{k+1}) - W(t_k)$ とすると, ウィ ナー過程 $W(t_n)$ は

$$W(t_n) = \sum_{k=0}^{n-1} \Delta W_k, \quad n = 1, 2, \dots, N$$
(3.9)

とウィナー過程の増分 ΔW の単純な和として表される. ΔW_k は平均 0,分散 h の正規分布 N(0,h) に従う確率変数であるから,この確率変数 W(t) は

$$\Delta W_k = \xi_k \sqrt{h} \tag{3.10}$$

となる. ξ_k は平均0,分散1の標準正規分布N(0,1)に従う標準正規乱数である. したがって,確率微分方程式(3.3)は

$$dV(t) = f(V, m, h, n)dt + \xi_k \sqrt{h}$$
(3.11)

となり、 $h = t_{k+1} - t_k = dt$ より

$$dV(t) = f(x)dt + \xi_k \sqrt{dt} \tag{3.12}$$

となる. したがって, V(t)の差分方程式は以下のようになる.

$$V(t_{k+1}) = V(t_k) + f(V, m, h, n)dt + \xi_k \sqrt{dt}$$
(3.13)

3.2 ノイズ環境下での位相応答曲線の推定

2.1節で行った、インパルス応答法は、高周波数の発振器を対象としているため、ノイズの ない理想的な環境を想定していた.この手法をノイズのある環境下を想定した場合、微小イ ンパルスがノイズに埋もれてしまい、位相応答曲線の精度が極端に悪くなる.そこで本節で は、ノイズ耐性のある菊地らによる手法で位相応答曲線を推定した [9].

3.2.1 菊地らによる位相応答曲線の推定手法の原理

菊地らは位相応答曲線を推定するために,周波数引き込みの現象を利用している.この周波 数引き込みにより得られる振動子の特性より,位相応答曲線を逆算する事ができる.以下で は,そのメカニズムを説明する.

位相応答曲線 Z(φ) は周期関数のため以下のようにフーリエ級数展開できる.

$$Z(\phi) = \sum_{n} Z_n(\phi) \tag{3.14}$$

また、 Z_n は次のように未知の振幅 $a_n \ge b_n$ をもつ2つの正弦波の和として表せる. 以下ではまず、簡単のために振動子が n 倍周波数正弦波 $p_n(\tau)$ に引き込まれた場合を考える.

$$Z_n(\phi) = Z(\frac{\omega'}{n}\tau + \psi) \tag{3.15}$$

$$Z_n(\phi) = a_n \cos(n \cdot \omega \cdot \tau + n \cdot \psi_n) + b_n \cdot \sin(n \cdot \omega \cdot \tau + n \cdot \psi_n)$$
(3.16)

$$Z_0(\phi) = a_0 \tag{3.17}$$

ただし、 ϕ_n は Z_n が持つ固有の位相で $[0, 2\pi]$ をとる.よって、

$$Z(\phi) = Z_0(\phi) + \sum_{n=1} [a_n \cdot \cos(n \cdot \omega \cdot \tau + n \cdot \psi_n) + b_n \cdot \sin(n \cdot \omega \cdot \tau + n \cdot \psi_n)].$$
(3.18)

また,注入する正弦波 $p_n(\tau)$ は次のようにする.

$$p_n(\tau) = A \cdot \sin(n \cdot \omega \cdot \tau + n \cdot \psi') \tag{3.19}$$

$$p_0(\tau) = A \tag{3.20}$$

$n \ge 1$ の場合

 $p_n(n \ge 1)$ を注入した時,離調 $\Delta \omega = \frac{\omega'}{n} - \omega$ と位相差 $\Delta \psi = \psi' - \psi$ の関係は以下のようになる.ここで, ω' は引き込まれた後の振動子の周波数, ψ' は注入正弦波の遅い時間変数である.

$$\frac{n \cdot \omega}{n} - \omega = A \cdot a_0 \cdot \sin(n \cdot \omega \cdot \tau + n \cdot \psi') + A \cdot \frac{1}{2} \cdot \sum_{k=1} [a_k \cdot \sin((k+n) \cdot \omega \cdot \tau + k \cdot \psi_k + n \cdot \psi'] - A \cdot \frac{1}{2} \cdot \sum_{k=1} [a_k \cdot \sin((k-n) \cdot \omega \cdot \tau + k \cdot \psi_k - n \cdot \psi'] + A \cdot \frac{1}{2} \cdot \sum_{k=1} [b_k \cdot \sin((k-n) \cdot \omega \cdot \tau + k \cdot \psi_k - n \cdot \psi'] - A \cdot \frac{1}{2} \cdot \sum_{k=1} [b_k \cdot \sin((k+n) \cdot \omega \cdot \tau + k \cdot \psi_k + n \cdot \psi']$$
(3.21)

ここで、 ψ の変化は ω と比べて十分遅い事に着目する. ψ は注入信号の一周期 $0 \rightarrow \frac{2\pi}{n}$ の間 にほとんど変化がないといえるので、周期 $\frac{2\pi}{n}$ で平均した値を用いても問題ない.そのため、 (3.21)を以下のように $\frac{2\pi}{n}$ で平均化する事ができる.

$$\frac{n \cdot \omega}{n} - \omega = \frac{A}{2} \cdot \frac{n}{2\pi} \sum_{k=1} \int_{0}^{\frac{2\pi}{n}} [a_n \cdot \sin((k+n) \cdot \omega \cdot \tau + k \cdot \psi_k + n \cdot \psi')] d(\omega\tau)$$

$$-\frac{A}{2} \cdot \frac{n}{2\pi} \sum_{k=1} \int_{0}^{\frac{2\pi}{n}} [a_n \cdot \sin((k-n) \cdot \omega \cdot \tau + k \cdot \psi_k - n \cdot \psi')] d(\omega\tau)$$

$$+\frac{A}{2} \cdot \frac{n}{2\pi} \sum_{k=1} \int_{0}^{\frac{2\pi}{n}} [b_n \cdot \cos((k-n) \cdot \omega \cdot \tau + k \cdot \psi_k - n \cdot \psi')] d(\omega\tau)$$

$$-\frac{A}{2} \cdot \frac{n}{2\pi} \sum_{k=1} \int_{0}^{\frac{2\pi}{n}} [b_n \cdot \cos((k+n) \cdot \omega \cdot \tau + k \cdot \psi_k + n \cdot \psi')] d(\omega\tau) \quad (3.22)$$

積分を実行すると、次のような簡単な形にすることができる.

$$\frac{n \cdot \omega}{n} - \omega = A \cdot \frac{1}{2} [a_n \cdot \sin(n \cdot (\psi' - \psi_n)) + b_n \cdot \cos(n \cdot (\psi' - \psi_n))]$$
(3.23)

n = 0 の場合

 $n \geq 1$ の場合と同様に平均化を用いると,

$$\omega' - \omega = a_0 A \tag{3.24}$$

となる. ただし,ω'は振動子が注入を受けて安定したときの角周波数である.

注入正弦波の角周波数が振動子の自然角周波数の整数倍でない場合

注入正弦波の角周波数が振動子の自然角周波数の整数倍から少しずれたときも、周波数引き 込みは起こり、位相差と角周波数差の関係式に安定解が存在する.よって、注入正弦波の角 周波数が振動子の自然角周波数のn倍調波から少しずれた ω'(~nω)の場合も、式(3.23)同 様以下の方程式が成り立つ.

$$\frac{\omega'}{n} - \omega = A \cdot \frac{1}{2} [a_n \cdot \sin(n \cdot (\psi' - \psi_n)) + b_n \cdot \cos(n \cdot (\psi' - \psi_n))]$$
(3.25)

なぜなら,振動子の自然角周波数のn倍から少しずれた注入正弦波に引き込まれて,振動子 は注入正弦波の1/n倍の角周波数で振動するため,位相応答曲線の角周波数も引き込まれた 後のものになるためである.したがって,得られた引き込み特性(位相差-角周波数差)の データ点を2つ用いると,式(3.25)に位相差と角周波数差の値を代入した方程式が2式できることになり,これらを連立させて位相応答曲線のフーリエ係数*a_n*,*b_n*を推定する事が可能となる.このフーリエ係数を各調波でそれぞれ*a_n*,*b_n*を求める事で,位相応答曲線を推定する事が可能となる.

ここで、菊地らの手法は位相方程式を用いているため正弦波の大きさは可能な限り小さい方 が望ましい.そこで、菊地らはある程度大きさの強い正弦波に対する引き込み範囲を複数算 出し、これらの引き込み範囲から大きさの弱い正弦波に対する引き込み範囲を推定すること によって、位相応答曲線を推定している.

3.2.2 位相応答曲線の推定手順

具体的な位相応答曲線の推定手順を以下に示す. 位相応答曲線は以下の引き込み特性より位 相応答曲線のフーリエ係数 *a_n*, *b_n* を各調波毎に求める事によって推定する事ができる.

$$\Delta\omega = \frac{A}{2}(a_n \sin(n\Delta\psi) - b_n \cos(n\Delta\psi)) \tag{3.26}$$

Aは注入正弦波の振幅のため、定数である.したがって、振動子と注入正弦波の周波数離調 $\Delta \omega$ 、位相差 $n \Delta \psi$ を求める事によって、式 (3.26) からフーリエ係数を求める事が可能とな る.式 (3.26) より変数は a_n 、 b_n の 2 つであるため ($\Delta \omega$, $\Delta \psi$) のペアは少なくとも 2 つ以上必 要である.

まず、 $\Delta \omega$ を求める方法を以下に記載する.振幅 A の正弦波を注入した際の引き込み可能範囲を求め、引き込み可能な注入正弦波の周波数と振動子の周波数差である $\Delta \omega$ の最大値、最小値を得る.ここで、位相方程式が成り立つためには注入正弦波の振幅が小さい事が望ましい.しかし、振幅が小さい場合、注入正弦波がノイズに埋もれてしまい、引き込み範囲を求める事が困難となってしまう.一般的に位相方程式が成り立つ場合、注入正弦波の振幅が高くなるほど引き込み範囲は広くなるため、ノイズの影響を受けにくいといえる.そこで、振幅が高い場合の引き込み範囲を測定し、振幅が小さい場合の引き込み範囲を推定する.まず、注入正弦波の振幅が高い場合の周波数特性を取得する.ここで、「高い」振幅の「高い」の定義は、ノイズなしで取得した引き込み可能周波数帯(アーノルドタング)の線形的になっている部分の振幅の最大値とする.例えば、図 3.1 は Hodgkin-Huxley 振動子を対象とした時の1 調波のノイズがない環境下におけるアーノルドタングであるが、振幅 A = 0 のときの注入正弦波の周波数 Ω、すなわち振動子の自然発振周波数を通るようにアーノルドタン

55

グの左端に直線を引くと、振幅約0.7まで線形的になっている事がわかる.よって、図3.1 の場合の注入正弦波の「高い」振幅の最大値は0.7となる.

図 3.1: アーノルドタング(1調波)

以上の注入正弦波の振幅の制限内の振幅で周波数特性を取得し,図3.2のように中心の同期 している領域と両端の同期していない領域でフィッティングを行う.フィッティングに用い る式は,左端の同期していない領域を

$$a/\Delta\omega + b, \tag{3.27}$$

中心の同期している領域を

$$c\Delta\omega + d, \tag{3.28}$$

右端の同期していない領域を

$$e/\Delta\omega + f,\tag{3.29}$$

とした.

また,低い振幅の正弦波の引き込み範囲を推定するためには,複数の振幅の引き込み範囲が 必要となる.そのため,高い振幅から小さくしていき,その都度引き込み範囲を取得する. アーノルドタングを推定する際の誤差を小さくするために,引き込み範囲を測定する振幅の 測定点は多く,測定幅は大きくすることが望ましい.このように測定した複数の振幅での引 き込み範囲からアーノルドタングを推定することができる.位相方程式が成り立つとき, アーノルドタングは図 3.3 のように線形的であるため,アーノルドタングの $\Delta \omega = 0$ を中心 にして,(3.28)でフィッティングでき,振幅が小さい時の引き込み可能な注入正弦波の周波 数 Ω の最大値,最小値を推定できる.推定した Ω の最大値,最小値から振動子の自然発振周 波数 ω_0 の調波数倍である $n\omega_0$ を引くことで振幅が小さい時の $\Delta \omega$ を求める事ができる.

図 3.2: 周波数特性のフィッティング

図 3.3: アーノルドタングの模式図

次に、位相差 $n\Delta\psi$ を求める方法を以下に示す.まず、引き込み特性の式 (3.26)より、 $\Delta\omega$ が 最大となる時、つまり引き込み可能範囲の右端のときの位相差は $n\Delta\psi = \alpha - \frac{\pi}{2}$ となる.同 様に、 $\Delta\omega$ が最小となる時、つまり引き込み範囲の左端のときの位相差は $n\Delta\psi = \alpha + \frac{\pi}{2}$ となる.ここで、 α とは注入正弦波の周波数を振動子の自然発振周波数とした時の位相差 ($\Delta\omega = 0$ の時 $n\Delta\psi = \alpha$)である.ただし、振動子の自然発振周波数は、ノイズ環境下を想定 する場合、そのノイズを加えた時の自然発振周波数を用いる.つまり、ノイズの大きさに よって振動子の自然発振周波数 ω_0 は異なる.振幅が大きければ大きいほど、位相差は安定 するが、振幅が大きすぎると位相方程式の適用外となってしまう.そのため、前述したアー ノルドタングが線形的になっている部分の最大振幅とした正弦波を用いて位相差 α を測定し た.位相差 α の測定方法は、位相差のヒストグラムのピーク値とする. α が求められたので、 $n\Delta\psi = \alpha \pm \frac{\pi}{2}$ により $\Delta\omega$ の最小値、最大値の位相差 $\Delta\psi$ も求める事ができる. 以上より、振幅が小さい時の引き込み範囲の右端、左端の ($\Delta\omega, n\Delta\psi$) と注入正弦波の周波

数を振動子の自然発振周波数の調波数倍とした時の $(\Delta \omega, n \Delta \psi) = (0, \alpha)$ の計3点を推定する 事ができた.この3点を用いて式 (3.26)よりフィッティングを行い,フーリエ係数 a_n , b_n を 推定する.図3.4は1 調波の時のフィッティング例である.以上の方法で各調波のフーリエ 係数を求める事により,位相応答曲線を推定できる.

3.2.3 位相応答曲線の推定のノイズ耐性の検証

前述したとおり、菊地らの推定手法におけるノイズ耐性を再検証する必要がある.したがって、2つの振動子に対してノイズがある環境下を想定し、位相応答曲線の推定を行った.

Hodgkin-Huxley 方程式の位相応答曲線の推定

ノイズの標準偏差0.5の場合を考える.図3.5,3.6,3.7,3.8としたときのアーノルドタングを示 す.また、ノイズのない環境下でのアーノルドタングも同時に示す.今回、微小といえる正 弦波の振幅を0.35とした.これはインパルス応答法の微小インパルスのパワーと揃えたもの である.ここで、微小インパルスの「微小」とは測定した位相応答曲線の波形がくずれない ときのインパルスである.図3.5,3.6,3.7,3.8より、どの調波でもノイズのない環境下のとき のアーノルドタングとほぼ一致していることがわかる.1調波~3調波までは微小といえる 注入正弦波の振幅0.35以下で引き込み特性を得る事が出来た.しかし、4調波では、周波数

図 3.4: 引き込み特性のフィッティング

特性がノイズの影響によりバラついてしまい,振幅が微小といえるときの引き込み特性を得る事が出来なかった.そのため,菊地らの手法のポイントである振幅の大きい場合の引き込み特性を推定した.

以上より推定した位相応答曲線は図??のようになる.推定精度の比較対象として[3]の手法, ノイズのない環境下でインパルス応答法により得た位相応答曲線を同時に示す.インパルス 応答法により得た位相応答曲線が理想的な位相応答曲線のため,これに近いほど精度が良い といえる.[3]の手法を緑の鎖線,菊地らの手法を赤の実線,インパルス応答法を黒の破線で 示す.

図 3.9 より, [3] の手法と比べて, 菊地らの手法の方が精度が良いことがわかる.よって,従 来手法よりノイズ耐性が強いといえる.

しかし、ノイズの標準偏差を1.0以上とした場合、周波数特性をフィッティングすることができない.図3.10はノイズの標準偏差1.0、注入正弦波の振幅1.0、4 調波のときの周波数特性で、ほぼ平らになっているためフィッティングできないことがわかる.

そのため、菊地らの手法では、ノイズの標準偏差0.5のとき精度よく位相応答曲線を推定で

図 3.5: 1 調波のアーノルドタング (Hodgkin-Huxley 方程式)

図 3.6: 2 調波のアーノルドタング (Hodgkin-Huxley 方程式)

図 3.7: 3 調波のアーノルドタング (Hodgkin-Huxley 方程式)

図 3.8:4 調波のアーノルドタング (Hodgkin-Huxley 方程式)

図 3.9: 推定した位相応答曲線(Hodgkin-Huxley 方程式,ノイズの標準偏差 0.5)

図 3.10: 周波数特性(Hodgkin-Huxley 方程式,ノイズの標準偏差 1.0,4 調波)

き,標準偏差を1.0以上とした時,位相応答曲線を推定できないことがわかった.

Rössler 方程式の位相応答曲線の推定

同様に,ノイズの標準偏差0.5の場合を考える.1調波の時のアーノルドタングを図??に示す.ここで,Rössler 方程式は非線形性が強くないため1調波のみで位相応答曲線を推定できる.

図 3.11:1 調波のアーノルドタング (Rössler 方程式)

また,Hodgkin-Huxley 方程式の時と同様に Rössler 方程式に対する微小正弦波の振幅を求めると,微小といえる正弦波の振幅は0.13 である.図3.11より,振幅0.13 いかでも引き込み特性を測定できている.したがって,より小さい振幅を推定する必要はなく,位相応答曲線

を推定できる.ノイズの標準偏差が0.5のときの位相応答曲線を図??に示す.

図 3.12: 推定した位相応答曲線(Rössler 方程式,ノイズの標準偏差 0.5)

図??より,精度よく位相応答曲線を推定できたことがわかった.ここで,Rössler 方程式は1 調波のみの単純な波形ということを考えると,よりノイズを大きくしても精度よく位相応答 曲線を推定できると期待されるかもしれない.しかし,ノイズの標準偏差を1.2とした場合 の変数 x の時間変化を図 3.13 を以下に示すが,波形がドリフトしてしまっていることが見て 取れる.そのため,引き込みを利用する菊地らの手法は適用できなくなってしまう事がわか る.したがって,ノイズの標準偏差 0.5 の時は精度よく位相応答曲線を推定でき,1.2 以上で は推定できないことがわかった.

3.3 ノイズ環境下での最適波形の導出

3.3.1 確立分布のピーク値を最大化する周期信号の理論的導出

本節では FP 方程式を用いて確率分布のピーク値を最大にする周期外力を理論的に導出する. まずノイズに比べて周期外力が非常に弱い場合,つまり確率分布がフラットになる場合につ

図 3.13: x の時間変化(Rössler 方程式,ノイズの標準偏差 1.2)

いて導出し.次に周期外力が強い場合,つまり確率分布が鋭いピークをもつ場合について導出する.

周期外力が弱い場合

FP 方程式を示す.

$$\begin{split} \frac{\partial}{\partial t} P(\psi, t) &= -\epsilon^2 \frac{\partial}{\partial \psi} [(\Delta + \Gamma(\psi)) P(\psi, t)] \\ &+ \epsilon^2 \tilde{D} \frac{\partial^2}{\partial \psi^2} P(\psi, t) + O(\epsilon^4) \end{split}$$

右辺の第3項は ϵ^4 オーダーと極めて小さいので無視して (3.30) とする.

$$\frac{\partial}{\partial t}P(\psi,t) = -\epsilon^{2}\frac{\partial}{\partial \psi}[(\Delta + \Gamma(\psi))P(\psi,t)] + \epsilon^{2}\tilde{D}\frac{\partial^{2}}{\partial \psi^{2}}P(\psi,t)$$

$$= -\epsilon^{2}\frac{\partial}{\partial \psi}[(\Delta + \Gamma(\psi))P(\psi,t) + \frac{\partial}{\partial \psi}\tilde{D}P(\psi,t)]$$

$$= -\epsilon^{2}\frac{\partial}{\partial \psi}J(\psi,t)$$
(3.30)

 $P(\psi,t)$ が定常解 $P_s(\psi)$ となったとき,時間変化量は0 となるので $\frac{\partial}{\partial \psi}P_s(\psi) = 0$ となる. $\frac{\partial}{\partial \psi}P_s(\psi) = 0$ が成立するためには右辺 $J(\psi,t)$ が定数値をとる必要がある. この J_0 を定数値
とすると定常解のとき、以下を満たさなければならない.

$$J_{0} = (\Delta + \Gamma(\psi))P_{s}(\psi) - \tilde{D}\frac{\partial}{\partial\psi}P_{s}(\psi)$$

$$-\frac{J_{0}}{D} = \frac{\partial}{\partial\psi}P_{s}(\psi) - \tilde{D}^{-1}(\Delta + \Gamma(\psi))P_{s}(\psi)$$
(3.31)

次に
$$\frac{\partial}{\partial \psi} P_s = \tilde{D}^{-1} (\Delta + \Gamma(\psi)) P_s$$
を解くと

$$P_{s} = \exp[\int_{0}^{\psi} \tilde{D}^{-1}(\Delta + \Gamma(\psi')d\psi') + C] = c \exp B(\psi)$$
(3.32)

となる. ただし $B(\psi) = \int_0^{\psi} \tilde{D}^{-1}(\Delta + \Gamma(\psi')d\psi')$ と置いた. ここで (3.32) を (3.31) に代入すると

$$\frac{\partial}{\partial \psi} [c \exp B(\psi)] - \tilde{D}(\Delta + \Gamma(\psi)c \exp B(\psi)) = -\frac{J_0}{D}$$
(3.33)

となる. (3.33)の両辺を積分すると

$$C = \int_0^{\psi} -\frac{J_0}{D} \exp(-B(\psi')) d\psi' + c$$
(3.34)

を得る. これを (3.32) に代入すると

$$P(\psi) = c \exp B(\psi) - \frac{J_0}{D} \int_0^{\psi} \exp[B(\psi) - B(\psi')]$$
(3.35)

となる.ここで周期境界条件 $(P(0) = P(2\pi))$ を用いると

$$P(0) = c = P(2\pi) = c \exp[B(2\pi)] - \frac{J_0}{\tilde{D}} \int_0^{2\pi} \exp[B(2\pi) - B(\psi')] d\psi'$$
(3.36)

となる. これを変形すると

$$\frac{J_0}{D} = \frac{c[\exp B(2\pi) - 1]}{\oint \exp[B(2\pi) - B(\psi')]d\psi'}$$
(3.37)

ここで $P_s(\psi)$ が偶関数である場合, $P_s(\psi) = P_s(-\psi)$, $\frac{\partial}{\partial \psi} P_s(\psi) = -\frac{\partial}{\partial \psi} P_s(\psi)$ が成り立つ. よって,(3.31)より

$$\tilde{D}\frac{\partial}{\partial\psi}P_s(-\psi) = (\Delta + \Gamma(-\psi))P_s(-\psi) - J_0$$

= $-\tilde{D}\frac{\partial}{\partial\psi}P_s(\psi) = -(\Delta + \Gamma(\psi))P_s(\psi) + J_0$ (3.38)

となる. (3.38) が成立するためには $\Delta + \Gamma(-\psi) = -(\Delta + \Gamma(\psi)), J_0 = 0$ でなけらばならない. $\Delta + \Gamma(\psi) = -(\Delta + \Gamma(-\psi))$ である場合, $B(\psi) = \int_0^{\psi} \tilde{D}^{-1}(\Delta + \Gamma(\psi'))d\psi'$ より $B(\psi) = B(-\psi)$ となる. さらに (3.36) より $B(2\pi) = 0, J_0 = 0$ を得る. よって P_{ψ} が偶関数である時,

$$P_s(\psi) = c \exp B(\psi) = P_s(-\psi) = c \exp B(-\psi)$$
 (3.39)

$$J_0 = 0 \tag{3.40}$$

となる. このとき

$$\Delta + \Gamma(\psi) \tag{3.41}$$

$$\Delta + \Gamma(0) = 0 \tag{3.42}$$

であり、 $\Delta + \Gamma(\psi)$ は奇関数で表される.よって $\Delta + \Gamma(\psi)$ が奇関数であることと $P_s(\psi)$ が偶 関数であることは等価であるといえる.以下では $\Delta + \Gamma(\psi)$ が奇関数である場合について $P_s(\psi)$ のピークを求める.まず、(3.31)に $J_0 = 0$ を代入し、 $\psi = 0$ とすると

$$(\Delta + \Gamma(0))P_s(0) - \tilde{D}\frac{\partial}{\partial\psi}P_s(0) = 0$$

(3.42) より

$$\frac{\partial}{\partial \psi} P_s(0) = 0 \tag{3.43}$$

となり、周期関数 P_s は $\psi = 0$ で極値解を得る事がわかる.また $P_s(\psi) = 0$ の定義 (3.30) より

$$-\epsilon^2 \frac{\partial}{\partial \psi} [(\Delta + \Gamma(\psi)) P_s(\psi)] + \epsilon^2 \tilde{D} \frac{\partial^2}{\partial \psi^2} P_s(\psi) = 0$$
(3.44)

であり、これを解くと

$$\tilde{D}\frac{\partial^2}{\partial\psi^2}P_s(\psi) = \frac{\partial}{\partial\psi}[(\Delta + \Gamma(\psi))P_s(\psi)]$$

$$= \frac{\partial}{\partial\psi}\Gamma(\psi)P_s(\psi) + (\Delta + \Gamma(\psi))\frac{\partial}{\partial\psi}P_s(\psi)$$
(3.45)

となる. $\psi = 0$ とすると,

$$\frac{\partial^2}{\partial \psi^2} P_s(0) = \tilde{D}^{-1} \frac{\partial}{\partial \psi} \Gamma(\psi) P_s(0) + \tilde{D}^{-1} (\Delta + \Gamma(\psi)) \frac{\partial}{\partial \psi} P_s(\psi)$$

$$= \tilde{D}^{-1} \frac{\partial}{\partial \psi} \Gamma(\psi) P_s(0)$$

$$= c \tilde{D}^{-1} \frac{\partial}{\partial \psi} \Gamma(\psi) \qquad (3.46)$$

となる. c > 0, $\tilde{D} > 0$ であるので, $\frac{\partial}{\partial \psi} \Gamma(\psi) < 0$ のとき, $P_s(\psi)$ は $\psi = 0$ で極大となる. 次 に $P_s(0)$ を極大化するような入力信号 $q(\theta)$ を考える. $q(\theta)$ 及び振動子と入力信号の離調周波 数 Δ が極めて小さいものであることを表すため, $|\alpha|(<<1)$ を導入し, 上の 2 つを $\alpha q(\theta)$, $\alpha \Delta$ と書き改める. さらに, 入力信号は以下の制約が課せられているとする.

$$Q = \oint (\alpha q(\theta))^2 d\theta = \alpha^2 \oint q^2(\theta) d\theta = \alpha^2 \bar{Q}$$
(3.47)

Qはパワーを表しており,2章における *P* と同義である.本章では FP 方程式の分布関数 *P* と混在してしまうのをさけるため.パワーを *P* とおいた.

ここで、 $\alpha \Delta + \Gamma(\psi)$ は奇関数であり、

$$P_s(\psi) = c \exp B(\psi) \tag{3.48}$$

$$\oint P_s(\psi)d\psi = c \oint \exp B(\psi)d\psi = 1$$
(3.49)

 $P_{s}(0) = c$ であるので,確率分布のピークを高くすることはcを極大化することである. (3.49)より $c = \frac{1}{\oint \exp B(\psi) d\psi}$ である.cを極大化することは $\oint \exp B(\psi)$ を極小化することと同義である.以上より (3.47)の制約条件により, $\oint \exp B(\psi) d\psi$ を極小化することは以下の変分問題を解くことと等価である.

$$T[q] = \oint \exp B(\psi) d\psi - \lambda [\oint q^2(\theta) d\theta - \bar{Q}]$$

=
$$\oint \exp \left[\int_0^{\psi} \left(\frac{\alpha \Delta}{\bar{D}} + \frac{\alpha}{2\pi} \int_0^{2\pi} Z(\theta + \psi) q(\theta) d\theta\right) d\psi'\right] d\psi$$

$$-\lambda [\oint q^2(\theta) d\theta - \bar{Q}]$$
(3.50)

ここで λ はラグランジュの未定乗数である.以下より、(3.50)を解き、 $P_s = c$ を極大化する 入力信号 $q_*(\theta)$ を導出する.まず、 $B(\psi)$ をマクローリン展開すると以下のようになる.

$$\exp B(\psi) = 1 + B(\psi) + O(\alpha^2)$$
(3.51)

さらに

$$\oint \exp B(\psi) = 2\pi + \oint B(\psi)d\psi + O(\alpha^2)$$
(3.52)

とし、 $O(\alpha^2)$ は極めて小さいパラメータであるため無視する. すると、 $\exp B(\psi)d\psi$ を極小化することは $\oint B(\psi)d\psi$ を極小化することと等価である. よって、(3.50) は

$$T[q] = \oint B(\psi)d\psi - \lambda [\oint q^2(\theta)d\theta - \bar{Q}]$$

=
$$\oint \int_0^{\psi} \frac{\alpha}{\bar{D}} [\Delta + \frac{1}{2\pi} \oint Z(\theta + \psi')q(\theta)d\theta]d\psi'd\psi$$

$$-\lambda [\oint q^2(\theta)d\theta - \bar{Q}]$$
(3.53)

と書き直せる.第一変分 $\delta T[q]$ を求めると,

$$\delta T[q] = \oint \int_{0}^{\psi} \frac{\alpha}{\tilde{D}} [0 + \frac{1}{2\pi} \oint Z(\theta + \psi')q(\theta)d\theta]d\psi'd\psi$$
$$-\lambda [2 \oint q(\theta)\delta(\theta)d\theta - 0]$$
$$= \oint [\delta(\theta) \oint \int_{0}^{\psi} \frac{\alpha}{2\pi\tilde{D}} Z(\theta + \psi')d\psi'd\psi - 2\lambda q(\theta)]d\theta \qquad (3.54)$$

となる.

(3.54)が $\delta T[q_*] = 0$ を満たす q_* は

$$2\lambda q_*(\theta) = \oint \int_0^{\psi} \frac{\psi}{0} \frac{\alpha}{2\pi \tilde{D}} Z(\theta + \psi') d\psi' d\psi$$
$$q_*(\theta) = \frac{\alpha}{4\lambda \pi \tilde{D}} \oint \int_0^{\psi} Z(\theta + \psi) d\psi' d\psi$$
(3.55)

と与えられる. ここで $Z(\psi) = \sum_{n=-\infty}^{\infty} Z_n e^{in\psi}$ とすると

$$\int_{0}^{\psi} Z(\psi) d\psi' = \int_{0}^{\psi} [Z_{0} + \sum' Z_{n} e^{in\psi}] d\psi'$$

= $Z_{0}\psi + \sum' \frac{Z_{n}}{in} e^{in\psi} - \sum' \frac{Z_{n}}{in}$ (3.56)

となる. ここで $\sum' lt \sum_{n=-\infty}^{\infty} o$ 内, n = 0を含まない総和である. (3.56)を用いると,

$$\int_{0}^{\psi} Z(\theta + \psi') d\psi' = z_0 \psi + \int_{0}^{\theta + \psi} \sum' z_n e^{in\psi'} d\psi' - \int_{0}^{\theta} \sum' z_n e^{in\psi'} d\psi'$$
$$= z_0 \psi + \sum' \frac{z_n}{in} e^{in\theta} - \sum' \frac{z_n}{in}$$
(3.57)

となり、これを (3.55) に代入すると

$$2\lambda q_*(\theta) = \frac{\alpha}{2\pi \tilde{D}} \oint [z_0 \psi + \sum' \frac{z_n}{in} e^{in(\theta + \psi)} - \sum' \frac{z_n}{in} e^{in\theta}] d\psi'$$

$$= \frac{\alpha}{2\pi \tilde{D}} (\frac{4\pi^2 z_0}{2} - \sum' \frac{z_n}{in} e^{in\theta} 2\pi)$$

$$= \frac{\alpha}{\tilde{D}} (z_0 \pi - \sum' \frac{z_n}{in} e^{in\theta})$$

$$= \frac{\alpha}{\tilde{D}} (M - X(\theta))$$
(3.58)

となる. ここで $z_0\pi = M$, $\sum' \frac{z_n}{in} e^{in\theta} = Z(\theta)$ とおいた. よって, $q_*(\theta)$ は

$$q_*(\theta) = \frac{\alpha}{2\lambda \tilde{D}} (M - X(\theta)) \tag{3.59}$$

入力信号のパワーー定という制約条件(3.47)より,

$$\oint q_*^2 d\theta = \oint \frac{\alpha^2}{4 lambda^2 \tilde{D}^2} (M - X(\theta))^2 d\theta = Q$$
(3.60)

 $\oint (M-X(\theta))^2 d\theta = S \succeq \ddagger \triangleleft \triangleleft,$

$$\lambda^{2} = \frac{\alpha^{2}}{4Q\tilde{D}}S$$
$$\lambda = \pm \frac{\alpha}{2\tilde{D}}\sqrt{\frac{S}{Q}}$$
(3.61)

また第2変分 $\delta^2 q$ は

$$\delta^2 T[q] = -2\lambda \oint \delta^2(\theta) d\theta \tag{3.62}$$

よって $\lambda < 0$ のとき第2変分 $\delta^2[q] > 0$ であるので q_* はT[q]の極小解を与える. つまり、 $P_s(\psi) = c$ を極大化する最適入力信号 q_{opt} は

$$q_{opt}(\theta) = \frac{1}{2\lambda_{-}}(M - X(\theta))$$

$$= \frac{\tilde{D}}{\alpha}\sqrt{\frac{Q}{S}}\frac{\alpha}{\tilde{D}}(X(\theta) - M)$$

$$= \sqrt{\frac{\bar{Q}}{S}}(X(\theta) - M)$$
(3.63)

(3.63) もしくは (3.60) より, α << 1 のとき, つまり周期外力がノイズに比べて十分小さい とき, 最適解は PRC の積分によって得られる.

この q_{opt} から相互作用関数 Γを求めると,

$$\Gamma_{opt}(\psi) = \frac{1}{2\pi} \oint Z(\theta + \psi) \alpha q_{opt}(\theta) d\theta$$

$$= \frac{\alpha}{2\pi} \int_{n=-\infty}^{\infty} Z_n e^{in(\theta + \psi)} \times \sqrt{\frac{\bar{Q}}{S}} (\sum' \frac{z_n}{in} e^{in\theta} - z_0 \pi) d\theta$$

$$= \frac{\alpha}{2\pi} \sqrt{\bar{Q}S} \oint (z_0 + \sum' z_n e^{in(\theta + \psi)}) (\sum' \frac{z_n}{in} e^{in\theta} - z_0 \pi)$$
(3.64)

ここで

$$\sum' z_n e^{in(\theta+\psi)} = \sum_{n=1}^{\infty} e^{in(\theta+\psi)} + \sum_{n=1}^{\infty} Z_{-n} e^{-in(\theta+\psi)}$$
(3.65)

$$\sum_{n=1}^{\prime} \frac{z_n}{in} e^{in\theta} = \sum_{n=1}^{\infty} \frac{z_n}{in} e^{in\theta} + \sum_{n=1}^{\infty} \frac{Z_{-n}}{-in} e^{-in\theta}$$
(3.66)

のように分解すると

$$\Gamma_{opt}(\psi) = \alpha \sqrt{\frac{\bar{Q}}{S}} (-z_0^2 \pi + \sum_{n=1}^{\infty} z_{-n} \frac{z_n}{in} e^{in\psi} + \sum_{n=1}^{\infty} z_n \frac{z_{-n}}{-in} e^{-in\psi}) = \alpha \sqrt{\frac{barQ}{S}} (-z_0^2 \pi - 2 \sum_{n\geq 1}^{\infty} \frac{|z_n|^2}{n} \sin n\psi)$$
(3.67)

また $\Delta + \Gamma(\psi)$ は奇関数であるので

$$\alpha \Delta + \Gamma_{opt}(0) = 0$$

$$\alpha \Delta = -\Gamma_{opt}(0)$$

$$\alpha \Delta = -\alpha \sqrt{\frac{\bar{Q}}{S}} (-z_0 \pi - 2 \sum_{n=1}^{\infty} \frac{|z_n|}{n} \sin n\psi)$$

$$\Delta = z_0^2 \pi \sqrt{\frac{\bar{Q}}{S}}$$
(3.68)

以上より周期外力が弱い場合における $P(\psi)$ を最大化する周期外力が PRC の積分によって 得られる.

周期外力が強い場合

今回,信号がパワーー定という制約条件 (3.47) であるとし, $P(\psi)$ の傾きの変化量 $|\frac{\partial^2}{\partial\psi^2}P(\psi)|$ が最大となる入力 $q(\theta)$ を考える. この $q(\theta)$ がピークが最も鋭くなる入力信号である. $\frac{\partial^2}{\partial\psi^2}\Gamma(\psi) < 0$ のとき, ψ_* で $P_s(\psi)$ は極大となるので,以下では $\frac{\partial^2}{\partial\psi^2}P(\psi)$ を極小化する. (3.44)より $\frac{\partial}{\partial\psi}P(\psi_*)|_{\psi=\psi_*}$ として

$$\tilde{D}\frac{\partial^2}{\partial\psi^2}P_s(\psi_*)|_{\psi=\psi_*}P_s(\psi_*) \tag{3.69}$$

よって $\Gamma'(\psi_*)$ を極小化すればよい. ここで簡単のため $\psi_* = 0$ とすると, ラグランジュの未 定乗数法より

$$K[q] = \frac{\partial}{\partial \psi} \Gamma(\psi)|_{\psi=0} - \lambda \left[\frac{1}{2\pi} \oint q^2(\theta) d\theta - Q\right]$$

$$= \frac{1}{2\pi} \oint Z'(\theta) q(\theta) d\theta - \lambda \left[\frac{1}{2\pi} \oint q^2(\theta) d\theta - Q\right]$$
(3.70)

を極小化する信号を得ればよい.まず第一変分 $\delta K[q]$ を求めると

$$\delta K[q] = \frac{1}{2\pi} \oint Z'(\theta)\delta(\theta)d\theta + \frac{2\lambda}{2\pi} \oint q(\theta)\delta(\theta)d\theta$$
(3.71)

となる.よってK[q]を極小化する信号 q_* は以下で与えられる.

$$Z'(\theta) + 2\lambda q_*(\theta) = 0$$

$$q_*(\theta) = -\frac{1}{2\lambda} Z'(\theta)$$
(3.72)

外部信号の制約条件を満たすには

$$8\pi\lambda^2 Q = \oint (Z'(\theta))^2 d\theta \tag{3.73}$$

$$\lambda^2 = (8\pi Q) \oint (Z'(\theta))^2 d\theta \tag{3.74}$$

とならなければならず、このとき第2変分 $\delta^2 K[q]$ は

$$\delta^2 K[q] - 2\lambda \oint \delta^2(\theta) d\theta = 16\pi Q [\oint (Z'(\theta))^2]^{-1} \oint \delta^2 d\theta > 0$$
(3.75)

となる.よって q_* は K[q] を極小化する.この q_* を用いたとき $\frac{\partial}{\partial \psi} P_s(\psi)|_{\psi=0} = 0$, $\frac{\partial^2}{\partial \psi^2} P_s(\psi)|_{\psi=0} > 0$ であり,同時に $P_s(\psi)|_{\psi=0}$ を極小化する.よって注入信号が強い場合, ピークを最も鋭くする信号は振動子の PRC を微分したものであることがわかった.

3.3.2 確立分布のピーク値を対象とした時の理論解と Genetic Algorithm の探索解の 比較

本節では、2.3節と同様に理論解とGAとの比較結果を示す。2.3節と異なる点は、評価関数 を確率分布のピーク値としている点である。図の凡例は f_{dif} を位相応答関数の微分、 f_{dif} を 位相応答関数の積分、 f_{ga} をGAによる探索解とする。

Hodgkin-Huxley 振動子を対象とした時の理論解とGAによる探索解の比較

まず周期外力が弱い場合としてQ = 0.0001としたときの理論解と探索解の比較結果を図 3.14 に示す.また、このときの分布関数の比較結果を図 3.15 に示す.

図 3.14, 3.15 より, 周期外力が弱い場合, 位相応答関数の積分 f_{int} と等しくなっており, このとき分布関数のピークも最も高くなっていることがわかる.

次に、周期外力が強い場合としてQ = 10としたときの理論解と探索解の比較結果を図 3.16 に示す.また、このときの分布関数の比較結果を図 3.17 に示す.図 3.14、3.15 より、周期 外力が強い場合、位相応答関数の微分 f_{diff} と等しくなっており、このとき分布関数のピー クも最も高くなっていることがわかる.

図 3.14: 理論解と探索解の最適波形の比較 (Q=0.0001, Hodgkin-Huxley 方程式))

図 3.15: 理論解と探索解の分布関数の比較 (Q=0.0001, Hodgkin-Huxley 方程式))

図 3.16: 理論解と探索解の最適波形の比較 (Q=10,Hodgkin-Huxley 方程式))

図 3.17: 理論解と探索解の分布関数の比較 (Q=10,Hodgkin-Huxley 方程式))

図 3.18: 理論解と探索解の最適波形の比較 (Q=0.1, Hodgkin-Huxley 方程式)

図 3.19: 理論解と探索解の分布関数の比較 (Q=0.1,Hodgkin-Huxley 方程式)

最後に、理論解と一致しなかったQ = 0.1とした場合の比較結果を図 3.18、3.19 に示す. 図 3.14、3.15 より、Q = 0.1の場合、GA による探索解 f_{GA} が位相応答関数の微分 f_{diff} と積分 f_{int} どちらとも一致していないことがわかる. そこで、探索解が最も最適であることを示す ために、ランダム関数との分布関数と比較した. 図 3.20、3.20 より、GA による探索解が最

図 3.20: ランダム関数との分布関数の比較 (Q=0.1, Hodgkin-Huxley 方程式)

図 3.21: ランダム関数との分布関数の比較 (Q=0.1,Hodgkin-Huxley 方程式, ピーク付近の 拡大)

も分布関数のピーク値が高くなっていることがわかる.この結果より,設計したGAでは最 も最適な波形を得る事ができると数値的に証明された.

Rössler 方程式を対象とした時の理論解とGAによる探索解の比較

まず周期外力が弱い場合としてQ = 0.001としたときの理論解と探索解の比較結果を図 3.22 に示す.また,このときの分布関数の比較結果を図 3.24 に示す.

図 3.22: 理論解と探索解の最適波形の比較 (Q=0.001, Rössler 方程式)

図 3.23: 理論解と探索解の最適波形の比較 (Q=0.001, Rössler 方程式, 拡大)

図 3.22, 3.24 より, 周期外力が弱い場合, 位相応答関数の積分 *f*_{int} と等しくなっており, このとき分布関数のピークも最も高くなっていることがわかる.

次に、周期外力が強い場合としてQ = 0.1としたときの理論解と探索解の比較結果を図 3.26 に示す.また、このときの分布関数の比較結果を図 3.28 に示す.

図 3.26, 3.26 より, 周期外力が強い場合, 位相応答関数の微分 fdiff と等しくなっており,

図 3.24: 理論解と探索解の分布関数の比較 (Q=0.001,Rössler 方程式)

図 3.25: 理論解と探索解の分布関数の比較 (Q=0.001, Rössler 方程式, ピーク付近の拡大)

図 3.26: 理論解と探索解の最適波形の比較 (Q=0.1, Rössler 方程式)

図 3.27: 理論解と探索解の最適波形の比較 (Q=0.1,Rössler 方程式,拡大)

図 3.28: 理論解と探索解の分布関数の比較 (Q=0.1, Rössler 方程式)

図 3.29: 理論解と探索解の分布関数の比較 (Q=0.1, Rössler 方程式, 拡大)

このとき分布関数のピークも最も高くなっていることがわかる. 最後に、理論解と一致しなかった Q = 0.01 とした場合の比較結果を図 3.30, 3.32 に示す.

図 3.30: 理論解と探索解の最適波形の比較 (Q=0.01, Rössler 方程式)

図 3.30, 3.32 より, Q = 0.01 の場合, GA による探索解 f_{GA} が位相応答関数の微分 f_{diff} と 積分 f_{int} と一致しているように見える. しかし, 図 3.31, 3.33 のように拡大するとどちらと も一致していないことがわかる. そこで, 探索解が最も最適であることを示すために, ラン ダム関数との分布関数と比較した. 図 3.34, 3.34 より, GA による探索解が最も分布関数の ピーク値が高くなっていることがわかる. この結果より, 設計した GA では最も最適な波形 を得る事ができると数値的に証明された.

図 3.31: 理論解と探0索解の最適波形の比較 (Q=0.01, Rössler 方程式,拡大)

図 3.32: 理論解と探索解の分布関数の比較 (Q=0.01, Rössler 方程式)

図 3.33: 理論解と探索解の分布関数の比較 (Q=0.01, Rössler 方程式, ピーク付近の拡大)

図 3.34: ランダム関数との分布関数の比較 (Q=0.01, Rössler 方程式)

図 3.35: ランダム関数の分布関数の比較 (Q=0.01,Rössler 方程式,ピーク付近の拡大))

第4章 結論

本論文では、まずノイズ環境下で菊地らによる位相応答曲線の推定手法を正しい方法でノイ ズ耐性を検証し直した.結果、ある程度のノイズの大きさまでであれば、従来手法より精度 よく推定できることを数値的に導いた.また、本研究で設計されたノイズのない環境下、ノ イズ環境下それぞれにおける最適周期信号が確かに引き込み能力を最適化する事を別のアプ ローチによる Genetic Algorithm により示した.さらに、理論の適用できない範囲でも最適 波形を求める事ができた.

今後の課題としては、本研究で用いた位相差の分布関数のFokker-Planck 方程式を用いて、 理論的に位相応答曲線を求める事があげられる.そのための足掛かりとして、今回の正しい 設定での数値実験による位相応答曲線の推定は理論の裏付けとなり価値があるといえる.ま た、注入同期において、同期のロバスト性も重要な課題といえる.これは2章で示した理論 を拡張する事で設計可能である.

謝辞

本研究を行うにあたり多くのご指導を頂いた田中久陽先生に心から感謝致します.また, 研究室配属より研究をはじめとして多くの助言を頂いた M2 西山英里さん,研究を進めるう えで様々な助言を頂いた M1 飯倉秀策さん,砂田晃良さん,矢部洋司さん,ご卒業された先 輩方に深く感謝します.そして,多くの励ましを頂いた B4 倉本淳さん,出口慎太郎さん, 小田淳さん,荻原祐介さんに感謝いたします.最後に,心の支えとなって頂いた家族に心よ り感謝いたします.

関連図書

- A. L. Hodgkin and A. F. Huxley "A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve," *Bulletin of Mathematical Biology*, Vol. 52, No 1/2pp. 25 – 71, 1990.
- [2] O. E. Rössler "An Equation for Continuous Chaous," Physics Letters, July 1976.
- [3] G. B. Ermentraout, R. F. Galan, and N. N. Urban, "Relating neural dynamics to neural coding," Phys. Rev. Lett. 99,248103, 2007.
- [4] 蔵本由樹, 「同期現象の数理」, 培風館, 2010.
- [5] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," *IEEE J. Solid-State Circuits*, Vol. 33, pp. 179–194, Feb. 1998.
- [6] 三宮信夫,玉置久,喜多一,岩本貴志,「遺伝アルゴリズムと最適化」,朝倉書店,1998.
- [7] C. W. Gardiner, Handbook of Stochastic Methods, Springer, 2003.
- [8] 三井斌友,小藤俊幸,齋藤善弘,「微分方程式による計算科学入門」,共立出版株式会社, 2004.
- [9] 菊地淳弘, 宮崎紀子, 田中久陽, "引き込みのロバスト性による位相応答曲線の推定手法の提案," 信学技法, NLP2008-16, pp.43-48, June 2008.

付録

本研究で使用したプログラムの内,代表的なものを記す.

Genetic Algorithm を行うプログラム

• Ga.java

1	<pre>import java.util.*;</pre>
2	<pre>import java.io.*;</pre>
3	
4	class main{//メイン関数
D C	<pre>public static void main(String [] args){</pre>
6	new main();//実行
8	
ğ	/*開始時刻取得(実行時間取得のため)*/
1Ŏ	<pre>long starttime = System.currentTimeMillis():</pre>
11	Calendar cal1 = Calendar.getInstance():
12	int hour = cal1.get(Calendar, HOUR OF DAY):
13	int minute = cal1.get(Calendar.MINUTE):
14	int second = cal1.get(Calendar.SECOND);
15	System.out.println("Start time is "+hour+":"+minute+":"+second):
16	
17	
18	
20	aouble [] pn1=new aouble[Der.SAMPLE+1];//业相
$\frac{20}{21}$	double [j[] Z=new double[Def.SAMPLE+1][Def.SAMPLE+1];//位相応合闽氨 /*問教完美*/
$\frac{5}{22}$	/*因效定数*/ Fucilition Fucency Fucilition()・//C4 におけろ問数
$\bar{2}\bar{3}$	Equation Egeney Equation()://方程式を定義すろクラス
$\overline{24}$	Makefile Mf=new Makefile()://gnuplot 用ファイルを作成するクラス
$\overline{25}$	/*個体の構造体定義*/
$\overline{2}\check{6}$	Ind[] CUR=new Ind[Def.NoI]://現世代の個体
27	Ind[] NXT=new Ind[Def.NoI];//次世代の個体
28	for(int i=0;i <def.noi;i++){ th="" 構造体初期化<=""></def.noi;i++){>
29	<pre>CUR[i]=new Ind();</pre>
30	<pre>NXT[i]=new Ind();</pre>
31	
04 32	/*位相と位相応答関数のサンフリング*/
37 27	for(int smp=0;smp<=Def.SAMPLE;smp++)
34	phi[smp]=(2*Def.PI/Def.SAMPLE)*smp-Def.PI;
36	<pre>ior(int smp=0;smp<=Dei.SAMPLE;smp++){</pre>
37	<pre>Ior(int smp2=0; smp2<=Def.SAMPLE; smp2++) </pre>
38	<pre>Z[smp][smp2]=Eq.prc(pn1[smp]+pn1[smp2]*Def.Wtime);</pre>
39] /************************************
40	/*GENETIC ALGORITHM************************************
41	***************************************
$\frac{42}{43}$	**************************************
$\frac{10}{44}$	if(Def N INITSO) fort = Eve initDec2bin()
$\frac{11}{45}$	11(bel.w_1w1)(0)10pt = Ev0.111(bec2b1n(),
46	,+[0为正]上+/
47	for(int i=0:i <def not:i++){="" th="" 初期世代の染色体を生成<=""></def>
4 8	for(int n=0:n <def.loc:n++){< th=""></def.loc:n++){<>
$\overline{49}$	r=(int)(Math.random()*2);
50	if(Def.N_INIT>O&&i <def.n_init) r="fopt[n];</th"></def.n_init)>
51	<pre>//int r=(int)(0.99*2.0);</pre>
52	<pre>CUR[i].setChrom(r,n);</pre>
53	}
54	}

55	
56	double para_sum = 0.0;//積分値
57	double para_sum2 = 0.0;//点移動後の積分値
58	double para_M = 0.0;//制約値
59	int para_posi = 0;//正の点の個数
60	int para_nega = 0;//負の点の個数
61	double move = 0.0;//移動量
62	<pre>int para_posi_Z = 0;</pre>
63	int para_nega_Z= 0;
24	
66	int Gen =1;
67	/*世代の更新*/
ĞŻ	for(Gen=1:Gen<=Def.NoG:Gen++)f
<u>6</u> 9	//System.out.print(Gen+", ");
70	Evo.act(CUR,NXT,phi,z,Gen);
71	if (Gen%1000==0) {
$\frac{72}{2}$	/*1 周期平均を 0 にする操作 (2)*/
<u>73</u>	para_posi=0;
14	para_posi_Z=0;
$\frac{75}{22}$	para_nega=0;
<u>76</u>	para_nega_Z=0;
11	para_sum =0.0;
78	<pre>para_sum2 = 0.0;</pre>
79	$para_M = 0.0;$
80	<pre>for(int i=0; i<def.n_param; i++){<="" pre=""></def.n_param;></pre>
81	para_sum += CUR[0].Para[i];//すべての点の値を足す(積分)
82	<pre>if(CUR[0].Para[i]>=0)para_posi+= 1;</pre>
83	<pre>if(CUR[0].Para[i]<0)para_nega+= 1;</pre>
84	<pre>para_M += Math.pow(Math.abs(CUR[0].Para[i]), Def.Pnol);</pre>
82	}
87	para_m = para_m / (Uei.n_rARAM);
88	
89	//double ssi -0; //formint i=0i<=Def N PARAM-0. i+=0){
9ŏ	// ssite at the math now(Math abs(CUR[0].Para[i]).Def.Pnol):
91	
92	//double ss2 =0.0;
93	//for(int i=1; i<=Def.N_PARAM-1; i+=2){
94	<pre>// ss2 += Math.pow(Math.abs(CUR[0].Para[i]),Def.Pnol);</pre>
95	//}
90	<pre>//para_M=2*Def.PI/(3.0*Def.N_PARAM)*(Math.pow(Math.abs(CUR[0].Para[0]),Def.Pnol)+Math.pow(Math.abs(CUR[0].Para[Def.N_PARAM);</pre>
97	//para_M/=2*Def.P1;//平均化
	para $M = Math pow(para M (1 0/Def Pnol))$.
100	アルーニー」アルーニー: (*)、「ハーフローン」 (*)、「ハーン」 (*)、「ハ
101	System.out.println("探索点の P ノルム="+para M+" 正の点"+para posi+" 有の点"+para nega):
102	
103	/*if(para_sum != 0){//1 周期積分が 0 になるように移動を行う
104	//move = para_sum/ Def.N_PARAM;//全ての点の移動量を均等に設定
105	<pre>move=para_sum / (para_posi + para_nega);</pre>
106	<pre>for(int i=0; i<def.n_param; i++){<="" pre=""></def.n_param;></pre>
107	if(CUR[0].Para[i]>=Def.ZER0 CUR[0].Para[i]<=-Def.ZER0)CUR[0].Para[i] = CUR[0].Para[i] - move;
108	if(i==0)CUR[0].Para[Def.N_PARAM] = CUR[0].Para[i];//theta=0 と theta=2pi の点は等しい
109	para_sum2 += CUR[0].Para[i];//移動後のすべての点の値を足す (移動後の積分値)
11 <u>1</u>	}
112	}*// Sustam out println("1 周期建分="+para sum)・
113	by boom (out) printing () (printing ())
114	para_M = 0.0;//初期化
115	para_sum = 0.0;//初期化
116	/*結果表示*/
117	System.out.println(Gen+": "+ CUR[0].R+" "+//BEST4 を表示する
118	CUR[1].R+" "+CUR[2].R+" "+CUR[3].R);
119	System.out.println("");
129	}
121	/* 指定 した世代毎に探察波形 data を出力*/
122	11 (Gen, JDer . ANSprint==0) {
123	Mr.data(phr, Cuk[0],Para, Gen, Cuk[0],R, Cuk[0],shift);
124	MI.gnu(Gen, CORLOJ.K);
126	
$1\bar{2}\bar{7}$	
128	/*終了時刻取得,実行時間表示*/
129	<pre>long stoptime = System.currentTimeMillis();</pre>
130	System.out.println("Elapsed time is about "+ (stoptime - starttime)/60000+" min.");
131	<pre>System.out.println((stoptime - starttime)+" msec/10g.");</pre>
132	1. 现于和10.12-11
199	/*1水氷門の次小*/

89

```
double Lockrange=CUR[0].R;
               System.out.printf("The Lockrange is %4.6f.\n",Lockrange);
               System.out.printf("--->gnuplot_*****.txt\n");
        3
}
    Ga_func.java
____
 class Ga_func{//GA における関数
              /*関数定義*/
              Equation Eq=new Equation();//方程式を定義するクラス
              /*個体をソートする関数*/
              void quickSort(Ind[] IND){
                      /*予備の個体の構造体定義*/
                      Ind[] TMP=new Ind[1];//予備個体生成
                      TMP[0]=new Ind();
                      /*並べ替え*/
                      for(int i=Def.NoI-1;i>=0;i--){
                             for(int j=0;j<i;j++){</pre>
                                    if(IND[j].Evaluation<=IND[j+1].Evaluation){
                                            TMP[0]=IND[j];
                                           IND[j]=IND[j+1];
                                            IND[j+1]=TMP[0];
                                    }
                             }
                      }
              }
              /*評価値を計算する関数*/
              void evaluate(Ind[] IND,double[] phi,double[] [] z, int Gen){
                      bin2dec(IND);//遺伝子情報を実数パラメタに変換
                      /*各個体の評価値を導出(ロックレンジの導出)*/
                      double [] qq=new double[Def.N_PARAM+1];//周期外力(正規化前)
                      double [] q=new double[Def.N_PARAM+1];//周期外力(正規化後)
                      double INT=0;//積分の解
                      double min=0,max=0,lr=0;//ロックレンジの右端、左端、ロックレンジ
                      int min_number=0;
                      for(int p=0;p<=Def.N_PARAM;p++){</pre>
                             q[p]=0;
                             qq[p]=0;
                      }
                      int posi = 0;
                      double posi_a = 0;
                      int nega = 0;
                      double nega_a = 0;
                      double move = 0;
                      double move_a = 0;
                      double kakumove = 0;
                      int set1 = 0;//0 両方一緒 1 プラスの個体が多い 2 マイナスの個体が多い
                      double taishod = 0;
                      int taisho = 0;
                      int aa = 0;
                      double para_a = 0;
                      double kaku_temp = 0;
                      int dispset = 0;//動作確認用, 1 なら表示, 0 ならなし
                      double zyoge = 0.0;
                      double tmp0606 = 0.0;
                      int tmp0606i = 0;
                      for(int i=0;i<Def.NoI;i++){//畳み込み積分
                             for(int p=0;p<=Def.N_PARAM;p++){</pre>
                                     qq[p]=(IND[i].Para[p]);
                                     if(Def.F_ZERO&&p>=Def.N_PARAM/Def.Ntime&&p<Def.N_PARAM) qq[p]=0.0;
                             }
              /*1 周期平均を 0 にする操作 (1)*/
                             if(Gen>=100){//100 世代終了後に点移動操作を開始
                                    posi = 0;
                                    nega = 0;
                                    posi_a = 0;
                                    nega_a = 0;
                                    move_a = 0;
                                    nega_a = 0;
                                     para_a = 0;//動かすパラメタの合計値
                                     kakumove = 0;
                                    kaku_temp = 0;
```

 $134 \\ 135 \\ 136 \\ 137 \\ 138$

```
90
```

```
\begin{array}{c} 72\\73\\74\\75\\76\\89\\80\\88\\83\\84\\85\\86\\87\\88\\99\\91\\92\\93\\4\\95\\96\\97\\98\\99\\100\\\end{array}
                                                                                                                                                                        for(int r=0;r<Def.N_PARAM;r++){</pre>
                                                                                                                                                                                                         if(qq[r]>=0){
                                                                                                                                                                                                                                          posi += 1;//プラス点のカウント
                                                                                                                                                                                                                                           posi_a += qq[r];//プラス点の値加算
                                                                                                                                                                                                          if(qq[r]<0){
                                                                                                                                                                                                                                          nega += 1;//マイナス点のカウント
                                                                                                                                                                                                                                           nega_a += Math.abs(qq[r]);//マイナス点の値加算
                                                                                                                                                                                                        }
                                                                                                                                                                       }
                                                                                                                                                                        if(posi>nega)set1 = 1;//プラス点の方が多い場合
                                11
                                                                                                                                                                        if(posi<nega)set1 = 2;//マイナス点の方が多い場合
                               //
                                                                                                                                                                        if(posi==nega)set1 = 0;//両方同じ数の場合
                                                                                                                                                                       move = Math.abs(posi - nega)/2;//動かすべきパラメタの個数(両方の差の半分)
                                                                                                                                                                       if(dispset == 1)System.out.println("-----"+Gen);
                                                                                                                                                                        if(dispset == 1)System.out.println("p:"+posi+",n:"+nega+",set="+set1+", move="+move);
                                                                                                                                                                        if(dispset == 1)System.out.println("p_a:"+posi_a+",n_a:"+nega_a);
                                                                                                                                                                        double[] num=new double[(int)move];
                                                                                                                                                                       //move_a = Math.abs((posi_a - Math.abs(nega_a)))/2;//動かす量 (全パラメタに対して)
                                                                                                                                                                        //kakumove = move_a / move;//個々のパラメタに対して動かす量(量/動かすべきパラメタ数
                                                                                                                                                                        //プラスが多かった場合
                                                                                                                                                                        if(set1==1){
                                                                                                                                                                                                        //if(posi_a - Math.abs(nega_a) < 0)break;</pre>
                                                                                                                                                                                                         ka:for(int c=0; c<move; c++){</pre>
                                                                                                                                                                                                                                           taishod = 0;//動かす対象の配列番号
                                                                                                                                                                                                                                           //taishod = 3;
                                                                                                                                                                                                                                           taishod =Math.random()*Def.N_PARAM;//動かす対象をランダムに決定
                                                                                                                                                                                                                                           taisho = (int)taishod;
                                                                                                                                                                                                                                           if(qq[taisho]>=0){//決定した動かす対象がプラスの値だったら動かす
101
                                                                                                                                                                                                                                           if(qq[taisho]>=Def.ZERO){
                             11
101 \\ 102 \\ 103 \\ 104 \\ 105
                                                                                                                                                                                                                                                                          if(c>0){
                                                                                                                                                                                                                                                                                                                for(int e=0; e<c; e++){
                                                                                                                                                                                                                                                                                                                                                 if(num[e]==taisho){//さっき選んだやつと重複していないか?
                                                                                                                                                                                                                                                                                                                                                                                 if(dispset == 1)System.out.println("s");
100 \\ 106 \\ 107
                                                                                                                                                                                                                                                                                                                                                                                  c=c-1:
                                                                                                                                                                                                                                                                                                                                                                                  continue ka:
  108 \\ 109 \\ 110
                                                                                                                                                                                                                                                                                                                                                }
                                                                                                                                                                                                                                                                                                               3
                                                                                                                                                                                                                                                                             3
111 \\ 112
                                                                                                                                                                                                                                                                             num[c]=taisho;
                                                                                                                                                                                                                                                                            if(dispset == 1)System.out.println("動かす番号"+num[c]);

    \begin{array}{c}
      113 \\
      114 \\
      115
    \end{array}

                                                                                                                                                                                                                                           }else{
                                                                                                                                                                                                                                                                             c=c-1;//動かさなかったらカウントを戻す
                                                                                                                                                                                                                                                                            if(dispset == 1)System.out.println("x");
116
                                                                                                                                                                                                                                                                             continue ka;
     \frac{17}{18}
                                                                                                                                                                                                                                           3
                                                                                                                                                                                                         for(int c=0; c<move; c++){</pre>
\overline{120}
                                                                                                                                                                                                                                          posi_a -= qq[(int)num[c]];
120 \\ 121 \\ 122
                                                                                                                                                                                                                                           nega_a += qq[(int)num[c]];
                                                                                                                                                                                                                                           qq[(int)num[c]] = -qq[(int)num[c]];
1\bar{2}\bar{3}
                                                                                                                                                                                                                                           if(dispset == 1)System.out.println("正負移動のみ");
  123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 
                                                                                                                                                                                                         }
                                                                                                                                                                       }
                                                                                                                                                                         -
//マイナスが多かった場合
                                                                                                                                                                        if(set1==2){
    //if(Math.abs(nega_a) - posi_a < 0)break;</pre>
1\bar{2}\bar{9}
                                                                                                                                                                                                         if(dispset == 1)System.out.println("move="+move);
130 \\ 131
                                                                                                                                                                                                         kb:for(int c=0; c<move; c++){</pre>
                                                                                                                                                                                                                                          taishod = 0:
132 \\ 133 \\ 134
                                                                                                                                                                                                                                           taishod = Math.random()*Def.N_PARAM;
                                                                                                                                                                                                                                           taisho = (int)taishod;
                                                                                                                                                                                                                                           if(qq[taisho]<0){
135
                                                                                                                                                                                                                                           if(qq[taisho]<=-Def.ZERO){
                              11
136 \\ 137 \\ 138 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 
                                                                                                                                                                                                                                                                            if(c>0){
                                                                                                                                                                                                                                                                                                               for(int e=0; e<c; e++){
                                                                                                                                                                                                                                                                                                                                              if(num[e]==taisho){
                                                                                                                                                                                                                                                                                                                                                                                  c=c-1:
 140
                                                                                                                                                                                                                                                                                                                                                                                  continue kb:
  140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 144 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 
                                                                                                                                                                                                                                                                                                                                               }
                                                                                                                                                                                                                                                                                                               }
                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                             num[c]=taisho;
 145
                                                                                                                                                                                                                                                                             if(dispset == 1)System.out.println("動かす番号"+num[c]);
  \begin{array}{c} 146 \\ 147 \end{array}
                                                                                                                                                                                                                                           }else{
                                                                                                                                                                                                                                                                             c=c-1:
 148
                                                                                                                                                                                                                                                                            if(dispset == 1)System.out.println("x");
  149
                                                                                                                                                                                                                                                                            continue kb:
    150
151
152
                                                                                                                                                                                                                                           3
                                                                                                                                                                                                         for(int d=0; d<move; d++){</pre>
```



```
123456789011234156789012234256789012334567890123344444444444
              double prc(double x){
                      Def def = new Def();//Def クラスの宣言
                      return def.a0/2.0+def.b1*Math.sin(x)+def.b2*Math.sin(2.0*x)+def.b3*Math.sin(3.0*x)+def.b4*Math.sin(4.0*x)+def.b5*Math.sin(5.0*x)
                                      +def.a1*Math.cos(x)+def.a2*Math.cos(2.0*x)+def.a3*Math.cos(3.0*x)+def.a4*Math.cos(4.0*x)+def.a5*Math.cos(5.0*x);//
              3
              double[] func(double q[],double[] qq){//探索周期外力
                      double PP=0;//規格化前の周期外力のパワー (p=2 以外ではパワーとは呼ばない)
                      /*規格化前のパワーを計算(シンプソン法)*/
      /*
                      double ss1 =0.0;
                      for(int i=2; i<=Def.N_PARAM-2; i+=2){</pre>
                              ss1 += Math.pow(Math.abs(qq[i]),Def.Pnol);
                      double ss2 =0.0;
                      for(int i=1; i<=Def.N_PARAM-1; i+=2){</pre>
                              ss2 += Math.pow(Math.abs(qq[i]),Def.Pnol);
                      PP=2*Def.PI/(3.0*Def.N_PARAM)*(Math.pow(Math.abs(qq[0]),Def.Pnol)+Math.pow(Math.abs(qq[Def.N_PARAM]),Def.Pnol)+2.0*ss1+4.0*ss2);
                      PP/=2*Def.PI;//平均化
      */
                      for(int i=0;i<Def.N_PARAM;i++){</pre>
                              PP+=Math.pow(Math.abs(qq[i]), Def.Pnol);
                      }
PP/=Def.N_PARAM;
                      double sahen = Math.pow(PP, 1/Def.Pnol);
                      for(int i=0; i<=Def.N_PARAM; i++){</pre>
                              q[i] = 0;
                      }
                      /*規格化*/
                      double normalize = 0.0;//規格化のために各周期外力 qq に対してかける係数
                      normalize = (Def.M/sahen);
                      for(int i=0; i<=Def.N_PARAM; i++){//探索点すべてを規格化
                              q[i] = normalize * qq[i];
                      }
                      return q;
              }
              double simp(double[][] z,double[] q,int t){//積分:シンプソン法
                      double ss1 =0.0;
                      for(int i=2; i<=Def.SAMPLE-2; i+=2){</pre>
                              ss1 += z[t][i]*q[i];
47
                      }
```

```
\begin{array}{r} 489\\ 5555\\ 5555\\ 556\\ 789\\ 6612\\ 66\\ 63\end{array}
                       double ss2 =0.0;
                       for(int i=1; i<=Def.SAMPLE-1; i+=2){</pre>
                               ss2 += z[t][i]*q[i];
                       return 2*Def.PI/(3.0*Def.SAMPLE)*
                       (z[t][0]*q[0]+z[t][Def.SAMPLE]*q[Def.SAMPLE]+2.0*ss1+4.0*ss2);
               }
               double square(double[][] z, double[] q, int t){
                       double s=0.0;
                       for(int i=0; i<Def.SAMPLE;i++){</pre>
                               s+=z[t][i] * q[i];
                       return s * 2*Def.PI / Def.SAMPLE;
               3
- Evolution.java
   1
       import java.io.*:
  2345678910
       class Evolution{
               double dice=0;//親選択のサイコロ
               int PARENT1=0,PARENT2=0;//親 1、親 2 の個体
               /*関数定義*/
               Ga_func Gf=new Ga_func();//GA における関数
               void act(Ind[] CUR,Ind[] NXT,double[] phi,double[][] z, int Gen){
                       Gf.evaluate(CUR,phi,z, Gen);//個体の評価
                       Gf.quickSort(CUR);//クイックソート
  for(int i=0;i<Def.NoE;i++){//エリート戦略
                               for(int n=0;n<Def.LoC;n++)</pre>
                                      NXT[i].setChrom(CUR[i].Chromosome[n],n);
                       }
                       Gf.makeRoulette(CUR);//GA 用ルーレット作成
                       for(int i=Def.NoE;i<Def.NoI;i+=2){//エリート以外の次世代作成
                               dice=Math.random();//GA 用ルーレットを回す
                               for(int j=0;j<Def.NoI;j++){//親 1 選択
                                      if(dice>CUR[j].Roulette)PARENT1=j;
                                              else break:
                               .
dice=Math.random();//GA 用ルーレットを回す
                               for(int j=0;j<Def.NoI;j++){//親 2 選択
                                      if(dice>CUR[j].Roulette)PARENT2=j;
                                              else break;
                               ,
if(Math.random()<Def.PROB_CROSSOVER){//交叉(一様交叉)を行う
                                      for(int n=0;n<Def.LoC;n++){//交叉処理
                                              if(Math.random()<0.5){//遺伝子交換:パターン1
                                                      NXT[i].setChrom(CUR[PARENT1].Chromosome[n],n);
                                                      NXT[i+1].setChrom(CUR[PARENT2].Chromosome[n],n);
                                              }else{//遺伝子交換:パターン2
                                                      NXT[i].setChrom(CUR[PARENT2].Chromosome[n],n);
                                                      NXT[i+1].setChrom(CUR[PARENT1].Chromosome[n],n);
                                              3
                                      }
                               }else{//交叉しない
                                      for(int n=0;n<Def.LoC;n++){//染色体ごと交換
                                              NXT[i].setChrom(CUR[PARENT1].Chromosome[n],n);
                                              NXT[i+1].setChrom(CUR[PARENT2].Chromosome[n],n);
                                      3
                               if(Math.random()<Def.PROB_MUTATION){//突然変異(遺伝子を1つだけ反転)
                                      int po=(int)(Math.random()*2.0);//突然変異する個体番号
                                      int n_op=(int)(Math.random()*Def.LoC);//反転する遺伝子番号
                                      NXT[i+po].Chromosome[n_op]=1-NXT[i+po].Chromosome[n_op];
                               }
                       }
                       for(int i=0;i<Def.NoI;i++){//次世代の染色体を現世代へ代入
                               for(int n=0;n<Def.LoC;n++){</pre>
                                      CUR[i].setChrom(NXT[i].Chromosome[n],n);
                               }
                       3
               /*理論解を2進数に変換,出力する関数*/
               int[] initDec2bin() {
                       double[] fopt = new double[Def.SAMPLE+1];//サンプリング数を揃えた理論解
  62
                       int[] foptbin = new int[Def.LoC];//理論解を 2 進数に変換した染色体を全て格納
```

63

オイラー法で微分方程式を解き周波数特性を取得するプログラム

```
- freq.java
    \frac{1}{2}{3}
        //HH 方程式の位相の時間変化(ノイズあり)
        import javax.swing.*;
  45678910
        import java.awt.*;
        import java.text.*;
        import java.io.*;
         import java.util.*;
        class main{
                 public static void main(String[] args){
  \begin{array}{c} 11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\223\\24\\25\\26\\27\end{array}
                 for(int k=0;k<=0;k++){</pre>
                          Def.amp=(double)k*(Def.amp_max-Def.amp_min)/1.0+Def.amp_min;
                          System.out.println("amp"+Def.amp);
                 new main():
                 long starttime = System.currentTimeMillis();
                 Date date = new Date();
                 DateFormat df = new SimpleDateFormat("yy_MM_dd_HH_mm_ss");
                 Equation Eq=new Equation();
                 PrintWriter pw_time = null;//gnuplot(位相差)
                          String filename_time;
                          filename_time = "time-amp"+Def.amp+".txt";
                 try {
                          pw_time = new PrintWriter(filename_time);
                 } catch (Exception e) {
                 3
```

```
\begin{array}{r} 289\\ 230\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 44\\ 45\\ \end{array}
               PrintWriter pw = null;//sin の周波数ごとの位相差
                      String filename;
               PrintWriter pw1 = null;//sin の周波数ごとの周波数差
                      String filename1;
               PrintWriter pw2 = null;//周波数特性
                      String filename2;
                      filename2 = "HH"+Def tei:
                      filename2 = filename2+"delta_omega";
                      filename2 = filename2+"-amp"+Def.amp;
                       filename2 = filename2 + "-date_time"+df.format(date);
                      filename2 = filename2 + ".txt";
               try {
                      pw2 = new PrintWriter(filename2);
               } catch (Exception e) {
               .
PrintWriter pw3 = null;//gnuplot(周波数特性)
 46 \\ 47 \\ 48 \\ 49 \\ 50
                      String filename3;
               11
                       filename3 = "amp"+Def.amp;
                       filename3 =/* filename3+*/"gnuplot_omega.txt";
               try {
                      pw3 = new PrintWriter(filename3);
 51
               } catch (Exception e) {
 PrintWriter pw4 = null;//gnuplot(位相差)
                      String filename4;
                       filename4 = "amp"+Def.amp;
               11
                      filename4 = /*filename4+*/"gnuplot_phase_difference.txt";
               try {
                      pw4 = new PrintWriter(filename4);
               } catch (Exception e) {
               }
               double xi;//ノイズ
               double PI=Def.PI;
               double Time=0.0;//グローバル時間
               double T;//振動子の周期
               double h_Time=Def.h_Time;
               double sh_Time=Def.sh_Time;
               double sine_omega;//注入正弦波の角周波数
               double b_max_sine_omega=Def.b_max_sine_omega;//角周波数の最大値
               double b_min_sine_omega=Def.b_min_sine_omega;//角周波数の最小値
               double b_h_sine_omega=Def.b_h_sine_omega;//角周波数の刻み
               double V,next_V,m,next_m,h,next_h,n,next_n;//HH のパラメータ
               double[] para= new double[4];//next_*を1つの配列に(複数 return したいから)
               double[] para_ex=new double[4];//HH のパラメータを継承
               double noise;//ノイズ
               double psi;//振動子の m がピークをとる時間
               double psi_ext;//sine の正方向へ0クロスした時間
               double phase_difference=0.0;//振動子と sine の位相差
               double sine;
               double past_sine;
               double amp=Def.amp;
               double OMEGA_HH=Def.OMEGA_HH;
               double past_diff_m=0.0;//m の差 (old)
               double diff_m=0.0;//m の差 (new)
               double aveTime_0=0.0;//取り始める時間
               double aveTime_1=0.0;//取り終える時間
               double ave_period=0.0;//平均する周期数
 94 \\ 95 \\ 96
               double past_peak_m=0.0,peak_m=0.0;//m がピークをとる時間
               double period=0.0,frequency=0.0;//振動子の周期, 角周波数
               double sum_p=0.0,number_p=0.0;//周期の和, 周期数
97 \\ 98 \\ 99 \\ 100 \\ 101 \\ 102 \\ 103
               double ave_frequency=0.0;//振動子の周波数の平均
               double delta_omega=0.0;//周波数さ
               double phase_diff_sum=0.0;//位相差の和
               double ave_phase_diff=0.0;//位相差の周期平均
               double tei=Def.tei;//逓倍数
      11
               System.out.println(123/1.):
104 \\ 105 \\ 106
               //sin の周波数=HH 振動子の周波数にして回す
```

```
107 \\ 108 \\ 109 \\ 110
                                                                                               sine_omega=Def.OMEGA_HH;
                                                                                               filename = "HH"+tei;
                                                                                               filename = filename+"amp"+Def.amp;
  110
                                                                                               filename = filename+"phase_difference";
  111
                                                                                               filename = filename+"sin_omega"+sine_omega;
  112
                                                                                               filename = filename+"-amp"+Def.amp;
  113
                                                                                               filename = filename+"-date_time"+df.format(date)+".txt";
  114
                                                                                               try {
                                                                                                                                             pw = new PrintWriter(filename);
  115
  \overline{116}
                                                                                               } catch (Exception e) {
  <u>117</u>
                                                                                               }
                                                                                               filename1 = "HH"+tei;
  \overline{1}\overline{1}\overline{9}
                                                                                               filename1 = filename1+"amp"+Def.amp;
  120
                                                                                               filename1 = filename1+"delta_omega";
 120 \\ 121 \\ 122
                                                                                               filename1 = filename1 + "sine_omega"+sine_omega;
                                                                                               filename1 = filename1+"-amp"+Def.amp;
 123 \\ 124
                                                                                               filename1 = filename1 + "-date_time"+df.format(date)+".txt";
                                                                                               try {
 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 
                                                                                                                                              pw1 = new PrintWriter(filename1);
                                                                                               } catch (Exception e) {
                                                                                               pw.println("#Time phase_difference");
  1\overline{29}
                                                                                               pw1.println("#Time period frequency sine_omega delta_omega");
 130
                                                                                               pw2.println("delta_omega frequency ave_period ave_frequency phase_difference ave_phase_diff");
 131 \\ 132 \\ 132
                                                                                               System.out.print("sin_omega="+sine_omega);
                                             //
                                                                                               while(sine_omega<=b_max_sine_omega){ //sine の角周波数を b_min_sine_omega から b_max_sine_omega まで変化させる

    \begin{array}{r}
      132 \\
      133 \\
      134 \\
      135 \\
      136 \\
      137 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\
      138 \\

                                                                                                                                               //HH を初期化
                                                                                                                                               V=Def.V0;
                                                                                                                                               m=Def.m0;
                                                                                                                                              h=Def.h0;
                                                                                                                                               n=Def.n0;
                                                                                                                                               for(int i=0;i<=3;i++){</pre>
    139
                                                                                                                                                                                            para[i]=0.0;
    \frac{140}{141}
                                                                                                                                               }
                                                                                                                                              142
                                                                                                                                              psi_ext=0.0;
  143
                                                                                                                                               sine=0.0;
    1\bar{4}4
                                                                                                                                               past_sine=0.0;
     145 \\ 146 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 \\ 147 
                                                                                                                                              Time=Def.TO;//シミュレーションの開始時間を設定
  148 \\ 149 \\ 150
                                                                                                                                                 while(Time<=Def.SINE_IN){
                                                                                                                                                                                             xi=Eq.noise();//ノイズ生成

    \begin{array}{r}
      151 \\
      152 \\
      153 \\
      154 \\
      155 \\
      155 \\
      \end{array}

                                                                                                                                                                                             オイラー法
                                                                                                                                               11
                                                                                                                                                                                               next_V=V+Eq.func_V(V,m,h,n)*h_Time+xi*sh_Time;
    156
                                                                                                                                                                                               next_m=m+Eq.func_m(V,m)*h_Time;
  157
                                                                                                                                                                                               next_h=h+Eq.func_h(V,h)*h_Time;
  158 \\ 159 \\ 160
                                                                                                                                                                                               next_n=n+Eq.func_n(V,n)*h_Time;
                                                                                                                                                                                                //パラメータを更新
     161
                                                                                                                                                                                                V=next_V;
       162
                                                                                                                                                                                                m=next_m;
     163
                                                                                                                                                                                               h=next_h;
     164
                                                                                                                                                                                               n=next_n;
       165166
                                                                                                                                                                                               Time=Time+h Time://時間を更新
    \begin{array}{c} 1678\\ 1669\\ 170\\ 171\\ 172\\ 173\\ 174\\ 175\\ 176\\ 177\\ 178\\ 180\\ 181\\ 1883\\ 1885\\ 1886\\ 1885\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886\\ 1886
                                                                                                                                               }
                                                                                                                                               //注入正弦波の基準の位相まで待つ
                                                                                                                                                 while(psi_ext==0.0){
                                                                                                                                                                                                xi=Eq.noise();
                                                                                                                                                                                                past_sine=sine;//old
                                                                                                                                                                                                sine=Eq.sine(sine_omega,Time,amp);//new
                                                                                                                                                                                                                                                if(past_sine<=0.0&&sine*past_sine<0.0){
                                                                                                                                                                                                                                                                                               psi_ext=Time;
                                                                                                                                                                                                                                              }
                                                                                                                                                                                                //オイラー法
       187
                                                                                                                                                                                                next_V=V+Eq.func_V(V,m,h,n)*h_Time+xi*sh_Time;
```

188	<pre>next_m=m+Eq.func_m(V,m)*h_Time;</pre>
189	<pre>next_h=h+Eq.func_h(V,h)*h_Time;</pre>
190	<pre>next_n=n+Eq.func_n(V,n)*h_Time;</pre>
192	//パラメータを更新
193	V=next_V;
194 195	m=next_m;
196	n=next_n;
197	
$199 \\ 199$	
200	Time=Time+h_Time;//時間を更新
$\frac{201}{202}$	}
203	,
$204 \\ 205$	//m が極大となる点を位相 o とし数周期を平均
206	//念のため色々と初期化
207	past_diff_m=0.0;//m の差 (old)
208	diff_m=0.0;//m の差 (new) pupTime 0=0.0;//m り始める時間
$\frac{200}{210}$	aveTime_1=0.0;//取り始める時間 aveTime_1=0.0;//取り終える時間
211	ave_period=0.0;//平均する周期数
212	<pre>past_peak_m=0.0;</pre>
$\frac{213}{214}$	peak_m=0.0;//m がビークをとる時間
$\tilde{2}15$	frequency=0.0;//振動子の周期、角周波数
216	sum_p=0.0;
217	number_p=0.0;//周期の和, 周期数
$\frac{210}{210}$	ave_frequency=0.0;
$\frac{219}{220}$	phase diff sum=0.0;
221	ave_phase_diff=0.0;
222	//sin 波が入った後
$\frac{223}{224}$	while(Time<=Def.REC_T){
$\bar{2}\bar{2}\bar{5}$	xi=Eq.noise(); //ノイズ生成
$\frac{226}{227}$	<pre>sine=Eq.sine(sine_omega,Time,amp);//new if(creat_sine(sono))</pre>
228	psi ext=Time:
$\bar{2}\bar{2}\bar{9}$	}
230	<pre>past_sine=sine;</pre>
232	past_diii_m=diii_m; //オイラー(注入あり)
233	<pre>next_V=V+Eq.func_Vs(V,m,h,n,sine)*h_Time+xi*sh_Time;</pre>
234	<pre>next_m=m+Eq.func_m(V,m)*h_Time;</pre>
235 236	<pre>next_h=h+Eq.func_h(V,h)*h_Time; next_n=n+Eq.func_n(V,n)*h_Time;</pre>
$\bar{2}37$	nexe_n n:hq.rune_n(v,n) n_rime,
238	diff_m=next_m-m;//m の差を更新
240	if(m>0.9){
$\frac{241}{242}$	if(diff m<0, 0, kk nast diff m>=0, 0)
243	
244	psi=Time;
245	<pre>phase_difference=psi-psi_ext; </pre>
$\bar{2}4\bar{7}$	//m がピークをとる時間を更新
248	<pre>past_peak_m=peak_m;</pre>
249 250	<pre>peak_m=Time;</pre>
251	
$\frac{252}{253}$	}
$\bar{2}\bar{5}\bar{4}$	}
256^{256}	//パラメータを更新
257	V=next_V;
$258 \\ 259$	m=next_m;
$\frac{260}{260}$	n=next_n;
$\frac{261}{262}$	
263 //	<pre>System.out.printin(V+" "+m+" "+h+" "+n);</pre>
$\bar{2}6\bar{4}$	
$\frac{205}{266}$	Time=Time+h_Time; }
$\frac{267}{268}$	
200	//取後半約りのよい

$\frac{269}{270}$			while(Time<=Def.END_T){
$\frac{270}{271}$			xi=Eq.noise(); //ノイズ生成
272			<pre>past_sine=sine;</pre>
273			<pre>sine=Eq.sine(sine_omega,Time,amp);//new</pre>
$275^{14}{5}$			if(past_sine<=0.0%&sine*past_sine<0.0){
$\frac{276}{277}$			<pre>psi_ext=Time;</pre>
$\frac{278}{278}$			
280			}
$\frac{281}{282}$			past_diff_m=diff_m; //オイラー(注入あり)
$\overline{283}$			<pre>next_V=V+Eq.func_Vs(V,m,h,n,sine)*h_Time+xi*sh_Time;</pre>
284			<pre>next_m=m+Eq.func_m(V,m)*h_Time;</pre>
285			<pre>next_h=h+Eq.func_h(V,h)*h_Time;</pre>
$\frac{280}{287}$			<pre>next_n=n+Eq.func_n(V,n)*h_Time;</pre>
288			diff_m=next_m-m;
$\frac{289}{290}$			if(m>0.9){
$\frac{291}{292}$			if(diff_m<0.0 && past_diff_m>=0.0){ //ピークを検出
$\frac{293}{204}$			
$\frac{294}{295}$			psi=lime; phase difference=psi-psi ext://位相差
$\bar{2}96$			phase_diff_sum=phase_diff_sum+phase_difference;//位相差の和
$\frac{297}{298}$			pw.println(Time+" "+phase difference):
299			//m がピークをとる時間を検出
300			<pre>past_peak_m=peak_m;</pre>
301			peak_m=Time;
$30\bar{3}$			period=peak_m-past_peak_m;//周期
304			frequency=2.0*PI/period;//周波数
$\frac{305}{206}$			<pre>delta_omega=(sine_omega/tei-OMEGA_HH);</pre>
$\frac{306}{307}$			<pre>pw1.println(Time+" "+period+" "+frequency+" "+sine_omega+" "+delta_omega);</pre>
$\frac{308}{309}$			sum n=sum n+nariod·//振動子の周期の和
310			number_p=number_p+1.0;//振動子の周期数
$\frac{311}{315}$			
313			}
$\frac{314}{315}$			}
$\frac{316}{317}$			
318			//ハフメータを更新 V=navt V・
319			m=next_m;
320			h=next_h;
$\frac{321}{322}$			n=next_n;
$\frac{323}{324}$			
325			<pre>Time=Time+h_Time;</pre>
$\frac{326}{327}$			
$\frac{328}{329}$			
3 <u>3</u> 0	11		pw.close();
331	//		pw1.close();
332			<pre>ave_phase_diff=(phase_diff_sum/number_p);</pre>
333 334			ave_period=(sum_p/number_p);
335			ave_lrequency=2.0+11/ave_period,
$\frac{336}{227}$:	System.out.println(":done");
338 338			pw.close();
339			r**
340	//		sine_omega=sine_omega+b_h_sine_omega;//sine 波の周波数を更新
$\frac{341}{341}$	//	}	
342 343		///////	///////////////////////////////////////
$\frac{344}{345}$			<pre>sine_omega=b_min_sine_omega;</pre>
$\frac{346}{247}$			while(sine_omega<=b_max_sine_omega){ //sine の角周波数を b_min_sine_omega から b_max_sine_omega まで変化させる
$\frac{34}{348}$			filename = "HH"+tei:
$3\overline{4}9$:	filename = filename+"amp"+Def.amp;
350		:	filename = filename+"phase_difference";

351	C12 C12
250	<pre>illename = illename+"sin_omega"+sine_omega;</pre>
302	<pre>filename = filename+"-amp"+Def.amp;</pre>
353	filename = filename+"-date_time"+df.format(date)+".txt";
354	try {
355	<pre>pw = new PrintWriter(filename);</pre>
356	} catch (Exception e) {
357	}
358	filename1 = "HH"+tei;
359	<pre>filename1 = filename1+"amp"+Def.amp;</pre>
360	filename1 = filename1+"delta omega":
361	filonamoi = filonamoi + "sino omoga"+sino omoga:
362	filenamei - filenamei - Sine_omega -Sine_omega,
262	filenamei = filenamei+ amp + Def. amp;
303 264	<pre>filename1 = filename1 + "-date_time"+df.format(date)+".txt";</pre>
304	try {
365	<pre>pw1 = new PrintWriter(filename1);</pre>
366	} catch (Exception e) {
367	}
368	<pre>pw.println("#Time phase_difference");</pre>
369	<pre>pw1.println("#Time period frequency sine_omega delta_omega");</pre>
370	System out print("sin omega="+sine omega):
371	//uu s扣期化
379	
372	v=Dei.v0;
373 974	m=Dei.mO;
3/4	h=Def.h0;
3/0	n=Def.n0;
3/0	for(int i=0;i<=3;i++){
377	<pre>para[i]=0.0;</pre>
378	}
379	psi=0.0;
380	psi_ext=0.0;
381	sine=0.0:
382	past sine=0 0:
383	publ_bind tro,
384	Time=Def TO://シミュレーションの開始時間を設定
385	
386	while(Time<=Def.SINE IN){
387	xi=Fa noise()・//ノイズ生成
388	xi Eq. noise () ;// / / / LAG
389	ノノオイラー注
390	V = V = V = V
301	<pre>next_v=v+nq.iunc_v(v,m,n,n)*n_lime+xi*sn_lime;</pre>
202	<pre>next_m=m+Eq.func_m(V,m)*h_Time;</pre>
392	<pre>next_h=h+Eq.func_h(V,h)*h_Time;</pre>
393	<pre>next_n=n+Eq.func_n(V,n)*h_Time;</pre>
394	
395	//パラメータを更新
396	V=next_V;
397	m=next_m;
398	h=next_h;
399	n=next_n;
400	
401	Time=Time+h_Time;//時間を更新
402	}
403	
404	//注入正弦波の基準の位相まで待つ
405	
406	while(psi_ext==0.0){
407	
408	<pre>xi=Eq.noise();</pre>
409	past_sine=sine;//old
410	sine=Eq_sine(sine_omega_Time_amp)://new
<u>/11</u>	bine hq.bine(bine_omega; fime; amp); // new
412	
41 <u>3</u>	if(past_sine<=0.0&&sine*past_sine<0.0){
414	
415	psi ext=Time:
416	por_ono rimo,
417	}
418	j
419	//オイラー法
420	<pre>next_V=V+Eq.func_V(V,m.h.n)*h Time+xi*sh Time:</pre>
421	next m=m+Eq.func m(V.m)*h Time:
422	nont_m m. sq. tano_m(v, m/ n_ time,
122	next_n=n+req.runt_n(v,n/*n_lime;
494	<pre>next_n=n+tq.func_n(V,n)*h_Time;</pre>
424	
420	//バフメータを更新
420	V=next_V;
421	m=next_m;
428	h=next_h;
429	<pre>n=next_n;</pre>
430	

431		Time=Time+h_Time;//時間を更新
$432 \\ 433$		1
434		1
436		
437		//m が極大となる点を位相 O とし数周期を平均
$439 \\ 439$		//念のため色々と初期化
440		past_diff_m=0.0;//m の差 (old)
441		diff_m=0.0;//m の差 (new)
443		avelime_0=0.0;//取り始める時间 aveTime 1=0.0;//取り終える時間
444		ave_period=0.0;//平均する周期数
445		past_peak_m=0.0;//m がピークをとる時間 (old)
$\frac{440}{447}$		peak_m=0.0;//m がビークをとる時間 (new) poriod=0.0://周期 (poak m マイナス past poak m)
448		frequency=0.0;//振動子の周期,角周波数
449		sum_p=0.0; //周期の和
$450 \\ 451$		number_p=0.0;//周期数
452		ave_irequency=0.0;//平均向波数 delta_omega=0_0://(delta_omega=omega/n=omega0)
$4\ddot{5}\ddot{3}$		phase_diff_sum=0.0;//位相差の和
454		ave_phase_diff=0.0;//位相差の平均
$455 \\ 456$		//sin 波が入った後
$450 \\ 457$	//	while(lime<=Def.REC_1){ while(Time<=(Def.REC_T-Def.SINE_IN)){
458		xi=Eq.noise();//ノイズ生成
$459 \\ 460$		<pre>past_sine=sine;</pre>
461		sine=Eq.sine(sine_omega,lime,amp);//new
462		if(past_sine<=0.0&&sine*past_sine<0.0){
$463 \\ 464$		nsi ext=Time·
465		por_ovo rimo,
$466 \\ 467$		}
468		
$409 \\ 470$		past_diff_m=diff_m;
471		<pre>next_V=V+Eq.func_Vs(V,m,h,n,sine)*h_Time+xi*sh_Time;</pre>
472		<pre>next_m=m+Eq.func_m(V,m)*h_Time;</pre>
473		<pre>next_h=h+Eq.func_h(V,h)*h_Time;</pre>
$474 \\ 475$		next_n=n+Eq.func_n(V,n)*h_Time; diff m=next m-m・//m の差を更新
<u>476</u>		
478		
479		
480		if(m>0.9){
482		
484		ii(diii_m<0.0 && past_diii_m>=0.0)
485		<pre>psi=Time;</pre>
$480 \\ 487$		phase_difference=psi-psi_ext;//位相差
$\frac{101}{488}$		<pre>pw.println(Time+" "+phase_difference);</pre>
489		//m がピークをとる時間を更新
490 491		<pre>past_peak_m=peak_m; paak m=Time;</pre>
492		pear_m-lime,
493		
495		}
$496 \\ 497$		}
498		
$499 \\ 500$		//パラメータを更新 V=poxt V:
501		m=next_m;
502		h=next_h;
$503 \\ 504$		n=next_n;
505		
500 507		Time=Time+h_Time;
508		} //= // = // = / = /
509 510		//最後半均するまで while(Time<=(Def END T)){
$\tilde{5}1\tilde{1}$	//	while(Time<=(Def.END_T-Def.REC_T)){
$512 \\ 513$		vi=Fa noise().
010		

101

 $514 \\ 515$ past_sine=sine; sine=Eq.sine(sine_omega,Time,amp);//new if(past_sine<=0.0&&sine*past_sine<0.0){ psi_ext=Time; } past_diff_m=diff_m; //オイラー(注入あり) next_V=V+Eq.func_Vs(V,m,h,n,sine)*h_Time+xi*sh_Time; next_m=m+Eq.func_m(V,m)*h_Time; next_h=h+Eq.func_h(V,h)*h_Time; next_n=n+Eq.func_n(V,n)*h_Time; diff_m=next_m-m; if(m>0.9){ if(diff_m<0.0 && past_diff_m>=0.0){ psi=Time; phase_difference=psi-psi_ext;//位相差 phase_diff_sum=phase_diff_sum+phase_difference;//位相差の和 pw.println(Time+" "+phase_difference); //m がピークをとる時間を検出 past_peak_m=peak_m; peak_m=Time; period=peak_m-past_peak_m;//周期 frequency=2.0*PI/period;//周波数 delta_omega=(sine_omega/tei-OMEGA_HH); 11 System.out.println(delta_omega); pw1.println(Time+" "+period+" "+frequency+" "+sine_omega+" "+delta_omega); sum_p=sum_p+period;//振動子の周期の和 number_p=number_p+1.0;//振動子の周期数 } } //パラメータを更新 V=next_V; m=next_m; h=next_h; n=next_n; Time=Time+h_Time; }
ave_phase_diff=(phase_diff_sum/number_p); ave_period=(sum_p/number_p); ave_frequency=2.0*PI/ave_period; System.out.println(":done"); pw2.println(delta_omega+" "+sine_omega+" "+ave_period+" "+ave_frequency+" "+phase_difference+" "+ave_phase_diff); sine_omega=sine_omega+b_h_sine_omega;//sine 波の周波数を更新 } pw.close(); pw1.close(); $589 \\ 590 \\ 591$ pw2.close(); //周波数特性のグラフ $5\tilde{9}\bar{2}$ pw3.println("set term postscript eps enhanced font 'Times,20'");//書き出しファイル形式を eps に指定 593pw3.println("set output 'delta_omega-sine_omega"+sine_omega+".eps'");//書き出しファイル名を指定 $594 \\ 595$ pw3.println("set nokey");//凡例を非表示に pw3.println("#set xrange[:]");//x 軸のプロット範囲 596pw3.println("set xlabel '{delta-omega}'");//x 軸のラベル

597		pw3.println("set ylabel '{frequency}'");//y 軸のラベル
598		pw3.println("set size 1.0.0.6")://作成するグラフの縦横比 (多分)
599		$\mu = 1$ $\mu = 1$ μ
600		
6ŎĬ		pw3.flush():
$\tilde{6}\tilde{0}\bar{2}$		nu3 close():
603		F
604		//位相差のグラフ ()
605		pw4.println("set term postscript eps enhanced font 'Times,20'");//書き出しファイル形式を eps に指定
606		pw4.println("set output 'phase defference.eps'")://書き出しファイル名を指定
607		pw4.println("set_nokey")://月例を非表示に
608		profession (control of the second of the s
609		praniprimeta ("see vlabal){Tima});"),//v mbn J vlaba
610		prating of a stabil (find) (
611		pws.princhal. (Set yields) (phase difference) $(,,//2)$ ($//2$
612		pw+.printin("set size 1.0,0.0");//iFnx 9 @ / / / の戦限は(タカ)
612		pw4.printin("plot "+".txt"+" using 1:2 W p ic 1");//別ノアイルにめるアータをノロット
614		nu/ fluch().
615		pw.1105n(),
616		pw4.close();
8†7		
618	//	System.out.println(PI):
619		
Ğ20		
621		<pre>long stoptime = System.currentTimeMillis();</pre>
622		<pre>System.out.println();</pre>
623		System.out.println("Elapsed time is about "+ (stoptime - starttime)/60000+" min.");
624		pw_time.println("Elapsed time is about "+ (stoptime - starttime)/60000+" min.");
625		pw time.close():
626		}
$6\bar{2}\bar{7}$		}
628	}	

– Equation.java

1	import	java.util.*;
$\frac{2}{3}$	class E	Equation{
4		•
5		Random Rd=new Random();
<u>6</u>		<pre>double h_Time=Def.h_Time;</pre>
- 7		<pre>double sh_Time=Def.sh_Time;</pre>
8		double C=Def.C;
19		<pre>double I=Def.I;</pre>
ĮΫ		
11	double	noise(){// ランダムノイズ(ホックスミューフー法)
12		double dev=Def.noise_range;
10		double v1,v2,fac,rsq;
14		double ran_1, ran_2;
10		long idum=Def.idum;
<u>†9</u>		do{
18		v1=2.0*ran1()-1.0:
19		
20		v2=2.0*ran1()-1.0;
21		rsq=v1*v1+v2*v2;
22		<pre>}while(rsq>=1.0 rsq==0);</pre>
23		
24		<pre>fac=Math.sqrt(-2.0*Math.log(rsq)/rsq);</pre>
20		
$\tilde{27}$		Def.i=1:
28		
29		<pre>return dev*v1*Math.sqrt(-2.0*Math.log(rsq)/rsq);</pre>
30		}else{
31		<pre>Def.i=0;</pre>
32		
ეე ექ		return dev*v2*Math.sqrt(-2.0*Math.log(rsq)/rsq);
35		}
36		double ran1(){
37		long IA=16807;
38		long IM=2147483647;
39		double AM=1.0/IM;
40		long IQ=127773;
41		long IR=2836;
42		int NTAB=32;
43		double NDIV=67108864;
44		
		double ESP=1.200000e-07;
45		<pre>double ESP=1.200000e-07; double RNMX=1.0-ESP;</pre>
```
long k;
                      long idum=Def.idum;
                      long[] iv=Def.iv;
                      double temp;
                      if(idum<=0||Def.iy==0){
                              if((-idum)<1){
                                      idum=1;
                              }else{
                                      idum=(-idum);
                              for(j=NTAB+7;j>=0;j--){
                                      k=idum/IQ;
                                      idum=IA*(idum-k*IQ)-IR*k;
                                      if(idum<0)idum=idum+IM;</pre>
                                      if(j<NTAB){
                                             iv[j]=idum;
                                     }
                              Def.iy=iv[0];
                      3
                      k=idum/IQ;
                      idum=IA*(idum-k*IQ)-IR*k;
                      if(idum<0)idum=idum+IM;
                      j=(int)Def.iy/(int)NDIV;
                      Def.iy=iv[j];
                      iv[j]=idum;
                      Def.idum=idum;
                      Def.iv=iv;
                      temp=AM*Def.iy;
                      if((temp)>RNMX)return RNMX;
                      else return temp;
              }
              double sine(double sine_omega,double Time,double amp){//注入正弦波
                      return amp*Math.sin(Time*sine_omega);
              }
               /* H-H 方程式 */
               // 変数 Ⅴ の微分方程式(正弦波の注入前)
              double func_V( double V, double m, double h, double n){
                      return (I - 120.*h*m*m*m*(V-50.0) - 36.*n*n*n*n*(V+77.0) - 0.3*(V+54.4))/C;
              3
               // 変数 Ⅴ の微分方程式(正弦波の注入後)
              double func_Vs( double V, double m, double h, double n, double sine ){
                      return ( I + sine - 120.0*h*m*m*m*( V-50.0 ) - 36.0*n*n*n*n*( V+77.0 ) - 0.3*( V+54.4 ) ) /C;
              }
              // 変数 m の微分方程式
              double func m( double V, double m ){
                      return ( 0.1*( V+40.0 ) /( 1.-Math.exp( -( V+40.0 ) /10.0 ) ) )*( 1.-m ) - ( 4.0*Math.exp( -( V+65.0 ) /18.0 ) )*m;
              }
               // 変数 h の微分方程式
              double func_h( double V, double h ){
                      return ( 0.07*Math.exp( -( V+65.0 ) /20.0 ) )*( 1.0-h ) - ( 1.0/( 1.0+Math.exp( -( V+35.0 ) /10.0 ) ) )*h;
              }
              // 変数 n の微分方程式
              double func_n( double V, double n ){
                      return ( 0.01*( V+55.0 )/( 1.-Math.exp( -( V+55.0 ) /10.0 ) ) )*( 1.0-n ) - ( 0.125*Math.exp( -( V+65.0 ) /80.0 ) )*n;
```


位相差の分布関数を取得する Fokker-Planck 方程式を解くプログラム

- Pdf_fpe.java

class main{		
	public static	void main(String[] args){
		$\begin{array}{ccc} \text{new} & \text{main}(); / & \neq 1 \end{array}$
		Formation Eq. = new Equation():// 方程式を定義するクラス
		Makefile Mf=new Makefile():// ファイルを作成すろクラス
		/* 変数定義 */
		int Smp=Def.SAMPLE:// FPE の空間刻み数
		double [] phi=new double[Smp+1];// 位相
		double [][] Z=new double[Smp+1][Smp+1]:// PRC
		double [] f=new double[Smp+1]:// 注入信号
		double [] g=new double[Smp+1];// Gamma
		double [][] pdf = new double[2][Smp+1]:// 確率分布関数
		/* サンプリング */
		<pre>for(int i=0:i<=Smp:i++){</pre>
		phi[i]=(2*Def.PI/Smp)*i:
		f[i]=Eq.func(phi[i]):
		}
		for(int i=0;i<=Smp;i++){
		<pre>for(int j=0;j<=Smp;j++)Z[i][j]=Eq.prc(phi[i]+phi[j]);</pre>
		}
		<pre>for(int i=0;i<=Smp;i++)g[i]=Eq.simp(Z,f,i)/(2.0*Def.PI);</pre>
		/**************************************

		rubkbilii bisittibulluk internetion internetin internetio internetion internetion internet
		/* 初期分布の生成(初期分布は 1/2pi で均一)*/
		<pre>for(int i=0;i<=Def.SAMPLE;i++) {</pre>
		pdf[0][i]=1/(2*Def.PI);
		pdf[1][i]=0.0;
		}
		/* 時間発展 */
		<pre>for(int t=0;t<=(int)(Def.END/Def.DT);t++){</pre>
		/* FP 方程式の計算 */
		<pre>for(int i=0;i<=Def.SAMPLE;i++)pdf[1][i] = Eq.fpe(pdf,i,g);</pre>
		/* 確率密度の更新 */
		<pre>for(int i=0;i<=Def.SAMPLE;i++)pdf[0][i] = pdf[1][i];</pre>
		/* 時刻の表示 */
		if((t*Def.DT%1)==0)System.out.print("\r@time:"+(int)(t*Def.DT))
		}
		System.out.printin("");
		/* ノアイル作成 */
		MI.data(pn1,pd1);// 位相確学分布データノアイルの作成
	3	MI.gnu();// gnupiot 用ノアイルの作成
3	ł	
L		

 1
 class Equation{// 方程式を記述するクラス

 2
 /* 変数定義 */

 3
 int Smp=Def.SAMPLE;// FPE の空間刻み数

 4
 double Eps=Def.EPS;// 微小パラメタ

 5
 double Del=Def.DELTA;// 離調周波数

 6
 double Diff=Def.OUR;// 定数

 7
 double Diff=Def.DIFF;// 定数

 8
 /*GA の*/

 10
 double c2=1.2451801922501846;

 12
 double c3=2.8055327287582257;

 13
 double p3=3.144663614150487;

15	/* 関数定義 */
16	double fpe(double pdf[][], int i, double g[]){// FP 方程式
17	int p1=0:
18	
10	
20	double [] V = neW double[4];
$\frac{20}{21}$	
$\frac{21}{22}$	p1=(1-1+>mp)Asmp;
22	p2=(1+1)%smp;
20	
24	V[0] = (Del/(Eps*Eps)+g[1])*(par[0][p2]-par[0][p1]);
20	v[1] = pdf[0][i]*(g[p2]-g[p1]);
20	v[2] = Cour*(v[0] + v[1]);
27	v[3] = Diff*(pdf[0][p2]-2*pdf[0][i]+pdf[0][p1])*(1.0*1.0);
28	
29	return $pdf[0][i] + v[2] + v[3];$
30	}
31	double prc(double x){// PRC
32	return $2.0*(Math.sin(x)+0.2*Math.sin(2*x)+0.3*Math.sin(3*x));$
33	}
34	double func(double x){// 注入信号
35	double shift=1.6022122533307948;
36	<pre>// return c1*Math.sin(x-shift)+c2*Math.sin(2*(x-shift)+p2)+c3*Math.sin(3*(x-shift)+p3);</pre>
37	return -3.186264940*Math.cos(x)-1.274505976*Math.cos(2*x)-2.867638446*Math.cos(3*x);
38	<pre>// return -4.428074428*Math.cos(x)-0.4428074428*Math.cos(2.0*x)-0.4428074428*Math.cos(3.0*x);</pre>
39	}
40	double simp(double[][] z,double[] f,int t){//Gamma:シンプリン法
41	
**	<pre>double[] S=new double[4];</pre>
$\overline{42}$	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>
$ \begin{array}{c} \dot{42}\\ 43 \end{array} $	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){ S[0]+=z[t][i]*f[i];</pre>
$\begin{array}{c} \dot{42} \\ 43 \\ 44 \end{array}$	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>
$ \begin{array}{r} 42 \\ 43 \\ 44 \\ $	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>
$ \begin{array}{r} 42 \\ 43 \\ 44 \\ 45 \\ 46 \end{array} $	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){ S[0]+=z[t][i]*f[i]; } for(int i=1; i<=Smp-1; i+=2){ S[1]+=z[t][i]*f[i];</pre>
$ \begin{array}{r} 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ \end{array} $	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){ S[0]+=z[t][i]*f[i]; } for(int i=1; i<=Smp-1; i+=2){ S[1]+=z[t][i]*f[i]; }</pre>
	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>
$ \begin{array}{r} \dot{42} \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ \end{array} $	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>
$ \begin{array}{r} \dot{42} \\ 43 \\ 44 \\ $	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>
$ \begin{array}{r} \dot{42}\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ \end{array} $	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>
$\dot{42}$ 43 44 45 46 47 48 49 50 51 52 3	<pre>double[] S=new double[4]; for(int i=2; i<=Smp-2; i+=2){</pre>