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Abstract of the Dissertation
Hand Pose Estimation has appeared essential in advanced computer vision

tasks, particularly for real-world AI applications, such as human-computer

interaction, augmented reality, and virtual reality. However, this task is chal-

lenging, mainly due to the complex nature of hand joints, dexterity, and

self/object occlusion. This dissertation presents several innovative algorithms

to overcome these issues in 2D hand pose estimation from RGB images. Firstly,

we propose a novel network that combines traditional graph-based prob-

abilistic models with deep convolutional neural networks to integrate the

hand’s structural constraints, improving the accuracy of hand pose estima-

tion. Despite the accuracy improvements, it comes with a significant com-

putational cost. To tackle this, we streamline the model, making it more

shallow while maintaining accuracy by incorporating attention mechanisms

and efficient feature extractors to learn spatial features effectively. However,

achieving state-of-the-art performance remains a challenge due to the del-

icate nature of human hands. To address this, we integrate a global con-

textual module and deformable convolutions to aid the models in learning

contextual information and geometrical constraints. These enhancements ef-

ficiently increase the precision while maintaining low computational cost.

We conducted extensive experiments on the publicly available CMU dataset,

and our approaches demonstrate state-of-the-art performance. By integrat-

ing these novel approaches, our research aims to push the boundaries of

hand pose estimation and contribute to developing more robust and accu-

rate AI systems for real-world applications.
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Chapter 1

Introduction

Nowadays, the role of computers and robots in society is rapidly growing

and advancing [1]. As we exceed previous technological difficulties, our ev-

eryday lives progressively depend on varied interactions between humans

and technology. Yet, with the advancement of these technologies comes

increased complexity, sometimes leading to complex interaction methods

that can complicate their use [2, 3]. Simplifying these interactions to reflect

human-like communication involves employing natural dialogue with vir-

tual assistants and connecting Computer Vision (CV) for applications like

emotion recognition, Augmented Reality (AR), and precise human and hand

pose estimation, enhancing our engagement with technology [4, 5, 6].

Hand Pose Estimation (HPE) methods are essential for identifying key

hand points in images or videos, fundamental for Virtual Reality (VR), Human-

Computer Interaction (HCI), and other areas of CV [7, 8, 9]. Substantial

progress has been made in estimating hand poses, yet practical applications

face numerous hurdles [10]. One major challenge is acquiring datasets; the

shortage of labeled training data is difficult in HPE [11, 12]. Neural networks

need wide-ranging, labeled datasets for training, and obtaining detailed real-

hand data is particularly challenging, often due to complex backgrounds in

natural acts that complicate image processing tasks like lighting, viewing an-

gles, weather conditions, and more [13, 14, 12]. Such background complexity
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can restrict with accurately estimating hand poses, where issues such as self-

occlusion and object interference further complicate the process [11]. Previ-

ously, the research community struggled to address these challenges using

machine learning algorithms. However, these methodologies often relied on

manually designed features, limiting the model’s learning capacity and gen-

eralizability [15, 16]. While deep learning advancements have progressed in

overcoming some of these problems, searching for comprehensive solutions

that can adeptly handle the intricate aspects of visual recognition and hand

motion is ongoing. Thus, despite improvements in precision, speed, and effi-

ciency, developing more advanced and adaptable HPE technologies remains

an active area of research [15, 17, 18].

Generally, two methods are utilized for HPE, including detection-based

and regression-based [15, 19, 20]. Detection-based methods are popular in

HPE because of their reliability and precision. These models work by cre-

ating a heatmap for each necessary point on the hand, showing how likely

it is for that point to be at each pixel in the image. Often, these heatmaps

are made using a two-dimensional Gaussian distribution focused on the key-

points, which helps pinpoint their locations more accurately by giving higher

importance to pixels near the keypoint [21, 22]. In relation to detection-based

methods and their application in creating heatmaps for HPE, the process fo-

cuses on locating specific hand positions, referred to as keypoints, that illus-

trate the hand’s exact posture, labeled as P. This procedure evaluates RGB

images or video sequences, indicated as I. Each keypoint, denoted by ki, is

linked to a particular area on the hand, like joints or fingertips, and is de-

duced from separate heatmaps H. The aim is to forecast the heatmaps for

every keypoint H1, ., ., Hi. As a result, the pose P is depicted as a collection

of coordinates (x1, y1), (x2, y2), . . . , (xk, yk), with each coordinate pinpointing

the most probable location on its respective heatmap. The total number of

keypoints K varies with the dataset but often includes 21 points. The essence
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of this task is to calculate the pose P by pinpointing these keypoints, a process

meticulously detailed in Algorithm 1, which maps out the steps for estimat-

ing the hand pose P from an RGB image or video frame I by detecting key-

points and generating corresponding heatmaps to identify the most probable

coordinates for each point.

Data: RGB image or video frame I
Result: Estimated hand pose P represented as keypoints
Initialize P = ∅ (Set to store keypoints);
Detect keypoints K representing distinct hand regions in I;
for i = 1 to K do

Generate heatmap Hi for ki in I;
Extract coordinates (xi, yi) with highest probability from Hi;
Add (xi, yi) to P as a keypoint;

end
Return P as the estimated hand pose;

Algorithm 1: 2D Hand Pose Estimation using Heatmaps

On the other hand, Regression-based methods estimate the coordinates of

keypoints of the hand directly from the input image [23, 24]. Despite lower

computational costs than detection-based approaches, regression-based meth-

ods often face the problem of occlusion and complex hand configuration

problems. Despite limitations, regression-based methods remain relevant for

real-time applications due to their speed and simplicity. Regression-based

methods face problems of robustness to spatial generalization and occlusion.

Incorporating prior knowledge into the regression framework improves per-

formance but can lag behind detection-based approaches in complex scenar-

ios [23, 24, 22, 21]. In this dissertation, we have utilized detection-based

methods, and all proposed architectures are based on this approach. Detection-

based methods provide the most effective means of achieving our objectives,

and we have worked hard to ensure that our proposed architectures are op-

timized for this approach.
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1.1 Problem Statement

Despite considerable improvements in Deep Learning (DL) network-based

methods for 2D HPE, there remains a critical challenge in achieving a balance

between computational cost and accuracy because there is always a trade-off

between accuracy and computational cost. Current models, while effective,

often require massive computational resources, making them less practical

for real-time applications or edge devices with limited processing capabili-

ties. This limits their feasibility in fields such as VR, AR, and HCI, where

precision and efficiency are required. Furthermore, existing techniques may

not fully capture the complex geometrical constraints and spatial features

characteristic of hand movements, leading to a negotiation in accuracy or

performance. This research proposes to address these gaps by developing a

novel 2D HPE model that minimizes computational resources without los-

ing accuracy and includes novel strategies like attention mechanisms, global

contextual modules, and deformable convolutions to enhance feature learn-

ing and geometrical understanding. Throughout this research, we seek to

determine a new benchmark in HPE that is efficient and highly accurate,

outfitting the needs of advanced applications in interactive technologies.

1.2 Objective

Enhance Model Efficiency Without Losing Accuracy—A primary objective

is to enhance the 2D HPE with advanced computational approaches that

reduce its complexity. This includes exploring efficient neural network ar-

chitectures like COnvNext and the EfficientNets family to lower computa-

tional demands. The objective is to develop a lightweight and highly ac-

curate model suitable for real-time applications, utilizing knowledge from

structural optimization and resource-efficient methodologies.
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Enhance Feature Extraction and Geometrical Understanding - Our second

objective focuses on enhancing the model’s ability to identify complex spatial

details and navigate the complex geometry of hand movements. To achieve

this, we incorporate unconventional techniques like attention mechanisms

that direct the model’s focus to essential features while suppressing the less

important features and global contextual modules that offer a comprehen-

sive view of the entire scene. We will also investigate using deformable con-

volutions, which adjust convolutional filters for better orientation with the

unpredictable shapes and positions of hands. We aim to increase the model’s

effectiveness and precision in estimating 2D hand poses by providing ad-

vanced feature detection and geometry recognition capabilities.

1.3 Contribution

To advance the 2D HPE field, this dissertation presents a comprehensive ap-

proach containing innovative techniques to enhance model performance and

robustness. The key contributions of my dissertation are as follows:

Utilization of Efficient Backbone Models

Efficiency in computational resources is not just a theoretical concern but a

practical necessity for deploying HPE models across various platforms. By

leveraging lightweight and efficient backbone models, such as ConvNext and

EfficientNet B0, we aim to strike a delicate balance between model complex-

ity and computational efficiency. The adoption of these efficient architectures

in the proposed model helps the model to make a balance between accuracy

and computational complexity.
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Incorporation Attention Mechanisms

Attention mechanisms are crucial in guiding the model’s focus toward salient

spatial features, enhancing discriminative power and robustness in HPE.

This dissertation integrates spatial attention and Squeeze-and-Excitation mech-

anisms into the model architecture. These attention mechanisms enable the

model to dynamically allocate attention to the most informative regions within

the input data, effectively suppressing noise and irrelevant information. The

model better captures complex hand configurations through adaptive atten-

tion mechanisms, advancing state-of-the-art HPE research.

Further feature Enhancement with Global

Contextual Block Integrating a global contextual module is essential for en-

riching feature representation and enhancing pose estimation accuracy. To

this end, a Global Contextual block is incorporated into the model architec-

ture. This block facilitates the integration of holistic spatial context, enabling

the model to consider the relationships and dependencies between different

hand regions within the scene. The model gains a deeper understanding of

hand configurations by capturing global contextual information, improving

inference accuracy and robustness in diverse real-world scenarios.

Deformable Convolution

Hand poses exhibit complex geometric deformations that require flexible and

adaptive modeling techniques. Deformable convolution layers are employed

within the model architecture to effectively capture these geometric varia-

tions. Unlike traditional convolutional layers, deformable convolution layers

enable the model to learn spatial transformations flexibly, enhancing feature

extraction and localization accuracy. By accommodating spatially variant fil-

ters and dynamic, receptive fields, the model becomes adept at capturing
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fine-grained spatial details and geometric intricacies inherent in hand poses,

resulting in superior performance and generalization ability.

Incorporating efficient backbone models, attention mechanisms, global

contextual information, and deformable convolution represents an effort to

advance the state-of-the-art 2D HPE. Collectively, these contributions con-

tribute to developing a robust and accurate HPE model with significant im-

plications for applications in human-computer interaction, robotics, and aug-

mented reality.

1.4 Dissertation Structure

This dissertation is structured as follows: Chapter 1 provides the primary

context by providing background information, an overview of the problem

statement, a summary of the objectives, details of the contributions, and an

overview of the dissertation’s structure. Following this introduction, the dis-

sertation moves on to chapter 2 related work and Chapters 4 to 7, each dedi-

cated to exploring the complexities of 2D HPE. These chapters utilize various

methods, including probabilistic graphical models and deep convolutional

and graph neural networks. Concluding this dissertation, Chapter 7 sum-

marizes the findings and provides insights and recommendations from the

research. It also outlines potential directions for further exploration in this

dynamic field and lays the groundwork for future endeavors.

Chapter 2

This chapter presents the literature review related to the HPE.
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Chapter 3

To address the constraints inherent in current techniques for estimating 2D

hand pose from RGB images, we introduce a novel framework called Spatial

Attention-Based Deep Pose Graph Network (SDPoseGraphNet) in this chap-

ter. This framework builds upon our prior work by incorporating the Spatial-

Attention (SA) module of the VGG-19 model into the backbone. The SA

module empowers the network to dynamically emphasize significant spa-

tial areas within the input image, a critical aspect for precise pose estimation.

By integrating this module, we aim to augment the model’s ability to repre-

sent features, enhancing its performance across various hand pose estimation

tasks.

This chapter was previously published in a multidisciplinary journal, Sen-

sors.

Chapter 4

In this chapter We introduced a compact CPM approach tailored to 2D HPE

to make the previous approach more computationally efficient. Our strategy

uses a customized ConvNext architecture as the backbone, keeping the con-

volution layer while discarding the fully connected layer. This adjustment

aims to improve feature extraction, especially for HPE tasks. Including the

Global Context Block (GCB) is a notable improvement in our methodology.

This addition allows us to leverage the backbone model’s feature extraction

capabilities and detect global context information from features extracted by

the convolution layer.

This chapter was previously published in an International Workshop on

Image Technology (IWAIT 2024).
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Chapter 5

However, the computational cost of the previous method is relatively high.

A new architecture named Attention-Driven Contextual Features Based Con-

volution Network (ACENet), which involves a shallower network design, is

introduced to overcome this challenge. EfficientNet is used with a squeeze-

and-excite attention mechanism to improve feature extraction and enable ef-

ficient learning of spatial features.

This work was previously published in IVCNZ 2023 Image and Vision

Computing.

Chapter 6

Recognizing that previous methods are still insufficient in computational

efficiency, in this chapter we have developed a new solution to further re-

duce computational cost without compromising accuracy: A multi-stage de-

formable convolution network specifically designed for 2D hand HPE. We

introduce the Deformable Pose Network (DPN), a multi-stage deformable

convolution network. Our approach overcomes the challenges mentioned

earlier by using deformable convolutions that prioritize the incorporation of

geometric constraints into the convolutional operations. Meanwhile, the net-

work backbone overcomes additional computational hurdles by addressing

the handling of hidden information. This integrated strategy strives to in-

crease efficiency while maintaining high accuracy in HPE.

This chapter was previously published in The 19th International Joint

Conference on Computer Vision, Imaging, and Computer Graphics Theory

and Applications (VISAPP 2024).
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Chapter 7

In a continuous effort to improve the efficiency of our model, in chapter 7 we

have made adjustments to the DPN and made it shallower. Furthermore, in

the quest for higher accuracy, we have introduced an innovative architecture:

Attention-Driven Contextual Feature-Enhanced Deformable Convolutional

Based Network for 2D Hand Pose Estimation (ACDCNet). This innovative

model integrates the Squeeze-and-Excitation (SE) attention mechanism and

the GCB into the EfficientNet backbone. By incorporating these components,

the system gains the ability to learn both spatial and contextual information

efficiently, reducing computational costs while maintaining accuracy.

This research chapter will be submitted to an interdisciplinary journal to

evaluate further and disseminate the results.

Chapter 8

This chapter concludes the dissertation and gives the future direction for

HPE.
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Chapter 2

Related Work

2D hand pose estimation is crucial in computer vision, with applications in

human-computer interaction, sign language recognition, and gesture-based

control. HPE is a challenging task due to variations in hand poses, limited

depth information, and issues related to appearance and occlusion. We will

discuss Multi-View RGB-based, Depth-based, and RGB-based 2D hand pose

estimation methods.

2.1 Multi-View RGB Approaches

Multi-view RGB models offer a promising approach to address these chal-

lenges by leveraging information from multiple camera viewpoints. The

work by Simon et al. in [25] introduced a multi-view RGB model that com-

bines features from multiple views to estimate hand poses. Their approach

utilizes a convolutional neural network (CNN) to extract view-invariant fea-

tures from each RGB image, which are then fused using a view-pooling layer.

This multi-view fusion strategy effectively mitigates self-occlusion and im-

proves the overall accuracy of HPE. Similarly, In [26], Sun et al. proposed

a multi-view RGB model incorporating a hierarchical multi-scale feature ag-

gregation module. This module combines features from different scales and

views, enabling the model to capture local and global information for ac-

curate HPE. Their approach demonstrated superior performance compared
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to single-view and other multi-view methods, particularly in scenarios with

severe occlusion. While multi-view RGB models have shown promising re-

sults, specific camera setups often limit their practical implementation. For

instance, the models proposed by Chen et al. in [27] and Ge et al. in [28]

require a fixed number of cameras positioned at predetermined locations

around the target area. Such rigid camera configurations can limit the per-

formance of these models in real-world scenarios where camera placements

may vary or be suboptimal.

Researchers have explored more flexible multi-view RGB models that can

adapt to different camera configurations to address this limitation. For exam-

ple, in [29] Yuan et al. introduced a multi-view RGB model that can dynam-

ically adjust its feature fusion strategy based on the available camera views.

Their approach employs an attention mechanism to adaptively weight the

contributions of different views adaptively, enabling the model to handle

varying camera setups effectively. Despite these advancements, multi-view

RGB models still face challenges regarding computational complexity and

data requirements [27, 28]. As the number of camera views increases, the

computational cost of feature extraction and fusion can become prohibitive,

especially for real-time applications. Additionally, training these models of-

ten requires large-scale multi-view datasets, which can be time-consuming

and expensive to acquire [30, 7].

2.2 Depth-Based Approaches

Depth-based models for HPE leverage depth information captured by spe-

cialized sensors, such as time-of-flight cameras or structured light sensors.

These models offer several advantages over Multi-view RGB approaches, in-

cluding accurate hand localization and robustness to variations in lighting
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conditions and appearance [31, 32]. One of the pioneering works in depth-

based HPE is the method proposed by Ge et al. in [28]. Their approach uti-

lizes a CNN to directly estimate hand poses from depth maps, eliminating

the need for intermediate representations or post-processing steps. By lever-

aging the inherent 3D information in depth maps, their model can effectively

capture the complex spatial relationships between hand joints, improving ac-

curacy.

While depth-based models have demonstrated impressive performance

in controlled environments, they can be sensitive to noise and environmen-

tal factors that affect depth data quality. For instance, ambient lighting con-

ditions, sensor limitations, and occlusions can introduce artifacts or miss-

ing depth values, which can degrade the performance of these models [32,

31]. One notable depth-based method is the work by Tompson et al. in [33],

which uses a CNN to directly regress the 2D hand joint locations from depth

images. The authors demonstrate that their approach can accurately esti-

mate hand poses in real time, making it suitable for interactive applications.

Oberweger et al. present another depth-based approach [23]. They propose

a feedback loop-based architecture to refine the hand pose estimation iter-

atively. Their method leverages depth information to guide the refinement

process, improving accuracy and robustness.

However, depth-based hand pose estimation methods also have limita-

tions. They may struggle with hand occlusions, where parts of the hand are

obscured from view, leading to inaccuracies in pose estimation. Addition-

ally, depth sensors may encounter challenges in environments with complex

backgrounds or varying lighting conditions, affecting depth data quality and

impacting hand pose estimation accuracy. Furthermore, depth-based meth-

ods may require careful calibration and alignment of depth sensors to ensure

accurate depth measurements, adding complexity to the setup process [32,

31].
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2.3 Monocular RGB-Based Approaches

With the widespread availability of RGB cameras and the advancements in

deep learning, RGB-based methods have gained significant attention in HPE.

These methods aim to directly estimate hand poses from RGB images, elim-

inating the need for specialized depth sensors or multi-view camera setups

[34]. One of the key challenges in RGB-based HPE is the accurate localiza-

tion and estimation of 2D hand keypoints, which serve as an essential in-

termediate representation for 3D pose estimation. Panteleris et al. [35] and

Zimmermann et al. [36] emphasized the importance of accurate 2D HPE for

overall performance in 3D HPE techniques. Their work demonstrated that

even minor errors in 2D keypoint localization can propagate and amplify in

the subsequent 3D pose estimation stage, leading to significant inaccuracies.

One approach to RGB-based HPE is holistic regression, where a CNN

is trained to directly regress the hand pose from the input RGB image. In

[37], Tekin et al. proposed holistic regression models that capture global con-

straints and correlations between keypoints, eliminating the need for inter-

mediate representations for human pose estimation, which can apply to hand

pose estimation. However, these methods can suffer from generalization is-

sues and sensitivity to translational variance, limiting their performance in

real-world scenarios. Heatmap-based methods, such as Convolutional Pose

Machines (CPM) [38] and Optimized Convolutional Pose Machine (OCPM)

[39], have emerged as a popular and effective approach for RGB-based HPE.

These methods leverage CNNs to predict heatmaps, representing the likeli-

hood of each hand joint being present at different spatial locations. Heatmap-

based methods can achieve precise hand keypoint localization by combining

these heatmaps with additional refinement stages, enabling accurate 2D pose

estimation [40, 41, 42, 43].

Recent advancements in RGB-based HPE have focused on improving these
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models’ robustness and generalization capabilities. For instance, in [44], Wan

et al. introduced a self-supervised learning approach that leverages syn-

thetic data and domain adaptation techniques to enhance the generalization

of RGB-based HPE models across different domains and scenarios. Despite

the significant progress in RGB-based HPE, challenges remain in handling

occlusions, complex backgrounds, and varying lighting conditions [45, 46].



16

Chapter 3

Spatial Attention Based Deep Pose

Graph Network

Introduction

The Convolutional Pose Machine (CPM) [38] is proficient at generating ro-

bust feature maps, but often struggles with capturing geometric correlations

between joints. Consequently, this can lead to inconsistencies in the final pre-

dictions of joint positions, presenting a significant hurdle in tasks related to

human pose estimation. This challenge is magnified in 2D Hand Pose Esti-

mation (HPE) due to increased articulation and self-occlusion, exacerbating

the issue. To address these limitations, we introduce the Spatial Attention

Based Deep Pose Graph Network (SDPoseGraphNet) in this chapter. This

novel framework enhances VGG-19 [47] capabilities with Spatial Attention

(SA) [48], as depicted in Figure 3.1.

Figure 3.1: Illustration of the SDPoseGraphNet architectural design.
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3.1 SDPoseGraphNet Architecture

SDPoseGraphNet consists of the First Inference Module (FIM) and the Sec-

ond Inference Module (SIM). A final Graphical Inference Module (GIM) inte-

grating deep convolutional neural networks (DCNNs) with the Pose Graph

Model (PGM) connects FIM and SIM sequentially. FIM provides an initial

feature score for hand keypoints during the preliminary stage, easily inte-

grated with the reverted feature score from the VGG-19 block in SDPoseG-

raphNet. The final module utilizes parameters generated by SIM to represent

spatial constraints among critical hand keypoints. This framework sets it-

self apart by leveraging SIM, enabling the association of the PGM with Deep

Convolutional Neural Networks (DCNN)[49, 50].

In our approach, parameters are not treated as independent; instead, they

are tightly coupled with the input image through VGG-19, ensuring adapt-

ability and responsiveness to varying input images. This integration effec-

tively captures and utilizes relevant information from the input image, re-

sulting in improved performance and adaptability across different scenarios

as shown in Figure 3.6.

The process of predicting hand poses is formally described through a

graph represented by G = (V, E), where Here, the vertices V are directly

associated with the salient keypoints of the hand, denoted as K, and can be

expressed as V = {v1, v2, . . . , vk}. Each vertex vi corresponds to a specific

two-dimensional keypoint, represented as xi ∈ R2, which provides the posi-

tion of that keypoint relative to vi. Equation (3.1) expresses the joint proba-

bility of hand poses, modeling the interrelationships between keypoints and

their positions within a graphical structure.

p (X \ I, Θ) =
1
Z

|V|

∏
i=1

ϕi(xi \ I; Θ f ) ∏
(i,j)∈E

φi,j
(
xi, xj \ I; Θs

)
(3.1)



18 Chapter 3. Spatial Attention Based Deep Pose Graph Network

In the equation, X = {x1, x2, . . . , xK} denotes the set of hand keypoints,

where i and j represent their positions. The term |V | indicates the cardinal-

ity, or number of elements, in set V , Z is the partition function, and I corre-

spond to the input image. The parameter Θ encompasses the combination of

the FIM and SIM; Θ = {ϕi(xi \ I; Θ f );φi,j(xi, xj \ I; Θs)}. In this context,

the equation models the joint probability of hand poses by considering the

interrelationships between keypoints and their positions within a graphical

structure. It provides a formal representation of the predictive process used

to estimate hand poses, where various components, such as hand keypoints

and the input image, are considered in calculating this probability. The pa-

rameter Θ encapsulates the combination of specific modules contributing to

the overall predictive model.

Further details and comprehensive explanations regarding each compo-

nent of SDPoseGraphNet are provided in the subsequent subsections.

3.2 Intergration of VGG19 with Spatial Attention

for Enhanced Feature Extraction

Attention mechanisms in neural networks enhance the focus on essential

parts of input data while reducing the significance of less relevant compo-

nents, a technique known as visual attention. This approach has seen signif-

icant advancements in deep learning research and has proven effective for

text and image data. Various methods incorporating visual attention have

been developed to improve convolutions’ efficiency. This study proposes a

novel HPE task approach by integrating a SA [48] module with the VGG-19

[47] model. This fusion capitalizes on the feature extraction capabilities of

the VGG-19 architecture and the ability of attention mechanisms to highlight

salient spatial regions, creating a powerful combination [51].
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Figure 3.2: Architecture of VGG-19 with SA module for enhanced 2D HPE.

The SA [48] modules enable each feature map to employ a distinct at-

tention mechanism. These attention maps are aggregated along the channel

dimension and then passed through a convolutional layer with a kernel size

k to produce the final attention map. The final attention map undergoes nor-

malization through a sigmoid activation function to ensure the values are

within the range of 0 and 1.

VGG-19 generates five distinct four attention maps and one feature map,

as depicted in Figure 3.2. SA and 1 × 1 convolutions for channel reduction

are applied to the first four feature maps to obtain the attention maps.

Fi = F̂i ⊗ Fi (3.2)

F̂i is the feature map after channel reduction. This convolutional layer se-

ries reduces the feature maps’ channel dimension to 128. ⊗ denotes element-

wise multiplication, and Fi represents the attention feature map.

Bilinear interpolation from torch.nn.functional aligns the spatial dimen-

sions, as shown in Equation (3.3).

Ŝi = F.interpolate(Fi, t) (3.3)
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Ŝi represents attention maps after interpolation, and t denotes the target

size of the last feature map without spatial attention. After interpolation,

the attention maps are fused with the last feature map from the backbone by

element-wise addition, as shown in Equation (3.4).

S = Ŝ1 + . . . + Ŝ4 + f5 (3.4)

Here, S represents the fused feature map.

3.3 Operational insights of FIM, SIM, and GIM

In the initial module, the VGG-19 [47] architecture was utilized up to Conv

3× 3 as the primary feature extraction network, followed by three additional

convolutional layers to generate the initial heatmap. A SA module was in-

corporated to enhance the VGG-19 architecture, generating 128 feature maps.

These feature maps then undergo information processing through a six-stage

module comprising continuous convolution layers with a specific kernel size

of 3 × 3, incorporating a heatmap label as a supervisory mechanism.

The heatmap labels were generated by applying a Gaussian function to

the corresponding ground truth, as expressed by Equation (3.5):

Heatmap = exp
(
−[(x − xk)

2 + (y − yk)
2]

2δ2

)
(3.5)

where δ represents the extent of the heatmap, and xk and yk denote the co-

ordinates of the keypoints. The final stage produces 21 unique feature maps,

each representing a keypoint. These feature maps serve as static weights dur-

ing the training of the graphical module. The output of the initial module is

denoted as F(I; Θ f ) ∈ R|V |×hF−heatmap×wF−heatmap , where the dimensions of

the output heatmaps are determined by the corresponding values of height
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Figure 3.3: Comprehensive overview of First and Second Inference Modules
(FIM and SIM).

hF−heatmap and width wF−heatmap. Figure 3.3 illustrates the sequential con-

volutional detailing of the FIM.

The SIM follows a methodology similar to the FIM, maintaining the frame-

work for 128 feature maps but generating 40 instead of 21. These 40 fea-

ture maps represent information about the relationships between hand key-

points, capturing details about relative positions, distances, and interactions

between different pairs of keypoints on the hand. The output produced by

the SIM is denoted as S(I; ΘS) ∈ R|E|×hs×ws , (hs and ws height and width of

the input image) indicating the SIM channel kernels. The primary objective

of the SIM is to learn the relative positions between hand keypoints.

During the SIM training, we keep the weights of the FIM fixed, effectively

’freezing’ them. As depicted by the gray arrows in Figure 3.1 and 3.3, there

is a directional flow of information from the FIM to the SIM at the end of

each stage. Throughout this information flow process, the feature sets gener-

ated at each FIM stage merge with those from the corresponding SIM stages.
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For example, the features from the first stage of the FIM combine with those

from the first stage of the SIM, and this composite feature set feeds into the

second stage of the SIM. This consistent information exchange approach is

maintained across all SIM’s training phase stages, as illustrated in Figure 3.3.

The message-passing algorithm is widely used in GIM, enabling the ef-

fective calculation of marginal probabilities through the sum-product oper-

ation within a graphical module. The equation for marginal probability is

expressed in Equation (3.6):

pi(xi \ I; Θ) = ∑
V\xi

p(X \ I; Θ) (3.6)

In this context, the argmax probability function optimizes the marginal prob-

ability for predicting the location of the hand keypoint labeled as i, as shown

in Equation (3.7):

xi = argmax pi(xi \ I; Θ), (3.7)

Here, Θ = {Θ f , Θs} represents the collection of all parameters, amalgamat-

ing the parameters of the initial two modules.

In the graphical model, each vertex V can send and receive messages M to

and from its corresponding neighboring nodes Nbn. The sum-product algo-

rithm updates messages sent from hand keypoints from i to j. The complete

message exchange is denoted by Mij, with Mij ∈ Rhw×wu representing the

message passing formulation, as shown in Equation (3.8):

Mij(xj) = ∑
xi

φi,j(xi , xj)ϕi (xi) ∏
k∈Nbn(i)\j

mki(xi) (3.8)
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After multiple iterations and convergence, marginal probabilities are approx-

imated as shown in Equation (3.9):

p(xj) ≈
1
Z ϕi(xi) ∏

k∈Nbn(i)
mki(xi), (3.9)

Here, mki(xi) represents a message from node k to node i, and Z is the

normalization constant.

This research adopted a tree-structured graphical model, which accurately

derives marginal probabilities using belief propagation. Figure 3.4 illustrates

the hand model arranged in a tree-like structure, facilitating precise marginals

by transmitting messages from the bottom-most nodes to the topmost node

and then back down to the lowest nodes. The schedule of message updates

is denoted by the number 3, with 40 message transmissions sufficient for ob-

taining accurate marginals.

Figure 3.4: Illustrative representation of message passing within a hand
tree structure.

3.4 Experimental Setups

The proposed model is implemented using the PyTorch framework version

1.11.0 + cu102. The present model underwent a three stages training pro-

cess, where each stage was trained with a consistent learning rate of 1e−04, a

batch size of 32, and 4 num workers. The first two stages of the model were
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Table 3.1: Distribution of data

Dataset Training Validation Testing

CMU Panoptic 11,853 1482 1482

trained for 100 epochs, and an early stop technique was implemented to mit-

igate overfitting. In contrast, the last stage was trained for a notably shorter

duration of 10 epochs with a weight decay of 0.01.

3.4.1 Dataset

The Carnegie Mellon University (CMU) Panoptic Hand Dataset [25] was uti-

lized during my dissertation to assess the proposed model. The dataset con-

sists of a total of 14,817 annotations that correspond to the right hand of in-

dividuals captured in images from the Panoptic Studio. The current research

examines the process of HPE as opposed to hand detection. To achieve this

objective, annotated hand image patches were extracted from the initial im-

ages using a square bounding box with dimensions 2.2 times larger than the

hand size. The dataset was partitioned into three subgroups using a random

sampling technique. Specifically, these subgroups were designated as the

training set, comprising 80% of the data; the validation set, comprising 10%;

and the test set, comprising 10% as shown in Table 3.1.

3.4.2 Loss Function

The Mean Squared Error (MSE) is utilized as the loss function in the model.

The loss function is scaled by a coefficient of 35 to prevent the loss from di-

minishing to nominal values.

Formulating the loss calculation for a model involves a weighted sum of

the loss function of each inference.

L = α1LFirst + α2LSecond + α3LFinal (3.10)
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where LFirst is the MSE loss of FIM, LSecond represents the MSE loss of

SIM, and LFinal denotes the PGM MSE loss. These loss terms collectively

drive the training process for enhanced model performance. While α1, α2,

and α3 are the coefficients for fine-tuning the model, the values are set to 1,

0.1, and 0.1, respectively.

3.4.3 Model Optimization

An optimizer aims to decrease the loss function and steer the network to-

ward improved performance by identifying optimal parameter values. Uti-

lizing a newly derived variation of the Adam optimizer [52] called AdamW

can bolster the refinement of model optimization techniques. In contrast to

its predecessor, the Adam optimizer, the AdamW algorithm effectively dis-

entangles the weight decay component from the learning rate, allowing for

individualized optimization of each component. This feature effectively ad-

dresses the issue of excessive overfitting. The outcomes reveal that the mod-

els optimized through AdamW exhibit superior generalization performance

compared to those trained using other optimizers, particularly Adam. The

AdamW optimizer was employed to train our final graphical module.

3.4.4 Activation Functions

Several activation functions, namely ReLU [53], SoftMax [54], and Mish [55],

introduce nonlinear components to the neural network, allowing it to com-

prehend complex patterns and correlations in the data. The Mish activa-

tion function has demonstrated superior performance to alternative activa-

tion functions, primarily due to its nonlinear nature. The definition of the

term can be expressed using the following formula:

f (x) = x · tanh(ln(1 + ex)) (3.11)
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The experimental findings demonstrate that Mish’s efficacy surpasses widely

utilized activation functions, including ReLU and SoftMax, among others, in

diverse deep network architectures operating on complex datasets.

3.4.5 Evaluation Metric

We normalized the Percentage of Correct Keypoints (PCK) [56] for this dis-

sertaion. The PCK metric is a commonly employed evaluation measure for

HPE. Specifically, it quantifies the likelihood that a predicted keypoint is lo-

cated within a designated distance threshold, denoted as σ, from its corre-

sponding ground truth coordinate. The application of σ, restricted to the

scale of the hand-bounding box, is utilized within this study. The threshold

was uniformly distributed within the range of 0 to 0.10, and the PCK formula

is

PCKk
σ =

1
||D|| ∑

D
1

(
||ppt

k − pgd
k ||2

max(w, h)
≤ δ

)
(3.12)

Where pgd
k is the ground truth of the keypoint, 1 is the indicator function,

and ppt
k is the predicted keypoint. k represents the number of keypoints, D

represents the number of test or validation samples, and h and w represent

the height and width of the sample images, respectively.

3.5 Experimental Results

A comparative analysis is conducted between my proposed network and tra-

ditional networks used for HPE. Finally, the predicted outcomes are visually

understandable to underline my results.
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3.5.1 Quantitative Results

Table 3.2 presents the PCK performance of our proposed model on the CMU

Panoptic Hand Dataset, showcasing its superiority over contemporary state-

of-the-art models. The empirical results reveal that SDPoseGraphNet, on

average, improves accuracy by nearly 3.14% compared to AGMN [40], and

achieves a 1.24% increase compared to CDGCN [57]. Additionally, Figure 3.5

illustrate our proposed model’s PCK compared with other models on CMU

dataset.

Table 3.2: SDPoseGraphNet performance in comparison with previous state-
of-the-art models.

Threshold σ 0.04 0.06 0.08 0.10 0.12 Average

CPM [38] 56.76 74.66 82.50 86.67 89.45 78.01

AGMN [40] 83.70 90.27 93.23 95.20 96.45 91.77

CDGCN [57] 85.52 91.53 94.33 96.02 97.18 92.91

SDPoseGraphNet 87.34 92.73 95.21 96.79 98.64 94.14

Figure 3.5: PCK evaluation for performance comparison: pro- posed model
against existing models.
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3.5.2 Qualitative Results

To illustrate qualitative results, we selected a diverse range of images show-

casing different angles, challenging scenarios, instances of occlusion, and

complex backgrounds. Figure 3.6 demonstrates the robustness and consis-

tency of SDPoseGraphNet across various test scenarios and conditions, high-

lighting its resilience against interference even in complex backgrounds. In

situations where image clarity was compromised, acquiring a higher reso-

lution or more detailed depiction proved beneficial for better interpretation

and analysis, emphasizing the significance of our proposed model.

Figure 3.6: Visualizing the performance of SDPoseGraphNet: random im-
age analysis the complexity increases from left to right.

Figure 3.7 visually presents the performance of our model on a random

selection of images, featuring (a) ground truth, (b) our proposed SDPoseG-

raphNet model, (c) CDGCNN, and (d) AGMN. It shows the effectiveness of

SDPoseGraphnNet even with the occluded images.

3.6 Ablation Study

An ablation study conducted using the Panoptic dataset aimed to validate

the effectiveness of our optimization strategy. The SA module was integrated

into the FIM to assess the impact of the SA module while keeping all other
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Figure 3.7: Illustrative comparison of 2D HPE: (a) Ground truth; (b) Ours; (c)
CDGCN [57]; and (d) AGMN [40].
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aspects unchanged. As shown in Table 3.3, the experimental results demon-

strated an average performance improvement of 3.52%. Figure 3.8a illus-

trates the significant improvement in network output by integrating VGG-19

with SA, and Figure 3.8b shows the results of our model with pre and post-

processed data.

Table 3.3: Comparative performance evaluation of FIM with and without
SA integration.

Threshold σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 Average

FIM 22.88 58.10 73.48 80.45 84.27 86.88 88.91 90.42 91.61 92.61 76.96

FIM with SA 24.28 61.21 76.63 83.55 87.36 89.90 91.64 93.03 94.08 94.97 79.66

(a) (b)

Figure 3.8: PCK comparison: (a) FIM with and without the integration of the
SA module, (b) FIM with preprocessed data (PD) and original data.

Regarding the SIM, it generates 40 feature maps, as explained earlier.

However, the SIM consistently predicts the exact 2D coordinates for pairs

of neighboring hand keypoints that share a common edge in the tree struc-

ture. This consistency arises because the relative positions between these

keypoints are fixed and learned during training. Consequently, during test-

ing, the SIM consistently predicts the same relative positions, resulting in

consistent 2D coordinate predictions for these 21 keypoints.

Additionally, we employed a VGG-19 backbone model with several addi-

tional layers and batch normalization for feature enhancement. Our analysis
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of each module in Table 3.4 indicates an average improvement of 2.48% and

0.39% over AGMN [40] and CDGCN [57], respectively. While performance

in terms of accuracy increases, computational speed decreases due to adding

layers.

Table 3.4: Module performance comparison with integrated extra feature ex-
traction layers.

Threshold σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 Average

FIM 24.53 60.82 75.84 82.72 86.47 89.07 90.98 92.42 93.52 94.44 79.08

SIM 23.85 60.11 76.21 83.68 87.87 90.52 92.44 93.84 94.85 95.63 79.90

SDPoseGraphNet 26.25 64.22 79.44 85.93 89.41 91.74 93.30 94.51 95.42 96.22 81.64

(a) (b)

Figure 3.9: Preprocessing stages: (a) Original image (B) Preprocessed image.

In line with the acknowledgment of noise’s detrimental impact on model

performance [58], we undertook preprocessing measures on the CMU Panop-

tic dataset, employing a median filter. Subsequently, the model underwent

training using the processed data, yielding the following insights. It was

observed that while denoising filters introduced a level of smoothness to

the dataset, this smoothness could compromise edge clarity and discerni-

bility, thus presenting suboptimal conditions for hand pose estimation. As

depicted in Figure 3.9, it is evident that the preprocessed image exhibits a
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significant degree of smoothness compared to the original, resulting in infor-

mation loss. However, in regions with noise, the model showcased improved

performance post-denoising. Conversely, areas lacking noise may experience

a detrimental impact on the model’s performance. Table 3.5, 3.6 shows the

numerical results of our model with preprocess dataset.

Table 3.5: Comparative performance of the enhanced model with prepro-
cessed data and additional feature layers.

Threshold σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

FIM 25.43 61.30 75.30 81.48 85.02 87.56 89.45 90.80 91.96 92.97

SIM 23.97 60.26 76.03 83.29 87.21 89.86 91.84 93.14 94.21 94.99

SDPose GraphNet 26.75 63.57 77.01 83.13 86.91 89.52 91.28 92.72 93.96 94.79

Table 3.6: Comparative analysis of model performance with preprocessed
data and SA integration.

Threshold σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

FIM 25.90 62.87 76.64 82.77 86.33 88.54 90.37 91.63 92.79 93.74

SIM 24.38 61.67 77.71 84.69 88.59 90.98 92.69 93.92 94.87 95.71

SDPose GraphNet 26.25 64.12 79.01 85.89 89.89 91.88 93.14 94.67 95.44 96.33

3.7 Discussion and Analysis

The proposed SDPoseGraphNet framework is an essential advancement in

HPE. By combining the strengths of the VGG-19 architecture with spatial at-

tention mechanisms, the model efficiently captures the spatial relationships

between the hand’s joints, leading to more accurate pose estimation. Inte-

grating the SA module with VGG-19 improves the model’s ability to draw
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attention to spatial regions, thereby improving feature extraction. This is also

evident from the results of ablation studies, which show significant perfor-

mance gains when the SA module is integrated into the FIM. In addition, the

ability of SIM to recognize the relative position of keypoints also contributes

to improved accuracy.

Furthermore, the messaging algorithm used in the proposed graphical

model facilitates the refinement of joint prediction by considering the in-

terdependence between keypoints. This allows a more accurate hand pose

estimation in complex scenarios with occlusion and different backgrounds.

Experimental results show that SDPoseGraphNet outperforms existing state-

of-the-art models such as CPM [38], AGMN [40], and CDGCN [57]. In par-

ticular, the model achieves significant performance gains in accuracy and

correctness on CMU dataset, including raw and preprocessed data. Despite

the problems associated with noise in the dataset, SDPoseGraphNet demon-

strates robustness and stability, maintaining reliable performance despite the

loss of information due to noise. This emphasizes the adaptability and effec-

tiveness of the model in real-world scenarios.

However, it is important to note that the SDPoseGraphNet model does

have a limitation in terms of computational complexity. Due to its large size

and intricate architecture, the model requires significant computational re-

sources for training and inference. This aspect should be considered when

deploying the model in resource-constrained environments or applications

requiring real-time processing.

In conclusion, SDPoseGraphNet is a versatile and robust framework for

hand pose estimation that can be applied to HPE and other computer vision

tasks, such as 3D pose estimation and human pose estimation. SDPoseG-

raphNet is amenable to end-to-end training and performs well, making it

a valuable asset in computer vision research and application development,

albeit with considerations for its computational requirements."
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Chapter 4

Compact Convolutional Pose

Machine

Introduction

In this chapter, we present an evolution of our previous work, proposed

in chapter 3 for 2D Hand Pose Estimation (HPE), aimed at reducing com-

putational complexity while enhancing feature integration. Our previous

model, SDPoseGraphNet, while effective, had limitations in terms of com-

putational complexity due to its large size and intricate architecture. This

aspect required significant computational resources for training and infer-

ence, which could be challenging in resource-constrained environments or

applications requiring real-time processing. Addressing these limitations, we

introduce the adoption of ConvNeXt architecture and contextual representa-

tion to achieve our objectives effectively. We employ a customized ConvNext

[59] as a backbone, preserving the convolutional layers while removing fully

connected layers. This optimization aims to improve HPE feature extrac-

tion while reducing the model’s overall complexity. A key improvement in

our approach is including a Global Context Block (GCB) [60]. This addition

allows us to leverage the backbone model’s feature extraction capabilities,

enabling the model to learn global contextual information of the features
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obtained from the convolutional layers. The refined features then undergo

a six-processing block process within the CPM framework, resulting in ac-

curate 2D HPE outcomes while maintaining a more efficient computational

profile

4.1 CCPM Architecture Components

2D HPE using heatmaps typically involves detecting keypoints to derive the

pose P of human hands from RGB images or video frames I. Each keypoint

ki corresponds to a specific area of the hand, such as joints and fingertips,

and is represented by a heatmap H. The task then becomes predicting a

set of heatmaps {H1, ., Hi}, where the pose P consists of coordinates with

the highest probability in each heatmap. While the number of key points

K varies across datasets, most contain 21 key points, making the objective

to estimate P as the set of key points. Our proposed 2D HPE model, de-

picted in Figure 4.1, is based on a simplified version of the CPM [38] base-

line model, carefully balancing complexity and accuracy. The approach be-

gins with a customized ConvNeXt [59] backbone integrated with GCB [60]

for feature extraction, followed by a convolution layer to produce the initial

heatmap. Subsequently, the initial heatmaps undergo processing through a

module comprising six blocks of 3 × 3 convolutions, each supervised using

heatmap labels calculated from ground truth via the Gaussian function. The

mathematical formula is given as :

Heatmap = exp
(
−[(x − xk)

2 + (y − yk)
2]

2δ2

)
(4.1)

where δ denotes the extent of the heatmap, while xk and yk represent the

underlying coordinates on the ground.
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Figure 4.1: General overview of our lightweight, compact CPM information
processing module.

4.2 Feature Extraction with ConvNeXt

In our proposed methodology, we integrated a customized ConvNeXT [59]

architecture to serve as the backbone for feature extraction. As depicted in

Figure 4.2, this architecture consists of convolutional layers meticulously de-

signed to capture and encode intricate patterns and features in the input im-

age I. The initial convolutional layer, equipped with a 3 × 3 kernel size,

Figure 4.2: Overall architecture of our customized ConvNeXT.

processes the input I and produces 64 feature maps. Subsequent convolu-

tional layers refine these feature maps while maintaining the same kernel

size, generating 128 feature maps. The ReLU [53] activation function is ap-

plied throughout the architecture to introduce non-linearity, enhancing the

model’s capacity to capture complex relationships within the data.

The output feature maps serve as the foundational representation in our

proposed model, playing a pivotal role in accurately estimating 2D hand
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pose estimation. Additionally, these features are subjected to a GCB to facil-

itate learning of contextual representations, further enhancing the network’s

capability to discern intricate hand poses.

4.3 Extracting Contextual Information using GCB

To enrich the model’s comprehension of global contextual information within

feature maps, we incorporated the GCB [60] as depicted in Figure 4.3, where

w, h, and c represent the features’ width, height, and channels, respectively.

The module initiates with a global average pooling layer, which aggregates

spatial details across each feature map by computing their average values,

thus condensing the dimensions of each feature map into a single channel.

Subsequently, the module integrates a fully connected network comprising

two linear layers. ReLU activation introduces non-linearity to the network,

empowering it to discern intricate patterns within the data. The output of

this network undergoes processing through a Sigmoid activation function to

yield the final weights.

Figure 4.3: Detailed overview of global context block utilized in our frame-
work.

This module utilizes an adaptive average pooling layer to condense spa-

tial information into a single channel per feature map. Subsequently, a fully

connected network comprising two linear layers introduces non-linearity through

ReLU activation, followed by the production of weights via a Sigmoid acti-

vation function. The calculation for the weight vector ŵ is articulated in
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Equation (4.2),

ŵ = Sigmoid(W2(ReLU(W1(Favg))) (4.2)

where Favg signifies the global average-pooled feature map, and W1 and W2

denote the weights of the linear layers. These computed weights are then

applied to the input feature map X, emphasizing the salient regions and cap-

turing global context within local features, as delineated in Equation (4.3),

A = X ⊙ w (4.3)

where A represents the feature map with the applied weights, and ⊙ signi-

fies element-wise multiplication.

Incorporating this module enriches the model’s ability to make accurate

predictions by leveraging global contextual cues.

4.4 Information Processing in CCPM

The CPM [38] architecture, widely used in pose estimation tasks, has been

modified to reduce complexity and create a new, more compact design, as

shown in Figure 4.4. The architecture consists of two main modules, the first

of which extracts features from the backbone and then passes through six

processing blocks. These blocks consist of successive convolutional layers,

with two convolutional layers with a core size of 3 × 3 included at the initial

stage. This reduces the number of channels from 512 to 256. The subsequent

block (2-6) contains seven 3 × 3 convolutional layers, reducing the number

of channels from 256 to 128. This adjustment made our model more compact

and less complex than the original CPM architecture.



4.5. Experimental Setup 39

Figure 4.4: General overview of our lightweight, compact CPM information
processing module.

4.5 Experimental Setup

4.5.1 Dataset and Evaluation matric

We used a publicly available dataset, Carnegie Mellon University (CMU)

Panoptic Hand Dataset [25], to assess our lightweight 2D HPE model. The

dataset includes 14,817 annotations corresponding to the right hands of in-

dividuals captured in Panoptic Studio images. To achieve our goal, anno-

tated patches of hand images were extracted from the original image using a

square bounding box with a size 2.2 larger than the hand size. The dataset is

divided into training, validation, and testing, covering 70%, 15%, and 15%,

respectively, using a random sampling technique.

We utilized a commonly used evaluation metric, the Percentage of Correct

Keypoints (PCK) [56], to test the performance of our proposed model. In

this experiment, the threshold σ of PCK was set to {0.04, 0.08, 0.12}, and 0.1

was selected to determine the best model weight while testing the model

prediction accuracy on the test set.

4.5.2 Loss function and Implementation Details

The loss function used in the model is the mean squared error (MSE). To

avoid the loss from becoming too small, it is scaled by a coefficient of 30, and
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the formulation is as follows.

Scaled MSE = 30 · 1
n

n

∑
i=1

(Pi − P̂i
2 (4.4)

where n is the number of keypoints, Pi and, P̂i are predicted and target pose.

We implemented our model using the PyTorch framework with a batch

size of 64 and a 10−4 learning rate. The model was trained for 100 epochs.

4.6 Experimental Results

The detailed quantitative analysis in Table 4.1 shows that our lightweight

model achieves higher precision accuracy than the other state-of-the-art mod-

els. Our model accuracy σ at 0.04 is 68.43 which is improved by 4.76% and

σ at 0.12 is 94.05 improved by 1.05% and an average of 2.62% against the

OCPM [39].

Figure 4.5: Visualization on occluded random test images.

Along with the model accuracy, we also reduced the model complexity

to demonstrate that we performed a parameters and GFlops comparison;

our proposed model has fewer parameters and GFlops than the state-of-the-

art models. Figure 4.6 illustrates the PCK comparison on the test set of our

model in contrast with the previous models, and Figure 4.5 shows the Vi-

sualization on occluded images. We also performed an ablation study to

demonstrate the importance of the integration of GCB in ConvNeXt; Table
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Table 4.1: Experimental results on CMU panoptic hand dataset.

Model PCK (%) Ave Par (M) GFLOPs

σ 0.04 σ 0.06 σ 0.08 σ 0.10 σ 0.12

CPM [38] 56.76 74.66 82.50 86.67 89.45 78.01 36.80 103.23

LDM-6 [42] 59.51 76.19 83.77 87.83 90.27 79.51 38.19 95.18

LPM-6 [42] 60.71 77.60 84.93 88.76 91.10 80.62 38.38 92.18

OCPM [39] 63.67 80.26 87.10 90.65 93.01 82.94 29.28 80.53

Our 65.43 81.25 89.17 91.45 94.05 84.27 8.15 18.53

Table 4.2: Experimental results of our model with and without GCB on CMU
panoptic hand dataset.

Model PCK (%) Ave Par (M) GFLOPs

σ
0.04

σ
0.06

σ
0.08

σ
0.10

σ
0.12

Our without GCB 63.43 80.15 87.57 90.78 93.25 83.03 7.55 17.01

Our with GCB 65.43 81.25 89.17 91.45 94.05 84.27 8.15 18.53

4.2 clearly shows the importance of learning the global contextual informa-

tion from the features to leverage the model’s accuracy.

4.7 Discussion and Analysis

The proposed lightweight CMU for 2D hand pose estimation represents a

promising advancement in this area. It utilizes the capabilities of ConvNeXt

[59] and GCB [60] for feature extraction and learning global contextual in-

formation. Evaluations conducted on the CMU dataset show that our model

performs better than existing lightweight systems, improving accuracy and

computational efficiency. This suggests that our model can significantly im-

pact various hand-related computational tasks, including gesture recognition

and human-computer interaction, by providing more accurate and efficient
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Figure 4.6: PCK comparison on the test set of our model with CPM [38],
LPM-6 [42], and OCPM [39].

solutions. One of our approach’s strengths is our ability to balance model

complexity and performance: using ConvNeXt and GCB, we have devel-

oped a rational architecture that minimizes computational cost while main-

taining competitive accuracy. This makes our model suitable for resource-

constrained environments and real-time applications where computational

efficiency is crucial.

However, despite the promising results, areas still require improvement

and further study. For example, although our model outperforms existing

lightweight frameworks, there may still be room for optimization to achieve

even greater accuracy or reduce computational cost. Furthermore, extending

this work to 3D hand pose estimation with minimal computational cost is an

exciting direction for future research. We use this study’s lightweight and ef-

ficient design principles to develop models that accurately estimate 3D hand

pose in real-time or resource-constrained environments.

Our proposed CCPM offers an attractive combination of accuracy, effi-

ciency, and versatility, significantly contributing to hand pose estimation.
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Through ongoing research and development, we will strive to refine and im-

prove our model to address emerging challenges and advance the field of

hand-related computational tasks.
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Chapter 5

Attention Driven Contextual

Features Based Convolution

Network

Introduction

It is essential to note that the network has some limitations, such as being

computationally expensive and having an imperfect structure. These limita-

tions suggest that there is room for improvement in the design of the CPM

[38] and our previous approaches in chapter 3 and 4. In this chapter, we pro-

posed an innovative approach Attention Driven Contextual Features Based

Convolution Network (ACENET) for 2D HPE utilizing a CPM architecture

combining the power of EfficientNet (EN) [61] with a Squeeze and Excita-

tion Attention (SE) block [62] and Globel Contextual (GC) [63] block named

ACENET. Our proposed model aims to accurately predict the intricate poses

of human hands from monocular RGB images. We leverage the state-of-the-

art EN [61] architecture to extract rich and hierarchical features from the in-

put images, enhancing the model’s ability to capture intricate hand structures

and pose variations. The SE block can be viewed as an attention mechanism



5.1. ACENet Architecture 45

that learns to focus on the most relevant features. It uses a squeeze opera-

tion to reduce the spatial dimensions of the feature maps and a set of fully

connected layers to capture channel-wise dependencies. The excitation oper-

ation then scales the feature maps based on the learned importance weights,

resulting in enhanced feature representation.

5.1 ACENet Architecture

We present an innovative approach ACENet for 2D HPE by utilizing a CPM

[38] architecture, combining the power of EN [61] with SE [62] and GC [63].

The overall architecture of the proposed model is shown in Figure 5.1. Our

Figure 5.1: Detail architecture of ACENet.

approach is unique in that it utilizes a CPM [38] architecture designed to pre-

dict the location of hand joints by generating a confidence map that assigns

a probability to each pixel in the image. To make the previous approaches

more efficient, This confidence map is then used to estimate the location of

the hand joints.
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5.2 Feature Extraction with EN

The study incorporated EN [61], an advanced convolutional neural network

architecture renowned for balancing model accuracy and computational ef-

ficiency. EN is particularly well-suited for scenarios with limited computa-

tional resources due to its efficient feature extraction capabilities. Leveraging

an EN model renowned for its vast collection of annotated images allowed

us to harness high-level features crucial to our task. The architecture of the

EN model used for feature extraction is elaborated in Figure 5.2.

Our investigation employed the EN-B0 baseline, comprising seven blocks

containing varying numbers of Mobile Inverted Bottleneck Convolution (MB-

Conv) layers. Our adaptations to the EN architecture involved removing the

final fully connected layers, thus reducing the model’s size and repurposing

it as an efficient feature extractor. The data flow within the network entails se-

quential processing, starting with a 3 × 3 convolutional operation, followed

by MBConv operations. These operations extract distinctive features, subse-

quently fed into the SE [62] block.

Figure 5.2: Detailed architecture of EfficientNet
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5.3 Spatial Feature Extraction with SE

The SE [62] Block employs a series of transformations to enhance the rep-

resentation of input feature maps. First, a channel-wise transformation is

applied to the input feature map X, as expressed by Equation (5.1.

U = fc(X) = σ(W2δ(W1X) (5.1)

This transformation involves the application of learnable weight matrices W1

and W2, along with ReLU [53] and sigmoid activation functions δ and σ,

respectively, resulting in the output feature map U.

Next, recalibration factors are computed to adjust the dimensions of U to

match those of the original feature map X, as described in Equation 5.2. Here,

W3 represents a learnable weight matrix, and s denotes the recalibration fac-

tor.

s = fs(U = W3U (5.2)

Finally, feature recalibration is achieved through element-wise multipli-

cation, as depicted in Equation (5.3).

Y = fr(X, s) = X ⊙ s (5.3)

This operation involves the element-wise product of the original feature map

X and the recalibration factor s, yielding the amplified feature map Y.

By dynamically adjusting input features based on channel importance,

the SE block enables the neural network to highlight critical information,

thereby enhancing its ability to identify complex patterns in the data. This

capability improves performance across various computational tasks, includ-

ing HPE. For a more detailed illustration, refer to Figure 5.3.
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Figure 5.3: Squeeze and Excitation Block

5.4 Lightweight CPM

Our proposed framework retains the core CPM [38] structure through modi-

fications while effectively addressing the intricacies of hand pose estimation.

The architecture comprises six stages, with the initial stage featuring two

1 × 1 convolutional blocks, followed by seven 1 × 1 convolutional blocks

in subsequent stages. After the first stage, we integrate the GC [63] block,

augmenting the model’s perceptual capability by incorporating multi-scale

contextual information.

Moreover, we downsized the number of channels in each convolutional

block across all stages to streamline our framework’s complexity. Specifi-

cally, we reduced the channel count from 512 to 128 in the first stage and

256 to 64 in subsequent stages. This reduction in channel count significantly

mitigated the computational complexity of the architecture, yielding a more

lightweight yet efficient model.

Furthermore, we employed the Mish [55] activation function instead of

the ReLU [53] activation function in the first stage to enhance the model’s

capacity. This switch amplifies the model’s non-linearity, empowering it to

learn more intricate patterns. Collectively, these adjustments culminated in

an optimized and lightweight CPM architecture, striking a balance between
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accuracy and computational efficiency. For a comprehensive overview, refer

to Fig. 5.2.

5.5 Extracting Hierarchical Contextual Feature with

GC Block

Our HPE architecture incorporates the GC [63] block, drawing on hierarchi-

cal context aggregation to enhance the model’s ability to discern intricate

spatial relationships. To integrate global context, we employ adaptive aver-

age pooling, as depicted by Equation (5.4):

z = AdapAvgPool(X) (5.4)

Here, X represents the input feature maps, and z denotes the global context

representation.

To refine this context, attention weights are computed through convo-

lutional transformation, prioritizing essential features by assessing relative

importance, as shown in Equation (5.5):

w = Conv2d(z) (5.5)

Here, w denotes the attention weights post-convolution.

Subsequently, the module proceeds with hierarchical context aggregation,

a crucial process that examines multiple scales. By iteratively rescaling input

feature maps X with scale factors (s) like 0.5, 1.0, and 2.0, distinct scaled input

representations Xs are generated. These scaled representations simplify the

computation of contextual maps Ms embedded within their respective scales.

To maintain alignment with the original feature map dimensions, contextual
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maps are adjusted using interpolation techniques, as demonstrated in Equa-

tion (5.6):

M′
s = Interpolate(Ms, S(X) (5.6)

Here, M′
s represents the reshaped contextual map.

The essence of the GC block becomes apparent when diverse contextual

aspects are merged, achieving aggregation denoted as A through the sum-

mation of elements from different scales, as expressed in Equation (5.7):

A = ∑
s

M′
s (5.7)

The illustration of the GC block emphasizes leveraging varied viewpoints

to optimize the accuracy and effectiveness of HPE. For a detailed insight,

refer to Figure. 5.4, where X, w, h, and c denote input feature, width, height,

and channels, respectively.

Figure 5.4: Detailed overview of Global Context Block

5.6 Experimental Setups

5.6.1 Dataset

The study evaluated the proposed model’s effectiveness using the CMU Panop-

tic hand dataset [25]. In the dataset, 14,817 detailed annotations exclusively
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Table 5.1: Distribution of data.

Dataset Training Validation Testing

CMU Panoptic 11,853 1482 1482

represent the right hand of individuals captured in images obtained from the

Panoptic Studio. The annotated hand images were appropriately cropped

from the original images by employing a square bounding box that was 2.2

times greater in size than that of the hand. The dataset is split into two parts

using a random sampling approach. In particular, the mentioned subgroups

were designated for training and accounted for 70 % of the data. The remain-

ing 30 % was set aside for validation. The 30 % of the data used for validation

were further employed for testing, effectively utilizing the entire dataset. The

data distribution of the dataset is shown in Table 5.1.

5.6.2 Evaluation Matrics

We utilized the normalized Percentage of Correct Keypoint [56] metric as an

evaluation metric. The likelihood of a predicted keypoint being close to its

actual location is measured by a distance threshold σ. To ensure consistency

across different hand sizes, a normalized threshold σ is used, which varies

between 0.04 and 0.12 based on the size of the hand-bounding box.

5.6.3 Implementation Details

We implemented our model using the PyTorch framework with a batch size

of 64 and a learning rate of 10−4. The model was trained for 100 epochs

to prevent overfitting; we used early stopping with a patience of 3. Before

being fed into the model, we resized the images to 368×368, resulting in a

final score map of size 46×46 for each keypoint. Additionally, all images
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were scaled to [0, 1] and normalized using mean = (0.485, 0.456, 0.406) and

std = (0.229, 0.224, 0.225).

The optimizer utilized in this study was AdamW, which can effectively

separate the weight decay component from the learning rate, enabling inde-

pendent optimization of each component. Additionally, we employed Mean

Squared Error (MSE) as the loss function for our model. To prevent the loss

from reaching nominal values, it was scaled by a factor of 30.

5.7 Experimental Results

This section presents a performance analysis of our proposed framework,

including numerical and visual results.

5.7.1 Quantitative Results

Fig. 5.5 shows the Percentage of Correct Keypoints (PCK) performance com-

parison of ACENet with other state-of-the-art models on the CMU Panop-

tic hand dataset. The graphical representation indicates that Our-B0 outper-

forms the accuracy of the other method, with a more minor keypoint offset

of regression.

Table 5.2 shows a numerical comparison with previous methods OCPM

[39], CPM [38], LDM-6 [42], and LPM-6 [42], our proposed framework on

CMU Panoptic hand dataset with a consistent, normalized threshold with

the previous methods to maintain the same standard shows a significant im-

provement. Comparing the results, ACENet achieves a 2.11% increment in

average accuracy to OCPM and 7.04% from CPM.

We compared the parameters, excluding LPM-6 from the analysis due to

the absence of additional parameters. The researchers input a 368 × 368 color

image into the network to determine the number of parameters required for

the operation. The results, presented in Table 5.3, indicate that the ACENet
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Figure 5.5: PCK comparison of ACENet with other models

Table 5.2: Experimental Results Comparison of ACENet with Other Models
on CMU Panoptic Hand Dataset

Threshold σ 0.04 0.06 0.08 0.10 0.12 Average Improvement

CPM [38] 56.76 74.66 82.50 86.67 89.45 78.01 –

LDM-6 [42] 59.51 76.19 83.77 87.83 90.27 79.51 1.50

LPM-6 [42] 60.71 77.60 84.93 88.76 91.10 80.62 2.61

OCPM [39] 63.67 80.26 87.10 90.65 93.01 82.94 4.93

ACENet 66.95 82.59 89.01 92.00 94.74 85.06 7.04
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parameters were reduced in each aspect, signifying a significant reduction in

the computational cost.

Table 5.3: Parameters Comparison With Previous Models

Model Parameters (M) FLOPs (G)

CPM [38] 36.80 103.23
OCPM [39] 29.28 80.53

ACENet 12.45 20.23

5.7.2 Qualitavie Results

To evaluate the effectiveness of the proposed framework, we randomly se-

lected images as inputs to the network for visualization. The results, as

shown in Fig. 5.6 and Fig. 5.7, demonstrate that our ACENet exhibits robust-

ness, anti-interference capability, and severely self-fingers-occluding hand.

The network’s ability to operate efficiently in low light or blurred images,

as observed in some CMU Panoptic Hand dataset samples, is noteworthy.

These results indicate that ACENet can accurately detect hand key points,

even in challenging conditions. ACENet’s performance in such scenarios is

a significant advantage, as it can be used in real-world applications where

the lighting and background conditions may not be optimal. The study’s

findings suggest that ACENet is a promising approach for accurate HPE.

Figure 5.6: Visualization results, each subfigure shows the result of (a) CPM
[38], (b) LPM [42], (c) OCPM [39] and (d) ACENet
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Figure 5.7: Visualization results, (a) LPM [42] and (b) ACENet

5.8 Ablation Study

To assess the efficacy of our optimized approach, we conducted an ablation

experiment using EfficientNet as the backbone.

Furthermore, we conducted experiments to evaluate the impact of the SE

block, comparing frameworks with and without it. The results, outlined in

Table 5.4, unequivocally demonstrate the SE block’s effectiveness in enhanc-

ing the framework’s performance. Notably, integrating the SE block leads to

a marked improvement in accuracy, indicating its ability to improve perfor-

mance without substantially increasing computational overhead.

In addition to the SE block, we introduced a GC block featuring hierar-

chical context aggregation after the first stage of the information processing

block. Designed to capture global context information from the input image,

the GC block aims to bolster the framework’s accuracy. Evaluation results,

presented in Table 5.5, confirm the efficacy of the GC block, with its inclu-

sion resulting in a significant enhancement in accuracy. This underscores the

effectiveness of the GC block as a means to augment the framework’s perfor-

mance.
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Overall, these findings underscore the effectiveness of both the Squeeze-

and-Excitation modules and the GC block in improving the framework’s per-

formance.

Table 5.4: Experimental results of Our Model with and without SE

Threshold
σ

0.04 0.06 0.08 0.10 0.12 Average

ACENet∗ 62.09 78.82 85.64 90.27 92.42 81.85
ACENetSE 64.05 80.75 87.85 91.16 93.10 83.32
aACENet∗ is Without SE and ACENetrSE is With SE

Table 5.5: Experimental results of ACENet with and without GC block

Threshold
σ

0.04 0.06 0.08 0.10 0.12 Average

ACENetSE∗ 64.05 80.75 87.85 91.16 93.10 83.32
ACENet 66.95 82.59 89.01 92.00 94.74 85.05
aACENetSE∗ is With only SE, and ACENet with both SE and GC blocks

5.9 Discussion and Analysis

This study presents ACENet, a novel 2D HPE framework. ACENet is based

on integrating EfficientNet as the underlying architecture combined with a

SE block for attention-based feature extraction. In addition, integrating the

GC block after the first stage enhanced the perceptual capabilities of the

model. It allowed it to utilize global context information to estimate hand

position accurately. When evaluating our model on the CMU Panoptic Hand

dataset, promising results were obtained; ACENet achieved better perfor-

mance on several metrics while significantly reducing the number of param-

eters. This suggests that our approach balances model complexity and per-

formance, achieving accuracy and computational efficiency. The significance
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of this research is not limited to hand pose estimation but has potential appli-

cations in human-computer interaction, virtual reality, and robotics. By pro-

viding accurate and efficient hand pose estimation, ACENet paves the way

for improved user interfaces, immersive experiences, and intuitive human-

machine interaction. However, it is important to acknowledge certain limita-

tions of ACENet. Despite efforts to reduce computational complexity, the

model still requires significant computational resources, which may limit

its applicability in some real-time or resource-constrained scenarios. Addi-

tionally, ACENet showed limitations in accurately estimating hand poses in

heavily occluded situations, indicating room for improvement in handling

complex occlusions. These challenges highlight areas for future research and

refinement of the model
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Introduction

In this chapter, we introduce the Deformable Pose Network (DPN), a novel

approach to 2D Hand Pose Estimation (HPE) that builds upon the advance-

ments made by ACENet. ACENet, as presented in the previous chapter 5,

represents a significant milestone in HPE research, leveraging EfficientNet

architecture and attention mechanisms to accurately estimate hand positions.

While ACENet demonstrated considerable progress, it faced certain limita-

tions. Despite efforts to reduce computational complexity, the model still

required significant computational resources, potentially limiting its appli-

cability in some real-time or resource-constrained scenarios. Additionally,

ACENet showed limitations in accurately estimating hand poses in heavily

occluded situations, indicating room for improvement in handling complex

occlusions. Addressing these challenges, DPN aims to further enhance the

accuracy and efficiency of HPE. Inspired by the need to incorporate geomet-

rical constraints into convolutional operations, DPN introduces the concept
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of Deformable Convolution. This approach focuses on addressing the chal-

lenges posed by complex hand poses and occlusion scenarios, ensuring ro-

bust performance in diverse environments. Similar to ACENet, DPN adopts

a multi-stage architecture consisting of a backbone and a Deformable Convo-

lution Block (DCB) [64, 65]. The choice of EfficientNet [61] B0 as the backbone

ensures a balance between computational cost and model efficiency, aligning

with the principles of ACENet. Additionally, the integration of a four-stage

DCB, inspired by Convolutional Pose Machine (CPM) [38], allows DPN to ef-

fectively capture geometrical constraints and hidden information critical for

accurate HPE.

6.1 DPN Architecture

We proposed a new Deformable Pose Network (DPN) approach for efficient

and accurate 2D HPE. A multi-stage deformable convolution is utilized in

our work inspired by the workflow of CPM [38] stages, combining the power

of EN [61] as a backbone for feature extraction. Figure 6.1 shows the detailed

architecture of our proposed method.

Figure 6.1: Detailed overview of Deformable Pose Network.
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6.2 Feature Extraction with EfficientNet

We use EN [61], a state-of-the-art network architecture, as the basis of our

proposed feature extraction method. EN is renowned for its ability to balance

model accuracy and computational efficiency. There are different EN (B0-B7)

versions, each varying in depth and complexity. Our approach chose the B0

version because of its lightweight nature. The architecture of the modified

B0 EN, which serves as the backbone of our network, is shown in Figure 5.2.

To simplify our approach compared to other variants and feature extrac-

tion networks such as ResNet [66] and VGG [47], we specifically chose the B0

EN version. The B0 EN version consists of seven blocks, follows the struc-

ture of MobileNetv2, and includes a variable number of MBConvs. It has a

variable number of MBConvs. The model parameters have been effectively

reduced by removing the last fully connected convolutional layer, making it

suitable for feature extraction. Several layers sequentially process the input

data. First, the 3 × 3 convolution operation is applied, followed by the MB-

Conv operation; the last layer EN generates 64 feature maps, passed to the

deformable convolution block for further processing.

6.3 Four-stage Information Processing Block

The CPM is among the baseline CNN-based pose estimation models address-

ing HPE complexities. However, it faces limitations due to unknown geo-

metrical constraints and other challenges. To tackle these issues, we inte-

grated the DC into CNN-based models, focusing on managing geometrical

constraints and enhancing adaptability in learning unknown features. Our

proposed approach features a four-stage network. The initial stage includes

two 3× 3 DCBs with 256 channels, followed by subsequent stages with seven
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3 × 3 DCBs, each containing 128 channels. Figure 6.2 provides a detailed

overview of this information processing DCB.

Figure 6.2: Detailed overview of stages of deformable convolution block.

The output feature maps from the backbone are directed to the initial

stage of our network for subsequent information processing. Within each

stage, the DC comprises two Convolutional Layers (CL), offset CL, and mod-

ulator CL, along with a DC operation discussed in detail below:

6.3.1 Offset Convolutional Layer (CL)

This layer computes spatial offsets through learnable parameterization from

the input feature map x, which represents the output feature map of the back-

bone and is denoted as OF. Mathematically, it can be represented as shown

in Equation 6.1:

OF = OFC(x) (6.1)

Here, OFC denotes the convolutional operation on the input x for com-

puting the offsets. This process helps determine the sampling location in x,

providing flexibility to receptive fields.
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6.3.2 Modulator Convolutional Layer (CL)

This layer governs the significance or modulation of sampled regions by gen-

erating modulation weights. It utilizes the output of a sigmoid function, as

shown in Equation 6.2:

M = 2 × σ(MC(x)) (6.2)

Here, M represents the modulator, σ represents the sigmoid function and

MC denotes the convolutional operation. This factor facilitates adaptive fea-

ture adjustments according to their importance.

6.3.3 Deformable Convolution (DC) Operation

Following the first two Convolutional Layers (CLs), the DC operation serves

as the core component of the DCB. It integrates the offset and modulator with

the regular CL. Mathematically, this operation can be expressed as shown in

Equation 6.3:

x = de f orm_2d(x, OF, w, b, M) (6.3)

Here, x represents the input feature map, OF signifies the spatial offsets,

and w, b, and M represent the convolutional weights, bias, and the mod-

ulating factor, respectively. This incorporation dynamically adjusts the re-

ceptive fields, enabling the model to learn adaptive features and geometrical

constraints. The final output from the initial stage progresses to the second

stage.

The sequence iterates across all four stages, and in the final stage, we

obtain the 21 final keypoints. Along with the DC, we reduced the number

of stages and channels compared to CPM, enhancing our model’s overall

adaptability and computational efficiency.
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Table 6.1: CMU panoptic hand dataset distribution.

Dataset Training Validation Testing

CMU Panoptic 11,853 1482 1482

6.4 EXPERIMENTAL SETUP

6.4.1 Dataset

Our research used a publicly available data set, The Carnegie Mellon Univer-

sity Panoptic Hand Dataset (CMU) [25] from Panoptic Studio to evaluate our

proposed model. The dataset includes 14,817 annotations of the right hand

of individuals captured at the studio; the distribution is shown in Table 6.1

as our research is HPE, the annotated image patches were extracted from the

entire image using a box size of 2.2 times larger than the hand to achieve this

objective. The dataset is randomly divided into three subgroups by a random

sampling technique for training, validation, and testing comprised of 80 %,

10 %, and 10 % of the dataset, respectively.

6.4.2 Implementation details

We implemented our model using the PyTorch framework, with a batch size

of 64 and a learning rate of 0.0001. The model is trained up to 100 epochs. The

input images were scaled to [0, 1] and normalized using a mean and standard

deviation of (0.485, 0.456, 0.406) and (0.229, 0.224, 0.225) respectively. The

Mean Squared Error (MSE) is utilized as a loss function. The loss function is

adjusted using a scaling factor of 35 to prevent the loss from decreasing to a

meager value.
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6.4.3 Activation Function and Model Optimizer

To incorporate nonlinear aspects into the network, various activation func-

tions were proposed, such as ReLU [53], Softmax [54], and Mish [55]. How-

ever Mish outperforms others notably due to its nonlinear nature; its mathe-

matical representation is as follows:

f (x) = x tanh(ln(1 + ex)) (6.4)

Experimental results highlight Mish’s superficiency over other activation func-

tions.

The model optimizers aim to decrease the loss function and enhance net-

work performance by finding the best parameter values. We adopted a newly

derived version of the Adam optimizer; AdamW can significantly bolster

model optimization techniques. In contrast to the Adam optimizer, the AdamW

algorithm separates the weight decay component from the learning rate, en-

abling individualized optimization of each component. This feature effec-

tively addresses the issue of excessive overfitting. The results indicate that

the model optimized with AdamW demonstrates better generalization per-

formance. The AdamW optimizer was employed in the training of our pro-

posed approach.

6.4.4 Evaluation Metric

As an evaluation metric commonly used for pose estimation, the Percentage

of Correct Keypoints (PCK) [56] was utilized in this study. It measures the

probability that the predicted keypoints fall in a specified threshold distance,

represented as σ from the ground truth. σ was uniformly distributed in a
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range of 0.04 to 0.12; it is formulated as:

PCKk
σ =

1
||D|| ∑

D
1
( ||ppt

k − pgd
k ||2

max(w, h)
≤ σ

)
(6.5)

Here pgd
k represents the keypoints ground truth, 1 is the indicator function,

ppt
k denotes the predicted keypoints, k for the number of keypoints, D refers

to the number of test or validation sample, and w and h indicates the height

and width of the input image respectively.

6.5 Experimental Results

This section analyzes the performance of the proposed network and com-

pares it with different HPE methodologies.

6.5.1 Quantitative Results

The quantitative analysis of the proposed model is presented in Table 6.2 and

Figure 6.3, both numerically and graphically. The results show noticeable

improvements. Our model achieves an improvement of 5.13 % at σ 0.12 and

an average improvement of 7.29 % over CPM. It also outperforms OCPM [39]

by 1.57 % at sigma 0.12 and an average improvement of 2.36 %.

Figure 6.3 shows the PCK comparison between DPN and CPM [38], LDM-

6 [42], LPM-6 [42], and OCPM [39], demonstrating DPN’s superiority over

existing methods. To compare the computational complexity, the parame-

ters were compared except for LDM-6 and LPM-6 which have no parame-

ters. As shown in Table 6.3, it can be seen that the proposed architecture has

fewer parameters and lower computational complexity compared to CPM

and OCPM.
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Table 6.2: Numerical comparison of DPN with other models on CMU panop-
tic hand dataset.

Threshold σ 0.04 0.06 0.08 0.10 0.12 Average Improvement

CPM [38] 56.76 74.66 82.50 86.67 89.45 78.01 –

LDM-6 [42] 59.51 76.19 83.77 87.83 90.27 79.51 1.50

LPM-6 [42] 60.71 77.60 84.93 88.76 91.10 80.62 2.61

OCPM [39] 63.67 80.26 87.10 90.65 93.01 82.94 4.93

DPN 67.19 82.81 89.27 92.63 94.88 85.36 7.29

Table 6.3: Parameters comparison.

Model Parameters(M) Flops(G)

CPM [38] 36.80 103.23
OCPM [39] 29.28 80.53

DPN 8.55 16.38

Figure 6.3: PCK comparison with other lightweight 2D HPE models.
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6.5.2 Qualitative Results

To visually evaluate the performance of DPN, we selected random images

from the test set and visualized them. Figure 6.4 shows that our proposed

network performs well, especially when processing low-light and blurred

images. These results show that our DPN outperforms other lightweight

state-of-the-art models.

Figure 6.4: Visual illustration of predicted hand keypoints.

6.6 Ablation Study

To demonstrate the effectiveness of DC in the stages, an ablation study was

conducted by training a network without DC. The results showed that, sur-

prisingly, DC outperforms convolution even when compared to a 6-stage

network with many parameters. The numerical results shown in Table 6.4

confirm that the inclusion of DC significantly improves the accuracy of the

network.
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Table 6.4: Comparison of six-stages without DC and four-stage with DC.

Threshold σ 0.04 0.06 0.08 0.10 0.12 Average

6 stage without DC 62.09 78.82 85.64 90.27 92.42 81.85

4 stage with DC 67.19 82.81 89.27 92.63 94.48 85.30

6.7 Discussion and Analysis

The lightweight multi-stage deformable convolutional network for 2D hand

pose estimation proposed in this paper utilizes EfficientNet as a framework

to improve feature extraction. By integrating deformable convolutions at

each step to solve geometric constraints, our approach significantly improves

over traditional convolutional methods. Through evaluation of a publicly

available CMU hand dataset, our proposed method outperforms state-of-the-

art networks in both accuracy and computational complexity; using Efficient-

Net as a basis facilitates the exploration of hidden information, contributing

to improved performance. Furthermore, including deformable convolution

improved the adaptation to geometric changes in hand pose, leading to more

accurate predictions. However, it is important to note that despite these

advancements, the model still faces certain limitations. While efforts have

been made to reduce computational complexity, the model remains compu-

tationally expensive, which may pose challenges in some real-time applica-

tions or resource-constrained environments. Additionally, the model’s per-

formance in highly occluded scenarios, though improved, still shows room

for enhancement. These limitations highlight areas for future research and

refinement.

This study highlights the effectiveness of combining EfficientNet and de-

formable convolution for 2D HPE. The results emphasize the importance of

innovative approaches to address the challenges inherent in the HPE task
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and advance the state-of-the-art in this field. Future work could focus on

further optimizing computational efficiency and improving the model’s ro-

bustness in heavily occluded situations.
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Introduction

In this chapter, we introduce a novel approach to tackling the complexities

of 2D Hand Pose Estimation (HPE) was created by creating a multi-stage

network called ACDCNET that addresses HPE’s challenges that still exist

in the previous approaches discussed in Chapter 3, 4, 5, and 6. Our model

consists of two primary components: the EfficientNet (EN) [61] backbone

and the Deformable Convolution [65, 64] (DC) block. EfficientNet is used

for its ability to balance computational efficiency with model effectiveness.

It comes in several versions, from B0 to B7, each offering a different balance

between processing speed and accuracy. The B0 model, being the smallest, is

particularly useful for situations where quick computations are as necessary

as precision.

However, making the network shallower decreases performance due to

the trade-off between accuracy and computational cost. We incorporate a

Squeeze and Excitation (SE) [62] block as an attention mechanism to enhance
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our model. This mechanism focuses on identifying and emphasizing the

most significant features. It compresses the spatial dimensions and then uses

a fully connected layer to capture channel-specific dependencies. Following

this, an excitation process adjusts the feature map according to learned im-

portance weights, improving feature representation. Furthermore, we inte-

grate a Global Context (GC) [63] block. This addition is crucial for efficiently

generating a confidence map that assigns probabilities to each pixel in the

image, enabling the model to aggregate contextual information from differ-

ent levels better. The GC block helps understand the image’s global context,

making it easier for the model to accurately estimate hand poses by consider-

ing the overall scene alongside local features. This comprehensive approach

ensures that our model captures detailed local features with high precision,

leading to more accurate and robust hand pose estimations. Moreover, our

model’s DC block draws inspiration from the well-known Convolutional

Pose Machine (CPM) framework, which is structured around a six-stage Con-

volutional Block (CB) architecture. We have designed this by adopting more

streamlined four-stage DC blocks, mainly constructed to address geomet-

ric constraints more efficiently. This modification raises the computational

performance of our approach and improves its capacity to uncover and un-

derstand fine, complex details, such as geometric constraints. Consequently,

these enhancements lead to more precise outcomes in 2D Hand Pose Estima-

tion (HPE).

7.1 ACDCNet Architecture Components

We propose an innovative approach, ACDCNet, for 2D HPE that utilizes

a multistage deformable convolutional network; as a backbone for the net-

work, we utilize the modified EN [61] B0 with SE [62] attention block and
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GC [63] block to get the enhanced features. The architectural components of

the proposed model are shown in Figure 7.1.

Figure 7.1: Architectural components of ACDCNet.

7.1.1 Enhanced feature extraction using EN B0

EN is known for its excellent balance between model accuracy and com-

putational efficiency. It forms the basis of our proposed approach for fea-

ture extraction, using EN’s state-of-the-art architecture, specifically the EN-

B0 version, for optimal resource utilization. The enhanced EN-B0 architec-

ture, shown in Figure 7.2, consists of seven blocks, a structure inspired by

MobileNetv2, with a different number of MBConvs in each block. Notably,

the last fully connected convolutional layer has been eliminated to stream-

line the model’s parameters and increase its capacity as a feature extractor.

Sequential processing starts with a 3 × 3 convolution operation on the input

data, followed by an MBConv operation, and finally, 64 feature maps are gen-

erated. These features are further refined in the SE and GC blocks to facilitate

robust and efficient feature extraction.
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Figure 7.2: Detailed architecture of modified EfficientNet B0.

7.1.2 Improving feature representation with SE Block

The SE block first performs a channel-wise transformation on the feature

maps produced by EN, denoted as:

U = fc(X = σ(W2δ(W1)X) (7.1)

Where X is the feature map, W1 and W2 are the adaptive weight matrices, δ

is the ReLU activation function, σ is the sigmoid activation function and U is

the result of the channel-wise transformation.

The recalibration coefficients are then determined by aligning the U di-

mension with the X dimension of the original feature map:

s = fs(U) = W3U (7.2)

Here, W3 represents the trainable weight matrix and s the recalibration coef-

ficients.

Finally, feature recalibration is performed by element-wise multiplication:

Y = fr(X, s) = X ⊙ s (7.3)
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where ⊙ represents element-wise multiplication and Y represents the aug-

mented feature map. By dynamically adjusting the input features according

to the importance of the channel, the SE block empowers the neural network

to emphasize important information, thus improving its ability to identify

complex patterns in data and increasing its effectiveness in various compu-

tational tasks, including HPE. Figure 7.3 shows an overview of the SE block.

Figure 7.3: Detail overview of SE block.

7.1.3 Enhancing features through GC block

Our HPE architecture combines GC block with a backbone and incorporates

hierarchical context aggregation to enhance the model’s ability to describe

complex spatial relationships.

The global context is included through adaptive average pooling, defined

as follows:

Z = AdapAvgPool(X) (7.4)

Where X is the feature map after passing through the SE block, and Z repre-

sents the global context representation.

To better specify this context, convolutional transformations are used to

calculate attention weights and estimate the relative importance of different
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contextual aspects:

W = Conv2d(Z) (7.5)

Here, W denotes the attention weights after the convolutional operation.

This process generates an input representation (Xs) at different scales

(s) such as 0.5, 1.0, and 2.0 and simplifies the computation of the context

map. The context map embedded in the corresponding scale Ms is carefully

aligned to the dimensions of the original feature map using interpolation

methods:

M′
s = Interpolate(Ms, S(X)) (7.6)

Here, M′
s represents the reshaped contextual map.

Here GC block achieves contextual feature map, and the aggregation by

summing elements from different scales, denoted as A:

A = ∑
s

M′
s (7.7)

Using different perspectives in the GC block optimizes the accuracy and

efficiency of HPE. Figure 7.4 shows the detailed characteristics of the GC

block, where X, W , H, and C represent the input features, width, height, and

channels, respectively.

Figure 7.4: Visualization of GC block.
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7.1.4 Multi-stage DC Block

CPM serves as a basic CNN-based model for pose estimation and addresses

various complexities inherent in HPE. However, CPM has limitations, mainly

unknown geometric constraints and other problems mentioned in the litera-

ture; we utilize a DC to mitigate these shortcomings of CNN-based models.

This convolution is designed to manage geometric constraints and improve

the model’s adaptability when learning unknown features during informa-

tion processing.

Our proposed approach includes a four-stage network architecture. The

initial stage comprises two 3 × 3 Deformable Convolutional Blocks (DCBs)

with 64 channels. The next stages consist of seven 3× 3 DCBs, each DCB has

32 channels. A detailed overview of information processing by these DCBs

is shown in Figure 7.5.

Figure 7.5: Detailed overview of information processing multi-stage DCB.

The output feature maps generated by the backbone network are fed to

the initial DCB stages in this network for further information processing.

Each stage contains a DC mechanism consisting of two convolutional layers

(CL), an offset CL, and a modulator CL. The DC operations detailed below

provide further refinement of the feature representation for accurate pose es-

timation.
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7.1.4.1 Spatial offset calculation

The offset CL computes the spatial offset from the contextual feature maps A

obtained from the GC block, which is the reference output feature map, using

a trainable parameterization. This process is called OF and is mathematically

expressed as follows:

OF = W1 ∗ A (7.8)

Here, W1 signifies the convolutional operation applied to the input A to

compute the offsets. These offsets aid in determining the sampling location

within A, thereby enhancing the flexibility of receptive fields. The difference

of sampling location of standard convolution and deformable convolution is

shown in Figure 7.6.

Figure 7.6: (a) Sampling of standard convolution (b) Sampling of deformable
convolution

7.1.4.2 Modulation of sampled regions

Modulation weights are generated using a sigmoidal function applied to the

input A that facilitates and dominates the modulation of the sampling region

using the modulator CL. Mathematically, this process can be expressed as

follows:

M = 2 × σ(MC(A)) (7.9)
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Where M is the modulator, σ is the sigmoid function and MC is the convo-

lution operation applied to the contextual feature map A. These modulation

weights allow features to be adaptively tuned based on their importance.

7.1.4.3 Dynamic adaptation in DC

After applying the first two convolutional layers (CL), the essence of de-

formable convolution (DC) is revealed through the DC operation. This opera-

tion easily combines spatial offsets and modulation coefficients with conven-

tional convolutional layers, contributing to a dynamic learning environment.

Mathematically, this operation is expressed by the following equation:

x = de f orm2d(A, OF, w, b, M) (7.10)

A is the contextual feature map, OF is the spatial offset, and w, b, and M are

the convolution weights, offset, and modulation factor, respectively. This in-

tegration facilitates adaptive tuning of the receptive field, allowing the model

to perceive subtle features and navigate complex geometric constraints. The

results of the initial stage are seamlessly transferred to subsequent stages to

move the computational pipeline forward. This process is repeated in all

four stages, resulting in the extraction of 21 key points. Notably, the opera-

tion is simplified by reducing the number of stages and channels compared

to the CPM and our DPN, improving overall adaptability and computational

efficiency.

7.2 Experimental Setups

We utilize the PyTorch framework to implement our proposed architecture

and train for 100 epochs with a batch size of 34. The images were scaled

from 0 to 1, then normalized using mean and standard deviation values of
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(0.485, 0.456, 0.406) and (0.229, 0.224, 0.225), respectively. Mean Squared Er-

ror is used as a loss function. To prevent the diminishing of loss, we applied

a scaling factor of 35 to adjust the loss function accordingly.

7.2.1 Model Optimizer and Activation Function

Optimization methods guide networks to achieve optimal results to enhance

model performance. AdamW, an advanced version of the Adam optimizer,

stands out by separating the weight regularization parameter from the learn-

ing rate. This allows for precise tuning of optimization settings. Unlike

Adam, AdamW effectively addresses overfitting issues, resulting in better

generalization capabilities. Our research demonstrates that models optimized

with AdamW surpass those trained using other optimizers. This reinforces

the significance of selecting the right optimizer in model optimization.

The activation function adds non-linearity, enabling the network to learn

intricate patterns in data. The Mish [55] function has emerged as a promising

activation function due to its unique non-linearity defined mathematically as:

f (x) = xtanh(ln(1 + ex)). (7.11)

Compared to popular alternatives like ReLU [53] and SoftMax [54], Mish [55]

has demonstrated exceptional performance across various deep network ar-

chitectures and complex datasets. This emphasizes the activation function’s

influence in optimizing network performance and enhancing its ability to

generalize to unseen data.
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7.2.2 Evaluation Metric

This study utilized the Percentage of Correct Keypoints (PCK) [56] metric

widely used in HPE. The PCK metric measures the accuracy of predicted key-

points within a certain distance threshold, denoted as σ and corresponding.

It evaluates the accuracy of predicted keypoints by measuring their proxim-

ity to true coordinates. In our experiments, σ was limited by the scale of

the bounding box of the hand. The σ threshold was uniformly distributed

between 0.04 and 0.12. The PCK equation is expressed as follows:

PCKk
σ =

1
||D|| ∑

D
1
( ||ppt

k − pgd
k ||2

max(w, h)
≤ δ

)
(7.12)

Where pgd
k is the true keypoint, pgd

k is the predicted keypoint, k is the number

of keypoints, D is the number of tests or validation samples, h and w are the

height and width of the sample image, respectively.

7.3 Experimental Results and Analysis

7.3.1 Quantitative Results

The average performance of the different models is summarized in Table 7.1,

which shows the relative performance of each approach at different σ thresh-

olds. Our proposed model achieves an average PCK of 86.16 %, showing

robustness and consistency in accurately predicting key points at different

levels of complexity. In contrast, CPM [38] and OCPM [39] achieve average

PCK scores of 78.01 % and 82.94 %, respectively. Figure 7.7 shows the PKC

comparison of Our with CPM [38], LDM [42], LPM [42], HRNet [45], Hour-

glass [46] and OCPM [39], which shows better performance compared to the

existing lightweight methods. These results indicate that our model outper-

forms, in terms of average performance, performs better on a wide variety of
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Figure 7.7: PCK visualization of the proposed approach and SOTA.

poses and hand configurations. Comparing the different models’ parameters

yields impressive results regarding computational complexity. As shown in

Table 7.1 and Figure 7.8, our proposed architecture has 7.88 million parame-

ters, which is significantly less than the 36.8 million parameters of CPM [38]

and 29.28 million parameters of OCPM [39]. Notably, our method’s reduced

number of parameters represents a more rational and efficient model archi-

tecture, contributing to computational efficiency without sacrificing perfor-

mance.

7.3.2 Qualitative Results

Various images with different perspectives, complex situations, self/object

occlusion cases, and complex backgrounds were selected to demonstrate qual-

itative results. Figure 7.9 shows our approach’s high robustness and consis-

tency, which is reflected in its reliable performance in numerous test scenar-

ios and conditions. Even in complex backgrounds, the interference avoid-

ance feature of ACDCNet worked effectively. In situations where image
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Table 7.1: Performance Comparison of ACDCNet with the state-of-the-art
models

Model PCK (%) Ave Par (M) GFLOPs

σ
0.04

σ
0.06

σ
0.08

σ
0.10

σ
0.12

CPM [38] 56.76 74.66 82.50 86.67 89.45 78.01 36.80 103.23

LDM [42] 59.51 76.19 83.77 87.83 90.27 79.51 38.19 95.18

Hourglass [46] 63.75 77.54 84.03 87.61 89.85 80.56 - -

LPM [42] 60.71 77.60 84.93 88.76 91.10 80.62 38.38 92.18

HRnet-48-twin [45] 65.88 79.96 85.97 89.35 91.38 82.51 - -

OCPM [39] 63.67 80.26 87.10 90.65 93.01 82.94 29.28 80.53

DPN [67] 67.19 82.81 89.27 92.63 94.88 85.36 8.55 16.38

ACDCNet 70.25 83.61 89.64 92.74 94.98 86.24 7.88 14.89

Figure 7.8: Parameters and GFLOPs comparison of ACDCNet with other
models.
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clarity is compromised, obtaining higher resolution and more detailed im-

age versions was deemed necessary to improve interpretation and analysis.

The model cannot accurately predict keypoints in some scenarios because

the hands are highly occluded. To highlight these circumstances the circle

red keypoints represent ground-truth keypoints.

Figure 7.9: ACDCNet visual illustration on random test images.

7.4 Ablation Study

An ablation study was conducted to show the impact of integrating SE and

GC blocks. In this study, we trained ACDCNet to determine their respec-

tive contributions with and without these blocks. Surprisingly, models with

SE and GC blocks were consistently better than those without. As can be

seen in Table 7.2 and PCK comparison in Figure 7.10, the inclusion of SE

and GC blocks significantly improves network performance by maintaining

the tradeoff between computational complexity and accuracy, as shown in
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Figure 7.10: PCK comparison of our ACDCNet with and without SE and GC
blocks.

Figure 7.11. These blocks contribute to accuracy and demonstrate the effec-

tiveness of using contextual information and recalibration mechanisms for

each channel.

Table 7.2: Performance Comparison of Different Models

Model PCK Ave Para (M) GFLOPs

σ
0.04

σ
0.06

σ
0.08

σ
0.10

σ
0.12

Without SE and GC 54.56 71.08 80.34 82.47 85.49 74.98 6.12 12.00

With SE 58.46 74.56 83.54 86.49 88.84 78.97 6.98 12.58

With GC 62.45 78.47 85.94 89.69 92.41 81.62 7.02 14.15

ACDCNET 70.25 83.61 89.64 92.74 94.58 86.16 7.88 14.89

7.5 Discussion and Analysis

Our proposed ACDCNet is an essential advancement in 2D HPE. By integrat-

ing innovative components such as the modified EfficientNet B0 framework,
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Figure 7.11: Parameter and GFLOps comparison of our ACDCNet with and
without SE and GC blocks.

SE block, and GC block, ACDCNet achieves significant accuracy while main-

taining computational efficiency. Our experimental results show that ACD-

CNet outperforms state-of-the-art models at various thresholds, demonstrat-

ing robustness and consistency in accurately predicting keypoints. The model

performs better with significantly fewer parameters, indicating a more ratio-

nal and efficient architecture. Qualitative evaluations emphasize the robust-

ness of ACDCNet in various scenarios, effectively handling occlusions and

complex backgrounds. Visualizations further confirm the importance of SE

and GC blocks in capturing complex details and contextual information, im-

proving overall model performance.

The ablation studies performed to confirm the importance of SE and GC

blocks in improving network performance. By dynamically recalibrating

the importance of each channel and improving context aggregation, these

blocks contribute to improving model accuracy without compromising com-

putational efficiency. While ACDCNet represents a significant step towards

lightweight models in the field of 2D HPE, it is important to acknowledge

its limitations. Despite our efforts to reduce computational complexity, the
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model still requires more computational resources than what is typically avail-

able for real-time processing on edge devices. This limitation highlights the

ongoing challenge in the field to balance high accuracy with the constraints

of real-time implementation, especially on resource-limited platforms.

Overall, ACDCNet shows promising potential for various applications in

human-computer interaction, augmented and virtual reality, and provides a

balanced approach between accuracy and efficiency in 2D HPE tasks. How-

ever, the computational requirements still pose challenges for real-time im-

plementation on edge devices. This limitation opens avenues for future re-

search, focusing on further optimizing the model architecture and exploring

hardware-specific optimizations to enable real-time performance on a wider

range of devices. In conclusion, while ACDCNet represents a significant ad-

vancement in the field of 2D HPE, striking a balance between model accuracy

and real-time performance on edge devices remains an important area for fu-

ture work. The insights gained from this research provide a solid foundation

for further innovations in creating highly accurate, computationally efficient

HPE models suitable for a broader range of real-world applications.



87

Chapter 8

Conclusion and Future Work

In conclusion, this dissertation has made substantial progress in fulfilling the

primary objectives outlined at the outset: to enhance model efficiency with-

out compromising accuracy and to advance feature extraction and geometri-

cal understanding in the domain of 2D hand pose estimation (HPE). This dis-

sertation proposed several innovative deep-learning architectures designed

to address the complex challenges inherent in HPE. By exploring efficient

neural network architectures, including variants such as VGG and the Effi-

cientNets family, we have successfully streamlined model complexity while

preserving high levels of accuracy. These architectures represent a signifi-

cant breakthrough, demonstrating the feasibility of balancing computational

efficiency and precise hand pose estimation. Moreover, our methodologies

have yielded tangible advancements in feature extraction and geometrical

understanding, critical components for accurate HPE. By integrating atten-

tion mechanisms into our models, we have empowered them to discern com-

plex spatial details amidst cluttered backgrounds and occlusions. These mech-

anisms guide the model’s focus toward salient hand regions while suppress-

ing irrelevant information, resulting in improved feature extraction and en-

hanced model performance.

Incorporating global contextual modules has further enriched our mod-

els’ understanding of the scene, enabling them to capture essential contex-

tual cues crucial for precise pose estimation. By considering the relationships
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and dependencies between different hand regions within the scene, our mod-

els gain a holistic perspective, enhancing their ability to infer hand poses in

diverse real-world scenarios accurately. Furthermore, deformable convolu-

tions have revolutionized our approach to handling geometric complexities

inherent in hand movements. By allowing the model to adapt its receptive

fields and sampling locations based on the spatial context, deformable con-

volutions enable more accurate feature extraction and localization, even in

varying hand shapes and orientations.

Our contributions have led to approximately 3× lower parameters and

approximately 5× lower Gflops compared to the state-of-the-art model while

maintaining a 3.88% heigher accuracy. Although it is not yet suitable for real-

time applications, our model represents a significant step forward, offering

a more efficient and accurate approach to 2D HPE. In this context, real-time

performance would typically require processing at least 30 frames per sec-

ond (fps), with many applications aiming for 60 fps or higher for smoother

interaction. These advancements hold immense potential for transformative

impact across many fields, including human-computer interaction, robotics,

and augmented reality, propelling technological progress and enhancing so-

cietal well-being globally.

In considering the future research directions for this dissertation, several

promising routes to explore using advanced deep learning architectures and

techniques to enhance feature extraction for hand pose estimation are iden-

tified. One key direction could be investigating transformer-based models,

such as Vision Transformers (ViT), building upon the attention mechanisms

and advanced machine learning algorithms discussed earlier in our disser-

tation. Transformers have demonstrated impressive performance in various

computer vision tasks by effectively capturing long-range dependencies and

global context. Adapting transformer architectures for hand pose estimation

could improve feature extraction and complex hand structure modeling.
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Additionally, integrating convolutional attention mechanisms, like Coor-

dinate Attention, can enable the model to selectively focus on the most infor-

mative spatial regions and feature channels. This can help the model extract

and emphasize the relevant features for accurate hand pose estimation. De-

veloping hierarchical feature extraction architectures, where the model learns

features at multiple scales or resolutions, can also be a fruitful direction.

Techniques like feature pyramid networks or multi-scale feature aggregation

can allow the model to capture features at different levels of granularity, bet-

ter representing the intricate details of the hand.

Exploring the use of equivariant representations, such as those obtained

through group convolutions or steerable CNNs, can ensure that the model’s

feature extraction is invariant to certain transformations (e.g., rotation, scal-

ing) of the hand pose. This can improve the model’s generalization and ro-

bustness. Combining the deep learning model with differentiable rendering

techniques, as explored in methods like HAMR, can enable end-to-end train-

ing and better integration of the 3D hand structure into the feature extraction

process. Furthermore, investigating unsupervised or self-supervised feature

learning approaches, such as contrastive learning or generative adversarial

networks, can help extract more robust and generalizable features from the

hand images without relying solely on labeled data. Finally, exploring hy-

brid architectures that combine the strengths of different deep learning mod-

els, such as integrating convolutional neural networks with recurrent neural

networks or graph neural networks, can more effectively capture both local

and global hand pose features.

A crucial extension of this research is the adaptation of our proposed

methods to 3D Hand Pose Estimation (HPE). This transition presents both

challenges and opportunities to enhance the applicability and accuracy of

our models. To extend our work to 3D HPE, we can explore several ap-

proaches: integrating depth information alongside RGB data, developing
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2D-to-3D lifting techniques, adapting our architectures for end-to-end 3D es-

timation, utilizing multi-view approaches for more accurate 3D reconstruc-

tion, incorporating temporal information for stable pose estimation across

video sequences, and exploring volumetric representations of the hand. These

3D extensions, combined with the advanced deep learning techniques men-

tioned earlier, have the potential to address a wider range of applications,

including virtual reality interactions, detailed hand tracking for motion cap-

ture, and more accurate gesture recognition in 3D space.

By incorporating these advanced deep learning techniques and architec-

tures, and extending our work to 3D HPE, we can further enhance our mod-

els’ feature extraction capabilities, leading to improved accuracy, robustness,

and generalization across diverse hand pose scenarios in both 2D and 3D

spaces. These advancements can significantly impact applications ranging

from human-computer interaction and augmented reality to sign language

recognition and gesture-based interfaces, providing more comprehensive and

versatile solutions for hand pose estimation across various dimensions and

use cases.
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