
Solving the Tangram Puzzle: Mathematical Morphology
and Deep Learning Approaches

by

Fernanda Miyuki Yamada

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Engineering – Dr.Eng.

Department of Informatics
Graduate School of Informatics & Engineering

The University of Electro-Communications, Tokyo, Japan

JUNE 2024

Advisor: Hiroki Takahashi, Dr.Eng.

Solving the Tangram Puzzle: Mathematical Morphology
and Deep Learning Approaches

Approved by:

Chair of Committee Professor Hiroki Takahashi
(The University of Electro-Communications)

Member of Committee Professor Hayaru Shouno
(The University of Electro-Communications)

Member of Committee Professor Hiroyuki Sato
(The University of Electro-Communications)

Member of Committee Professor Keiji Yanai
(The University of Electro-Communications)

Member of Committee Professor Tomonori Hashiyama
(The University of Electro-Communications)

Copyright © 2024 Fernanda Miyuki Yamada. All Rights Reserved.

Acknowledgements

My sincere gratitude to Professor Hiroki Takahashi, for his support and encouragement throughout my Ph.D.
studies. I am grateful for the opportunity to be part of his laboratory and for his guidance on the topics
related to my research. Special thanks to my collaborators, Professor Harlen Costa Batagelo and Professor
João Paulo Gois, for their generosity in sharing their knowledge and providing insightful feedback.

I would also like to acknowledge the committee members of this dissertation, whose useful hints, and
contributions have played a significant role in refining and improving the content of this dissertation. The
Graduate School of Informatics & Engineering at The University of Electro-Communications deserves
recognition for providing a conducive academic environment and essential resources that contributed to
the completion of my Ph.D. studies.

My heartfelt appreciation goes out to my family and friends for their constant encouragement. Without
their support, this dissertation would not have been possible. I would like to give a special mention to my
boyfriend, Gabriel Peixoto de Carvalho, for the pieces of advice and constant support. His proficiency in
deep learning and valuable insights have not only enhanced the quality of my work but have also been a
constant source of inspiration. My warmest thanks to him for making each step forward more meaningful.

Lastly, I would like to express my sincere gratitude to the Ministry of Education, Culture, Sports, Science,
and Technology, Government of Japan, for awarding me a scholarship. This financial support has been
instrumental in facilitating my research and academic pursuits. I am deeply thankful for the opportunity
to further my studies and contribute to the academic community with the assistance of this prestigious
scholarship.

論文概要

タングラムは，七つの多角形のピースからなる幾何学的なパズルである．これらのピースを剛

体変換を行って配置して特定のパターンに一致させることでパズルを解く必要がある．有効な

解はピースの重なりがなく，全てのピースが含まれる場合のみである．タングラムパズルの解

法は，Nesting問題やBin Packing問題などの一般的な組み合わせ最適化問題に関連しており，こ
れらはNP完全な問題として知られている．2次元の最適化問題では，通常，平行移動と有限な
回転に変換を制限し，一つの長方形のコンテナを使用する．一方，タングラムでは多角形状の

コンテナに対し，ピースの任意回転を必要とする複雑なピースの組み合わせ処理が求められる

ことがよくある．本論文では，任意のタングラムパターンを対象とし，(1)パターンの構造と
ピースの無制限な幾何学変換に基づき，タングラムパズルを単純，複雑なパターンに分類した

ベースラインデータセット，および(2)複雑なパターンに対しても適切な解を得るヒューリス
ティック，ディープラーニングアプローチを提案した．最後に(3)両アプローチの得失を解析し
た．

第1章では，本研究の位置付けを述べ，計算機でタングラムパズル解を得るために考慮すべ
き幾何学的な特性と一般的なシナリオについて述べる．本章では，タングラムパズルで構成さ

れる形状を解析し，その形状を単純な形状と複雑な形状に分類，複雑な形状に適した表現手段

と変換の必要性について述べている．また，本論文の構成について概観する．

本論文では，従来研究では扱われていなかった複雑なタングラムパズル解を得るために

ヒューリスティックアプローチとディープラーニングアプローチを提案している．第2章と
第3章では，提案アプローチの理解に必要な理論的概念を紹介する．第2章では，提案手法の着
想を得た，無駄な領域を最小限にして複数の形状をコンテナに配置するCutting & Packing問題を
紹介し，ヒューリスティックアプローチで用いるNo-fit PolygonやCollision-free Areaなどの概念に
ついて述べる．第3章では，提案ディープラーニングアプローチの理解に不可欠ないくつかの概
念とアーキテクチャを定義とともにData Augmentationの概念についても述べる．
ジグソーパズルの解法，特に生成モデルを用いた手法にはめざましい進歩がみられるが，

タングラムに特化した手法はいまだに未熟なままである．ジグソーパズルに対するディープ

ニューラルネットワークアプローチは，ピースの意味情報に大きく依存し，等サイズの正方形

ピースに基づく知見が利用される場合もある．これらは，ジグソーパズルに内在する組み合わ

せ的な課題の軽減に大きく寄与する．第4章では，従来のタングラムソルバーを分析し，解析的
手法とディープラーニングに基づく手法に大別し，それぞれの得失について述べる．

これまで，各著者が独自に選定した一部の限定されたパターンに対する実験を行っているこ

とが多いため，比較可能なベースラインとしてのタングラムパズルデータセットが強く望まれ

vi

る．このデータセットには，単純なパターンと複雑なパターンの両方のタングラムパズルが含

まれる必要がある．第5章では，従来文献で用いられたデータを含むベースラインデータセット
を提案し，その統計的な分析も行った．

第6章では数学的モルフォロジーに基づくヒューリスティックアプローチについて述べると
ともに，タングラムパズルの複雑な形状を表現するためのラスター表現についても詳しく説明

している．提案手法は，タングラムパターンをラスター表現し，面積の大きいタングラムピー

スから順に，そのピースの配置可能領域から最適な配置位置を探索する．また，提案ヒューリ

スティックアプローチが実際に複雑なパズルを解決できることを示すために，従来手法から選

んだ全ての複雑なパターンを含む30種類のタングラムパターンを対象とした予備実験結果を示
した．予備実験の結果，46.67%のパターン解法を得ることができ，平均51.042秒の実行時間で
あることを示した．

第7章では，Generative Adversarial Network (GAN)を用いたディープラーニングアプロー
チの予備調査を行った．まず，Convolutional AutoEncoder (CAE), Variational AutoEncoder (VAE)
とU-netを用いたアーキテクチャ，また，Mean Square Error (MSE), Structural SIMilarity (SSIM),
Weighted Mean Absolute Error (WMAE) Lossの組み合わせで，タングラムパズル解法に対す
る得失を検討した．888種の学習パターンと46種のテストパターンに対する予備実験を行
い，VAEとWMAE Lossの組み合わせが視覚的判断に基づく定性的観点から最も適切な解を得
た．その後，VAEを用いたGANを構成し，VAEのみを用いた場合よりも適切な解を得ることが
できることを示した．しかし，タングラムパズル解法の詳細が充分適切に生成できないケース

があること，また，MSEとSSIMを用いて解法の定量的な評価も行ったが，それらの評価値と視
覚的な解法の把握に矛盾が生じるケースがあることが明らかにした．

第8章では，第7章で得られた知見をもとに，Huモーメントを用いた幾何学的不変特徴量に
基づくLossを利用することで，タングラムパズル解の各ピース配置にも着目にするとともに，
あるタングラムパズルに対する複数の解にも対応可能な手法を提案した．また，Huモーメント
に基づく損失を拡張し，ピクセル情報そのものに着目する代わりにに生成された解の幾何学的

な情報を考慮する評価メトリックを提案した．提案メトリックは一般的な幾何学的最適化の問

題に適しているとともに，第7章で明らかにしたMSEとSSIMの問題を克服していることを示し
た．

第9章では，第6章および第8章で提案したヒューリスティックアプローチとディープラーニ
ングアプローチの両方に対して，第5章で作成したパターンを用いた評価実験を行った．テス
トデータ100種のパターンに対して，数学的モルフォロジーを用いた手法では6分以内の制限を
設定した場合に24.0%が平均184.148秒で解け，ディープラーニングアプローチでは平均0.003秒
で70.0-87.0%のパズルが主観的に適切な解法が得られることを示した．また，各手法の詳細な得
失の解析を行った．

最後に，第10章では，ヒューリスティックとディープラーニングアプローチの得失について
本論文の結論としてまとめるとともに今後の展望について述べる．

Abstract

The Tangram is a dissection puzzle composed of seven polygonal pieces. To solve this puzzle, the pieces
must be arranged through rigid transformations to match a specific pattern. A solution is valid only if all
pieces are included without any overlap. The Tangram puzzle-solving process relates to combinatorial opti-
mization problems such as Nesting Problem and Bin Packing, known to be NP-complete. In two-dimensional
optimization problems, transformations are typically limited to translations and finite rotations, using a sin-
gle rectangular container. However, Tangram puzzles often require complex piece arrangements involving
unconstrained rotations within a polygonal container. This dissertation targets general Tangram puzzles and
proposes (1) a baseline dataset classifying Tangram puzzles into simple and complex based on their structure
and unrestricted geometric transformations; and (2) heuristic and deep learning approaches that effectively
solve even complex patterns. Finally, (3) an analysis of the strengths and weaknesses of both approaches is
presented.

Chapter 1 outlines the background of the dissertation, discussing the geometric properties and general
scenarios to consider when solving Tangram puzzles computationally. It analyzes the patterns formed in
Tangram puzzles, categorizes them into simple and complex puzzles, and discusses the need for appropriate
representation methods and transformations for complex puzzles. This chapter also provides an overview of
the structure of the dissertation.

This dissertation proposes heuristic and deep learning approaches to solve complex Tangram puzzles,
which have not been adequately addressed in previous research. Chapters 2 and 3 introduce theoretical
concepts essential for understanding these approaches. Chapter 2 discusses the Cutting & Packing problem,
which inspired the heuristic method by addressing the task of minimizing wasted space when arranging
multiple shapes in a container. It introduces concepts such as no-fit polygons and collision-free areas used
in the heuristic approach. Chapter 3 defines several concepts and architectures crucial for understanding the
proposed deep learning approach and discusses data augmentation.

While there has been significant progress in jigsaw puzzle-solving methods, particularly those using
generative models, Tangram-specific methods remain underdeveloped. Deep neural network approaches for
solving jigsaw puzzles rely heavily on the semantic information of the pieces and often use knowledge based
on equal-sized square pieces. These factors significantly mitigate the combinatorial challenges inherent in
solving jigsaw puzzles. Chapter 4 analyzes traditional Tangram solvers, categorizing them into analytical
and deep learning-based methods, and discusses their respective strengths and weaknesses.

Given that previous experiments often involved a limited selection of Tangram patterns chosen inde-
pendently by each author, there is a strong need for a Tangram puzzle dataset that serves as a baseline for

viii

comparison. This dataset should include both simple and complex Tangram puzzles. Chapter 5 proposes a
baseline dataset, including data used in previous literature, and provides statistical analyses of this dataset.

Chapter 6 discusses the heuristic approach based on mathematical morphology, providing a detailed
explanation of the raster representation used for complex Tangram puzzles. The proposed method represents
the Tangram pattern as a raster representation, and searches for the optimal placement position of each
Tangram piece from its possible placement area, starting with the Tangram piece with the largest area.
Preliminary experiments using a toy dataset demonstrated that the heuristic approach could solve complex
puzzles, achieving a solution rate of 46.67% with an average execution time of 51.042 seconds.

Chapter 7 investigates a deep learning approach using a Generative Adversarial Network (GAN). Prelim-
inary experiments compared architectures such as Convolutional AutoEncoder (CAE), Variational AutoEn-
coder (VAE), and U-Net, combined with loss functions like Mean Square Error (MSE), Structural Similarity
(SSIM), and Weighted Mean Absolute Error (WMAE). The combination of VAE and WMAE Loss produced
the most appropriate solutions based on qualitative visual judgment. Further, using VAE in a GAN setup
provided better solutions than using VAE alone. However, some cases failed to generate sufficiently detailed
Tangram solutions, and inconsistencies between MSE/SSIM evaluation values and visual judgments were
observed.

Chapter 8 builds on the insights from Chapter 7, proposing a loss function based on Hu Moments, fo-
cusing on geometric invariant features for Tangram piece placements. This method can handle multiple
solutions for a given Tangram puzzle. The proposed metric, which considers geometric information rather
than only pixel data, is suitable for general geometric optimization problems and addresses the issues iden-
tified with MSE and SSIM.

Chapter 9 evaluates the heuristic and deep learning approaches proposed in Chapters 6 and 8 using the
samples presented in Chapter 5. For 100 test patterns, the heuristic approach solved 24.0% within a six-
minute limit, with an average time of 184.148 seconds. The deep learning approach achieved subjectively
appropriate solutions for 70.0-87.0% of puzzles in an average of 0.003 seconds. Detailed analyses of the
strengths and weaknesses of each method are provided.

Finally, Chapter 10 summarizes the conclusions of the dissertation on the strengths and weaknesses of
heuristic and deep learning approaches and discusses future directions.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 4
1.3 Objectives . 5

1.3.1 General Objective . 6
1.3.2 Specific Objectives . 6

1.4 Contributions . 6
1.5 Dissertation Structure . 7

2 Cutting and Packing Problem 9
2.1 No-fit Polygon . 10
2.2 Inner-fit Polygon . 12
2.3 Collision-free Area . 13

3 Deep Learning 15
3.1 Convolutional Autoencoder . 16
3.2 Variational Autoencoder . 16
3.3 U-Net . 17
3.4 Generative Adversarial Network . 18
3.5 Data Augmentation . 19

4 Related Work 21
4.1 Non-Deep Learning Tangram Solvers . 21
4.2 Deep Learning Tangram Solvers . 23
4.3 Summary of Literature . 24

5 Dataset 27
5.1 Dataset Collection . 28
5.2 Dataset Outline . 30
5.3 Dataset Statistics . 31

5.3.1 Taxonomical Statistics . 32
5.3.2 Morphological Statistics . 33

x CONTENTS

6 Heuristic Approach 37
6.1 Pre-processing . 38
6.2 Placement Procedure . 40
6.3 Validation Process . 41
6.4 Proof of Concept with Limited Data . 42

7 Assessment of Deep Learning Architectures 45
7.1 Limited Dataset . 45
7.2 Tangram Solvers Based on Autoencoders . 46

7.2.1 Network Architectures . 46
7.2.2 Loss Functions . 48
7.2.3 Evaluation Metrics . 49
7.2.4 Experimental Results . 50

7.3 Generative Model for Refinement of Tangram Geometry 54
7.3.1 Network Architecture . 54
7.3.2 Weighted Mean Absolute Error Loss Function 55
7.3.3 Weighted Mean Absolute Error Evaluation Metric 56
7.3.4 Experimental Results . 56

7.4 Outcomes . 62

8 Deep Learning Approach 65
8.1 Architecture Components . 65
8.2 Hu Moments Loss Function . 66
8.3 Hu Moments Evaluation Metric . 71

9 Experiments 75
9.1 Experimental Setup . 75
9.2 Experimental Results . 76

9.2.1 Results for Heuristic Approach . 76
9.2.2 Results for Deep Learning Approach . 77

9.3 Experimental Analysis . 79

10 Conclusions 83
10.1 Conclusive Remarks . 83
10.2 Future Directions . 84

Bibliography 86

Publication Lists 97

Appendices 99

List of Figures

1.1 Physical versions of the Tangram. 2
1.2 Tangram puzzle with different feasible solutions. 3
1.3 Tangram pieces decomposed into combinations of small triangles. 3
1.4 Complex Tangram puzzles and complex aspects . 4

2.1 Different categories of C&P problems. 10
2.2 Minkowski sum between polygons A and B. 11
2.3 No-fit polygon. 12
2.4 Spatial relationship between polygons according to the no-fit polygon. 12
2.5 Inner-fit polygon. 13
2.6 Collision-free area. 14

3.1 Simple CAE architecture. 16
3.2 Simple VAE architecture. 17
3.3 Simple U-Net architecture. 18
3.4 Simple GAN architecture. 18
3.5 Data augmentation performed on a Tangram pattern. 19

5.1 Binary images representing literature and generated samples. 29
5.2 Final representation of samples included in the dataset. 30
5.3 Samples included in the dataset similar to the literature. 31
5.4 Solutions for the same pattern with different enantiomers for the parallelogram. 32
5.5 Morphological analysis of samples included in the dataset. 35

6.1 Flowchart presenting the main stages of the proposed heuristic method. 37
6.2 Pattern masks in raster representation. 38
6.3 Examples of piece masks generated from the pieces information. 39
6.4 Process for obtaining the collision-free area and endpoints. 40
6.5 Scenario that fails the validation procedure. 42
6.6 Solutions considering limited data. 42

7.1 Testbed workflow for preliminary assessment. 46

xii LIST OF FIGURES

7.2 Loss curves for the CAE, VAE, and U-Net. 50
7.3 Solution images generated by CAE, VAE, and U-Net. 52
7.4 Cases where SSIM and MSE fail in evaluating pairs of Tangram solutions. 53
7.5 Visualization of false positives and false negatives in solution images. 54
7.6 Loss curves for VAE-GAN. 57
7.7 Solution images generated by CAE, VAE, U-Net, and VAE-GAN with 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 58
7.8 Visualization of false positives and false negatives in solution images using 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 . . 59
7.9 Solution images generated by VAE-GAN paired with 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 with varied coefficients. 61
7.10 Loss curves for VAE-GAN under different values for parameter c. 62

8.1 Workflow for TANGAN architecture. 65
8.2 Difficulty in treating multiple solutions for Tangram. 67
8.3 Multiple arrangements of pieces that form the same Tangram pattern. 71
8.4 Metric values when comparing ground truth with other feasible solutions. 72

9.1 Solutions obtained by the heuristic approach. 76
9.2 Solutions generated by TANGAN according to visual classification. 78
9.3 Progress of solutions over the epochs considering a sample from the testing set. 82

1 Solutions generated by VAEGAN (part 1 of 2). 101
2 Solutions generated by VAEGAN (part 2 of 2). 102
3 Solutions generated by TANGAN (part 1 of 2). 103
4 Solutions generated by TANGAN (part 2 of 2). 104

List of Tables

4.1 Comparison of solvers included in the literature review. 24

5.1 Dataset statistics regarding complex Tangram puzzles. 32

7.1 Experimental results according to evaluation metrics. 51
7.2 Experimental results according to WMAE evaluation metric. 60
7.3 Experimental results varying coefficient c in 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 61

9.1 Results for heuristic approach. 76
9.2 Effects of time limit on the heuristic approach. 77
9.3 Taxonomical analysis on the generated solutions. 79
9.4 Comparative results of TANGAN, the VAE-GAN, and the heuristic approach. 79
9.5 Comparative results of VAE-GAN and TANGAN regarding evaluation metrics. 80

1 Summary of CAE architecture (part 1 of 2). 105
2 Summary of CAE architecture (part 2 of 2). 106
3 Summary of VAE architecture (part 1 of 2). 107
4 Summary of VAE architecture (part 2 of 2). 108
5 Summary of U-Net architecture. 109
6 Summary of the discriminator of VAE-GAN. 110
7 Summary of the generator of TANGAN (part 1 of 3). 111
8 Summary of the generator of TANGAN (part 2 of 3). 112
9 Summary of the generator of TANGAN (part 3 of 3). 113
10 Summary of the discriminator of TANGAN. 114

Chapter 1

Introduction

1.1 Background

Puzzles have fascinated human minds for centuries by conveying a unique blend of challenge, creativity,
and intellectual stimulation. Pictorial puzzles are among the most popular forms of puzzles and include
jigsaw and edge-matching puzzles [1]. Beyond the recreational nature, the automatic solution of puzzles
has been widely applied in several fields, such as the restoration of archeological artifacts [2], reconstruction
of fragmented wall painting [3], repair of shredded documents [4], image stitching in computer vision [5],
assembly of dissected maps in cartography [6], molecular docking problem [7], and even bone fracture
medical treatment [8]. Researchers also suggest that regular puzzle-solving can enhance memory, improve
concentration, boost logical reasoning, and promote overall mental agility [9].

In contrast to pictorial puzzles, apictorial puzzles are especially challenging to solve. Since there is no
visual information associated with each piece, the puzzle assembly process is based only on the geometry
of the pieces [3]. In terms of popularity, dissection puzzles are amongst the most well-known apictorial
puzzles [3]. Dissection puzzles require assembling a common set of pieces into multiple distinct forms [10].
The first known dissection puzzle dates to the third century B.C., was of Greek origin and was called the
Loculus Archimedes or the Stomachion [11, p. 147]. The Stomachion puzzle had 14 pieces in the form
of different polygons. Since then, a variety of dissection puzzles have been invented and used in different
countries. In Japan, for example, a dissection puzzle of 7 pieces known as Sei Shonagon’s Wisdom Plates
was used starting in the 10𝑡ℎ century A.D. [12]. Later, in 1796, the 14 Ingenious Pieces puzzle was also
invented in Japan, whose main distinction was the inclusion of a circular piece along with other polygon
pieces [13].

This dissertation addresses the Tangram, a Chinese dissection puzzle [14]. According to some historians,
the Tangram originated from the furniture set during the Song Dynasty and later became a set of wooden
blocks for playing [15]. In the year 1802, an American crew gave the Tangram pieces to his son, making
the Tangram known to the Western world [16]. Up to this day, even though several dissection puzzles
were invented before and after Tangram, it remains the most popular dissection puzzle in the world [12].
Artists and designers have embraced its geometric elements to create artworks, while mathematicians have
explored its properties and connections to other mathematical concepts [17, 18]. Tangram puzzles have also

2 Introduction

been extensively used to stimulate manipulative learning and teaching aids that help young students acquire
geometry thinking and reasoning processes [19].

The Tangram is formed by seven polygonal pieces: two big triangles, one square, one parallelogram,
one medium triangle, and two small triangles. The goal is to rearrange the seven pieces using rigid body
transformations to fit them into a given pattern. An arrangement of pieces is accepted as a solution only if it
contains all the pieces and presents no overlaps between them. To this day there are more than 3000 known
Tangram patterns [20]. Different studies are dedicated to cataloging possible patterns that can be formed by
Tangram pieces [18, 21]. Figure 1.1 illustrates how Tangram puzzles are presented and interacted with in
the real world, in contrast to modern digital representations. Figure 1.1 (a) shows a Tangram puzzle made
of wood surrounded by patterns composed by different arrangements of pieces. Figure 1.1 (b) shows an
Italian Tangram book containing numerous target patterns and their solutions, entitled “New and Delightful
Chinese puzzle” by Lorenzo Bardi in Florence [22].

(a) Wooden Tangram puzzle. (b) Book with Tangram challenges.

Figure 1.1: Physical versions of the Tangram.

In computational theory, the task of solving Tangram puzzles relates to a more general class of com-
binatorial problems, such as the nesting problem and the bin packing problem, which are NP-complete
problems [23]. Because of that, it is common for two-dimensional optimization problems to restrict trans-
formations to translations and rotations and employ a single rectangular container. On the other hand, the
Tangram assembly process is considerably more complex because it requires irregular containers, and often
demands unconstrained rotations for the pieces. Players can also apply the reflection transformation on the
pieces, which is a practice that is almost exclusive to the Tangram [24]. Many consider the Tangram as
a particular case of the irregular cutting and packing problem in which the number of pieces is fixed and,
at the end of the pieces placement process, there is no space left in a container of limited size [25]. The
Tangram stands out from other puzzles due to some interesting geometric properties and particularities,
which emphasize its uniqueness and challenge the player to use distinctive strategies to assemble the puzzle.
An interesting geometric property that needs to be considered in the assembly process of the Tangram is
that the solution is not necessarily unique, which implies that different arrangements can result in the same

1.1 Background 3

pattern [26]. Therefore, different strategies can lead to distinct arrangements of pieces for the same desired
pattern. Figure 1.2 shows the Tangram pieces, a desired pattern, and three feasible solutions for that pattern.

(a) Pieces. (b) Target.

(c) Solutions.

Figure 1.2: Tangram puzzle with different feasible solutions.

Another geometric property found in the Tangram pieces is that they can all be decomposed as a com-
bination of the small triangle piece [27, 19]. Due to this property, Tangram pieces are considered a set of
Precious Polygons, in which a set of different polygons can be used to form a similar but larger version of the
original set. [28, 29]. This highlights the similarities between the Tangram and the tiling problem, whose
goal involves the coverage of a designated space with pre-defined geometric shapes, avoiding overlaps or
gaps [30]. Figure 1.3 shows the decomposition of the pieces into small triangles. The pieces are identi-
fied with keywords, and dotted black lines indicate where they should be sectioned to form a set of small
triangles.

Figure 1.3: Tangram pieces decomposed into combinations of small triangles.

Considering the aforementioned characteristics that distinguish Tangram from other puzzles and gen-
eral C&P problems, Tangram puzzles are classified into simple Tangram puzzles, and complex Tangram
puzzles [31]. The first combines a set of translations and rotations constrained to multiples of 45o to form a
pattern composed of a single region, while the second presents at least one of the following characteristics:

1. Contains multiple connected components;
2. Contains holes within the puzzle area;

4 Introduction

3. Demand for unconstrained rotations for the piece;
4. Demand for the reflection transformation of the parallelogram.

Complex puzzles are defined as the ones that present at least one of the particular characteristics that
are not often observed in other categories of puzzles. While simple puzzles can be described by a simply
connected contour, and have a fairly reduced number of configurations that each piece can assume, complex
puzzles demand more complex forms of representation and demand more computational effort to be solved.
One may wonder why only the parallelogram can be reflected. This is because the parallelogram piece is
the only one that does not have any lines of symmetry, which results in it having a pair of enantiomers [32].
It is also possible to notice that reflecting the other pieces corresponds to rotating them to a certain angle.
Figure 1.4 exemplifies complex Tangram puzzles with different complex aspects. The arrangement presented
in Figure 1.4 (a) represents a polygon that contains a hole. The arrangement presented in Figure 1.4 (b)
shows a boat where the sails are formed by multiple regions. The arrangement presented in Figure 1.4 (c)
represents a cat with a body and tail formed by unconstrained rotations. Finally, Figure 1.4 (d) represents a
person where the parallelogram is reflected when compared to the other patterns.

(a) Holes. (b) Multiple. (c) Unconstrained. (d) Flip.

Figure 1.4: Complex Tangram puzzles and complex aspects

Two of the aspects that characterize complex Tangram puzzles regard the representation of the pattern
and pieces. As a consequence, a method that claims to be capable of solving complex puzzles should ade-
quately choose a puzzle and pieces representation that can depict puzzles with holes and multiple regions.
The other two aspects concern the transformations that can be applied to the pieces during the assembly
process. Therefore, a method that claims to be capable of solving complex puzzles should also be able to
recognize pieces in unconstrained angles and differentiate the enantiomers of the parallelogram.

1.2 Problem Statement

Humans show an excellent ability to deal with general assembly problems only by analyzing a pattern and
its pieces. On the other hand, machines still fall short of the level of intelligence and often suffer from the
combinatorial nature of assembly problems [33]. For this reason, there is a growing interest in developing
computational methods for the automatic solution of different puzzles. Whereas methods for generating
jigsaw puzzle solutions have made significant recent progress, particularly with deep learning approaches,

1.3 Objectives 5

methods dedicated to Tangram are far more primitive [34]. Deep neural network approaches that solve the
jigsaw puzzle cannot be adapted to solve Tangram puzzles because they rely heavily on semantic information
contained in the pieces and often consider square pieces with equal sizes [3]. Both factors greatly mitigate
the combinatorial challenges of the problem [33].

Additionally, the number of works that treat complex Tangram puzzles is scarce [24]. Many authors
focus on other visual tasks and use the Tangram to assess the versatility of their approach. These works often
diminish the particularities that characterize complex Tangram puzzles and limit their tests to only simple
Tangram puzzles. Another problem present in the literature on Tangram solvers is the lack of baselines for
comparison. Different works often consider only a limited set of patterns in their experiments, which varies
considerably from work to work. This highlights the necessity of a dataset for Tangram puzzles to be used
as a baseline of comparison. To properly evaluate the ability of each method to solve different types of
puzzles, a baseline dataset must include both simple and complex Tangram puzzles. The applications of a
baseline dataset for Tangram would not have its application limited to dissection puzzle methods, it would
be a valuable resource for works focused on optimization problems in general.

Considering all these factors it is possible to observe that the current literature on computational methods
for solving puzzles, particularly Tangram puzzles, is limited and lacks advanced approaches that address
the unique combinatorial challenges posed by this puzzle. Existing deep learning methods, predominantly
focus on jigsaw puzzles, and rely heavily on semantic information and uniform piece sizes, which makes
them unsuitable for Tangram puzzles. Additionally, there is a notable absence of standardized datasets for
benchmarking the efficacy of Tangram solvers, with most studies only considering a limited and variable
set of patterns. This highlights the need for dedicated computational methods for Tangram puzzles and a
comprehensive dataset to facilitate meaningful comparisons and advancements in this field.

1.3 Objectives

In this dissertation, two novel approaches dedicated to the automatic solution of Tangram puzzles are pro-
posed. First, a heuristic method inspired by mathematical morphology techniques that are used in the so-
lution of C&P problems is presented. Then a more modern deep learning approach that aims at extracting
geometric information from the pieces and understanding the different forms they can interact throughout
the training process is proposed. To the extent of the literature review, this is the very first deep learning
approach that is dedicated to solving Tangram puzzles, not treating it as an extension. Both approaches
proposed in this dissertation take advantage of a raster representation to allow for fast placements of the
pieces and support for complex puzzles. Apart from comparing their clear conceptual difference, the idea
behind the proposal of the heuristic method and the deep learning approach is to contrast the way they attack
the presented problem. While the heuristic method exhaustively attempts to place the pieces in the correct
arrangement one by one, the deep learning approach aims at extracting patterns that inform the geometry
of the pieces and the interaction between them by outputting an image that should depict a solution. The
following subsections define the main objective of this dissertation and a plan to achieve it.

6 Introduction

1.3.1 General Objective

The primary goal of this dissertation is to significantly advance the state-of-the-art in solving the Tangram
puzzle by addressing and overcoming the limitations identified in the existing literature, focusing on repre-
sentation and combinatorial challenges related to the solution of non-contiguous patterns and transformation
constraints for the pieces that characterize complex Tangram puzzles.

1.3.2 Specific Objectives

Specific objectives are listed below:

1. Conduct a literature review on existing Tangram solvers, aiming to discern inherent limitations of the
area and identify potential research prospects.

2. Collect a data-driven dataset designed for automating Tangram puzzle solutions, ensuring diversity
and representativeness.

3. Propose a heuristic method designed for the automatic solution of Tangram puzzles, addressing the
limitations identified in the literature and taking inspiration from C&P problem-solving techniques.

4. Explore different deep learning architectures in the task of solving Tangram puzzles, tracing potential
methodologies for the final deep learning approach.

5. Establish a set of metrics for comparative analysis, enabling a robust evaluation of the efficacy of deep
learning architectures in the assembly of Tangram puzzles.

6. Execute initial experiments on the considered deep learning architectures, evaluating their perfor-
mance to identify their strengths and weaknesses to be considered in the final deep learning approach.

7. Present a final deep learning architecture that competes with the heuristic method, based on insights
from comparative experiments.

8. Design an experimental framework for the comparative analysis between the final deep learning ar-
chitecture and the heuristic method.

9. Execute the planned experiments and analyze the results to obtain meaningful insights into the per-
formance of the proposed methodologies, highlighting their strengths and weaknesses.

10. Document concluding remarks and define future directions for the research field, synthesizing the
main findings of the present dissertation.

1.4 Contributions

The present dissertation is significant as it not only addresses the practical challenges in solving the NP-
complete Tangram puzzle but also contributes novel methodologies, metrics, and datasets that have the
potential to advance the broader field of artificial intelligence in geometric problem-solving. The outcomes

1.5 Dissertation Structure 7

of this research are expected to apply to a wide range of dissection puzzles and optimization problems. The
main contributions of this dissertation encompass the following:

1. Heuristic Approach: Introduction of a traditional heuristic approach based on mathematical mor-
phology techniques addresses identified limitations in representing complex Tangram patterns.

2. Deep Learning Approach: Proposal of a contemporary deep learning approach based on generative
models that showcase competitive accuracy with traditional methods and possibly faster inferences.

3. Generalizable Loss Function and Novel Evaluation Metric: Development of a generalizable loss
function based on Hu Moments and the introduction of a novel evaluation metric enhance the robust-
ness and effectiveness of proposed methodologies.

4. Novel Dataset: Generation of a novel dataset, surpassing any reported in the existing literature in
number of samples, which serves as a valuable resource for research and evaluation in dissection
puzzles and related optimization problems.

5. Significance and Advancements in Artificial Intelligence: Significantly advancements regarding
the current understanding of artificial intelligence in geometric problem domains, specifically within
the context of dissection puzzles and related real-world applications.

1.5 Dissertation Structure

Chapter 2 introduces the fundamental theoretical foundations and techniques essential to understanding cut-
ting and packing problems, focusing on their application to dissection puzzles like the Tangram. Cutting and
packing problems involve optimizing the arrangement of shapes within a given space, addressing challenges
ranging from irregular shape packing to efficient material usage in manufacturing processes. Emphasis is
placed on the adaptability of some geometric techniques to dissection puzzles, showcasing their relevance
in irregular shape packing problems.

Chapter 3 explores the application of deep learning concepts and architectures in the context of solving
the Tangram. The chapter explores the underlying mechanisms of different architectures and discusses their
potential applications to Tangram. The chapter concludes by examining data augmentation strategies within
the Tangram context.

Chapter 4 synthesizes the literature on computational Tangram solvers. This review encompasses works
dedicated exclusively to Tangram, as well as those addressing broader tasks that extend their applicabil-
ity to the Tangram context. The works are separated according to the application or not of deep learning
techniques. The primary objective is to concisely outline each approach, evaluating their strengths and
limitations in addressing both simple and complex Tangram puzzles.

Chapter 5 outlines the dataset generation process. It aims to underscore the thoughtful considerations
behind creating a data-driven dataset that can be used for training and testing in neural networks. The
proposed dataset is also useful for approaches that do not use machine learning by using only the testing
set to evaluate the performance of these approaches. A study of the statistics of the proposed dataset is also
conducted, focusing on statistics regarding simple and complex puzzles included as samples.

8 Introduction

Chapter 6 presents the proposed heuristic approach. It covers the proposed raster representations that
support the complex representation of the Tangram puzzle. It also details each step of the pieces placement
procedure and the validation process. It also presents a proof of concept where a toy dataset is used to prove
that the heuristic can solve complex puzzles.

Chapter 7 assesses the application of different deep learning architectures in solving Tangram puzzles.
The chapter explores the potential of these architectures in learning the complex spatial relationships inherent
in Tangram puzzles. It further assesses traditional evaluation metrics based on pixel accuracy in assessing
the visual quality of the generated Tangram solutions. The investigation presented in this chapter serves as
a foundation for the development of the final deep learning approach proposed in this dissertation.

Chapter 8 presents the deep learning approach. It details the components of the proposed GAN-based
architecture. It also introduces a loss function based on Hu Moments, which is another contribution of the
dissertation. A major problem emerges when choosing a loss function that enables the model to properly
learn geometric features from the objects depicted in an image due to traditional loss functions being based
on pixel accuracy. Instead of using metrics based on pixel accuracy, a better practice would be to use a loss
function that can extract geometric features from each piece presented in the ground truth image and attempt
to find the same geometric features in the output image from the generator. For this reason, the dissertation
proposes a novel loss function that is based on Hu moments and is capable of telling the discrepancy between
two images by taking into consideration geometric features.

Chapter 9 presents the final experiments executed using both the proposed heuristic approach and the
deep learning approach. The experimental setup is presented with a detailed description of all the set param-
eters. For comparison, aspects such as the visual quality of generated solutions and the average running time
to assemble a single Tangram puzzle are considered. It also presents an analysis of the overall performance
of the heuristic approach and the deep learning approach by outlining the advantages and disadvantages of
each strategy.

Finally, Chapter 10 summarizes the main outcomes of the dissertation and discusses the future directions.
It not only synthesizes the key contributions but also offers reflections on the broader implications of the
research presented in this dissertation. Additionally, it outlines potential avenues for future exploration,
guiding subsequent researchers in extending the scope of knowledge in the field.

Chapter 2

Cutting and Packing Problem

Effective representations and algorithms for solving puzzle games have applications beyond theoretical in-
terest [35]. An industrial application that is frequently mentioned is the C&P problem. The C&P problem
involves the placement of a certain number of shapes onto a container to minimize the waste of area, where
shapes must not overlap and they must stay within the limits of the container [36]. In the industrial envi-
ronment, these problems are recurrent and to find a feasible solution experienced workers attempt to build
layouts with computer-aided design systems. [37]. Examples include the metal, glass, and wood industries,
where a set of items required by customer orders must be cut from larger sheets or boards [38]. According
to the typology by Mundim et al. [36], two-dimensional versions of C&P problems, with irregular shapes
and limited-size containers, can be classified into maximization problems and minimization problems [36].

Maximization problems aim at maximizing the use of a single container and include the placement
problems and the knapsack problems [36]. The difference between the placement problems and the knapsack
problems lies in the diversity of the types of shapes. In placement problems, the set of shapes is weakly
heterogeneous, whereas in knapsack problems the set of shapes is strongly heterogeneous [39].

Minimization problems consist of assigning a finite set of shapes to the least possible number of contain-
ers [36]. The minimization problems include the cutting-stock problems, and the bin packing problems [39].
Similarly to maximization problems, the difference between the cutting-stock problems and the bin-packing
problems lies in the diversity of the respective shape sets. In cutting-stock problems, the set of shapes is
weakly heterogeneous, whereas in bin-packing problems the set of shapes is strongly heterogeneous [36].

Figure 2.1 presents examples of different categories of C&P problems according to the typology by
Mundim et al. [36]. In the presented examples, shapes with the same type are assigned with the same color,
and the containers have fixed dimensions 𝐿×𝑊 . Also, occupied containers are highlighted in gray. Notice
that only problems with limited-size containers are addressed, not including open-dimension problems, such
as the variant presented by Cherri et al. [40].

To avoid local optima, many methods focus on finding a feasible solution, but not necessarily an optimal
one, in reasonable computational times by the application of evolutionary algorithms, hybrid algorithms,
and other metaheuristic methods [36]. Over the years, some approaches have been proposed to solve the
problem of detecting and preventing overlaps among shapes. The traditional strategies include the front-line
method, the scanning-line method, and the no-fit polygon method [41]. Among all these techniques, the
most widely used tool for checking whether two polygons overlap is the no-fit polygon [42].

10 Cutting and Packing Problem

L

W

(a) Placement problem.

L

W

(b) Knapsack problem.

L

W

(c) Cutting-stock problem.

L

W

(d) Bin-packing problem.

Figure 2.1: Different categories of C&P problems.

Researchers consider dissection puzzles as particular cases of a knapsack maximization C&P problem in
which the number of pieces is fixed and, at the end of the pieces placement process, there is no space left in a
container of limited size [25]. However, the Tangram presents some particularities that are rarely observed
in general C&P. For instance, it is common for C&P problems to restrict transformations to translations and
rotations constrained to multiples of 180o, 90o or 45o, and make use of a single rectangular container [24].
In contrast, the Tangram puzzles process usually requires irregularly shaped containers, unconstrained rota-
tions of the pieces, and the reflection transformation for the parallelogram [24]. Despite the differences in
combinatorial complexity, the computational Tangram solvers may take advantage of geometric techniques
applied in C&P problems to avoid overlaps and reduce the distance between shapes. Therefore, this chapter
is dedicated to covering such geometric techniques and concepts that may be used in the automatic solution
of Tangram puzzles.

2.1 No-fit Polygon

The no-fit polygon is a basic graphic tool used for calculating the relative positions of the two polygons in
which they either touch or overlap [43]. It can be easily obtained by using the Minkowski sum algorithm,
which can be calculated very efficiently for convex polygons [44]. Non-convex polygons can be decomposed
into convex polygons since the isometric transformations applied do not affect such decomposition [45].

The Minkowski sum is obtained by adding each point in A to each point in B [46]. An equivalent
kinematic interpretation describes the Minkowski sum as the result of the translatory motion of B such that
its reference point runs on the surface A [47]. Figure 2.2 presents the Minkowski sum of two polygons A
and B, taking the highlighted vertex in polygon B as the reference point. The resulting Minkowski sum is
colored in red.

2.1 No-fit Polygon 11

(a) Polygon A. (b) Polygon B. (c) Minkowski sum 𝐴⊕ 𝐵.

Figure 2.2: Minkowski sum between polygons A and B.

The Minkowski sum is used in different tasks related to computational geometry, particularly in the
context of robotics, collision detection, and motion planning [48]. For instance, in robotics, this operation
can be visualized as sweeping a robot around the perimeter of an obstacle, and the Minkowski sum represents
the envelope of all possible positions of the combined sets [49]. The Minkowski sum is crucial for designing
algorithms that involve the interaction of shapes in various fields, especially in scenarios where it is necessary
to analyze or plan movements in the presence of obstacles. The formal definition of the Minkowski sum of
two polygons 𝐴 and 𝐵 is denoted as 𝐴⊕ 𝐵, and can be calculated as [45]:

𝐴⊕ 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. (2.1)
The no-fit polygon is calculated by the execution of the Minkowski sum A ⊕ (-B) [50], which is the

locus of points traced by the reference point associated with -B, when this piece slides along the external
contour of A [51]. The opposed polygon is obtained by inverting the signal of all coordinates of the original
polygon [25]. Simple vector algebra can be used to show the necessity of negating 𝐵 for calculating the
no-fit polygon [50, 52]. Therefore, the formal definition of the no-fit polygon induced by polygons 𝐴 and
𝐵, noted as 𝑁𝐹𝑃 (𝐴,𝐵), is defined as [45]:

𝑁𝐹𝑃 (𝐴,𝐵) = 𝐴⊕ −𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ −𝐵}, (2.2)
where the Minkowski sum operation 𝐴 ⊕ −𝐵 is defined as the set of all possible vector sums of elements
from 𝐴 and elements from the negation of 𝐵, denoted as −𝐵. It can be said that this process is analogous to
a dilation operation [53]. Figure 2.3 illustrates the process for obtaining 𝑁𝐹𝑃 (𝐴,𝐵) for a pair of polygons
A and B, where the resulting no-fit polygon is presented in red.

In summary, the concept of no-fit polygons is useful because it enables more efficient and optimized so-
lutions in a wide range of applications, such as packing problems, resource optimization problems, and col-
lision avoidance in robotics [54]. It helps to guide algorithms and decision-making processes by identifying
spatial constraints and regions where certain configurations are not feasible, ultimately leading to improved
resource utilization and cost savings. The implications of the no-fit polygon, as outlined by Carravilla et
al. [55], offer a systematic approach to interpreting the spatial relationship between the two polygons A and
B based on the reference point chosen for B and the resulting 𝑁𝐹𝑃 (𝐴,𝐵):

12 Cutting and Packing Problem

(a) Polygon A. (b) Inversion of polygon B. (c) No-fit polygon 𝑁𝐹𝑃 (𝐴,𝐵).

Figure 2.3: No-fit polygon.

1. If the reference point of B is placed in the interior of 𝑁𝐹𝑃 (𝐴,𝐵), then B overlaps A.
2. If the reference point of B is placed on the boundary of 𝑁𝐹𝑃 (𝐴,𝐵), then B touches A.
3. Otherwise, it implies that B does not overlap or touch A.
The enumerated cases are presented in Figure 2.4, where the depicted polygons are the same as the ones

used in Figure 2.3.

(a) Case 1. (b) Case 2. (c) Case 3.

Figure 2.4: Spatial relationship between polygons according to the no-fit polygon.

2.2 Inner-fit Polygon

The concept of the inner-fit polygon is derived from the no-fit polygon and represents the feasible placement
positions of polygon B inside a container C [56]. Analogous to the no-fit polygon, the inner-fit polygon can
be computed by sliding a polygon along the internal contour of the container [55]. The formal definition of
the inner-fit polygon, considering polygon B and container C, is presented as [45]:

𝐼𝐹𝑃 (𝐵,𝐶) = 𝐶 ⊖ 𝐵 = {𝑐 − 𝑏 ∶ 𝑐 ∈ 𝐶, 𝑏 ∈ −𝐵}, (2.3)
where 𝐶 ⊖ 𝐵 provides the collection of vectors obtained by subtracting each point in −𝐵 from each point
in 𝐶 , analogous to an erosion operation [45]. Figure 2.5 illustrates the obtaining process of 𝐼𝐹𝑃 (𝐵,𝐶),
considering polygon B and container C, where the resulting inner-fit polygon is presented in red.

2.3 Collision-free Area 13

(a) Container c. (b) Inversion of
polygon B.

(c) Inner-fit polygon 𝐼𝐹𝑃 (𝐵,𝐶).

Figure 2.5: Inner-fit polygon.

Analogously to the no-fit polygon, it is possible to interpret the spatial relationship between the polygon
B and container A based on the reference point chosen for B and the resulting 𝐼𝐹𝑃 (𝐵,𝐶):

1. If the reference point of shape B is placed in the interior of 𝐼𝐹𝑃 (𝐵,𝐶), then B is within C.
2. If the reference point of shape B is placed on the boundary of 𝐼𝐹𝑃 (𝐵,𝐶), then B touches C.
3. Otherwise it implies that B leaves the limits of C.

2.3 Collision-free Area

When sequential placement of items is adopted, the placement heuristic must take into account previously
placed items, as well as the container to obtain a feasible layout [45]. The collision-free areas (regions)
represent all possible translations for an item to be placed without overlaps and staying within the limits
of the container [45]. It is obtained by the boolean subtraction from the inner–fit polygon derived from
the container and the boolean union of the no–fit polygons induced by all items already placed [57]. The
operation must consider uniquely the interior of the no-fit polygon. As a result, collision-free areas can result
in a set of multiple disconnected polygons with holes, disconnected edges, or vertices [45].

Aiming at producing a tight layout when placing shapes into a container, each shape should have its ref-
erence point on the boundaries of one of the collision-free areas [51]. This ensures that the shape will always
be connected to at least one already placed polygon or to the boundaries of the container, thus reducing the
waste of space [57]. Formally, the collision-free area is defined as [45]:

𝐶𝐹𝑅(𝐴,𝐵, 𝐶) = 𝐼𝐹𝑃 (𝐵,𝐶)
⋂

𝑖
𝑁𝐹𝑃 (𝐴𝑖, 𝐵), (2.4)

where B is the shape to be placed inside container C, and A represents a collection of polygons that are
already placed in container C. The index 𝑖 is responsible for identifying each shape 𝐴𝑖 placed inside he
container C. The term 𝑁𝐹𝑃 (𝐴𝑖, 𝐵) denotes the complement of 𝑁𝐹𝑃 (𝐴𝑖, 𝐵), and indicates that the shape
B should be placed outside of the no-fit polygon formed with 𝐴𝑖.

Figure 2.6 presents an example of the obtaining process of the collision-free area. In the presented
example, two shapes are already placed inside the container, thus 𝐴 = {𝐴0, 𝐴1}. The no-fit polygons are

14 Cutting and Packing Problem

colored according to the colors assigned to their respective shapes. The inner-fit polygon obtained for the
addressed container and the considered shape is presented in pink, while the resulting collision-free area is
presented in a wavy pattern.

A

A

0

1

(a) Container C. (b) Inversion of
polygon B.

(c) Collision-free area 𝐶𝐹𝑅(𝐴,𝐵, 𝐶).

Figure 2.6: Collision-free area.

In summary, the present chapter explores the crucial concepts integral to addressing C&P problems,
namely the no-fit polygon, inner-fit polygon, and collision-free area. By exploring these concepts, it is pos-
sible to gain insights into effective strategies for avoiding overlaps and fostering a compact layout. Through
the explored concepts and techniques, it is possible to perceive the significance of meticulous planning for
optimizing spatial arrangements and enhancing efficiency in the packing process.

Chapter 3

Deep Learning

Deep learning, a subfield of machine learning inspired by the intricate workings of the human brain, evolved
from the rudimentary perceptrons to the sophisticated neural networks of today [58, 59]. Neural networks
consist of interconnected nodes, or neurons, organized into layers [60]. These layers process information
hierarchically, transforming input data into meaningful representations. Thus, the term “deep” signifies the
incorporation of multiple layers within these networks, allowing for the extraction of hierarchical repre-
sentations from data. This depth enables neural networks to automatically extract hierarchical features and
representations from raw data, allowing them to tackle complex tasks with unprecedented accuracy [61].

The inception of neural networks dates back to the late 1950s when Frank Rosenblatt introduced percep-
trons, though limited to learning linearly separable functions [58]. However, the 1970s and 1980s witnessed
a neural network winter, as researchers grappled with the challenges of training deeper networks and the
absence of effective learning algorithms. A turning point came in 1986 with the development of the back-
propagation algorithm by Rumelhart et al. [62], which enabled the efficient training of multi-layer neural
networks by updating weights based on the reverse direction of the error gradient. Despite this advancement,
the computational power required for deep learning remained a significant constraint. The late 1990s and
early 2000s marked a neural network renaissance, as researchers explored more sophisticated architectures
and training techniques [63]. However, it was the 2010s that ushered in the deep learning boom, fueled by
the convergence of large labeled datasets, powerful GPUs, and algorithmic refinements [64]. In 2012, the
deep learning model AlexNet triumphed in the ImageNet Large Scale Visual Recognition Challenge, show-
casing the superiority of deep neural networks in image classification [64]. This success paved the way for
subsequent architectures, including GoogleNet [65], VGGNet [66], and ResNet [67], each contributing to en-
hanced performance in specific tasks. Nowadays, deep learning stands as a cornerstone of modern artificial
intelligence, with its continuous evolution driven by the combination of algorithmic innovations, increasing
amounts of data, and powerful hardware [68]. Currently, the application of deep learning methods extends
to complex challenges across various domains, such as computer vision, natural language processing, and
speech recognition. In the following sections, some deep learning architectures and concepts that are useful
for understanding the proposal of this dissertation are discussed.

16 Deep Learning

3.1 Convolutional Autoencoder

Autoencoder is a type of artificial neural network that is capable of learning the representation of the given
data through an encoding and decoding process in an unsupervised manner [69]. However, using basic fully
connected layers fails to capture the patterns in pixel data since they do not hold the neighboring informa-
tion. For this reason, researchers proposed the Convolutional Autoencoders (CAE), in which convolutional
layers are used in autoencoders aiming at a good capture of the image data in latent variables [70]. As an
auto-encoder, it is based on the encoder-decoder paradigm [71]. The idea behind this architecture is that the
encoder performs feature extraction and dimensionality reduction by using the convolution filters and pool-
ing layers of the convolutional layers, while the decoder performs the reverse operation [72]. Convolution
layers are used for encoding and deconvolution layers for decoding instead of the fully connected layers [73].
It is trained in an unsupervised fashion allowing it to extract generally useful features from unlabeled data,
to detect and remove input redundancies, and to present essential aspects of analyzing data in robust and dis-
criminative representations [71]. With the popularity of various deep learning models, especially generative
models, autoencoder has been brought to the forefront of generative modeling [70]. Figure 3.1 illustrates
the basic structure of a CAE architecture.

Figure 3.1: Simple CAE architecture.

3.2 Variational Autoencoder

A Variational Autoencoder (VAE) is a type of artificial neural network used in unsupervised machine learn-
ing and generative modeling. It is designed to capture and represent complex data in a lower-dimensional
latent space while simultaneously generating new data samples that resemble the original input data [74].
VAEs consist of two main components: an encoder and a decoder [75]. The encoder maps input data into a
probability distribution in the latent space, typically a Gaussian distribution, with both a mean and a variance.
The decoder then takes samples from this distribution and reconstructs the original data. This probabilistic
approach allows VAEs to model the inherent uncertainty in data, making them powerful for tasks like data
compression, denoising, and generating new data samples with controllable features. VAEs have found ap-
plications in various domains, including image and text generation, anomaly detection, and feature learning.

3.3 U-Net 17

Figure 3.2 illustrates the basic structure of a VAE architecture.

Figure 3.2: Simple VAE architecture.

While both VAEs and CAEs aim to capture meaningful representations of input data, they differ in their
fundamental approach. A CAE primarily uses convolutional layers, which are well-suited for image-related
tasks, to encode and decode the data. CAEs focus on learning spatial hierarchies and local features within
images. However, CAEs typically lack the probabilistic nature of VAEs, meaning they do not explicitly
model uncertainty in the latent space. VAEs, on the other hand, not only learn data representations but
also model the distribution of these representations, making them more versatile for probabilistic generative
tasks and applications where uncertainty quantification is crucial [76].

3.3 U-Net

U-Net architecture is a convolutional neural network architecture designed for semantic image segmentation
tasks, where the goal is to classify each pixel in an input image into one of several predefined classes [77].
U-Net is characterized by its U-shaped architecture, with a contracting path on one side and an expansive
path on the other [78]. The contracting path consists of a series of convolutional and pooling layers that
progressively reduce the spatial dimensions of the input image while learning abstract features. The expan-
sive path then uses transposed convolutions to upsample the feature maps and recover the original spatial
dimensions. Skip connections between corresponding layers in the contracting and expansive paths enable
the network to capture both high-level semantic information and fine-grained details, making it particu-
larly effective for tasks like medical image segmentation, where precise boundaries and structures need to
be delineated. U-Net has become a widely adopted architecture in the field of computer vision due to its
exceptional performance in a variety of segmentation tasks. Figure 3.3 presents an example of a U-Net
architecture.

18 Deep Learning

Figure 3.3: Simple U-Net architecture.

3.4 Generative Adversarial Network

Generative Adversarial Network (GAN) is a class of generative models introduced in 2014 by Goodfellow
et al. [79]. It started being used in 2017 with human faces to adopt image enhancement that produces better
illustrations at high intensity [80]. A basic GAN architecture is formed by a generator and a discrimina-
tor [81]. Figure 3.4 presents a simple GAN architecture.

Figure 3.4: Simple GAN architecture.

The idea behind GANs is that they are based on a game, in the sense of game theory, between two
machine learning models that are typically implemented using neural networks [82]. The generator tries to
capture the distribution of true examples and generate new data examples, while the discriminator is usually

3.5 Data Augmentation 19

a binary classifier used to discriminate generated examples from true examples as accurately as possible [81].
This process of optimal learning is done as a min-max game problem [83]. In this dynamic, the generator
has no direct access to ground truth samples and the only way it learns is through its interaction with the
discriminator[84]. On the other hand, the discriminator has access to both the samples generated by the
generator, as well as a stack of ground-truth samples [84].

The error signal to the discriminator is provided through the simple ground truth of knowing whether
the image came from the real stack or the generator [84]. The same error signal is transferred back to the
generator to produce data that are more similar to the ground-truth data [85]. The adversarial relationship
between the generator and the discriminator continues until the generated samples cannot be distinguished
by the discriminator [86]. At this point, the model has trained so that the liability rate of the network
can be increased and the discriminator network can be fooled by producing such candidates that are not
synthesized [80].

3.5 Data Augmentation

A common issue that researchers face when training deep learning models is overfit. This issue is common
when dealing with small datasets, in which the discriminator overfits the training examples and its feedback
to the generator becomes meaningless and training starts to diverge [87]. As a consequence, the model loses
the ability to properly generalize the data [88]. In almost all areas of deep learning, dataset augmentation
is the standard solution against overfitting [87]. Data augmentation is the process of generating samples
by transforming training data, with the target of improving the accuracy and robustness of classifiers [89].
Usual data augmentation operations on images are rotating, cropping, zooming, noise injection, and changes
in color scheme [90]. The choice of which operations should be implemented in the data augmentation
depends on the task the model is attacking. Inappropriate choices of data augmentation schemes are likely
to result in augmented samples that are not informative enough, which leads to no effect or detrimental effect
on the accuracy and robustness of classifiers [89]. Figure 3.5 shows some operations of data augmentation
that can be performed on an image to be fed to a deep learning model. The image shows augmentations
done considering rotation, translation, flip, and scale. Notice that some of these transformations have to be
limited when handling Tangram puzzles because they often cause cropping in the Tangram pattern.

(a) Original. (b) Augmented A. (c) Augmented B. (d) Augmented C. (e) Augmented D.

Figure 3.5: Data augmentation performed on a Tangram pattern.

20 Deep Learning

Chapter 4

Related Work

As a convention, it is assumed that to be considered a Tangram puzzle solver a method must be able to
assemble at least the simple Tangram puzzles which can be fully characterized by a set of translations and
discrete rotations to form a pattern composed of a single connected polygon. It is desired that this method
is also able to solve complex Tangram puzzles. These may be composed of multiple regions, possibly with
holes. They also may demand the implementation of unconstrained angles of rotation and the reflection of
the parallelogram. The following sections present an overview of computational methods that can be used
in the automatic solution of Tangram puzzles. This literature review also includes works that are dedicated
to other tasks but mention the Tangram as an extension. The works are separated according to whether they
use deep learning methods. The focus is to summarize each approach and determine its advantages and
limitations in solving both simple puzzles and complex puzzles.

4.1 Non-Deep Learning Tangram Solvers

The solution to Tangram puzzles dates back to 1972 with the heuristic programming method by Deutsch &
Hayes [91]. Before the concept of deep learning became well-established, many authors proposed to solve
the Tangram using more traditional approaches. They often relied on information regarding the geometry
of the pieces and faced the assembly process as an optimization problem. The following paragraphs present
the works identified in the literature that are not based on deep learning approaches.

Deutsch & Hayes [91] solve Tangram puzzles using heuristic programming. Their algorithm performs
attempts and tests on partitioning a desired polygonal pattern into smaller parts called sub-puzzles. It follows
the contour of the pattern and, in convex corners, generates extension lines that determine a possible section
of the pattern. The method applies ten rules that consider the arrangement of the edges of the pattern and the
extension lines with the pieces and the composites. Composite is a term introduced in their paper and refers
to convex regions formed by a set of pieces. The algorithm rearranges the pieces correctly for 9 out of the 10
puzzles used for testing, but the authors present cases that their approach could not solve. No performance
metric is mentioned except for the number of solved puzzles. In addition, the approach is limited to patterns
without holes and only allows rotations of pieces by angles at multiples of 45𝑜.

Oflazer [92] follows a connectionist approach by representing the placement and orientation of the pieces
as a non-restricted Boltzmann machine. The pieces are initially laid out on a regular grid. Possible positions

22 Related Work

and rotations are represented by neural units that receive excitatory connections from input units that define
the puzzle, and lateral inhibitory connections of conflicting units. Also, the grid points are labeled with
coordinates (𝑖, 𝑗), in which 𝑖 indicates the row and 𝑗 indicates the column in the grid in standard matrix
notation. The author states that the eight units: Left (L), Right (R), Down (D), Up (U), Right-Up (RU),
Right-Down (RD), Left-Up (LU), and Left-Down (LD) associated with each grid point indicate in which
orientations the puzzle area or boundary extends around that grid point. To test the proposed approach, the
author considers 10 different puzzles and runs the method 100 times for each puzzle. The method can solve
all the considered puzzles, with around 70% of the runs converging in less than 500 epochs. The method is
flexible in solving patterns that require the reflection transformation for the parallelogram, and patterns with
holes. However, it limits the rotations of pieces by angles at multiples of 45𝑜 due to the regular grid.

Bartoněk [93] presents an evolutionist approach to solving polygonal jigsaw puzzles. This method
presents an extension for the solution of Tangram puzzles in which pieces are represented by string codes.
In a string code, the edges and angles are represented by integer numbers invariant to rigid body transfor-
mations. Based on the theory of cluster analysis, each piece is assigned to a certain group according to the
calculated similarity between the piece and the other pieces belonging to the same group based on its string
codes. A fitness function determines how many groups the pieces will be divided into. The advantage of the
developed algorithm consists in the selection of fragments that have a suitable evaluation value, reducing
computing costs. The author affirms that the performance of their algorithm depends not only on the number
of segments but also on their variability, i.e., the number of string codes. The author mentions the possibility
of extending the evolutionist approach to Tangram but does not perform experiments on Tangram puzzles.
This approach cannot be used to solve complex Tangram puzzles of any kind.

Kovalsky et al. [35] present a method for solving jigsaw puzzles in terms of algebraic concepts. The
puzzle is modeled as a system of polynomial equations so that any solution of the system is a solution of the
puzzle as a complete representation. The authors first propose to solve edge-matching puzzles. However,
they show how to apply their approach to Tangram puzzles by considering it as an edge-matching puzzle
in which all pieces have the same color. It is possible to notice that the orientation of each piece is fixed.
The authors argue that the method can be modified to assimilate the solution of puzzles with rotations,
although limited to a discrete set of rotations, although they do not present any example considering this
modification. They further extend their method to variants of edge-matching puzzles including higher-
dimensional puzzles, and puzzles with irregular pieces. They test their method on only 2 Tangram puzzles,
both of which are successfully solved. Their tests for Tangram exhibit an undue level of simplicity, with
no performance metric being considered except for the number of solved puzzles. This approach cannot be
used to solve complex Tangram puzzles of any kind.

Domokos & Kato [94] propose to solve the shape realignment problem, where given a template image of
an object and its broken fragments, the goal is to find an aligning transformation that reassembles the com-
plete template object. Their method consists of constructing a polynomial system of equations that describe
the problem whose solution provides the parameters for alignment. To validate their approach, the authors
conduct experiments on a limited set of Tangram puzzles. They showcase successful solutions to seven Tan-
gram puzzles, achieving an average completion time of 50. Although their approach is not explicitly tested
on puzzles with unconstrained rotations, it is designed to handle this type of transformation. An important

4.2 Deep Learning Tangram Solvers 23

aspect to be noticed from their experiments is that they start with a feasible solution to the puzzle, then they
shuffle the pieces to obtain their initial position. This characteristic diminishes the combinatorial nature
of the problem, as the initial piece arrangement is already considerably close to the desired solution. This
aspect is related to another drawback of this method because the parallelogram has to be pre-reflected in the
correct enantiomer before applying their method, making it not prepared to handle this aspect in complex
puzzles.

4.2 Deep Learning Tangram Solvers

There is a growing interest in developing deep learning architectures for solving jigsaw puzzles. One may
think that these architectures could serve as major inspirations for the implementation of my architecture for
the automatic solution of Tangram puzzles. However, deep learning approaches dedicated to jigsaw puzzles
present significant drawbacks [3]. Many authors limit their approaches to square jigsaw puzzles and address
the position of the pieces as indexes or pseudo-labels [95]. Unlike square jigsaw puzzles, Tangram pieces
have distinct geometries, and mapping every possible placement for each piece in the puzzle is impractica-
ble in reasonable running time. They also rely heavily on the semantic information contained in each piece
to assemble the puzzle, which is an unrealistic approach for the Tangram because its pieces are apictorial.
Therefore, to solve Tangram puzzles using deep learning models, it is more adequate to implement archi-
tectures that are dedicated to this task. These architectures should consider the geometric properties of the
Tangram pieces, including the ones that characterize complex puzzles.

Li et al. [96] present a GAN architecture that synthesizes layouts by modeling geometric relations of
different types of graphical elements. The generator takes as input a set of randomly placed graphic elements
and uses self-attention modules to refine their labels and geometric parameters jointly to produce a realistic
layout. The authors propose a novel differentiable wireframe rendering layer that maps the generated layout
to a wireframe image, upon which a CNN-based discriminator is used to optimize the layouts in image space.
Although it is not their main focus, they solve some Tangram puzzles as a validation for their approach. They
collect 149 Tangram graphic designs including animals, people, and objects. In the performed experiments,
the authors consider eight configurations by varying rotation/reflection poses for each piece. They randomize
the Tangram pieces and the model has to move them to the desired pattern. Their model can generate
meaningful solutions like fox and person, although others may be hard to interpret. Through visual analysis,
it is possible to infer that their method can assemble 5 out of 12 puzzles considered in the experiments Due
to a lack of metrics that can determine how good is a generated solution compared to the ground truth, the
evaluation for Tangram puzzles ends up depending only on visual resemblance.

Lee et al. [33] present a problem formulation and then propose an efficient and effective learning-based
approach to solving this problem. They split different two-dimensional target shapes into multiple fragments
of arbitrary polygons by a stochastic partitioning process. They then proceed to implement an agent to
assemble the target shape given the partitioned fragments while the original poses are hidden. Given a
target object and a set of candidate fragments, the proposed model learns to select one of the fragments
and place it into the right place. Unlike an approach based on the backtracking method, which considers
how the remaining fragments will fit into the unfilled area of the target shape, they attempt to solve such

24 Related Work

a problem with a learning-based method. The authors claim that the proposed method effectively learns
to tackle different assembly scenarios. They further explore the level of generalization of their method by
submitting their model to different scenarios, such as cases with missing fragments, distorted fragments,
and different levels of rotation discretization. They claim that the addressed problem is analogous to the
Tangram, but do not present experiments on Tangram puzzles. Although their representation can depict
puzzles with holes or multiple regions, they do not test their approach to these patterns. They also do not
implement the reflection transformation.

4.3 Summary of Literature

Several research problems can be inferred from this literature review when it comes to the solution of both
simple and complex Tangram puzzles. Table 4.1 presents a comparison of the methods in this present
literature review, where it analyzes the employed approach, the presence of tests considering the Tangram,
and their capability of solving different Tangram puzzles. For aspects that describe complex puzzles, refer
to the terms used in Figure 1.4.

Table 4.1: Comparison of solvers included in the literature review.

Work Approach Exp. Tangram Complex Puzzles

Holes Multiple Unconstrained Flip

Deutsch & Hayes [91] Heuristic Method ✓ ✓

Oflazer [92] Neural Network ✓ ✓ ✓

Bartoněk [93] Genetic Algorithm
Kovalsky et al. [35] Algebraic Concepts ✓

Domokos & Kato [94] Algebraic Concepts ✓ ✓

Li et al. [96] Generative Model ✓

Lee et al. [33] Transformer Model ✓ ✓ ✓

Many works focus on other visual tasks and use the Tangram to assess the versatility of their approach. As
a result, they end up ignoring some aspects that are unique to the Tangram and characterize complex Tangram
puzzles. One critical aspect that defines whether an approach will be able to solve patterns with holes or
multiple regions is how the puzzle and pieces are represented. Some works assume that the puzzle area can
be described as a single connected contour, which is valid for many cases but disregards the existence of
more complex arrangements of pieces. The literature shows that raster-based or image-based representations
are versatile in the sense of being able to represent any kind of puzzle.

Many works also do not consider the implementation of unconstrained rotations and the execution of the
reflection transformation, which serves as a way to reduce the number of configurations a piece can assume.
This strategy is useful in some cases, especially considering that many Tangram puzzles are formed by
pieces rotated in multiples of 45𝑜 and do not require the reflection transformation. However, it mitigates the
combinatorial nature of the Tangram and ignores puzzles that demand more complex piece configurations.

4.3 Summary of Literature 25

When they test their approaches to Tangram puzzles, different authors often consider only a limited set
of patterns in their experiments, which varies considerably from work to work. This highlights the necessity
of a dataset for Tangram puzzles to be used as a baseline of comparison. Another notable observation in the
literature is the absence of a uniform baseline for comparison, with some authors using running time and
others using the number of iterations to assess the performance of their respective methods.

26 Related Work

Chapter 5

Dataset

This chapter is dedicated to presenting the process for generating the proposed data-driven dataset for the
automatic solution of the Tangram puzzles task. The goal is to present a data-driven dataset to be used for
training and testing deep learning models. This dataset is also useful for approaches that do not use machine
learning by using only the testing set to evaluate the performance of these approaches. Therefore, this dataset
can be used as a basis for comparison of methods that aim at solving the Tangram, independently whether
they demand a training stage or not. In the following paragraphs, some key aspects that are considered
during the assembly of the proposed dataset are discussed.

Large training datasets and deep complex structures enhance the ability of deep learning models for
learning effective representations for tasks of interest [97]. If the model is fed with poor or insufficient data,
it might be unable to generalize accurately [98]. In this scenario, even though it can make accurate predic-
tions for previously seen training data, when tested for new data there is a risk that it will infer inaccurate
predictions. Therefore, when assembling a dataset for deep learning, it is important to ensure that it contains
a diverse and representative set of samples that are accurately consistent with the task of interest.

This dataset needs to contain a sufficient amount of data aiming for the model generalization. This is
especially important for Tangram puzzles since each piece can assume an uncountable number of configura-
tions, resulting in a wide variety of different patterns that can be formed with these pieces. It is desired that
the data is sufficiently diverse for the model to learn the geometry of the pieces, and understand how these
pieces can interact to form patterns. Additionally, it is also necessary to guarantee that this dataset contains
a sufficient amount of samples of both simple and complex puzzles. The dataset should contain a sufficient
amount of each type of complex puzzle for the model to be able to learn the aspects that characterize them.
A straightforward approach is to calculate statistics for this dataset regarding a taxonomical analysis. These
statistics are useful to determine the number of puzzles that contain the aspects that characterize complex
puzzles and determine if they are sufficient for the model to learn such features.

It is also important to guarantee that this dataset is diverse regarding the geometry and morphology of
the included Tangram puzzles. To accomplish that, a possible approach is to compare every pair of patterns
included in this dataset using a metric that tells the visual similarity between them. By doing that, it is
possible to analyze if this dataset presents a sufficient variation in its samples or not. Another possible
approach would be using a technique that can extract morphological features from each pattern included
in this dataset. These techniques are more focused on the geometry being depicted in the image and some

28 Dataset

of them are invariant to translation, rotation, and scale. By using these two approaches, it is possible to
determine whether the samples present variation not only regarding visual features but also concerning
geometric and morphological features.

The following sections present the process for forming the proposed dataset. First, an outline to detail
how the data is organized into sets to be fed to the model is presented. Additionally, a detailed statistical
analysis of the dataset regarding taxonomy statistics and data correlation statistics is also performed. The
literature review suggests that this dataset is the most extensive in the literature. It is also the very first
data-driven dataset for Tangram puzzles, being also a groundbreaker in contemplating all types of complex
puzzles. It is expected that this new dataset can serve as a valuable resource for future research concerning
the solution of dissection puzzles, as well as related optimization problems 1.

5.1 Dataset Collection

The proposed data-driven dataset contains 6,000 samples. To form this dataset 163 samples were collected
from the literature and generated extra 5,837 random samples. The samples from the literature were collected
from the Tangram Channel [99]. The following paragraphs are dedicated to explaining this data collection,
and some criteria used to assemble this dataset. To generate random samples, a random Tangram generator
implemented in Javascript by Köpp [100] is used. The first thing the generator does to generate a pattern is
to randomly pick one of the enantiomers of the parallelogram to be used in the pattern composition. After
that, the generator shuffles the order of the pieces and places the first piece in the center of the drawing space
forming an intermediate pattern. It picks the next piece and randomly selects one of the corners of this piece
to be attached to the intermediate pattern. It randomly selects one of the corners of the intermediate pattern
to be attached to the next piece and then calculates a probabilistic distribution to find which orientation of
the next piece increases the length of shared edges and contact with the intermediate pattern. It places then
the next piece in this orientation forming a new intermediate pattern. This process continues until all the
pieces are used.

As stated before, the generator can form puzzles using the reflection transformation for the parallelogram.
It also enables the generation of patterns with holes. However, the rotations of the pieces are always limited
to multiples of 45◦, and the resulting pattern is always formed by a single connected region. Therefore, the
generator is not prepared to generate puzzles with unconstrained rotations, or with multiple regions. For
this reason, the original code is modified to generate such patterns, thus making it capable of generating all
kinds of complex Tangram puzzles.

In the original implementation, the rotation is done using a rotation matrix presented in Equation 5.1.
This matrix rotates a point 𝑣 = (𝑥, 𝑦) counterclockwise through an angle 𝜃 about the origin of a two-
dimensional Cartesian coordinate system [101].

𝑅(𝜃) =

[

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]

, (5.1)

1Dataset available on: github.com/fernandamyamada1/TANGAN/.

5.1 Dataset Collection 29

where 𝜃 is the angle of rotation. The process for obtaining the new coordinate of a point 𝑣 = (𝑥, 𝑦) after the
rotation consists of a matrix multiplication. This process is illustrated in Equation 5.2.

[

𝑥′

𝑦′

]

=

[

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

] [

𝑥
𝑦

]

, (5.2)

where 𝑥′ and 𝑦′ represent the coordinates of point 𝑣 = (𝑥, 𝑦) after the rotation in the horizontal and vertical
axes respectively. The original implementation assumes that the values for 𝜃 are only multiples of 45◦,
which prevents the generator from constructing patterns with unconstrained rotations. This implementation
is modified by varying the value for 𝜃 during the generation process. Determining how many and which
pieces will be rotated using unconstrained rotations is done randomly. This way it is possible to guarantee
that this dataset contains patterns with unconstrained rotations.

The procedure employed in the original implementation always links one corner of the next piece to one
corner of the intermediate pattern. This implies that the pieces are always connected by at least one point to
one another. To enable the generator to form patterns with multiple regions, whenever the generator picks
the next piece it randomly determines whether the next piece will be attached to the intermediate pattern or
not. If it is determined that it will not be attached to the intermediate pattern, it is randomly placed in the
surroundings of the intermediate pattern, thus forming a new connected region. This new connected region
becomes the new intermediate pattern, to which the next pieces might be attached to. By using this strategy,
it is possible to generate patterns that are composed of multiple regions.

Image processing techniques are used to retrieve a pair of images that represent a pattern and a solution
for each generated sample. This standardizes the representation of the samples that were collected from the
literature and samples that were randomly generated. Therefore, at this point, for both samples collected
from the literature and randomly generated samples, a single sample is composed of a 512 × 512 grayscale
image depicting the puzzle and a 512×512 grayscale image depicting a feasible solution. Figure 5.1 presents
some examples of Tangram samples as binary images. The first row, represents the desired pattern, while
the second row presents a feasible solution for each presented pattern. The first two puzzles on the left side
are samples collected from the literature, while the other two are randomly generated ones.

Figure 5.1: Binary images representing literature and generated samples.

30 Dataset

Another procedure is applied to the dataset to make it more sophisticated and enhance the visual distinc-
tion of the pieces in the Tangram solution. The procedure consists of assigning different grayscale tones to
each piece. The hypothesis is that the different tones help the model to extract geometric features from the
pieces and understand how they interact with the Tangram patterns. The solutions are susceptible to some
level of imprecision originating from image processing applied when converting the images to grayscale. It
is also important to make sure that the puzzles have approximately the same area by standardizing the sizes
of the pieces. This aspect of this dataset benefits the model conversion since it reduces the necessity of the
model to estimate the size of the pieces during the assembly process. Specifically for this dataset, the area
condition is that the puzzle needs to be close to 14395 pixels within a ±5% tolerance. It is assumed that this
number of pixels is sufficient for representing a puzzle inside a 512×512 area while enabling the distinction
of pieces in the correspondent solution. Figure 5.2 presents some examples of samples that are included in
this dataset.

Figure 5.2: Final representation of samples included in the dataset.

5.2 Dataset Outline

The dataset is split into 5,900 samples for the training set and 100 samples for the testing set. At the beginning
of the training procedure, if validation is needed, the model may randomly select 100 samples from the
training set to form the validation set. Therefore, there are 5,800 samples for training, 100 samples for
testing, and 100 samples for validation.

An important aspect to be noticed from the testing set is that it contains samples showing Tangram
puzzles with varied geometric features. It is also desired to have samples that represent the different aspects
that characterize complex puzzles. This way, it is possible to accurately assess the ability of the model
to handle various geometric patterns and their applicability in different scenarios, thus guaranteeing its
robustness and overall confidence and reliability. Another crucial consideration is the ability to compare the
generated solutions with experiments conducted by other researchers in the literature. To address this, 15
samples within the testing set were intentionally chosen due to being used in experiments detailed in related

5.3 Dataset Statistics 31

works or to exhibit noteworthy similarities to puzzles investigated in these studies. Figure 5.3 presents these
samples. Deutsch & Hayes [91] experiments on sample (i), while samples (f), (l), and (m) share some
similarities with other puzzles considered in their work. Oflazer [92] considers (o) for testing, while sample
(j) shares some similarity with another sample used by the author. The only pair of Tangram puzzles used
for testing by Kovalsky et al. [35] are samples (n) and (o). Domokos & Kato [94] use samples (e), (i), and
(k) in their experiments, while some other considered puzzles resemble samples (c) and (h). Li et al. [96]
tests on samples (b), (d) and (g), while samples (a) and (n) closely resemble other considered puzzles.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.3: Samples included in the dataset similar to the literature.

5.3 Dataset Statistics

Since a data-driven dataset is proposed, it is important to guarantee that this dataset is not unbalanced and
presents a sufficient amount of samples with different features. In this case, the features that this dissertation
focuses on concern the taxonomy of the computational complexity of Tangram puzzles. It is also desired to
include in this dataset samples that are diverse in terms of their geometry and morphology. This enhances
the learning process by assuring that the model will have access to a diverse range of examples. Therefore,
taxonomy and data correlation analyses are performed on this dataset. The former examines how diverse is
this dataset in terms of taxonomical features, while the latter examines how diverse is this dataset in terms
of visual, geometric, and morphological features.

32 Dataset

5.3.1 Taxonomical Statistics

Considering the main objective of this dissertation, the most logical approach is to analyze this dataset
regards the taxonomy of its samples. However, there is a problem when classifying puzzles regarding the
reflection of the parallelogram. When looking at a Tangram pattern, determining if it has multiple regions
or holes is straightforward. The same can be said of the demand for unconstrained rotations to a certain
extent. However, determining if a Tangram puzzle demands the reflection transformation is not usually
easy. Generating a Tangram pattern using a flipped parallelogram does not guarantee that this particular
pattern cannot be assembled using the unflipped parallelogram. This is due to the fact that the solution
of a Tangram puzzle is not necessarily unique [102]. This difficulty persists even in patterns where the
parallelogram is isolated from the other pieces. This happens because it is possible to combine two small
triangles to form a parallelogram that is congruent to the parallelogram piece. In Figure 5.4, there are two
solutions for the same pattern containing distinct enantiomers for the parallelogram.

(a) Solution with
enantiomer A.

(b) Solution with
enantiomer B.

Figure 5.4: Solutions for the same pattern with different enantiomers for the parallelogram.

Table 5.1 shows a taxonomical analysis of the proposed dataset samples regarding the aspects that char-
acterize complex Tangram puzzles. The flip ratio refers to the distribution of both enantiomers of the par-
allelogram found in the considered ground truth set, being the first enantiomer present in Figure 5.4 (a) and
the second enantiomer present in Figure 5.4 (b).

Set Holes Multiple Unconstrained Flip Ratio

Training 514 1984 1521 3255 / 2645
Testing 34 40 14 70 / 30
Total 548 2024 1535 3325 / 2675

Table 5.1: Dataset statistics regarding complex Tangram puzzles.

The taxonomical analysis presented in the current section is sufficient to demonstrate that this dataset

5.3 Dataset Statistics 33

contains an adequate amount of samples for simple, as well as every type of complex Tangram puzzle.
Both puzzles with unconstrained rotations and puzzles with multiple regions cover an expressive number
of samples in this dataset. Puzzles with holes are the ones that contemplate the least number of samples
but still represent more than 10% of the entire dataset. The aspects are also well balanced in the training
and testing sets, presenting a fair distribution of the samples that will be used in the learning process and its
assessment.

Moreover, regarding the parallelogram reflection, it is possible to notice that the samples are well dis-
tributed among both enantiomers in the training set. The same can be said about the distribution of samples
in the training and testing sets. There are no unbalanced conditions in any of these sets, which is a favorable
factor for the learning process of a model. Additionally, for deep learning models, a viable alternative solu-
tion to mitigate the parallelogram reflection problem is to perform data augmentation by randomly flipping
each input included in the batch on the horizontal and vertical axis. This practice ensures that the model will
be fed with samples containing both enantiomers of the parallelogram, even if the dataset does not include
such samples. The strategy for data augmentation is detailed in Chapter 8.

This taxonomical analysis shows that in a preliminary examination, this dataset seems to meet the afore-
mentioned requirements for the construction of a data-driven dataset. This taxonomical analysis is important
to support an adequate learning process for deep learning models. This taxonomical investigation has never
been performed before in the works that address the automatic solution of Tangram puzzles. This fact es-
tablishes this dataset as the very first data-driven dataset with a strong analytical basis that is dedicated to
the solution of the Tangram.

5.3.2 Morphological Statistics

Another aspect that is important to be analyzed is the level of diversification concerning the Tangram patterns
that are included in this dataset. For the Tangram, addressing this issue involves analyzing the geometric
features presented in each puzzle. To perform the data geometric analysis on this dataset, Hu moments
are considered. These mathematical moments are used in image processing and computer vision to char-
acterize the shape or contour of objects in binary or grayscale images [103]. These moments are invariant
to translation, rotation, and scale, making them valuable for shape analysis, pattern recognition, and ob-
ject classification tasks. To compute Hu moments, it is necessary to first calculate the normalized central
moments 𝜂𝑝𝑞 using the following formula:

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇
(1+ 𝑝+𝑞

2)
00

, (5.3)

where 𝜇𝑝𝑞 is the central moment of order 𝑝 + 𝑞 and 𝜇00 is the zeroth-order central moment.
Central and normalized moments are invariant to scaling and translation already [104]. The challenge is

to find rotational invariants. These normalized central moments are then used to compute the Hu moments as
linear combinations of the central moments, each representing distinct geometric properties and relationships
of the object.

34 Dataset

Hu1 =
𝜂20 + 𝜂02

𝜂200
,

Hu2 =
(𝜂20 − 𝜂02)2 + 4𝜂211

𝜂400
,

Hu3 =
(𝜂30 − 3𝜂12)2 + (3𝜂21 − 𝜂03)2

𝜂500
,

Hu4 =
(𝜂30 + 𝜂12)2 + (𝜂21 + 𝜂03)2

𝜂500
,

Hu5 =
(𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2]

𝜂1000
,

Hu6 =
(20𝜂20 − 20𝜂02)2 + 6(30𝜂11)2

𝜂1000
,

Hu7 =
𝜂21 ⋅ (𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2] − (𝜂03 ⋅ (𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2]

𝜂1000
,

(5.4)
where Hu𝑖 represents the 𝑖-th Hu moment, 𝜂𝑝𝑞 is the normalized central moment of order 𝑝 + 𝑞, and 𝜂00 is
the zeroth-order normalized central moment.

Two scatter plot illustrating the Hu moment values is presented in Figure 5.5. The horizontal axis cor-
responds to the 𝐻𝑢5 value, while the vertical axis corresponds to the 𝐻𝑢6 value. The practice of choosing
two representative moments to be used to compare the morphological structure of images has been done in
the literature [105]. 𝐻𝑢5 quantifies how the shape is oriented concerning its longest dimension [103]. As
a consequence, shapes that are not perfectly symmetrical are expected to have higher 𝐻𝑢5 values, as they
are more sensitive to orientation changes. 𝐻𝑢6 captures the deviation of the shape from being a perfect
circle [103]. It is related to the angularity of the shape, which implies that shapes with sharp corners, edges,
or irregular shapes will have higher 𝐻𝑢6 values. For instance, an elongated ellipse is expected to have a high
𝐻𝑢5 value, but a low 𝐻𝑢6 value. These two moments are the ones that better describe the morphology of
a Tangram pattern because they are sensitive to its arrangement of pieces and its geometric features. Each
dot in the plot represents a pattern included in this dataset, and a color code indicates which dots are part of
the training set and testing set. In both plots, the mean value for 𝐻𝑢5 is 2.697 × 10−19 and the mean value
for 𝐻𝑢6 is .249 × 10−13. For better visualization, the graph uses a symmetrical logarithmic scale where the
linear threshold parameter for the x-axis is the mean value for 𝐻𝑢5, and for the y-axis is the mean value for
𝐻𝑢6.

In Figure 5.5 (a), each dot in the plot represents a pattern included in this dataset, and a color code
indicates the samples are from the literature and the generated ones. It shows that the generated samples
closely resemble the geometry of the literature samples. Since the literature samples represent real-world
Tangram puzzles with a meaning behind their construction, the graph indicates a favorable characteristic
that opens the possibility of utilizing the generated samples to train a deep learning approach for solving
real-world problems. When the generated samples exhibit a close alignment with real-world scenarios, it
signifies that they capture essential features and patterns present in the actual data. This theory underscores

5.3 Dataset Statistics 35

(a) Generated and literature sets. (b) Training and testing sets.

Figure 5.5: Morphological analysis of samples included in the dataset.

the importance of generating high-quality synthetic data that faithfully mirrors the characteristics of the
desired real-world dataset. It highlights the potential for leveraging such generated samples in the training
process, ultimately leading to more robust and effective machine-learning models.

In Figure 5.5 (b), each dot in the plot represents a pattern included in this dataset, and a color code
indicates which samples are part of the training set and testing set. The testing set distribution seems to be
well aligned with this training set distribution. This is important because it indicates that during the training
stages, the model is fed with examples that are close to the ones that are used to address its performance.
Therefore, it shows that the model should be able to make good predictions considering that during training,
it has access to plenty of training samples that are fairly similar to the testing ones. If the model is not able
to make good predictions, the issue is probably related to the model itself or the designed learning schedule.

36 Dataset

Chapter 6

Heuristic Approach

This chapter is dedicated to presenting the proposed heuristic approach for the automatic solution of Tangram
puzzles. Figure 6.1 presents the heuristic method diagram.

START

Find Feasible
Positions

Place Piece

Backtrack

Backtrack

END

END

Return
Solution

All
Configurations

Explored?

Pre-processing

Validation Process

Placement Procedure

No

Yes

No

No

Yes Yes

Yes

No

Get Next
Piece

No

Fesible
Positions
Found?

Yes

Next Piece Fits
Empty

Regions?

Are There
Placed Pieces?

All Pieces
Placed?

Figure 6.1: Flowchart presenting the main stages of the proposed heuristic method.

The heuristic is separated into three main blocks. The pre-processing block, detailed in Section 6.1, is
responsible for receiving the desired Tangram pattern and calculating all the possible configurations each
piece can assume throughout the execution of the heuristic. The heuristic generates a list of all the possi-
ble configurations that each piece can assume considering orientations and reflection transformation. The
placement procedure block, described in Section 6.2, is responsible for executing the assembly process con-
sidering the input Tangram pattern. The assembly process fits the pieces one by one and follows the largest

38 Heuristic Approach

first heuristic, which determines that the heuristic must consider the pieces according to their area from
largest to smallest [106]. Last, Section 6.3 presents the validation block, which is responsible for verifying
whether an obtained intermediate solution of the puzzle allows the positioning of the remaining pieces.

After presenting each stage of the heuristic approach, the present chapter presents in Section 6.4, a
proof of concept that shows that the proposed heuristic approach can efficiently deal with the aspects that
characterize complex Tangram puzzles. For this preliminary investigation, only 30 puzzles are considered,
among which are included both simple and complex puzzles.

6.1 Pre-processing

This section details the representation chosen for describing the geometry of the input Tangram pattern
and the Tangram pieces. An important aspect of the heuristic method is that it is raster-based, thus it receives
a binary mask referred to as a pattern mask that represents the desired Tangram pattern. In this binary mask,
the puzzle region is represented as white pixels, while black pixels represent areas outside the puzzle region.
The foremost advantage of this representation is that it easily permits the depiction of complex Tangram
puzzles with holes and multiple regions. Areas covered by holes and gaps between puzzle regions are
assigned as black pixels, indicating that they cannot be filled by pieces. As stated before, many previous
works treat the Tangram pattern as a single connected contour, thus ignoring the existence of some complex
puzzles. To foster understanding, areas composed of black pixels may be referred to as occupied areas, while
areas composed of white pixels are often referred to as unoccupied areas. Some examples of pattern masks
are presented in Figure 6.2. Throughout the assembly process, whenever a piece is placed on an occupied
area, the pixels corresponding to the raster conversion of that piece turn black in the pattern mask. By the
end of the assembly process, it is expected that all of the pixels of the pattern mask (or at least most of them)
will be assigned black.

Figure 6.2: Pattern masks in raster representation.

The Tangram pieces are originally represented in vector format inside a local coordinate system as a list
of vertices that have their origin located in the center of the correspondent piece. Thus, the Tangram pieces
can be rotated and reflected without losing precision in their representation. Also, the size of the Tangram
pieces is determined according to the empty regions of the Tangram pattern, since the total number of pixels
of the Tangram pieces has to be the same as the total number of pixels of the Tangram pattern empty regions.
Each Tangram piece to be placed inside the puzzle area contains the following properties:

6.1 Pre-processing 39

1. t: an array containing two values belonging to [0, 1] that represents the translation of the piece in the
x and y axis relative to the pattern mask.

2. 𝜃: integer between 0𝑜 and 359𝑜 representing the angle of rotation of the current piece.

3. f: binary value expressing the execution or not of the reflection transformation in the current piece.

As stated before, each piece has its list of translations, angle of rotation, and a flag indicating whether the
piece is reflected. As a pre-processing step, the method generates a list of all the possible configurations that
each piece can assume considering orientations and reflection transformation. Since many Tangram patterns
do not demand unconstrained rotations and the reflection transformation, configurations that combine angles
with multiples of 45o and no reflection transformation have priority and are considered first in the puzzle
assembly process.

Initially, the properties for the pieces are set in their corresponding original state, i.e. their placement
in the initial square. Thus, during the puzzle assembly process, the values assigned to each piece property
consider the piece original state centroid as a starting point to execute the isometric transformations. In
addition, the values assigned to these Tangram pieces properties are constantly changed in the process of
finding a feasible placement for each piece. Furthermore, to determine the current positioning of a certain
piece inside the puzzle area, the information concerning this particular piece is converted to a binary mask
with the same dimensions as the pattern mask, which will be referred to as piece mask throughout the
dissertation. At the end of the assembly process of the Tangram puzzle, it is expected that the values stored
in the data structure pieces produce a feasible solution for this Tangram puzzle.

Figure 6.3 presents some examples of piece masks generated from the pieces information. Figure 6.3 (a)
presents the piece mask generated from one of the largest triangles and corresponds to this set of data: t =
[0.48 0.65], 𝜃 = 180𝑜, f = 0. In addition, Figure 6.3 (b) presents the piece mask generated from the square
and corresponds to this set of data: t = [0.45 0.64], 𝜃 = 16𝑜, f = 0. Finally, Figure 6.3 (c) presents the piece
mask generated from the parallelogram and corresponds to this set of data: t = [0.27 0.67], 𝜃 = 28𝑜, f = 0.

(a) (b) (c)

Figure 6.3: Examples of piece masks generated from the pieces information.

40 Heuristic Approach

6.2 Placement Procedure

In each iteration, the heuristic selects a piece following the largest-first heuristic. It determines that the
pieces should be considered from largest to smallest in area [106]. The heuristic then selects one of the
configurations of the list and proceeds to search for feasible positions for that configuration. To do that the
heuristic calculates the raster collision-free area by dilating the pattern mask using the reflected configuration
mask of the current piece as the structuring element of the dilation. The collision-free area represents all
possible translations for an item to be placed [107]. The idea of using the collision-free area to avoid overlaps
while reducing the distance between polygons is inspired by works that address the cutting and packing
problem[41, 42].

To reduce the number of positions to be considered, the method computes the endpoints of the morpho-
logical skeleton of the collision-free area. The skeleton of a binary image is composed of a set of points
whose distance from the nearest boundary of the shape is locally maximum [108]. The endpoints of the
morphological skeleton correspond to concave corners of the collision-free area, which provide a better in-
teraction between the piece corners and the corners of the occupied areas. These endpoints represent the
candidate positions #»𝑥0,

#»𝑥1, ...,
»𝑥𝑘 for the current configuration. Figure 6.4 presents an example of this pro-

cess. After obtaining the candidate positions, the idea is to calculate the cost associated with each one of
them, and then pick the one that produces the lowest cost.

(a) Pieces. (b) Target. (c) Target.

(d) Pieces. (e) Target. (f) Target.

Figure 6.4: Process for obtaining the collision-free area and endpoints.

The distance transform approach helps the heuristic to decide the best candidate position by acting as a
cost matrix. It maps each pixel into its shortest distance to the regions of interest [109]. The most natural

6.3 Validation Process 41

metric for computing distance in most applications is the Euclidean distance [110]. The idea is to approxi-
mate the current piece to Tangram pattern borders, as well as other Tangram pieces already placed inside the
puzzle area. The heuristic calculates the distance transform mask that determines the distance between each
element in the unoccupied area and the elements of the occupied area. Then, an element-wise multiplication
is executed between the current piece mask and the distance transform mask to obtain the placement cost
matrix 𝑀(#»𝑥𝑝) that represents the placement cost associated with an arbitrary candidate position #»𝑥𝑝, where
𝑝 ∈ {0, 1, ..., 𝑘}. The cost of each candidate position is calculated according to Equation 6.1:

𝑐(#»𝑥𝑝) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

(

𝑀(#»𝑥𝑝)
)

𝑖𝑗 , (6.1)

where 𝑐 is the cost function, #»𝑥𝑝 is an array representing a candidate position for the current piece, 𝑀(#»𝑥𝑝)
is the placement cost matrix that represents the placement cost associated with #»𝑥 , 𝑛 and 𝑚 are the number
of rows and columns of 𝑀(#»𝑥𝑝). The heuristic calculates the costs associated with all candidate positions
#»𝑥0,

#»𝑥1, ...,
»𝑥𝑘 and picks the candidate position that generates the lowest cost.

After placing the piece in the position that generates the lowest cost, it checks if there are remaining
pieces to be placed. If there are no remaining pieces, it finishes its execution and returns the final solution
with all pieces correctly placed inside the puzzle area. Otherwise, it proceeds to the validation process.

If the heuristic gets to the point in which none of the possible configurations produced a feasible place-
ment for the current piece, it verifies if there is at least one piece placed inside the puzzle area. In this
case, the method backtracks to the previously placed piece. It resets the list of possible configurations of the
current piece, removes the previous piece considering the largest-first heuristic, and attempts to find a new
placement for that piece considering the next possible configuration. Otherwise, if there is not any piece left
in the puzzle area, the method finishes its execution with none of the pieces placed inside the puzzle area,
indicating that it was not possible to find a solution for the given Tangram pattern.

6.3 Validation Process

After positioning the current configuration and updating the pattern mask, the heuristic performs a validation
procedure. This validation is used in the proposed method to determine whether an intermediate solution is
feasible, taking into consideration the following iterations of the proposed method following the largest-first
heuristic. It determines that the following conditions have to be satisfied: (1) the largest empty region must
be greater than the largest piece regarding the number of pixels and (2) the maximum value of the distance
transform considering the largest piece must be shorter than the maximum value of the distance transform
considering the empty regions. Through the validation procedure, it is possible to determine early whether
an intermediate solution can lead the heuristic to a final solution for the desired Tangram pattern. Figure 6.5
shows an example that would not pass the validation procedure, where it is possible to notice that the medium
triangle cannot be placed in the empty regions.

If the placement validation process considers that the current piece placement does not prevent the place-
ment of the subsequent pieces, then the method proceeds to the placement procedure of the following piece
determined by the largest-first heuristic. Otherwise, the method removes the current piece from the puzzle

42 Heuristic Approach

Figure 6.5: Scenario that fails the validation procedure.

area and returns to the step in which it attempts to get the next possible configuration of the current piece.

6.4 Proof of Concept with Limited Data

This section presents a toy experiment that verifies if the proposed heuristic method can solve Tangram
puzzles. The model takes a 256 × 256 and tries to assemble the pieces to form the desired pattern. In the
input image, the puzzle area is presented in white and the background is presented in black. In this toy
experiment, the limited dataset comprises 30 samples collected from the literature. This investigation did
not use the random Tangram generator by Köpp [100], thus it serves to check if the heuristic method can
solve at least the puzzles present in the literature. A time limit of 360s is defined for the heuristic to assemble
each puzzle, otherwise, it is considered a timeout. The scale of the pieces is reduced by 5% to the scale of
the input target pattern to avoid overlaps. Also, rotations are implemented with 1-degree increments. Given
that Tangram is a visual puzzle, discerning a 1-degree difference in rotation for a specific piece is typically
unnoticeable to a human player. Figure 6.6 presents some solutions obtained in this study, where the pieces
are assigned the same color for better visualization of the sections between them.

Figure 6.6: Solutions considering limited data.

6.4 Proof of Concept with Limited Data 43

The heuristic was able to assemble 46.67% samples in an average time of 51.042, generating solutions
that are visually accurate and align well with the input pattern. Even though the number of solved Tangram
puzzles is considerably limited, the results show that the heuristic method has proven efficient in assembling
at least one sample for each type of complex Tangram puzzles. It has also proven efficient in assembling
puzzles with different scales, being able to infer the size of the pieces from the input pattern. This study is
important to show that analytical approaches can be used to assemble complex Tangram puzzles, although
they may be sensitive to the increase in level of complexity, and take a long time if they consider each
piece configuration one by one. It is possible to verify that the heuristic method depends heavily on the
precise representation of the input Tangram pattern. If its representation is inaccurate and presents small
imperfections along the edges of the Tangram pattern, the process for obtaining the collision-free area and
endpoints is compromised. Therefore, it is possible that the image processing techniques employed to obtain
the randomly generated Tangram puzzles may compromise the performance of the heuristic method.

44 Heuristic Approach

Chapter 7

Assessment of Deep Learning Architectures

This chapter presents an investigation into the application of four deep learning architectures in solving
Tangram puzzles: CAE, VAE, U-Net, and GAN. The architectural choices are based on their distinct at-
tributes and relevance to the problem domain: CAE excels in feature extraction and reconstruction, VAE
provides probabilistic representations, U-Net specializes in semantic segmentation and pixel-wise tasks, and
GAN offers generative capabilities. The CAE and VAE are inspired by the implementation of Minhas &
Zelek [111] for anomaly detection, while U-Net is inspired by the implementation of Zhou et al. [112] for
image segmentation. Some adjustments are introduced to these architectures to fit the Tangram assembly
task. The hypothesis is that deep learning techniques can be applied to the automatic solution of Tangram
puzzles.

The experiments are divided into two stages. In the first, the performance of CAE, VAE, and U-Net
architectures are evaluated. Results show that VAE outperforms the other architectures in the first stage
of experiments. For the second, a GAN is implemented by using the architecture that performs best as
the generator, thus forming the VAE-GAN, a GAN encompassing a VAE-based generator. Experimental
results indicate that VAE-GAN, paired with the proposed loss function designed for Tangram, presents
more refined solutions than the previous architectures. Also, it is necessary to analyze whether conventional
metrics that are based on pixel accuracy are appropriate to evaluate generated Tangram solutions and propose
a novel metric designed to evaluate the visual quality of generated Tangram solutions. The findings of this
investigation help to decide which architecture is the best to be used as the final model for the automatic
solution of Tangram puzzles. It also supports the directions chosen in the final dataset presented in Chapter 5,
and the implementation of the proposed loss function presented in Chapter 8.

7.1 Limited Dataset

The toy dataset is formed by collecting 934 samples, where 182 samples are from the literature and 752
samples are randomly generated. To generate random samples, the random Tangram generator implemented
in Javascript by Köpp [100] is used without any modification. Each sample is composed of a 256 × 256
image depicting the puzzle and a 256 × 256 image representing a single feasible solution. It is important
to ensure that these puzzles all have approximately the same area by standardizing the sizes of the pieces.
The dataset is split into 888 samples for the training set and 46 samples for the testing set, which results in

46 Assessment of Deep Learning Architectures

an approximate 95:5 split ratio. Figure 5.1 serves as a representation of this toy dataset, where the first row
contains the inputs and the second row contains the ground truths.

7.2 Tangram Solvers Based on Autoencoders

The input of the implemented architectures is 256 × 256 grayscale images. The output also follows the
same pattern. Figure 7.1 presents a flowchart illustrating the workflow of the training approach. The deep
learning architecture block can be substituted by any of the architectures described in Section 7.2.1. It is
worth mentioning that this process is done only for the training to increase the variability of the data.

Figure 7.1: Testbed workflow for preliminary assessment.

For each iteration, an input batch is selected from the dataset. Then, Gaussian noise is applied on the
input batch images as a form of regularization to prevent overfitting and to encourage the model to learn
more robust features [113]. Online dataset augmentation is applied on the input batch to further improve the
accuracy and robustness of the model [89]. By definition, any pattern formed by the seven Tangram pieces
is a Tangram puzzle, thus this idea can be used to create variations of the samples included in the dataset.
The data augmentation procedure applies a random rotation to the input batch images, ensuring the rotation
angle stands a multiple of 90o. It also randomly reflects the image on the vertical and horizontal axis.

7.2.1 Network Architectures

In the following, the idea behind the conception of each employed network architecture is presented fol-
lowed by a brief description of its layers and parameters. The network architectures are detailed in the
Appendix 10.2.

7.2 Tangram Solvers Based on Autoencoders 47

CAE Architecture

The concept of autoencoders, including CAE, has a history dating back to the early days of artificial neural
networks. Autoencoders, in their basic form, were proposed in the 1980s as a neural network architecture
for dimensionality reduction and feature learning. They were initially used for visual tasks, including data
compression and noise reduction [70].

In the employed CAE architecture, the primary objective is to section the Tangram pattern following
the contour of each piece, therefore revealing the final solution as an image. The CAE model consists of
an encoder network that extracts informative features from the Tangram pattern, followed by a decoder
network that constructs the Tangram solution. The CAE architecture counts with 8 convolutional layers
in the encoder, and 8 deconvolutional layers in the decoder, which permit the network to capture intricate
details in both the encoding and decoding stages. In the encoder phase, the network gradually diminishes the
feature map dimensions, initiating from (256, 256, 1) and concluding at (4, 4, 48). The encoder component
of the CAE is composed of a sequence of convolutional layers, each complemented by batch normalization
and LeakyReLU activation functions. The encoder should extract intricate image structures and patterns
while simultaneously reducing the dimensionality of the input data.

On the other side of the CAE, the decoder phase mirrors the structure of the encoder, incrementally
expanding the encoded feature maps back to (256, 256, 1). Composed of transposed convolutional layers,
the decoder constructs the Tangram solution from the latent representation generated by the encoder. Aiming
for generalization, dropout, and batch normalization techniques are also integrated into the decoder. These
techniques ensure the CAE learns to adapt to various scenarios while maintaining robustness. The CAE
encompasses a total of 3,115,301 parameters, of which 3,113,859 are trainable, and 1,442 are non-trainable.

VAE Architecture

The VAE architecture, introduced by Kingma & Welling [74], combines the principles of autoencoders and
probabilistic graphical models to perform unsupervised learning and generate data that adheres to a specific
probability distribution, typically a Gaussian distribution in the latent space. This approach allows for more
structured and controllable data generation, making this architecture particularly well-suited for tasks such
as image generation, data denoising, and generating novel samples from learned representations.

The employed VAE architecture is specifically designed to extract meaningful latent representations from
the Tangram pattern images while enabling the generation of Tangram solution images from these learned
representations. Similarly to the CAE, the model is composed of an encoder and a decoder. The VAE
architecture consists of a total of 22 layers, including 11 convolutional and 11 deconvolutional layers. In the
encoder phase, the network progressively reduces the feature map dimensions, starting from (256, 256, 1)
and ending at (2, 2, 48). The encoder process Tangram pattern images through a sequence of convolutional
layers, each followed by batch normalization and LeakyReLU activation functions. This architecture allows
the encoder to discern intricate patterns and features within the input images while simultaneously reducing
the dimensionality. This ultimately results in a condensed latent representation. The VAE incorporates two
additional dense layers, at the end of the encoder to facilitate the stochastic nature of VAEs, determining the
statistical properties of the latent space [76]. Subsequently, a sampling operation is applied to generate a

48 Assessment of Deep Learning Architectures

latent vectors that follow a Gaussian distribution, using the mean and log-variance computed by the dense
layers. It sample from a single Gaussian distribution for each input in the batch. The decoder phase mirrors
the encoder, incrementally expanding the feature maps back to (256, 256, 1).

The decoder employs transposed convolutional layers to upsample the latent vectors back into image
dimensions, forming the Tangram solution image from the latent space representations. Batch normaliza-
tion and LeakyReLU activation functions complement the transposed convolutional layers. Ultimately, the
output layer of the decoder produces Tangram solution images that are the same size and channel depth as
the input Tangram pattern images. The VAE encompasses a total of 3,060,297 parameters, with 3,058,855
being trainable and 1,442 non-trainable parameters. Similarly to CAE, the VAE architecture also aims to
minimize a loss function throughout the training process.

U-Net Architecture

The U-Net architecture, introduced by Ronneberger et al. [77], is a U-shaped architecture, consisting of a
contracting path for feature extraction and an expansive path for precise pixel-wise segmentation. U-Net is
widely used for semantic segmentation tasks, particularly in the field of biomedical image analysis. It is also
acclaimed for its ability to capture fine-grained details in images.

The U-Net architecture is characterized by its symmetric encoder-decoder structure, which enables it to
capture intricate image features while preserving spatial information [114]. The employed U-Net comprises
a total of 29 layers, including 14 convolutional layers and 15 deconvolutional layers. It starts with an input
shape of (256, 256, 1) and progressively reduces the feature map dimensions through the use of max-pooling
layers, resulting in a feature map size of (32, 32, 512). Each block of the contracting path consists of two
consecutive convolutional layers, followed by batch normalization and ReLU activation functions. The
pooling layers, interspersed between these blocks, progressively reduce the spatial dimensions of the feature
maps, facilitating the extraction of hierarchical features.

Subsequently, deconvolutional layers are employed to increase the feature map dimensions back to (256,
256, 1). The architecture strategically incorporates concatenation layers to merge feature maps from both
the contracting and expanding paths, ensuring a detailed and accurate representation. In total, the U-Net
architecture presents 7,788,929 parameters, with 7,785,345 of them being trainable and 3,584 non-trainable.

7.2.2 Loss Functions

The following loss functions are used in the experiments: (1) mean square error (𝐿𝑜𝑠𝑠𝑀𝑆𝐸), and (2) struc-
tural similarity (𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀). The 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 encourages the model to minimize the magnitude of errors,
making it suitable for tasks where precise numeric predictions are essential. For the Tangram, it is desired
to obtain a solution where the area covered by pieces is easily distinguishable from the background and sec-
tions between pieces. 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 is a perceptual loss function designed for image processing applications.
It evaluates the structural similarity between the generated and reference images, considering luminance,
contrast, and structure. 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 encourages the model to produce visually similar outputs, making it
valuable in image generation and restoration tasks where perceptual quality is critical.

7.2 Tangram Solvers Based on Autoencoders 49

Mean Square Error Loss Function

MSE, a commonly used loss function in image reconstruction tasks, measures the pixel-wise discrepancy
between predicted and ground truth images. The literature suggests that MSE tends to prioritize pixel-level
accuracy, which may produce visually unsatisfactory results, especially when dealing with complex image
structures or textures [115]. The following formula presents MSE as a dissimilarity loss function:

𝐿𝑜𝑠𝑠𝑀𝑆𝐸(𝐼𝑥, 𝐼𝑦) =
1

𝑀𝑁

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
(𝐼𝑥(𝑖, 𝑗) − 𝐼𝑦(𝑖, 𝑗))2, (7.1)

where 𝐿𝑜𝑠𝑠𝑀𝑆𝐸(𝐼𝑥, 𝐼𝑦) quantifies the dissimilarity between two images 𝐼𝑥 and 𝐼𝑦. Since 𝐼𝑥 and 𝐼𝑦 have the
same dimensions, 𝑀𝑁 represents the total number of pixels in these images, with 𝑀 representing height
and 𝑁 representing width.

Structural Similarity Loss Function

SSIM is designed to capture not only pixel-level differences but also structural and perceptual similarities
between images. It is expected that SSIM loss encourages the preservation of structural information and
leads to visually more pleasing reconstructions [116]. The SSIM calculation is done as follows:

𝑆𝑆𝐼𝑀(𝐼𝑥, 𝐼𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2𝑥 + 𝜎2𝑦 + 𝐶2)
, (7.2)

where 𝑆𝑆𝐼𝑀(𝐼𝑥, 𝐼𝑦) calculates the similarity between images 𝐼𝑥 and 𝐼𝑦. Variables 𝜇𝑥 and 𝜇𝑦 represent
the means of the pixel intensities in images 𝐼𝑥 and 𝐼𝑦, respectively. Additionally, 𝜎2𝑥 and 𝜎2𝑦 correspond to
the variances of pixel intensities in images 𝐼𝑥 and 𝐼𝑦, while 𝜎𝑥𝑦 denotes the covariance of pixel intensities
between these two images. The constants 𝐶1 and 𝐶2 are small values introduced to prevent division by zero
errors and enhance the stability of the loss calculation.

Since dissimilarity metrics are considered, and SSIM calculates a ratio expressing the similarity of a pair
of images, it is necessary to adapt it to transform it into a loss function:

𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 (𝐼𝑥, 𝐼𝑦) = 1 − 𝑆𝑆𝐼𝑀(𝐼𝑥, 𝐼𝑦), (7.3)
where 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 (𝐼𝑥, 𝐼𝑦) calculates the similarity between images 𝐼𝑥 and 𝐼𝑦 based on the SSIM metric.

7.2.3 Evaluation Metrics

For evaluating the performance of the architectures, the following evaluation metrics are employed: (1) MSE
and (2) SSIM metrics. The goal is to analyze if conventional metrics based on pixel accuracy are effective
in evaluating the performance of deep learning models that aim to solve Tangram puzzles. For SSIM, the
adapted calculation that transforms it into a metric of dissimilarity is used, so it can be compared to the other
two evaluation metrics. Therefore, the formula for MSE and SSIM are analogous to the ones described by
Eqs. 7.1 and 7.3, respectively. The hypothesis is that conventional metrics fall short in capturing nuanced
aspects when comparing the Tangram solution images with ground truth images. Since Tangram pattern
images are visually similar to the ground truth images, the generated solution images also end up presenting

50 Assessment of Deep Learning Architectures

a close visual resemblance to the ground truth image. This may happen even when the obtained solution is
not correct, thus making it difficult to differentiate a correct solution from an incorrect one.

7.2.4 Experimental Results

The architectures are implemented in Python 3.9.12 using Tensorflow 2.11.0 library. Tests are executed on
a Ryzen 3700x 3.6GHz 32GB of RAM with an Nvidia RTX 4090 24GB. Batch size is set to 2.

The analysis of experimental results starts by evaluating the loss curves generated throughout the training
stage. Figure 7.2 presents the loss curves for the CAE, VAE, and U-Net when they are submitted to𝐿𝑜𝑠𝑠𝑀𝑆𝐸

and 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . The three models converge after a few hundred epochs. The validation curves for U-Net
present a significant oscillation in the early training stages. This is due to the total number of parameters of
this architecture being more than double when compared to CAE and VAE. In the early stages of training, U-
Net is still adjusting its parameters searching for a fair representation of the data. These random fluctuations
lead to oscillations in the validation loss curve as the model searches for optimal parameters.

0 100 200 300 400 500
epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

lo
ss

CAE
VAE
U-Net

(a) 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 train loss.

0 100 200 300 400 500
epochs

0.00
0.05
0.10
0.15
0.20

lo
ss

CAE
VAE
U-Net

(b) 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 validation loss.

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

lo
ss

CAE
VAE
U-Net

(c) 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 train loss.

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

lo
ss

CAE
VAE
U-Net

(d) 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 validation loss.

Figure 7.2: Loss curves for the CAE, VAE, and U-Net.

Additionally, it is necessary to inspect the output solutions of the trained models when submitted to the
testing set and analyze the visual quality of the generated solutions according to conventional metrics based
on pixel accuracy. Table 7.1 shows the obtained results for the executed experiments over the aforemen-
tioned evaluation metrics and Figure 7.3 presents 15 inferences of the trained CAE, VAE, and U-Net on the
testing set when combined with 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 and 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . The first two columns in Table 7.1 define the
evaluation metric and the architecture for each experiment. The next two columns present the average values

7.2 Tangram Solvers Based on Autoencoders 51

for 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 and 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . It is worth noticing that the models apply the same technique of segmenting
the Tangram puzzle area following a triangular grid before deciding the sections that represent the contact
between pieces as shown in Figure 7.3. The employed strategy aligns with a geometric property of Tangram
pieces, which tells that they can all be decomposed as a combination of the small triangular piece [27, 19].
Therefore, the models can learn this property even though it is not directly informed to them, which indicates
that they can extract valuable information regarding the geometry of the pieces.

Table 7.1: Experimental results according to evaluation metrics.

Evaluation Metric Architecture 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀

MSE CAE 0.0377 0.0559
VAE 0.0415 0.0578

U-Net 0.0579 0.0582

SSIM CAE 0.1568 0.0548
VAE 0.1622 0.0547

U-Net 0.0653 0.0569

SSIM evaluation metric considers that VAE presented the best performance, although CAE closely
matches it. However, from Figure 7.3, it is possible to notice that both CAE and VAE perform poorly
when combined with 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . Additionally, it is possible to notice that 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 performs poorly in
identifying the correct sections between pieces, thus generating solution images closer to an initial pattern
than to a proper solution. In the experiments, images with only black and white pixels are considered. It is
known that 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 may not effectively capture the subtle structural differences in such images, since it
relies on local patterns and variations in pixel values to assess their visual similarity [47]. In those exper-
iments, the models miss a considerable amount of sections between pieces, generating an output solution
that shares more visual similarities with a Tangram pattern than a Tangram solution. To further support
this claim, Figure 7.4 shows cases where the MSE and SSIM metrics fail to correctly indicating the visual
quality of a solution. In the example presented in the first row, it is clear that even though SSIM suggests
that the solution image (b) is more similar to the ground truth (a), it is easier to identify the position of the
Tangram pieces by looking at the solution image (c). The same can be said about the example presented
in the second row, where MSE fails to identify that the image solution (f) presents more consistent sections
than (e) when compared to ground truth (d).

When analyzing the generated Tangram solutions, an important consideration emerges when deciding
between solutions that contain extra sections or those with missing ones. In this context, solutions with
additional sections over those with omissions are prioritized. Inferring the correct position of the pieces
from an image with extra sections is considerably less challenging than discerning the precise location of

52 Assessment of Deep Learning Architectures

 L
O

S
S

M
S
E

 L
O

S
S

S
S
I
M

G
r
o
u
n
d

T
r
u
t
h

C
A
E

V
A
E

U
-
N

e
t

C
A
E

V
A
E

U
-
N

e
t

Figure7.3:SolutionimagesgeneratedbyCAE,VAE,andU-Net.

7.2 Tangram Solvers Based on Autoencoders 53

(a) Ground truth. (b) MSE = 0.0718
SSIM = 0.0698.

(c) MSE = 0.0670
SSIM = 0.1878.

(d) Ground truth. (e) MSE = 0.0399
SSIM = 0.0432.

(f) MSE = 0.1555
SSIM = 0.0274.

Figure 7.4: Cases where SSIM and MSE fail in evaluating pairs of Tangram solutions.

missing cuts. This is especially true when the player has some familiarity with the Tangram pieces. It
is possible to conclude that solution images with extra sections offer a greater degree of interpretability,
therefore being closer to the correct solution, at least for the Tangram. Figure 7.5 presents a visualization of
false positives and false negatives in solution images. False positive represents missing sections and false
negative shows extra ones. A visual inspection on Figure 7.3 shows that both CAE and VAE combined
with 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 present extra sections rather than omissions, making it easier to infer the positions of the
pieces. However, it is also possible to observe that the solutions generated by VAE are less blurry than the
ones presented by CAE, making it easier to comprehend the inferences of the model towards the location of
sections.

In summary, it is possible to observe that CAE, VAE, and U-Net architectures reveal the limitations of
existing evaluation metrics in adequately preserving the perceivable geometric properties of Tangram pieces.
The conventional metrics fail to capture the nuanced intricacies of Tangram shapes, leading to suboptimal
results. VAE, however, presents promising solutions by generating well-defined sections between pieces
and presenting extra sections rather than omissions. Although 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 is sensitive to both small and large
errors because it places equal emphasis on all pixels, 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 can generate an output solution that shares
more visual similarities with a Tangram pattern than a Tangram solution comparing with 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 which
misses a considerable amount of sections between pieces. In response to this discussion, in the second part
of the experiments, a novel loss function and evaluation metric specifically designed for the perception of
geometric characteristics of Tangram solutions is proposed. The objective is to enhance the fidelity of the
models in preserving the crucial geometric properties of Tangram pieces in generated solutions. Since it is
not possible to rely on conventional evaluation metrics to assess the generated solutions, through a visual

54 Assessment of Deep Learning Architectures

(a) Ground
truth.

(b) CAE 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 . (c) VAE 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 . (d)
U-Net𝐿𝑜𝑠𝑠𝑀𝑆𝐸 .

(e) CAE 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . (f) VAE 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . (g) U-Net
𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 .

Boundary False Positive False Negative

Figure 7.5: Visualization of false positives and false negatives in solution images.

inspection, it is necessary to implement a novel evaluation metric appropriate for the novel loss function
and use VAE architecture as the generator of the GAN in the second stage of experiments. It is expected
that given the competitive relationship between the generator and discriminator, the discriminator indirectly
guides the generator to make decisions towards which generated sections should be retained to represent
the boundaries of Tangram pieces. Consequently, it is expected that VAE-GAN will produce solutions that
visually closely resemble real Tangram solutions.

7.3 Generative Model for Refinement of Tangram Geometry

The workflow of the second part of the experiments is analogous to the flowchart presented in Figure 7.1.
The input is composed of 256 × 256 grayscale images. The output also follows the same pattern. The
deep learning architecture is substituted by the VAE-GAN architecture. Gaussian noise and online data
augmentation are used to improve the robustness of the model.

7.3.1 Network Architecture

GAN is a class of generative models introduced in 2014 by Goodfellow et al. [79]. It started being used
in 2017 with human faces to adopt image enhancement that produces better illustrations at high inten-
sity [80, 117]. A basic GAN architecture is formed by a generator and a discriminator. These are typically
implemented using neural networks but could be implemented using any form of differentiable system that
maps data from one space to another [81]. As previously mentioned, a VAE-GAN using the aforementioned

7.3 Generative Model for Refinement of Tangram Geometry 55

VAE architecture combined with the discriminator is implemented, which is detailed in the following para-
graphs. A detailed description of the implementation of these architectures is available on Appendix 10.2.
The discriminator comprises multiple convolutional layers, progressively increasing the number of filters.
This depth allows the network to capture intricate and hierarchical features within input images, making it
highly effective for discerning ground truth from fake images [81].

The GAN discriminator architecture consists of a total of 8,276,801 parameters, with 8,273,217 param-
eters being trainable and 3,584 non-trainable parameters. The network begins with two input layers for
image pairs with shapes (256, 256, 1), which are concatenated into a single (256, 256, 2) input. The net-
work aims at successively reducing the spatial dimensions of feature maps as it processes images, allowing
it to focus on capturing abstract and high-level features for image discrimination. To accomplish that, a
series of convolutional layers progressively reduce the feature map dimensions from (256, 256, 2) to (4, 4,
512). Batch normalization and LeakyReLU activation functions are applied at each convolutional layer. The
batch normalization technique accelerates convergence, mitigates gradient-related issues, and enhances the
overall robustness. LeakyReLU facilitates faster convergence during training, and introduces non-linearity,
enabling the network to learn complex decision boundaries and critical aspects of distinguishing real and
fake images. The final convolutional layer reduces the feature maps to (4, 4, 1). A sigmoid activation func-
tion in the output layer squashes the output into a boolean value, which indicates if the input either is a
generated solution or is a ground truth.

7.3.2 Weighted Mean Absolute Error Loss Function

Weighted Mean Absolute Error (WMAE) is a variation of MAE, with different elements of the error being
assigned distinct weights based on their sign and magnitude. It takes inspiration from other versions of
weighted versions of Mean Absolute Error [118, 119]. It also mixes these inspirations with Weighted Mean
Squared Error [120]. In WMAE, positive errors are scaled by a factor of 𝑐, while negative errors are treated
with a weight of 1. Its concept is inspired by the observation that𝐿𝑜𝑠𝑠𝑀𝑆𝐸 demonstrates promising results in
the task of segmenting Tangram patterns into distinct pieces. However, the sections produced by 𝐿𝑜𝑠𝑠𝑀𝑆𝐸

tend to be blurry and poorly defined. This serves as an inspiration to implement 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 , a loss function
based on WMAE, designed to enhance the precision and clarity of sections by assigning variable weights to
false positive and false negative errors.

First, both input images 𝐼𝑥 and 𝐼𝑦 of the same dimensions are normalized to a range between 0 and 1.
Their normalized counterparts are defined as 𝐼𝑛𝑜𝑟𝑚𝑥 and 𝐼𝑛𝑜𝑟𝑚𝑦 respectively. Thus, There are conditions that
0 ≤ 𝐼𝑛𝑜𝑟𝑚𝑥 (𝑖, 𝑗) ≤ 1 and 0 ≤ 𝐼𝑛𝑜𝑟𝑚𝑦 (𝑖, 𝑗) ≤ 1 for every coordinate (𝑖, 𝑗) present in 𝐼𝑛𝑜𝑟𝑚𝑥 and 𝐼𝑛𝑜𝑟𝑚𝑦 . Then, the
absolute difference between them, denoted as Δ, is calculated element-wise:

Δ = 𝐼𝑛𝑜𝑟𝑚𝑦 − 𝐼𝑛𝑜𝑟𝑚𝑥 . (7.4)

The next stage is the conditional weighting step. Elements of Δ are analyzed, and weight term 𝑊 given
by:

56 Assessment of Deep Learning Architectures

𝑊 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑰𝑛𝑜𝑟𝑚
𝑦 ⋅ c + 1, if Δ > 0

1, if Δ < 0

0, otherwise.
(7.5)

With the conditional weight in place, the WMAE loss function computes the weighted absolute error,
𝐿, by element-wise multiplication of the absolute error Δ and the conditional weights 𝑊 :

𝐿 = |𝑊 ⋅ Δ|. (7.6)
Finally, the following equation treats WMAE as a dissimilarity loss function:

𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸(𝐼𝑥, 𝐼𝑦) =
1

𝑀𝑁

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝐿(𝑖, 𝑗). (7.7)

In summary, 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 attributes a bigger weight when a pixel that is black is assigned as white, than
when the opposite occurs. Doing so, the loss prioritizes the pixels that represent the section between pieces
over pixels that represent the area covered by pieces. It is designed to impose a higher penalty on false
positives compared to false negatives, which are illustrated in Figure 7.5.

7.3.3 Weighted Mean Absolute Error Evaluation Metric

The𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 is extended by re-purposing it as an evaluation metric. By employing the same loss function
for assessment, it is possible to establish a unified and consistent approach to both training and evaluating
the generated solutions. When the metric used for evaluation mirrors the criteria set during training, it
ensures that the evaluation process accurately reflects the objectives and criteria that guided the model during
training. Thus, the WMAE evaluation metric follows Equation 7.7. The hypothesis is that the WMAE metric
is better aligned with the task of evaluating Tangram solutions than traditional metrics, such as MSE and
SSIM.

7.3.4 Experimental Results

The VAE-GAN architecture is also implemented by the same environment described in Section 7.2.4. Ex-
periments are performed by using the VAE-GAN combined with 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 to show the efficiency of the
architecture. Figure 7.6 depicts the training process of VAE-GAN. It can be an abrupt decrease in training
and validation loss curves in the early stages of training, while for the generator loss curve, the decrease is
more gradual. Comparing Figs. 7.2 and 7.6, it is possible to notice that VAE-GAN converges faster than the
previous architectures and that the VAE-based generator is learning from the judgment of the discrimina-
tor. It is also possible to notice that, although the VAE-GAN is using 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 , the fluctuations in the
validation curve that are shown in the first part of the experiments are not perceived. This shows that the dis-
criminator regularizes the training process and leads to smoother loss curves for the VAE-based generator.
In other words, it indicates that the incorporation of a discriminator is beneficial because the competitive

7.3 Generative Model for Refinement of Tangram Geometry 57

nature of the GAN stabilizes the training dynamics of the VAE-based generator, making it less susceptible
to fluctuations compared to a standalone model.

0 20 40 60 80 100
epochs

0.00000

0.00005

0.00010

0.00015

0.00020

lo
ss

VAE-GAN

(a) Train loss.

0 20 40 60 80 100
epochs

0

1

2

3

4

lo
ss

1e 5
VAE-GAN

(b) Validation loss.

0 20 40 60 80 100
epochs

4250
4300
4350
4400
4450
4500
4550
4600

lo
ss

VAE-GAN

(c) Generator loss.

Figure 7.6: Loss curves for VAE-GAN.

To support the claim that 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 is better suited for solving Tangram puzzles than 𝐿𝑜𝑠𝑠𝑀𝑆𝐸

and 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 , the experiments are extended to architectures CAE, VAE, and U-Net. This extension
enables the validation of the effectiveness of 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 across a diverse range of architectures. Thus,
Figure 7.7 presents 15 inferences of the trained CAE, VAE, and U-Net on the testing set when combined
with 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 . It is also necessary to compare these solutions with the ones generated by CAE with
𝐿𝑜𝑠𝑠𝑀𝑆𝐸 and VAE with 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . This pair of combinations are the ones that MSE and SSIM metrics
judged presenting the best performance in Section 7.2. It is possible to observe that the solutions generated
using 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 present better-defined sections when compared to the solutions generated by CAE with
𝐿𝑜𝑠𝑠𝑀𝑆𝐸 and VAE with 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . Also, when compared to the standalone VAE, VAE-GAN generates
solutions that are closer to the expected ground truth. This shows that the discriminator successfully fulfills
its role of pushing the VAE-based generator to produce images that are closer to real Tangram solutions.

58 Assessment of Deep Learning Architectures

C
A
E
 /

 L
O

S
S

M
S
E

V
A
E
 /

 L
O

S
S

S
S
IM

V
A
E
 /

 L
O

S
S

W
M

A
E

V
A
E
-
G

A
N

 /
 L

O
S
S

W
M

A
E

C
A
E
 /

 L
O

S
S

W
M

A
E

U
-
N

e
t /

 L
O

S
S

W
M

A
E

G
ro

u
n
d

T
ru

th

Figure7.7:SolutionimagesgeneratedbyCAE,VAE,U-Net,andVAE-GANwith
𝐿
𝑜𝑠𝑠𝑊

𝑀
𝐴
𝐸 .

7.3 Generative Model for Refinement of Tangram Geometry 59

It is noticeable that 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 presents better qualitative results than the other loss functions. It tends
to generate clearer sections than omissions, making it easier to infer the positions of the pieces. Additionally,
VAE-GAN presents solutions similar to the ones by VAE, but with fewer extra sections, thus showing that it
discerns better which sections are necessary to form a solution image for Tangram. Even when the sections
between pieces are not perfectly depicted in the solution image, a human with familiarity with the Tangram
pieces would be capable of inferring the correct position and configuration of the pieces. Furthermore, the
tenth column of the figure shows a case where the generated solution by VAE-GAN is feasible, although dif-
ferent from the ground truth, indicating that VAE-GAN can learn geometric features of the Tangram pieces.
Figure 7.8 presents a visualization of false positives and false negatives in solutions generated for the same
Tangram pattern. The ratio of false negatives in (e) is noticeably lower than the same ratio in (c). This
indicates that the incorporation of the discriminator into VAE, resulting in VAE-GAN, leads to a significant
improvement in the model toward discerning which sections are necessary to form a solution image for Tan-
gram. Moreover, a comparison with Figure 7.5 reveals that the ratio of false positives reduces expressively
with 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 . For the presented scenarios, the ratio of false positives for VAE with 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 is close
to 1/10 of the ratios obtained for 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 and 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . These observations align with the hypothesis
regarding the effects of VAE-GAN and 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 on the generated solutions.

(a) Ground
truth.

(b) CAE . (c) VAE . (d) U-Net. (e) VAE-GAN .

Boundary False Positive False Negative

Figure 7.8: Visualization of false positives and false negatives in solution images using 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 .

Table 7.2 shows the results for performed experiments over the proposed WMAE evaluation metric.
The 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 is employed for all the performed experiments. The first column defines the architecture
used in each experiment. The second column presents average values for the WMAE evaluation metric.
Finally, the last column shows the average inference time each model took to generate the solutions. The
results suggest that the WMAE metric is better aligned with the nuances present in Tangram solutions than
traditional metrics, such as MSE and SSIM.

As it is possible to observe in Figure 7.7, solutions generated by VAE-GAN are clear and insightful for
determining the correct position and configuration of the Tangram pieces, while U-Net presents incomplete
sections, resulting in poor visual performance. These qualitative results closely align with the values shown
in the table, since the WMAE metric considers VAE-GAN as the best architecture, and U-Net as the worst
one in the visual quality of generated solutions. Moreover, the WMAE tells that the visual quality of the
solutions generated by both CAE and VAE is similar, which can also be perceived by their generated solu-

60 Assessment of Deep Learning Architectures

Table 7.2: Experimental results according to WMAE evaluation metric.

Achitecture WMAE Metric Inference Time

CAE 0.0309 0.01377s
VAE 0.0304 0.01507s

U-Net 0.0333 0.01070s

VAE-GAN 0.0270 0.04193s

tions. Although the average inference time for VAE-GAN is considerably higher than the other standalone
architectures, this is not a prohibitive limitation, given the notable improvements in solution quality.

It is evident that 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 consistently delivers superior qualitative results when compared to the al-
ternative loss functions 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 and 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 . Its preference for generating clear additional sections,
rather than omissions, not only enhances the visual quality of the solutions but also significantly facilitates
the inference of piece positions. Regarding the employed evaluation metrics, while MSE and SSIM serve
as common benchmarks, they often fall short of capturing the nuanced characteristics of a Tangram solu-
tion. WMAE evaluation metric demonstrates a superior capacity in assessing the visual quality of Tangram
solutions. By assigning priority to the pixel values representing the sections between Tangram pieces, this
metric surpasses the limitations associated with conventional methods, thereby providing a more precise
evaluation of Tangram solutions.

Finally, an experiment to address the influence of the coefficient c on the 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 is conducted. The
idea is to vary the value of this coefficient in a large range of values, in doing so it is possible to evaluate
its impact on the VAE-GAN performance. Table 7.3 shows the results of this experiment over the proposed
WMAE metric. The first column presents the value used for c in 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 . The second column presents
the average values for WMAE evaluation metric. This experiment does not consider the average inference
time because there are no expressive variations regarding this aspect.

The experiment shows that, although 𝑐 = 50 presents a slightly better performance compared to the
other considered values, the performance does not change expressively. The same behavior is expected for
the WMAE evaluation metric eliminating the necessity of additional tests. Figure 7.9 presents examples of
solutions generated by VAE-GAN for 𝑐 = 50 and 𝑐 = 5 in 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 aiming at visual comparison.

It is possible to notice that, as the values in Table 7.3 suggest there is not considerable visual difference
considering this range for 𝑐 in 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 .

Figure 7.10 presents the training process of VAE-GAN considering the variation of coefficient c in
𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 using the range presented in Table 7.3. The training, validation, and generator loss curves are
presented in distinct colors and makers for each value of c. Aiming for a better visualization, each graph is
on a different scale. The training loss curves are plotted on a symmetrical logarithmic scale, a combination
of linear and logarithmic scales, with a threshold value set to 1 × 10−5. This means that for data points
close to zero, the scale behaves linearly, providing a clear representation of small variations. As the values
increase beyond the threshold, the scale transitions to a logarithmic scale, allowing the visualization of larger

7.3 Generative Model for Refinement of Tangram Geometry 61

Table 7.3: Experimental results varying coefficient c in 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 .

Coefficient c WMAE Metric

1 0.0273
2 0.0278
5 0.0270
10 0.0277
50 0.0268
100 0.0273
500 0.0273
1000 0.0273
5000 0.0276
10000 0.0272
50000 0.0271
100000 0.0275

(a) Solutions for c = 50.

(b) Solutions for c= 5.

Figure 7.9: Solution images generated by VAE-GAN paired with 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 with varied coefficients.

magnitudes with improved clarity. Validation loss curves also use a symmetrical logarithmic scale but with
a threshold value set to 1×10−3. Finally, the generator loss curves are plotted on a regular logarithmic scale.

From the presented loss curves, it is possible to observe that certain values of c promote more stability
in the training process. When higher values are assigned to c, sudden peaks are observed in the generator
and validation loss curves that may be associated with instability in the training process, possibly due to
issues with gradients during backpropagation. In the training loss curves, it is possible to notice that the
training schedules that considered higher values for c faced convergence issues, thus indicating that the value
assigned to c has a considerable impact on the learning dynamics of the model. Therefore, it is possible to
notice better stability in training is achieved when 𝑐 ≤ 10 considering the presented dataset and the task
of automatically solving the Tangram puzzle. Moreover, the generator loss curves suggest that the values

62 Assessment of Deep Learning Architectures

0 20 40 60 80 100
epochs

0

10 5

10 4

10 3

lo
ss

c = 1
c = 2
c = 5
c = 10
c = 50
c = 100

c = 500
c = 1000
c = 5000
c = 10000
c = 50000
c = 100000

(a) Train loss.

0 20 40 60 80 100
epochs

0

10 3

10 2

10 1

100

lo
ss

c = 1
c = 2
c = 5
c = 10
c = 50
c = 100

c = 500
c = 1000
c = 5000
c = 10000
c = 50000
c = 100000

(b) Validation loss.

0 20 40 60 80 100
epochs

4.2 × 103

4.4 × 103

4.6 × 103

4.8 × 103

5 × 103

5.2 × 103

5.4 × 103

5.6 × 103

lo
ss

c = 1
c = 2
c = 5
c = 10
c = 50
c = 100

c = 500
c = 1000
c = 5000
c = 10000
c = 50000
c = 100000

(c) Generator loss.

Figure 7.10: Loss curves for VAE-GAN under different values for parameter c.

for 𝑐 = 5 and 𝑐 = 10 achieve a lower loss value by the end of training, suggesting that these values are
more effective for the given task and dataset by facilitating a faster or more effective learning process. It
is also possible to conclude that the values for c with the better-performing curve lead to a more robust
model that is less prone to overfitting on the training data. In case 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 is applied in other contexts,
a hyperparameter sensitivity analysis may indicate the range of values for c that lead to better convergence
for a specific task.

7.4 Outcomes

Experimental results indicate the models employed a similar approach to segment the Tangram pattern into
pieces. This approach consists of segmenting the puzzle area following a triangular grid and then eliminating
segments that do not represent the contact between pieces. This strategy aligns well with a particularity of
the Tangram pieces, that tells that they can all be decomposed into small triangles [27]. This shows that the
models were able to learn the geometric properties of Tangram pieces even when these properties were not

7.4 Outcomes 63

directly informed to them. Although conventional evaluation metrics were proven not inadequate for deter-
mining the visual quality of Tangram solutions, a visual examination revealed that VAE exhibited promising
results as it produced well-defined sections between pieces, and favored generating additional sections rather
than omissions. The preference for solutions with extra sections aligns with the principle that they are more
insightful in the context of the interpretation of Tangram puzzles. In line with this perspective, 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸

is proposed, which is a loss function that gives higher importance to pixels representing sections between
pieces rather than pixels covered by pieces. The usage of this loss function is extended to the WMAE evalua-
tion metric, aiming at presenting a metric that is better aligned with the task of evaluating Tangram solutions
than the aforementioned conventional evaluation metrics. Solutions generated by VAE-GAN combined with
𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 were clear and insightful for determining the correct position and configuration of the Tangram
pieces. The discriminator supports regularization in the training process and leads to smoother loss curves
for the generator. Experimental results indicate that VAE-GAN architecture is the most robust choice among
the considered architectures, showing stable convergence and strong generalization skills. After the exper-
iments, the WMAE metric is employed to evaluate the performance of the architectures, demonstrating its
ability to overcome limitations associated with conventional metrics and, consequently, deliver a more ac-
curate assessment of Tangram solutions. Therefore, it is possible to conclude that deep learning techniques
are applicable to the task of solving Tangram puzzles.

64 Assessment of Deep Learning Architectures

Chapter 8

Deep Learning Approach

As demonstrated in Chapter 7 and sustained by works in the literature [96, 33], generative models have
proven efficient in the task of automatically solving Tangram puzzles. In the following, the proposed GAN
architecture and its components are presented in detail. The present chapter also outlines the proposed loss
function based on Hu Moments, and a derived evaluation metric for assessing the accuracy of the generated
solutions.

8.1 Architecture Components

As stated before, a GAN consists of two intricately linked components: a generator and a discriminator.
The input of the model is an image that represents a Tangram pattern in black and white pixels. White
pixels represent the puzzle region, while black pixels represent areas outside of the puzzle region. The
generator is tasked with the unique ability to synthesize grayscale images that closely resemble the intricate
patterns and complexities found in authentic Tangram solutions, while the discriminator attempts to discern
the authenticity of these generated images. The proposed GAN model, named TANGAN, is presented in
Figure 8.1.

Figure 8.1: Workflow for TANGAN architecture.

66 Deep Learning Approach

The pre-processing block shows a process similar to the one described in Figure 7.1, where Gaussian
noise is applied on the input batch images as a form of regularization, and online dataset augmentation is
applied on the input batch to further improve generalization of the model. A recurrent problem when using
GANs is the amount of data. Studies show that with small datasets, the discriminator tends to overfit the
training examples [34]. As a consequence, the feedback to the generator becomes meaningless and training
starts to diverge. For this reason, data augmentation is applied on the batches that are input into TANGAN,
similarly to the process described in Chapter 7. As mentioned before, by definition, any pattern formed by
the Tangram pieces can be understood as a Tangram puzzle. The proposed data augmentation process takes
advantage of this concept to create variations of the samples in the batch. After selecting a batch of samples
as input, the model performs a random rotation to the image, where this rotation is a multiple of 90o. It
also randomly flips the image in the vertical and horizontal axis. Finally, it employs random image scaling,
reducing the scale within a limit of 10% of the original size to avoid any cropping.

The following steps are similar to the dynamic illustrated in Figure 3.4. The generator and discriminator
are trained competitively. The generator aims to produce data that is realistic enough to fool the discrim-
inator, while the discriminator strives to become better at telling real from fake. Finally, backpropagation
is used as part of the training process to update the parameters of both the generator and the discriminator
networks. The architecture components are presented in detail in Appendix 10.2 where it is possible to see
their summary and number of parameters described in detail.

The VAE-based generator is a deep convolutional neural network that starts with a 512x512 grayscale in-
put and progressively applies multiple Conv2D layers with 48 filters each, interspersed with batch normaliza-
tion, LeakyReLU activations, and dropout layers to downsample the input, culminating in a dense layer and
a sampling layer to create a latent space representation. The model then up-samples using Conv2DTranspose
layers, concatenating intermediate layers for skip connections, each followed by batch normalization, LeakyReLU
activations, and dropout layers, eventually producing a 512x512 output with a single channel. The model
consists of 3,804,969 parameters in total, of which 3,803,335 are trainable.

The employed discriminator is a convolutional neural network designed for image processing tasks,
consisting of two 512x512 grayscale input layers concatenated into a single 512x512x2 input, followed by
a series of convolutional layers with increasing filter sizes and LeakyReLU activations, interspersed with
batch normalization and dropout layers to enhance training stability and prevent overfitting. The network
concludes with a global average pooling layer and a dense layer producing a single output. The model has
a total of 11,153,857 parameters, of which 11,150,017 are trainable.

8.2 Hu Moments Loss Function

Besides the architecture components, another important aspect that dictates the learning process of the model
is the loss function. A crucial problem that emerges when assessing generated Tangram solutions related to
its one-to-many correspondence, since a single pattern may have multiple solutions. According to what is
observed in the real world, a single Tangram pattern should be associated with a set of ground truth solutions.
However, it is uncommon to pair a single input with multiple ground truth references in generative models,
as the standard practice is to have a one-to-one correspondence, ensuring a straightforward and unambiguous

8.2 Hu Moments Loss Function 67

learning process [121]. This occurs because the association of multiple correct answers for a given input
can compromise the adjustment of machine learning methods, and convergence is thus not guaranteed [122].
This aspect makes the application of generative models to dissection puzzles considerably challenging. For
example, Figure 8.2 presents a scenario where two different arrangements of the Tangram pieces can form
the same square pattern. Imagine that solution image 𝑆𝑦 is the ground truth being considered by the model,
while solution image 𝑆𝑥 is the generated one. Designing a loss function that can effectively recognize the
equivalence of solution images 𝑆𝑥 and 𝑆𝑦 for the square pattern is difficult. This is because performing a
pixel value mask operation and comparing the position of each piece is not sufficient in this case, as it is
possible to see when one considers the positioning of one of the big triangle pieces.

(a) Solution 𝑆𝑥 (b) Big triangle in 𝑆𝑥 (c) Solution 𝑆𝑦 (d) Big triangle in 𝑆𝑦

Figure 8.2: Difficulty in treating multiple solutions for Tangram.

Considering the presented issue, a better practice would be to design a loss function that can extract geo-
metric features from each piece presented in the ground truth image and attempt to find the same geometric
features in the generated image. For this reason, this dissertation proposes a novel loss function that is based
on Hu Moments and is capable of telling the discrepancy between two images by taking into consideration
geometric features [103].

First, it is necessary to verify the correspondence between the ground truth pattern and the generated
one. Notice that the Hu Moments are not applicable in this task because it aims at comparing the patterns
precisely, and the invariant nature of Hu Moments can potentially affect that comparison. Thus, analogously
to the 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 presented in Chapter 7, a variation of the WMAE metric is included as a component of
the proposed loss function. This component is nominated as 𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸 and is crucial for driving the
model to infer the correct tones for the pieces, as well as for maintaining the pieces within the areas of the
puzzle area.

The solution images 𝐼𝑥 and 𝐼𝑦 are given to the loss function as the image representation of solutions 𝑆𝑥

and 𝑆𝑦 respectively. Their normalized counterparts are defined as 𝐼𝑛𝑜𝑟𝑚𝑥 and 𝐼𝑛𝑜𝑟𝑚𝑦 respectively. Thus, There
are conditions that 0 ≤ 𝐼𝑛𝑜𝑟𝑚𝑥 (𝑖, 𝑗) ≤ 1 and 0 ≤ 𝐼𝑛𝑜𝑟𝑚𝑦 (𝑖, 𝑗) ≤ 1 for every coordinate (𝑖, 𝑗) present in 𝐼𝑛𝑜𝑟𝑚𝑥
and 𝐼𝑛𝑜𝑟𝑚𝑦 . Then, the absolute difference between them, denoted as Δ, is calculated element-wise following
the Euclidean norm:

Δ(𝑖, 𝑗) = ‖𝐼𝑛𝑜𝑟𝑚𝑦 (𝑖, 𝑗) − 𝐼𝑛𝑜𝑟𝑚𝑥 (𝑖, 𝑗)‖2. (8.1)
Then, it is possible to calculate the conditional weights. The only big difference from this to the previ-

ously proposed 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 is that this weighting function assumes the image has grayscale tones that vary

68 Deep Learning Approach

in the [0, 1] interval. Therefore, elements of Δ are analyzed, and the penalty term 𝑃 given by:

𝑃 (𝑖, 𝑗) =

⎧

⎪

⎨

⎪

⎩

𝒄 ⋅ Δ, if 𝐼𝑛𝑜𝑟𝑚𝑦 (𝑖, 𝑗) = 0

Δ, otherwise,
(8.2)

where 𝑐 represents a penalty factor, and the condition 𝐼𝑛𝑜𝑟𝑚𝑦 = 0 covers cases where a particular pixel in
𝐼𝑛𝑜𝑟𝑚𝑦 is assigned black. The function effectively penalizes instances where the generator incorrectly predicts
a pixel that should be black. Its primary objective is to prioritize pixels delineating sections between pieces
and discerning the background from areas covered by pieces. Thus, the final value of the loss function is
defined as a sum of all the penalties:

𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸(𝑆𝑥, 𝑆𝑦) =
1

𝑚 ⋅ 𝑛

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑃 (𝑖, 𝑗) (8.3)

After this point, it is possible to proceed to the next step of the loss function calculation, which concerns
the assessment of the geometry of the pieces. The concept of Hu Moments was previously mentioned in the
present dissertation in Chapter 5. However, it is pertinent to revisit and delve deeper into this concept, since
the loss function stands as a main contribution in the present dissertation. To compute Hu moments, it is
necessary to first calculate the normalized central moments 𝜂𝑝𝑞 using the following formula:

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇
(1+ 𝑝+𝑞

2)
00

, (8.4)

where 𝜇𝑝𝑞 is the central moment of order 𝑝 + 𝑞 and 𝜇00 is the zeroth-order central moment.
Notice that, in the context of normalized moments, normalization refers to scaling the moments by a

measure of dispersion, typically the standard deviation. The purpose is to make the moments comparable
across datasets or distributions that may have different scales [123]. Central and normalized moments are
invariant to scaling and translation already. The challenge is to find rotational invariants. These normalized
central moments are then used to compute the Hu moments as linear combinations of the central moments,
each representing distinct geometric properties and relationships of the object.

8.2 Hu Moments Loss Function 69

Hu1 =
𝜂20 + 𝜂02

𝜂200
,

Hu2 =
(𝜂20 − 𝜂02)2 + 4𝜂211

𝜂400
,

Hu3 =
(𝜂30 − 3𝜂12)2 + (3𝜂21 − 𝜂03)2

𝜂500
,

Hu4 =
(𝜂30 + 𝜂12)2 + (𝜂21 + 𝜂03)2

𝜂500
,

Hu5 =
(𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2]

𝜂1000
,

Hu6 =
(20𝜂20 − 20𝜂02)2 + 6(30𝜂11)2

𝜂1000
,

Hu7 =
𝜂21 ⋅ (𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2] − (𝜂03 ⋅ (𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2]

𝜂1000
,

(8.5)
where Hu𝑖 represents the 𝑖-th Hu moment, 𝜂𝑝𝑞 is the normalized central moment of order 𝑝 + 𝑞, and 𝜂00 is
the zeroth-order normalized central moment.

By using the list of tones that were assigned to the pieces, it performs a pixel value mask operation on
the ground truth and the solution considering each tone. Therefore, for each Tangram piece, it picks the
grayscale tone assigned to it and performs a pixel value mask operation on both solution and ground truth
images. The function obtains a pair of binary masks, where True values represent the pixels that have that
specific tone, while False values represent pixels dissimilar to the specific tone. It proceeds to calculate the
ratio concerning the pixels present in the obtained piece masks. This is necessary to guarantee that the pieces
represented in the generated solution image 𝑆𝑥 and in the ground truth image 𝑆𝑦 have the same scale. It is
important to mention that the Hu Moments are invariant to scale, as a consequence objects with different
scale and similar geometric features may have similar moments. Therefore the ratio is calculated as:

𝑟(𝑃𝑥𝑖, 𝑃𝑦𝑖) =
|𝑇 (𝑃𝑥𝑖) − 𝑇 (𝑃𝑦𝑖)|

|𝑇 (𝑃𝑥𝑖) − 𝑇 (𝑃𝑦𝑖)| + 1
, (8.6)

where 𝑇 (𝐼) counts the number of True values in binary mask I, and piece masks 𝑃𝑥𝑖 and 𝑃𝑦𝑖 are related to
piece 𝑖 in 𝑆𝑥 and 𝑆𝑦, respectively. The denominator serves as a smooth approximation that makes the ratio
value stay within the [0, 1] interval.

It then proceeds to calculate the Hu Moments of the pair of binary masks and calculate the average dif-
ference between the moments. This process is illustrated in Figure 8.2 for solutions A and B considering one
of the big triangular pieces, where the obtained masks should have approximately the same Hu Moments. It
is important to mention that the proposed loss function uses only the Hu Moments 𝐻𝑢1, 𝐻𝑢2, 𝐻𝑢3, 𝐻𝑢4,
𝐻𝑢5, and 𝐻𝑢6. The moment 𝐻𝑢7 stands out as particularly sensitive to the reflection transformation [124].
When an image undergoes a reflection transformation, such as being flipped, 𝐻𝑢7 undergoes a noticeable
change, thereby providing a distinctive characteristic that aids in distinguishing between the object and its

70 Deep Learning Approach

mirrored counterparts [125]. This aspect contributes to the utility of 𝐻𝑢7 in scenarios where recognizing
mirrored or flipped versions of objects is crucial for accurate image analysis and pattern recognition. Still,
it may introduce unwanted variability for some other scenarios, including recognizing the geometry of Tan-
gram pieces. Therefore the function that measures the difference in the geometry of pieces is expressed
as:

𝐻(𝑆𝑥, 𝑆𝑦) =
7
∑

𝑖=1

6
∑

𝑗=1

|𝐻𝑢𝑗(𝑃𝑥𝑖) −𝐻𝑢𝑗(𝑃𝑦𝑖)|
|𝐻𝑢𝑗(𝑃𝑥𝑖) −𝐻𝑢𝑗(𝑃𝑦𝑖)| + 1

(8.7)

where𝐻𝑢𝑗(𝑀) corresponds to the j-th Hu Moment in binary mask𝑀 . Piece masks 𝑃𝑥𝑖 and 𝑃𝑦𝑖 are related to
piece 𝑖 in𝑆𝑥 and𝑆𝑦, respectively. The order of the pieces does not affect the value of𝐿𝑜𝑠𝑠𝑃 𝑖𝑒𝑐𝑒𝑠(𝑆𝑥, 𝑆𝑦). The
divider of 𝐿𝑜𝑠𝑠𝑃 𝑖𝑒𝑐𝑒𝑠(𝑆𝑥, 𝑆𝑦) is the number of pieces times the number of considered Hu Moments, which
is important to guarantee that 𝐿𝑜𝑠𝑠𝑃 𝑖𝑒𝑐𝑒𝑠(𝑆𝑥, 𝑆𝑦) has a balanced impact concerning 𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸(𝑆𝑥, 𝑆𝑦)
when these are combined in the final proposed loss function. Notice that, analogously to Equation 8.6, the
denominator serves as a smooth approximation that makes the ratio value stay within the [0, 1] interval

Next, it is necessary to divide the calculated geometric difference between the number of considered
moments and the number of pieces:

𝐿𝑜𝑠𝑠𝐻𝑢(𝑆𝑥, 𝑆𝑦) =
𝐻(𝑆𝑥, 𝑆𝑦)

6 ⋅ 7
(8.8)

At this point, both components of the loss function, 𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸 and 𝐿𝑜𝑠𝑠𝐻𝑢, are already calculated.
Thus, the previously calculated components are combined and the final proposed loss function is given by:

𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸−𝐻𝑢(𝑆𝑥, 𝑆𝑦) =
𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸(𝑆𝑥, 𝑆𝑦) + 𝐿𝑜𝑠𝑠𝐻𝑢(𝑆𝑥, 𝑆𝑦)

2
, (8.9)

where 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸−𝐻𝑢(𝑆𝑥, 𝑆𝑦) evaluates the dissimilarity between generated solution image 𝑆𝑥 in relation
to the ground truth image 𝑆𝑦. Also, 𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸(𝑆𝑥, 𝑆𝑦) aims at assessing the similarity between the
patterns depicted in 𝑆𝑥 and 𝑆𝑦. Finally, 𝐿𝑜𝑠𝑠𝑃 𝑖𝑒𝑐𝑒𝑠(𝑆𝑥, 𝑆𝑦) calculates the level of geometric dissimilarity
between the pieces depicted in 𝑆𝑥 and 𝑆𝑦. It is worth noticing that both loss components 𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸 and
𝐿𝑜𝑠𝑠𝑃 𝑖𝑒𝑐𝑒𝑠 both fall in the [0, 1] interval, thus summing them and dividing by 2 guarantees that the value of
𝐿𝑜𝑠𝑠𝑀𝐴𝐸−𝐻𝑢 also stays in the same interval.

The usage of Hu Moments in the loss function makes it possible to check if the geometry of the pieces is
correct, instead of checking their specific position or configuration. The idea is to bring the loss function as
close as possible to the perception of a human player, where they would be able to recognize the equivalency
of solutions even when the generated solution was different from the ground truth. This is beneficial to not
only Tangram but also other dissection puzzles because it is not sensitive to multiple solutions. The criteria
for a solution to be considered close to the ground truth are that it has to represent the same pattern, and is
composed of the same geometric pieces. The proposed loss function offers a novel perspective on under-
standing image content, not only relying on pixel values but also on the spatial relationships and geometric
structures within the data. It has the potential to enhance the performance of various computer vision tasks,
such as object recognition and segmentation, by accounting for object shape and structure, making neural
networks more adaptable and versatile in real-world applications.

8.3 Hu Moments Evaluation Metric 71

8.3 Hu Moments Evaluation Metric

Expanding upon the loss function established in Section 8.2, this dissertation proposes the application of
the 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸−𝐻𝑢 for the task of evaluating Tangram solutions. In addition to refining the loss function to
account for geometric features of Tangram pieces within the solution image, the present dissertation proposes
the introduction of a novel evaluation metric denominated the Weighted Mean Absolute Error incorporating
Hu Moments (WMAE-Hu). By integrating geometric properties alongside image data, this metric offers a
more comprehensive evaluation of solution fidelity and geometric accuracy. While traditional metrics such
as MSE[115] and SSIM[116] rely solely on pixel-level assessments, the proposed WMAE-Hu metric refines
the evaluation process by capturing geometric nuances critical to Tangram solution accuracy. This extension
reflects a deeper understanding of the geometric intricacies inherent in Tangram puzzles, thereby showing
a logical solution process and proper understanding of the geometric features present in the Tangram.

To demonstrate the efficiency of WMAE-Hu, a mock scenario is presented where the desired pattern is
the initial configuration of Tangram pieces in which they are boxed into a square. It starts with a feasible
solution 𝑠0 as the expected ground truth. However, a list of possible solutions also includes several other
arrangements of pieces, such as 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5. In theory, an efficient evaluation metric should be able to
identify that 𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 represent equally feasible solutions for the desired pattern. Therefore, this
study serves to understand whether WMAE-Hu is prone to recognizing equally feasible solutions that form
the same target pattern. Figure 8.3 shows the solutions being considered in this mock scenario.

(a) 𝑠0. (b) 𝑠1. (c) 𝑠2.

(d) 𝑠3. (e) 𝑠4. (f) 𝑠5.

Figure 8.3: Multiple arrangements of pieces that form the same Tangram pattern.

Traditional MSE and SSIM evaluation metrics are considered for comparison. Additionally, the metric

72 Deep Learning Approach

CWMAE that is a direct extension of 𝐿𝑜𝑠𝑠𝐶𝑊𝑀𝐴𝐸 is also examined, referencing the experiments performed
in Section 7. The hypothesis is that WMAE-Hu will outperform those metrics when dealing with multiple
feasible solutions, due to its ability to consider geometric information regarding the pieces in contrast to met-
rics that are more sensitive to pixel-level differences. Figure 8.4 shows the results obtained when evaluating
the dissimilarity between 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 when compared to the ground truth 𝑠0.

s1 s2 s3 s4 s5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

va
lu

e

WMAE Hu
CWMAE
MSE
SSIM

Figure 8.4: Metric values when comparing ground truth with other feasible solutions.

The average loss value for WMAE-Hu is 0.0107, for CWMAE it is 0.0213, for MSE it is 0.0356, and for
SSIM it is 0.0956. It is important to mention that in the executed experiments, a slight amount of dissimilarity
might be present among the feasible solutions. This can be attributed to inherent challenges associated
with pixel representation and the inaccuracies from used image processing techniques. These factors can
introduce subtle variations in the images, and it is not uncommon to observe minor discrepancies, even when
the underlying content is similar. Overall, the results suggest that for all the executed experiments, WMAE-
Hu is the one that produces the lowest average level of dissimilarity between 𝑠0 and its variants, thus showing
that it is consistently efficient in assessing Tangram solutions even when they are different from the expected
ground truth. In particular, SSIM presented a poor performance by attributing substantially high levels
of dissimilarity for the considered feasible solutions. This is because SSIM performs local comparisons
between corresponding patches in the images. When an image is flipped or rotated, the local structures and
orientations of features can change, thus significantly impacting the calculation of SSIM. Regarding MSE,
it could assess the similarity between the feasible solutions fairly well, but it has proven less sensitive than
WMAE-Hu and CWMAE in all the performed evaluations. It is also possible to notice that the loss values
for WMAE-Hu are always close to half of the correspondent value for WMAE, which indicates that the
values 𝐿𝑜𝑠𝑠𝐻𝑢 is close to zero based on the Equation 8.9. The non-expressibility of 𝐿𝑜𝑠𝑠𝐻𝑢 proves that the
pieces in multiple solutions of the same Tangram pattern have close values for Hu Moments, thus making
these invariant moments notably efficient in perceiving the geometry of the pieces.

To address the dispersion of the calculated levels of dissimilarity according to each metric, the coeffi-
cient of variation (CV) is considered [126]. It consists of a statistical measure used to quantify the relative
variability or dispersion of a data distribution. It is calculated as the ratio of the standard deviation to the
mean of the data. The coefficient provides a standardized measure of variability that allows for the com-

8.3 Hu Moments Evaluation Metric 73

parison of variability between datasets with different units or scales. A higher CV indicates greater relative
variability compared to the mean, while a lower CV indicates less relative variability. For this particular
mock scenario, the average CV value for WMAE-Hu and CWMAE is 0.1046, for MSE it is 0.2155, and
for SSIM it is 0.1665. Therefore, it indicates that WMAE-Hu and CWMAE present a lower variation when
evaluating equivalent solutions for the same pattern, indicating that these metrics are notably consistent in
identifying Tangram solutions that are equivalent in forming the same pattern. The other metrics are less
consistent in this sense, attributing more variability to the calculated levels of dissimilarity although the
considered solutions are equally feasible.

Therefore, this mock scenario serves to demonstrate the efficiency of the proposed evaluation metric
WMAE-Hu in perceiving the similarity between multiple solutions for the same Tangram puzzle. It is
important to highlight that this evaluation metric can also be applied to other tasks that permit multiple
solutions, such as tilling problems [28], polyominoes [127, 128], furniture layout planning [129], and tesse-
lation [130].

74 Deep Learning Approach

Chapter 9

Experiments

This chapter presents the main results of the proposed heuristic and deep learning approaches. Section 9.1
presents the experimental setup for the conducted experiments, while Section 9.2 presents the obtained
results. Finally, Section 9.3 compares the employed approaches and references the findings of Chapter 7.

9.1 Experimental Setup

Implementation was done using Python 3.9.12 and Tensorflow 2.11.0 library. All tests were run on a
Ryzen 3700x 3.6GHz 32GB of RAM with an Nvidia RTX 4090 24GB.

For the heuristic method, the dataset used for tests is the same as the one presented in Chapter 5 but the
training set is not used due to the absence of a training stage. Thus the heuristic approach is submitted to
100 samples. A time limit of 360s is defined to assemble each Tangram puzzle, otherwise, it is considered
that the method reached a timeout. It is assumed that 360s is the maximum time a user is willing to wait
for a feasible solution for a given Tangram puzzle. It is also worth mentioning that the scale of the pieces
is reduced by 5% to the scale of the input target pattern to avoid overlaps. Rotations are implemented in
1-degree increments. Since Tangram is a visual puzzle, this difference is typically unnoticeable to a human
player, making this approach adequate for puzzles requiring unconstrained rotations.

For the deep learning approach, the dataset used for tests is the same as the one presented in Chapter 5.
During training, the TANGAN uses a batch size of 20 to balance speed and memory efficiency. It uses the
Adam Optimizer [131], where the learning rate starts at 0.0002 and the first-moment decay rate at 0.5. It also
employs a binary cross-entropy loss for the discriminator and 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸−𝐻𝑢 for the generator, weighted
by a factor of 100 relative to the discriminator loss. Regarding the parameter setting, empirical tests show
that the best results are achieved using 𝑐 = 5 for the penalty factor in Equation 8.2. The training is divided
into two stages. In the first stage, the approach selects 100 samples from the training set to serve as a
validation set, as indicated in Chapter 5. The loss function curves are constantly monitored to determine the
number of epochs the model converges. The idea is that if the model is properly learning, both the training
and validation loss curves will present a significant decrease. However, there is a point in training where the
validation loss starts increasing, which indicates that the model is overfitting. This point in training indicates
the number of epochs for the second stage of training. In the second stage, the validation set is reincorporated

76 Experiments

into the training set and the testing set is finally used for testing. The model is retrained considering these
sets are subjected to the number of epochs obtained in the previous stage of training.

9.2 Experimental Results

9.2.1 Results for Heuristic Approach

The heuristic method did not present a good performance, being able to assemble only 24% of the input
Tangram puzzles in an average running time of 184.148s. Figure 9.1 presents some examples of solutions
obtained using the heuristic method. The first row presents the input patterns, the second row presents a
corresponding feasible solution, and the third row presents the obtained solution.

Figure 9.1: Solutions obtained by the heuristic approach.

Table 9.1 presents the number of solved puzzles categorized according to the characteristics that de-
scribe complex Tangram puzzles. The first row presents the number of solved puzzles considering each
category of complex puzzles. The second row alludes to Table 5.1 and presents the total number of puzzles
included in the proposed dataset that possess each aforementioned characteristic. The last row of the table
summarizes the information of the previous rows by presenting the ratio of solved puzzles according to each
characteristic. The flip ratio refers to the distribution of both enantiomers of the parallelogram found in the
considered ground truth set, being the first enantiomer present in Figure 5.4 (a) and the second enantiomer
present in Figure 5.4 (b).

Holes Multiple Unconstrained Flip Ratio

Solved 6 5 1 15 / 9
Total 34 40 14 70 / 30
Ratio 17.65% 12.50% 7.14% 21.14% / 30.00%

Table 9.1: Results for heuristic approach.

9.2 Experimental Results 77

Regarding comparison with the methods present in the literature, 15 puzzles of the testing set were
purposefully selected for sharing similarities with some puzzles investigated by other authors. The heuristic
could solve 3 out of the 15 selected puzzles, thereby accounting for 20% of accuracy. This percentage is
close to the overall 24% of puzzles correctly solved from the testing set.

An extra experiment is performed where the established time limit is doubled and then tripled to examine
the impacts on the performance heuristic approach. The main idea is to examine the reason for the reduced
number of solved complex puzzles by the heuristic approach. Table 9.2 summarizes the performance changes
regarding average time and number of solved puzzles according to different time limits.

Time Limit Solved Puzzles Average Time

360s 24 184.148s
720s 30 274.917s

1080s 34 340.353s

Table 9.2: Effects of time limit on the heuristic approach.

Although the number of solved puzzles increases slightly when the time limit is extended, there is a
substantial rise in the average time. Additionally, there are some interesting observations regarding the
aspects of the puzzles solved when the time limit is increased. For instance, 3 out of the 4 extra puzzles that
are solved when the time limit goes from 720s to 1080s demand unconstrained rotations, which indicates
that the heuristic encounters difficulties in solving puzzles with unconstrained rotations in reasonable time
due to the complexity associated with these puzzles.

9.2.2 Results for Deep Learning Approach

The average time for TANGAN to infer on a Tangram pattern image is 0.003s. A major issue emerges
when analyzing the Tangram solutions generated by TANGAN since they are image-based and inherently
ambiguous. Thus, Figure 9.2 illustrates a visual classification that is performed for assessing the generated
Tangram solutions. Pieces are colored in blue for better visualization of sections between them. The images
are obtained by thresholding black pixels to white and non-black pixels to blue. High-quality solutions are
the ones that clearly represent the sections between pieces, even if the tones are off. Medium-quality images
have at most, a missing or extra section, which implies that although they present some pieces well-defined,
they demand some familiarity with Tangram pieces to infer their correct placements. Images with poor
quality have a great portion of the pieces not well defined. Most of the poor-quality images are closer to the
initial input pattern than an actual solution.

According to the visual quality classification of solutions, 70 samples were high quality, 17 were medium
quality, and 13 were poor quality. This suggests that depending on their familiarity with the Tangram pieces
they could solve between 70.0% and 87.0% of the samples by looking at the images generated with the
TANGAN. Although not presenting the pieces clearly in the image, the solutions classified as poor may
also be insightful, because even though the section between pieces is not properly defined, it often gets the

78 Experiments

(a) High-quality solutions.

(b) Medium-quality solutions.

(c) Poor-quality solutions.

Figure 9.2: Solutions generated by TANGAN according to visual classification.

assigned grayscale tones correctly, at least to the point of being possible to determine which pixels are part
of each piece.

Regarding the taxonomy of the generated solutions, Table 9.3 shows the number of solved patterns
considering the visual quality classification and the aspects that characterize complex puzzles. The last
row shows the percentage of solutions that fall between medium-quality and high-quality categories, thus
indicating how many puzzles a player could solve only by looking at the images generated by TANGAN and
subject to their familiarity with the Tangram pieces. For aspects that describe complex puzzles, refer to the
terms used in Figure 1.4. For aspects that describe complex puzzles, refer to the terms used in Figure 1.4.
The flip ratio refers to the distribution of both enantiomers of the parallelogram found in the considered
ground truth set, being the first enantiomer present in Figure 5.4 (a) and the second enantiomer present in
Figure 5.4 (b).

As previously stated, 15 puzzles of the testing set were purposefully selected due to similarities with
some puzzles investigated by other authors. TANGAN presents certain difficulties in assembling those
puzzles having 5 of them classified as medium-quality and 10 of them classified as poor-quality in the visual
quality classification.

9.3 Experimental Analysis 79

Classification Holes Multiple Unconstrained Flip Ratio

High 29 32 4 44 / 26
Medium 3 8 7 15 / 2

Poor 2 0 3 11 / 2
Total 34 40 14 70 / 30
Ratio 85% ∼ 94% 80% ∼ 100% 29% ∼ 79% 63% ∼ 84% / 87% ∼ 94%

Table 9.3: Taxonomical analysis on the generated solutions.

9.3 Experimental Analysis

In the following, the results obtained from the heuristic and the deep learning approaches are discussed.
For the deep learning approach, a combination of TANGAN architecture and 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸−𝐻𝑢 proposed
in Chapter 8 is employed. Additionally, a combination of VAE-GAN architecture proposed in Chapter 7
and CWMAE presented in Chapter 8 is used for comparison. This comparison is important for analyzing
the effects of the introduction of 𝐿𝑜𝑠𝑠𝑊𝑀𝐴𝐸 and modifications made to the architecture on the generated
Tangram solutions. Table 9.4 compares the results obtained by the heuristic approach, VAE-GAN, and
TANGAN regarding running time and complex aspects. Notice that the solutions output by the heuristic
approach are not image-based, and do not need to undergo visual classification. For aspects that describe
complex puzzles, refer to the terms used in Figure 1.4. The flip ratio refers to the distribution of both
enantiomers of the parallelogram found in the considered ground truth set, being the first enantiomer present
in Figure 5.4 (a) and the second enantiomer present in Figure 5.4 (b).

Method Time Classification Holes Multiple Unconstrained Flip Ratio

Heuristic 184.148s 17.65% 12.50% 7.14% 21.14% / 30.00%
High 35.29% 55.00% 14.29% 56.67% / 31.43%

VAE-GAN 0.002s Medium 38.24% 35.00% 42.86% 16.67% / 37.14%
Poor 26.47% 10.00% 42.86% 26.67% / 31.43%
High 85.29% 80.00% 28.57% 62.86% / 86.67%

TANGAN 0.003s Medium 8.82% 20.00% 50.00% 21.43% / 6.67%
Poor 5.88% 0.00% 21.43% 15.71% / 6.67%

Table 9.4: Comparative results of TANGAN, the VAE-GAN, and the heuristic approach.

The heuristic approach is commended for its straightforwardness and ease of application directly to
testing sets, eliminating the need for a training stage. It proves advantageous when precise solutions are
required, as it provides detailed information about piece positioning, rotation, and reflection by the end of

80 Experiments

its execution. However, it did not present a good performance, especially for generated Tangram patterns.
This poor performance can be attributed to how it calculates the feasible positions when fitting a piece. The
heuristic approach depends on well-defined shapes with no imperfections along the edges of the Tangram
pattern. The problem comes from how the Tangram patterns are generated in the dataset. As mentioned
before, a random generator is used [100], then image processing techniques are applied to obtain the Tangram
patterns and solutions. These image processing procedures may generate small imperfections along the
border of Tangram patterns. This combined with the mathematical morphology techniques used for the piece
placement may result in the generation of an imprecise morphological skeleton and an unnecessary number
of endpoints. Another factor that compromises the performance of the heuristic approach is the fact that its
complexity grows with the number of possible configurations for the pieces, which affects mainly complex
puzzles. As previously stated, at the beginning of its execution, the heuristic generates a list of possible
configurations for each piece to be tested one by one during its placement procedure. It prioritizes simple
configurations, where the rotation is a multiple of 45𝑜 and the parallelogram is not flipped by placing them
in the initial positions of the list. This seems a fair strategy considering that most of the Tangram patterns in
the literature represent simple puzzles, but since this dissertation focuses on complex puzzles, the number
of complex features in the testing set is high, as shown in Table 5.1. This can influence the performance of
the heuristic approach because it would take much time for the method to get to the correct configurations
when considering each element in the list when dealing with unconstrained rotations and the reflection
transformation. This observation is reinforced by the taxonomical analysis of the solutions obtained by the
heuristic approach, which shows that the heuristic struggles to solve puzzles with unconstrained rotations.
This is due to the unconstrained rotations having a notable influence on the increase in the number of possible
configurations, and thus on the complexity of the solution process.

Since the solutions generated by TANGAN and VAE-GAN are image-based, they may be assessed by
the evaluation metrics mentioned in Chapters 7 and 8. Therefore, Table 9.5 reports average values of MSE,
SSIM, CWMAE, and WMAE-Hu for assessing the level of dissimilarity of the generated solutions and their
respective ground truths. For all metrics, the best results are highlighted.

Method Time Classification MSE SSIM CWMAE WMAE-Hu

High 0.0086 0.0523 0.0235 0.0118
VAE-GAN 0.002s Medium 0.0121 0.0625 0.0261 0.0131

Poor 0.0172 0.0897 0.0308 0.0154
Average 0.0123 0.0667 0.0265 0.0133

High 0.0162 0.0472 0.0233 0.0116
TANGAN 0.003s Medium 0.0195 0.0643 0.0264 0.0132

Poor 0.0378 0.0896 0.0356 0.0178
Average 0.0196 0.0556 0.0254 0.0127

Table 9.5: Comparative results of VAE-GAN and TANGAN regarding evaluation metrics.

9.3 Experimental Analysis 81

The results indicate that TANGAN outperforms VAE-GAN since it presents a higher ratio of high-quality
solutions considering all the complex aspects in Table 9.4. Regarding the evaluation metrics in Table 9.5,
the results reinforce that MSE is not adequate for assessing generated Tangram solutions, going against the
results presented in Table 9.4 and suggesting that VAE-GAN generates solutions that are more accurate than
TANGAN. The remaining metrics present scales that align better with the visual classification, establishing
a lower average dissimilarity value for high-quality solutions, and a higher average dissimilarity value for
poor-quality solutions. Considering the presented results and the findings of the mock scenario presented
in Chapter 8, it is possible to conclude that WMAE-Hu is the most adequate metric for assessing Tangram
solutions among the considered evaluation metrics. By focusing on geometric features rather than only on
pixel-wise accuracy, this loss function addresses the challenge of one-to-many correspondence and enhances
the ability of deep learning models to generalize across multiple feasible solutions. This underscores the
importance of considering geometric properties in the design of loss functions for geometric tasks.

In comparison with the other two approaches, TANGAN offers considerable speed advantages over the
heuristic approach, while outperforming VAE-GAN regarding all complex aspects. Its efficiency and speed
make it a compelling choice for solving puzzles with unconstrained rotations that might be time-consuming
for the heuristic approach. It is worth noticing that, in contrast to the heuristic method, TANGAN did
not demand extra effort when dealing with complex puzzles when compared with simple puzzles. From the
taxonomical analysis, it is possible to observe that TANGAN did not have problems in dealing with complex
aspects related to the representation of the pattern, namely puzzles with multiple regions and holes within the
puzzle area. This indicates that the chosen raster-based representation is adequate for depicting these aspects
in a pattern in a way that TANGAN can properly differentiate between the puzzle area and the background
area. Another finding evident from the taxonomical analysis is that the aspect that represented the biggest
challenge for TANGAN was the unconstrained rotations, presenting a fairly balanced distribution between
the visual quality grades. Moreover, unlike the heuristic approach, TANGAN demonstrates resilience to
imperfections along the borders of puzzle areas. Figure 9.3 shows the progress in the assembly of a Tangram
pattern throughout the training process.

Similarly to the work by Deutsch & Hayes [91], TANGAN tackles the Tangram as a sectioning problem.
It uses convex corners along the borders of the container to find the lines that represent the segmentation
of the pieces. It then takes advantage of the geometric property presented in Figure 1.3 by segmenting the
pattern into small triangles and then determining the position of each piece based on the configuration of
small triangles. This is an interesting observation because it shows that the model could learn a previously
documented solution strategy without being directly presented to it, which reinforces the idea that it can
learn complex geometric relations between the pieces and the target pattern. This strategy has proven more
efficient for slim patterns than wider patterns that do not present many convex corners along the pattern
borders that might assist in finding the sections between pieces. This is the reason for the poor performance
of the heuristic when assembling the 15 puzzles addressed by other authors since many of them have wider
shapes. Some examples can be found in Figure 5.3 (e), Figure 5.3 (h), Figure 5.3 (k), and Figure 5.3 (o). It
is possible to notice that the random generator by Köpp [100] tends to generate samples where the pieces are
more distributed, and often contain convex corners that can be used to segment the puzzle area. Therefore,
a reasonable idea would be to include more samples of Tangram puzzles containing composites [91] in the

82 Experiments

(a) EPOCH = 110. (b) EPOCH = 120. (c) EPOCH = 210.

(d) EPOCH = 270. (e) EPOCH = 280. (f) EPOCH = 600.

Figure 9.3: Progress of solutions over the epochs considering a sample from the testing set.

training set, thus encouraging deep learning models to learn how the Tangram pieces can interact to form
convex polygons. By incorporating such samples, the employed model can better generalize to a wider
variety of puzzle configurations.

Chapter 10

Conclusions

10.1 Conclusive Remarks

In this dissertation, two novel approaches for the automatic solution of Tangram puzzles were presented: a
heuristic approach and a deep learning approach. The heuristic approach uses a raster representation for the
puzzle and pieces and takes advantage of mathematical morphology techniques that are traditionally applied
to C&P problems to avoid overlaps between pieces. The deep learning approach is based on a GAN archi-
tecture. The proposed approaches aim at solving both simple and complex Tangram puzzles [24]. While
simple puzzles can be described by a simply connected contour, and have a fairly reduced number of con-
figurations that each piece can assume, complex puzzles demand more complex forms of representation and
demand more computational effort to be solved. Complex puzzles may be composed of multiple connected
regions, possibly with holes. In addition, they may require non-discrete rotations, as well as the reflection
operation for the parallelogram piece. Many authors in the literature ignore the aspects that characterize
complex puzzles, focusing only on the solution of simple puzzles. The literature review indicates that there
is no work in the literature that solves every type of complex Tangram puzzle.

The heuristic approach presents some strong points over the deep learning approach. It does not need
a training process like general deep learning approaches. This eliminates the necessity of gathering a huge
amount of data to be used for generalization. Moreover, it is adaptable to different puzzle scales, being able
to infer the size of the pieces from the puzzle area. In this sense, the heuristic is more versatile for being
adaptable to different sizes of puzzles without the necessity of pre-processing. The heuristic approach is also
more indicated when the user wants to know the exact translation and rotation of the pieces by the end of the
assembly process. On the other hand, the heuristic method is notably slow and may take a few minutes to
solve a Tangram puzzle. The morphological operations are especially time-consuming and may slow down
the process of fitting Tangram pieces. It is also susceptible to imperfections along the edges of the Tangram
pattern.

The strong points of the deep learning approach lie in the fact that it is considerably faster than the
heuristic approach in presenting a Tangram solution. It is also more adaptable than the heuristic approach
in the sense that it can solve the Tangram puzzles even with imperfections along the borders of the Tan-
gram pattern. Additionally, the deep learning approach has shown the ability to solve simple and complex

84 Conclusions

puzzles without any significant difference in the required effort, while the heuristic approach demands more
resources and running time to solve a complex puzzle. On the other hand, the deep learning approach is
not indicated when the user does not have the time to train the model. Another case where the usage of the
deep learning approach is not recommended is when the user wants to know the exact configurations of the
pieces to obtain the desired Tangram pattern because the deep learning approach outputs an image that is a
representation of the solution and is open for interpretation. It might also present some difficulty in solving
patterns that are not scaled according to the samples used for training. The learning process of the deep
learning approach has proven to be sensitive to the geometric features the model can extract from the pieces.
Therefore, if the scale of the pieces changes, the model might get lost in inferring a feasible solution.

It is possible to conclude that the choice of using the heuristic approach or the deep learning approach
in the Tangram solution is relative to the desired outcomes. Nonetheless, both approaches have proven
capable of solving both simple and complex Tanrgam puzzles, overcoming critical limitations observed in
the literature. The proposed dataset also poses as a valuable resource for research and evaluation in dissection
puzzles, as well as related optimization problems. The literature shows that the proposed dataset is the most
extensive in the literature regarding the automatic solution of Tangram puzzles. Additionally, along with
the deep learning approach, a loss function designed for assessing Tangram solutions was also proposed
and has proven efficient in assessing Tangram solutions. The usage of Hu Moments in the loss function
allows for the assessment of the geometry of the pieces, rather than their specific position or configuration.
By focusing on geometric features, the loss function overcomes limitations inherent in traditional metrics
by better accommodating multiple feasible solutions, making it suitable not only for Tangram puzzles but
also for other dissection puzzles. Therefore, this dissertation advances the current understanding of artificial
intelligence in complex geometrical problem domains and provides a robust foundation for future research.

10.2 Future Directions

Regarding expanding the outcomes of this dissertation to other domains, one possibility is to combine both
approaches into a hybrid method. For many puzzles, the deep learning approach can discern the correct
placement of pieces. However, there were cases where it did not clearly define the section between a pair
of pieces. Those solutions were considered of medium quality in the visual assessment. Although the
solution image depicts the correct placement of most of the pieces, under a more rigorous perspective and
strictly following the rules of the Tangram, these solutions should be perceived as incorrect because it does
not contain all the pieces. To avoid those cases, a viable strategy would be to combine the deep learning
approach with the heuristic approach. This methodology would start with the application of the trained
deep learning model on the desired pattern binary image, thus generating a solution image that partially
depicts the pieces in their correct placements. Then, a method based on image processing can be used to
identify which pieces are correctly placed and the missing pieces. After that, it can form another binary
mask, where the white areas represent the regions not covered by correctly placed pieces, while the areas
covered by correctly placed pieces and background can be presented in black. From this point, the heuristic
method becomes responsible for placing the missing pieces in the regions depicted in the binary mask.
This approach is feasible because the heuristic approach is adaptable to any number of pieces. Therefore,

10.2 Future Directions 85

this hybrid method combines the fast inference of the deep learning approach with the adaptability of the
heuristic method.

Another possible extension of the present dissertation would be to use cross-domain transfer learning
to extend the knowledge acquired by the deep learning model. Similarly to the methodology presented
by Zhao et al. [129], it is possible to extend the principles of morphology and spatial geometry learned
by the trained model for solving other tasks. The application includes not only other types of geometric
puzzles but also robotics, digital arts, and industrial applications. For instance, Spencer [29] shows that
the Tangram pieces can be used to produce patchwork designs, which can be used to produce mosaics,
quilts, and animation. Another feasible direction for the proposed approaches is to expand them to C&P
problems, whose application extends to textile, sheet metal, leather, glass, and paper industries [43]. Over
the years, research on C&P problems has received more attention and exploration compared to dissection
puzzles. As a result, methods for solving C&P problems benefit from a more robust baseline for comparison,
with established metrics and datasets. For tests in C&P problems, researchers may use the instances from
ESICUP [132] for benchmarking and comparison with the literature.

Last, it is also possible to explore the didactic nature of the Tangram and expand the outcomes of the
present dissertation to research related to education for children. As an educative tool, Tangram offers an
intriguing blend of visual perception, spatial reasoning, and logical deduction [133]. Given the silhouette
of a desired pattern, it is possible to incorporate devices, such as webcams and smartphones, to capture
solutions formed by a physical Tangram. Then, it is possible to use the proposed evaluation metric to assess
how good the presented solution is. One of the key advantages of using technology in this way is the ability
to provide immediate feedback to children. As they arrange the Tangram pieces, the webcam captures their
solutions in real-time, and the smartphone instantly assesses the correctness of their arrangements. More-
over, the usage of interactive devices adds an element of excitement to the activity, making it more engaging
and appealing to learners. Instead of passively receiving instructions, they become active participants by
physically interacting with the Tangram pieces and using technology to assess their solutions. As they ex-
periment with different arrangements of the Tangram pieces, children are encouraged to think critically, use
spatial reasoning, and apply logical thinking to find solutions. A similar approach is presented in the work
of Lin et al. [134] and Singh et al. [135].

86 Conclusions

Bibliography

[1] M. Brand, “No easy puzzles: Hardness results for jigsaw puzzles,” Theoretical Computer Science,
vol.586, pp.2–11, 2015.

[2] N. Alajlan, “Solving square jigsaw puzzles using dynamic programming and the hungarian proce-
dure,” American Journal of Applied Sciences, vol.6, no.11, p.1941, 2009.

[3] S. Markaki and C. Panagiotakis, “Jigsaw puzzle solving techniques and applications: a survey,” The
Visual Computer, pp.1–17, 2022.

[4] F. Richter, C.X. Ries, N. Cebron, and R. Lienhart, “Learning to reassemble shredded documents,”
IEEE Transactions on multimedia, vol.15, no.3, pp.582–593, 2012.

[5] Z. Hammoudeh and C. Pollett, “Clustering-based, fully automated mixed-bag jigsaw puzzle solv-
ing,” Computer Analysis of Images and Patterns: 17th International Conference, CAIP 2017, Ystad,
Sweden, August 22-24, 2017, Proceedings, Part II 17, pp.205–217, Springer, 2017.

[6] M. Norgate, “Cutting borders: Dissected maps and the origins of the jigsaw puzzle,” The Cartographic
Journal, vol.44, no.4, pp.342–350, 2007.

[7] D.A. Gschwend, A.C. Good, and I.D. Kuntz, “Molecular docking towards drug discovery,” Journal
of Molecular Recognition: An Interdisciplinary Journal, vol.9, no.2, pp.175–186, 1996.

[8] Y.C. Kim, K.H. Min, J.W. Choi, K.S. Koh, T.S. Oh, and W.S. Jeong, “Patient-specific puzzle implant
preformed with 3d-printed rapid prototype model for combined orbital floor and medial wall fracture,”
Journal of Plastic, Reconstructive & Aesthetic Surgery, vol.71, no.4, pp.496–503, 2018.

[9] C.C. Hsu and T.I. Wang, “Applying game mechanics and student-generated questions to an online
puzzle-based game learning system to promote algorithmic thinking skills,” Computers & Education,
vol.121, pp.73–88, 2018.

[10] K. Tang, P. Song, X. Wang, B. Deng, C.W. Fu, and L. Liu, “Computational design of steady 3d
dissection puzzles,” 2019.

[11] D. Ausonius and R. Green, Decimi Magni Ausonii Opera, Oxford Classical Texts, Typographeo
Clarendoniano, 1999.

[12] M. Tchoshanov, “Building students’ mathematical proficiency: connecting mathematical ideas using
the tangram,” Learning and Teaching Mathematics, vol.2011, no.10, pp.16–23, 2011.

88 BIBLIOGRAPHY

[13] E. Fox-Epstein, K. Katsumata, and R. Uehara, “The convex configurations of “sei shonagon chie no
ita,” tangram, and other silhouette puzzles with seven pieces,” IEICE transactions on fundamentals
of electronics, communications and computer sciences, vol.99, no.6, pp.1084–1089, 2016.

[14] J. Slocum, “Tangram: The world’s first puzzle craze,” Published by Sterling, 2003.
[15] Z. Liu and W. Liu, “Research on the design of combination furniture based on toy brick style concept,”

5th International Conference on Civil Engineering and Transportation, pp.1712–1717, Atlantis Press,
2015.

[16] E. Pascual, Tangram Proficiency Leading to Numeracy Skills Enhancement, LAP LAMBERT Aca-
demic Publishing, 2020.

[17] W. Gao and K. Ramani, “Kaleidogami™: Multi-primitive reconfigurable artistic structures,” School
of Mechanical Engineering School, Electrical and Computer Engineering, Purdue University: by
Courtesy, 2012.

[18] S.S. Pohl and C. Richter, “The complete characterization of tangram pentagons,” Beiträge zur Algebra
und Geometrie/Contributions to Algebra and Geometry, vol.62, no.1, pp.121–135, 2021.

[19] M. Kmetová and Z. Nagyová Lehocká, “Using tangram as a manipulative tool for transition between
2d and 3d perception in geometry,” Mathematics, vol.9, no.18, p.2185, 2021.

[20] K. Khairiree, “Creative thinking in mathematics with tangrams and the geometer’s sketchpad,” Pro-
ceedings of the 20th Asian Technology Conference in Mathematics, pp.153–161, 2015.

[21] S. Li, “Splicing all possible convex and non-convex pentagons with tangram using dfs,” 2022 Interna-
tional Conference on Cloud Computing, Big Data Applications and Software Engineering (CBASE),
pp.60–64, IEEE, 2022.

[22] M. Tombuloğlu, “Grafik tasarım bağlamında tangram; ankaranın kültür denizi tangram oyun seti,”
Master’s thesis, Güzel Sanatlar Enstitüsü, 2019.

[23] E.D. Demaine, M. Korman, J.S. Ku, J.S. Mitchell, Y. Otachi, A. van Renssen, M. Roeloffzen, R. Ue-
hara, and Y. Uno, “Symmetric assembly puzzles are hard, beyond a few pieces,” Computational Ge-
ometry, vol.90, p.101648, 2020.

[24] F.M. Yamada, J.P. Gois, and H.C. Batagelo, “Solving tangram puzzles using raster-based mathemati-
cal morphology,” 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),
pp.116–123, IEEE, 2019.

[25] T. Martins and M.S.G. Tsuzuki, “Simulated annealing applied to the irregular rotational placement
of shapes over containers with fixed dimensions,” Expert Systems with Applications, vol.37, no.3,
pp.1955–1972, 2010.

[26] L. Bofferding and M. Aqazade, ““where does the square go?”: reinterpreting shapes when solving a
tangram puzzle,” Educational Studies in Mathematics, vol.112, no.1, pp.25–47, 2023.

BIBLIOGRAPHY 89

[27] H. Wang, “Using dfs search and enumerate method to find all solutions in 13 convex figures in tangram
game,” 2021 International Conference on Computer Information Science and Artificial Intelligence
(CISAI), pp.505–509, IEEE, 2021.

[28] S. Spencer, “An introduction to the tiling properties of the tangram and their application in two and
three dimensions,” Bridges: Mathematical Connections in Art, Music, and Science, pp.71–78, 2004.

[29] S. Spencer, “Introducing the precious tangram family,” Bridges London: Mathematics, Music, Art,
Architecture, Culture, pp.73–78, 2006.

[30] N. Vereshchagin, “A family of non-periodic tilings of the plane by right golden triangles,” Discrete
& Computational Geometry, vol.68, no.1, pp.188–217, 2022.

[31] F.M. Yamada and H.C. Batagelo, “A comparative study on computational methods to solve tangram
puzzles,” Workshop of Works in Progress (WIP) in the 30th Conference on Graphics, Patterns and
Images (SIBGRAPI’17), October 2017.

[32] A.P. Gantapara, W. Qi, and M. Dijkstra, “A novel chiral phase of achiral hard triangles and an entropy-
driven demixing of enantiomers,” Soft Matter, vol.11, no.44, pp.8684–8691, 2015.

[33] J. Lee, J. Kim, H. Chung, J. Park, and M. Cho, “Learning to assemble geometric shapes,” International
Joint Conference on Artificial Intelligence, 2022.

[34] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality,
stability, and variation,” International Conference on Learning Representations, 2018.

[35] S.Z. Kovalsky, D. Glasner, and R. Basri, “A global approach for solving edge-matching puzzles,”
SIAM Journal on Imaging Sciences, vol.8, no.2, pp.916–938, 2015.

[36] L.R. Mundim, M. Andretta, M.A. Carravilla, and J.F. Oliveira, “A general heuristic for two-
dimensional nesting problems with limited-size containers,” International Journal of Production Re-
search, pp.1–24, 2017.

[37] A.M. Gomes and J.F. Oliveira, “Solving irregular strip packing problems by hybridising simulated an-
nealing and linear programming,” European Journal of Operational Research, vol.171, no.3, pp.811–
829, 2006.

[38] D.J. Chalmers and B. Rabern, “Two-dimensional semantics and the nesting problem,” Analysis,
vol.74, no.2, pp.210–224, 2014.

[39] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and packing prob-
lems,” European journal of operational research, vol.183, no.3, pp.1109–1130, 2007.

[40] L.H. Cherri, M.A. Carravilla, C. Ribeiro, and F.M.B. Toledo, “Optimality in nesting problems: New
constraint programming models and a new global constraint for non-overlap,” Operations Research
Perspectives, vol.6, p.100125, 2019.

90 BIBLIOGRAPHY

[41] J.j. Xu, X.s. Wu, H.m. Liu, and M. Zhang, “An optimization algorithm based on no-fit polygon method
and hybrid heuristic strategy for irregular nesting problem,” Control Conference (CCC), 2017 36th
Chinese, pp.2858–2863, IEEE, 2017.

[42] Y. Qin, F.T. Chan, S. Chung, T. Qu, and B. Niu, “Aircraft parking stand allocation problem with
safety consideration for independent hangar maintenance service providers,” Computers & Operations
Research, vol.91, pp.225–236, 2018.

[43] J.A. Bennell and X. Song, “A comprehensive and robust procedure for obtaining the nofit polygon
using minkowski sums,” Computers & Operations Research, vol.35, no.1, pp.267–281, 2008.

[44] Y. Hu, S. Fukatsu, H. Hashimoto, S. Imahori, and M. Yagiura, “Efficient overlap detection and con-
struction algorithms for the bitmap shape packing problem,” Journal of the Operations Research So-
ciety of Japan, vol.61, no.1, pp.132–150, 2018.

[45] A.K. Sato, T.C. Martins, and M.S.G. Tsuzuki, “Collision free region determination by modified polyg-
onal boolean operations,” Computer-Aided Design, vol.45, no.7, pp.1029–1041, 2013.

[46] B.A. Junior, P.R. Pinheiro, and R.D. Saraiva, “Tackling the irregular strip packing problem by hy-
bridizing genetic algorithm and bottom-left heuristic,” Evolutionary Computation (CEC), 2013 IEEE
Congress on, pp.3012–3018, IEEE, 2013.

[47] H. Mühlthaler and H. Pottmann, “Computing the minkowski sum of ruled surfaces,” Graphical Mod-
els, vol.65, no.6, pp.369–384, 2003.

[48] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle motion planning,” 2010 IEEE
intelligent vehicles symposium, pp.518–522, IEEE, 2010.

[49] G. Varadhan and D. Manocha, “Accurate minkowski sum approximation of polyhedral models,” 12th
Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings., pp.392–
401, IEEE, 2004.

[50] J.A. Bennell, K.A. Dowsland, and W.B. Dowsland, “The irregular cutting-stock problem—a new
procedure for deriving the no-fit polygon,” Computers & Operations Research, vol.28, no.3, pp.271–
287, 2001.

[51] A.M. Gomes and J.F. Oliveira, “A grasp approach to the nesting problem,” 4th Metaheuristics Inter-
national Conference MIC’2001, 2001.

[52] H.T. Dean, Y. Tu, and J.F. Raffensperger, “An improved method for calculating the no-fit polygon,”
Computers & operations research, vol.33, no.6, pp.1521–1539, 2006.

[53] A.K. Sato, G.E.S. Bauab, T. de Castro Martins, M.d.S.G. Tsuzuki, and A.M. Gomes, “A study in
pairwise clustering for bi-dimensional irregular strip packing using the dotted board model,” IFAC-
PapersOnLine, vol.51, no.11, pp.284–289, 2018.

[54] Y. Rao and Q. Luo, “Intelligent algorithms for packing and cutting problem,” 2022.

BIBLIOGRAPHY 91

[55] M.A. Carravilla, C. Ribeiro, and J.F. Oliveira, “Solving nesting problems with non-convex polygons
by constraint logic programming,” International Transactions in Operational Research, vol.10, no.6,
pp.651–663, 2003.

[56] A.K. Sato, T. de Castro Martins, and M.d.S.G. Tsuzuki, “Rotational placement using simulated an-
nealing and collision free region,” IFAC Proceedings Volumes, vol.43, no.4, pp.234–239, 2010.

[57] T.d.C. Martins and M.S. Tsuzuki, “Rotational placement of irregular polygons over containers with
fixed dimensions using simulated annealing and no-fit polygons,” Journal of the Brazilian Society of
Mechanical Sciences and Engineering, vol.30, no.3, pp.205–212, 2008.

[58] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the
brain.,” Psychological review, vol.65, no.6, p.386, 1958.

[59] J. Heaton, “Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The mit press, 2016,
800 pp, isbn: 0262035618,” Genetic programming and evolvable machines, vol.19, no.1-2, pp.305–
307, 2018.

[60] P. Antsaklis, “Neural networks for control systems,” IEEE Transactions on Neural Networks, vol.1,
no.2, pp.242–244, 1990.

[61] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features for scene labeling,”
IEEE transactions on pattern analysis and machine intelligence, vol.35, no.8, pp.1915–1929, 2012.

[62] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning representations by back-propagating er-
rors,” nature, vol.323, no.6088, pp.533–536, 1986.

[63] G. Montavon, G. Orr, and K.R. Müller, “Neural networks: tricks of the trade,” 2012.
[64] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional neural

networks,” Communications of the ACM, vol.60, no.6, pp.84–90, 2017.
[65] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich, “Going deeper with convolutions,” Proceedings of the IEEE conference on computer vision
and pattern recognition, pp.1–9, 2015.

[66] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceedings of
the IEEE conference on computer vision and pattern recognition, pp.770–778, 2016.

[68] W.G. Hatcher and W. Yu, “A survey of deep learning: Platforms, applications and emerging research
trends,” IEEE Access, vol.6, pp.24411–24432, 2018.

[69] R. Chen and E.M.K. Lai, “Convolutional autoencoder for single image dehazing.,” ICIP, pp.4464–
4468, 2019.

92 BIBLIOGRAPHY

[70] J. Zhai, S. Zhang, J. Chen, and Q. He, “Autoencoder and its various variants,” 2018 IEEE international
conference on systems, man, and cybernetics (SMC), pp.415–419, IEEE, 2018.

[71] V. Turchenko and A. Luczak, “Creation of a deep convolutional auto-encoder in caffe,” 2017.
[72] Z. Salekshahrezaee, J.L. Leevy, and T.M. Khoshgoftaar, “A class-imbalanced study with feature ex-

traction via pca and convolutional autoencoder,” 2022 IEEE 23rd International Conference on Infor-
mation Reuse and Integration for Data Science (IRI), pp.63–68, IEEE, 2022.

[73] D. Jana, J. Patil, S. Herkal, S. Nagarajaiah, and L. Duenas-Osorio, “Cnn and convolutional autoen-
coder (cae) based real-time sensor fault detection, localization, and correction,” Mechanical Systems
and Signal Processing, vol.169, p.108723, 2022.

[74] D.P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,
2013.

[75] D.P. Kingma and M. Welling, “Stochastic gradient vb and the variational auto-encoder,” 2014.
[76] A. Vahdat and J. Kautz, “Nvae: A deep hierarchical variational autoencoder,” Advances in neural

information processing systems, vol.33, pp.19667–19679, 2020.
[77] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image seg-

mentation,” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp.234–
241, Springer, 2015.

[78] X.X. Yin, L. Sun, Y. Fu, R. Lu, and Y. Zhang, “[retracted] u-net-based medical image segmentation,”
Journal of healthcare engineering, vol.2022, no.1, p.4189781, 2022.

[79] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems, vol.27,
2014.

[80] A. Aggarwal, M. Mittal, and G. Battineni, “Generative adversarial network: An overview of the-
ory and applications,” International Journal of Information Management Data Insights, vol.1, no.1,
p.100004, 2021.

[81] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative adversarial networks: Algo-
rithms, theory, and applications,” IEEE transactions on knowledge and data engineering, vol.35, no.4,
pp.3313–3332, 2021.

[82] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol.63, no.11, pp.139–
144, 2020.

[83] L. Gonog and Y. Zhou, “A review: generative adversarial networks,” 2019 14th IEEE conference on
industrial electronics and applications (ICIEA), pp.505–510, IEEE, 2019.

BIBLIOGRAPHY 93

[84] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A.A. Bharath, “Generative
adversarial networks: An overview,” IEEE signal processing magazine, vol.35, no.1, pp.53–65, 2018.

[85] X. Chang, F. Chao, C. Shang, and Q. Shen, “Sundial-gan: A cascade generative adversarial networks
framework for deciphering oracle bone inscriptions,” Proceedings of the 30th ACM International
Conference on Multimedia, pp.1195–1203, 2022.

[86] J. Ma, W. Yu, C. Chen, P. Liang, X. Guo, and J. Jiang, “Pan-gan: An unsupervised pan-sharpening
method for remote sensing image fusion,” Information Fusion, vol.62, pp.110–120, 2020.

[87] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, “Training generative adversarial
networks with limited data,” Advances in neural information processing systems, vol.33, pp.12104–
12114, 2020.

[88] C. Shorten and T.M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal
of big data, vol.6, no.1, pp.1–48, 2019.

[89] A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation for image classifi-
cation,” 2016 IEEE international conference on image processing (ICIP), pp.3688–3692, Ieee, 2016.

[90] P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth, “A review of medical
image data augmentation techniques for deep learning applications,” Journal of Medical Imaging and
Radiation Oncology, vol.65, no.5, pp.545–563, 2021.

[91] E.S. Deutsch and K.C. Hayes Jr., “A heuristic solution to the tangram puzzle,” Machine Intelligence,
vol.7, pp.205–240, 1972.

[92] K. Oflazer, “Solving tangram puzzles: A connectionist approach,” International journal of intelligent
systems, vol.8, no.5, pp.603–616, 1993.

[93] D. Bartoněk, “A genetic algorithm how to solve a puzzle and its using in cartography,” Acta Scien-
tiarum Polonorum. Geodesia et Descriptio Terrarum, vol.4, no.2, pp.15–23, 2005.

[94] C. Domokos and Z. Kato, “Realigning 2d and 3d object fragments without correspondences,” IEEE
transactions on pattern analysis and machine intelligence, vol.38, no.1, pp.195–202, 2015.

[95] A. Rafique, T. Iftikhar, and N. Khan, “Adversarial placement vector learning,” 2019 2nd International
Conference on Advancements in Computational Sciences (ICACS), pp.1–7, IEEE, 2019.

[96] J. Li, J. Yang, A. Hertzmann, J. Zhang, and T. Xu, “Layoutgan: Generating graphic layouts with
wireframe discriminators,” arXiv preprint arXiv:1901.06767, 2019.

[97] W. Wang, M. Zhang, G. Chen, H. Jagadish, B.C. Ooi, and K.L. Tan, “Database meets deep learning:
Challenges and opportunities,” ACM Sigmod Record, vol.45, no.2, pp.17–22, 2016.

[98] M.A. Bansal, D.R. Sharma, and D.M. Kathuria, “A systematic review on data scarcity problem in
deep learning: solution and applications,” ACM Computing Surveys (CSUR), vol.54, no.10s, pp.1–
29, 2022.

94 BIBLIOGRAPHY

[99] Tangram-Channel, “Tangram channel website.” https://www.tangram-channel.com/. Ac-
cessed on June 11th, 2024.

[100] W. Köpp, “Random generation of tangrams,” Interdisciplinary Project in Mathematics, Technische
Universitat München, 2013.

[101] V.G. Zakharov, “Rotation properties of 2d isotropic dilation matrices,” International Journal of
Wavelets, Multiresolution and Information Processing, vol.16, no.01, p.1850001, 2018.

[102] B. Baran, B. Dogusoy, and K. Cagiltay, “How do adults solve digital tangram problems? analyzing
cognitive strategies through eye tracking approach,” in Human-Computer Interaction. HCI Intelligent
Multimodal Interaction Environments, pp.555–563, Springer, 2007.

[103] M.K. Hu, “Visual pattern recognition by moment invariants,” IRE transactions on information theory,
vol.8, no.2, pp.179–187, 1962.

[104] M. Lukic, E. Tuba, and M. Tuba, “Leaf recognition algorithm using support vector machine with hu
moments and local binary patterns,” 2017 IEEE 15th international symposium on applied machine
intelligence and informatics (SAMI), pp.000485–000490, IEEE, 2017.

[105] I. Kramer, N. Schmidt, R. Memmesheimer, and D. Paulus, “Evaluation of physical therapy through
analysis of depth images,” 2019 28th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), pp.1–6, IEEE, 2019.

[106] K.A. Dowsland, S. Vaid, and W.B. Dowsland, “An algorithm for polygon placement using a bottom-
left strategy,” European Journal of Operational Research, vol.141, no.2, pp.371–381, 2002.

[107] L.R. Mundim, M. Andretta, and T.A. de Queiroz, “A biased random key genetic algorithm for open
dimension nesting problems using no-fit raster,” Expert Systems with Applications, vol.81, pp.358–
371, 2017.

[108] P.E. Trahanias, “Binary shape recognition using the morphological skeleton transform,” Pattern
recognition, vol.25, no.11, pp.1277–1288, 1992.

[109] R. Fabbri, L.D.F. Costa, J.C. Torelli, and O.M. Bruno, “2d euclidean distance transform algorithms:
A comparative survey,” ACM Computing Surveys (CSUR), vol.40, no.1, p.2, 2008.

[110] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time euclidean distance transform algo-
rithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, no.5, pp.529–533,
1995.

[111] M.S. Minhas and J. Zelek, “Semi-supervised anomaly detection using autoencoders,” arXiv preprint
arXiv:2001.03674, 2020.

[112] Y. Zhou, W. Huang, P. Dong, Y. Xia, and S. Wang, “D-unet: a dimension-fusion u shape network for
chronic stroke lesion segmentation,” IEEE/ACM transactions on computational biology and bioin-
formatics, vol.18, no.3, pp.940–950, 2019.

https://www.tangram-channel.com/
https://github.com/Wiebke/TangramGenerator

BIBLIOGRAPHY 95

[113] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.W. Lin, “Deep learning on image denoising: An
overview,” Neural Networks, vol.131, pp.251–275, 2020.

[114] X.X. Yin, L. Sun, Y. Fu, R. Lu, Y. Zhang, et al., “U-net-based medical image segmentation,” Journal
of Healthcare Engineering, vol.2022, 2022.

[115] C. Dong, C.C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,”
IEEE transactions on pattern analysis and machine intelligence, vol.38, no.2, pp.295–307, 2015.

[116] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE transactions on image processing, vol.13, no.4, pp.600–612,
2004.

[117] V.L. Trevisan de Souza, B.A.D. Marques, H.C. Batagelo, and J. ao Paulo Gois, “A review on gener-
ative adversarial networks for image generation,” Computers & Graphics, vol.114, pp.13–25, 2023.

[118] S. Ameer and O. Basir, “Objective image quality measure based on weber-weighted mean absolute
error,” 2008 9th International Conference on Signal Processing, pp.728–732, IEEE, 2008.

[119] S. Hao and S. Li, “A weighted mean absolute error metric for image quality assessment,” 2020 IEEE
International Conference on Visual Communications and Image Processing (VCIP), pp.330–333,
IEEE, 2020.

[120] S. Hu, L. Jin, H. Wang, Y. Zhang, S. Kwong, and C.C.J. Kuo, “Objective video quality assessment
based on perceptually weighted mean squared error,” IEEE Transactions on Circuits and Systems for
Video Technology, vol.27, no.9, pp.1844–1855, 2016.

[121] X. Tan, T. Qin, J. Bian, T.Y. Liu, and Y. Bengio, “Regeneration learning: A learning paradigm for
data generation,” arXiv preprint arXiv:2301.08846, 2023.

[122] R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density network for inverse design of
layered photonic structures,” ACS Photonics, vol.7, no.10, pp.2703–2712, 2020.

[123] F. Solís, D. Martínez, and O. Espinoza, “Automatic mexican sign language recognition using normal-
ized moments and artificial neural networks,” Engineering, vol.8, no.10, pp.733–740, 2016.

[124] L. Basavaraj and R. Sudhaker Samuel, “Offline handwritten character detection using image compo-
nents,” 2007.

[125] R. Swetha, P. Bende, K. Singh, S. Gorthi, A. Biswas, B. Li, D.C. Weindorf, and S. Chakraborty,
“Predicting soil texture from smartphone-captured digital images and an application,” Geoderma,
vol.376, p.114562, 2020.

[126] H. Abdi, “Coefficient of variation,” Encyclopedia of research design, vol.1, no.5, 2010.

[127] N. Kita, “Dissection puzzles composed of multicolor polyominoes,” 2023.

https://www.sciencedirect.com/science/article/pii/S009784932300064X
https://www.sciencedirect.com/science/article/pii/S009784932300064X

96 BIBLIOGRAPHY

[128] C. Yang, “Tiling the plane with a set of ten polyominoes,” International Journal of Computational
Geometry & Applications, pp.1–10, 2023.

[129] Y. Zhao, L. Qiu, P. Lu, F. Shi, T. Han, and S.C. Zhu, “Learning from the tangram to solve mini visual
tasks,” 2022.

[130] Q. Du, M. Gunzburger, and L. Ju, “Advances in studies and applications of centroidal voronoi tes-
sellations,” Numerical Mathematics: Theory, Methods and Applications, vol.3, no.2, pp.119–142,
2010.

[131] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.
[132] ESICUP, “Special interest group in cutting and packing,” 2007. Accessed on December 1st, 2023.
[133] I.R.D. Renavitasari and A.A. Supianto, “Educational game for training spatial ability using tangram

puzzle,” 2018 International Conference on Sustainable Information Engineering and Technology
(SIET), pp.174–179, IEEE, 2018.

[134] C.Y. Lin, H.C. Chai, J.y. Wang, C.J. Chen, Y.H. Liu, C.W. Chen, C.W. Lin, and Y.M. Huang, “Aug-
mented reality in educational activities for children with disabilities,” Displays, vol.42, pp.51–54,
2016.

[135] K. Singh, A. Shrivastava, K. Achary, A. Dey, and O. Sharma, “Augmented reality-based procedural
task training application for less privileged children and autistic individuals,” Proceedings of the 17th
International Conference on Virtual-Reality Continuum and its Applications in Industry, pp.1–10,
2019.

https://www.euro-online.org/websites/esicup/data-sets/

Publication Lists

Related Publications

Journal

1. F. M. Yamada, H. C. Batagelo, J. P. Gois, and H. Takahashi, “Generative Approaches for Solving
Tangram Puzzles”, Discover Artificial Intelligence, Vol. 4, Article no. 12, pp. 1-20, Feb. 2024.
(Chapter 7).

International Conference

1. F. M. Yamada, H. Takahashi, H. C. Batagelo, and J. P. Gois, "Raster-based mathematical morphology
for cutting and packing problems", Proceedings of the International Workshop on Advanced Imaging
Technology, vol. 11766, pp. 204-209, Mar. 2021. (Chapter 6).

2. F. M. Yamada, H. Takahashi, H. C. Batagelo, and J. P. Gois, "An Extended Approach for the Automatic
Solution of Tangram Puzzles Using Permutation Heuristics", 2020 Nicograph International, pp. 47-
50, Jun. 2020. (Chapter 6).

3. F. M. Yamada, J. P. Gois, and H. C. Batagelo, "Solving tangram puzzles using raster- based mathe-
matical morphology", SIBGRAPI Conference on Graphics, Patterns and Images, pp. 116-123, Oct.
2019. (Chapter 6).

4. F. M. Yamada and H. C. Batagelo, "A comparative study on computational methods to solve tangram
puzzles", Workshop of Works in Progress in SIBGRAPI Conference on Graphics, Patterns and Images,
Oct. 2017. (Chapter 4).

Unrelated Publications

Journal

1. F. M. Yamada, T. Ribeiro, and N. P. Ghilardi-Lopes, "Assessment of the prototype of an educational
game on climate change and its effects on marine and coastal ecosystems", Brazilian Journal of Com-
puters in Education, vol. 27, no. 03, pp. 01-31, 2019.

98 Publication Lists

Awards

1. E. Pinhata, F.M. Yamada, F. A. S. Berchez, J. C. Braga, L. Silva, N. P. Ghilardi-Lopes, R. L. F. Silva, S.
R. Freitas, and T. Ribeiro (2014). Apicum Game. Patent No. BR512016000178-0. Instituto Nacional
da Propriedade Industrial.

Other Contributions

1. Development of an educational software addressing global environmental change and their effects on
coastal and marine ecosystems, Oct. 2015.

Appendices

101

Appendix A

Figures 1 and 2 present the solutions generated by VAE-GAN, while the solutions generated by TANGAN
are compiled in Figures 3 and 4.

Figure 1: Solutions generated by VAEGAN (part 1 of 2).

102

Figure 2: Solutions generated by VAEGAN (part 2 of 2).

103

Figure 3: Solutions generated by TANGAN (part 1 of 2).

104

Figure 4: Solutions generated by TANGAN (part 2 of 2).

105

Appendix B

This appendix presents detailed summaries of the deep learning networks used throughout the present dis-
sertation. Tables 1 and 2 present the CAE architecture from Chapter 7. Tables 3 and 4 present the VAE
architecture from Chapter 7. Table 5 presents the U-Net architecture from Chapter 7. Table 6 presents the
discriminator of VAE- GAN architecture from Chapter 7. Finally, Tables 7, 8 and 9 describe the generator,
while Table 10 summarizes the discriminator of TANGAN from Chapter 8.

Type Shape Params #
InputLayer (256, 256, 1) 0
Conv2D (256, 256, 48) 5856
BatchNormalization (256, 256, 48) 192
LeakyReLU (256, 256, 48) 0
Conv2D (128, 128, 48) 186672
Dropout (128, 128, 48) 0
BatchNormalization (128, 128, 48) 192
LeakyReLU (128, 128, 48) 0
Conv2D (64, 64, 48) 186672
Dropout (64, 64, 48) 0
BatchNormalization (64, 64, 48) 192
LeakyReLU (64, 64, 48) 0
Conv2D (32, 32, 48) 112944
Dropout (32, 32, 48) 0
BatchNormalization (32, 32, 48) 192
LeakyReLU (32, 32, 48) 0
Conv2D (16, 16, 48) 112944
Dropout (16, 16, 48) 0
BatchNormalization (16, 16, 48) 192
LeakyReLU (16, 16, 48) 0
Conv2D (8, 8, 48) 57648
Dropout (8, 8, 48) 0
BatchNormalization (8, 8, 48) 192
LeakyReLU (8, 8, 48) 0
Conv2D (4, 4, 48) 57648
Dropout (4, 4, 48) 0
BatchNormalization (4, 4, 48) 192
LeakyReLU (4, 4, 48) 0

Table 1: Summary of CAE architecture (part 1 of 2).

106

Type Shape Params #
Conv2D (2, 2, 48) 20784
BatchNormalization (2, 2, 48) 192
LeakyReLU (2, 2, 48) 0
Conv2DTranspose (4, 4, 48) 57648
BatchNormalization (4, 4, 48) 192
LeakyReLU (4, 4, 48) 0
Concatenate (4, 4, 96) 0
Conv2DTranspose (8, 8, 48) 225840
Dropout (8, 8, 48) 0
BatchNormalization (8, 8, 48) 192
LeakyReLU (8, 8, 48) 0
Concatenate (8, 8, 96) 0
Conv2DTranspose (16, 16, 48) 225840
Dropout (16, 16, 48) 0
BatchNormalization (16, 16, 48) 192
LeakyReLU (16, 16, 48) 0
Concatenate (16, 16, 96) 0
Conv2DTranspose (32, 32, 48) 373296
Dropout (32, 32, 48) 0
BatchNormalization (32, 32, 48) 192
LeakyReLU (32, 32, 48) 0
Concatenate (32, 32, 96) 0
Conv2DTranspose (64, 64, 48) 373296
Dropout (64, 64, 48) 0
BatchNormalization (64, 64, 48) 192
LeakyReLU (64, 64, 48) 0
Concatenate (64, 64, 96) 0
Conv2DTranspose (128, 128, 48) 557616
Dropout (128, 128, 48) 0
BatchNormalization (128, 128, 48) 192
LeakyReLU (128, 128, 48) 0
Concatenate (128, 128, 96) 0
Conv2DTranspose (256, 256, 48) 557616
Dropout (256, 256, 48) 0
BatchNormalization (256, 256, 48) 192
LeakyReLU (256, 256, 48) 0
Concatenate (256, 256, 96) 0
Conv2D (256, 256, 1) 97
BatchNormalization (256, 256, 1) 4
Activation (256, 256, 1) 0
Total params: 3,115,301 (11.88 MB)
Trainable params: 3,113,859 (11.88 MB)
Non-trainable params: 1442 (5.63 KB)

Table 2: Summary of CAE architecture (part 2 of 2).

107

Type Shape Params #
InputLayer (256, 256, 1) 0
Conv2D (256, 256, 48) 5856
BatchNormalization (256, 256, 48) 192
LeakyReLU (256, 256, 48) 0
Conv2D (128, 128, 48) 186672
Dropout (128, 128, 48) 0
BatchNormalization (128, 128, 48) 192
LeakyReLU (128, 128, 48) 0
Conv2D (64, 64, 48) 186672
Dropout (64, 64, 48) 0
BatchNormalization (64, 64, 48) 192
LeakyReLU (64, 64, 48) 0
Conv2D (32, 32, 48) 112944
Dropout (32, 32, 48) 0
BatchNormalization (32, 32, 48) 192
LeakyReLU (32, 32, 48) 0
Conv2D (16, 16, 48) 112944
Dropout (16, 16, 48) 0
BatchNormalization (16, 16, 48) 192
LeakyReLU (16, 16, 48) 0
Conv2D (8, 8, 48) 57648
Dropout (8, 8, 48) 0
BatchNormalization (8, 8, 48) 192
LeakyReLU (8, 8, 48) 0
Conv2D (4, 4, 48) 57648
Dropout (4, 4, 48) 0
BatchNormalization (4, 4, 48) 192
LeakyReLU (4, 4, 48) 0
Conv2D (2, 2, 48) 20784
BatchNormalization (2, 2, 48) 192
LeakyReLU (2, 2, 48) 0
Dense (2, 2, 2) 98
Dense (2, 2, 2) 98
Sampling (2, 2, 2) 0

Table 3: Summary of VAE architecture (part 1 of 2).

108

Type Shape Params #
Conv2DTranspose (4, 4, 48) 2448
BatchNormalization (4, 4, 48) 192
LeakyReLU (4, 4, 48) 0
Concatenate (4, 4, 96) 0
Conv2DTranspose (8, 8, 48) 225840
Dropout (8, 8, 48) 0
BatchNormalization (8, 8, 48) 192
LeakyReLU (8, 8, 48) 0
Concatenate (8, 8, 96) 0
Conv2DTranspose (16, 16, 48) 225840
Dropout (16, 16, 48) 0
BatchNormalization (16, 16, 48) 192
LeakyReLU (16, 16, 48) 0
Concatenate (16, 16, 96) 0
Conv2DTranspose (32, 32, 48) 373296
Dropout (32, 32, 48) 0
BatchNormalization (32, 32, 48) 192
LeakyReLU (32, 32, 48) 0
Concatenate (32, 32, 96) 0
Conv2DTranspose (64, 64, 48) 373296
Dropout (64, 64, 48) 0
BatchNormalization (64, 64, 48) 192
LeakyReLU (64, 64, 48) 0
Concatenate (64, 64, 96) 0
Conv2DTranspose (128, 128, 48) 557616
Dropout (128, 128, 48) 0
BatchNormalization (128, 128, 48) 192
LeakyReLU (128, 128, 48) 0
Concatenate (128, 128, 96) 0
Conv2DTranspose (256, 256, 48) 557616
Dropout (256, 256, 48) 0
BatchNormalization (256, 256, 48) 192
LeakyReLU (256, 256, 48) 0
Concatenate (256, 256, 96) 0
Conv2D (256, 256, 1) 97
BatchNormalization (256, 256, 1) 4
Activation (256, 256, 1) 0
Total params: 3,060,297 (11.67 MB)
Trainable params: 3,058,855 (11.67 MB)
Non-trainable params: 1442 (5.63 KB)

Table 4: Summary of VAE architecture (part 2 of 2).

109

Type Shape Params #
InputLayer (256, 256, 1) 0
Conv2D (256, 256, 64) 640
BatchNormalization (256, 256, 64) 256
Conv2D (256, 256, 64) 36928
BatchNormalization (256, 256, 64) 256
MaxPooling2D (128, 128, 64) 0
Conv2D (128, 128, 128) 73856
BatchNormalization (128, 128, 128) 512
Conv2D (128, 128, 128) 147584
BatchNormalization (128, 128, 128) 512
MaxPooling2D (64, 64, 128) 0
Conv2D (64, 64, 256) 295168
BatchNormalization (64, 64, 256) 1024
Conv2D (64, 64, 256) 590080
BatchNormalization (64, 64, 256) 1024
MaxPooling2D (32, 32, 256) 0
Conv2D (32, 32, 512) 1180160
Conv2D (32, 32, 512) 2359808
UpSampling2D (64, 64, 512) 0
Concatenate (64, 64, 768) 0
Conv2D (64, 64, 256) 1769728
BatchNormalization (64, 64, 256) 1024
Conv2D (64, 64, 256) 590080
BatchNormalization (64, 64, 256) 1024
UpSampling2D (128, 128, 256) 0
Concatenate (128, 128, 384) 0
Conv2D (128, 128, 128) 442496
BatchNormalization (128, 128, 128) 512
Conv2D (128, 128, 128) 147584
BatchNormalization (128, 128, 128) 512
UpSampling2D (256, 256, 128) 0
Concatenate (256, 256, 192) 0
Conv2D (256, 256, 64) 110656
BatchNormalization (256, 256, 64) 256
Conv2D (256, 256, 64) 36928
BatchNormalization (256, 256, 64) 256
Conv2D (256, 256, 1) 65
Total params: 7,788,929 (29.71 MB)
Trainable params: 7,785,345 (29.70 MB)
Non-trainable params: 3584 (14.00 KB)

Table 5: Summary of U-Net architecture.

110

Type Shape Params #
InputLayer (256, 256, 1) 0
InputLayer (256, 256, 1) 0
Concatenate (256, 256, 2) 0
Conv2D (128, 128, 64) 2112
LeakyReLU (128, 128, 64) 0
Conv2D (64, 64, 128) 131200
BatchNormalization (64, 64, 128) 512
LeakyReLU (64, 64, 128) 0
Conv2D (32, 32, 128) 262272
BatchNormalization (32, 32, 128) 512
LeakyReLU (32, 32, 128) 0
Conv2D (16, 16, 256) 524544
BatchNormalization (16, 16, 256) 1024
Conv2D (8, 8, 256) 1048832
BatchNormalization (8, 8, 256) 1024
LeakyReLU (8, 8, 256) 0
Conv2D (4, 4, 512) 2097664
BatchNormalization (4, 4, 512) 2048
LeakyReLU (4, 4, 512) 0
Conv2D (4, 4, 512) 4194816
BatchNormalization (4, 4, 512) 2048
LeakyReLU (4, 4, 512) 0
Conv2D (4, 4, 1) 8193
Activation (4, 4, 1) 0
Total params: 8,276,801
Trainable params: 8,273,217
Non-trainable params: 3,584

Table 6: Summary of the discriminator of VAE-GAN.

111

Type Shape Params #
InputLayer (512, 512, 1) 0
Conv2D (512, 512, 48) 5856
BatchNormalization (512, 512, 48) 192
LeakyReLU (512, 512, 48) 0
Conv2D (256, 256, 48) 186672
Dropout (256, 256, 48) 0
BatchNormalization (256, 256, 48) 192
LeakyReLU (256, 256, 48) 0
Conv2D (128, 128, 48) 186672
Dropout (128, 128, 48) 0
BatchNormalization (128, 128, 48) 192
LeakyReLU (128, 128, 48) 0
Conv2D (64, 64, 48) 186672
Dropout (64, 64, 48) 0
BatchNormalization (64, 64, 48) 192
LeakyReLU (64, 64, 48) 0
Conv2D (32, 32, 48) 112944
Dropout (32, 32, 48) 0
BatchNormalization (32, 32, 48) 192
LeakyReLU (32, 32, 48) 0
Conv2D (16, 16, 48) 112944
Dropout (16, 16, 48) 0

Table 7: Summary of the generator of TANGAN (part 1 of 3).

112

Type Shape Params #
BatchNormalization (16, 16, 48) 192
LeakyReLU (16, 16, 48) 0
Conv2D (8, 8, 48) 57648
Dropout (8, 8, 48) 0
BatchNormalization (8, 8, 48) 192
LeakyReLU (8, 8, 48) 0
Conv2D (4, 4, 48) 57648
Dropout (4, 4, 48) 0
BatchNormalization (4, 4, 48) 192
LeakyReLU (4, 4, 48) 0
Conv2D (2, 2, 48) 20784
BatchNormalization (2, 2, 48) 192
LeakyReLU (2, 2, 48) 0
Dense (2, 2, 2) 98
Dense (2, 2, 2) 98
Sampling (2, 2, 2) 0
Conv2DTranspose (4, 4, 48) 2448
BatchNormalization (4, 4, 48) 192
LeakyReLU (4, 4, 48) 0
Concatenate (4, 4, 96) 0
Conv2DTranspose (8, 8, 48) 225840
Dropout (8, 8, 48) 0
BatchNormalization (8, 8, 48) 192
LeakyReLU (8, 8, 48) 0
Concatenate (8, 8, 96) 0
Conv2DTranspose (16, 16, 48) 225840
Dropout (16, 16, 48) 0
BatchNormalization (16, 16, 48) 192
LeakyReLU (16, 16, 48) 0
Concatenate (16, 16, 96) 0

Table 8: Summary of the generator of TANGAN (part 2 of 3).

113

Type Shape Params #
Conv2DTranspose (32, 32, 48) 373296
Dropout (32, 32, 48) 0
BatchNormalization (32, 32, 48) 192
LeakyReLU (32, 32, 48) 0
Concatenate (32, 32, 96) 0
Conv2DTranspose (64, 64, 48) 373296
Dropout (64, 64, 48) 0
BatchNormalization (64, 64, 48) 192
LeakyReLU (64, 64, 48) 0
Concatenate (64, 64, 96) 0
Conv2DTranspose (128, 128, 48) 557616
Dropout (128, 128, 48) 0
BatchNormalization (128, 128, 48) 192
LeakyReLU (128, 128, 48) 0
Concatenate (128, 128, 96) 0
Conv2DTranspose (256, 256, 48) 557616
Dropout (256, 256, 48) 0
BatchNormalization (256, 256, 48) 192
LeakyReLU (256, 256, 48) 0
Concatenate (256, 256, 96) 0
Conv2DTranspose (512, 512, 48) 557616
Dropout (512, 512, 48) 0
BatchNormalization (512, 512, 48) 192
LeakyReLU (512, 512, 48) 0
Concatenate (512, 512, 96) 0
Conv2D (512, 512, 1) 97
BatchNormalization (512, 512, 1) 4
Activation (512, 512, 1) 0
Total params: 3,804,969
Trainable params: 3,803,335
Non-trainable params: 1,634

Table 9: Summary of the generator of TANGAN (part 3 of 3).

114

Type Shape Params #
InputLayer (512, 512, 1) 0
InputLayer (512, 512, 1) 0
Concatenate (512, 512, 2) 0
Conv2D (256, 256, 64) 2112
LeakyReLU (256, 256, 64) 0
Conv2D (128, 128, 128) 131200
BatchNormalization (128, 128, 128) 512
LeakyReLU (128, 128, 128) 0
Conv2D (64, 64, 256) 524544
BatchNormalization (64, 64, 256) 1024
LeakyReLU (64, 64, 256) 0
Dropout (64, 64, 256) 0
Conv2D (32, 32, 512) 2097664
BatchNormalization (32, 32, 512) 2048
LeakyReLU (32, 32, 512) 0
Dropout (32, 32, 512) 0
Conv2D (32, 32, 1024) 8389632
BatchNormalization (32, 32, 1024) 4096
LeakyReLU (32, 32, 1024) 0
Dropout (32, 32, 1024) 0
GlobalAveragePooling2D (1024) 0
Dense (1) 1025
Total params: 11,153,857
Trainable params: 11,150,017
Non-trainable params: 3,840

Table 10: Summary of the discriminator of TANGAN.

	Introduction
	Background
	Problem Statement
	Objectives
	General Objective
	Specific Objectives

	Contributions
	Dissertation Structure

	Cutting and Packing Problem
	No-fit Polygon
	Inner-fit Polygon
	Collision-free Area

	Deep Learning
	Convolutional Autoencoder
	Variational Autoencoder
	U-Net
	Generative Adversarial Network
	Data Augmentation

	Related Work
	Non-Deep Learning Tangram Solvers
	Deep Learning Tangram Solvers
	Summary of Literature

	Dataset
	Dataset Collection
	Dataset Outline
	Dataset Statistics
	Taxonomical Statistics
	Morphological Statistics

	Heuristic Approach
	Pre-processing
	Placement Procedure
	Validation Process
	Proof of Concept with Limited Data

	Assessment of Deep Learning Architectures
	Limited Dataset
	Tangram Solvers Based on Autoencoders
	Network Architectures
	Loss Functions
	Evaluation Metrics
	Experimental Results

	Generative Model for Refinement of Tangram Geometry
	Network Architecture
	Weighted Mean Absolute Error Loss Function
	Weighted Mean Absolute Error Evaluation Metric
	Experimental Results

	Outcomes

	Deep Learning Approach
	Architecture Components
	Hu Moments Loss Function
	Hu Moments Evaluation Metric

	Experiments
	Experimental Setup
	Experimental Results
	Results for Heuristic Approach
	Results for Deep Learning Approach

	Experimental Analysis

	Conclusions
	Conclusive Remarks
	Future Directions

	Bibliography
	Publication Lists
	Appendices

