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Abstract

Security and privacy are significant concerns in realizing dependable cyber-

physical systems. To ensure the security and privacy of these systems, systems

and control communities have been developing encrypted control protocols that uti-

lize various cryptographic technologies. The primary focus of encrypted control in a

client-server configuration is to securely outsource the computation of controllers to

untrusted third parties using homomorphic encryption. This thesis aims to establish

a systematic design method for encrypted control systems using homomorphic en-

cryption in a client-server architecture. To this end, it addresses three essential tasks

to face when designing encrypted control systems: i) determination of an appropri-

ate cryptosystem for encrypted control, ii) design of a security parameter for the

cryptosystem, and iii) design of a controller to be encrypted. The thesis proposes ho-

momorphic encryption schemes that feature mechanisms for updating key pairs and

demonstrates that these cryptosystems guarantee the forward and post-compromise

security of encrypted control systems. Furthermore, it presents metrics to quantify

the security level of encrypted control systems and formulates the definition of their

security. Under the security definition, the thesis clarifies the minimum security pa-

rameter required to achieve the desired security level of encrypted control systems.

Using the minimum security parameter reduces the computational burden owing

to the encryption of control protocols. The thesis also shows that an H2 optimal

controller is effective in enhancing the security level. This connects the traditional

controller design and the security of encrypted control systems. The results of this

thesis provide a method for dealing with security as one of the control specifications

and contribute to the further development of interdisciplinary research on control

theory and cryptography.
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Notations

N set of positive integers

Z set of integers

Z+ set of non-negative integers

Zn set of non-negative integers less than n

R set of real numbers

R+ set of non-negative real numbers

∅ empty set

An set of n-dimentional vectors of which elements are in set A

Am×n set of m-by-n matrices of which entries are in set A

M⊤ transpose of matrix M

M−1 inverse of matrix M

M+ pseudo inverse of matrix M

∥v∥∞ maximum norm of vector v

∥M∥F Frobenius norm of matrix M

∥M∥max max norm of matrix M

tr(M) trace of matrix M

det(M) determinant of matrix M

vec(M) vectorization of matrix M

diag(x1, . . . , xn) n-by-n diagonal matrix of which (i, i) entry is xi

|A| cardinality of set A

|x| absolute value of x ∈ R
⌊x⌋ maximum integer less than x ∈ R
⌊x⌉ nearest integer of x ∈ R
[a]n residue of a ∈ Z modulo n ∈ N
JaKn minimal residue of a ∈ Z modulo n ∈ N
Pr[A] probability of event A

Pr[A | B] conditional probability of A given B

E[X] expectation of random variable X

E[X | Y ] conditional expectation of X given Y

N (µ,Σ) Gaussian distribution with mean µ and variance Σ

χ(σ) discrete Gaussian distribution with mean zero and variance σ
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p(·) probability density function

pN (·;µ,Σ) probability density function of N (µ,Σ)

loga(·) logarithm function base a

ln(·) natural logarithm function

exp(·) exponential function

λ security parameter

⊥ error symbol

K key space

M plaintext space

C ciphertext space

A probabilistic polynomial-time algorithm or adversary

params public parameters

pk public key

sk secret key

m plaintext

ct ciphertext

ut update token

poly (positive) polynomial

negl negligible function

KeyGen key generation algorithm

Setup setup algorithm

PubKeyGen public-key generation algorithm

SecKeyGen secret-key generation algorithm

Enc encryption algorithm

Dec decryption algorithm

Eval homomorphic evaluation algorithm

KeyUpd key update algorithm

CtUpd ciphertext update algorithm

ScalSetup scaling setup algorithm

Ecd encoder algorithm

Dcd decoder algorithm

EC encrypted control algorithm

Game cryptographic game

⊠ ciphertext multiplication

⊞ ciphertext addition
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� plaintext-ciphertext multiplication

⊗ Kronecker product

x← a a is assigned to x

x←R A uniform sampling of element x from set A

x←R D random sampling of x from probability distribution D
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Chapter 1

Introduction

1.1 Background

Cyber-physical systems have revolutionized traditional systems for efficiency, relia-

bility, and sustainability by integrating digital and physical worlds that consist of

sensors, communication networks, computational components, and actuators [1, 2].

These systems monitor, control, and optimize physical processes with the poten-

tial to enhance our quality of life in energy, transportation, healthcare, agriculture,

manufacturing, and beyond [3, 4].

Meanwhile, integrating communication and computation processes into a physi-

cal process often faces security and privacy risks owing to insecure communication

channels and untrusted third parties to whom computation is outsourced [5–11].

Once confidential information is learned by an adversary in a cyber-physical sys-

tem, the adversary can design sophisticated and undetectable attacks using a target

system model constructed from the disclosed information [12, 13]. Therefore, infor-

mation leakage within communication and computation is a primary concern in the

security and privacy of cyber-physical systems.

Encryption is a common approach for realizing secure communication via pub-

lic networks to prevent information leakage in cyber-physical systems. This en-

tails sending sensor data to computational components via communication networks

while encrypting the data. The computational components then decrypt the data,

make control decisions for a physical process based on deciphered messages, and en-

crypt the decisions again. Finally, the actuators receive and decrypt the encryption

of the controls to manipulate the physical processes. Although encryption effectively

protects information during transmission, the computation layer is still vulnerable

to threats that attempt to learn private information. This is because traditional

encryption schemes require the decryption of encrypted messages before making

control decisions, which can potentially expose information during computation.

In cryptography, various advanced techniques and tools have been developed
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to protect private information in communication and computation. These crypto-

graphic tools encompass a range of concepts, such as differential privacy, homomor-

phic encryption, secret sharing, garbled circuits, and secure multi-party computa-

tion. Each approach addresses distinct aspects of security and privacy during the

computation.

Differential privacy. Differential privacy is a statistical approach for privacy-

preserving data analysis in a database [14–18]. This approach provides a method

to mathematically deal with privacy and balance data utility and privacy preserva-

tion. The fundamental idea behind differential privacy is to introduce randomness

or perturbation into data queries or the output of computation, making it difficult

to distinguish whether particular individual data are included in the database from

its statistics. Differential privacy techniques are classified into two types: global

and local. Global differential privacy mechanisms randomize responses to queries,

whereas local differential privacy mechanisms randomize individual data before col-

lection [19–21]. These techniques are widely used in data mining [22–24] and ma-

chine learning [25–29] but can also be beneficially applied to filtering and controlling

dynamical systems [30–37].

Homomorphic encryption. Homomorphic encryption is an encryption tech-

nique that allows the direct arithmetic evaluation of encrypted data [38–40]. This en-

ables data to be processed in its encryption form, preserving privacy and security in

outsourcing computation to untrusted third parties. Several types of homomorphic

encryption schemes exist, including partially homomorphic, somewhat homomor-

phic, leveled fully homomorphic, and fully homomorphic. Partially homomorphic

encryption supports only a single operation, such as addition or multiplication, on

encrypted data [41–46]. On the other hand, somewhat homomorphic and leveled

fully homomorphic encryption schemes permit both addition and multiplication,

making them more tractable [47–49]. However, these encryption schemes limit the

number of operations that can be performed owing to the accumulation of noise

in the encrypted data for every operation, which can sometimes result in incorrect

decryption. Fully homomorphic encryption overcomes this limitation by introducing

bootstrapping and offers the most excellent flexibility, namely the computation of

any function on encrypted data [50–59]. The potential application areas of homo-

morphic encryption include cloud computing [60] and machine learning [61–64].
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Secret sharing. Secret sharing is a cryptographic technique for distributing a

secret among a group of parties by randomly dividing it into multiple shares [65–68].

A widely used secret-sharing scheme is the (t, n) threshold scheme, which splits a

secret into n shares. The original secret can be retrieved by combining at least t

shares, although any set of shares less than t reveals no information about the secret.

Because of this property, secret sharing is suitable for storing highly confidential

and critical information, such as an encryption key, as a subset of the involved

parties can recover the secret even if some shares are lost. Furthermore, secret

sharing is also applied to evaluate a function with multiple inputs in a multi-party

computation scenario [69–72]. One of the participants in the computation distributes

the inputs of a target function to the others via a secret sharing scheme. The

other participants perform computations on their respective shares and return their

results. The desired output of the target function is then recovered from the results

by aggregating them. In this computation process, as long as the participants who

received the shares do not collude, they cannot learn any information about the

original inputs.

Garbled circuit. Garbled circuits are a cryptographic protocol for computing

a desired function represented by a Boolean circuit with private inputs in a two-

party computation scenario while keeping those inputs entirely concealed from one

another [73–77]. Rather than relying on a trusted third party, the parties involved

in this protocol work together to obtain a circuit evaluation result, as follows: Let

Alice be a party that builds a circuit consisting of a single gate, and Bob be another

party that wants to evaluate it. Alice prepares the truth table of the circuit and

generates a garbled circuit that takes random bit-string labels as input instead of

0 or 1 by garbling the truth table. To evaluate the original circuit, Alice sends the

garbled circuit and the label corresponding to her input to Bob, and he obtains

the other label corresponding to his input from her by oblivious transfer. Bob then

computes the garbled circuit with the labels and outputs the result. Here, oblivious

transfers are a cryptographic protocol that allows a sender with multiple messages

to send one of them to a receiver without learning which message is sent, and the

receiver cannot learn the messages that were not sent [78, 79]. Some improvements

in the efficiency of garbled circuits were discussed in [80–83].
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Secure multi-party computation. Secure multi-party computation is a cryp-

tographic technique in which multiple parties jointly compute a function with their

inputs while preserving their security and privacy [84–86]. To this end, compu-

tation and communication protocols are developed for every party to obtain the

desired computation result without learning any other information and relying on

any trusted third party. Such protocols are typically based on various cryptographic

primitives, such as homomorphic encryption [87,88], secret sharing [72,89], garbled

circuits [90, 91], and oblivious transfer [92,93].

Such cryptographic techniques are expected to improve the confidentiality of com-

putation in cyber-physical systems. In this sense, encrypted control is an emerging

research paradigm in the interdisciplinary area of control theory and cryptography

that applies cryptographic tools, in particular homomorphic encryption, to con-

trol and make decisions for dynamical systems. Kogiso and Fujita initiated this

paradigm as a strategy for enhancing the security of networked control systems [94].

They reconstructed a linear time-invariant controller in the form of a matrix-vector

product. They then demonstrated performing the controller computation over en-

crypted data without decryption, using multiplicatively homomorphic encryption.

Following their work, Farokhi et al. and Kim et al. suggested utilizing additively

and fully homomorphic encryption in encrypted control, respectively [95–97]. The

research field on encrypted control has continued to advance, with recent studies

falling into two distinct categories: encrypted control in client-server models and

encrypted control in multi-agent systems. For those who want to delve deeper into

encrypted control, a tutorial is available in [98].

Encrypted control in client-server models. The early studies on encrypted

control have resulted in encrypting various advanced methods, such as dynamic

control [99–105], polynomial control [106, 107], nonlinear control [108–110], gain-

scheduled control [111], event-triggered control [108,112], discrete-event control [113],

motion control [114–117], bilateral control [118, 119], data-driven control [120],

learning-based control [121, 122], model predictive control [123–129], state esti-

mation [130–132], filtering [133], quadratic optimization [134–136], and machine

learning [137–139]. However, the encryption of controllers may lead to destabi-

lization and performance degradation owing to quantization errors in the encryp-

tion. Thus, the robust and asymptotic stabilities and performance of encrypted
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control systems under quantizers have been studied [96,108,111,112,140–146]. Ad-

ditionally, control systems with a controller having an integer state matrix have

been discussed [147–149]. Some studies have shown that encrypted control sys-

tems are vulnerable to several attacks [150–154]. To improve their integrity, addi-

tional functionalities in encrypted control systems have been investigated, includ-

ing detector [155–158], key-switching mechanism [159,160], authenticated computa-

tion [161], resilient homomorphic encryption [162–164], and keyed homomorphic en-

cryption [165]. Furthermore, encrypted control methods have been implemented on

Raspberry Pi [166,167], FPGA [168,169], drone [170], linear stage system [115,171],

pneumatic system [119,157], and robot manipulator [117,172].

Encrypted control in multi-agent systems. The implementation of distributed

control protocols utilizing cryptographic tools to protect the state or weight of each

agent in multi-agent systems is another focus of the encrypted control paradigm.

This study area is intriguing and involves various control strategies, including con-

sensus control [173–177], formation control [178,179], cooperative control [180,181],

distributed state estimation [182,183], and distributed Kalman filtering [184]. More-

over, secure distributed optimization has been studied in [185–191]. Distributed

algorithms often incorporate an aggregation process to integrate local private data,

with secure aggregation being investigated using homomorphic encryption in [180,

190, 192–195]. In addition, similar to encrypted control in client-server models, en-

crypted control with quantizers has also been discussed in consensus and formation

control protocols [174,179].

1.2 Contributions

The goal of this thesis is to establish a systematic design method for encrypted con-

trol systems using homomorphic encryption in a client-server model. The encrypted

control system comprises a cryptosystem, controller, and plant, in which the plant

is predetermined before the design. Hence, the following essential questions must

be addressed when designing encrypted control systems:

• What type of encryption scheme is appropriate for encrypted control?

• How can we design a security parameter for the used encryption scheme?

• How can we design a controller to be encrypted?
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Appropriate encryption scheme for encrypted control. The first question

involves the real-time operation of encrypted control systems. A control decision

must be fed back to the plant in real-time to guarantee the performance and stability

of the control system. Nevertheless, the encryption of control protocols increases

the computational burden, potentially spoiling the real-time computation of control

systems. Hence, a security parameter as large as that in traditional information

and communication systems would not be applicable to encrypted control systems.

Note that a security parameter is a parameter for cryptosystems that specifies their

security strength and affects their processing time.

A small security parameter generally increases the risk of adversaries compromis-

ing the secret key of a cryptosystem. Suppose the secret key used in an encrypted

control system falls into the hands of an adversary. In that case, the adversary can

recover all past and future messages transmitted between the plant and the controller

server. One possible countermeasure to mitigate this vulnerability is to regenerate

the public and secret keys of the cryptosystem. However, this countermeasure is

not preferred in encrypted control systems because it requires downloading the pa-

rameters of the encrypted controller, decrypting and encrypting them using the old

secret and new public keys, and then uploading them again, which induces additional

communication effort.

To resolve the potential vulnerability of encrypted control systems, this thesis

proposes two encryption schemes with key update mechanisms: updatable homo-

morphic encryption and key-updatable homomorphic encryption. Updatable homo-

morphic encryption is a variant of homomorphic encryption inspired by updatable

encryption [196]. This encryption scheme generates a token from previous and new

secret keys and updates ciphertexts encrypted by a previous public key into those

corresponding to a new public key using the token instead of re-encrypting them.

This simplifies the key update process because a plant only needs to send a token

to the controller server. The thesis formulates updatable homomorphic encryp-

tion and constructs it from basic computational assumptions. It also presents a

computational security notion and mathematically proves the security of updatable

homomorphic encryption based on this notion.

Furthermore, key-updatable homomorphic encryption is formulated and con-

structed to improve the efficiency and security of updatable homomorphic encryp-

tion. This encryption scheme is based on multi-key homomorphic encryption [54]

and can evaluate the arithmetic of ciphertexts encrypted by distinct keys. With
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key-updatable homomorphic encryption, the secret key can be updated without

requiring a token to update the ciphertexts in the controller server. This thesis

demonstrates the security of key-updatable homomorphic encryption in the same

manner as updatable homomorphic encryption.

Security parameter design. Once a cryptosystem is selected for encrypted con-

trol systems, the next step is determining an appropriate security parameter for

implementing the cryptosystem. The National Institute of Standards and Tech-

nology (NIST) provides recommendations for selecting security parameters and key

sizes [197]. The security parameters in most conventional studies on encrypted con-

trol systems were chosen to follow the recommendations as with information and

communication systems. However, as already mentioned, selecting such a security

parameter is not necessarily possible in practice because of the real-time computa-

tion requirements.

If the recommendations are not followed, a security parameter should be selected

for encrypted control systems to satisfy sufficient security strength based on certain

criteria. Therefore, it is necessary to develop a reliable measure for quantifying the

security level of encrypted control systems. Although some recent studies have intro-

duced various security metrics for control systems [7,198–206], they are not suitable

for encrypted control scenarios. This is because they have focused on quantifying

the impact of attacks on control performance or the applicability of undetectable

attacks and do not capture the confidentiality of encrypted control systems.

This thesis considers a disclosure attack to learn the system parameters of a

plant or a closed-loop system, which arises from network eavesdroppers and an

untrusted controller server. The adversaries collect the encrypted trajectories of

a target system and subsequently estimate the system parameters using the data

obtained by decrypting the encrypted trajectories. In this attack scenario, the thesis

proposes two metrics to assess the security of encrypted control systems. The first

metric, sample identifying complexity, is the minimum sample size required for an

estimation error in the adversary’s estimation to become smaller than a certain

threshold. The second metric, sample deciphering time, is the computation time

required to recover the original data from the encrypted trajectories.

Using the security metrics, the thesis provides a security definition tailored for

encrypted control systems. It also reveals the minimum security parameter that can

achieve the desired security level of an encrypted control system when the attack
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target is a plant. The minimum security parameter effectively balances the trade-off

between security strength and computational effort owing to encryption. Moreover,

the thesis offers a suboptimal security parameter that achieves the desired security

level, for which the design is more tractable than the minimum one.

Controller design. A controller affects the dynamics of a closed-loop system.

Hence, when an attack target is a closed-loop system, the security level of encrypted

control systems must depend on not only a security parameter but also a controller.

Although designing an appropriate controller can improve the security level, con-

ventional studies on encrypted control regard the controller as a given parameter.

Therefore, designing an appropriate controller for encrypted control systems remains

challenging from the perspective of security.

This thesis proposes a design method for a state-feedback controller oriented

toward the security of encrypted control systems. The designed controller improves

the security level of encrypted control systems by increasing the difficulty of the ad-

versary’s parameter estimation in terms of sample identifying complexity. A security

parameter for a closed-loop system is then designed using the controller. Further-

more, the thesis clarifies the connection between traditional controller design and

the security of encrypted control systems by showing that an H2 optimal controller

can serve as a suboptimal controller for the security level. It also demonstrates the

validity of the controller and security parameter design through numerical simula-

tions.

1.3 Organization

Chapter 2 reviews the foundation of cryptography for encrypted control. It be-

gins by defining public-key encryption and its correctness through polynomial-time

algorithms and a negligible function. The chapter also formulates a provable se-

curity notion called indistinguishability under chosen plaintext attacks via a cryp-

tographic game and introduces well-known computational problems, the decisional

Diffie-Hellman problem and the learning with errors problem, that can be used to

construct provably secure cryptosystems. Homomorphic encryption is then defined

as an extension of public-key encryption. The chapter provides examples of mul-

tiplicatively and additively holomorphic encryption schemes, namely the ElGamal

and Regev encryption schemes, and shows their correctness, homomorphism, and se-
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curity. Moreover, this chapter proposes updatable and key-updatable homomorphic

encryption to improve the forward and post-compromise security of homomorphic

encryption. These variants are constructed as with the ElGamal and Regev encryp-

tion schemes and are demonstrated to satisfy a notion of indistinguishability.

Chapter 3 introduces an encoder and decoder that bridges real numbers and

plaintexts. These tools are utilized to handle real-valued data in homomorphic

encryption. The chapter then analyzes a quantization error induced by the encoder

and decoder. It shows that the decoder preserves multiplication and addition in a

plaintext space as long as overflow does not occur. This feature enables the encoder

and decoder to inherit homomorphism. Using the encoder and decoder, this chapter

presents a unified definition of encrypted control, along with its accuracy notion.

In addition, it constructs encrypted control algorithms for a linear time-invariant

controller by using multiplicatively and additively homomorphic encryption. The

ElGamal and Regev encryption schemes are used to realize the encrypted control

algorithms. Finally, the definitions and constructions of encrypted control using

homomorphic encryption are extended, even when updating public and secret keys.

Chapter 4 focuses on exploring a security definition tailored to encrypted control

systems in a client-server framework. The chapter formulates the attack scenario

considered in this thesis while comparing the differences between conventional se-

cure communication and encrypted control from the perspective of a threat model

and security goal. In this attack scenario, the objective of an adversary, whether

an eavesdropper on a communication channel or a malicious server running an en-

crypted control algorithm, is to identify plant or closed-loop system parameters.

To define the security of encrypted control systems under this attack scenario, this

chapter considers the difficulty of system identification and the computation time

required. A type of sample complexity is used to quantify the difficulty of the

identification itself, whereas deciphering time is employed to measure the difficulty

of breaking encryption to obtain a dataset used in the identification process. In

addition, the security level of encrypted control systems is quantified through an ac-

ceptable estimation error and the desired protection period determined by a system

designer.

Chapter 5 proposes a design method for a security parameter and a controller

in encrypted control systems. The aim is to attain the desired security level while

reducing the computational burden due to encryption. The chapter begins by con-

sidering four parameter estimation algorithms commonly employed for system iden-
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tification. This indicates that these algorithms can be unified with reasonable as-

sumptions. Under an adversary using a unified estimator, the optimal security

parameter of an encrypted control system is designed when the attack target is a

plant. Although this involves solving an optimization problem, directly computing

the solution requires significant computational resources due to repeated iterations.

Therefore, this chapter also discusses the design of a suboptimal security param-

eter and controller based on a lower bound of sample identifying complexity for

each attack target, namely a plant and a closed-loop system, to overcome this opti-

mization challenge. Moreover, numerical examples are provided to demonstrate the

effectiveness of the proposed design method.

Chapter 6 concludes this thesis by complementing the technical and intellectual

contributions and providing remarks on future research directions.



Chapter 2

Cryptographic Foundations

The focus of this chapter is on providing cryptographic foundations for encrypted

control. The syntax and properties of public-key and homomorphic encryption are

introduced to formulate cryptosystems and rigorously prove their security. The

security of homomorphic encryption schemes is shown through cryptographic game-

based reduction. Furthermore, this chapter presents several modifications for ho-

momorphic encryption that achieve a stronger security notion than conventional

homomorphic encryption schemes.

2.1 Public-key encryption

Public-key encryption is an asymmetric technique for private communication be-

tween two parties. Fig. 2.1 illustrates a standard problem setting in public-key

encryption described below. Suppose Alice is a sender, and Bob is a receiver. Bob

prepares encryption and decryption keys, called public and secret keys, respectively,

and shares the public key with Alice before communication. Alice encrypts a mes-

sage with the public key and sends the encrypted message to Bob. Bob receives

and decrypts the encrypted message with the secret key. In this communication, we

want to ensure that an adversary, Eve, eavesdropping on the communication cannot

learn about Alice’s message even though the communication channel is public, i.e.,

the adversary can obtain the public key.

This section provides a formal definition of public-key encryption and its security.

Additionally, the section introduces two fundamental notions called a polynomial-

time algorithm and a negligible function.

2.1.1 Definitions

This section begins by defining a class of efficient algorithms to formulate the hard-

ness of computation. The running time of an algorithm basically increases depend-

ing on its input size. Thus, this section defines the efficiency of algorithms for their
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Alice Bob

Eve

Fig. 2.1: Communication using public-key encryption under the adversary eaves-
dropping on the communication channel.

growth of running time. More precisely, an algorithm is considered efficient if its

running time is bounded by a polynomial.

Definition 2.1 (Polynomial-time algorithm [207]). An algorithm runs in polyno-

mial time if, for every n-bit input, there exists a polynomial poly such that the

algorithm terminates within at most poly(n) steps. A polynomial-time algorithm is

an algorithm that runs in polynomial time.

We are now ready to define the syntax of public-key encryption to specify its

inputs, outputs, and operations. The syntax enables rigorous analysis of the prop-

erties and security of encryption schemes. In what follows, y ← A(x) denotes that

the value of A(x) is assigned to the variable y. x and y are referred to as the input

and output of A, respectively. Additionally, key, plaintext (message), and ciphertext

(encrypted message) spaces are denoted by K,M, and C, respectively.

Definition 2.2 (Public-key encryption). A public-key encryption scheme is a tuple

of polynomial-time algorithms KeyGen, Enc, and Dec such that:

• Key generation: The key generation algorithm (params, pk, sk) ← KeyGen(1λ)

consists of polynomial-time algorithms Setup, SecKeyGen, and PubKeyGen.

The setup algorithm params ← Setup(1λ) takes as input a security parame-

ter λ ∈ N and outputs public parameters params. Although params is input to

all other algorithms, we omit it for simplicity in the following. The secret-key

generation algorithm sk ← SecKeyGen() outputs a secret key sk. The public-

key generation algorithm pk← PubKeyGen(sk) takes as input the secret key sk

and outputs a public key pk.

• Encryption: The encryption algorithm ct ← Enc(pk,m) takes as input the

public key pk and a plaintext m ∈M and outputs a ciphertext ct ∈ C.
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• Decryption: The decryption algorithm m← Dec(sk, ct) takes as input the secret

key sk and a ciphertext ct ∈ C and outputs either a plaintext m ∈ M or error

symbol ⊥.

Note that the input of the key generation algorithm, 1λ, is the unary representa-

tion of security parameter λ. The unary representation expresses a natural number

using a sequence of 1. For example, 13 = 111 and 15 = 11111 are 3 and 5 in the

decimal form, respectively. The unary representation is used to specify the input

length of the key generation algorithm. In other words, the running time of the key

generation algorithm is at most poly(λ) steps.

The key generation and encryption algorithms are typically probabilistic to ran-

domize a secret key and a ciphertext. Hence, the decryption algorithm must almost

always recover the original plaintext correctly. This property can be formulated

as the probability of failure decryption being sufficiently small. Meanwhile, such

probability depends on a security parameter because public and secret keys are gen-

erated by a key generation algorithm taking as input the security parameter. Thus,

a function that is negligibly small with respect to its input is defined.

Definition 2.3 (Negligible function [207]). A function negl : N→ R+ is negligible if,

for every positive polynomial poly, there exists N ∈ N such that negl(n) < 1/poly(n)

holds for all n > N . A negligible function is a function that is negligible.

A negligible function approaches zero faster than any positive polynomial as its

input grows. For instance, consider the function 2−n with the input n. This is an

example of a negligible function that becomes rapidly small as n increases. With a

negligible function, the condition of correct decryption is defined as follows.

Definition 2.4 (Correctness). A public-key encryption scheme in Definition 2.2 is

correct if there exists a negligible function negl such that

Pr

m′ = m

∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)

ct← Enc(pk,m)

m′ ← Dec(sk, ct)

 ≥ 1− negl(λ)

for all λ ∈ N and for all m ∈M.

The probability that the output of the decryption algorithm is equal to the

original plaintext rapidly converges to one as the security parameter increases. Thus,
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the decryption algorithm of a correct public-key encryption scheme almost always

recovers the original plaintext when a security parameter is sufficiently large.

2.1.2 Security

Modern cryptography considers security only against efficient adversaries whose

computational power is bounded by a polynomial. Such security is called com-

putational security. Similarly to a polynomial-time algorithm, the adversary is re-

ferred to as a polynomial-time adversary. Additionally, such adversaries can behave

in a probabilistic manner. Thus, the security notion considers guaranteeing the

success probability of attacks is negligibly small. It should be noted that limiting

the adversaries to efficient ones is reasonable in practice because the computation

of adversaries is typically more efficient than parties who communicate with each

other using a public-key encryption scheme. Recall that public-key encryption in

Definition 2.2 consists of polynomial-time algorithms.

To analyze the security of encryption schemes, it is necessary to formulate a

threat model and security goal with a rigorous mathematical approach. To this end,

the game-based proof is employed. This section formally defines a game capturing a

cryptographic protocol under the attack of an adversary by using pseudocode. The

security proof demonstrates that the advantage of an adversary in winning the game

is negligibly small under some computational assumptions. The game defined below

formulates the most fundamental security notion, indistinguishability under chosen-

plaintext attacks (IND-CPA), in public-key encryption. In what follows, x ←R X

denotes uniform sampling of an element x from a set X. Similarly, we use the same

symbol for random sampling of x from X if X is a probability distribution.

Definition 2.5 (IND-CPA [207]). Consider a public-key encryption scheme Π =

(KeyGen,Enc,Dec) and adversary A. Define the game GameIND−CPA
Π,A (λ) as follows.

GameIND−CPA
Π,A (λ)

(params, pk, sk)← KeyGen(1λ)

(m0,m1)← A(1λ, params, pk)

b←R {0, 1}

ct← Enc(pk,mb)

b̂← A(ct)

return 1 if b̂ = b and 0 otherwise
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Setup. Public parameters params and a key pair (pk, sk) are generated by running

the key generation algorithm KeyGen(1λ).

Challenge. A takes as input 1λ, params, and pk and outputs plaintexts m0,m1 ∈M
of the same length. A bit b ∈ {0, 1} is chosen uniformly. A ciphertext ct is

computed by running the encryption algorithm Enc(pk,mb).

Guess. A takes as input ct and outputs a bit b̂ ∈ {0, 1}. The game outputs 1 if

b̂ = b and 0 otherwise.

We say Π is IND-CPA secure if there exists a negligible function negl such that∣∣∣∣Pr[GameIND−CPA
Π,A (λ) = 1

]
− 1

2

∣∣∣∣ < negl(λ)

for all λ ∈ N and for all probabilistic polynomial-time adversary A.

The left-hand side of inequality in the definition is called the advantage of ad-

versary A. If the advantage is negligibly small, that is, the probability of the ad-

versary winning the game is sufficiently close to that of random guess, then such

an encryption scheme is IND-CPA secure. This security definition implies that any

probabilistic polynomial-time adversary cannot learn about any partial information

of a plaintext from a ciphertext. It should be noted that the adversary in the game

takes as input the security parameter λ, i.e., the running time of the adversary is

bounded by poly(λ) steps. In other words, the security definition covers only efficient

adversaries. Moreover, in the game, the adversary can access the public parameters,

public key, and the encryption of mb, referred to as the challenge ciphertext. This

formulation reflects the desired property of public-key encryption described in the

introduction of this chapter.

At the end of this section, we introduce two computational problems usually

assumed to be hard in several constructions of encryption schemes. In what follows,

the modular reduction of x ∈ Z modulo n ∈ N is denoted by [x]n. Similarly, for a

vector v ∈ Z and matrix M ∈ Z, [v]n and [M ]n represents the vector and matrix

obtained by the modular reduction of each element of v and M , respectively.

Definition 2.6 (DDH problem [207]). Given a cyclic group G of order q = q(λ).

Let g be a generator of G, and let x, y, z be random numbers uniformly sampled from

Zq. The decisional Diffie-Hellman (DDH) problem is to distinguish (gx, gy, gz) and
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(gx, gy, gxy). The DDH problem is hard if there exists a negligible function negl such

that

|Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]| < negl(λ)

for all λ ∈ N and for all probabilistic polynomial-time algorithm A. The DDH

assumption is an assumption that the DDH problem is hard.

Definition 2.7 (LWE problem [208]). Let m = m(λ), n = n(λ), and q = q(λ) ≥ 2

be positive integers, and let χ = χ(λ) be a probability distribution over Z. Given

a uniformly random matrix A ∈ Zm×n
q , uniformly random vectors s ∈ Znq , u ∈ Zmq ,

and an error vector e ∈ Zm sampled from χm. The (decisional) learning with errors

(LWE) problem is to distinguish (A, [As+ e]q) and (A, u). The LWE problem is hard

if there exists a negligible function negl such that∣∣∣Pr[A(A, [As+ e]q) = 1]− Pr[A(A, u) = 1]
∣∣∣ < negl(λ)

for all λ ∈ N and for all probabilistic polynomial-time algorithm A. The LWE

assumption is an assumption that the LWE problem is hard.

Note that the hardness of DDH and LWE problems depends on the choice of

the cyclic group G and the parameters m,n, q, χ, respectively. We assume that an

appropriate group and parameters are selected when the DDH and LWE assumptions

are made. The readers of interest can refer to [209,210] and their references for more

details.

2.2 Homomorphic encryption

Homomorphic encryption is an emerging cryptographic tool for secure outsourcing

computation. Roughly speaking, homomorphic encryption allows one to compute

some arithmetic directly on encrypted data without decryption. Fig. 2.2 depicts a

client-server model of outsourcing computation using homomorphic encryption. The

client aims to outsource the computation of a function, whose inputs are private

data of the client, to the server. Meanwhile, the client wishes to keep the data

secret against the server and eavesdropper in the network for privacy. The client

then transmits the function and private data to the server while encrypting the

data by homomorphic encryption. The server can compute and return an output
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Client Server

Eve

Fig. 2.2: Outsourcing computation using homomorphic encryption under the adver-
sary eavesdropping on the communication channel.

of the function with the received ciphertexts thanks to the ability of homomorphic

encryption. Hence, the client achieves its goal by decrypting the response, namely

outsourcing computation while keeping its privacy.

This section serves as a mathematical formulation of homomorphic encryption

and its properties. Furthermore, the section introduces two concrete constructions

of homomorphic encryption based on the DDH and LWE problems.

2.2.1 Definitions

The formulation of homomorphic encryption begins with defining its syntax. The

definition is an extension of public-key encryption in Definition 2.2 with an addi-

tional polynomial-time algorithm for homomorphic evaluation.

Definition 2.8 (Homomorphic encryption). A homomorphic encryption scheme is

a tuple of KeyGen, Enc, and Dec in Definition 2.2, and a polynomial-time algorithm

Eval such that:

• Homomorphic evaluation: The homomorphic evaluation algorithm ct ←
Eval(f, ct1, ct2) takes as input a binary operation f and two ciphertexts ct1, ct2 ∈
C and outputs a ciphertext ct ∈ C.

Fig. 2.3 illustrates a schematic picture of the relationship among the encryption,

decryption, and homomorphic evaluation algorithms. It is required that the output

of homomorphic evaluation algorithm Eval(f, ct1, ct2) is almost always decrypted

to a corresponding plaintext f(m1,m2) correctly, where ct1 ← Enc(pk,m1), and

ct2 ← Enc(pk,m2). Similar to the correctness in Definition 2.4, this property of

homomorphic encryption is defined as follows.
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Fig. 2.3: Schematic picture of the relationship among encryption, decryption, and
homomorphic evaluation algorithms in homomorphic encryption.

Definition 2.9 (Homomorphism). Let f be a binary operation. A homomorphic

encryption scheme in Definition 2.8 is homomorphic for f if there exists a negligible

function negl such that

Pr

m′ = f(m1,m2)

∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← KeyGen(1λ)

cti ← Enc(pk,mi), i = 1, 2

ct← Eval(f, ct1, ct2)

m′ ← Dec(sk, ct)

 ≥ 1− negl(λ)

for all λ ∈ N and for all m1,m2 ∈M.

Homomorphic encryption is classified into some types according to a binary op-

eration in its homomorphism. If an encryption scheme is homomorphic for either

multiplication × or addition +, it is called a multiplicatively or additively homo-

morphic encryption scheme, respectively. In addition, if the scheme is homomorphic

for both multiplication and addition with a limited number of operations, it is called

somewhat or leveled fully homomorphic encryption. If the scheme has no limitations

for both operations, it is referred to as fully homomorphic encryption.

Define the binary operations over a ciphertext space, ⊠ : C×C → C : (ct1, ct2) 7→
Eval(×, ct1, ct2) and ⊞ : C × C → C : (ct1, ct2) 7→ Eval(+, ct1, ct2), for the sake of

simplicity. Using the binary operations, it holds that

Dec(sk, ct1 ⊠ ct2) = m1 ×m2,
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Dec(sk, ct1 ⊞ ct2) = m1 +m2,

for multiplicatively and additively homomorphic encryption schemes except with

a negligible probability, where ct1 ← Enc(pk,m1) and ct2 ← Enc(pk,m2). Further-

more, the homomorphic addition allows computing multiplication between plaintext

and ciphertext as

Dec(sk, ct2 ⊞ · · ·⊞ ct2︸ ︷︷ ︸
m1 times

) = m2 + · · ·+m2︸ ︷︷ ︸
m1 times

= m1 ×m2.

Define the operation � :M×C → C to denote the plaintext-ciphertext multiplica-

tion, namely Dec(sk,m1 � ct2) = m1 ×m2.

2.2.2 Construction from DDH

Following the syntax and homomorphism definitions, the following sections intro-

duce two concrete constructions of homomorphic encryption. The first construction

is the ElGamal encryption [43] that relies on the hardness of the DDH problem in

Definition 2.6. The encryption scheme is a multiplicatively-homomorphic encryption

scheme constructed as follows.

Definition 2.10 (ElGamal encryption). The algorithms in Definition 2.8 for the

ElGamal encryption are as follows.

• Setup: Let q = q(λ) and p = p(λ) be prime numbers such that p = nq + 1 and

n ≥ 2. Randomly compute a generator g of a cyclic group G = {[gi]p | i ∈ Zq}
such that [gq]p = 1. Output params = (p, q, g). The plaintext and ciphertext

spaces areM = G and C = G2, respectively.

• Secret key generation: Choose s←R Zq. Output sk = s.

• Public key generation: Set s← sk. Output pk = [gs]p.

• Encryption: Set h← pk. Choose r ←R Zq. Output ct = ([gr]p, [mh
r]p).

• Decryption: Parse ct = (c1, c2). Set s← sk. Output m =
[
c−s1 c2

]
p
.

• Homomorphic evaluation: Parse ct1 = (c11, c12), and ct2 = (c21, c22). Output

ct = ([c11c21]p, [c12c22]p).
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The ElGamal encryption satisfies the correctness in Definition 2.4 and homomor-

phism in Definition 2.9 with respect to multiplication. The proofs of these properties

are shown below.

Proposition 2.1. The ElGamal encryption is correct.

Proof. Let params, pk, and sk be as in Definition 2.10. A ciphertext of m ∈ G is

given as

ct = Enc(pk,m) =
(
[gr]p, [m(gs)r]p

)
=
(
[gr]p, [mg

rs]p

)
,

where r ∈ Zq is a random number. The decryption of ct is computed as

m′ = Dec(sk, ct) =
[
(gr)−smgrs

]
p
=
[
mg−rsgrs

]
p
=
[
mgrs−rs

]
p
= [m]p = m.

This implies that Pr[m′ = m] = 1.

Proposition 2.2. Let p be as in Definition 2.10. The ElGamal encryption is ho-

momorphic for multiplication modulo p.

Proof. Let params, pk, and sk be as in Definition 2.10. Let f : M×M → M :

(m1,m2) 7→ [m1m2]p. Ciphertexts of m1,m2 ∈ G are given as

ct1 = Enc(pk,m1) =
(
[gr1 ]p, [m1g

r1s]p

)
,

ct2 = Enc(pk,m2) =
(
[gr2 ]p, [m2g

r2s]p

)
,

where r1, r2 ∈ Zq are random numbers. The output of homomorphic evaluation is

obtained as

ct = Eval(f, ct1, ct2) =
(
[gr1gr2 ]p, [m1g

r1sm2g
r2s]p

)
,

=
([
gr1+r2

]
p
,
[
m1m2g

(r1+r2)s
]
p

)
,

=
(
[gr]p, [m1m2g

rs]p

)
,

where r = r1 + r2. It follows from the proof of Proposition 2.1 that the decryption

of ct is computed as

m′ = Dec(sk, ct) = [m1m2]p = f(m1,m2).

This implies that Pr[m′ = f(m1,m2)] = 1.
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2.2.3 Construction from LWE

The next construction of homomorphic encryption is the Regev encryption [208].

The encryption scheme is an additively homomorphic encryption scheme based on

the hardness of the learning with errors (LWE) problem, and hence it is sometimes

called LWE-based encryption. The construction is as follows.

Definition 2.11 (Regev encryption [208]). The algorithms in Definition 2.8 for the

Regev encryption are as follows.

• Setup: Let m = m(λ), n = n(λ), t = t(λ) ≥ 2, and q = q(λ) ≫ t be integers,

and let χ = χ(σ) be the discrete Gaussian distribution with mean zero and

variance σ = σ(λ). Choose A ←R Zm×n
q . Output params = (m,n, t, q, χ, A).

The plaintext and ciphertext spaces areM = Zt and C = Zn+1
q , respectively.

• Secret key generation: Choose s←R Znq . Output sk = s.

• Public key generation: Set s← sk. Sample e←R χ
m. Output pk = [As+ e]q.

• Encryption: Set b← pk. Choose r ←R Zm2 . Output

ct =

([
r⊤A

]
q
,
[⌊q
t

⌋
m+ r⊤b

]
q

)
.

• Decryption: Parse ct = (c1, c2). Set s← sk. Output

m =

[⌊
t

q
[c2 − c1s]q

⌉]
t

.

• Homomorphic evaluation: Parse ct1 = (c11, c12) and ct2 = (c21, c22). Output

ct = ([c11 + c21]q, [c12 + c22]q).

The important difference between the Regev and ElGamal encryption is the use

of noise sampled from the discrete Gaussian distribution in the public-key genera-

tion. As a result, the noise is injected into lower bits of the scaled plaintext ⌊q/t⌋m
in the encryption algorithm and removed by rounding after re-scaling in the decryp-

tion algorithm. Note that the rounding does not consider an ultimately large noise

sampled with non-zero probability and fails when injecting the noise. However, such

a noise is not sampled from the discrete Gaussian distribution except with a negli-

gible probability. The definition below formulates the property that a probability

distribution is practically bounded.
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Definition 2.12 (Bounded distribution). A probability distribution D = D(λ) over

Z is B-bounded if there exists a negligible function negl such that

Pr[|x| ≥ B | x←R D] < negl(λ)

for all λ ∈ N.

Under the assumption that the discrete Gaussian distribution used for public-key

generation is bounded, the Regev encryption satisfies the correctness as well as the

ElGamal encryption and is homomorphic for addition.

Proposition 2.3. Let m, t, q, and χ be as in Definition 2.11. Assume that χ is

(q/(2mt)− t/m)-bounded. The Regev encryption is correct.

Proof. Let params, pk, and sk be as in Definition 2.11. Let ∆ = ⌊q/t⌋. A ciphertext

of m ∈ Zt is given as

ct = Enc(pk,m) =
([
r⊤A

]
q
,
[
∆m+ r⊤(As+ e)

]
q

)
,

where r ∈ Zm2 is a random number, and e is a noise sampled from χm. The decryption

of ct is computed as

m′ = Dec(sk, ct) =

[⌊
t

q

[
∆m+ r⊤(As+ e)− r⊤As

]
q

⌉]
t

,

=

[⌊
t

q

[
∆m+ r⊤e

]
q

⌉]
t

,

=

[⌊
t

q
(∆m+ r⊤e+ nqq)

⌉]
t

,

=

[⌊
t

q
∆m+

t

q
r⊤e+ nqt

⌉]
t

,

=

[⌊
m+

t

q
(r⊤e− ϵm) + nqt

⌉]
t

,

=

[
m+ nqt+

⌊
t

q
(r⊤e− ϵm)

⌉]
t

,

= m+

[⌊
t

q
(r⊤e− ϵm)

⌉]
t

,

where nq ∈ Z, ϵ = q/t−∆, and 0 ≤ ϵ < 1. m′ = m holds if |(t/q) · (r⊤e−ϵm)| < 1/2,
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and its sufficient condition is given as∣∣∣∣ tq (r⊤e− ϵm)

∣∣∣∣ < 1

2
⇐⇒ |r⊤e− ϵm| < q

2t
,

⇐= |r⊤e|+ ϵm <
q

2t
,

⇐=

∣∣∣∣∣
m∑
i=1

riei

∣∣∣∣∣ < q

2t
− t,

⇐=
m∑
i=1

|riei| <
q

2t
− t,

⇐=
m∑
i=1

|ei| <
q

2t
− t,

⇐= |ei| <
1

m

( q
2t
− t
)
, i = 1, . . . ,m.

Hence, |(t/q) · (r⊤e− ϵm)| < 1/2 holds with probability at least 1− negl(λ) because

χ is (q/(2mt)− t/m)-bounded. This implies that Pr[m′ = m] ≥ 1− negl(λ).

Proposition 2.4. Let m, t, q, and χ be as in Definition 2.11. Assume that χ

is (q/(4mt) − t/m)-bounded. The Regev encryption is homomorphic for addition

modulo t.

Proof. Let params, pk, and sk be as in Definition 2.11. Let ∆ = ⌊q/t⌋, and let

f :M×M→M : (m1,m2) 7→ [m1 +m2]t. Ciphertext of m1,m2 ∈ Zt are given as

ct1 = Enc(pk,m1) =
([
r⊤1 A

]
q
,
[
∆m1 + r⊤1 (As+ e)

]
q

)
,

ct2 = Enc(pk,m2) =
([
r⊤2 A

]
q
,
[
∆m2 + r⊤2 (As+ e)

]
q

)
,

where r1, r2 ∈ Zm2 are random numbers, and e is a noise sampled from χm. The

output of homomorphic evaluation is obtained as

ct = Eval(f, ct1, ct2),

=
([
r⊤1 A+ r⊤2 A

]
q
,
[
∆m1 + r⊤1 (As+ e) + ∆m2 + r⊤2 (As+ e)

]
q

)
,

=
([

(r1 + r2)
⊤A
]
q
,
[
∆(m1 +m2) + (r1 + r2)

⊤(As+ e)
]
q

)
,

=
([
r⊤A

]
q
,
[
∆(m1 +m2) + r⊤(As+ e)

]
q

)
,
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where r = r1 + r2. It follows from the proof of Proposition 2.3 that

m′ = Dec(sk, ct) = [m1 +m2]t = f(m1,m2)

holds if |(t/q) · (r⊤e− ϵ(m1 +m2))| < 1/2, and its sufficient condition is given as∣∣∣∣ tq (r⊤e− ϵ(m1 +m2))

∣∣∣∣ < 1

2
⇐⇒ |r⊤e− ϵ(m1 +m2)| <

q

2t
,

⇐= |r⊤e|+ ϵ(m1 +m2) <
q

2t
,

⇐= |r⊤e| < q

2t
− 2t,

⇐=

∣∣∣∣∣
m∑
i=1

r1,iei +
m∑
i=1

r2,iei

∣∣∣∣∣ < q

2t
− 2t,

⇐=
m∑
i=1

|r1,iei|+
m∑
i=1

|r2,iei| <
q

2t
− 2t,

⇐= 2
m∑
i=1

|ei| <
q

2t
− 2t,

⇐= |ei| <
1

m

( q
4t
− t
)
, i = 1, . . . ,m,

where ϵ = q/t−∆, and 0 ≤ ϵ < 1. Hence, |(t/q) · (r⊤e− ϵ(m1 +m2))| < 1/2 holds

with probability at least 1 − negl(λ) because χ is (q/(4mt) − t/m)-bounded. This

implies that Pr[m′ = f(m1,m2)] ≥ 1− negl(λ).

2.2.4 Security

This section analyzes the security of ElGamal and Regev encryption through game-

based proofs. The security is usually shown by the reduction of the target security

game to an idealized game via a game sequence. The idealized game represents the

perfect security, i.e., the probability of an adversary winning the game is equiva-

lent to 1/2. The reduction approach demonstrates that the difference in adversary’s

advantages between the target and idealized games is negligibly small by assuming

that some computational problem is hard to solve. Then, if there exists an adversary

who has a non-negligible probability of winning the target game, the existence con-

tradicts the fact that the advantage in the idealized game is zero since the adversary

wins the idealized one with a 1/2 probability. It implies that such an adversary does

not exist under the computational assumption.
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The following propositions show the IND-CPA security of ElGamal and Regev

encryption. The proofs will be accomplished by reducing their IND-CPA games in

Definition 2.5 to some idealized games through the DDH and LWE assumptions.

Proposition 2.5. The ElGamal encryption is IND-CPA secure under the DDH

assumption.

Proof. We prove the statement by reduction of the following games.

Game0(λ): This game is the original IND-CPA game of ElGamal encryption, shown

below.

Game0(λ)

params← Setup(1λ)

s←R Zq
(m0,m1)← A(1λ, params, [gs]p)

b←R {0, 1}

ct← ([gr]p, [mbg
rs]p), r ←R Zq

b̂← A(ct)

return 1 if b̂ = b and 0 otherwise

Game1(λ): This game is the same as Game0 except replacing grs in the challenge

ciphertext with gv for some random number v uniformly sampled from Zq.

Game2(λ): This game is the same as Game1 except replacing mbg
v with gv.

Claim 2.1. |Pr[Game0(λ) = 1] − Pr[Game1(λ) = 1]| is negligible under the DDH

assumption.

Proof. Consider the following algorithm.

Algorithm B(λ, params, α, β, γ)

(m0,m1)← A(1λ, params, [α]p)

b←R {0, 1}

ct← ([β]p, [mbγ]p)

b̂← A(ct)

return 1 if b̂ = b and 0 otherwise
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If (α, β, γ) = (gs, gr, grs) for some random numbers r, s←R Zq, the algorithm B
simulates Game0. This implies that

Pr[B(λ, params, gs, gr, grs) = 1 | s, r ←R Zq] = Pr[Game0(λ) = 1].

Similarly, it follows that

Pr[B(λ, params, gs, gr, gv) = 1 | s, r, v ←R Zq] = Pr[Game1(λ) = 1].

Assume that

|Pr[Game0(λ) = 1]− Pr[Game1(λ) = 1]| ≥ negl(λ)

holds for all negligible function negl, then B can distinguish (gs, gr, grs) and (gs, gr, gv)

with non-negligible probability that contradicts the DDH assumption. The claim is

held by contradiction.

Claim 2.2. Pr[Game1(λ) = 1] = Pr[Game2(λ) = 1].

Proof. If v is uniformly sampled from Zq, [gv]p follows the uniform distribution on G,

and so is [mbg
v]p. Hence, the modification of Game2 does not change any probability

of Game1.

Claim 2.3. Pr[Game2(λ) = 1] = 1/2.

Proof. The probability Pr[b̂ = b] is equivalent to 1/2 because the challenge ciphertext

in Game2 is independent of b.

Consequently, it follows that |Pr[Game0(λ) = 1] − 1/2| is negligible under the

DDH assumption.

Next, the IND-CPA security of Regev encryption is shown. The logic of proof is

almost similar to that of ElGamal encryption.

Proposition 2.6. The Regev encryption is IND-CPA secure under the LWE as-

sumption.

Proof. We prove the statement by reduction of the following games.

Game0(λ): This game is the original IND-CPA game of Regev encryption, shown

below.
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Game0(λ)

params← Setup(1λ)

s←R Znq , e←R χm

(m0,m1)← A(1λ, params, [As+ e]q)

b←R {0, 1}

ct←
([

r⊤A
]
q
,
[⌊q

t

⌋
mb + r⊤(As+ e)

]
q

)
, r ←R Zm2

b̂← A(ct)

return 1 if b̂ = b and 0 otherwise

Game1(λ): This game is the same as Game0 except replacing As+ e in the challenge

ciphertext with a random number u sampled uniformly from Zmq .

Game2(λ): This game is the same as Game1 except replacing ∆mb + r⊤u with r⊤u.

Claim 2.4. |Pr[Game0(λ) = 1] − Pr[Game1(λ) = 1]| is negligible under the LWE

assumption.

Proof. Consider the following algorithm.

Algorithm B(λ, params, α, β, γ)

(m0,m1)← A(1λ, params, α, [γ]q)

b←R {0, 1}

ct←
([

β⊤α
]
q
,
[
∆mb + β⊤γ

]
q

)
b̂← A(ct)

return 1 if b̂ = b and 0 otherwise

If (α, β, γ) = (A, r, As + e) for some random matrix A ←R Zm×n
q and vectors

s←R Znq , e←R χ
m, r ←R Zm2 , the algorithm B simulates Game0. This implies that

Pr[B(λ, params, A, r, As+ e) = 1 | A←R Zm×n
q , r ←R Zm2 , s←R Znq , e←R χ

m]

= Pr[Game0(λ) = 1].

Similarly, it follows that

Pr[B(λ, params, A, r, u) = 1 | A←R Zm×n
q , r ←R Zm2 , s←R Znq , u←R Zmq ]
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= Pr[Game1(λ) = 1].

Assume that

|Pr[Game0(λ) = 1]− Pr[Game1(λ) = 1]| ≥ negl(λ)

holds for all negligible function negl, then B can distinguish (A, r, As+e) and (A, r, u)

with non-negligible probability that contradicts the LWE assumption. The claim is

held by contradiction.

Claim 2.5. Pr[Game1(λ) = 1] = Pr[Game2(λ) = 1].

Proof. If r is uniformly sampled from Zm2 ,
[
r⊤u

]
q
follows the uniform distribution

on Zq, and so is
[
∆mb + r⊤u

]
q
. Hence, the modification of Game2 does not change

any probability of Game1.

Claim 2.6. Pr[Game2(λ) = 1] = 1/2.

Proof. The probability Pr[b̂ = b] is equivalent to 1/2 because the challenge ciphertext

in Game2 is independent of b.

Consequently, it follows that |Pr[Game0(λ) = 1] − 1/2| is negligible under the

LWE assumption.

This section concludes with some remarks on the security of homomorphic en-

cryption. The section has viewed the IND-CPA security in Definition 2.5 models

the security against an adversary eavesdropping on a communication channel. The

adversary can access public parameters and a public key, which implies that the

adversary can obtain a ciphertext of any plaintext. In other words, the adversary is

capable of accessing an encryption oracle.

Now, consider a more capable adversary who can access a decryption oracle

that receives a query of ciphertext excluding a challenge ciphertext and returns a

decryption result of the received ciphertext. Such security is referred to as the indis-

tinguishability under chosen-ciphertext attacks (IND-CCA). The IND-CCA security

models a scenario in which an adversary can obtain the decryption of a modified

challenge ciphertext. The adversary might learn partial information about the orig-

inal plaintext from the decryption result. Thus, the IND-CCA security captures

an adversary actively collapsing the secrecy of encryption compared to a passive

adversary in the IND-CPA security.
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To achieve the IND-CCA security, an encryption scheme should become tolerant

of tampering with a ciphertext. Unfortunately, homomorphic encryption cannot

satisfy the IND-CCA security because it is malleable. Malleability is the property

of an encryption scheme that allows an adversary to manipulate a ciphertext without

knowledge of a secret key, resulting in the change of decrypted message. For example,

the ciphertext of ElGamal encryption, ct = ([gr]p, [mh
r]p), can be modified to ct′ =

ct ⊠ (1, k) = ([gr]p, [kmh
r]p) for some k ∈ M. The decryption result of ct′ is

expected to be [km]p, and hence the ElGamal encryption is malleable. Similarly, the

ciphertext of Regev encryption ct = (
[
r⊤A

]
q
,
⌊
⌊q/t⌋m+ r⊤b

⌉
) can be manipulated

as ct′ = ct⊞ (1, ⌊q/t⌋k) for some k ∈M, which might be decrypted to [m+ k]t.

Malleability and homomorphism are two sides of the same coin. Hence, an addi-

tional scheme to prevent or detect illegal manipulations for ciphertexts is required

while maintaining homomorphic evaluation ability. One approach for constructing

IND-CCA secure homomorphic encryption schemes is the requirement of an ad-

ditional key to evaluate homomorphic computations. Such modified encryption is

called keyed-homomorphic encryption [211]. The construction in [211] can satisfy

the IND-CCA security against an adversary who is not capable of accessing the

evaluation key.

2.3 Updatable homomorphic encryption

The previous sections introduced homomorphic encryption for secure outsourcing

computation in a client-server model. Encrypted control, which will be formally

defined in the next chapter, is realized based on the framework of secure outsourcing

computation as the procedure below. The sensor data of a plant are encrypted by

homomorphic encryption and transmitted to a server. The server then computes and

returns control inputs from the encrypted data and encrypted controller parameters

without decryption. It should be noted that, in the encrypted control scenario, a

function and a part of input ciphertexts for the function, i.e., a control law and

controller parameters, are usually stored on the server before the control.

Some practical settings of secure outsourcing computation, including encrypted

control, require repeated communication between a client and server for the long

term. Consider what will happen here if the secret key used for the communication

is compromised by an adversary at a certain time. It is evident that the adversary

can learn messages communicated between the client and server before and after
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Fig. 2.4: Updatable encryption.

the time. In such a case, there is no security guaranteed by the conventional homo-

morphic encryption schemes. A naive countermeasure to the problem is a refresh

of key pairs at every time step. However, repeated key generation is undesirable

in the encrypted control scenario. This is because the client should download the

ciphertexts of controller parameters, decrypt them, and re-encrypt them using a

new key pair, thereby increasing computation costs and network loads.

Such a problem has been attempted to be solved by updatable encryption [196]

in the context of private-key encryption for cloud storage. Note that private-key

encryption is a symmetric methodology for private communication and securing data

using the same key in encryption and decryption. Fig. 2.4 depicts an abstract view

of updatable encryption. In updatable encryption, an update token is generated by

a key owner, and a cloud server updates a ciphertext encrypted by the previous key

to another ciphertext corresponding to a new key by using the update token instead

of re-encryption. Boneh et al. realized an updatable encryption scheme based

on a key-homomorphic pseudorandom function and formulated a security notion

for the encryption [196]. In contrast, Everspaugh et al. improved the efficiency

of ciphertext-dependent token generation and showed the security notion in [196] is

not sufficient [212]. Additionally, they proposed a stronger security notion implicitly

achieving the CCA security and ciphertext integrity (INT-CTXT) and provided an

updatable encryption scheme with ciphertext-independent token generation.

When the updatable encryption was developed by Boneh et al., only the forward

security (forward secrecy) was considered [47]. The forward security is a security

notion that any information of data encrypted using the past keys is protected even

though an adversary compromises the current key. Meanwhile, some studies have

considered the post-compromise security (backward secrecy) that ensures any infor-

mation of data encrypted by future keys is protected even when compromising the

current key [213,214]. Fig. 2.5 illustrates the forward security and post-compromise



2.3. Updatable homomorphic encryption 31

Post-compromise securityForward security

Compromise

Time

Fig. 2.5: Forward and post-compromise security.

security notions. The security notions are not conflicted and complement each other

to protect past and future data from the current compromise. Lehmann and Tack-

mann formulated a strong security model called the indistinguishability of encryp-

tion (IND-ENC) and update (IND-UPD) for the forward and post-compromise secu-

rity and revealed that the conventional schemes could not satisfy the security [214].

They then constructed an updatable encryption scheme, which is secure in their se-

curity model, under the DDH assumption. Klooß et al. modified the security notions

by Everspaugh et al. and provided a general construction of a scheme achieving the

modified security [215]. Boyd et al. formulated the other indistinguishability no-

tion, IND-UE, and comprehensively analyzed the relationship between their security

notion and conventional ones [216].

A homomorphic encryption scheme used in our encrypted-control scenario should

satisfy both the forward and post-compromise security because an adversary may

store the sequences of inputs and outputs for an encrypted controller and attempt

to decipher all the data after collapsing one of them. To this end, This section

introduces updatable homomorphic encryption, a public-key variant of updatable

encryption satisfying homomorphism. The encryption is built based on the DDH

and LWE assumptions by modifying the ElGamal and Regev encryption. This

section also formulates an indistinguishability notion for updatable homomorphic

encryption and provides security proofs to show that our constructions satisfy the

forward and post-compromise security against a network eavesdropper.

2.3.1 Definitions

This section begins by defining the syntax of updatable homomorphic encryption,

which is homomorphic encryption with key and ciphertext update algorithms.

Definition 2.13 (Updatable homomorphic encryption). An updatable homomorphic

encryption scheme is a tuple of KeyGen, Enc, Dec, and Eval in Definition 2.8, and
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polynomial-time algorithms KeyUpd and CtUpd such that:

• Key update: The key update algorithm (pk′, sk′, ut)← KeyUpd(pk, sk) takes as

input a key pair (pk, sk) ∈ K and outputs an updated key pair (pk′, sk′) ∈ K
and update token ut.

• Ciphertext update: The ciphertext update algorithm ct′ ← CtUpd(ct, ut) takes

as input a ciphertext ct ∈ C and the update token ut and outputs an updated

ciphertext ct′ ∈ C.

The correctness condition of an updatable homomorphic encryption scheme is

defined by extending the correctness in Definition 2.4 so that the updated ciphertext

and the ciphertext encrypted by using the updated public key should be correctly

decrypted to the original plaintext by using the updated secret key.

Definition 2.14 (Correctness). An updatable homomorphic encryption scheme in

Definition 2.13 is correct if there exists a negligible function negl such that

Pr


m′
k = m′′

k = m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← KeyGen(1λ)

ctupd0 ← Enc(pk0,m)

(pkk, skk, utk)← KeyUpd(pkk−1, skk−1)

ctupdk ← CtUpd(ctupdk−1, utk)

ctk ← Enc(pkk,m)

m′
k ← Dec(skk, ctk)

m′′
k ← Dec(skk, ct

upd
k )


≥ 1− negl(λ)

for all λ ∈ N, for all m ∈M, and for all k ∈ Z+.

Similar to the correctness condition, this thesis requires an updatable homomor-

phic encryption scheme to inherit the homomorphism in Definition 2.9 among the

updated ciphertext and the ciphertext encrypted by the updated public key.

Definition 2.15 (Homomorphism). Let f be a binary operation. An updatable

homomorphic encryption scheme in Definition 2.13 is homomorphic for f if there
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exists a negligible function negl such that

Pr



m′
k = m′′

k = m′′′
k = f(m1,m2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← KeyGen(1λ)

ctupdi,0 ← Enc(pk0,mi), i = 1, 2

(pkk, skk, utk)← KeyUpd(pkk−1, skk−1)

ctupdi,k ← CtUpd(ctupdi,k−1, utk), i = 1, 2

cti,k ← Enc(pkk,mi), i = 1, 2

m′
k ← Dec(skk,Eval(f, ct1,k, ct2,k))

m′′
k ← Dec(skk,Eval(f, ct

upd
1,k , ct2,k))

m′′′
k ← Dec(skk,Eval(f, ct

upd
1,k , ct

upd
2,k ))


≥ 1− negl(λ)

for all λ ∈ N, for all m1,m2 ∈M, and for all k ∈ Z+.

It should be noted that the correctness in Definition 2.14 and the homomorphism

in Definition 2.15 are a generalization of those in Definition 2.4 and Definition 2.9,

respectively. In what follows, the term correctness and homomorphism are used in

the sense of Definition 2.14 and Definition 2.15 when a considered encryption scheme

is updatable homomorphic encryption.

2.3.2 Construction from DDH

This section constructs an updatable-homomorphic encryption scheme based on the

DDH assumption in Definition 2.6. To this end, key and ciphertext update algo-

rithms are added to the ElGamal encryption. The key update algorithm generates

a new secret key and computes the difference d between the new and previous keys.

The previous public key is updated by multiplying the d power of a generator of

a plaintext space. An update token consists of the previous public key and the

difference. The new ciphertext corresponding to the updated keys is computed us-

ing the update token and re-randomized by the ciphertext update algorithm. The

updatable ElGamal encryption is formally defined as follows.

Definition 2.16 (Updatable ElGamal). The algorithms in Definition 2.13 for the

updatable ElGamal encryption are as follows.

• The key generation, encryption, decryption, and homomorphic evaluation al-

gorithms are identical to the ElGamal encryption.
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• Key update: Set h ← pk and s ← sk. Compute s′ ← SecKeyGen(). Set

d← [s′ − s]q and h′ ←
[
hgd
]
p
. Output (pk′, sk′, ut) = (h′, s′, (h, d)).

• Ciphertext update: Parse ct = (c1, c2) and ut = (h, d). Choose r ←R Zq.
Output ct′ = ([c1g

r]p,
[
(c1g

r)dc2h
r
]
p
).

The correctness of updatable ElGamal encryption can be confirmed as follows.

Theorem 2.1. The updatable ElGamal encryption is correct.

Proof. Let params be as in Definition 2.10. By construction, the updated secret

keys are independent of the previous ones. Suppose skk = sk ∈ Zq, pk0 = [gs0 ]p,

and (pkk, skk, utk)← KeyUpd(pkk−1, skk−1) for k ∈ Z+. The sequences of public keys

{pkk}k∈Z+ and update token {utk}k∈Z+ are given as

pk0 = [gs0 ]p,

pk1 =
[
gs0g[s1−s0]q

]
p
= [gs1 ]p, ut1 =

(
[gs0 ]p, [s1 − s0]q

)
,

pk2 =
[
gs1g[s2−s1]q

]
p
= [gs2 ]p, ut2 =

(
[gs1 ]p, [s2 − s1]q

)
,

...
...

pkk =
[
gsk−1g[sk−sk−1]q

]
p
= [gsk ]p, utk =

(
[gsk−1 ]p, [sk − sk−1]q

)
,

...
...

The encryption of m ∈ G using pkk is

ctk = Enc(pkk,m) =
(
[grk ]p, [mg

rksk ]p

)
,

where rk ∈ Zq is a random number used in the encryptions at step k. It follows from

the proof of Proposition 2.1 that the decryption of ctk using skk is m. This implies

that Pr[Dec(skk, ctk) = m] = 1 holds for all k ∈ Z+.

Suppose ctupd0 ← Enc(pk0,m), and ctupdk ← CtUpd(ctupdk−1, utk). The sequence of

updated ciphertexts {ctupdk }k∈Z+ is given as

ctupd0 =
(
[gv0 ]p, [mg

v0s0 ]p

)
,

ctupd1 =
(
[gv0gv1 ]p,

[
(gv0gv1)[s1−s0]qmgv0s0gs0v1

]
p

)
,

=
([
gv0+v1

]
p
,
[
mg(v0+v1)(s1−s0)+v0s0+s0v1

]
p

)
,
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=
([
gv0+v1

]
p
,
[
mg(v0+v1)s1

]
p

)
,

ctupd2 =
([
gv0+v1gv2

]
p
,
[
(gv0+v1gv2)[s2−s1]qmg(v0+v1)s1gs1v2

]
p

)
,

=
([
gv0+v1+v2

]
p
,
[
mg(v0+v1+v2)(s2−s1)+(v0+v1)s1+s1v2

]
p

)
,

=
([
gv0+v1+v2

]
p
,
[
mg(v0+v1+v2)s2

]
p

)
,

...

ctupdk =

([
g
∑k

j=0 vj
]
p
,
[
mg(

∑k
j=0 vj)sk

]
p

)
=
(
[gv̄k ]p, [mg

v̄ksk ]p

)
,

...

where v̄k =
∑k

j=0 vj, and vj ∈ Zq are random numbers used in the update of ctupdj−1

for j > 0. Hence, it follows from the proof of Proposition 2.1 that the decryption

of ctupdk using skk is m. This implies that Pr[Dec(skk, ct
upd
k ) = m] = 1 holds for all

k ∈ Z+.

From Theorem 2.1, a ciphertext of the updatable ElGamal encryption is correctly

decrypted even though a key pair is updated repeatedly. Next, the homomorphism

of the encryption is confirmed. It can be easily shown from the equations for the

updated secret and public keys and ciphertext at time step k.

Theorem 2.2. Let p be as in Definition 2.10. The updatable ElGamal encryption

is homomorphic for multiplication modulo p.

Proof. Let params be as in Definition 2.10. Let f : M×M → M : (m1,m2) 7→
[m1m2]p, and let skk = sk ∈ Zq, pk0 = [gs0 ]p, and ctupdi,0 ← Enc(pk0,mi) for k ∈ Z+,

mi ∈ G, and i = 1, 2. Suppose (pkk, skk, utk) ← KeyUpd(pkk−1, skk−1) and ctupdi,k ←
CtUpd(ctupdi,k−1, utk). It follows from the proof of Theorem 2.1 that, for all k, the

secret key, public key, encryptions of mi, and updated ciphertexts at time step k are

respectively given as

skk = sk, pkk = [gsk ]p, cti,k =
(
[gri,k ]p, [mig

ri,ksk ]p

)
, ctupdi,k =

(
[gv̄i,k ]p, [mig

v̄i,ksk ]p

)
,

where v̄i,k =
∑k

j=0 vi,j, and ri,k, vi,j ∈ Zq are random numbers. The outputs of homo-

morphic evaluations with (ct1,k, ct2,k), (ct
upd
1,k , ct2,k), and (ctupd1,k , ct

upd
2,k ) are respectively

computed as

ct′k = Eval(f, ct1,k, ct2,k) =
(
[gr1,kgr2,k ]p, [m1g

r1,kskm2g
r2,ksk ]p

)
,
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=
([
gr1,k+r2,k

]
p
,
[
m1m2g

(r1,k+r2,k)sk
]
p

)
,

ct′′k = Eval(f, ctupd1,k , ct2,k) =
(
[gv̄1,kgr2,k ]p, [m1g

v̄1,kskm2g
r2,ksk ]p

)
,

=
([
gv̄1,k+r2,k

]
p
,
[
m1m2g

(v̄1,k+r2,k)sk
]
p

)
,

ct′′′k = Eval(f, ctupd1,k , ct
upd
2,k ) =

(
[gv̄1,kgv̄2,k ]p, [m1g

v̄1,kskm2g
v̄2,ksk ]p

)
,

=
([
gv̄1,k+v̄2,k

]
p
,
[
m1m2g

(v̄1,k+v̄2,k)sk
]
p

)
.

It follows from the proof of Proposition 2.1 that the decryptions of ct′k, ct
′′
k, and ct′′′k

using skk are f(m1,m2). Therefore, Pr[Dec(skk, ct
′
k) = Dec(skk, ct

′′
k) = Dec(skk, ct

′′′
k ) =

f(m1,m2)] = 1 holds for all k ∈ Z+.

Theorem 2.2 implies that the updatable ElGamal encryption inherits the mul-

tiplicative homomorphism of ElGamal encryption while updating the keys and ci-

phertext.

2.3.3 Construction from LWE

Similar to the updatable ElGamal encryption, we construct an LWE-based updatable-

homomorphic encryption scheme by modifying the Regev encryption. The key up-

date algorithm of updatable Regev encryption generates a new secret key and com-

putes the difference with the previous secret key as with the updatable ElGamal

encryption. A new public key is obtained by adding the difference to the previous

one. An update token includes the previous public key and the difference. The

ciphertext update algorithm updates the previous ciphertext to a new one, which is

also re-randomized. The updatable Regev encryption is formally defined as follows.

Definition 2.17 (Updatable Regev). The algorithms in Definition 2.13 for the

updatable Regev encryption are as follows.

• The key generation, encryption, decryption, and homomorphic evaluation al-

gorithms are identical to the Regev encryption.

• Key update: Set b ← pk and s ← sk. Compute s′ ← SecKeyGen(). Set

d← [s′ − s]q and b′ ← [b+ Ad]q. Output (pk
′, sk′, ut) = (b′, s′, d).

• Ciphertext update: Parse ct = (c1, c2). Set d← ut. Output ct = (c1, [c1d+c2]q).
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The following theorem shows the correctness of updatable Regev encryption. The

theorem can be proven by the same logic as the updatable ElGamal encryption.

Theorem 2.3. Let m, t, q, and χ be as in Definition 2.11. The updatable Regev

encryption is correct if χ is (q/(2mt)− t/m)-bounded.

Proof. Let params be as in Definition 2.11, and let ∆ = ⌊q/t⌋. By construction,

updated secret keys are independent of the previous secret keys. Suppose skk =

sk ∈ Znq , pk0 = [As0 + e]q, and (pkk, skk, utk) ← KeyUpd(pkk−1, skk−1) for k ∈ Z+,

where e is a noise sampled from χm. The sequences of public keys {pkk}k∈Z+ and

update token {utk}k∈Z+ are given as

pk0 = [As0 + e]q,

pk1 = [As0 + e+ A(s1 − s0)]q = [As1 + e]q, ut1 = [s1 − s0]q,

pk2 = [As1 + e+ A(s2 − s1)]q = [As2 + e]q, ut2 = [s2 − s1]q,
...

...

pkk = [Ask−1 + e+ A(sk − sk−1)]q = [Ask + e]q, utk = [sk − sk−1]q,

...
...

The encryption of m ∈ Zt using pkk is

ctk = Enc(pkk,m) =
([
r⊤k A

]
q
,
[
∆m+ r⊤k (Ask + e)

]
q

)
,

where rk ∈ Zm2 is a random number used in the encryption at step k. It follows from

the proof of Proposition 2.3 that the decryption of ctk using skk becomes m with

probability at least 1 − negl(λ) since χ is (q/(2mt) − t/m)-bounded. This implies

that Pr[Dec(skk, ctk) = m] ≥ 1− negl(λ) holds for all k ∈ Z+.

Suppose ctupd0 ← Enc(pk0,m), and ctupdk ← CtUpd(ctupdk−1, utk). The sequence of

updated ciphertexts {ctupdk }k∈Z+ is given as

ctupd0 =
([
v⊤0 A

]
q
,
[
∆m+ v⊤0 (As0 + e)

]
q

)
,

ctupd1 =
([
v⊤0 A

]
q
,
[
v⊤0 A(s1 − s0) + ∆m+ v⊤0 (As0 + e)

]
q

)
,

=
([
v⊤0 A

]
q
,
[
∆m+ v⊤0 (As1 + e)

]
q

)
,

ctupd2 =
([
v⊤0 A

]
q
,
[
v⊤0 A(s2 − s1) + ∆m+ v⊤0 (As1 + e)

]
q

)
,
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=
([
v⊤0 A

]
q
,
[
∆m+ v⊤0 (As2 + e)

]
q

)
,

...

ctupdk =
([
v⊤0 A

]
q
,
[
v⊤0 A(sk − sk−1) + ∆m+ v⊤0 (Ask−1 + e)

]
q

)
,

=
([
v⊤0 A

]
q
,
[
∆m+ v⊤0 (Ask + e)

]
q

)
,

...

where v0 ∈ Zm2 is a random number used in the encryption at the initial time step.

Hence, it follows from the proof of Proposition 2.3 that the decryption of ctupdk using

skk becomes m with probability at least 1 − negl(λ) since χ is (q/(2mt) − t/m)-

bounded. This implies that Pr[Dec(skk, ct
upd
k ) = m] ≥ 1 − negl(λ) holds for all

k ∈ Z+.

Theorem 2.3 implies that the decryption algorithm of updatable Regev encryp-

tion can recover the original plaintext from a ciphertext under key and ciphertext

updates. Next, the homomorphism of updatable Regev encryption is shown as with

the updatable ElGamal encryption.

Theorem 2.4. Let m, t, q, and χ be as in Definition 2.11. The updatable Regev

encryption is homomorphic for addition modulo t if χ is (q/(4mt)− t/m)-bounded.

Proof. Let params be as in Definition 2.11, and let ∆ = ⌊q/t⌋. Let f :M×M→M :

(m1,m2) 7→ [m1 +m2]t, and let skk = sk ∈ Znq , pk0 = [As0 + e]q, ct
upd
i,0 ← Enc(pk0,mi)

for k ∈ Z+, mi ∈ Zt, and i = 1, 2, where e is a noise sampled from χm. Suppose

(pkk, skk, utk) ← KeyUpd(pkk−1, skk−1) and ctupdi,k ← CtUpd(ctupdi,k−1, utk). It follows

from the proof of Theorem 2.3 that, for all k, the secret key, public key, encryptions

of mi, and updated ciphertexts at time step k are respectively given as

skk = sk, pkk = [Ask + e]q, cti,k =
([
r⊤i,kA

]
q
,
[
∆mi + r⊤i,k(Ask + e)

]
q

)
,

ctupdi,k =
([
v⊤i A

]
q
,
[
∆mi + v⊤i (Ask + e)

]
q

)
,

where ri,k, vi ∈ Zm2 are random numbers. The outputs of homomorphic evaluations

with (ct1,k, ct2,k), (ct
upd
1,k , ct2,k), and (ctupd1,k , ct

upd
2,k ) are respectively computed as

ct′k = Eval(f, ct1,k, ct2,k),

=
([
r⊤1,kA+ r⊤2,kA

]
q
,
[
∆m1 + r⊤1,k(Ask + e) + ∆m2 + r⊤2,k(Ask + e)

]
q

)
,
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=
([

(r1,k + r2,k)
⊤A
]
q
,
[
∆(m1 +m2) + (r1,k + r2,k)

⊤(Ask + e)
]
q

)
,

ct′′k = Eval(f, ctupd1,k , ct2,k),

=
([
v⊤1 A+ r⊤2,kA

]
q
,
[
∆m1 + v⊤1 (Ask + e) + ∆m2 + r⊤2,k(Ask + e)

]
q

)
,

=
([

(v1 + r2,k)
⊤A
]
q
,
[
∆(m1 +m2) + (v1 + r2,k)

⊤(Ask + e)
]
q

)
,

ct′′′k = Eval(f, ctupd1,k , ct
upd
2,k ),

=
([
v⊤1 A+ v⊤2 A

]
q
,
[
∆m1 + v⊤1 (Ask + e) + ∆m2 + v⊤2 (Ask + e)

]
q

)
,

=
([

(v1 + v2)
⊤A
]
q
,
[
∆(m1 +m2) + (v1 + v2)

⊤(Ask + e)
]
q

)
.

It follows from the proof of Proposition 2.4 that the decryptions of ct′k, ct
′′
k, and ct′′′k

using skk become f(m1,m2) with probability at least 1−negl(λ) since χ is (q/(4mt)−
t/m)-bounded. Therefore, Pr[Dec(skk, ct

′
k) = Dec(skk, ct

′′
k) = Dec(skk, ct

′′′
k ) = f(m1,

m2)] = 1− negl(λ) holds for all k ∈ Z+.

It holds from Theorem 2.4 that the updatable Regev homomorphic encryption

remains additively homomorphic encryption despite updating the secret and public

keys of Regev encryption.

2.3.4 Security

As already mentioned, updatable homomorphic encryption used in encrypted con-

trol systems is desired to satisfy the forward and post-compromise security. This

section formulates an indistinguishability notion of updatable homomorphic encryp-

tion called IND-KU-CPA. More precisely, the IND-KU-CPA security is defined such

that an adversary cannot learn any partial information of the original plaintext from

a challenge ciphertext under the chosen plaintext attack even though the adversary

compromises secret keys before and after computing the challenge ciphertext.

Definition 2.18 (IND-KU-CPA). Consider an updatable homomorphic encryption

scheme Π = (KeyGen,Enc,Dec,Eval,KeyUpd,CtUpd) and adversary A. Define the

game GameIND−KU−CPA
Π,A (λ) as follows.
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GameIND−KU−CPA
Π,A (λ)

k ← 0, k̃ ←⊥, L ← ∅

(params, pk0, sk0)← KeyGen(1λ)

(m0,m1)← AOKeyUpd,OCorr(1λ, params)

k̃ ← k

b←R {0, 1}

ctk̃ ← Enc(pkk̃,mb)

b̂← AOKeyUpd,OCorr(ctk̃)

return 1 if b̂ = b and k̃ /∈ L and 0 otherwise

Oracle OKeyUpd()

k ← k + 1

(pkk, skk, utk)← KeyUpd(pkk−1, skk−1)

Oracle OCorr(str, k
′)

if k′ > k return ⊥

if str = secret key

L ← L ∪ {k′}

return skk′

if str = public key

return pkk′

Setup. A time step counter k, time step of the challenge ciphertext k̃, and list L
are initialized. Public parameters params and a key pair (pk, sk) are generated

by running the key generation algorithm KeyGen(1λ).

Challenge. A takes as input 1λ and params and outputs plaintexts m0,m1 ∈ M
of the same length while querying the oracles OKeyUpd and OCorr. Set k̃ ← k,

where the time step is increased by querying OKeyUpd. A bit b ∈ {0, 1} is chosen
uniformly. A ciphertext ctk̃ is computed by running the encryption algorithm

Enc(pkk̃,mb).
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Guess. A takes as input ctk̃ and outputs a bit b̂ ∈ {0, 1} while querying the oracles.

The game outputs 1 if b̂ = b and k̃ /∈ L. Otherwise, it outputs 0.

We say Π is IND-KU-CPA secure if there exists a negligible function negl such

that ∣∣∣∣Pr[GameIND−KU−CPA
Π,A (λ) = 1

]
− 1

2

∣∣∣∣ < negl(λ)

for all λ ∈ N and for all probabilistic polynomial-time adversary A.

In the IND-KU-CPA game, the adversary can access the oracles OKeyUpd and

OCorr. The oracles represent the abilities of an adversary, namely updating and

compromising public and secret keys. Using the oracles, the adversary can obtain

as many updated public and secret keys as the adversary wants before and after

computing the challenge ciphertext. The game excludes the trivial win condition

that the adversary obtains the secret key corresponding to the challenge ciphertext.

This condition is managed by the list L and examined at the last step of the game

whether the time step for the challenge ciphertext is in the list.

One may think that the IND-KU-CPA security relies on the IND-CPA security.

The theorem below answers this affirmatively.

Theorem 2.5. Let Π = (KeyGen,Enc,Dec,Eval) be a homomorphic encryption

scheme in Definition 2.8, and let Πupd = (Π.KeyGen,Π.Enc,Π.Dec,Π.Eval,KeyUpd,

CtUpd) be an updatable homomorphic encryption scheme in Definition 2.13. Assume

that Π is IND-CPA secure. If there exists a negligible function negl such that

|Pr[A(pk′, sk′) = 1]− Pr[A(pk, sk) = 1]| < negl(λ)

for all λ ∈ N and for all probabilistic polynomial-time algorithm A, then Πupd is IND-

KU-CPA secure, where (pk, sk) ← Π.KeyGen(1λ), and (pk′, sk′, ut) ← Πupd.KeyUpd(

pk, sk).

Proof. We prove the statement by reduction of the following games.

Game0(λ): This game is the original IND-KU-CPA game in Definition 2.18.

Game1(λ): This game is the same as Game0 except for the modification of OKeyUpd

before computing the challenge ciphertext to O′
KeyUpd so that the key update

is replaced with key generation.
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Oracle O′
KeyUpd()

k ← k + 1

(pk, sk)← Π.KeyGen(1λ)

Game2(λ): This game is the same as Game1 except that the time step of challenge

ciphertext is set to zero, i.e., k̃ = 0, in the initialization, and the adversary is

prohibited from querying O′
KeyUpd.

Game3(λ): This game is the same as Game2 except that the adversary is given pk0

instead of querying OCorr before computing the challenge ciphertext.

Game4(λ): This game is the same as Game3 except replacing OKeyUpd with O′
KeyUpd

after computing the challenge ciphertext.

Game5(λ): This game is the same as Game4 except that the adversary is prohibited

from querying O′
KeyUpd after computing the challenge ciphertext.

Game6(λ): This game is the same as Game5 except that the adversary is prohibited

to query OCorr after computing the challenge ciphertext.

Claim 2.7. |Pr[Game0(λ) = 1]− Pr[Game1(λ) = 1]| is negligible.

Proof. The claim follows from the assumption in the statement of the theorem, i.e.,

no probabilistic polynomial-time adversary can distinguish that the games include

either OKeyUpd or O′
KeyUpd except with a negligible probability.

Claim 2.8. |Pr[Game1(λ) = 1]− Pr[Game2(λ) = 1]| is negligible.

Proof. If k̃ /∈ L, i.e., the secret key at k = k̃ is not queried, then the adversary can

obtain the key pairs from k = 0 to k = k̃ − 1 and the public key at k = k̃. The key

pairs are independent of the challenge ciphertext. Thus, the modifications in Game2

do not change any probability of Game1.

Claim 2.9. Pr[Game2(λ) = 1] = Pr[Game3(λ) = 1].

Proof. Now OCorr before computing the challenge ciphertext returns only pk0 or ⊥
since k̃ = 0.

Claim 2.10. |Pr[Game3(λ) = 1]− Pr[Game4(λ) = 1]| is negligible.
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Proof. The claim holds from the proof of Claim 2.7.

Claim 2.11. |Pr[Game4(λ) = 1]− Pr[Game5(λ) = 1]| is negligible.

Proof. The claim holds from the proof of Claim 2.8.

Claim 2.12. |Pr[Game5(λ) = 1]− Pr[Game6(λ) = 1]| is negligible.

Proof. The claim holds from the proof of Claim 2.9.

Claim 2.13. |Pr[Game6(λ) = 1]− 1/2| is negligible if Π is IND-CPA secure.

Proof. Game6 is identical to the IND-CPA game in Definition 2.5. Hence, the claim

holds by definition.

Consequently, |Pr[Game0(λ) = 1]− 1/2]| is negligible. This implies that Πupd is

IND-KU-CPA secure.

Theorem 2.5 implies that an updatable homomorphic encryption scheme satisfies

the IND-KU-CPA security if the key update is indistinguishable and if the homo-

morphic encryption scheme included in the updatable one satisfies the IND-CPA

security. Furthermore, the theorem helps analyze the forward and post-compromise

security of our constructions because of the reduction of proving the IND-KU-CPA

security itself to show the indistinguishability of key updates. Indeed, the following

corollaries immediately follow from the theorem.

Corollary 2.1. The updatable ElGamal encryption is IND-KU-CPA secure under

the DDH assumption.

Proof. Recall that the updatable ElGamal encryption consists of the ElGamal en-

cryption and the key and ciphertext update algorithms, and the ElGamal encryption

is IND-CPA secure under the DDH assumption. The statement holds from Theo-

rem 2.5 if the key update algorithm satisfies the indistinguishability condition in

the theorem. By construction, the updated secret key follows the same probability

distribution as a secret key generated by the key generation algorithm. Let g and

p be as in Definition 2.10, and let sk ∈ Zq be the updated secret key at time step

k. It follows from the proof of Theorem 2.1 that the updated public key at the

time step is pkk = [gsk ]p. This public key is identical to a public key generated by

the key-generation algorithm, namely pkk = PubKeyGen(skk). This completes the

proof.
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Corollary 2.2. The updatable Regev encryption is IND-KU-CPA secure under the

LWE assumption.

Proof. Similar to the proof of Corollary 2.1, we show the indistinguishability con-

dition in Theorem 2.5 since the updatable Regev encryption is based on the Regev

encryption, which is IND-CPA secure. By construction, the updated secret key

follows the same probability distribution as a secret key generated by the key gen-

eration algorithm. Let A, e, and q be as in Definition 2.11, and let sk ∈ Znq be the

updated secret key at time step k. It follows from the proof of Theorem 2.3 that

the updated public key at the time step is pkk = [Ask + e]q. Thanks to the LWE

assumption, pkk is indistinguishable from a random number u ∈ Zmq , and so is a

fresh public key. This completes the proof.

The corollaries show the forward and post-compromise security of our construc-

tions under leakage of past and future secret keys. It should be noted that the

IND-KU-CPA security does not cover the effects of update tokens for the security.

Suppose an adversary eavesdropping on the communication between a client and

server obtains the current and next update tokens. In that case, the adversary can

recover the previous and next secret keys from the current one as follows.

Proposition 2.7. Consider the updatable ElGamal encryption. There exists prob-

abilistic polynomial-time adversaries A and B such that

Pr

[
A(skk, utk) = skk−1

∣∣∣∣∣ (pk0, sk0)← KeyGen(1λ)

(pkk, skk, utk)← KeyUpd(pkk−1, skk−1)

]
= 1,

Pr

[
B(skk, utk+1) = skk+1

∣∣∣∣∣ (pk0, sk0)← KeyGen(1λ)

(pkk, skk, utk)← KeyUpd(pkk−1, skk−1)

]
= 1

for all k ∈ N. The same adversaries also exist for the updatable Regev encryption.

Proof. Let skk−1 = sk−1, skk = sk, skk+1 = sk+1, where sk−1, sk, sk+1 ∈ Zq. It follows
from Proposition 2.1 that utk = (hk, dk) = ([gsk−1 ]p, [sk − sk−1]q). The adversary

A can compute sk−1 = [sk − dk]q = [sk − (sk − sk−1)]q. Similarly, B can compute

sk+1 = [sk + dk+1]q = [sk + (sk+1 − sk)]q. The proof for the updatable Regev en-

cryption is almost the same as in the above discussion.

One possible countermeasure against the attack in Proposition 2.7 is encrypting

the update tokens by private-key encryption. Although the key agreement between
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a client and server is required before communication, in practice, such a countermea-

sure is effective against an adversary eavesdropping on the communication. However,

Proposition 2.7 implies that our constructions cannot achieve the desired security

against an adversarial server because it needs the update tokens to update cipher-

texts. The next section will further modify our constructions to satisfy the forward

and post-compromised security against the adversarial server.

2.4 Key-updatable homomorphic encryption

The previous section has shown that updatable homomorphic encryption fulfills the

forward and post-compromise security only against an eavesdropper on a network.

This section considers building a homomorphic encryption scheme satisfying the se-

curity against not only the eavesdropper but also a malicious server, which performs

homomorphic evaluation. Here, the malicious server is assumed to be honest but cu-

rious. An honest but curious adversary is a passive adversary who does not deviate

from the default protocol but attempts to learn some information about other par-

ticipants in the communication by recording and using the received messages. Note

that the assumption is reasonable in the setting of secure outsourcing computation.

A client is typically contracted to the server regarding a protocol for outsourcing

computation. The server should avoid violating the contract, although it wishes to

collect the client’s private information, resulting in such a passive adversary.

The previous studies on updatable encryption developed several security notions

to achieve the forward and post-compromise security against an honest-but-curious

cloud. The IND-ENC [214], IND-UPD [214], IND-CTXT [215], and IND-UE [216]

reviewed in the previous section capture the security when considering an adversary

model having the capability to access the past and future secret keys as well as

some update tokens. Although the security notions might be stronger than the

IND-KU-CPA in the sense of allowing the adversary access to update tokens, the

security proofs for them are significantly complicated due to the management of

trivial win conditions, i.e., whether the adversary learned secret keys and update

tokens corresponding to the challenge ciphertext and its updates. Furthermore,

prohibiting the secret keys and update tokens directly linked to trivial win conditions

implicitly ignore the possibility of the attack in Proposition 2.7 for an adversary

having the current secret key even if a used encryption scheme satisfies the security

notions. These facts motivates us to adopt other cryptographic mechanisms to
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Client 1 Client 2Server

Fig. 2.6: Outsourcing computation with two clients using multi-key homomorphic
encryption.

ensure the forward and post-compromise security.

The main difficulty in guaranteeing the forward and post-compromised security

against an honest-but-curious server is caused by the necessity to keep update to-

kens secrecy to the server despite using them for updating ciphertexts in time with

key updates. This section solves this problem by modifying our constructions of

updatable homomorphic encryption to multi-key homomorphic encryption schemes.

Multi-key homomorphic encryption was introduced by López-Alt et al. [54] as a

generalization of homomorphic encryption, which enables to perform homomorphic

evaluation of ciphertexts encrypted under different keys as illustrated in Fig. 2.6.

The two clients in the figure encrypt their messages using each public key and

transmit the ciphertexts to the server. The server computes homomorphic evalua-

tion with the ciphertexts encrypted under the different public keys and returns the

ciphertext of the computation result to the clients. The result can be recovered by

joint decryption of the client.

Now, consider the clients in Fig. 2.6 as identical ones and rethink the key pair that

the client 2 has is an update of client 1’s. Then, Fig. 2.6 is transformed to Fig. 2.7.

The client in Fig. 2.7 can obtain the evaluation result despite updating the key pair

without transmitting an update token. Thus, a multi-key homomorphic encryption

scheme can be regarded as an updatable homomorphic encryption scheme without

update tokens if a key update rule is provided. This section extends the updatable

homomorphic encryption in the previous section to a multi-key setting. The modified
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Client Server

Update

Fig. 2.7: Multi-key homomorphic encryption as homomorphic encryption with up-
dating a key pair.

encryption equips a key update algorithm and a homomorphic evaluation algorithm

with ciphertexts encrypted under different keys rather than a ciphertext update

algorithm. This section builds the multi-key variants of updatable ElGamal and

Regev encryption schemes in Definition 2.16 and Definition 2.17, respectively, and

analyzes their forward and post-compromise security.

2.4.1 Definitions

The updatable homomorphic encryption in Definition 2.13 is modified to a variant of

multi-key homomorphic encryption. The modified encryption, called key-updatable

homomorphic encryption, requires multiple secret keys corresponding to a ciphertext

to be decrypted. Moreover, it removes the ciphertext update algorithm and the

update token included in the output of the key update algorithm. The syntax of

key-updatable homomorphic encryption is formulated as follows.

Definition 2.19 (Key-updatable homomorphic encryption). A key-updatable ho-

momorphic encryption scheme is a tuple of KeyGen, Enc, and Eval in Definition 2.8,

and polynomial-time algorithms Dec and KeyUpd such that:

• Decryption: The decryption algorithm m← Dec({ski}i∈T , ct) takes as input a

ciphertext ct ∈ C and a family of secret keys ski with an index set T ⊂ Z+

corresponding to ct and outputs either a plaintext m ∈M or error symbol ⊥.
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• Key update: The key update algorithm (pk′, sk′) ← KeyUpd(pk, sk) takes as

input a key pair (pk, sk) ∈ K and outputs an updated key pair (pk′, sk′) ∈ K.

The correctness and homomorphism conditions in Definition 2.14 and Defi-

nition 2.15 are also redefined along with the syntax modifications. In the key-

updatable homomorphic encryption, it is required that a ciphertext encrypted by

the updated public key at a certain time step is decrypted by the updated secret

key at the same time step. This property is formally defined as follows.

Definition 2.20 (Correctness). A key-updatable homomorphic encryption scheme

in Definition 2.19 is correct if there exists a negligible function negl such that

Pr

m′
k = m

∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← KeyGen(1λ)

(pkk, skk)← KeyUpd(pkk−1, skk−1)

ctk ← Enc(pkk,m)

m′
k ← Dec({ski}i∈{k}, ctk)

 ≥ 1− negl(λ)

for all λ ∈ N, for all m ∈M, and for all k ∈ Z+.

Note that the index set T , in this case, contains only a particular time step

corresponding to a ciphertext to be decrypted. Hence, the family of secret keys given

to the decryption algorithm can be equated with a single secret key corresponding

to the ciphertext.

The homomorphism condition of key-updatable homomorphic encryption is that

the output of homomorphic evaluation with ciphertexts encrypted by the updated

public keys not only at the same time step but also in different time steps is correctly

decrypted by the secret keys corresponding to both the ciphertexts. The condition

is formulated as follows.

Definition 2.21 (Homomorphism). Let f be a binary operation. A key-updatable

homomorphic encryption scheme in Definition 2.19 is homomorphic for f if there

exists a negligible function negl such that

Pr


m′
j,k = f(m1,m2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← KeyGen(1λ)

(pkk, skk)← KeyUpd(pkk−1, skk−1)

ct1,j ← Enc(pkj,m1)

ct2,k ← Enc(pkk,m2)

m′
j,k ← Dec({ski}i∈{j,k},Eval(f, ct1,j, ct2,k))


≥ 1− negl(λ)
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for all λ ∈ N, for all m1,m2 ∈M, for all k ∈ Z+, and for all j ≤ k.

Similar to the case of updatable homomorphic encryption, in what follows, an

encryption scheme is said to be correct and homomorphic in the sense of Defini-

tion 2.20 and Definition 2.21 when a considered encryption scheme is key-updatable

homomorphic encryption.

2.4.2 Construction from DDH

Key-updatable homomorphic encryption schemes will be constructed based on the

DDH and LWE assumptions in Definition 2.6 and Definition 2.7, respectively. This

section modifies the updatable ElGamal encryption in Definition 2.16 to a key-

updatable variant. The encryption algorithm in the modified encryption scheme

outputs a tuple consisting of three elements. The first two elements are random

in a plaintext space, as with the first element of ElGamal ciphertext. The third

element is a masked plaintext by the two random numbers used in the first and

second elements. The modified homomorphic evaluation algorithm also outputs a

tuple of the same structure. The first two elements in the output are the product

of the first and second elements of each of the two input ciphertexts, and the third

element is the product between the third element of the ciphertexts. Furthermore,

the modified decryption algorithm is given either a single or joint secret key when

attempting to recover a fresh or evaluated ciphertext. The construction is formally

defined as follows.

Definition 2.22 (Key-updatable ElGamal). The algorithms in Definition 2.19 for

the key-updatable ElGamal encryption are as follows.

• Key generation: The key generation algorithm is identical to the ElGamal

encryption.

• Encryption: Set h ← pk. Choose r, v ←R Zq. Output ct = ([gr]p, [g
v]p,

[mhr+v]p).

• Decryption: If |T | ≥ 3, output ⊥. If |T | = 1, set s1 ← sk and s2 ← sk.

If |T | = 2, set s1 ← skj and s2 ← skk, where j, k ∈ T , and j < k. Parse

ct = (c1, c2, c3). Output m =
[
c−s11 c−s22 c3

]
p
.

• Homomorphic evaluation: Parse ct1 = (c11, c12, c13) and ct2 = (c21, c22, c23).

Output ct = ([c11c12]p, [c21c22]p, [c13c23]p).
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• Key update: Set s ← sk and h ← pk. Choose s′ ←R Zq. Set h′ ←
[
hgs

′−s]
p
.

Output (pk′, sk′) = (h′, s′).

The following theorem shows the correctness of key-updatable ElGamal encryp-

tion.

Theorem 2.6. The key-updatable ElGamal encryption is correct.

Proof. Let params be as in Definition 2.10. Suppose skk = sk ∈ Zq, pk0 = [gs0 ]p, and

(pkk, skk) ← KeyUpd(pkk−1, skk−1) for k ∈ Z+. It follows from the construction in

Definition 2.22 and the proof of Theorem 2.1 that, for all k, the secret key, public

key, and encryption of m ∈ G are respectively given as

skk = sk, pkk = [gsk ]p, ctk =
(
[grk ]p, [g

vk ]p,
[
mg(rk+vk)sk

]
p

)
,

where rk, vk ∈ Zq are random numbers. The decryption of ctk using {ski}i∈{k} is

m′
k = Dec({ski}i∈{k}, ctk) =

[
(grk)−sk(gvk)−skmg(rk+vk)sk

]
p
,

=
[
mg−rksk−vksk+(rk+vk)sk

]
p
,

= [m]p,

= m,

where T = {k}, and |T | = 1. This implies that Pr[m′
k = m] = 1.

The homomorphism of key-updatable ElGamal encryption is also shown below.

Theorem 2.7. Let p be as in Definition 2.10. The key-updatable ElGamal encryp-

tion is homomorphic for multiplication modulo p.

Proof. Let params be as in Definition 2.10, and let f :M×M→M : (m1,m2) 7→
[m1m2]p. Suppose skk = sk ∈ Zq, pk0 = [gs0 ]p, and (pkk, skk)← KeyUpd(pkk−1, skk−1)

for k ∈ Z+. Similar to the proof of Theorem 2.6, for all k, the secret key, public key,

and encryptions of mi ∈ G are respectively given as

skk = sk, pkk = [gsk ]p, cti,k =
(
[gri,k ]p, [g

vi,k ]p,
[
mig

(ri,k+vi,k)sk
]
p

)
,

where ri,k, vi,k ∈ Zq are random numbers used in the encryptions of mi at time step

k, and i = 1, 2. For all j ≤ k, the output of homomorphic evaluations with ct1,j and
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ct2,k is computed as

ctj,k = Eval(f, ct1,j, ct2,k),

=
(
[gr1,jgv1,j ]p, [g

r2,kgv2,k ]p,
[
m1g

(r1,j+v1,j)sjm2g
(r2,k+v2,k)sk

]
p

)
,

=
([
gr1,j+v1,j

]
p
,
[
gr2,k+v2,k

]
p
,
[
m1m2g

(r1,j+v1,j)sj+(r2,k+v2,k)sk
]
p

)
.

If j = k, the output can be simplified as

ctk,k =
([
gr1,k+v1,k

]
p
,
[
gr2,k+v2,k

]
p
,
[
m1m2g

(r1,k+v1,k+r2,k+v2,k)sk
]
p

)
,

=
(
[gr̄k ]p, [g

v̄k ]p,
[
m1m2g

(r̄k+v̄k)sk
]
p

)
,

where r̄k = r1,k + v1,k, and v̄k = r2,k + v2,k. It follows from the proof of Theorem 2.6

that the decryption of ctk,k using {ski}i∈{k} is f(m1,m2). Furthermore, if j < k,

T = {j, k} and |T | = 2. Hence, the decryption of ctj,k using {ski}i∈{j,k} is computed

as

Dec({ski}i∈{j,k}, ctj,k) =
[
(gr1,j+v1,j)−sj(gr2,k+v2,k)−skm1m2g

(r1,j+v1,j)sj+(r2,k+v2,k)sk
]
p
,

=
[
m1m2g

−(r1,j+v1,j)sj−(r2,k+v2,k)sk+(r1,j+v1,j)sj+(r2,k+v2,k)sk
]
p
,

= [m1m2]p.

Therefore, Pr[Dec({ski}i∈{j,k}, ctj,k) = f(m1,m2)] = 1 holds for all k ∈ Z+ and for

all j ≤ k.

Theorem 2.6 and Theorem 2.7 imply that the key-updatable ElGamal encryp-

tion is multiplicatively homomorphic encryption and correctly decrypts a ciphertext

except with a negligible probability while updating public and secret keys.

2.4.3 Construction from LWE

This section constructs key-updatable homomorphic encryption based on the LWE

assumption by modifying the updatable Regev encryption in Definition 2.17. The

modification idea follows the construction of key-updatable ElGamal encryption.

The construction is shown below.

Definition 2.23 (Key-updatable Regev). The algorithms in Definition 2.19 for the

key-updatable Regev encryption are as follows.
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• Key generation: The key generation algorithm is identical to the Regev en-

cryption.

• Encryption: Set b← pk. Choose r, v ←R Zm2 . Output

ct =

([
r⊤A

]
q
,
[
v⊤A

]
q
,
[⌊q
t

⌋
m+ (r + v)⊤b

]
q

)
.

• Decryption: If |T | ≥ 3, output ⊥. If |T | = 1, set s1 ← sk and s2 ← sk.

If |T | = 2, set s1 ← skj and s2 ← skk, where j, k ∈ T , and j < k. Parse

ct = (c1, c2, c3). Output

m =

[⌊
t

q
[c3 − c2s2 − c1s1]q

⌉]
t

.

• Homomorphic evaluation: Parse ct1 = (c11, c12, c13) and ct2 = (c21, c22, c23).

Output ct = ([c11 + c12]q, [c21 + c22]q, [c13 + c23]q).

• Key update: Set b← pk. Choose s′ ←R Znq . Set b′ ← [b+ A(s′ − s)]q. Output

(pk′, sk′) = (b′, s′).

The theorem on the correctness of key-updatable Regev encryption is as follows.

Theorem 2.8. Let m, t, q, and χ be as in Definition 2.11. The key-updatable Regev

encryption is correct if χ is (q/(4mt)− t/(2m))-bounded.

Proof. Let params be as in Definition 2.11, and let ∆ = ⌊q/t⌋. Suppose skk = sk ∈
Znq , pk0 = [As0 + e]q, and (pkk, skk) ← KeyUpd(pkk−1, skk−1) for k ∈ Z+, where e is

a noise sampled from χm. It follows from the construction in Definition 2.23 and

the proof of Theorem 2.3 that, for all k, the secret key, public key, and encryption

of m ∈ Zt are respectively given as

skk = sk, pkk = [Ask + e]q,

ctk =
([
r⊤k A

]
q
,
[
v⊤k A

]
q
,
[
∆m+ (rk + vk)

⊤(Ask + e)
]
q

)
,

where rk, vk ∈ Zq are random numbers. The decryption of ctk using {ski}i∈{k} is

computed as

m′
k = Dec({ski}i∈{k}, ctk),
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=

[⌊
t

q

[
∆m+ (rk + vk)

⊤(Ask + e)− r⊤k Ask − v⊤k Ask
]
q

⌉]
t

,

=

[⌊
t

q

[
∆m+ (rk + vk)

⊤e
]
q

⌉]
t

,

=

[⌊
t

q
(∆m+ (rk + vk)

⊤e+ nqq)

⌉]
t

,

=

[⌊
t

q
∆m+

t

q
(rk + vk)

⊤e+ nqt

⌉]
t

,

=

[⌊
m+

t

q

(
(rk + vk)

⊤e− ϵm
)
+ nqt

⌉]
t

,

=

[
m+ nqt+

⌊
t

q

(
(rk + vk)

⊤e− ϵm
)⌉]

t

,

= m+

[⌊
t

q

(
r̄⊤e− ϵm

)⌉]
t

,

where T = {k}, |T | = 1, r̄k = rk + vk, nq ∈ Z, ϵ = q/t−∆, and 0 ≤ ϵ < 1. m′
k = m

holds if |(t/q) · (r̄⊤k e− ϵm)| < 1/2, and its sufficient condition is given as∣∣∣∣ tq (r̄⊤k e− ϵm)

∣∣∣∣ < 1

2
⇐⇒ |r̄⊤k e− ϵm| <

q

2t
,

⇐= |r̄⊤k e|+ ϵm <
q

2t
,

⇐=

∣∣∣∣∣
m∑
i=1

rk,iei +
m∑
i=1

vk,iei

∣∣∣∣∣ < q

2t
− t,

⇐=
m∑
i=1

|rk,iei|+
m∑
i=1

|vk,iei| <
q

2t
− t,

⇐= 2
m∑
i=1

|ei| <
q

2t
− t,

⇐= |ei| <
1

m

(
q

4t
− t

2

)
, i = 1, . . . ,m.

Hence, |(t/q) · (r̄⊤k e− ϵm)| < 1/2 holds with probability at least 1− negl(λ) because

χ is (q/(4mt)− t/(2m))-bounded. This implies that Pr[m′
k = m] ≥ 1− negl(λ).

The key-updatable Regev encryption also satisfies the homomorphism, as shown

below.

Theorem 2.9. Let m, t, q, and χ be as in Definition 2.11. The key-updatable Regev

encryption is homomorphic for addition modulo t if χ is (q/(8mt)−t/(2m))-bounded.
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Proof. Let params be as in Definition 2.11, and let f :M×M→M : (m1,m2) 7→
[m1 +m2]t. Suppose skk = sk ∈ Znq , pk0 = [As0 + e]q, and (pkk, skk) ← KeyUpd(

pkk−1, skk−1) for k ∈ Z+, where e is a noise sampled from χm. Similar to the proof

of Theorem 2.8, for all k, the secret key, public key, and encryptions of mi ∈ Zt are
respectively given as

skk = sk, pkk = [Ask + e]q,

cti,k =
([
r⊤i,kA

]
q
,
[
v⊤i,kA

]
q
,
[
∆mi + (ri,k + vi,k)

⊤(Ask + e)
]
q

)
,

where ri,k, vi,k ∈ Zm2 are random numbers used in the encryptions of mi at time step

k, and i = 1, 2. For all j ≤ k, the output of homomorphic evaluations with ct1,j and

ct2,k is computed as

ctj,k = Eval(f, ct1,j, ct2,k),

=
([
r⊤1,jA+ v⊤1,jA

]
q
,
[
r⊤2,kA+ v⊤2,kA

]
q
,[

∆m1 + (r1,j + v1,j)
⊤(Asj + e) + ∆m2 + (r2,k + v2,k)

⊤(Ask + e)
]
q

)
,

=
([

(r1,j + v1,j)
⊤A
]
q
,
[
(r2,k + v2,k)

⊤A
]
q
,[

∆(m1 +m2) + (r1,j + v1,j)
⊤(Asj + e) + (r2,k + v2,k)

⊤(Ask + e)
]
q

)
,

=
([
r̄⊤j A

]
q
,
[
v̄⊤k A

]
q
,
[
∆(m1 +m2) + r̄⊤j (Asj + e) + v̄⊤k (Ask + e)

]
q

)
,

where r̄j = r1,j + v1,j, and v̄k = r2,k + v2,k. The decryption of ctj,k using {ski}i∈{j,k}
is computed as

m′
k = Dec({ski}i∈{j,k}, ctj,k),

=

[⌊
t

q

[
∆(m1 +m2) + r̄⊤j (Asj + e) + v̄⊤k (Ask + e)− r̄⊤j Asj − v̄⊤k Ask

]
q

⌉]
t

,

=

[⌊
t

q

[
∆(m1 +m2) + (r̄j + v̄k)

⊤e
]
q

⌉]
t

,

=

[⌊
t

q
(∆(m1 +m2) + (r̄j + v̄k)

⊤e+ nqq)

⌉]
t

,

=

[⌊
t

q
∆(m1 +m2) +

t

q
(r̄j + v̄k)

⊤e+ nqt

⌉]
t

,

=

[⌊
m1 +m2 +

t

q

(
(r̄j + v̄k)

⊤e− ϵ(m1 +m2)
)
+ nqt

⌉]
t

,
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=

[
m1 +m2 + nqt+

⌊
t

q

(
(r̄j + v̄k)

⊤e− ϵ(m1 +m2)
)⌉]

t

,

= [m1 +m2]t +

[⌊
t

q

(
(r̄j + v̄k)

⊤e− ϵ(m1 +m2)
)⌉]

t

,

where nq ∈ Z, ϵ = q/t − ∆, and 0 ≤ ϵ < 1. m′
k = m holds if |(t/q) · (r̄j + v̄k)

⊤e −
ϵ(m1 +m2))| < 1/2, and its sufficient condition is given as∣∣∣∣ tq (r̄j + v̄k)

⊤e− ϵ(m1 +m2))

∣∣∣∣ < 1

2
⇐⇒|(r̄j + v̄k)

⊤e− ϵ(m1 +m2)| <
q

2t
,

⇐= |(r̄j + v̄k)
⊤e|+ ϵ(m1 +m2) <

q

2t
,

⇐=

∣∣∣∣∣
m∑
i=1

(r1,j,i + v1,j,i + r2,k,i + v2,k,i)ei

∣∣∣∣∣< q

2t
− 2t,

⇐=
m∑
i=1

|(r1,j,i + v1,j,i + r2,k,i + v2,k,i)ei|<
q

2t
− 2t,

⇐= 4
m∑
i=1

|ei| <
q

2t
− 2t,

⇐= |ei| <
1

m

(
q

8t
− t

2

)
, i = 1, . . . ,m.

Hence, |(t/q) · (r̄⊤k e− ϵm)| < 1/2 holds with probability at least 1− negl(λ) because

χ is (q/(8mt)− t/(2m))-bounded. This implies that Pr[m′
k = m] ≥ 1− negl(λ).

From Theorem 2.9, the key-updatable Regev encryption is additively homomor-

phic encryption. It should be noted that the modifications of the key-updatable

Regev encryption from the updatable one require the bound of noise in half for

correctness and homomorphism. In other words, the ciphertext modulus of key-

updatable Regev encryption should be increased from the one of updatable Regev

encryption by 4mtB to retain the noise size B in the updatable Regev encryption.

This requirement leads to an increase in ciphertext size.

2.4.4 Security

This section reveals the forward and post-compromise security of key-updatable El-

Gamal and Regev encryption, namely the IND-KU-CPA security in Definition 2.18.

Following Theorem 2.5, it shows that the constructions satisfy the IND-CPA security

in Definition 2.5, and the probability distribution of the output of each key-update
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algorithm is indistinguishable from that of a fresh key pair generated by each key-

generation algorithm.

The section begins by showing the IND-KU-CPA security of key-updatable El-

Gamal encryption. The lemma below is on the IND-CPA security of the encryption.

The proof is fulfilled by slightly modifying the cryptographic games in the proof of

Proposition 2.5.

Lemma 2.1. The key-updatable ElGamal encryption is IND-CPA secure under the

DDH assumption.

Proof. We prove the statement by reduction of the following games as with the

ElGamal encryption.

Game0(λ): This game is the original IND-CPA game of key-updatable ElGamal

encryption, shown below.

Game0(λ)

params← Setup(1λ)

s←R Zq
(m0,m1)← A(1λ, params, [gs]p)

b←R {0, 1}

ct←
(
[gr]p, [g

v]p,
[
mbg

(r+v)s
]
p

)
, r ←R Zq, v ←R Zq

b̂← A(ct)

return 1 if b̂ = b and 0 otherwise

Game1(λ): This game is the same as Game0 except replacing g
(r+v)s in the challenge

ciphertext with gu1+vs for some random number u1 uniformly sampled from

Zq.

Game2(λ): This game is the same as Game1 except replacing g
u1+vs in the challenge

ciphertext with gu1+u2 for some random number u2 uniformaly sampled from

Zq.

Game3(λ): This game is the same as Game2 except replacing mbg
u1+u2 with gu1+u2 .

Claim 2.14. |Pr[Game0(λ) = 1] − Pr[Game1(λ) = 1]| is negligible under the DDH

assumption.
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Proof. Consider the following algorithm.

Algorithm B(λ, params, α, β, γ, δ)

(m0,m1)← A(1λ, params, [α]p)

b←R {0, 1}

ct← ([β]p, [γ]p, [mbδ]p)

b̂← A(ct)

return 1 if b̂ = b and 0 otherwise

If (α, β, γ, δ) = (gs, gr, gv, grsgvs) for some random numbers r, v, s ←R Zq, the
algorithm B simulates Game0. This implies that

Pr[B(λ, params, gs, gr, gv, grsgvs) = 1 | s, r, v ←R Zq] = Pr[Game0(λ) = 1].

Similarly, it follows that

Pr[B(λ, params, gs, gr, gv, gu1gvs) = 1 | s, r, v, u1 ←R Zq] = Pr[Game1(λ) = 1].

Assume that

|Pr[Game0(λ) = 1]− Pr[Game1(λ) = 1]| ≥ negl(λ)

holds for all negligible function negl, then B can distinguish (gs, gr, grs) and (gs, gr,

gu1) with non-negligible probability that contradicts the DDH assumption. The

claim is held by contradiction.

Claim 2.15. |Pr[Game1(λ) = 1] − Pr[Game2(λ) = 1]| is negligible under the DDH

assumption.

Proof. We use the algorithm B again to prove the claim. It follows that

Pr[B(λ, params, gs, gr, gv, gu1gvs) = 1 | s, r, v, u1 ←R Zq] = Pr[Game1(λ) = 1]

and

Pr[B(λ, params, gs, gr, gv, gu1gu2) = 1 | s, r, v, u1, u2 ←R Zq] = Pr[Game2(λ) = 1].
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Assume that

|Pr[Game1(λ) = 1]− Pr[Game2(λ) = 1]| ≥ negl(λ)

holds for all negligible function negl, then B can distinguish (gs, gv, gvs) and (gs, gv,

gu2) with non-negligible probability that contradicts the DDH assumption. The

claim is held by contradiction.

Claim 2.16. Pr[Game2(λ) = 1] = Pr[Game3(λ) = 1].

Proof. If u1 and u2 are uniformly sampled from Zq, [gu1+u2 ]p follows the uniform

distribution on G, and so is [mbg
u1+u2 ]p. Hence, the modification of Game2 does not

change any probability of Game1.

Claim 2.17. Pr[Game3(λ) = 1] = 1/2.

Proof. The probability Pr[b̂ = b] is equivalent to 1/2 because the challenge ciphertext

in Game3 is independent of b.

Consequently, it follows that |Pr[Game0(λ) = 1] − 1/2| is negligible under the

DDH assumption.

The following lemma shows the indistinguishability of key updates in the key-

updatable ElGamal encryption. Its proof is almost based on that of Corollary 2.1.

Lemma 2.2. Given the key-updatable ElGamal encryption. There exists a negligible

function negl such that

|Pr[A(pk′, sk′) = 1]− Pr[A(pk, sk) = 1]| < negl(λ)

for all λ ∈ N and for all probabilistic polynomial-time algorithm A, where (pk, sk)←
KeyGen(1λ), and (pk′, sk′)← KeyUpd(pk, sk).

Proof. Let params be as in Definition 2.10, and let (sk, pk) = (s, [gs]p) ∈ Zq × G
be a fresh key pair. By construction, the updated secret key sk′ = s′ follows the

same probability distribution as the fresh secret key. It follows from the proof of

Theorem 2.6 that the updated public key is pk′ =
[
gs

′]
p
. This public key is identical

to a public key generated by pk′ ← PubKeyGen(sk′). This completes the proof.

The lemmas conclude that the key-updatable ElGamal encryption is IND-KU-

CPA secure.
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Theorem 2.10. The key-updatable ElGamal encryption is IND-KU-CPA secure

under the DDH assumption.

Proof. The theorem follows from Theorem 2.5, Lemma 2.1, and Lemma 2.2.

Next, the proof for the IND-KU-CPA security of key-updatable Regev encryption

is shown. Unlike the key-updatable ElGamal encryption, the IND-CPA security of

the construction immediately follows from Proposition 2.6 by considering the LWE

assumption.

Lemma 2.3. The key-updatable Regev encryption is IND-CPA secure under the

LWE assumption.

Proof. The theorem follows from Proposition 2.6.

Furthermore, the indistinguishability of key update in the key-updatable Regev

encryption can be shown almost the same way to prove Lemma 2.2.

Lemma 2.4. Given the key-updatable Regev encryption. There exists a negligible

function negl such that

|Pr[A(pk′, sk′) = 1]− Pr[A(pk, sk) = 1]| < negl(λ)

for all λ ∈ N and for all probabilistic polynomial-time algorithm A under the LWE

assumption, where (pk, sk)← KeyGen(1λ), and (pk′, sk′)← KeyUpd(pk, sk).

Proof. This proof is almost the same as one for Lemma 2.2. Let params be as in

Definition 2.11, and let (sk, pk) = (s, [As+ e]q) ∈ Znq × Zmq be a fresh key pair,

where e is a noise sampled from χm. By construction, the updated secret key

sk′ = s′ follows the same probability distribution as the fresh secret key. It follows

from the proof of Theorem 2.8 that the updated public key is pk′ = [As′ + e]q. With

the LWE assumption, the updated public key is indistinguishable from a random

number u ∈ Zmq , and so is a fresh public key generated by pk′ ← PubKeyGen(sk′).

This completes the proof.

Consequently, the following theorem on the IND-KU-CPA security of key-updatable

Regev encryption is obtained.

Theorem 2.11. The key-updatable Regev encryption is IND-KU-CPA secure under

the LWE assumption.
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Proof. The theorem follows from Theorem 2.5, Lemma 2.3, and Lemma 2.4.

Theorem 2.10 and Theorem 2.11 imply that the key-updatable ElGamal and

Regev encryption satisfies the forward and post-compromise security in the sense

of IND-KU-CPA as with the updatable ones. However, it should be noted that

the security achieved by key-updatable constructions is clearly stronger than that

of updatable ones because of the removal of update tokens. In other words, the

key-updatable schemes fulfill the security in the present against an adversary who

is given all the past and future information communicated on a network. Thus,

the key-updatable ElGamal and Regev encryption achieves the forward and post-

compromise security against both an eavesdropper on the network and an honest-

but-curious server.



Chapter 3

Encrypted Control

This chapter presents a general formulation of encrypted control using homomorphic

encryption and its correctness notion. To this end, an encoding scheme is introduced

for converting a real number to plaintext because a controller typically operates over

real numbers rather than positive integers, which can be evaluated in homomorphic

encryption. The encrypted control is extended to use updatable and key-updatable

homomorphic encryption.

3.1 Encoder and decoder

Chapter 2 viewed homomorphic encryption and its extensions for secure outsourcing

computation. So far, the data in the outsourcing computation has been considered

as a positive integer. However, in general, a controller whose computation we wish to

outsource operates over real numbers rather than integers. This gap between control

theory and cryptography scenarios suggests the need for developing an encoding and

decoding mechanism to convert real numbers to integers and vice versa.

Such transformation from a real number to an integer was a classical problem in

digital and quantized controls. For this reason, there are two main types of encoding

schemes in encrypted control, depending on which context they are derived from.

The first type represents a real number as a signed fixed-point number, a basic

digital control method. Farokhi et al. employed rounding a real number to the

number representation in base two for encoding in the Paillier encryption, which

is additively homomorphic encryption [95, 96]. Additionally, Darup generalized the

encoding to any base [106].

The second encoding type is rounding a real number to the nearest plaintext

after scaling, a basic scheme in quantized control. The main difficulty of this type of

encoding is how to convert negative real numbers to plaintexts, which are positive

integers while preserving homomorphism. Kogiso and Fujita solved this problem by

splitting the plaintext space of ElGamal encryption into two spaces and assigning
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Fig. 3.1: Encoder and decoder for homomorphic encryption.

positive and negative real numbers into each space [94]. More specifically, they con-

sidered using plaintexts from 1 to (p−1)/2 for positive numbers and from (p−1)/2+1

to p−1 for negative numbers, where p is the modulus of plaintext space. Kishida ap-

plied this encoding to a mid-tread uniform quantizer in the Paillier encryption [108].

Moreover, Kim et al. used the rounding after scaling encoding in the LWE-based

encryption [104].

This section provides a general encoding scheme of the second type shown in

Fig. 3.1 and analyzes its properties. The encoder Ecd in the figure converts the

real numbers x1 and x2 to the plaintexts m1 and m2 with the scaling factor ∆,

respectively. A binary operation between m1 and m2 is computed over the ciphertext

space by the homomorphic evaluation algorithm Eval, and its result m is recovered

by decrypting the output of Eval. The decrypted computation result is restored to

the real number x′ by the decoder Dcd with the scaling factor used in the encoder.

The formal definitions of encoder and decoder are as follows.

Definition 3.1 (Encoding scheme). An encoding scheme consists of polynomial-

time algorithms ScalSetup, Ecd, and Dcd such that:

• Scaling setup: The scaling setup algorithm ∆ ← ScalSetup(params,X ) takes

as input public parameters params and a bounded set X ⊂ R and outputs a

scaling factor ∆ ∈ R+.

• Encoder: The encoder algorithm m← Ecd(x; ∆) takes as input a real number

x ∈ X and the scaling parameter ∆ and outputs a plaintext m ∈M.

• Decoder: The decoder algorithm x ← Dcd(m; ∆) takes as input a plaintext
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Fig. 3.2: Rounding R toM.

m ∈M and the scaling parameter ∆ and outputs a real number x ∈ X .

The second encoding type includes a rounding process, thereby inducing the loss

of original data precision. In other words, the encoding scheme causes a quantization

error according to its resolution that relies on the degree of scaling and the width of

plaintext space. This quantization error is formulated using the algorithms as the

difference between decoded and original values.

Definition 3.2 (Quantization error). Consider an encoding scheme in Definition 3.1.

A quantization error e(x; ∆) for x ∈ X with ∆ is defined as

e(x; ∆) := Q(x; ∆)− x,

where Q(·; ∆) := Dcd(Ecd(·; ∆);∆), and ∆← ScalSetup(params,X ).

This section considers building an encoding scheme whose encoder process is

shown in Fig. 3.2 and Fig. 3.3. Suppose the modulus of plaintext spaceM is n. To

begin with, the encoder rounds a real number x to the nearest integer after scaling

up by multiplying ∆−1 as the gray dashed line in Fig. 3.2. Additionally, as illustrated
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Fig. 3.3: Conversion fromM toM.

by the blue solid line in the figure, the encoder chooses the nearest element of the

rounded integer from M ⊂ [−m,m], where M is the set of minimal residues of

elements in M modulo n, and m = ⌊(n− 1)/2⌋. Then, the residue of an element

inM modulo n is computed as shown in Fig. 3.3. By definition, the residue of an

element m̄ inM modulo n is m̄ if m̄ ≥ 0 and m̄ + n otherwise. The corresponding

decoding process is multiplying ∆ by the minimal residue of an encoder output

modulo n. Note that the plaintext considered here is not necessarily the set of

residues modulo n. For instance, the plaintext space of ElGamal encryption in

Definition 2.10 is a subset of Zp.

Our interest here is the magnitude of quantization errors in the encoding scheme.

The following lemma reveals that it is bounded by a product of the scaling factor

∆ and a half of the maximum width of the union ofM and {±m}.

Lemma 3.1. Let n ≥ 3 be the modulus of a plaintext space M ⊂ Zn, and let
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m = ⌊(n− 1)/2⌋. If an encoding scheme in Definition 3.1 is given as

ScalSetup : (params,X ) 7→ ∆ ≥ m−1B,

Ecd : x 7→ m =

[
min arg min

m̄∈M

∣∣⌊∆−1x
⌉
− m̄

∣∣]
n

,

Dcd : m 7→ x = ∆JmKn,

(3.1)

then it holds that

|e(x; ∆)| ≤ ∆dmax

2

for all x ∈ X , where B := sup{|x| | x ∈ X}, dmax := maxi m̄i − m̄i+1, m̄i is the ith

largest element in M∪ {±2m}, M := {JmKn | m ∈ M}, and e(x; ∆) is defined in

Definition 3.2.

Proof. Let

m′ = min arg min
m̄∈M

∣∣⌊∆−1x
⌉
− m̄

∣∣.
The output of the encoder is given as

m = Ecd(x; ∆) = [m′]n =

{
m′, x ≥ 0,

m′ + n, x < 0.

because |m′| is at most m. Then, the output of the decoder is

x′ = Dcd(m; ∆) = ∆Jm′Kn = ∆m′, Jm′Kn =

{
m′, x ≥ 0,

m′ − n, x < 0.

It follows from the scaling setup algorithm that ∆−1|x| < m for all x ∈ X . This

implies that there exist m̄i and m̄i+1 such that m̄i > ∆−1x ≥ m̄i+1. Consequently, it

holds that

|e(x; ∆)| = |x′ − x| = |∆m′ − x| = ∆|m′ −∆−1x| ≤ ∆(m̄i − m̄i+1)

2
≤ ∆dmax

2
,

where m′ is either m̄i or m̄i+1.

Moreover, if the plaintext space is identical to Zn, a quantization error is bounded

by half of the scaling factor.
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Corollary 3.1. Let n and m be as in Lemma 3.1. Given the encoding scheme (3.1).

IfM = Zn, it holds that |e(x; ∆)| ≤ ∆/2 for all x ∈ X .

Proof. Recall that ∆−1|x| < m holds for all x ∈ X . It follows that

x′ = Dcd(Ecd(x; ∆);∆) = ∆
⌊
∆−1x

⌉
because ⌊∆−1x⌉ is always inM = {−m, . . . ,m}. Hence, it holds that

|e(x; ∆)| = |x′ − x| = |∆
⌊
∆−1x

⌉
− x| = |∆(∆−1x+ ϵ)− x| = |∆ϵ| ≤ ∆

2
,

where ϵ ∈ (−1/2, 1/2].

It should be noted that the encoding scheme (3.1) is a general representation of

the second type encoding, such as the schemes in [94,104,111,142,143]. Lemma 3.1

implies that quantization errors in such encoding schemes can be reduced by de-

creasing a scaling factor. Meanwhile, the minimum value of the scaling factor is

restricted by the size of plaintext space and the range of values to be encoded.

A value to be encoded in our encrypted control scenario is specified by controller

parameters and outputs of a plant, namely the design of the original control sys-

tem. The size of plaintext space, i.e., its modulus, generally depends on a security

parameter. For instance, the plaintext space modulus of ElGamal encryption in-

creases as its security parameter increases. A scaling factor in such a case can be

reduced by increasing a security parameter. In contrast, increasing a security pa-

rameter in LWE-based encryption, including the Regev encryption, typically leads

to decreasing plaintext space size because of reducing the size of ciphertext space.

Hence, decreasing a scaling factor is required to degrade a security level. Note that

although this compromise can be relaxed by increasing the size of a secret key, it

also increases computation costs for encryption and decryption.

This thesis requires the encoding scheme (3.1) to remain homomorphism of en-

cryption depicted in Fig. 3.1. In other words, a decrypted and decoded result x′ of

the output of a homomorphic evaluation algorithm should be almost the same as the

computation result x of the original real numbers. Recall that x′ is not necessarily

equal to x due to quantization errors. To this end, the encoder and decoder need

to inherit arithmetic over real numbers, similar to homomorphism in homomorphic

encryption. The lemma below shows that the multiplication of decoded values is

equal to a decoded value of multiplication of encoded values.
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Lemma 3.2. Given the encoding scheme (3.1). Let n, m, andM be as in Lemma 3.1.

It holds that, for every N ∈ N,

N∏
i=1

Dcd(mi; ∆) = Dcd

(
N∏
i=1

mi; ∆
N

)

for all m1, . . . ,mN ∈M such that
∣∣∣∏N

i=1JmiKn
∣∣∣ ≤ m.

Proof. The direct calculation yields the statement.

N∏
i=1

Dcd(mi; ∆) =
N∏
i=1

∆JmiKn,

= ∆N

N∏
i=1

JmiKn,

= ∆N

t
N∏
i=1

JmiKn

|

n

,

= ∆N

t
N∏
i=1

mi

|

n

,

= Dcd

(
N∏
i=1

mi; ∆
N

)
.

Note that the third equality follows from
∣∣∣∏N

i=1JmiKn
∣∣∣ ≤ m. This completes the

proof.

Furthermore, the addition of decoded values becomes equivalent to a decoded

value of the addition of encoded values.

Lemma 3.3. Given the encoding scheme (3.1). Let n, m, andM be as in Lemma 3.1.

It holds that, for every N ∈ N,

N∑
i=1

Dcd(mi; ∆) = Dcd

(
N∑
i=1

mi; ∆

)

for all m1, . . . ,mN ∈M such that
∣∣∣∑N

i=1JmiKn
∣∣∣ ≤ m.
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Proof. Similar to the Lemma 3.2, the direct calculation yields the statement.

N∑
i=1

Dcd(mi; ∆) =
N∑
i=1

∆JmiKn,

= ∆
N∑
i=1

JmiKn,

= ∆

t
N∑
i=1

JmiKn

|

n

,

= ∆

t
N∑
i=1

mi

|

n

,

= Dcd

(
N∑
i=1

mi; ∆

)
.

This completes the proof.

Lemma 3.2 and Lemma 3.3 imply that the encoding scheme (3.1) preserves a

kind of structures of multiplication and addition over a subset of R. This property
helps analyze quantization errors in encrypted controller computation, described in

the next section.

3.2 Encrypted control using homomorphic encryp-

tion

Encrypted control is a control framework for secure outsourcing computation of

controllers to an untrusted server, such as a public cloud. The control was first

realized by Kogiso and Fujita using multiplicatively homomorphic encryption [94].

After their study, Farokhi et al. proposed encrypted control using additively homo-

morphic encryption [95, 96], and Kim et al. considered that of fully homomorphic

encryption [97]. Such early studies of encrypted control treated to construct a com-

putation methodology of a linear-time-invariant controller over encrypted data.

This section revisits the encrypted control of a linear-time-invariant controller

using homomorphic encryption to give its formal definition in a cryptographic man-

ner and to formulate the correctness notion of encrypted control as with encryption

schemes in Chapter 2. Moreover, it provides two general constructions of encrypted
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Plant Encrypted
Controller

Fig. 3.4: Encrypted control system using holomorphic encryption.

control using multiplicatively and additively homomorphic encryption with the en-

coding scheme (3.1) and analyzes quantization errors in the constructions. En-

crypted control using the ElGamal and Regev encryption is also introduced as its

specific realizations. The encrypted control definition is also extended to that using

updatable and key-updatable homomorphic encryption.

3.2.1 Definitions

This section provides a general definition of encrypted control using homomorphic

encryption in a cryptographic manner so that the various conventional approaches

for encrypted control can be treated in a unified method. Fig. 3.4 shows a schematic

picture of a considered encrypted control system, which can be interpreted as a

client-server model with outsourcing computation using homomorphic encryption.

As a client, the plant transmits a controller input, such as sensor data, to the

encrypted controller while encoding and encrypting it. As a server, the encrypted

controller computes a controller output over encrypted data and returns it to the

plant. The plant then recovers a control input by decrypting and decoding the

controller output. The encrypted controller in such a control scenario is formally

defined as follows.

Definition 3.3 (Encrypted control). Let f be a control law. An encrypted controller

of f is a polynomial-time algorithm EC such that:

• Encrypted controller: The encrypted control algorithm ct ← EC(f, φ1, ct2)

takes as input the control law, either a plaintext matrix φ1 ∈ Mα×β or ci-

phertext matrix φ1 ∈ Cα×β, and a ciphertext vector ct2 ∈ Cβ and outputs

either a ciphertext vector ct ∈ Cα or ciphertext matrix ct ∈ Cα×β, respectively.

In the definition, an encrypted controller is a polynomial-time algorithm that

computes a ciphertext vector from the input matrix and vector, unlike encryp-



70 3. Encrypted Control

tion/decryption and encoder/decoder algorithms that perform for a scalar mes-

sage. Along with this definition, in what follows, encryption/decryption and en-

coder/decoder algorithms are supposed to perform for each input element if they

take a vector or matrix as input. It should be noted that only one of the con-

troller inputs or parameters can be encrypted if additively homomorphic encryption

is employed, as discussed in the existing studies [96]. However, both the inputs and

parameters are encrypted using multiplicatively homomorphic encryption. For this

reason, the input matrix in Definition 3.3 is defined as either plaintext or ciphertext.

We are now ready to define the correctness of an encrypted controller. As previ-

ously discussed, encrypting real numbers requires an encoding scheme that induces

a quantization error. Hence, the correctness of the encrypted controller must be

considered together with accuracy, unlike the encryption schemes in Chapter 2. To

this end, here this thesis introduces δ-correctness. It means that the deviation of the

decrypted and decoded result of the encryption controller output from the original

controller output becomes smaller than δ except with a negligibly small probability.

Definition 3.4 (δ-correctness). Given a homomorphic encryption scheme in Defi-

nition 2.8 and an encoding scheme in Definition 3.1. Suppose f : (Φ, ξ) 7→ ψ is a

control law, where Φ ∈ X α×β is a controller parameter, ξ ∈ X β is a controller input,

and ψ ∈ X α is a controller output. An encrypted controller EC of f is δ-correct if

there exist δ ∈ R+ and a negligible function negl such that

Pr


∥ψ′ − ψ∥∞ ≤ δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← KeyGen(1λ)

∆← ScalSetup(params,X )

ctξ ← Enc(pk,Ecd(ξ; ∆))

ctψ ← EC(f, φΦ, ctξ)

ψ′ ← Dcd(Dec(sk, ctψ);∆)


≥ 1− negl(λ)

for all λ ∈ N, for all Φ ∈ X α×β, and for all ξ ∈ X β, where ψ = f(Φ, ξ), φΦ is given

as either φΦ ← Ecd(Φ,∆) or φΦ ← Enc(pk,Ecd(Φ;∆)), and ∥ · ∥∞ is the maximum

norm.

It should be stressed that the definition covers the correctness of almost all en-

crypted controls using any homomorphic encryption, including nonlinear control,

distributed control, and so on, under the encoding scheme in Definition 3.1 because

f in the definition is a general representation of control law. Meanwhile, f represents



3.2. Encrypted control using homomorphic encryption 71

not only a control law but also a system having input and output. This fact sug-

gests that the definitions of encrypted control and δ-correctness are not restricted

to controllers by formulating f appropriately. For example, if a Kalman filter is

represented as f : (Φ, ξ) 7→ ψ, where Φ is a system parameter, ψ is an estimated

state, and ξ consists of a sensor output, system input, and previous estimated-state,

then its encrypted version and correctness can be defined by Definition 3.3 and

Definition 3.4, respectively.

3.2.2 Constructions

Following Definition 3.3 and Definition 3.4, this section builds two general encrypted

controllers of a linear-time-invariant controller using multiplicatively and additively

homomorphic encryption.

The first construction using multiplicatively homomorphic encryption computes

the element-wise product of a ciphertext matrix and vector, which correspond to a

controller parameter and input, respectively. The decoder here is modified to per-

form decoding of the decrypted matrix and aggregating each row of the matrix [94]

so that the overall process of the encrypted controller, decryption, and decoder is

comparable to the product of the controller parameter matrix and the controller

input vector. Formally, the encrypted controller is given as follows.

Theorem 3.1. Given a multiplicatively homomorphic encryption scheme. Consider

the encoding scheme (3.1) and redefine the decoder as DcdMHE(·; ∆) := Sum(Dcd(·;
∆2)) with

Sum : Rα×β → Rα :M 7→


∑β

j=1M1j

...∑β
j=1Mαj

.
Let m, B, and dmax be as in Lemma 3.1. Suppose f : X α×β × X β → X α : (Φ, ξ) 7→
ψ = Φξ is a linear-time-invariant control law. If ∆−2∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞ ≤ m,

the algorithm

EC : (f, ctΦ, ctξ) 7→


ctΦ11 ⊠ ctξ1 · · · ctΦ1β

⊠ ctξβ
...

. . .
...

ctΦα1 ⊠ ctξ1 · · · ctΦαβ
⊠ ctξβ

 (3.2)

is a β(∆dmaxB+(∆dmax/2)
2)-correct encrypted controller of f , where ctΦ ← Enc(pk,
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Ecd(Φ;∆)), ctξ←Enc(pk,Ecd(ξ; ∆)), (pk, sk)←KeyGen(1λ), ∆←ScalSetup(params,

X ), Q is defined in Definition 3.2, and ∥ · ∥max is the max norm.

Proof. Let ctψ ← EC(f, ctΦ, ctξ). It follows from the multiplicative homomorphism

of the encryption scheme that the decryption of ctψ is computed as

mψ = Dec(sk, ctψ),

=


Dec(sk, ctΦ11 ⊠ ctξ1) · · · Dec(sk, ctΦ1β

⊠ ctξβ)
...

. . .
...

Dec(sk, ctΦα1 ⊠ ctξ1) · · · Dec(sk, ctΦαβ
⊠ ctξβ)

,

=


Ecd(Φ11; ∆)Ecd(ξ1; ∆) · · · Ecd(Φ1β; ∆)Ecd(ξβ; ∆)

...
. . .

...

Ecd(Φα1; ∆)Ecd(ξ1; ∆) · · · Ecd(Φαβ; ∆)Ecd(ξβ; ∆)

,
with probability at least 1−negl(λ). The condition ∥Q(Φ;∆)/∆∥max∥Q(ξ; ∆)/∆∥∞ ≤
m yields ∣∣JEcd(Φij; ∆)KnJEcd(ξj; ∆)Kn

∣∣ ≤ m

for all 1 ≤ i ≤ α and for all 1 ≤ j ≤ β because

∆−2∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞
= ∆−2max

i,j
|Q(Φij; ∆)|max

j
|Q(ξj; ∆)|,

= max
i,j
|Dcd(Ecd(Φij; ∆);∆)/∆|max

j
|Dcd(Ecd(ξj; ∆);∆)/∆|,

= max
i,j

∣∣JEcd(Φij; ∆);∆)Kn
∣∣max

j

∣∣JEcd(ξj; ∆);∆)Kn
∣∣,

≥ max
i,j

∣∣JEcd(Φij; ∆);∆)KnJEcd(ξj; ∆);∆)Kn
∣∣.

Hence, Lemma 3.2 implies that the decoded result of the (i, j)-entry of mψ is given

as

Dcd
(
mψij

; ∆2
)
= Dcd

(
Ecd(Φij; ∆)Ecd(ξj; ∆);∆2

)
,

= Dcd(Ecd(Φij; ∆);∆)Dcd(Ecd(ξj; ∆);∆),

= Q(Φij; ∆)Q(ξj; ∆).
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Let ψ′ ← DcdMHE(mψ; ∆). It holds that

ψ′ = DcdMHE(mψ; ∆),

= Sum



Q(Φ11; ∆)Q(ξ1; ∆) · · · Q(Φ1β; ∆)Q(ξβ; ∆)

...
. . .

...

Q(Φα1; ∆)Q(ξ1; ∆) · · · Q(Φαβ; ∆)Q(ξβ; ∆)


,

=



β∑
j=1

Q(Φ1j; ∆)Q(ξj; ∆)

...
β∑
j=1

Q(Φαj; ∆)Q(ξj; ∆)


.

Moreover, it holds that

∥ψ′ − f(Φ, ξ)∥∞ = max
i
|ψ′
i − ψi|,

= max
i

∣∣∣∣∣
β∑
j=1

Q(Φij; ∆)Q(ξj; ∆)−
β∑
j=1

Φijξj

∣∣∣∣∣,
= max

i

∣∣∣∣∣
β∑
j=1

Q(Φij; ∆)Q(ξj; ∆)− Φijξj

∣∣∣∣∣,
= max

i

∣∣∣∣∣
β∑
j=1

(Φij + e(Φij; ∆))(ξj + e(ξj; ∆))− Φijξj

∣∣∣∣∣,
= max

i

∣∣∣∣∣
β∑
j=1

Φije(ξj; ∆) + e(Φij; ∆)ξj + e(Φij; ∆)e(ξj; ∆)

∣∣∣∣∣.
Lemma 3.1 yields that |e(Φij; ∆)| and |e(ξj; ∆)| are bounded from above by ∆dmax/2.

Additionally, |Φij| < B and |ξj| < B hold for all i and j. Consequently, ∥ψ′ −
f(Φ, ξ)∥∞ is bounded as follows.

∥ψ′ − f(Φ, ξ)∥∞ ≤

∣∣∣∣∣
β∑
j=1

∆dmax

2
B +

∆dmax

2
B +

(
∆dmax

2

)2
∣∣∣∣∣,

=

∣∣∣∣∣β
(
∆dmaxB +

(
∆dmax

2

)2
)∣∣∣∣∣,
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= β

(
∆dmaxB +

(
∆dmax

2

)2
)
.

This completes the proof.

The theorem shows that the encrypted controller (3.2) of a linear-time-invariant

controller using any multiplicatively homomorphic encryption can satisfy the β(∆

dmaxB + (∆dmax/2)
2)-correctness under the modified encoding scheme of (3.1). It

implies that a control system with the encrypted controller can achieve almost the

same control performance as the original control system when choosing a scaling

factor ∆ such that β(∆dmaxB + (∆dmax/2)
2)≪ 1. Here, the condition is equivalent

to d2max∆
2+4Bdmax∆≪ 4β−1. If d2max∆

2+4Bdmax∆− 4β−1 = 0, the scaling factor

is given as ∆ = 2d−1
max(

√
B2 + β−1 −B). Therefore, a choice satisfying

∆≪ 2

dmax

(√
B2 + β−1 −B

)
is recommended. Note that, from Theorem 3.1, a scaling factor is bounded from

below by

∆ ≥
√
∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞

m
.

A security parameter or control law needs to be redesigned when neither condition

is met.

The corollary below, which is on a realization of encrypted control using the

ElGamal encryption, immediately follows from the homomorphism of ElGamal en-

cryption and Theorem 3.1.

Corollary 3.2. Given the ElGamal encryption scheme in Definition 2.10. Con-

sider the encoding scheme in Theorem 3.1. Let B and dmax be as in Lemma 3.1,

and let Φ, ξ, ∆, and β be as in Theorem 3.1. Let p be as in Definition 2.10. If

∆−2∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞ ≤ (p−1)/2, (3.2) is β(∆dmaxB+(∆dmax/2)
2)-correct,

where Q is defined in Definition 3.2.

Proof. The corollarry follows from Proposition 2.2 and Theorem 3.1.

The next encrypted controller construction is based on the use of additively

homomorphic encryption. As opposed to encrypted control using multiplicatively

homomorphic encryption, controller parameters in the construction with additively
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homomorphic encryption cannot be encrypted because computing a product of ci-

phertexts is impossible. Additively homomorphic encryption allows the computation

of plaintext-ciphertext multiplication by repeating the addition as many times as the

plaintext instead of the limitation. Hence, the encrypted controller using additively

holomorphic encryption computes the product of a plaintext controller-parameter

matrix and a ciphertext input vector as follows.

Theorem 3.2. Given an additively homomorphic encryption scheme. Consider the

encoding scheme (3.1) and redefine the decoder as DcdAHE(·; ∆) := Dcd(·; ∆2). Let

m, B, and dmax be as in Lemma 3.1, and let f , Φ, ξ, and β be as in Theorem 3.1.

If ∆−2β∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞ ≤ m, the algorithm

EC : (f,mΦ, ctξ) 7→


(mΦ11 � ctξ1)⊞ · · ·⊞ (mΦ1β

� ctξβ)
...

(mΦα1 � ctξ1)⊞ · · ·⊞ (mΦαβ
� ctξβ)

 (3.3)

is a β(∆dmaxB+(∆dmax/2)
2)-correct encrypted controller of f , where mΦ ← Ecd(Φ;∆),

ctξ ← Enc(pk,Ecd(ξ; ∆)), (pk, sk) ← KeyGen(1λ), ∆ ← ScalSetup(params,X ), and
Q is defined in Definition 3.2.

Proof. The proof flow is almost the same as that of Theorem 3.1. Let ctψ ←
EC(f, ctΦ, ctξ). It follows from the additive homomorphism of the encryption scheme

that the decryption of ctψ is computed as

mψ = Dec(sk, ctψ),

=


Dec(sk, (mΦ11 � ctξ1)⊞ · · ·⊞ (mΦ1β

� ctξβ))
...

Dec(sk, (mΦα1 � ctξ1)⊞ · · ·⊞ (mΦαβ
� ctξβ))

,

=


Ecd(Φ11; ∆)Ecd(ξ1; ∆) + · · ·+ Ecd(Φ1β; ∆)Ecd(ξβ; ∆)

...

Ecd(Φα1; ∆)Ecd(ξ1; ∆) + · · ·+ Ecd(Φαβ; ∆)Ecd(ξβ; ∆)

,

=



β∑
j=1

Ecd(Φ1j; ∆)Ecd(ξj; ∆)

...
β∑
j=1

Ecd(Φαj; ∆)Ecd(ξj; ∆)


,
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with probability at least 1−negl(λ). The condition ∆−2β∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞ ≤
m yields

∣∣JEcd(Φi1; ∆)KnJEcd(ξ1; ∆)Kn + · · ·+ JEcd(Φiβ; ∆)KnJEcd(ξβ; ∆)Kn
∣∣ ≤ m

for all 1 ≤ i ≤ α because

∆−2β∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞
= ∆−2βmax

i,j
|Q(Φij; ∆)|max

j
|Q(ξj; ∆)|,

= βmax
i,j
|Dcd(Ecd(Φij; ∆);∆)/∆|max

j
|Dcd(Ecd(ξj; ∆);∆)/∆|,

= βmax
i,j

∣∣JEcd(Φij; ∆);∆)Kn
∣∣max

j

∣∣JEcd(ξj; ∆);∆)Kn
∣∣,

≥ βmax
i,j

∣∣JEcd(Φij; ∆);∆)KnJEcd(ξj; ∆);∆)Kn
∣∣,

≥ max
i

∣∣∣∣∣
β∑
j=1

JEcd(Φij; ∆);∆)KnJEcd(ξj; ∆);∆)Kn

∣∣∣∣∣.
Hence, Lemma 3.2 and Lemma 3.3 imply that the decoded result of the ith element

of mψ is given as

Dcd
(
mψi

; ∆2
)
= Dcd

(
β∑
j=1

Ecd(Φij; ∆)Ecd(ξj; ∆);∆2

)
,

=

β∑
j=1

Dcd(Ecd(Φij; ∆);∆)Dcd(Ecd(ξj; ∆);∆),

=

β∑
j=1

Q(Φij; ∆)Q(ξj; ∆).

Let ψ′ ← DcdAHE(mψ; ∆). It holds that

ψ′ = DcdAHE(mψ; ∆) =



β∑
j=1

Q(Φ1j; ∆)Q(ξj; ∆)

...
β∑
j=1

Q(Φαj; ∆)Q(ξj; ∆)


.
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Therefore, the theorem follows from the proof of Theorem 3.1.

One of the additively homomorphic encryption schemes for realizing the en-

crypted control (3.3) is the Regev encryption. The following corollary shows that

the encrypted control with the encryption scheme achieves correctness if a noise

used in the secret key generation is bounded by a specific size.

Corollary 3.3. Given the Regev encryption scheme in Definition 2.11. Consider

the encoding scheme in Theorem 3.2. Let B be as in Lemma 3.1, and let Φ, ξ,

∆, and β be as in Theorem 3.1. Let t and χ be as in Definition 2.11. If ∆−2β

∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞ ≤ ⌊(t− 1)/2⌋ and if χ is (q/(2mβt2) − (t/m))-bounded,

then (3.3) is β(∆B + (∆/2)2)-correct, where Q is defined in Definition 3.2.

Proof. Let params, pk, sk be as in Definition 2.11, and let ∆′ = ⌊q/t⌋. By definition,

it holds that

ctψi
= (mΦi1

� ctξ1)⊞ · · ·⊞ (mΦiβ
� ctξβ)

=
([

mΦi1
r⊤1 A

]
q
,
[
∆′mΦi1

mξ1 +mΦi1
r⊤1 (As+ e)

]
q

)
⊞ · · ·⊞

([
mΦiβ

r⊤β A
]
q
,
[
∆′mΦiβ

mξβ +mΦiβ
r⊤β (As+ e)

]
q

)
,

=

( β∑
j=1

mΦij
rj

)⊤

A


q

,

∆′

(
β∑
j=1

mΦij
mξj

)
+

(
β∑
j=1

mΦij
rj

)⊤

(As+ e)


q

,
where mΦij

← Ecd(Φij; ∆), mξj ← Ecd(ξj; ∆), ctξj ← Enc(pk,mξj), and rj ∈ Zm2
is a random vector used in the encryption of mξj . It follows from the proof of

Proposition 2.3 that

mψi
= Dec(sk, ctψi

) =

[
β∑
j=1

mΦij
mξj

]
t

if ∣∣∣∣∣ tq
(

β∑
j=1

mΦij
r⊤j e− ϵ

β∑
j=1

mΦij
mξj

)∣∣∣∣∣ < 1

2
.

From the proof of Proposition 2.4, a sufficient condition of the above one is given as∣∣∣∣∣ tq
(

β∑
j=1

mΦij
r⊤j e− ϵ

β∑
j=1

mΦij
mξj

)∣∣∣∣∣ < 1

2
⇐⇒

∣∣∣∣∣
β∑
j=1

mΦij
r⊤j e− ϵ

β∑
j=1

mΦij
mξj

∣∣∣∣∣ < q

2t
,
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⇐=
β∑
j=1

mΦij

∣∣r⊤j e∣∣+ ϵ

β∑
j=1

mΦij
mξj <

q

2t
,

⇐=
β∑
j=1

∣∣r⊤j e∣∣+ ϵ

β∑
j=1

mξj <
q

2t2
,

⇐=
β∑
j=1

∣∣r⊤j e∣∣ < q

2t2
− βt,

⇐= β

m∑
i=1

|ei| <
q

2t2
− βt,

⇐= |ei| <
1

m

(
q

2βt2
− t
)
, i = 1, . . . ,m,

where ϵ = q/t−∆′, and 0 ≤ ϵ < 1. Therefore, the corollary follows from Theorem 3.2

because χ is (q/(2mβt2)− (t/m))-bounded.

To conclude this section, some remarks are described on the pros and cons of the

encrypted controls using multiplicatively and additively homomorphic encryption.

The advantage of multiplicatively homomorphic encryption is that both a controller

parameter and input can be encrypted. However, all controller computation cannot

be outsourced to a controller server in the encrypted control using multiplicatively

homomorphic encryption. The aggregation of each row in the matrix-vector prod-

uct needs to be performed on a client, namely a plant. In contrast to this, all

controller computation in the encrypted control using additively homomorphic en-

cryption is conducted on a controller server, although a controller parameter cannot

be encrypted. Additionally, the computation costs of using additively homomorphic

encryption are often higher than that of using multiplicatively one due to many ho-

momorphic evaluations for plaintext-ciphertext products. For these reasons, a sys-

tem designer is required to carefully choose which homomorphic encryption scheme

to use based on objectives and costs.

3.3 Encrypted control using updatable homomor-

phic encryption

This section extends encrypted control in the previous section to enhance its secu-

rity by using updatable homomorphic encryption. The use of updatable homomor-
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phic encryption is expected for encrypted control to achieve the forward and post-

compromise security. It should be noted that the forward and post-compromised

security in encrypted control can be easily satisfied when using additively homo-

morphic encryption because a controller parameter stored on a controller server is

of plaintext. Thus, this section focuses on encrypted control using updatable multi-

plicatively homomorphic encryption.

Fig. 3.5 illustrates a schematic picture of an encrypted control system using

updatable multiplicatively homomorphic encryption. Suppose a ciphertext of the

controller parameter is stored on a controller server before the control. The plant

transmits the controller input ciphertext ctξ and the update token ut generated by

the key update algorithm to the controller server while updating public and secret

keys. The controller server updates the stored ciphertext using ut and computes the

controller output ciphertext ctψ with ctξ and the updated ciphertext. A control input

of the plant is obtained by decrypting ctψ with the updated secret key. Note that the

update token must be transmitted via a secure communication channel to achieve

the forward and post-compromise security against an adversary who eavesdrops on

the communication.

Along with the modification to use updatable homomorphic encryption, the cor-

rectness notion in Definition 3.4 needs to be suitable for the encrypted control sce-

nario in Fig. 3.5. This thesis requires the encrypted control using updatable homo-

morphic encryption to ensure that the decrypted and decoded result of encrypted

controller output by using a secret key at a certain time step does not almost al-

ways deviate so far from the original controller output, where the controller output

is computed from a controller input ciphertext encrypted with a public key at the

time step and a controller parameter ciphertext updated by an update token corre-

sponding to the public and secret keys. The requirement is defined as δ-correctness

with ciphertext-update as follows.

Definition 3.5 (δ-correctness with ciphertext-update). Given an updatable ho-

momorphic encryption scheme in Definition 2.13 and encoding scheme in Defini-

tion 3.1. Let f be as in Definition 3.4. An encrypted controller EC of f is δ-correct
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Plant

Fig. 3.5: Encrypted control system using updatable holomorphic encryption.

with ciphertext-update if there exist δ ∈ R+ and a negligible function negl such that

Pr


∥ψ′ − f(Φ, ξ)∥∞ ≤ δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← KeyGen(1λ)

∆← ScalSetup(params,X )

(pkk, skk, utk)← KeyUpd(pkk−1, skk−1)

ctξ,k ← Enc(pkk,Ecd(ξ; ∆))

ctψ,k ← EC(f, φΦ,k, ctξ,k)

ψ′ ← Dcd(Dec(skk, ctψ,k);∆)


≥ 1− negl(λ)

for all λ ∈ N, for all k ∈ Z+, for all Φ ∈ X α×β, and for all ξ ∈ X β, where φΦ,k

is given as either φΦ,k ← Ecd(Φ,∆) or φΦ,k ← CtUpd(φΦ,k−1, utk) with φΦ,0 ←
Enc(pk0,Ecd(Φ;∆)).

The modified correctness notion is like a combination of the δ-correctness in

Definition 3.4 and the homomorphism of updatable homomorphic encryption in

Definition 2.15. It can be easily derived from the homomorphism of updatable

homomorphic encryption that if an encrypted controller using homomorphic en-

cryption satisfies the δ-correctness, the controller also fulfills the δ-correctness with

ciphertext-update.

Theorem 3.3. Given an updatable multiplicatively homomorphic encryption scheme.

Consider the encoding scheme in Theorem 3.1. If (3.2) is δ-correct, (3.2) is also

δ-correct with ciphertext-update.

Proof. Let pkk, skk, utk, ∆, Φ, ξ, and β be as in Definition 3.5, and let Q be as in

Definition 3.2. It follows from the multiplicative homomorphism of the encryption

scheme and the proof of Theorem 3.1 that the decoded and decrypted result of
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encrypted controller output is given as

ψ′
k = DcdMHE(Dec(skk, ctψ,k);∆) =



β∑
j=1

Q(Φ1j; ∆)Q(ξj; ∆)

...
β∑
j=1

Q(Φαj; ∆)Q(ξj; ∆)


for all k ∈ Z+ with probability at least 1− negl(λ), where ctψ,k ← EC(f, ctΦ,k, ctξ,k),

ctΦ,k ← CtUpd(ctΦ,k−1, utk), ctΦ,0 ← Enc(pk0,Ecd(Φ;∆)), ctξ,k ← Enc(pkk,Ecd(ξ; ∆)),

and EC and f are defined in Theorem 3.1. There exists δ ∈ R+ such that ∥ψ′
k −

f(Φ, ξ)∥∞ ≤ δ since EC is δ-correct, and thus EC is δ-correct with ciphertext-

update.

The theorem helps design an encrypted control system with updatable homo-

morphic encryption because it implies that the encrypted controller and updatable

homomorphic encryption can be constructed separately. Consequently, an encrypted

controller with the updatable ElGamal encryption achieves the same control perfor-

mance as one with the ElGamal encryption.

Corollary 3.4. Given the updatable Elgamal encryption scheme in Definition 2.16.

Consider the encoding scheme in Theorem 3.1. Let B and dmax be as in Lemma 3.1,

and let Φ, ξ, ∆, and β be as in Theorem 3.1. Let p be as in Definition 2.10. If

∆−2∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞ ≤ (p− 1)/2, (3.2) is β(∆dmaxB+(∆dmax/2)
2)-correct

with ciphertext-update, where Q is defined in Definition 3.2.

Proof. The corollary follows from Theorem 2.2, Corollary 3.2, and Theorem 3.3.

Recall that an update token in updatable homomorphic encryption must be

privately transmitted to a controller server against a network eavesdropper. Addi-

tionally, the encryption scheme satisfies the forward and post-compromised security

against only the eavesdropper. The encrypted control using updatable homomor-

phic encryption inherits the limitation. In other words, the control does not fulfill

the forward and post-compromised security against an honest but curious controller

server. To solve this vulnerability, the next section considers encrypted control using

key-updatable homomorphic encryption.
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3.4 Encrypted control using key-updatable homo-

morphic encryption

Like with encrypted control using updatable homomorphic encryption, constructing

the control using a key-updatable homomorphic encryption scheme is straightfor-

ward when the scheme is homomorphic for addition. Hence, this section considers

only using key-updatable multiplicatively homomorphic encryption.

Fig. 3.6 depicts a schematic picture of an encrypted control system using key-

updatable multiplicatively homomorphic encryption. The plant transmits the con-

troller input ciphertext ctξ encrypted with an updated public key at a certain time

to a controller server. The controller server returns the controller output ciphertext

ctψ computed from ctξ and the controller parameter ciphertext, which is stored on

the server in advance of the control. A control input of the plant is recovered by

the decryption of ctψ using a joint secret key, including an updated secret key. The

correctness notion of the encrypted control called δ-correctness with key-update is

formally defined as follows.

Definition 3.6 (δ-correctness with key-update). Given a key-updatable homomor-

phic encryption scheme in Definition 2.19 and encoding scheme in Definition 3.1.

Let f be as in Definition 3.4. An encrypted controller EC of f is δ-correct with

key-update if there exist δ ∈ R+ and a negligible function negl such that

Pr


∥ψ′

k − f(Φ, ξ)∥∞ ≤ δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← KeyGen(1λ)

∆← ScalSetup(params,X )

(pkk, skk)← KeyUpd(pkk−1, skk−1)

ctξ,k ← Enc(pkk,Ecd(ξ; ∆))

ctψ,k ← EC(f, φΦ, ctξ,k)

ψ′
k ← Dcd(Dec({ski}i∈{0,k}, ctψ,k);∆)


≥ 1− negl(λ)

for all λ ∈ N, for all k ∈ Z+, for all Φ ∈ X α×β, and for all ξ ∈ X β, where φΦ is

given as either φΦ ← Ecd(Φ,∆) or φΦ ← Enc(pk0,Ecd(Φ;∆)).

Without loss of generality, suppose that the initial time step corresponding to

the encryption of the controller parameter in the definition is zero. Unlike the en-

crypted control using updatable homomorphic encryption, the controller parameter

ciphertext does not need to be updated. Instead, the decryption algorithm requires
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Plant

Fig. 3.6: Encrypted control system using key-updatable holomorphic encryption.

the joint secret key consisting of the initial and updated secret keys. It can be

easily shown that the encrypted controller (3.2) being δ-correct is δ-correct with

key-update.

Theorem 3.4. Given a key-updatable multiplicatively homomorphic encryption

scheme. Consider the encoding scheme in Theorem 3.1. If (3.2) is δ-correct, it

is also δ-correct with key-update.

Proof. The proof is the same as that of Theorem 3.3 except that the updatable

multiplicatively homomorphic encryption is replaced with the key-updatable one.

The theorem is a key-update variant of Theorem 3.3. Thus, it holds that the

control performance of an encrypted controller with the key-updatable ElGamal

encryption is the same as that with the ElGamal encryption.

Corollary 3.5. Given the key-updatable Elgamal encryption scheme in

Definition 2.22. Consider the encoding scheme in Theorem 3.1. Let B and dmax

be as in Lemma 3.1, and let Φ, ξ, ∆, and β be as in Theorem 3.1. Let p be as in

Definition 2.10. If ∆−2∥Q(Φ;∆)∥max∥Q(ξ; ∆)∥∞ ≤ (p− 1)/2, (3.2) is β(∆dmaxB +

(∆dmax/2)
2)-correct with key-update, where Q is defined in Definition 3.2.

Proof. The corollary follows from Theorem 2.7, Corollary 3.2, and Theorem 3.4.

The corollary implies that the encrypted control is realized using the key-updatable

ElGamal encryption. Note that it is also realized using the key-updatable Regev

encryption, although a controller parameter cannot be encrypted. Updating key

pairs is efficient for the forward and post-compromise security of encrypted control.

This security enhancement is meaningful in consideration of the control-theoretic

security of encrypted control systems discussed in the next chapter.
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Chapter 4

Security of Encrypted Control

Systems

Chapter 2 modeled an adversary as a probabilistic polynomial-time algorithm and

formulated indistinguishability of encryption schemes via a cryptographic game to

prove their computational security. More specifically, an encryption scheme is IND-

CPA secure if the probability of every probabilistic polynomial-time adversary win-

ning the IND-CPA game is negligible under some computational assumptions.

Conventional studies on encrypted control implicitly assumed that an encrypted

control system is secure if a used homomorphic encryption scheme is IND-CPA

secure. However, the validity of this assumption is ambiguous and not verified

sufficiently. Indeed, a threat model and security goal to be considered in encrypted

control systems are quite different from ones in cryptosystems. This chapter tackles

this problem by reconsidering an attack scenario to be supposed in encrypted control

systems and builds a security definition tailored for encrypted control systems from

scratch.

4.1 Attack scenario

Any formal security definition consists of a threat model, which formulates the

capability of an adversary, and a security goal. As previously stated, the threat

model and security goal in cryptosystems are far from the ones in encrypted control

systems. Their differences are highlighted below upon consideration of defining the

security of encrypted control systems.

4.1.1 Threat model

Fig. 4.1 shows an encrypted control system interpreted like a problem setting in

public-key encryption, namely a two-party communication under an eavesdropper.
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Eve

Plant Plant

Alice Bob

Fig. 4.1: Interpretation of encrypted control system as a two-party communication
under the adversary eavesdropping on the communication channel.

The plant and encoder in the figure correspond to Alice, a sender, and the plant and

decoder are regarded as Bob, a receiver. Alice transmits an encoded message to the

encrypted controller while encrypting it, and Bob receives an evaluation result from

the encrypted controller. Eve, an adversary, attempts to learn some information

from the encrypted messages transmitted from Alice to the encrypted controller

and from the controller to Bob.

The main difference of the communication in Fig. 4.1 from a basic problem set-

ting of public-key encryption in Fig. 2.1 is that a sender and receiver are the same

entity because of a feedback loop structure in a control system. Eve eavesdrops on

communications of the uplink from Alice to the encrypted controller and the down-

link from the controller to Bob. Thanks to the multiple communication channels,

Eve can obtain more information for learning private information than the public-

key encryption setting. In other words, an adversary to be considered in encrypted

control systems is more capable than one in public-key encryption.

4.1.2 Security goal

The indistinguishability notion defined in Definition 2.5 captures the computational

impossibility of every adversary learning any partial information about the original

message from encrypted messages and public information. This formulation makes

sense when private information we wish to protect is a message transmitted via

an insecure communication channel or a secret key. However, such computational

indistinguishability of encrypted messages is not necessarily suitable for encrypted

control systems.

Fig. 4.2 illustrates the difference between security goals to be considered in cryp-

tographic and control-theoretic problem settings. The left time-series data in the

figure is an encrypted sequence transmitted in an uplink from a plant to an en-
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Cryptography

Control theory

Fig. 4.2: Difference of security goals in cryptography and control theory.

crypted controller or a downlink from the controller to the plant. As the upper

right in the figure, the goal of an adversary in communication is typically consid-

ered as recovering a single piece of data included in the sequence or obtaining any

partial information about the data. In contrast, as the lower right in the figure,

an adversary in control systems might aim to recover the original time-series data,

i.e., multiple data, of a target control system. In other words, private information

in control systems is the behavior of the control system rather than a single data

communicated between a plant and controller. This is because eavesdropping in

control systems is usually performed as the initial step to obtain a model of a target

control system required for executing more sophisticated attacks.

Suppose a typical homomorphic encryption scheme is used to construct an en-

crypted control system. In that case, the difficulty of deciphering multiple data is

identical to a single data because an adversary can decrypt any encrypted message

once the adversary succeeds in breaking the encryption scheme. However, recov-

ering multiple data is more difficult than a single data when using updatable or

key-updatable homomorphic encryption because of updating key pairs.

Moreover, the aim of an adversary is not necessarily to obtain partial information

about private data to be communicated. To obtain a target control system model,

the adversary might estimate its parameters using the deciphered time-series data.

This parameter estimation process is called system identification in control theory.

If the goal of an adversary is system identification, the adversary does not need to

recover time-series data completely but only a sufficient amount of data to identify

a practical model.
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4.1.3 Adversary protocol

The previous sections have seen that a threat model and security goal in encrypted

control systems differ from typical communication via an encrypted channel. The

gap between encrypted control and encrypted communication suggests the need

to explore a novel security definition of control systems. This section begins by

formulating an attack scenario in encrypted control systems to establish a formal

security definition.

Let N (µ,Σ) be a Gaussian distribution with mean µ and variance Σ. Consider

a plant given by a discrete-time linear-time-invariant system

xt+1 = Axt +But + wt, (4.1)

where t ∈ Z+ is a time, x ∈ Rn is a state, u ∈ Rm is an input, and w ∈ Rn

is a noise. Suppose x0 and wt are independent and identically distributed over

the Gaussian distributions N (0,Σx) and N (0,Σw) with variances Σx ∈ Rn×n and

Σw ∈ Rn×n, respectively. A ∈ Rn×n and B ∈ Rm×n are system parameters assumed

to be controllable. Thanks to controllability of (A,B), there exists a state-feedback

controller

ut = f(F, xt) := Fxt (4.2)

that stabilizes (4.1), where F ∈ Rm×n is a feedback gain to be designed.

A closed-loop system combined with (4.1) and an encrypted controller of (4.2)

using multiplicatively homomorphic encryption is given as

xt+1 = Axt +BDcdMHE(Dec(sk,EC(f, ctF , ctx,t));∆) + wt,

where EC and DcdMHE are definined in Theorem 3.1, (pk, sk) ← KeyGen(1λ), ∆ ←
ScalSetup(params,X ), mF ← Ecd(F ; ∆), mx,t ← Ecd(xt; ∆), ctF ← Enc(pk,mF ), and

ctx,t ← Enc(pk,mx,t). Similarly, a closed-loop system with additively homomorphic

encryption is given as

xt+1 = Axt +BDcdAHE(Dec(sk,EC(f,mF , ctx,t));∆) + wt,

where EC and DcdAHE are definined in Theorem 3.2. An encrypted state-feedback

control system with updatable or key-updatable homomorphic encryption can also

be realized similarly. Assume that quantization errors induced by the encoder and
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decoder are negligibly small. That is, for every F ∈ Xm×n and x ∈ X n, a scaling

parameter ∆ is assumed to be chosen such that EC is δ-correct for some δ ≪ 1.

Under this assumption, the close-loop systems can be approximated to

xt+1 = Āxt + wt, (4.3)

where Ā := A+BF .

A system that can be a target of adversaries is a plant, controller, or closed-

loop system. Potential adversaries for encrypted control systems in this setting are

twofold.

Eavesdropper on a communication channel. The eavesdropper in encrypted

control systems is a potential threat naively inherited from a secure communica-

tion problem using an encryption scheme. The adversary intercepts communication

channels between a plant and controller server that performs an encrypted control

algorithm.

Honest-but-curious controller server This type of adversary is considered

when a controller server to which controller computation is outsourced is untrusted.

For example, a public cloud owned by a third party can be modeled as an honest

but curious server. The controller server should not perform a destructive attack

directly because of a contract between a user who demands to control a plant and

an owner of the controller server. Instead, the controller server might wish to collect

and learn private information about a control system to utilize the information for

commercial use, such as reverse engineering and advertising.

The adversaries can be treated as a unified model shown in Fig. 4.3. Eve, the

adversary in the figure, collects encrypted data transmitted between the plant and

the encrypted controller. The adversary then deciphers the collected data and esti-

mates the parameters of the plant, controller, or closed-loop system. Eve represents

an eavesdropper itself and a subroutine of the controller server when considering an

adversary eavesdropping on the communication channels and an honest-but-curious

server, respectively. The adversary considered here can access the inputs/outputs

data of an encrypted controller and a public key (or multiple public keys if key pairs

are updated), and the adversary’s goal is to estimate the parameters of the plant or

closed-loop system.
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Eve

Plant

Estimate

Closed-loop system

Fig. 4.3: Encrypted control under the adversary attempting to estimate parameters
of the plant, controller, or closed-loop system.

It should be noted that the adversaries do not have to perform an identification

process when attempting to estimate controller parameters. This is because cipher-

texts of controller parameters are stored on a controller server in advance before

control and not changed during the control. The adversaries are enough to decipher

the ciphertexts directly as long as they can access them. The security in such a

case might be equivalent to the IND-CPA security. On the other hand, they need

to perform system identification to estimate plant or closed-loop system parameters

because they depend on physical processes.

This thesis focuses on the scenario when the adversary in Fig. 4.3 identifies either

(A,B) of the plant (4.1) or Ā of the closed-loop system (4.3) by recovering and

utilizing time-series data from an encrypted data sequence. The adversary protocol

is defined below to formulate the attack scenario.

Definition 4.1 (Adversary protocol). Define zt ∈ Rd and Θ ∈ Rn×d as

(zt,Θ) :=


([

xt

ut

]
,
[
A B

])
, Attack target is (4.1),(

xt, Ā
)
, Attack target is (4.3),

where d is an appropriate dimension. Let ts and tf be positive integers such that

ts < tf <∞. The adversary follows the protocol below.
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1. If an attack target is (4.1), the adversary injects malicious inputs ut for t ∈
[ts, tf ], where ut are independent and identically distributed over the Gaussian

distribution N (0,Σu) with variance Σu ∈ Rm×m.

2. The adversary eavesdrops and stores the ciphertext dataset

DEnc := {ctz,t | t ∈ [ts, tf ]},

where ctz,t ← Enc(pkt,Ecd(zt; ∆)), ∆ ← ScalSetup(X ), (pk0, sk0) ← KeyGen(

1λ), and (pkt, skt)← KeyUpd(pkt−1, skt−1).

3. The adversary deciphers DEnc to obtain the original dataset

D := {zt | t ∈ [ts, tf ]}.

4. The adversary estimates Θ using D.

An estimation error of the attack in Definition 4.1 is defined as follows.

Definition 4.2 (Estimation error). An estimation error of an estimator Θ̂ for Θ

given D is defined as

ε
(
Θ, Θ̂(D)

)
:=

1

nd

∥∥∥Θ− Θ̂(D)
∥∥∥2
F
,

where Θ and D are defined in Definition 4.1, and ∥ · ∥F is the Frobenius norm.

Note that the estimation error is a mean square error by definition of the Frobe-

nius norm.

4.2 Qualitative vs. quantitative security

There are two approaches to define the security of encrypted control systems under

the adversary in Definition 4.1. One approach is to define security in a qualitative

manner, such as the IND-CPA security. Such qualitative security is defined against

a class of adversaries, e.g., polynomial-time adversaries. Additionally, an attack

in the security is modeled by using the capabilities of the adversaries instead of

considering specific attack methods, such as a brute force attack and side-channel

attack. The qualitative security definition is effective in guaranteeing the security
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of broad encrypted control systems even against unknown attacks as well as various

attacks covered in an attack model. However, such a security definition cannot state

how secure an encrypted control system is. In other words, we cannot compare how

“good” one of the two given systems is against the other under a qualitative security

definition.

Another approach to defining the security of encrypted control systems is to

quantify the security level of the systems. In this approach, the security is formulated

for an adversary having a specific computational power and performing a particular

attack algorithm. This type of security definition is valid for evaluating the security

strength of encrypted control systems and enables a comparison of multiple systems

in terms of security. Hence, such a quantitative security definition can quantify how

good any system is in specific attack scenarios.

One of the goals of control theory is to design a controller so that a control

system satisfies the required control specifications. It is necessary to quantify the

security level to regard security as one of the control specifications and treat it as

a control-theoretic problem of designing an encrypted control system that satisfies

the desired security strength. For this reason, this thesis adopts the quantitative

approach to define the security of encrypted control systems. The security definition

below is now considered to quantify the security level of encrypted control systems

under the adversary in Definition 4.1.

Definition 4.3 (Informal). An encrypted control system is secure if an adversary

cannot estimate plant (or closed-loop system) parameters of high precision during a

certain given period by using an estimation algorithm.

The crucial quantities in the definition are the accuracy of the adversary’s es-

timation and the given period. According to the security definition, an encrypted

control system might be secure if the accuracy is sufficiently low or if the computa-

tion time required for the estimation is longer than the given period, even though its

accuracy is high. In other words, the combination of a threshold of estimation error

to be accepted by a system designer and a certain period, such as the lifespan of a

control system, can be used as a security level of an encrypted control system. The

remaining task for formalizing the security definition is to quantify the estimation

accuracy and computation time required for the estimation. In what follows, two

notions, sample identifying complexity and sample deciphering time, are introduced

to address the task.
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4.3 Sample identifying complexity

The accuracy of the adversary’s estimation can be quantified by the magnitude of the

estimation error on a given sample size, namely the error rate. Sample complexity

was introduced in computational learning theory to treat an error rate of learning

algorithms. A sample complexity evaluates the minimum amount of data required

for learning a function of a given precision. More precisely, for ϵ > 0 and δ > 0, it

represents the minimum sample size so that

Pr[ε < ϵ] ≥ 1− δ,

where ε is an estimation error. Hence, an estimation error with a sample size

larger than the sample complexity is almost always smaller than ϵ when choosing a

sufficiently small δ.

An estimation error of the adversary’s estimation can be quantified by using a

sample complexity with a sufficiently small δ. Given a sample complexity, a larger

ϵ means stronger security from the viewpoint of our attack scenario. Unfortunately,

a sample complexity is often conservative when δ is sufficiently small because of

considering extremely rare cases of estimation. This means that the traditional

sample complexity is not suitable for our objective in practice.

To overcome the conservativeness, this section introduces a modified sample com-

plexity corresponding to the expectation of estimation error, called sample identify-

ing complexity.

Definition 4.4 (Sample identifying complexity). Let Θ and D be as in Defini-

tion 4.1. A sample identifying complexity of an estimator Θ̂ for Θ given D with

respect to γc is the minimum sample size N∗ = |D| such that

E
[
ε
(
Θ, Θ̂(D)

)]
< γc,

where ε is the estimation error in Definition 4.2.

A sample identifying complexity of Θ̂ is a function of γc and Θ that represents the

minimum sample size such that the expectation of estimation error becomes smaller

than γc, where γc > 0 is a constant corresponding to ϵ in the traditional sample

complexity. A sample complexity quantifies some type of average error rate of the

adversary’s estimation, unlike the traditional sample complexity. Thus, a sample
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Fig. 4.4: Relationship among a sample identifying complexity, a threshold, and a
system parameter.

complexity is expected to be less conservative than the traditional one because it

does not consider extremely rare cases of estimation.

Fig. 4.4 illustrates a relationship among a sample identifying complexity N∗,

threshold γc, and system parameter Θ under an estimator Θ̂. A sample identifying

complexity increases as a threshold decreases for a certain system parameter because

more samples are required for a smaller estimation error. In the figure, larger Θ

implies the one that is harder to estimate, and so a threshold can be increased as

a system parameter increases for a fixed sample identifying complexity. Similarly, a

sample identifying complexity can be larger by increasing a system parameter for a

fixed threshold.

4.4 Sample deciphering time

This section attempts to quantify the computation time required for the adversary’s

estimation. The computation time mainly consists of two parts: the computation

times of an estimation algorithm and an algorithm that deciphers ciphertexts. In

general, the computation time of an estimation algorithm is from a few seconds to
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a few days at most. By contrast, the computation time for breaking a cryptosystem

is usually years to decades. Therefore, in what follows, this thesis regards the

computation time of the adversary’s estimation as that of an algorithm breaking a

cryptosystem.

Chapter 2 viewed the security of an encryption scheme in an asymptotic manner.

The probability that an adversary succeeds in breaking a secure encryption scheme is

negligibly small when choosing a sufficiently large security parameter. The security

notions in the chapter make sense only when a security parameter is sufficiently

large. Thus, the notions give us no implication about a computation time with a

specific security parameter. This fact implies that another approach is needed to

quantify a computation time explicitly.

To this end, this section introduces a notion called bit security. Cryptosystems

relying on different computational problems, such as the DDH and LWE problems,

provide different security strengths. Bit security, defined below, is usually used for

evaluating the security level of cryptosystems regardless of the type of computational

problem.

Definition 4.5 (Bit security). An encryption scheme is λ-bit secure if at least 2λ

operations are required for breaking the scheme on average.

It should be noted that a security parameter in the context of bit security rep-

resents the number of bits, namely the security level itself. Using bit security, a

computation time required for breaking a λ-bit secure encryption scheme by using

a computer of Υ floating point number operations per second (FLOPS) can be es-

timated as 2λ/Υ s, where one operation in an algorithm breaking a cryptosystem is

assumed to be performed by one floating-point operation. In this light, this section

defines sample deciphering time to quantify the computation time of the adversary’s

estimation using N samples.

Definition 4.6 (Sample deciphering time). A sample deciphering time is a compu-

tation time τ required for breaking N ciphertexts encrypted by using Nc key pairs of

a λ-bit secure encryption scheme, i.e.,

τ(Nc, λ; Υ) :=
2λNc

Υ
, (4.4)

where N,Nc ∈ N, Nc ≤ N , and an adversary is supposed to use a computer of

Υ FLOPS.
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Fig. 4.5: Relationship among a sample deciphering time, a security parameter, and
the number of executions of a key update algorithm.

A sample deciphering time represents the computation time for deciphering N

samples of ciphertexts with Nc key pairs. Recall that such computation time does

not depend on the number of key pairs when using a typical homomorphic encryption

scheme because an identical key pair is used for encrypting all messages. Hence, the

computation time can be estimated similarly for breaking a cryptosystem as already

described, namely τ(1, λ; Υ). By contrast, key pairs are updated when using an

updatable or key-updatable homomorphic encryption scheme. A computation time

in such a case should be proportional to the number of key pairs used in encryption.

A relationship among a sample deciphering time τ , the number of key pairs Nc,

and a security parameter λ under a fixed computer performance Υ is illustrated in

Fig. 4.5.

4.5 Security definition

We are now ready to define the security of encrypted control systems. Our security

definition is formally described below by using a sample identifying complexity and

a sample deciphering time.
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Definition 4.7 (Security of encrypted control system). Let Θ and D be as in Def-

inition 4.1, and let Θ̂ be an estimator of Θ given D. Suppose every sample in D
is encrypted by using one of the Nc key pairs, where Nc ∈ N, and Nc ≤ |D|. For

1 ≤ i ≤ Nc, define Di as the set of all samples encrypted by using the ith key pair,

namely |D| =
∑Nc

i=1 |Di|. An encrypted control system is (γc, τc)-secure if it holds

that ∑
i∈I

|Di| < N∗
(
γc,Θ; Θ̂

)
∨ τ(|I|, λ; Υ) > τc

for all I ⊂ {1, . . . , Nc} except the empty set, where γc and N
∗ are defined in Defini-

tion 4.4, and τc, τ , λ, and Υ are defined in Definition 4.6. Otherwise, an encrypted

control system is insecure on (γc, τc).

The first part of the condition implies that the number of ciphertext samples

encrypted by using |I| key pairs is less than a sample identifying complexity. By

Definition 4.4, a sample identifying complexity is the minimum sample size such

that the expectation of estimation error is smaller than a given threshold γc. Hence,

the condition is equivalent to

E

[
ε

(
Θ, Θ̂

(⋃
i∈I

Di

))]
≥ γc.

It means that the expectation of estimation error given
⋃
i∈I Di is larger than or equal

to γc. Furthermore, the second part of the condition implies that the computation

time required for deciphering |
⋃
i∈I Di| ciphertext samples is longer than a given

period τc. Recall that this thesis has assumed that the computation time of the

adversary’s estimation is equal to that of deciphering ciphertexts to be used for the

estimation. Consequently, the conditions imply that, for every dataset available to

an adversary, the expectation of estimation error for the adversary’s estimation is

larger than γc or the computation time taken to perform the estimation is longer

than τc.

By considering contraposition of the condition in Definition 4.7, it is equivalent

to that there does not exist I ⊂ {1, . . . , Nc} such that

E

[
ε

(
Θ, Θ̂

(⋃
i∈I

Di

))]
< γc ∧ τ(|I|, λ; Υ) ≤ τc.

The equivalent condition implies that an adversary cannot estimate Θ using Θ̂ so
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that E[ε] is less than γc within τc. In this context, the constants γc and τc represent

an estimation error to be accepted by a system designer and a period that the

designer wants to protect an encrypted control system, respectively. In this light,

γc and τc are referred to as accepted estimation error and defense period.

Consider two circumstances for Nc = 1 and Nc = |D| to illustrate the security

of encrypted control systems. When Nc = 1, a key pair is not updated throughout

the adversary’s estimation, corresponding to traditional homomorphic encryption.

In this case, the possible subset I is only {1}, and thus it holds that
∑

i∈I |Di| =
|D1| = |D| and |I| = 1. Hence, for every γc > 0, the condition to make an encrypted

control system (γc, τc)-secure is τ(1, λ; Υ) ≥ τc as long as an adversary collects |D|
samples such that |D| ≥ N∗(γc,Θ; Θ̂). Note that such a condition is the same as a

security requirement in a typical cryptographic setup.

When Nc = |D|, the number of used key pairs is equal to the sample size, which

means that a key update algorithm is performed after every encryption. In such a

case, |Di| = 1 holds for all 1 ≤ i ≤ Nc, implying
∑

i∈I |Di| = |I|. Therefore, the

condition of an encrypted control system to be (γc, τc)-secure is that

|I| < N∗
(
γc,Θ; Θ̂

)
∨ τ(|I|, λ; Υ) > τc.

holds for all 1 ≤ |I| ≤ |D|. Without loss of generality, a sample size |D| is now

regarded as the number of key pairs |I| because an adversary can choose the sample

size freely. The condition is then equivalent to that there does not exist a dataset

D such that

E
[
ε
(
Θ, Θ̂(D)

)]
< γc ∧ τ(|D|, λ; Υ) ≤ τc.

Fig. 4.6 depicts sample identifying complexities N∗
1 and N∗

2 of an estimator Θ̂ for

two system parameters Θ1 and Θ2 with respect to a certain acceptable estimation er-

ror γc. The two curves show the expectation of estimation error E[ε] against a sample

size |D| in each system parameter. It should be noted that, for a fixed system param-

eter, E[ε] is a function of |D| because of performing the expectation on a dataset D.
By definition, the sample identifying complexities are determined as the minimum

sample size such that the expectation of estimation error becomes smaller than the

acceptable estimation error. Furthermore, Fig. 4.7 shows a sample deciphering time

τ for a security parameter λ and computer performance Υ when Nc = |D|. With

the defense period τc, it can be shown that τ(N∗
1 , λ; Υ) < τc < τ(N∗

2 , λ; Υ). From

these figures, an encrypted control system with Θ1 is insecure on (γc, τc) because
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Fig. 4.6: Sample identifying complexities of an estimator for the two system param-
eters with respect to the acceptable estimation error.

there exists a dataset D such that E[ε(Θ1, Θ̂;D)] < γc and τ(|D|, λ; Υ) ≤ τc, which

is illustrated as the blue area in Fig. 4.7. Meanwhile, an encrypted control system

with Θ2 is (γc, τc)-secure because such D does not exist.

The blue area in Fig. 4.7 shrinks as N∗
1 gets closer to N∗

2 and vanishes when a

sample deciphering time with N∗
1 becomes larger than τc. This observation suggests

that the security of encrypted control systems can be determined only by whether a

sample deciphering time on a sample identifying complexity is larger than a defense

period. Such a criterion works when the number of key pairs is equal to a sample

size, as shown in the theorem below.

Theorem 4.1. Consider the notations in Definition 4.7. Suppose Nc = |D|. An

encrypted control system is (γc, τc)-secure if and only if τ(N∗(γc,Θ; Θ̂), λ; Υ) > τc.

Proof. If part: As already described, the security condition in Definition 4.7 is equiv-

alent to that there does not exist D such that E[ε(Θ, Θ̂(D))] < γc and τ(|D|, λ; Υ) ≤
τc. For every positive integer N < N∗(γc,Θ; Θ̂), it holds that E[ε(Θ, Θ̂(D))] ≥ γc for

all dataset D of sample size N by the definition of a sample identifying complexity.

Additionally, for every positive integer N ≥ N∗(γc,Θ; Θ̂), τ(N, λ; Υ) > τc holds from

the assumption. Therefore, it holds that E[ε(Θ, Θ̂(D))] ≥ γc or τ(|D|, λ; Υ) > τc for

all D.
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Fig. 4.7: Sample deciphering time for a certain security parameter and the defense
period.

Only if part: We prove the contraposition, i.e., an encrypted control system is

insecure on (γc, τc) if τ(N∗(γc,Θ; Θ̂), λ; Υ) ≤ τc. It is obvious that a dataset of

sample size N∗ saisfies E[ε(Θ, Θ̂(D))] < γc and τ(N
∗, λ; Υ) ≤ τc.

This chapter has explored the security of encrypted control systems. It has been

shown that a threat model and security goal considered in encrypted control differ

from traditional private communication using a cryptosystem. A sample identify-

ing complexity and a sample deciphering time have been introduced to define the

quantitative security of encrypted control systems under an adversary who attempts

to estimate a controlled or closed-loop system parameter. The security level of en-

crypted control systems has been quantified by an acceptable estimation error and

a defense period by using a sample identifying complexity and sample deciphering

time.

The security definition provides a way to determine whether an encrypted control

system satisfies a desired security level. It should be noted that the security level

does not make sense only with either an acceptable estimation error or a defense

period. We cannot compare the security levels of (γc, τc)-secure and (γ′c, τ
′
c)-secure

encrypted control systems when γc > γ′c and τc < τ ′c. To compare the systems,

either an acceptable estimation error or defense period must be aligned with the

same value.



Chapter 5

Design of Encrypted Control

Systems

Chapter 4 has so far considered determining whether an encrypted control system is

secure or insecure under a given security level based on a sample identifying complex-

ity and sample deciphering time. On the other hand, how do we design encrypted

control systems to achieve a given security level? It is obvious that any desired

security level can be satisfied by choosing a significantly large security parameter.

However, such a security parameter often increases the computational burden due

to encryption, thereby making real-time computation difficult. Real-time computa-

tion is essential for guaranteeing the stability and performance of control systems.

Meanwhile, a small security parameter may only satisfy an inadequate security level,

although a control system can perform in real-time. This dilemma motivates us to

design the minimum security parameter required for achieving a desired security

level.

This chapter aims to solve the following problem for designing an encrypted

control system that satisfies a desired security level while operating in real-time.

Problem 5.1. Consider an encrypted control system that consists of (4.1) and

an encrypted controller of (4.2) with an updatable or key-updatable homomorphic

encryption scheme. Given an acceptable estimation error γc and defense period τc.

Design the minimum security parameter λ∗ such that the encrypted control system

is (γc, τc)-secure under the adversary in Definition 4.1.

With typical homomorphic encryption, a security parameter making an en-

crypted control system secure can be determined from a sample deciphering time

(4.4) and Definition 4.7 as

λ > log2(τcΥ),

where Υ is a computer performance used by an adversary. In contrast, if updat-

able or key-updatable homomorphic encryption is used, such a security parameter
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depends on the number of key pairs for encrypting a dataset. From (4.4), a security

parameter is reduced by increasing the number of key pairs for a certain defense

period. Hence, in what follows, this thesis assumes that the number of key pairs is

chosen to be maximized.

Assumption 5.1. A key update algorithm is performed every time step, namely

Nc = |D|.

Under this assumption, Theorem 4.1 showed that an encrypted control system

is (γc, τc)-secure if and only if τ(N∗(γc,Θ; Θ̂), λ; Υ) > τc holds. A sample identifying

complexity N∗ was defined in Definition 4.4 using the expectation of estimation

error. Additionally, the estimation error was defined in Definition 4.2 as a type of

mean square error between a system parameter and its estimate. Thus, an estimator

used by an adversary needs to be fixed to compute a sample identifying complexity,

which is essential to design the minimum security parameter. To this end, the next

section will discuss representative estimators for a system parameter in our attack

scenario.

5.1 Parameter estimation algorithms

This section introduces four representative parameter estimation algorithms as can-

didates for estimators used by an adversary. Furthermore, the section shows that

the parameter estimation algorithms can be unified under reasonable conditions in

our attack scenario.

In what follows, three assumptions are made to simplify the derivation of the

parameter estimation algorithms.

Assumption 5.2. For the attack in Definition 4.1, the following assumptions are

made.

• Ā is Schur.

• A is Schur if an attack target is (4.1).

• xts follows the Gaussian distribution N (0,Σw).

The first assumption is about the stability of closed-loop system (4.3). This

thesis assumes that (4.3) is stable because a system designer should design a control
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system to be stable with and without attack. The second assumption is that (4.1)

is stable if it is an attack target. This is a usual assumption in open-loop system

identification. The third assumption is about the probability distribution of the

initial data. An adversary generally needs to specify a probability distribution of

the initial data for parameter estimation. However, its computation is impossible

because the adversary cannot obtain all of the past data and determine the initial

time step. In such a case, the assumption is reasonable because the control system is

stabilized as the first assumption and driven by only the noise w of which probability

distribution is N (0,Σw).

5.1.1 Ordinary least squares estimation

This section begins by introducing the ordinary least squares (OLS) estimator. The

OLS estimator is the most popular estimator in practice because of its simplicity

and efficiency.

It follows from (4.1) and (4.3) that

Xf = ΘZp +Wp, Zp :=


[
Xp

Up

]
, Θ =

[
A B

]
,

Xp, Θ = Ā,

(5.1)

where

Xf :=
[
xts+1 · · · xtf

]
∈ Rn×(|D|−1), Xp :=

[
xts · · · xtf−1

]
∈ Rn×(|D|−1),

Up :=
[
uts · · · utf−1

]
∈ Rm×(|D|−1), Wp :=

[
wts · · · wtf−1

]
∈ Rn×(|D|−1),

(5.2)

and D, ts, and tf are defined in Definition 4.1. Let Θ̂ be an estimator for Θ given

D. Using the estimator, a prediction of Xf is obtained as

X̂f = Θ̂(D)Zp.

We now regard a good estimator as an estimator that gives an accurate prediction.

In this light, our objective is to find an estimator minimizing a residual sum of

squares ∥Xf − X̂f∥2F , and the OLS estimator is defined as its solution.

Definition 5.1 (OLS estimator). Let Θ and D be as in Definition 4.1. The ordinary
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least squares (OLS) estimator Θ̂OLS for Θ given D is defined as

Θ̂OLS(D) := arg min
Θ

∥Xf −ΘZp∥2F ,

where Zp and Xf are defined in (5.1) and (5.2), respectively.

In our attack scenario, the OLS estimator is given as a solution to an equation

consisting of data matrices Xf and Zp.

Theorem 5.1. The OLS estimator in Definition 5.1 is given as a solution Θ to the

equation,

ΘZpZ
⊤
p = XfZ

⊤
p ,

where Zp and Xf are defined in (5.1) and (5.2), respectively.

Proof. The cost ∥Xf −ΘZp∥2F is minimized by a parameter Θ that satisfies

∂

∂Θ
∥Xf −ΘZp∥2F = 2(Xf −ΘZp)Z

⊤
p = O.

This yields the equation in the theorem.

Furthermore, the OLS estimator is explicitly obtained if Zp is full row rank.

Corollary 5.1. Let D be as in Definition 4.1. If Zp in (5.1) is full row rank, the

OLS estimator in Definition 5.1 is given as

Θ̂OLS(D) = XfZ
+
p , (5.3)

where Z+
p is the pseudo inverse matrix of Zp.

Proof. It follows from Theorem 5.1 that

ΘZpZ
⊤
p = XfZ

⊤
p ⇐⇒ Θ = XfZ

⊤
p

(
ZpZ

⊤
p

)−1
= XfZ

+
p ,

where ZpZ
⊤
p is nonsingular if Zp is full row rank.

It should be noted that the assumption is met almost surely as a sample size |D|
approaches infinity. That is, Zp is almost always full row rank in practice.
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5.1.2 Maximum likelihood estimation

This section introduces the maximum likelihood (ML) estimator. Suppose a dataset

D follows a conditional probability distribution given a system parameter Θ. Let

p(D | Θ) be a probability density function of the conditional probability distribution.

Now consider the probability density function as a likelihood of Θ after observing

D and define a likelihood function l(Θ | D) := p(D | Θ). The ML estimator is then

defined as an estimator that maximizes l(Θ | D) given D. In other words, the ML

estimator gives the most likely system parameter under a given dataset.

Definition 5.2 (ML estimator). The maximum likelihood (ML) estimator Θ̂ML for

Θ given D is defined as

Θ̂ML(D) := arg max
Θ

l(Θ | D),

where Θ and D are defined in Definition 4.1, and l(Θ | D) = p(D | Θ) is a likelihood

function.

Similar to the OLS estimator, the ML estimator in our attack scenario is given

as a solution to an equation with data.

Theorem 5.2. The ML estimator in Definition 5.2 is given as a solution Θ to the

equation ((
ZpZ

⊤
p

)
⊗ Σ−1

w

)
vec(Θ) =

(
Zp ⊗ Σ−1

w

)
vec(Xf ),

where Zp and Xf are respectively defined in (5.1) and (5.2), Σw is definined in (4.1),

⊗ is the Kronecker product, and vec is the vectorization of a matrix.

Proof. Let Θ and D be as in Definition 4.1. If Θ = [A B], the likelihood function is

given from (4.1) as

l

([
A B

]
|

{[
xt

ut

]}tf

t=ts

)
,

= p

({[
xt

ut

]}tf

t=ts

|
[
A B

])
,

=

tf∏
t=ts

p

([
xt

ut

]
|
[
A B

])
,
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=

tf∏
t=ts

p
(
xt |

[
A B

])
p(ut),

= p(xts)p(uts)

tf∏
t=ts+1

pN

(
xt |

[
A B

][xt−1

ut−1

]
,Σw

)
p(ut),

= p(xts)p(uts)

tf∏
t=ts+1

pN

xt;([xt−1

ut−1

]
⊗ I

)⊤

vec
([
A B

])
,Σw

p(ut),
where the probability density function of a Gaussian distribution N (µ,Σ) is denoted

by pN (·;µ,Σ). Moreover, the logarithm of the loss function is given as

ln

(
l

([
A B

]
|

{[
xt

ut

]}tf

t=ts

))

=

t=tf∑
t=ts+1

ln

pN
xt;([xt−1

ut−1

]
⊗ I

)⊤

vec
([
A B

])
,Σw

+ const.,

= −1

2

t=tf∑
t=ts+1


xt −([xt−1

ut−1

]
⊗ I

)⊤

vec
([
A B

])⊤

Σ−1
w

xt −([xt−1

ut−1

]
⊗ I

)⊤

vec
([
A B

])+ const.,

= −1

2
vec
([
A B

])⊤ t=tf∑
t=ts+1

([
xt−1

ut−1

]
⊗ I

)
Σ−1
w

([
xt−1

ut−1

]
⊗ I

)⊤
 vec

([
A B

])

+

 t=tf∑
t=ts+1

x⊤t Σ
−1
w

([
xt−1

ut−1

]
⊗ I

)⊤
 vec

([
A B

])
+ const.,

where the probability density functions p(xts) and p(ut) are regardless of the system

parameter due to Definition 4.1 and Assumption 5.1. Similarly, if Θ = Ā, the

likelihood function and its logarithm are given from (4.3) as

l
(
Ā | {xt}

tf
t=ts

)
=

tf∏
t=ts

p
(
xt | Ā

)
= p(xts)

tf∏
t=ts+1

pN
(
xt; (xt−1 ⊗ I)⊤ vec

(
Ā
)
,Σw

)
,

ln
(
l
(
Ā | {xt}

tf
t=ts

))
= −1

2
vec
(
Ā
)⊤[ tf∑

t=ts+1

(xt−1 ⊗ I)Σ−1
w (xt−1 ⊗ I)⊤

]
vec
(
Ā
)
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+

[
tf∑

t=ts+1

xtΣ
−1
w (xt−1 ⊗ I)⊤

]
vec
(
Ā
)
+ const.

Hence, it holds that

ln(l(Θ | D)) = −1

2
vec(Θ)⊤

[
tf∑

t=ts+1

(zt−1 ⊗ I)Σ−1
w (zt−1 ⊗ I)⊤

]
vec(Θ)

+

[
tf∑

t=ts+1

xtΣ
−1
w (zt−1 ⊗ I)⊤

]
vec(Θ) + const.

It follows that

t=tf∑
t=ts+1

(zt−1 ⊗ I)Σ−1
w (zt−1 ⊗ I)⊤ =

[
zts ⊗ I · · · ztf−1 ⊗ I

](
I ⊗ Σ−1

w

)
z⊤ts ⊗ I

...

z⊤tf−1 ⊗ I

,

=
([
zts · · · ztf−1

]
⊗ I
)(
I ⊗ Σ−1

w

)

z⊤ts
...

z⊤tf−1

⊗ I
,

= (Zp ⊗ I)
(
I ⊗ Σ−1

w

)(
Z⊤
p ⊗ I

)
,

=
(
ZpZ

⊤
p

)
⊗ Σ−1

w ,

t=tf∑
t=ts+1

x⊤t Σ
−1
w (zt−1 ⊗ I)⊤ =

[
x⊤ts+1 · · · x⊤tf

](
I ⊗ Σ−1

w

)
(Z⊤

p ⊗ I),

= vec(Xf )
⊤(Z⊤

p ⊗ Σ−1
w

)
.

The likelihood function is maximized when its logarithm is maximized, and a max-

imizer Θ of the logarithm satisfies

∂

∂ vec(Θ)
ln(l(Θ | D))

=
∂

∂ vec(Θ)

(
−1

2
vec(Θ)⊤

(
(ZpZ

⊤
p )⊗ Σ−1

w

)
vec(Θ) + vec(Xf )

⊤(Z⊤
p ⊗ Σ−1

w ) vec(Θ)

)
,

= −
(
(ZpZ

⊤
p )⊗ Σ−1

w

)
vec(Θ) +

(
vec(Xf )

⊤(Z⊤
p ⊗ Σ−1

w )
)⊤
,

= −
((
ZpZ

⊤
p

)
⊗ Σ−1

w

)
vec(Θ) +

(
Zp ⊗ Σ−1

w

)
vec(Xf ) = 0.

This yields the equation in the theorem.
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Interestingly, the ML estimator coincides with the OLS estimator if Zp is full

row rank.

Corollary 5.2. Let D be as in Definition 4.1. If Zp in (5.1) is full row rank, it

holds that

Θ̂ML(D) = Θ̂OLS(D),

where Θ̂OLS and Θ̂ML are definined in Definition 5.1 and Definition 5.2, respectively.

Proof. Corollary 5.1 yields Θ̂OLS = XfZ
+
p . It follows from Theorem 5.2 that

((
ZpZ

⊤
p

)
⊗ Σ−1

w

)
vec(Θ) =

(
Zp ⊗ Σ−1

w

)
vec(Xf ),

⇐⇒ vec(Θ) =
((
ZpZ

⊤
p

)
⊗ Σ−1

w

)−1(
Zp ⊗ Σ−1

w

)
vec(Xf ),

=
((
ZpZ

⊤
p

)−1 ⊗ Σw

)(
Zp ⊗ Σ−1

w

)
vec(Xf ),

=
((
ZpZ

⊤
p

)−1
Zp ⊗ I

)
vec(Xf ),

= vec
(
XfZ

⊤
p

(
ZpZ

⊤
p

)−1
)
,

= vec
(
XfZ

+
p

)
,

where if Zp is full row rank, ZpZ
⊤
p is nonsingular, and so is (ZpZ

⊤
p )⊗ Σ−1

w .

Recall that the assumption on the rank of Zp is almost always satisfied. Hence,

the corollary implies that the OLS estimator gives the most likely estimate of a

system parameter in our attack scenario.

5.1.3 Maximum a posteriori estimation

The maximum a posterior (MAP) estimator is closely related to the ML estimator.

Suppose a system parameter Θ is a random variable following a probability distri-

bution with a probability density function p(Θ). The ML estimator maximizes a

likelihood function l(Θ | D) = p(D | Θ) given a dataset D. In contrast, the MAP

estimator is defined as an estimator that maximizes a posterior probability density

function p(Θ | D) after observing D.

Definition 5.3 (MAP estimator). The maximum a posteriori (MAP) estimator

Θ̂MAP for Θ given D is defined as

Θ̂MAP(D) := arg max
Θ

p(Θ | D),
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where Θ and D are defined in Definition 4.1.

By definition, it is obvious that the MAP estimator is equivalent to a maximizer

of the product between a likelihood function and a prior probability density function.

Proposition 5.1. The MAP estimator in Definition 5.3 satisfies

Θ̂MAP(D) = arg max
Θ

p(D | Θ)p(Θ),

where Θ and D are defined in Definition 4.1.

Proof. It follows from Bayes’ theorem that

Θ̂MAP(D) = arg max
Θ

p(Θ | D) = arg max
Θ

p(D | Θ)p(Θ)

p(D)
.

The proposition holds because p(D | Θ)p(Θ)/p(D) can be maximized regardless of

p(D).

The proposition shows that an adversary is required to specify a prior prob-

ability density function of a system parameter for obtaining the MAP estimator.

Meanwhile, the adversary cannot know the prior, so it should be assumed. One of

the reasonable prior distributions in our attack scenario is a uniform distribution

because it represents that an adversary does not have information about a system

parameter. In such a case, the MAP estimator is equivalent to the ML estimator.

Corollary 5.3. Let Θ and D be as in Definition 4.1. If the vectorization of Θ in

Definition 4.1 follows a uniform distribution, it holds that

Θ̂MAP(D) = Θ̂ML(D),

where Θ̂ML and Θ̂MAP are definined in Definition 5.2 and Definition 5.3, respectively.

Proof. From the assumption, p(Θ) in Proposition 5.1 is constant, namely p(Θ) ∝ 1.

Hence, it holds that

Θ̂MAP(D) = arg max
Θ

p(D | Θ) = arg max
Θ

l(Θ | D) = Θ̂ML(D),

where l(Θ | D) = p(D | Θ).
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5.1.4 Bayesian estimation

The last introduced representative estimator is the Bayes estimator. Similar to

the MAP estimator, suppose a system parameter Θ is a random variable following a

certain probability distribution. The Bayes estimator is then defined as an estimator

that minimizes the Bayes risk, a type of average loss in selecting an estimator.

Definition 5.4 (Bayes risk). Let Θ and D be as in Definition 4.1, and let Θ̂ be an

estimator for Θ given D. The Bayes risk of Θ̂ is defined as

E
[
ℓ
(
Θ, Θ̂(D)

)]
=

∫
ℓ
(
Θ, Θ̂(D)

)
p(D | Θ)dD

∫
p(Θ)dΘ,

where ℓ(Θ, Θ̂(D)) ≥ 0 is a loss function.

Definition 5.5 (Bayes estimator). The Bayes estimator Θ̂Bayes for Θ given D is

defined as a minimizer of the Bayes risk in Definition 5.4, namely

Θ̂Bayes(D) := arg min
Θ̂

E
[
ℓ
(
Θ, Θ̂(D)

)]
,

where Θ and D are defined in Definition 4.1.

A loss function in Definition 5.4 represents a cost in selecting an estimator. The

cost should be constructed to become smaller when a better estimator is chosen.

In this light, an estimation error defined in Definition 4.2 is one of the reasonable

choices of a loss function in our attack scenario. In such a case, the Bayes estimator

is given as the conditional expectation of a system parameter given a dataset.

Lemma 5.1. If a loss function in Definition 5.4 is ε in Definition 4.2, i.e.,

ℓ
(
Θ, Θ̂(D)

)
= ε
(
Θ, Θ̂(D)

)
=

1

nd

∥∥∥Θ− Θ̂(D)
∥∥∥2
F
, (5.4)

then the Bayes estimator in Definition 5.5 satisfies

Θ̂Bayes(D) = E[Θ | D],

where Θ and D are defined in Definition 4.1.

Proof. It follows from Bayes’ theorem that

Θ̂Bayes(D) = arg min
Θ̂

E
[
ℓ
(
Θ, Θ̂(D)

)]
,
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= arg min
Θ̂

∫
ℓ
(
Θ, Θ̂(D)

)
p(D | Θ)dD

∫
p(Θ)dΘ,

= arg min
Θ̂

∫
ℓ
(
Θ, Θ̂(D)

)
p(Θ | D)dΘ

∫
p(D)dD,

= arg min
Θ̂

∫
ℓ
(
Θ, Θ̂(D)

)
p(Θ | D)dΘ,

= arg min
Θ̂

E
[
ℓ
(
Θ, Θ̂(D)

)
| D
]
,

= arg min
Θ̂

E
[
1

nd

∥∥∥Θ− Θ̂(D)
∥∥∥2
F
| D
]
,

= arg min
Θ̂

E
[∥∥∥Θ− Θ̂(D)

∥∥∥2
F
| D
]
.

The conditional expectation is calculated as

E
[∥∥∥Θ− Θ̂(D)

∥∥∥2
F
| D
]

= E
[∥∥∥Θ+ E[Θ | D]− E[Θ | D]− Θ̂(D)

∥∥∥2
F
| D
]
,

= E
[
tr
((

Θ+ E[Θ | D]− E[Θ | D]− Θ̂(D)
)

(
Θ+ E[Θ | D]− E[Θ | D]− Θ̂(D)

)⊤)
| D
]
,

= E
[
tr
(
(Θ− E[Θ | D])(Θ− E[Θ | D])⊤

)
| D
]

+ 2E
[
tr

(
(Θ− E[Θ | D])

(
E[Θ | D]− Θ̂(D)

)⊤)
| D
]

+ E
[
tr

((
E[Θ | D]− Θ̂(D)

)(
E[Θ | D]− Θ̂(D)

)⊤)
| D
]
,

= E[∥Θ− E[Θ | D]∥2F | D] + E
[∥∥∥E[Θ | D]− Θ̂(D)

∥∥∥2
F
| D
]

+ 2E
[
tr

(
(Θ− E[Θ | D])

(
E[Θ | D]− Θ̂(D)

)⊤)
| D
]
,

= E[∥Θ− E[Θ | D]∥2F | D] +
∥∥∥E[Θ | D]− Θ̂(D)

∥∥∥2
F
.

Consequently, the Bayes risk is bounded as

E
[∥∥∥Θ− Θ̂(D)

∥∥∥2
F
| D
]
= E[∥Θ− E[Θ | D]∥2F | D] +

∥∥∥E[Θ | D]− Θ̂(D)
∥∥∥2
F
,

≥ E[∥Θ− E[Θ | D]∥2F | D],
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where the equality holds if Θ̂(D) = E[Θ | D]. This completes the proof.

By definition, Lemma 5.1 implies that the Bayes estimator minimizes the expec-

tation of estimation error in Definition 4.2. Recall that the estimation error is a

mean square error between a system parameter and an estimate. Hence, the Bayes

estimator is often called the minimum mean square error estimator.

From Lemma 5.1 and Bayes’ theorem, the Bayes estimator is obtained as

Θ̂Bayes = E[Θ | D] =
∫

Θp(Θ | D)dΘ =

∫
Θ
p(D | Θ)p(Θ)

p(D)
dΘ.

A probability density function p(D) is, in general, difficult to calculate analytically

and required to be estimated by a probabilistic algorithm, such as Markov chain

Monte Carlo methods. However, if a prior probability distribution of a system

parameter is a Gaussian distribution, p(D) can be derived analytically, and hence

the Bayes estimator is obtained explicitly.

Theorem 5.3. Suppose a loss function is (5.4). If the vectorization of Θ follows the

Gaussian distribution N (µΘ,ΣΘ) with mean µΘ ∈ Rnd and variance ΣΘ ∈ Rnd×nd,

it holds that

vec
(
Θ̂Bayes(D)

)
= µ̂Θ, (5.5)

where

µ̂Θ = Σ̂Θ

(
Σ−1

Θ µΘ +
(
Zp ⊗ Σ−1

w

)
vec(Xf )

)
,

Σ̂Θ =
(
Σ−1

Θ +
(
ZpZ

⊤
p

)
⊗ Σ−1

w

)−1
,

Zp and Xf are respectively defined in (5.1) and (5.2), and Σw is defined in (4.1).

Proof. Lemma 5.1 and Bayes’ theorem yield that

vec
(
Θ̂Bayes(D)

)
= vec(E[Θ | D]),

=

∫
vec(Θ)p(vec(Θ) | D)d vec(Θ),

=

∫
vec(Θ)

p(D | vec(Θ))p(vec(Θ))

p(D)
d vec(Θ).

Let pN (·;µ,Σ) be the probability density function of a Gaussian distribution with

mean µ and variance Σ. The probability density function p(vec(Θ)) is given from
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the assumption as

p(vec(Θ)) = pN (vec(Θ);µΘ,ΣΘ),

= cΘ exp

(
−1

2
(vec(Θ)− µΘ)

⊤Σ−1
Θ (vec(Θ)− µΘ)

)
,

= pΘcΘ exp

(
−1

2

(
vec(Θ)⊤Σ−1

Θ vec(Θ)− 2µ⊤
ΘΣ

−1
Θ vec(Θ)

))
,

where cΘ = ((2π)nd det(ΣΘ))
−1/2, and pΘ = exp(−(1/2)µ⊤

ΘΣ
−1
Θ µΘ). Additionally,

the conditional probability density function p(D | vec(Θ)) is given as

p(D | vec(Θ))

=

tf∏
t=ts

p(zt | vec(Θ)),

= pz

tf∏
t=ts+1

pN
(
xt | (zt ⊗ I)⊤ vec(Θ),Σw

)
,

= pzcD exp

(
−1

2

tf∑
t=ts+1

(
xt − (zt ⊗ I)⊤ vec(Θ)

)⊤
Σ−1
w

(
xt − (zt ⊗ I)⊤ vec(Θ)

))
,

where

pz =


p(xts)

tf∏
t=ts

p(ut), Θ =
[
A B

]
,

p(xts), Θ = Ā,

cD = ((2π)n det(Σw))
−|D|/2, and zt is definined in Definition 4.1. Similarly to the

proof of Theorem 5.2, it holds that

− 1

2

tf∑
t=ts+1

(
xt − (zt ⊗ I)⊤ vec(Θ)

)⊤
Σ−1
w

(
xt − (zt ⊗ I)⊤ vec(Θ)

)
= −1

2

(
vec(Θ)⊤

(
tf∑

t=ts+1

(zt ⊗ I)Σ−1
w (zt ⊗ I)⊤

)
vec(Θ)

−2

(
t=tf∑
t=ts+1

x⊤t Σ
−1
w (zt−1 ⊗ I)⊤

)
vec(Θ) +

tf∑
t=ts+1

x⊤t Σ
−1
w xt

)
,

= −1

2

(
vec(Θ)⊤

((
ZpZ

⊤
p

)
⊗ Σ−1

w

)
vec(Θ)− 2 vec(Xf )

⊤(Z⊤
p ⊗ Σ−1

w

)
vec(Θ)



114 5. Design of Encrypted Control Systems

+vec(Xf )
⊤(I ⊗ Σ−1

w ) vec(Xf )
)
,

where

tf∑
t=ts+1

x⊤t Σ
−1
w xt =

[
x⊤ts+1 · · · x⊤tf

]
(I ⊗ Σ−1

w )


xts+1

...

xtf

,
= vec(Xf )

⊤(I ⊗ Σ−1
w ) vec(Xf ).

Hence, p(D | vec(Θ))p(vec(Θ)) is obtained as

p(D | vec(Θ))p(vec(Θ))

= pzpΘpDcΘcD exp

(
−1

2

(
vec(Θ)⊤Σ̂−1

Θ vec(Θ)− 2µ̂⊤
ΘΣ̂

−1
Θ vec(Θ)

))
,

where pD = exp(−(1/2) vec(Xf )
⊤(I ⊗Σ−1

w ) vec(Xf )). The probability density func-

tion p(D) can be computed by integrating p(D | vec(Θ))p(vec(Θ)) as

p(D) =
∫
p(D | vec(Θ))p(vec(Θ))d vec(Θ),

=

∫
pzpΘpDcΘcD exp

(
−1

2

(
vec(Θ)⊤Σ̂−1

Θ vec(Θ)− 2µ̂⊤
ΘΣ̂

−1
Θ vec(Θ)

))
d vec(Θ),

= pzpΘpDcΘcD

∫
exp

(
−1

2
vec(Θ)⊤Σ̂−1

Θ vec(Θ) + µ̂⊤
ΘΣ̂

−1
Θ vec(Θ)

)
d vec(Θ),

= pzpΘpDcΘcD

√√√√ (2π)nd

det
(
Σ̂−1

Θ

) exp

(
1

2

(
µ̂⊤
ΘΣ̂

−1
Θ

)(
Σ̂−1

Θ

)−1(
µ̂⊤
ΘΣ̂

−1
Θ

)⊤)
,

= pzpΘpDcΘcD

√
(2π)nd det

(
Σ̂Θ

)
exp

(
1

2
µ̂⊤
ΘΣ̂

−1
Θ µ̂Θ

)
,

where the fourth equality follows from the Gaussian integral. Consequently, the

vectorization of the Bayes estimator is

vec
(
Θ̂Bayes(D)

)
=

∫
vec(Θ)

p(D | vec(Θ))p(vec(Θ))

p(D)
d vec(Θ),
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=

∫
vec(Θ)

exp

(
−1

2

(
vec(Θ)⊤Σ̂−1

Θ vec(Θ)− 2µ̂⊤
ΘΣ̂

−1
Θ vec(Θ)

))
√
(2π)nd det

(
Σ̂Θ

)
exp

(
1

2
µ̂⊤
ΘΣ̂

−1
Θ µ̂Θ

) d vec(Θ),

=

∫
vec(Θ)

1√
(2π)nd det

(
Σ̂Θ

)
exp

(
−1

2

(
vec(Θ)⊤Σ̂−1

Θ vec(Θ)− 2µ̂⊤
ΘΣ̂

−1
Θ vec(Θ)− µ̂⊤

ΘΣ̂
−1
Θ µ̂Θ

))
d vec(Θ),

=

∫
vec(Θ)

1√
(2π)nd det

(
Σ̂Θ

)
exp

(
−1

2
(vec(Θ)− µ̂Θ)

⊤Σ̂−1
Θ (vec(Θ)− µ̂Θ)

)
d vec(Θ),

=

∫
vec(Θ)pN

(
vec(Θ); µ̂Θ, Σ̂Θ

)
d vec(Θ),

= µ̂Θ.

This completes the proof.

Moreover, if a posterior probability distribution is a Gaussian distribution, the

Bayes estimator becomes equivalent to the MAP estimator.

Corollary 5.4. Let Θ and D be as in Definition 4.1. Suppose a loss function is

(5.4). If the vectorization of Θ given D follows a Gaussian distribution, it holds that

Θ̂Bayes(D) = Θ̂MAP(D),

where Θ̂MAP and Θ̂Bayes are definined in Definition 5.3 and Definition 5.5, respec-

tively.

Proof. By definition, the vectorization of the MAP estimator is

vec
(
Θ̂MAP

)
= arg max

Θ
p(vec(Θ) | D).

The maximizer of p(vec(Θ) | D) is given as its expectation, namely

vec
(
Θ̂MAP

)
= E[vec(Θ) | D] = vec(E[Θ | D]) = vec

(
Θ̂Bayes

)
.

where the last equality follows from Lemma 5.1.
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Note that, in our attack scenario, if a prior probability distribution is a Gaussian

distribution, a posterior probability distribution is also a Gaussian distribution.

Hence, Corollary 5.4 means that the Bayes and MAP estimators are obtained as

(5.5) if a prior probability distribution is a Gaussian distribution.

A prior probability distribution represents knowledge of an adversary about a

system parameter in advance before estimation. Now consider an adversary who

has no knowledge about a system parameter. As already described in Section 5.1.3,

in this case, a prior probability distribution is a uniform distribution. Fortunately,

a posterior probability distribution becomes a Gaussian distribution even when em-

ploying a uniform prior distribution. Therefore, if a dataset is sufficiently large, the

Bayes estimator coincides with the MAP, ML, and OLS estimators.

Theorem 5.4. Let Θ and D be as in Definition 4.1, and let Xf be as in (5.2). Sup-

pose a loss function is (5.4). If the vectorization of Θ follows a uniform distribution,

and if Zp in (5.1) is full row rank, then it holds that

Θ̂Bayes(D) = Θ̂MAP(D) = Θ̂ML(D) = Θ̂OLS(D) = XfZ
+
p ,

where Θ̂OLS, Θ̂ML, Θ̂MAP, and Θ̂Bayes are defnined in Definition 5.1, Definition 5.2,

Definition 5.3, and Definition 5.5, respectively.

Proof. By similar computation in the proof of Theorem 5.3, it follows that

p(D | vec(Θ)) = pzpDcD exp

(
−1

2

(
vec(Θ)⊤Σ̂−1

Θ vec(Θ)− 2µ̂⊤
ΘΣ̂

−1
Θ vec(Θ)

))
,

where

µ̂Θ = Σ̂Θ

(
Zp ⊗ Σ−1

w

)
vec(Xf ),

Σ̂Θ =
(
ZpZ

⊤
p

)−1 ⊗ Σw,

pz =


p(xts)

tf∏
t=ts

p(ut), Θ =
[
A B

]
,

p(xts), Θ = Ā,

,

pD = exp(−(1/2) vec(Xf )
⊤(I ⊗ Σ−1

w ) vec(Xf )),

cD = ((2π)n det(Σw))
−|D|/2,

and Σw is defined in (4.1). The probability density function of D can be computed
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as

p(D)

=

∫
p(D | vec(Θ))p(vec(Θ))d vec(Θ),

= p(vec(Θ))

∫
p(D | vec(Θ))d vec(Θ),

= pzpDcDp(vec(Θ))

∫
exp

(
−1

2

(
vec(Θ)⊤Σ̂−1

Θ vec(Θ)− 2µ̂⊤
ΘΣ̂

−1
Θ vec(Θ)

))
d vec(Θ),

= pzpDcDp(vec(Θ))

√
(2π)nd det

(
Σ̂Θ

)
exp

(
1

2
µ̂⊤
ΘΣ̂

−1
Θ µ̂Θ

)
.

The posterior probability density function is given as

p(vec(Θ) | D) = p(D | vec(Θ))p(vec(Θ))

p(D)
,

=
1√

(2π)nd det
(
Σ̂Θ

) exp

(
−1

2
(vec(Θ)− µ̂Θ)

⊤Σ̂−1
Θ (vec(Θ)− µ̂Θ)

)
,

= pN

(
vec(Θ); µ̂, Σ̂

)
,

where pN (·; µ̂, Σ̂) is the probability density function of the Gaussian distribution

with mean µ̂ and variance Σ̂. Therefore, the theorem follows from Corollary 5.1,

Corollary 5.2, Corollary 5.3, and Corollary 5.4.

The theorem implies that, in our attack scenario, the representative estimators

can be unified by the OLS estimator (5.3) under some reasonable assumptions. In

summary,

• if the sample size of a dataset D in Definition 4.1 is sufficiently large such that

Zp in (5.1) is full row rank,

• and if the prior probability distribution of a system parameter Θ in Defini-

tion 4.1 is a uniform distribution,

then the OLS estimator satisfies that

• it gives the most accurate prediction of Xf in (5.1) in the sense of mean square

error,
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• it gives the most likely estimate of Θ,

• and it minimizes the estimation error in Definition 4.2.

For these reasons, in what follows, this thesis supposes that an adversary employs

the OLS estimator to identify a system parameter in the attack of Definition 4.1.

5.2 Optimal design

Following the discussions in Section 5.1, this section derives a solution to Problem 5.1

for each case where an attack target is a plant (4.1) or closed-loop system (4.3) under

an adversary who uses the OLS estimator.

5.2.1 Open-loop case

Recall that, under Assumption 5.1, an encrypted control system is (γc, τc)-secure if

and only if τ(N∗(γc,Θ; Θ̂), λ; Υ) > τc holds. Here, an acceptable estimation error γc

and a defense period τc are design parameters. A system parameter Θ = [A B] is

determined by a plant (4.1) when it is an attack target. An estimator Θ̂ is the OLS

estimator (5.3), and a computer performance Υ is specified from the capability of

an anticipated adversary. Consequently, if an attack target is (4.1), our objective is

to design the minimum security parameter λ∗ such that τ(N∗(γc,Θ; Θ̂), λ∗; Υ) > τc

with the given conditions.

A sample identifying complexity must be computed to design the minimum se-

curity parameter and is obtained from the expectation of an estimation error and

an acceptable estimation error. The following lemma shows the expectation of esti-

mation error in Definition 4.2 under the OLS estimator.

Lemma 5.2. Consider the OLS estimator (5.3). Let Θ and D be as in Defini-

tion 4.1, and let Zp be as in (5.1). The expectation of estimation error in Defini-

tion 4.2 satisfies

E
[
ε
(
Θ, Θ̂OLS(D)

)]
=

1

nd
tr(Σw) tr

(
E
[(
ZpZ

⊤
p

)−1
])
,

where Σw is defined in (4.1).
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Proof. It follows from Definition 4.2, (5.1), and (5.3) that

E
[
ε
(
Θ, Θ̂OLS(D)

)]
=

1

nd
E
[∥∥∥Θ− Θ̂OLS(D)

∥∥∥2
F

]
,

=
1

nd
E
[∥∥Θ−XfZ

+
p

∥∥2
F

]
,

=
1

nd
E
[∥∥Θ− (ΘZp +Wp)Z

+
p

∥∥2
F

]
,

=
1

nd
E
[∥∥WpZ

+
p

∥∥2
F

]
,

=
1

nd
E
[
tr
(
WpZ

+
p

(
WpZ

+
p

)⊤)]
,

=
1

nd
E
[
tr
(
W⊤
p WpZ

+
p

(
Z+
p

)⊤)]
,

=
1

nd
E
[
tr
(
Z+
p

(
Z+
p

)⊤
W⊤
p Wp

)]
.

Let Z̄ = Z+
p (Z

+
p )

⊤. The expectation of trace is computed as

E
[
tr
(
Z̄W⊤

p Wp

)]
,

= E

tr



Z̄11 · · · Z̄1,tf−ts
...

. . .
...

Z̄tf−ts,1 · · · Z̄tf−ts,tf−ts



w⊤
tswts · · · w⊤

tswtf−1

...
. . .

...

w⊤
tf−1wts · · · w⊤

tf−1wtf−1



,

= E
[(
Z̄11w

⊤
tswts + · · ·+ Z̄1,tf−tsw

⊤
tf−1wts

)
+ · · ·

+
(
Z̄tf−ts,1w

⊤
tswtf−1 + · · ·+ Z̄tf−ts,tf−tsw

⊤
tf−1wtf−1

)]
,

= E

[(
tf−ts∑
k=1

Z̄1kw
⊤
ts−1+kwts

)
+ · · ·+

(
tf−ts∑
k=1

Z̄tf−ts,kw
⊤
ts−1+kwtf−1

)]
,

= E

[
tf−ts∑
j=1

tf−ts∑
k=1

Z̄jkw
⊤
ts−1+kwts−1+j

]
,

= E

[
tf−ts∑
k=1

Z̄kkw
⊤
ts−1+kwts−1+k

]
+ E

[∑
j ̸=k

tf−ts∑
k=1

Z̄jkw
⊤
ts−1+kwts−1+j

]
,

= E

[
tf−ts∑
k=1

Z̄kkw
⊤
ts−1+kwts−1+k

]
,

= E
[
tr
(
Z̄ diag

(
w⊤
tswts , . . . , w

⊤
tf−1wtf−1

))]
,

= E
[
tr
(
Z̄ diag

(
tr
(
wtsw

⊤
ts

)
, . . . , tr

(
wtf−1w

⊤
tf−1

)))]
,
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= tr
(
E
[
Z̄
]
E
[
diag

(
tr
(
wtsw

⊤
ts

)
, . . . , tr

(
wtf−1w

⊤
tf−1

))])
,

= tr
(
E
[
Z̄
]
diag(tr(Σw), . . . , tr(Σw))

)
,

= tr
(
E
[
Z̄
]
tr(Σw)I

)
,

= tr(Σw) tr
(
E
[
Z+
p

(
Z+
p

)⊤])
,

= tr(Σw) tr
(
E
[
Z⊤
p

(
ZpZ

⊤
p

)−1(
ZpZ

⊤
p

)−1
Zp

])
,

= tr(Σw) tr
(
E
[(
ZpZ

⊤
p

)−1
])
.

Therefore, we obtain the equation in the theorem.

Moreover, using Lemma 5.2, the theorem below shows a sample identifying com-

plexity of the OLS estimator with respect to an acceptable estimation error.

Theorem 5.5. Let Θ and D be as in Definition 4.1, and let Zp be as in (5.1).

Suppose an estimation error is defined as Definition 4.2. The sample identifying

complexity of the OLS estimator (5.3) with respect to an acceptable estimation error

γc is given as

N∗
(
γc,Θ; Θ̂OLS

)
= arg min

|D|
|D| s.t. tr

(
E
[(
ZpZ

⊤
p

)−1
])

< nd tr(Σw)
−1γc,

where Σw is defined in (4.1).

Proof. The theorem immediately follows from Definition 4.4 and Lemma 5.2.

It should be noted that the sample identifying complexity in the theorem cannot

be expressed as a closed form due to the expectation of the inverse Gramian. In other

words, it is required that the sample identifying complexity is numerically computed

by using Monte Carlo methods. The minimum security parameter is given as follows

with the sample identifying complexity in Theorem 5.5.

Theorem 5.6. Let Θ and D be as in Definition 4.1. Suppose an estimation error

is defined as Definition 4.2. The security parameter

λ∗
(
γc, τc; Θ, Θ̂OLS,Υ

)
=

log2
 Υτc

N∗
(
γc,Θ; Θ̂OLS

)
+ 1

is the minimum security parameter, such that an encrypted control system with

(4.1) and (4.2) is (γc, τc)-secure under the adversary in Definition 4.1 using the
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OLS estimator (5.3), where Υ is defined in Definition 4.6, and N∗ is defined in

Theorem 5.5.

Proof. From Theorem 4.1, the encrypted control system is (γc, τc)-secure under the

adversary in Definition 4.1 using the OLS estimator (5.3) if and only if

τ
(
N∗
(
γc,Θ; Θ̂OLS

)
,Θ;Υ

)
> τc,

where τ is a sample deciphering time in Definition 4.6. The condition can be trans-

formed as

τ
(
N∗
(
γc,Θ; Θ̂OLS

)
,Θ;Υ

)
> τc ⇐⇒

2λN∗
(
γc,Θ; Θ̂OLS

)
Υ

> τc,

⇐⇒ 2λ >
τcΥ

N∗
(
γc,Θ; Θ̂OLS

) ,
⇐⇒ λ > log2

 τcΥ

N∗
(
γc,Θ; Θ̂OLS

)
.

Since a security parameter is a positive integer, the minimum one is given as

λ∗(γc, τc; Θ, Θ̂OLS,Υ).

The security parameter λ∗ in the theorem is the solution to Problem 5.1 when

an attack target is a plant (4.1).

5.2.2 Closed-loop case

Consider Problem 5.1 when an attack target is a closed-loop system (4.3). Unlike

the optimal design in the open-loop case, a feedback gain of a controller (4.2) is

a design parameter for the minimum security parameter because a feedback gain

can tune a system parameter. The minimum security parameter is computed in the

same manner of Theorem 5.6 once a feedback gain maximizing a security parameter

is obtained.

It can be seen from Theorem 5.6 that increasing a sample identifying complexity

reduces the minimum security parameter. By Definition 4.4, a sample identifying

complexity increases as the expectation of estimation error increases. Hence, an

optimal controller for designing the minimum security parameter should be designed

to maximize the expectation of estimation error. In this light, Lemma 5.2 implies
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that a feedback gain of such a controller is given as a solution to the optimization

problem

max
F

tr
(
E
[(
XpX

⊤
p

)−1
])
.

Note that Xp depends implicitly on a feedback gain F .

Unfortunately, it is difficult to solve the above problem analytically. This thesis

compromises the design of an optimal controller and explores a suboptimal controller

that increases the trace of the expectation of the inverse Gramian in the later section.

5.3 Suboptimal design

The previous sections have solved Problem 5.1. The minimum security parameter

to achieve the desired security level of an encrypted control system is designed as in

Theorem 5.6 if an attack target is a plant. Although a sample identifying complexity

for the minimum security parameter can be computed using Monte Carlo methods,

the computation often takes a long time owing to repeated operations. Further-

more, designing a feedback gain that maximizes a sample identifying complexity is

challenging due to the complicated optimization.

This section derives suboptimal solutions to Problem 5.1 to mitigate a compu-

tation time for the minimum security parameter design and avoid the difficulty of

controller design. The section introduces a lower bound of the expectation of esti-

mation error in each case where an attack target is a plant or a closed-loop system

and designs a security parameter and controller based on the lower bound.

5.3.1 Open-loop case

A lower bound of the expectation of estimation error in Definition 4.2 under the

OLS estimator (5.3) is given as follows if an attack target is a plant (4.1).

Lemma 5.3. Consider the OLS estimator (5.3). If Θ = [A B], the expectation of

estimation error in Definition 4.2 is bounded from below by

E
[
ε
([
A B

]
, Θ̂OLS(D)

)]
≥ γ

(
|D|,

[
A B

])
:=

m+ n

n

tr(Σw)

tr(Ψx) + (|D| − 1)[tr(Σu) + tr(Ψu) + tr(Ψw)]
, (5.6)
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where

Ψx :=
∞∑
k=0

AkΣx

(
Ak
)⊤
, Ψu :=

∞∑
k=0

AkBΣuB
⊤(Ak)⊤, Ψw :=

∞∑
k=0

AkΣw

(
Ak
)⊤
,

Σx and Σw are defined in (4.1), and Σu is defined in Definition 4.1.

Proof. If Θ = [A B], Zp and d are given from (5.1) as Zp = [X⊤
p U⊤

p ]
⊤ and d = m+n.

It holds from Lemma 5.2 that

E
[
ε
([
A B

]
, Θ̂OLS(D)

)]
=

1

n(m+ n)
tr(Σw) tr

E

([Xp

Up

][
X⊤
p U⊤

p

])−1
.

Let λi(M) be the ith eiganvalue of a matrix M . Jensen’s inequality yields that

tr

([Xp

Up

][
X⊤
p U⊤

p

])−1
 =

m+n∑
i=1

λi

([Xp

Up

][
X⊤
p U⊤

p

])−1
,

=
m+n∑
i=1

λi

([
Xp

Up

][
X⊤
p U⊤

p

])−1

,

= (m+ n)
m+n∑
i=1

1

m+ n
λi

([
Xp

Up

][
X⊤
p U⊤

p

])−1

,

≥ (m+ n)

(
m+n∑
i=1

1

m+ n
λi

([
Xp

Up

][
X⊤
p U⊤

p

]))−1

,

= (m+ n)2

(
m+n∑
i=1

λi

([
Xp

Up

][
X⊤
p U⊤

p

]))−1

,

= (m+ n)2 tr

([
Xp

Up

][
X⊤
p U⊤

p

])−1

.

Hence, we obtain

tr

E

([Xp

Up

][
X⊤
p U⊤

p

])−1
 = E

tr
([Xp

Up

][
X⊤
p U⊤

p

])−1
,

≥ (m+ n)2 E

tr([Xp

Up

][
X⊤
p U⊤

p

])−1
,
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≥ (m+ n)2 E

[
tr

([
Xp

Up

][
X⊤
p U⊤

p

])]−1

,

= (m+ n)2 E

[
tr

([
XpX

⊤
p XpU

⊤
p

UpX
⊤
p UpU

⊤
p

])]−1

,

= (m+ n)2
(
E
[
tr
(
XpX

⊤
p

)]
+ E

[
tr
(
UpU

⊤
p

)])−1
,

where the third inequality also follows from Jensen’s inequality. Moreover, the

expectations of traces are computed from (4.1) as

E
[
tr
(
XpX

⊤
p

)]
= E

[
tr

(
tf−1∑
t=ts

xtx
⊤
t

)]
,

= E

[
tf−1∑
t=ts

tr

((
Atx0 +

t−1∑
k=0

AkBut−1−k +
t−1∑
k=0

AkBwt−1−k

)
(
Atx0 +

t−1∑
k=0

AkBut−1−k +
t−1∑
k=0

AkBwt−1−k

)⊤)]
,

= E

[
tf−1∑
t=ts

tr

(
Atx0x

⊤
0

(
At
)⊤

+
t−1∑
k=0

AkBut−1−ku
⊤
t−1−kB

⊤(Ak)⊤
+

t−1∑
k=0

AkBwt−1−kw
⊤
t−1−kB

⊤(Ak)⊤)],
=

tf−1∑
t=ts

tr

(
At E

[
x0x

⊤
0

](
At
)⊤

+
t−1∑
k=0

AkB E
[
ut−1−ku

⊤
t−1−k

]
B⊤(Ak)⊤

+
t−1∑
k=0

AkB E
[
wt−1−kw

⊤
t−1−k

]
B⊤(Ak)⊤),

=

tf−1∑
t=ts

tr

(
AtΣx

(
At
)⊤

+
t−1∑
k=0

AkBΣuB
⊤(Ak)⊤ +

t−1∑
k=0

AkBΣwB
⊤(Ak)⊤),

≤
tf−1∑
t=ts

tr

(
AtΣx

(
At
)⊤

+
∞∑
k=0

AkBΣuB
⊤(Ak)⊤ +

∞∑
k=0

AkBΣwB
⊤(Ak)⊤),

= tr

(
tf−1∑
t=ts

AtΣx

(
At
)⊤

+

tf−1∑
t=ts

Ψu +

tf−1∑
t=ts

Ψw

)
,
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≤ tr

(
∞∑
t=0

AtΣx

(
At
)⊤

+ (|D| − 1)Ψu + (|D| − 1)Ψw

)
,

= tr(Ψx) + (|D| − 1) tr(Ψu) + (|D| − 1) tr(Ψw),

and

E
[
tr
(
UpU

⊤
p

)]
= E

[
tr

(
tf−1∑
t=ts

utu
⊤
t

)]
=

tf−1∑
t=ts

tr
(
E
[
utu

⊤
t

])
= (|D| − 1) tr(Σu).

Therefore, E[tr(XpX
⊤
p )] + E[tr(UpU⊤

p )] is bounded from above by

E
[
tr
(
XpX

⊤
p

)]
+ E

[
tr
(
UpU

⊤
p

)]
≤ tr(Ψx) + (|D| − 1) tr(Ψu) + (|D| − 1) tr(Ψw) + (|D| − 1) tr(Σu),

= tr(Ψx) + (|D| − 1)[tr(Σu) + tr(Ψu) + tr(Ψw)].

Consequently, we obtain

E
[
ε
([
A B

]
, Θ̂OLS(D)

)]
≥ 1

n(m+ n)
tr(Σw) · (m+ n)2 · 1

tr(Ψx) + (|D| − 1)[tr(Σu) + tr(Ψu) + tr(Ψw)]
,

=
m+ n

n

tr(Σw)

tr(Ψx) + (|D| − 1)[tr(Σu) + tr(Ψu) + tr(Ψw)]
.

This completes the proof.

The lemma shows that the convergence rate of the lower bound is 1/|D| and sug-

gests that the expectation of estimation error relates to the variances Σu and Σw and

the weighted controllability Gramians Ψx, Ψu, and Ψw. The lower bound increases

and decreases as the traces of noise and input variances increase, respectively. The

traces of the variances are equivalent to the signal powers of noise and input, and the

parameter estimation accuracy generally depends on a ratio of the powers. More-

over, the lower bound increases as the traces of the Gramians decrease. Eigenvalues

of a controllability Gramian represent the ease of state excitation in response to

external inputs. The more excited the system is, the easier parameter estimation

becomes. Therefore, the lower bound captures the properties of parameter estima-

tion and seems an effective measure to evaluate the expectation of estimation error,

namely the difficulty of parameter estimation.
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A lower bound of a sample identifying complexity is obtained using the lower

bound of the expectation of estimation error.

Theorem 5.7. Suppose Θ = [A B], and an estimation error is defined as Defini-

tion 4.2. The sample size

N∗∗
(
γc,
[
A B

]
; Θ̂OLS

)
= max

2,

m+ n

n
γ−1
c tr(Σw)− tr(Ψx)

tr(Σu) + tr(Ψu) + tr(Ψw)

+ 2

 (5.7)

is a lower bound of the sample identifying complexity of the OLS estimator (5.3)

with respect to γc, where Σw is defined in (4.1), Σu is defined in Definition 4.1, and

Ψx, Ψu, and Ψw are defined in Lemma 5.3.

Proof. From Lemma 5.3, a lower bound of the sample identifying complexity with

respect to γc is given as the minimum sample size such that γ(|D|, [A B]) < γc. It

follows from (5.6) that

γ
(
|D|,

[
A B

])
< γc,

⇐⇒ m+ n

n

tr(Σw)

tr(Ψx) + (|D| − 1)[tr(Σu) + tr(Ψu) + tr(Ψw)]
< γc,

⇐⇒ |D| >

m+ n

n
γ−1
c tr(Σw)− tr(Ψx)

tr(Σu) + tr(Ψu) + tr(Ψw)
+ 1.

Since a sample size |D| is a positive integer larger than or equal to two, the minimum

one is given as (5.6).

A suboptimal security parameter can be computed based on the lower bound of

a sample identifying complexity alike with Theorem 5.6.

Theorem 5.8. Suppose Θ = [A B], and an estimation error is defined as Defini-

tion 4.2. The security parameter

λ∗∗ =

log2
 Υτc

N∗∗
(
γc,
[
A B

]
; Θ̂OLS

)
+ 1 (5.8)

is the minimum security parameter with respect to (5.7), such that an encrypted

control system with (4.1) and (4.2) is (γc, τc)-secure under the adversary in Defini-
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tion 4.1 using the OLS estimator (5.3), where Υ is defined in Definition 4.6, and

N∗∗ is defined in (5.7).

Proof. The theorem follows the same manner as the proof of Theorem 5.6.

Although the suboptimal security parameter has the same form as the optimal

security parameter in Theorem 5.6, the suboptimal one is an explicit form of system

and design parameters. Note that the weighted controllability Gramians can be

obtained by solving corresponding discrete Lyapunov equations. For instance, Ψx is

unique and satisfies AΨxA
⊤ − Ψx + Σx = O. Consequently, the computation costs

of the suboptimal security parameter can be less than the optimal one.

5.3.2 Closed-loop case

We have seen in Section 5.2.2 that the minimum security parameter cannot be de-

signed analytically due to the difficulty of finding an appropriate controller when an

attack target is a closed-loop system (4.3). This section derives a suboptimal secu-

rity parameter based on the following lower bound of the expectation of estimation

error as with the open-loop case in Section 5.3.1.

Lemma 5.4. Consider the OLS estimator (5.3). Let D be as in Definition 4.1. If

Θ = Ā, the expectation of estimation error in Definition 4.2 is bounded from below

by

E
[
ε
(
Ā, Θ̂OLS(D)

)]
≥ γ

(
|D|, Ā

)
:=

tr(Σw)

tr
(
Ψ̄x

)
+ (|D| − 1) tr

(
Ψ̄w

) , (5.9)

where

Ψ̄x = Ψ̄x(F ) :=
∞∑
k=0

ĀkΣx

(
Āk
)⊤
, Ψ̄w = Ψ̄w(F ) :=

∞∑
k=0

ĀkΣw

(
Āk
)⊤
,

and Σx and Σw are defined in (4.1).

Proof. If Θ = Ā, Zp and d are given from (5.1) as Zp = Xp and d = n. It holds from

Lemma 5.2 that

E
[
ε
(
Ā, Θ̂OLS(D)

)]
=

1

n2
tr(Σw) tr

(
E
[(
XpX

⊤
p

)−1
])
.

Similar to the proof of Lemma 5.3, it follows that

tr
(
E
[(
XpX

⊤
p

)−1
])
≥ n2 E

[
tr
(
XpX

⊤
p

)]−1
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Furthermore, the expectation of trace is computed from (4.3) as

E
[
tr
(
XpX

⊤
p

)]
= E

[
tr

(
tf−1∑
t=ts

xtx
⊤
t

)]
,

= E

tf−1∑
t=ts

tr

(Ātx0 + t−1∑
k=0

Ākwt−1−k

)(
Ātx0 +

t−1∑
k=0

Ākwt−1−k

)⊤
,

= E

[
tf−1∑
t=ts

tr

(
Ātx0x

⊤
0

(
Āt
)⊤

+
t−1∑
k=0

Ākwt−1−kw
⊤
t−1−k

(
Āk
)⊤)]

,

=

tf−1∑
t=ts

tr

(
Āt E

[
x0x

⊤
0

](
Āt
)⊤

+
t−1∑
k=0

Āk E
[
wt−1−kw

⊤
t−1−k

](
Āk
)⊤)

,

=

tf−1∑
t=ts

tr

(
ĀtΣx

(
Āt
)⊤

+
t−1∑
k=0

ĀkΣw

(
Āk
)⊤)

,

≤
tf−1∑
t=ts

tr

(
ĀtΣx

(
Āt
)⊤

+
∞∑
k=0

ĀkΣw

(
Āk
)⊤)

,

= tr

(
tf−1∑
t=ts

ĀtΣx

(
Āt
)⊤

+

tf−1∑
t=ts

Ψ̄w

)
,

≤ tr

(
∞∑
t=0

ĀtΣx

(
Āt
)⊤

+ (|D| − 1)Ψ̄w

)
,

= tr
(
Ψ̄x

)
+ (|D| − 1) tr

(
Ψ̄w

)
.

Therefore, we obtain

E
[
ε
(
Ā, Θ̂OLS(D)

)]
≥ 1

n2
tr(Σw) · n2 · 1

tr
(
Ψ̄x

)
+ (|D| − 1) tr

(
Ψ̄w

) ,
=

tr(Σw)

tr
(
Ψ̄x

)
+ (|D| − 1) tr

(
Ψ̄w

) .
This completes the proof.

The lower bound in the lemma can be further simplified when a sample size is

sufficiently large.
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Corollary 5.5. Let D be as in Definition 4.1. γ in Theorem 5.4 holds

γ
(
|D|, Ā

)
= γ̂

(
|D|, Ā

)
(1 + o(1)), γ̂

(
|D|, Ā

)
:=

tr(Σw)

(|D| − 1) tr
(
Ψ̄w

) (5.10)

as |D| → ∞, where o(·) is the little-o notation, Σw is defined in (4.1), and Ψ̄w is

defined in Lemma 5.4.

Proof. It follows from Lemma 5.4 that

lim
|D|→∞

γ
(
|D|, Ā

)
γ̂
(
|D|, Ā

) = lim
|D|→∞

(|D| − 1) tr
(
Ψ̄w

)
tr
(
Ψ̄x

)
+ (|D| − 1) tr

(
Ψ̄w

) ,
= lim

|D|→∞

tr
(
Ψ̄w

)
(|D| − 1)−1 tr

(
Ψ̄x

)
+ tr

(
Ψ̄w

) ,
= 1.

Therefore, we obtain

γ
(
|D|, Ā

)
γ̂
(
|D|, Ā

) − 1 = o(1) ⇐⇒ γ
(
|D|, Ā

)
= γ̂

(
|D|, Ā

)
(1 + o(1))

by definition of little-o notation.

Lemma 5.4 suggests that the expectation of estimation error relies on the variance

Σw and the weighted controllability Gramians Ψ̄x and Ψ̄w even when an attack

target is a closed-loop system. Corollary 5.5 implies that the lower bound (5.9)

approaches (5.10) as a sample size increases. Thus, the expectation of estimation

error is considered to mainly depend on Σw and Ψ̄w in practice. From these results,

a suboptimal controller should be designed to minimize the trace of Ψ̄w for reducing

a security parameter required for a desired security level. The theorem below shows

that such a controller is an optimalH2 controller for a fictitious system whose system

and input matrices correspond to Ā and Σw, respectively.

Theorem 5.9. Let D be as in Definition 4.1. Suppose (η∗∗, P ∗∗, Q∗∗) ∈ R×Rn×n×
Rn×m is a solution to the problem

min
η,P,Q

η s.t. η > tr(P ), P > 0,

 P AP +BQ Σ
1/2
w

(AP +BQ)⊤ P O

Σ
1/2
w O I

 > 0,
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where Σw = Σ
1/2
w Σ

1/2
w , and Σw is defined in (4.1). The controller (4.2) with the

feedback gain

F ∗∗ = Q∗∗(P ∗∗)−1 (5.11)

stabilizes (4.3) and maximizes γ̂ in (5.10), thereby maximizing γ in (5.9) as |D| →
∞.

Proof. From Corollary 5.5, γ in (5.9) is maximized when maximizing γ̂ in (5.10)

as |D| → ∞. The parameter of γ̂ depending on a feedback gain F is the Gramian

Ψ̄w = Ψ̄w(F ) only. Hence, a controller minimizing tr(Ψ̄w) maximizes γ̂.

Now, consider the fictitious system

G :

{
x̃t+1 = Āx̃t + Σ1/2

w ũt,

ỹt = x̃t,

where x̃ ∈ Rn is a fictirious state, ũ ∈ Rm is a fictirious input, and ỹ ∈ Rn is a

fictirious output. Note that Σ
1/2
w always exists because Σw is positive definite. From

Parseval’s theorem, it follows that

∥G∥H2 =

√√√√ ∞∑
t=−∞

tr(hth⊤t ) =
√
tr
(
Ψ̄w

)
, ht =

{
ĀtΣ1/2

w , t ≥ 0,

0, t < 0,

where ∥ · ∥H2 is the H2 norm, and ht is the impulse response of G. Therefore, a

controller minimizing ∥G∥2H2
maximizes γ̂.

Let η ∈ R+. SupposeG is stable, i.e., Ā is Schur. It is well known that ∥G∥2H2
< η

holds if and only if there exists a positive definite matrix P such that tr(P ) < η and

ĀP Ā⊤ − P + Σw < 0 [217,218]. It follows that

ĀP Ā⊤ − P + Σw < 0 ⇐⇒ P − Σw − ĀP Ā⊤ > 0,

⇐⇒ (P − Σw)−
(
ĀP
)
P−1

(
ĀP
)⊤

> 0,

⇐⇒

[
P − Σw ĀP(
ĀP
)⊤

P

]
> 0,

⇐⇒

[
P ĀP(

ĀP
)⊤

P

]
−

[
Σw O

O O

]
> 0,

⇐⇒

[
P ĀP(

ĀP
)⊤

P

]
−

[
Σ

1/2
w

O

]
I−1
[
Σ

1/2
w O

]
> 0,
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⇐⇒

 P ĀP Σ
1/2
w(

ĀP
)⊤

P O

Σ
1/2
w O I

 > 0,

⇐⇒

 P (A+BF )P Σ
1/2
w

((A+BF )P )⊤ P O

Σ
1/2
w O I

 > 0,

⇐⇒

 P AP +BQ Σ
1/2
w

(AP +BQ)⊤ P O

Σ
1/2
w O I

 > 0,

where Q = FP , and the third and sixth transformations follow from the property

of Schur complement, namely[
X Y

Y ⊤ Z

]
> 0 ⇐⇒ Z > 0 ∧ X − Y Z−1Y ⊤ > 0

for block matrices X, Y , and Z. Consequently, ∥G∥2H2
is minimized by solving the

problem in the theorem, and (5.11) holds by definition of Q.

Suppose ũt of the fictitious system G in the above proof follows the Gaussian

distribution N (0, I). It follows that

lim
t→∞

E
[
tr
(
x̃tx̃

⊤
t

)]
,

= lim
t→∞

E

[
tr

(
Ātx̃0x̃

⊤
0

(
Āt
)⊤

+
t−1∑
k=0

Āt−1−kΣ1/2
w ũkũ

⊤
k

(
Σ1/2
w

)⊤(
Āt−1−k)⊤)],

= lim
t→∞

tr

(
Ātx̃0x̃

⊤
0

(
Āt
)⊤

+
t−1∑
k=0

Āt−1−kΣ1/2
w E

[
ũkũ

⊤
k

](
Σ1/2
w

)⊤(
Āt−1−k)⊤),

= lim
t→∞

tr

(
Ātx̃0x̃

⊤
0

(
Āt
)⊤

+
t−1∑
k=0

Āt−1−kΣw

(
Āt−1−k)⊤),

= lim
t→∞

tr

(
Ātx̃0x̃

⊤
0

(
Āt
)⊤

+
t−1∑
k=0

ĀkΣw

(
Āk
)⊤)

,

= tr

(
∞∑
k=0

ĀkΣw

(
Āk
)⊤)

= tr
(
Ψ̄w

)
= ∥G∥2H2

,

where x̃t = Ātx̃0 +
∑t−1

k=0 Ā
t−1−kΣ

1/2
w ũt. Let ṽt = Σ

1/2
w ũt be an affine transformation
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of ũt. The fictitious system G is then equivalent to the closed-loop system (4.3)

because ṽt follows the Gaussian distribution N (0,Σw). Therefore, the suboptimal

controller (5.11) can be interpreted as attenuating a steady-state variance of (4.3)

to the noise w. In other words, the controller makes parameter estimation difficult

by reducing the sensitivity of (4.3) to the external input.

With the suboptimal controller, a lower bound of a sample identifying complexity

is obtained as follows.

Theorem 5.10. Suppose Θ = Ā, and an estimation error is defined as Defini-

tion 4.2. The sample size

N∗∗
(
γc, Ā; Θ̂OLS

)
= max

{
2,

⌊
γ−1
c tr(Σw)− tr

(
Ψ̄∗∗
x

)
tr
(
Ψ̄∗∗
w

) ⌋
+ 2

}
(5.12)

is a lower bound of the sample identifying complexity of the OLS estimator (5.3)

with respect to γc, where Σw is defined in (4.1), Ψ̄∗∗
x = Ψ̄x(F

∗∗) and Ψ̄∗∗
w = Ψ̄w(F

∗∗)

are defined in Lemma 5.4, and F ∗∗ is defined in (5.11).

Proof. The theorem follows the same manner as the proof of Theorem 5.7.

Moreover, a suboptimal security parameter is given as follows.

Theorem 5.11. Suppose Θ = Ā, and an estimation error is defined as Defini-

tion 4.2. The security parameter

λ∗∗ =

log2
 Υτc

N∗∗
(
γc, Ā; Θ̂OLS

)
+ 1 (5.13)

is the minimum security parameter with respect to (5.12), such that an encrypted

control system with (4.1) and (4.2) is (γc, τc)-secure under the adversary in Defini-

tion 4.1 using the OLS estimator (5.3), where Υ is defined in Definition 4.6, and

N∗∗ is defined in (5.12).

Proof. The theorem follows the same manner as the proof of Theorem 5.8.

It should be noted that parameters in Definition 2.10 and Definition 2.11 must

be chosen appropriately to implement the (updatable and key-updatable) ElGamal

and Regev encryption cryptosystems that satisfy λ-bit security. In the case of the

ElGamal-based schemes, a prime number q is chosen as an ℓ-bit prime number,
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where ℓ is called a key length. The minimum key length to achieve λ-bit security

can be computed as

ℓ∗ = arg min
ℓ∈N

Ω(ℓ) s.t. Ω(ℓ) ≥ 2λ
∗
,

where Ω(ℓ) is the time complexity of the known fastest algorithm for breaking the

encryption scheme. Furthermore, the parameters m, n, t, q, and σ in the Regev-

based schemes can be selected by using the lattice-estimator [210]. Therefore, the

cryptosystems can be effectively implemented utilizing the optimal and suboptimal

security parameters.

5.4 Numerical example

This section investigates our design of encrypted control systems through numerical

examples. Consider the quadruple-tank process in [219],

dh1
dt

= − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1,

dh2
dt

= − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2,

dh3
dt

= − a3
A3

√
2gh3 +

(1− γ2)k2
A3

v2,

dh4
dt

= − a4
A4

√
2gh4 +

(1− γ1)k1
A4

v1,

where Ai is a cross-section of the ith tank, ai is a cross-section of the ith tank’s

outlet hole, hi is a water level of the ith tank, v1 and v2 are voltages applied to the

first and second pumps, k1 and k2 are input gains, γ1 and γ2 are model parameters,

and g is the gravitational acceleration. The linearized system of the process at an

operating point (h01, h
0
2, h

0
3, h

0
4, v

0
1, v

0
2) is given by

dx

dt
=



− 1

T1
0

A3

A1T3
0

0 − 1

T2
0

A4

A2T4

0 0 − 1

T3
0

0 0 0 − 1

T4


x+



γ1k1
A1

0

0
γ2k2
A2

0
(1− γ2)k2

A3
(1− γ1)k1

A4

0


u,
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Fig. 5.1: The expectation of estimation error and its lower bound when an attack
target is a plant.

where x = [x1 x2 x3 x4]
⊤, u = [u1 u2]

⊤, xi = hi − h0i , ui = vi − v0i , and Ti =

(Ai/ai)
√

2h0i /g. Following [219], set A1 = A3 = 28 cm2, A2 = A4 = 32 cm2,

a1 = a3 = 0.071 cm2, a2 = a4 = 0.057 cm2, k1 = 3.33 cm3/Vs, k2 = 3.35 cm3/Vs,

γ1 = 0.70, γ2 = 0.60, and g = 981 cm/s2. Suppose the initial state follows the Gaus-

sian distribution with mean zero and variance Σx. Then, by discretizing with the

sampling period of 1 s and adding a noise w independent and identically distributed

over the Gaussian distribution with mean zero and variance Σw, the linearized sys-

tem at the operating point (h01, h
0
2, h

0
3, h

0
4, v

0
1, v

0
2) = (12.4, 12.7, 1.8, 1.4, 3.00, 3.00) is

obtained as (4.1), where

A =


0.9842 0 0.0407 0

0 0.9890 0 0.0326

0 0 0.9590 0

0 0 0 0.9672

, B =


0.0826 0.0010

0.0005 0.0625

0 0.0469

0.0307 0

. (5.14)

Additionally, for the sake of simplicity, set Σx = I, Σw = σ2
wI, and Σu = σ2

uI

throughout this section.

Fig. 5.1 depicts the expectation of estimation error and its lower bound when

an attack target is a plant (4.1) with the system parameters (5.14). The gray dots

in the figure are the estimation errors defined in Definition 4.2, the blue line is

the expectation of estimation error in Lemma 5.2, and the orange line is the lower

bound (5.6), where the attack of Definition 4.1 was performed 100 times for each
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(a) The expectation of estimation error with
various variances.

(b) The gap between the expectation of esti-
mation error and its lower bound.

Fig. 5.2: The expectation of estimation error and its gap to the lower bound in
changing input and noise variances.

sample size using the OLS estimator (5.3) with ts = 0, and σ2
w = σ2

u = 1. The

figure demonstrates that both the expectation of estimation error and lower bound

decrease as a sample size |D| increases at a similar rate.

Next, the change in the expectation of estimation error is confirmed when the

noise and input variances are varied. Fig. 5.2(a) illustrates the expectation of estima-

tion error in the 400 combinations of σ2
w and σ2

u for |D| = 1000, where each variance

is spaced in 20 equal parts from 0.5 to 5. It can be seen that the expectation of

estimation error decreases as σ2
w and σ2

u respectively decreases and increases. This

result suggests that an adversary would select the input variance as large as possible

compared to the noise variance. Moreover, Fig. 5.2(b) depicts the gap between the

expectation of estimation error and its lower bound defined by

log10

(
E
[
ε
([
A B

]
, Θ̂OLS(D)

)])
− log10

(
γ
(
|D|,

[
A B

]))
,

where ε, Θ̂OLS, and γ are defined in Definition 4.2, (5.3), and (5.6), respectively. The

figure shows that the lower bound becomes tighter if the input variance is sufficiently

larger than the noise variance. Therefore, (5.6) would be a reasonable choice for a

lower bound of the expectation of estimation error in practice.

Using (5.6), the lower bound (5.7) of the sample identifying complexity in The-

orem 5.5 and the suboptimal security parameter in (5.8) are computed as shown in

Table 5.1, where Υ in (5.8) is set to 4.42× 1017 FLOPS that is the performance of



136 5. Design of Encrypted Control Systems

Table 5.1: Suboptimal security parameters when an attack target is a plant.

γc N∗∗ τc (years)

1 3 5 10 50

10−8 3641747 62 64 65 66 68
10−7 364175 66 67 68 69 71
10−6 36418 69 70 71 72 75
10−5 3642 72 74 75 76 78
10−4 365 76 77 78 79 81
– 1 84 86 86 87 90

Supercomputer Fugaku1. Note that the security parameters in the case of N∗∗ = 1

are optimal values when a key pair is not updated. For instance, with the acceptable

estimation error γc = 10−6 and the defense period τc = 10 years, it can be shown that

updatable (or key-updatable) homomorphic encryption reduces a security parame-

ter by 15 bit compared with typical homomorphic encryption. This result offers the

effectiveness of updatable and key-updatable homomorphic encryption in improving

the security level of encrypted control systems or reducing computation costs due

to encryption while keeping a security level.

We move on to examining the design of encrypted control systems when an

attack target is a closed-loop system (4.3). The suboptimal feedback gain (5.11) of

a controller (4.2) for (4.1) with (5.14) is computed by using CVXPY [220,221] as

F ∗∗ =

[
−10.6621 −0.4077 0.3075 −3.3205
−0.1287 −11.5672 −5.5034 0.1435

]
,

where σ2
w = 1, and

P ∗∗ =


3.3727 −2.3306 4.1041 −6.2997
−2.3306 5.4510 −8.5637 4.8929

4.1041 −8.5638 17.6025 −8.1816
−6.2997 4.8929 −8.1816 18.5025

,

Q∗∗ =

[
−12.8298 3.7464 −7.6879 1.2201

3.0332 −14.9199 0.4824 −8.1044

]
.

1https://www.top500.org/system/179807/
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Fig. 5.3: The expectation of estimation error and its lower bounds when an attack
target is a closed-loop system.

The system parameter of (4.3) is then given as

Ā =


0.1034 −0.0452 0.0606 −0.2741
−0.0134 0.2658 −0.3438 0.0399

−0.0060 −0.5425 0.7009 0.0067

−0.3273 −0.0125 0.0094 0.8653

. (5.15)

Fig. 5.3 depicts the expectation of estimation error and its lower bounds under

the OLS estimator for (4.3) with (5.15), where ts = 0. Except for the attack target,

the gray dots and the blue line are the same as Fig. 5.1. The orange solid line is

the lower bound (5.9), and the red dotted line is the approximated lower bound

(5.10). Similar to the open-loop case, the expectation of estimation error and the

lower bounds decrease as |D| increases. Furthermore, the figure shows that the lower

bound and its approximation are almost identical. Thus, the approximation can be

used for designing the suboptimal feedback gain instead of the lower bound.

With the suboptimal controller, Table 5.2 shows the lower bound (5.12) of the

sample identifying complexity in Theorem 5.5 and the suboptimal security parameter

in (5.13), which are computed under the same conditions as Table 5.1. Recall that

the security parameters in the case of N∗∗ = 1 are optimal values when using typical

homomorphic encryption. The result reveals the effectiveness of updatable and key-

updatable homomorphic encryption in reducing a security parameter while keeping

a certain security level even when an attack target is a closed-loop system.
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Table 5.2: Suboptimal security parameters with the suboptimal controller when an
attack target is a closed-loop system.

γc N∗∗ τc (years)

1 3 5 10 50

10−8 8903047 61 63 63 64 67
10−7 890305 64 66 67 68 70
10−6 89031 68 69 70 71 73
10−5 8904 71 72 73 74 77
10−4 891 74 76 77 78 80
– 1 84 86 86 87 90

Table 5.3: Suboptimal security parameters with a controller designed by pole place-
ment when an attack target is a closed-loop system.

γc N∗∗ τc (years)

1 3 5 10 50

10−8 516 75 77 77 78 81
10−7 52 78 80 81 82 84
10−6 6 81 83 84 85 87
10−5 2 83 85 85 86 89
10−4 2 83 85 85 86 89
– 1 84 86 86 87 90

Furthermore, Table 5.3 presents the lower bound of the sample identifying com-

plexity and the suboptimal security parameter when using a feedback gain that

places the eigenvalues of Ā in (4.3) to ±0.01 and ±0.01i, where i is the imaginary

unit. Comparing Table 5.2 with Table 5.3, we can see that the suboptimal con-

troller significantly increases the lower bound of the sample identifying complexity

and contributes to reducing a security parameter.
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Conclusion

Encrypted control is a state-of-the-art technology used to enhance the confidentiality

of control systems. This thesis focused on the security and design of encrypted

control systems that utilize homomorphic encryption to establish a fundamental

theory for encrypted control. Our investigation delved into appropriate security

measures for encrypted control systems and determined their security level based

on the complexity and computation time of the system identification. The security

level of encrypted control systems can be quantified by an acceptable estimation

error and a defense period induced by a sample identifying complexity and a sample

deciphering time. The thesis stressed the significance of a key update mechanism in

ensuring forward and post-compromise security. It examined the correlations among

the security strength, security parameter, and system parameter in encrypted control

systems. Based on these relationships, it also formulated a design methodology for a

security parameter and controller to achieve the desired security level of an encrypted

control system.

The design method allows for a systematic approach to creating encrypted con-

trol systems. With this method, a system designer can determine the appropriate

security parameter and controller for a specific plant and cryptosystem without try-

ing different options through trial and error. This results in a lower computational

burden caused by encryption and can reduce implementation time and costs. Fur-

thermore, the security level achieved using this design method can be used as a

benchmark to standardize the security strength in encrypted control systems.

When designing control systems, security has now become one of the control

specifications, such as stability and robustness, and is no longer ambiguous. Con-

sequently, control systems can be analyzed and synthesized with a cryptographic

security lens, building a theory for encrypted control systems. In other words, a

theoretical foundation for interdisciplinary research on control theory and cryptog-

raphy can be constructed based on our security definition and measures. Some

remarks are delineated to guide future research endeavors in this domain.
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Output feedback and nonlinearity. In most cases, the states of dynamical

systems cannot be directly obtained and are partially observed through sensors. In

addition, controlling a dynamical system sometimes involves dealing with nonlinear

behavior. When a controller determines a control input based on sensor observations,

it is called an output-feedback controller. A feedback system that includes nonlinear

components is known as a nonlinear control system.

An adversary cannot access the states of a plant when using an output-feedback

controller and cannot apply the estimation algorithms in Section 5.1 directly to non-

linear control systems. Therefore, an adversary may use more advanced algorithms,

such as subspace identification methods or machine learning, to estimate system

parameters. As a result, extending the design method discussed in this thesis to

encrypted output feedback and nonlinear control systems requires deriving lower

bounds for the expectation of an estimation error and sample identifying complex-

ity in such advanced estimation algorithms.

Multi-agent systems security. This thesis discussed the security and design of

encrypted control systems in a client-server model. However, a multi-agent system

is another primary class for encrypted control. Defining a threat model and security

goal is essential for formulating security tailored for multi-agent systems, similar

to the discussion in Chapter 4. Potential adversaries for a multi-agent system are

comparable to those for a client-server model, including a network eavesdropper

outside the system, a malicious agent within the system, and a malicious server that

aggregates distributed agents. Meanwhile, caution is warranted when considering a

security goal, that is, private information to be protected.

Private information differs for each system under consideration. Thus, it is

necessary first to clarify which information should be protected. Moreover, some

information in multi-agent systems cannot be protected by encryption. For example,

a network topology represented by an adjacency matrix or a graph Laplacian is an

example of distinctive private information in a multi-agent system. However, it

can be disclosed by tracking a packet flow without deciphering encrypted data.

Therefore, it is crucial to determine whether private information of interest can

be protected using cryptography when establishing a security goal in an encrypted

control framework for multi-agent systems.
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Multi-objective synthesis of encrypted controllers. Chapter 4 and Chap-

ter 5 discussed the analysis and design of encrypted control systems, respectively.

The analysis determined the security level of encrypted control systems from a given

security parameter and system parameter. Conversely, the design addressed decid-

ing on a security parameter and controller to achieve the desired security level. In

the design, Theorem 5.9 revealed that a suboptimal controller is given by solving

a semidefinite programming problem in which the constraints are linear matrix in-

equalities. Linear matrix inequalities can also represent various control objectives

and constraints on disturbance rejection, tracking performance, H∞ performance,

overshoot, rise time, settling time, pole region, and so on [217]. Hence, combin-

ing a controller design to reduce the security parameter with other control objec-

tives and constraints would be feasible. An interesting research direction here is

the multi-objective synthesis of encrypted controllers to satisfy the required control

specifications, including security.
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[203] J. Milošević, A. Teixeira, K. H. Johansson, and H. Sandberg, “Actuator secu-

rity indices based on perfect undetectability: Computation, robustness, and

sensor placement,” IEEE Transactions on Automatic Control, vol. 65, no. 9,

pp. 3816–3831, 2020.

[204] C. Murguia, I. Shames, J. Ruths, and D. Nešić, “Security metrics and synthesis
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