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和文概要
コグニティブ無線は、利用周波数をダイナミックに切り替えるダイナミック

スペクトラムアクセス(DSA: Dynamic Spectrum Access)を用いることで、無線周波
数逼迫の課題を解決する新しい無線技術として期待されている。コグニティブ無

線によるDSAでは、免許無線局が利用していないとき免許帯域を免許不要局が適
応的に利用する検討が行われている。このようなコグニティブ無線ネットワーク

の実現には、スペクトラム環境を認識し、空き帯域を発見したうえで、適切にス

ペクトラムを利用するアルゴリズムが必要となる。この時、効率的なスペクトラ

ム管理のために、正確な無線環境の把握が重要となる。その実現の一手法とし

て、無線環境を表現する無線環境マップ(REM: Radio Environment Map)の導入が考
えられている。REMを活用することで、コグニティブ無線機はどの周波数を使う
ことで効率的かつ大容量の通信が可能かを把握し、環境に適応した運用を行うこ

とが可能となる。

REMは多数のユーザから観測情報を集めることで効率的に構築することが可
能となるが、悪意のあるユーザが偽のセンサ情報を送るなど多様な攻撃を行うこ

とで、その正確性が低下する課題がある。不正確なREMは、通信効率の低下や、
無線システム相互干渉の増加、ネットワーク性能の低下につながる可能性を持つ

ため、攻撃にロバストなREM構築および管理手法が重要となる。
そこで、本論文では、悪意のあるユーザが存在する環境でも、信頼性が高く

正確なREMを構築する手法を提案する。
一つ目の手法では、悪意のある端末と誠実な端末を効果的に区別することが

できるDouble Layer Monitor (DLM) アルゴリズムの概念を提案している。提案す
るDLMモデルでは、同じメッシュからのすべてのレポートとの類似度を計算す
る。単一メッシュでは、正常な情報よりも悪意のある情報が多い可能性があるた

め、類似度だけをチェックすると、悪意のある情報に目を奪われてしまう可能性

があり、それを避けるため過去の評価結果も考慮する。さらに、空間情報アルゴ

リズムに基づき、悪意のあるノードを正確に特定することで、ネットワーク性能

の向上を図る。また、最適な攻撃戦略を検討し、最適な攻撃における最大誤差を

求めることで、強いネットワークセキュリティを達成した。

二つ目の手法はデータセットが不十分な状態も考慮する。このような場合、

悪意のある端末の影響を避けるために、少数のトラストノードを設定するKriging-
based Trust Nodes Aided (KTNA) REM構築アルゴリズムを提案する。ノードのリア
ルタイム評価と累積評価を行うことで、REMの精度を向上させ、各センシングス
ロットにおいて各位置で利用できるデータ量が少ないことに起因する精度制限の

問題を解決する。本手法は、悪意のあるノードの影響を効果的に回避し、ネット

ワーク全体のパフォーマンスを向上させることができた。
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加えて、KTNAアルゴリズムに基づき、信頼セット内の信頼できる情報を自
動的に収集し、無効な情報を削除する再起動フェーズを追加した改良型KTNAア
ルゴリズムを提案し、周辺環境が変化した際にシステムを初期化する手法を検

討する。KTNAアルゴリズムに基づき、精密なREMを構築し、選択されたデー
タに基づいて、平均パスロスやシャドーイングの影響を含むチャネル状態を

推定できるKTNA+システムの構造を提示する。様々なシミュレーションによ
り、KTNA+システムの性能を検証し、ネットワーク性能と向上とセキュリティ耐
性の向上に有効であることを実証した。

従来、ユーザデータを用いて協調センシングを行う際には、悪意のある端末

からの干渉を回避することは困難である。多くの研究は、情報提供端末が信頼で

きることを前提にしている。しかし、様々な携帯電話から情報を収集するような

実世界のアプリケーションにクラウドセンシングの関連技術を適用する場合、す

べてのユーザの絶対的な正確さを保証することはできず、利己的なユーザが周波

数リソースを独占しようとしたり、主要ユーザの通信を妨害したりすることを防

ぐことは困難であった。今回の研究はその解決法の提示を行っている。

本研究は、悪意のある情報を根絶することで、今後のREMを用いたカバレッ
ジ最適化、リソース割り当て、干渉解析、位置推定などの研究において、より安

全な環境を提供できると考える。今後、より安全・快適・安心な通信環境を提供

するためには、脅威環境下でのREM構築やチャネル推定システムに関する研究を
幅広く行うことが必要となる。



Abstract

Cognitive radio (CR) is a wireless communication technology that has emerged as a
promising solution to address the spectrum scarcity problem by enabling dynamic spectrum
access (DSA). It allows unlicensed users to opportunistically access the licensed spectrum
when it is not in use by licensed users. Cognitive radio networks (CRNs) rely on intelligent
algorithms to sense the spectrum environment, detect available frequencies, and optimize the
use of the spectrum. However, accurate knowledge of the radio environment is crucial for
efficient spectrum management. This has led to the development of the Radio Environment
Map (REM), which provides a comprehensive representation of the radio environment. The
REM enables cognitive radios to make informed decisions on spectrum access, leading to
efficient spectrum utilization and increased network capacity.

However, the accuracy of the Radio Environment Map (REM) can be threatened by
various malicious attacks, in particular, data falsification attacks have a serious impact on the
accuracy of REM construction. REM plays a critical role in CRNs, inaccurate or outdated
REM information can lead to inefficient spectrum usage, interference, and reduced network
performance. Therefore, it is essential to develop robust REM construction and maintenance
techniques to ensure the accuracy and reliability of the map.

In our study, we propose two REM construction methods to address the challenge of
developing a reliable and accurate REM under malicious attack. Firstly, when there is sufficient
data available, we propose a Double-Layer Monitor (DLM) based on spatial-information
approach, including IDW and spatial correlation, to deal with various data falsification attacks
in the network. By analyzing the real-time similarities and historical performance, to reject
the malicious information from the database.

However, in scenarios where there is limited data available, such as in a new or rapidly
changing radio environment, the proposed DLM-based approach may not be effective.
Therefore, we also propose a Kriging-based Trust Nodes Aided (KTNA) algorithm to
construct the REM, by adding a small amount of trust nodes, effectively guaranteeing the
accuracy of the REM. Additionally, based on the KTNA algorithm, we add the reboot
part, so the system can lead to an accurate REM under the dynamic environment. We also
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give a solution for channel estimation including the path-loss and shadowing effect under a
threatening environment.

Overall, our study contributes to the development of reliable and accurate REM construc-
tion methods for CRNs under threatening environments, which is essential for the successful
deployment of cognitive radio technology in the future.
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Chapter 1

Introduction

1.1 History and Background

The rapid expansion of wireless communication technology in recent years has created
an extraordinary need for radio spectrum. Nevertheless, the increase in demand has faced a
constraint due to the limited availability of resources. The spectrum, which is crucial for
many wireless communication applications like terrestrial and satellite communications,
Wi-Fi, and bluetooth, is currently encountering constraints that impede its capacity to keep
up with the increasing demand. This predicament has led to a critical scarcity of available
frequencies, attracting the focus of governments, regulatory bodies, and industry participants
worldwide.

The limited availability of spectrum resources presents a barrier, which is caused by
the allocation of licensed frequencies for various applications. As depicted in Fig.1.1 for
the United States, the frequencies that are most sought after have already been allocated,
which presents a difficult situation for wireless operators as they endeavour to get an adequate
amount of spectrum. The limited availability of this resource directly adds to the deterioration
of network performance, exacerbating the problem of spectrum shortage.

As a solution to this difficulty, the adoption of intelligent spectrum sharing and reuse
has become a prominent concept, with Cognitive Radio (CR) technology leading the way.
Recognised for its capacity to improve the utilisation of spectrum and mitigate the shortage
of spectrum resources, CR technology is considered a vital element in meeting the increasing
demands for both new and existing services. Nevertheless, the successful functioning of
CR systems is highly dependent on dependable spectrum awareness. This specific aspect
has captured the attention of scholars, functioning as a strategy for detecting signals with
adaptable uses in radio surveillance, spectrum allocation, and diverse fields.



2 Introduction

Figure 1.1 United States frequency allocation chart 2016 [1].

1.1.1 The first proposal of cognitive radio (CR)

Enhancing user perception and service security in the context of the Internet of Everything
(IoE) and the rapid expansion of services is a significant research focus. Wireless network
resource control and optimising service security performance are key areas of interest. The
expected rise in the number of connected mobile devices is predicted to create a mismatch
between the growing need for spectrum resources and the limited availability of spectrum.
The pursuit of higher communication frequency bands is accompanied by the urgent adoption
of dynamic spectrum sharing schemes and flexible allocation of spectrum resources. [2][3].

The conventional techniques used for allocating spectrum, as emphasised by the US
Spectrum Policy Task Force (SPTF) and the Federal Communications Commission (FCC),
have shown inefficient utilisation of the spectrum. The spectrum management philosophy
of exclusivity, which is considered overly restrictive, impedes the availability of spectrum
access [4]. According to spectrum usage surveys, the utilisation of available spectrum in a
given region is estimated to be between 2% and 6% [5][6]. The analysis conducted by the
Berkely US Wireless Research Centre highlights the fact that the assigned spectrum resources
are not being fully utilised. This is clear from the presence of unoccupied bands and severe
under-utilization. Fig.1.2 and Fig.1.3 depict conceptual representations of spectrum waste in
the spatial and time-frequency domains, respectively.



1.1 History and Background 3

Figure 1.2 Spatial hole. Figure 1.3 Time-frequency hole.

In response to these challenges, experiments monitoring radio spectrum use across
common frequency bands reveal wide variations in spectrum utilization across time, frequency,
and spatial domains [7, 8]. Fixed spectrum allocation methods result in low spectrum
utilization and potential wasted spectrum, denying unlicensed users access to vacant bands.
The advent of Cognitive Radio (CR) offers a viable solution.

Figure 1.4 Architecture model of a CR loop.

The idea of CR dates back to the early 1990s when Joseph Mitola III, a researcher at the
Swedish Defence Research Agency, proposed the concept of software-defined radio (SDR).
Mitola’s vision was to create a radio system that could reconfigure itself to operate on any
frequency band, modulate any waveform, and adapt to any wireless environment. The concept
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of SDR later evolved into CR, which added the ability to sense the wireless environment and
make decisions based on the available information.

In the late 1990s, the FCC in the United States recognized the potential of CR to address
the spectrum scarcity problem and issued a notice of proposed rule making to explore the use
of CR in the wireless industry. This led to the formation of a group of industry experts who
worked to develop standards and regulations for CR.

Since then, CR has been the subject of extensive research and development efforts, and it
has been successfully deployed in various applications, including public safety networks, and
wireless sensor networks. In recent years, CR has also gained attention in the field of 5G and
beyond wireless communication systems, where it can play a crucial role in enabling efficient
spectrum utilization and enhancing network performance.

CR is a revolutionary technology that has the potential to significantly improve the
efficiency and reliability of wireless communication systems. It is an intelligent radio
technology that uses machine learning algorithms and signal processing techniques to
dynamically adapt to the wireless environment and optimize the use of available spectrum.
CR technique allow unlicensed terminals, which is also called Secondary Users (SUs),
opportunistic access to authorised spectrum allocated to the licensed terminals, which is also
called Primary Users (PUs), for spectrum sharing.

In cognitive radio networks (CRNs), one key technique is the Spectrum Sensing (SS),
the main function of SS is to detect the usage status of an authorized frequency band. Once
an available spectrum hole is detected, the SU can dynamically access it by adjusting its
own operating parameters. Due to the significant advantages of CRNs in terms of spectrum
resource reallocation, these years, it has been widely used for integration with IoT [9–11],
Internet of Vehicles (IoV) [12–14], wireless sensor networks [15–17] and so on.

1.1.2 The emergence of radio environment map (REM)

Radio Environment Map (REM) is a tool that provides statistical information on the radio
frequency (RF) environment in a given area [18–20]. It is a critical component of CRNs and
can be used to optimize the use of available spectrum resources. The idea of REMs dates
back to the early 2000s when CR was emerging as a new technology for improving spectrum
utilization [21]. REM technology is based on the concept of using sensors to monitor the RF
environment in a given area and then creating a map of the spectrum use in that area. The
map can then be used by CR devices to make decisions on which frequency bands to use and
how to optimize their transmissions.

REM assists in making better use of geolocation information, such as the efficient use of
spectral resources in wireless communication systems. It is also defined as a database with
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geo-located information applied to dynamic spectrum access in CR systems. REM can be
used to make decisions in a variety of applications, including coverage optimization [19],
resource allocation [22], interference analysis [23], location estimation [24][25], and so on.
The development of REM technology has played a significant role in advancing the field of
CR and improving the efficiency and reliability of wireless communication systems.

Crowdsourcing has emerged as a popular approach to data collection and analysis,
leveraging the power of the crowd to complete complex tasks efficiently and accurately
[26]. In wireless communication systems, crowdsourcing can be applied to construct
REMs, which provide information about the propagation of radio signals in a given area.
Crowdsourcing REM construction involves the participation of multiple terminals in the area,
which collaboratively gather data and transmit it to a central server for processing. By pooling
data from multiple sources, the resulting REM can provide a more accurate representation of
the wireless environment. However, the open nature of crowdsourcing introduces security
threats, such as the intentional or unintentional falsification of data by malicious terminals
[27]. To address this issue, secure crowdsourcing REM construction methods need to be
studied.

1.1.3 Security issues faced by CRNs

SS is used for detecting the current band usage accurately in real-time, which is an
important aspect and a key prerequisite for CR implementation. While a single SU adopts
a specific method to detect the operating status of a particular PU in a certain frequency
band is called local sensing or independent sensing. The process of detection by multiple
SUs working and sharing the information together is called Collaborative Spectrum Sensing
(CSS), in which perceived limitations of individual users’ sensing can be effectively avoided.

However, the open nature of the wireless channel exposes CR networks to a number of
serious security threats. Besides facing some traditional security threats (like denial-of-service
attacks), the cognitive and intelligent nature for dynamic spectrum access also make CRNs
face some specific safety hazards and challenges. For example, Primary User Emulation
(PUE) and Spectrum Sensing Data Falsification (SSDF) attack [28]. Among them, SSDF
can have a serious impact on the CRNs through malicious users tampering with sensing
information, thereby blinding the fusion center and causing the database to make incorrect
global decisions. With their low-cost and high-reward attack modes, as well as their flexibility
and diversity of attack methods, the SSDF attacks have become a major component of
cognitive radio network attacks and be widely used and discussed. By simply tampering with
sensing information, global decisions can be influenced, which in turn can have a deleterious
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effect on the cognitive network. Hence, it is a big challenge for the effective defense against
SSDF attacks.[29]

1.2 Related Work

1.2.1 Spectrum sensing

CR is a wireless communication technology that enables dynamic spectrum access for
wireless devices to improve spectrum utilization efficiency. CR utilizes SS techniques to
detect and utilize the available spectrum in real-time. There are two main types of sensing
methods used in CR: local sensing and collaborative sensing.

1.2.1.1 Local sensing

Local sensing involves a single device that senses the spectrum locally and makes a
decision based on its own observations. This approach is simple and efficient, but may not
provide accurate results in dynamic environments or in the presence of hidden terminals.

Local sensing can be performed using different techniques, such as energy detection,
matched filtering, and cyclostationary feature detection [30–33]. Among them, energy
detection is a simple and widely used technique that involves measuring the energy level in
a particular frequency band and comparing it with a threshold to determine the presence
of a primary user signal [30][31]. Matched filtering, on the other hand, is a technique that
correlates the received signal with a known template or reference signal to detect the presence
of a signal with a specific waveform or modulation scheme [32]. Cyclostationary feature
detection is a more advanced technique that exploits the statistical properties of the primary
user signal, which exhibit periodicity in their auto-correlation and power spectral density
functions. Cyclostationary feature detection involves extracting specific features, such as
cyclic frequencies or correlation coefficients, from the signal and comparing them with a
threshold to detect the presence of a primary user signal [33].

Local sensing is efficient and does not require coordination with other devices, but it may
not provide accurate results in dynamic environments or in the presence of hidden terminals.

1.2.1.2 Collaborative sensing

Collaborative sensing (also cooperative sensing) is a technique in which multiple cognitive
terminals work together to sense the radio frequency spectrum. In collaborative sensing, each
terminal shares its sensing results with other terminals in the network, allowing the network
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to combine and aggregate the information from multiple terminals to make a more accurate
decision about the presence or absence of primary user signals in the spectrum. Collaborative
sensing can be classified into four categories: centralized, distributed, relay-assisted, and
clustering. [34–37]

Over them, the centralized and distributed networks are the widely used model. Centralized
collaborative sensing involves a Fusion Center (FC) that collects sensing reports from all
the terminals in the network and makes a final decision based on the aggregated data. In
this approach, the FC has complete control over the sensing process and can optimize the
sensing parameters and algorithms to improve the sensing performance. However, centralized
collaborative sensing has some disadvantages, such as high communication overhead, and
potential privacy concerns. Distributed collaborative sensing, on the other hand, involves each
sensing terminal making its own decision based on its local sensing results and sharing its
decision with neighboring terminals. In this approach, there is no FC controlling the sensing
process, and each sensing terminal can adapt its sensing parameters and algorithms based
on its own local environment. Distributed collaborative sensing has some advantages over
centralized collaborative sensing, such as low communication overhead, robustness against
node failures, and better privacy protection. However, distributed collaborative sensing may
suffer from inconsistency and lack of synchronization among the different terminals, which
can affect the overall sensing performance.

Additionally, decision fusion and data fusion are two different approaches to combining
the sensing data from multiple cognitive terminals to detect the presence or absence of
primary users in the spectrum. [38][39]

Decision fusion also called hard decisions, is a technique in which each cognitive radio
makes a binary decision (e.g., "signal present" or "signal absent") based on its local sensing
results, and a FC combines these binary decisions using a OR/ AND/ K out of N/ Majority
rule. The FC then makes a final decision about the presence or absence of a primary terminal’s
signal. Decision fusion can be more efficient in terms of communication overhead and delay
than data fusion, as it requires each cognitive terminal to transmit less information. However,
decision fusion may suffer from the limitations of individual sensing, as it does not take into
account the diversity and redundancy of the sensing results from multiple terminals.

Data fusion also called soft decisions, is a technique in which each cognitive terminal
reports its raw sensing data, such as the received signal strength or the spectrum occupancy,
to an FC. The FC then combines the data from all the cognitive terminals using techniques
such as maximum likelihood estimation or Bayesian inference to make a decision about
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the presence or absence of a primary terminal’s signal. Data fusion can provide a more
accurate and reliable decision than individual sensing, as it takes into account the diversity and
redundancy of the sensing results from multiple terminals. However, data fusion requires each
cognitive terminal to transmit more information, which may cause higher communication
overhead and delay.

The choice between decision fusion and data fusion depends on various factors such as
the network topology, the sensing technologies, and the computational capabilities of the
CRNs. Data combination can provide more accurate and reliable results, but it requires more
communication overhead and computational resources. Decision combination, on the other
hand, is simpler and more efficient, but it may suffer from low accuracy and reliability due to
the diversity of the sensing results from different cognitive terminals.

1.2.2 Spectrum sensing data falsification attack

When several secondary terminals are involved in CSS, detection accuracy is improved;
nevertheless, when terminals accidentally or maliciously broadcast false sensing data to the
database during collaboration, it may lead to bad global decision-making [28]. This CSS
assault is also known as the SSDF attack, and it has a devastating effect on the accuracy of
collaborative detection [29].

Consequently, it is crucial to implement sufficient security measures in a wireless envi-
ronment plagued by malicious terminals. In most cases, there are three broad categories into
which current solutions might be placed. In the first category, false spectrum measurements
are isolated using statistical anomaly detection and removed. The evidence theory-based
CSS approach proposed by Han et al. as a defense against the SSDF assault in reference
[40]. This technique assesses the evidence’s credibility by its degree of resemblance and
filters out any pieces of evidence that have a low similarity degree. In [41], a Bayesian-based
approach was proposed for determining the credibility of spectrum sensing reports and
filtering out those that could be inaccurate. As the second category, references like [42]
and [43], as well as reference [44], which proposed a partitioning around medoid algorithm
to cluster and reputation adjust the terminals to improve sensing. In this category, the
database monitors long-term behaviors using a reputation system to distinguish the malicious
terminals. FastDtec, described in [45], is a trust assessment technique developed to counter
both collaborative and independent attacks. The third category employs machine learning
techniques to identify valid measures from malicious ones. Spectrum readings were classified
as valid or invalid using a Support Vector Machines (SVM) based approach, as cited in
reference [46]. A Joint spectrum sensing and resource allocation (JSSRA) strategy, which is
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itself a learning process using the trust degree combination approach to resist assault, was
presented in the [47].

1.2.3 Radio environment map

In order to enhance the accuracy of the spectrum estimation, one simple method is using
the REM construction to refine a primary terminal’s coverage map. REM is a map that
describes the radio activities of primary users, the REM includes the received signal strength
(RSS) of primary users at different locations of interest, which can be directly measured
through spectrum sensing or estimated using appropriate statistical spatial interpolation
methods.

REMs have seen a recent uptick in popularity for use in wireless communication systems
[18–20]. Effective use of spectrum resources in wireless communication networks is one
example of how REMs improve geo-location data use. They are also understood as geo-spatial
databases used for cognitive radio systems’ dynamic spectrum access. The accumulated
measurement data may be used to generate an REM that displays the typical received power
at each location. Having access to this information allows us to make accurate predictions
about the local radio environment, such as cellular network coverage and Wireless Local
Area Network (WLAN) communication quality [48][49]. Decision-making using REMs is
possible in many contexts, such as optimization of coverage [19], allocation of resource [22],
analysis of interference [23], and estimation of location [24, 25, 50].

One of the key benefits of REM is that it allows cognitive terminals to operate more
efficiently and reliably in dynamic and uncertain radio environments. By providing accurate
information about the radio environment, REM enables cognitive terminals to adapt their
behavior, avoiding interference with other users and maximizing spectral efficiency. REM is
also important for ensuring spectrum sharing and coordination between different users and
applications, as it provides a common reference point for all parties involved.

The well-known method of spatial interpolation known as Ordinary Kriging is capable of
exactly obtaining a REM value. Ordinary Kriging was used by Phillips et al. [51], in order
to figure out how well a WiMAX network operating at 2.5 GHz would cover a university
campus in the United States. Additionally, a study in [52] revealed how the accuracy of
the Television White Space (TVWS) geo-location database could be improved by using
Ordinary Kriging to anticipate the primary user’s signal intensity from a very small number
of samples. This research was released to show how the accuracy of the database might
be raised. Another piece of measurement study conducted in Seattle, Washington in [53]
reinforces the benefits of Ordinary Kriging over model-based prediction approaches such as
the Longley-Rice model, FCC F-Curves, and k closest neighbor.
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Since the accuracy of the REM can improve the efficiency of the spectrum directly, the
accuracy of the measurement data is significantly important.

1.2.4 Challenges

It is widely known that statistical spatial interpolation techniques, such as Ordinary
Kriging, are sensitive to outliers, which may be induced by masking or cheating. All existing
works in the REM-related studies use the premise that all data can be trusted, but none of
these works really prove this claim. The evidence shown in [54], that the precision of the
prediction may be impacted even by a small quantity of inaccurate data.

Additionally, the goal of REM construction is to estimate the Received Signal Strength
Indicator (RSSI) of the primary terminal at the area of interest, so the method to estimate
the RSSI at a certain location under a threatening environment needs to be studied. The
secure mechanisms in CRNs intend to detect whether or not the primary terminal exists at
the location of interest, which is not suited for REM construction problems.

Accordingly, improving communication quality by constructing an accurate REM under
attacks, is a problem that needs to be addressed.

1.3 Contributions

The ever-growing demand for high-speed and reliable wireless communication has led to
an increasing number of wireless networks in recent years. However, wireless networks are
easy to be affected by various security threats, such as a wide variety of data falsification
attacks. Therefore, it is crucial to develop effective security mechanisms to ensure the
authenticity, stability, and availability of wireless networks.

To address the above issues, we propose novel algorithms and systems to improve the
performance and security of wireless networks. Specifically, we consider the scenarios when
the data size is sufficient and insufficient conditions separately, and give different solutions
to them. We introduce the Double-Layer Monitor (DLM) algorithm under the sufficient
data condition. Additionally, the Kriging-based Trust Nodes Aided Radio Environment Map
construction (KTNA-REM) algorithm to an insufficient condition, which can effectively
identify malicious nodes, and avoid their impact. Also, the improved KTNA system, which is
called KTNA+ system can estimate channel conditions accurately. Our contributions can
provide valuable insights into enhancing the performance and security of wireless networks
and benefit their development.
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1.3.1 An improvement of security scheme for REM construction under
massive attacking

In Chapter 3, during the process of creating the REM, we offer a technique for anti-
malicious terminals that utilizes information depending on its physical location. The following
are some of the contributions that this chapter makes:

• By using similarity comparison and sustainable monitor, we propose a DLM algorithm
to identify malicious terminals. Also, the reward-penalty function of DLM algorithm
is optimized in order to make it more efficient.

• In order to improve the network functionality, we suggested to use a DLM that is based
on spatial information methods. These algorithms include inverse distance weighting
(IDW) and spatial correlation.

• In order to thoroughly assess the performance of our algorithms, their error performance
under the optimal attack strategy (strongest attack) is investigated.

1.3.2 Kriging-based trust nodes aided REM construction method

In Chapter 4, in order to create a radio map with high accuracy using a small number of
terminals in a threatening environment, we present a KTNA-REM algorithm. KTNA-REM
is a real-time constructing method that removes the less trustworthy data from the dataset and
keeps the most trustworthy data after each sensing slot. The simulation results demonstrate
that the KTNA-REM maintains consistent performance in the face of a variety of threats.
This chapter makes the following contributions:

• To mitigate the effects of malicious nodes, we present the KTNA-REM technique, in
which we set a small amount of the trust nodes in the interested communication area.

• The accuracy of REM has been greatly enhanced by establishing the trustset, which
was enhanced by analyzing the accumulative total reputation. The problem of low
precision caused by a lack of data for sensing has been addressed.

1.3.3 An improved Kriging-based radio environment map construction
and channel estimation system in threatening environments

In chapter 5, to get closer to a high-precision radio map while employing a limited number
of terminals under attacking, we improved our KTNA-REM generation technique into a REM
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construct and channel estimate system named as KTNA+ [55]. The KTNA+ is a channel
estimate system and REM construction system based on the KTNA algorithm. The map
is dynamically updated by the system. The simulation results demonstrate the system’s
consistent operation in the face of a variety of threats. This chapter makes the following
contributions:

• This is a novel and challenging study designed to estimate channel information based
on REM construction data in threatening environments.

• We present an improved version of the KTNA algorithm. The influence of malicious
terminals may be mitigated by automatically collecting a limited group of trust nodes.
In addition, the reboot phase allows it to efficiently remove faulty data and restart the
system at the appropriate moment.

• We discuss the architecture of the KTNA+ system, which, using the KTNA algorithm
as a foundation, can accurately generate a REM based on the estimation of the channel
state, including the average path-loss and the influence of shadowing. The exhaustive
simulation results verified the effectiveness.

REM is essential for assessing the wireless environment and enhancing the quality
of wireless communication to fulfill the ever-increasing demands. Nevertheless, when
implementing the technology in practical scenarios, like gathering data from different
mobile devices, it is challenging to ensure complete honesty from all users. Additionally,
preventing self-interested users from monopolizing spectrum resources or interfering with
the communication of primary users becomes a complex task. Our research specifically
addresses this aspect of the problem and significantly contributes to the extensive variety of
practical applications in the future.

1.4 Organization

This dissertation provides a study about the REM construction under attacking methods.
We introduce the related background and knowledge in Chapters 1 and 2. Next, Chapter
3 discusses how to improve the accuracy of constructing a REM with the interference of
malicious terminals affect with massive data. After we propose a trust nodes-aided method to
deal with the condition when the collected data is insufficient in Chapter 4. In Chapter 5,
we extend our algorithm to a comprehensive REM construction system, that can effectively
counter malicious terminals attacks and changes in the surrounding environment. Finally, the
conclusion and future works are list in Chapter 6.
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Chapter 1: Introduction In this chapter, we give an introduction about the background,
related works, and challenges. We summarize the conducted research contributions from
chapter 3 to 5 and the organization of this dissertation is also described in this chapter.

Chapter 2: System model In this chapter, we explain the specific operating system
models of spectrum sensing. Additionally, we introduce the basic database model and REM
construction model, which will be used in the later chapters. Moreover, we introduce sensing
security issues, which is the main concern in our research, especially, the data falsification
attack.

Chapter 3: An improvement of security scheme for REM construction under massive
attacking In this chapter, we introduce the DLM algorithm, based on the sufficient
collected data, by checking the similarity degree of the real-step information as well as
the historical performance, also the sustainable monitored reliability to distinguish the
malicious information, by flagging the malicious terminals to remove their information from
the database, thus effectively reduces the interference caused by the malicious terminals.
Additionally, we improve the DLM by combining with spatial information, including DLM
based on spatial correlation and DLM based on IDW. Finally, an optimal attack (strongest
attack) under the given secure algorithm is presented.

Chapter 4: Kriging-based trust nodes aided REM construction method The above
chapter mainly considers when the collected data is sufficient, in this chapter, we introduce a
new scheme, to construct the REM based on the insufficient dataset. By adding a small amount
of trust nodes, against the malicious terminals attack, the real-time and the accumulative
total reputation need to be checked in our algorithm. Based on the kriging interpolation,
the accuracy of REM construction increased a lot. By adapting our method, it is able to
guarantee REM accuracy and network security when the data is insufficient.

Chapter 5: A kriging-based REM construction and channel estimation system in
threatening environments The above chapters mainly construct the REM under a stable
surrounding environment. In this chapter, we expand our algorithm to a REM construct
system, which considers the changes in the environment to reboot the system. Also, we give a
channel estimation solution including the estimation of the average path-loss and shadowing
impact under the threatening environment. Based on this, we constructed the REM and
adjusted the REM with the adjusted error support, to achieve a high-quality REM under the
threatening environment.
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Chapter 6: Conclusions and future scopes In this chapter, we give the conclusions of this
dissertation. Additionally, we discuss the future scopes based on our study in this chapter.



Chapter 2

System Model

To enhance communication quality, REM proves invaluable by effectively estimating the
surrounding environment through the aggregation of sensing reports obtained from various
terminals. This data is systematically collected and stored in a comprehensive database,
enabling the construction of an accurate REM. By leveraging this resource, communication
networks can adapt and optimize their performance, ensuring a more reliable and efficient
exchange of information in response to the ever-changing radio conditions.

In this chapter, first introduces the sensing model, database model and REM construction
model are explained next, and finally discusses the sensing security issues in the CRNs.

2.1 Sensing Model

Spectrum sensing is the cornerstone of cognitive wireless networks towards practical
applications, while sensing performance is the basic indicator of sensing effectiveness. How
to design an effective and reliable sensing network has become a hot research topic and focus
in academia.

2.1.1 Spectrum Sensing

Accurate detection of spectrum holes is the primary task for CR system implementation.
In order to accurately detect weak signals emitted by the PU, SUs must have high local
sensing sensitivity, and the binary assumption problem in spectrum sensing is modeled as
follows,

𝑥(𝑡) =

𝑛(𝑡), H0

ℎ · 𝑠(𝑡) +𝑛(𝑡), H1
, (2.1)
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where 𝑥(𝑡) is the received signal of the secondary terminal, 𝑠(𝑡) is the signal of the primary
terminals, 𝑛(𝑡) is the noise, and the ℎ is the channel gain, hypotheses H0 and H1 indicate
whether the sensing frequency band is idle or not, respectively.

Additionally, the detection probability 𝑃𝑑 , the false alarm probability 𝑃 𝑓 , and the miss
detection probability 𝑃𝑚 are important indices to evaluate the sensing performance. These
indices can be indicated as follows,


𝑃𝑑 = Pr(H1 |H1)
𝑃 𝑓 = Pr(H1 |H0)
𝑃𝑚 = 1−𝑃𝑑 = Pr(H0 |H1)

, (2.2)

where 𝑃𝑑 indicates the probability that the secondary terminal correctly detects when the
primary terminal is working, 𝑃 𝑓 indicates the probability that the secondary terminal falsely
detects that the primary terminal exists when the primary terminal is not working, and 𝑃𝑚

indicates the probability that when the primary terminal is working, however, the secondary
terminal judges the channel condition as idle.

2.1.2 Detection methods

As a basic element of a cooperative sensing system, local sensing by a single node can
be divided into two types from the perspective of signal detection technology: coherent
sensing and non-coherent sensing. The classification is based on whether prior knowledge
of PU signals is required. The frequency bandwidth of the detection object is divided into
narrowband and wideband. The overall classification diagram is presented in Fig.2.1.

Figure 2.1 Sensing classification diagram.
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Since the accuracy of spectrum sensing is very critical to the cognitive network, accurate
sensing results are the prerequisite for ensuring the stability of the cognitive network. High-
precision sensing results can improve the capacity and stability of the cognitive network.
Conversely, low-precision sensing results will cause great waste, interference and even
damage to the network. In this dissertation, we mainly used Energy detection.

Energy detection is a commonly used technique for spectrum sensing in CRNs. It involves
measuring the energy of the received signal in a particular frequency band and comparing it
to a threshold value to determine the presence or absence of a primary user signal.

Given 𝑥(𝑡) is the signal to be detected, 𝑛(𝑡) is the white noise, for each sensing slot 𝑇 and
the detection bandwidth 𝑊 , the detection statistics Y can be demoted as follows,

𝑌 =

2𝑇𝑊∑︁
𝑘=1
|𝑥(𝑘) |2, (2.3)

where 2𝑇𝑊 is the time-bandwidth product. Then we compare the detection statistics 𝑌 with
the given threshold 𝜆, if 𝑌 > 𝜆, then we judge the primary terminal is working, otherwise,
we consider the certain band is idled. The energy detection principle block diagram is like
Fig.2.2 shows.

Figure 2.2 Diagram of energy detection.

The energy detection technique is simple and easy to implement, and it can be used with
a wide range of modulation schemes and signal types. However, it has some limitations,
such as sensitivity to noise and interference, and the requirement for accurate estimation of
the noise power. These shortages can be improved by using collaborative sensing or using
adaptive thresholding.

Indeed, energy detection is a valuable technique for spectrum sensing in CRNs, and its
performance can be improved by combining it with other techniques or by using adaptive and
intelligent sensing algorithms. Because it is simple and easy to implement, most collaborative
spectrum sensing uses energy detection for local spectrum sensing.

2.1.3 Network architectures

According to the differences between the sensing nodes interacting with the information
in CRNs, the network architectures usually can be classified as centralized, distributed,
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(a) (b)

(c) (d)

Figure 2.3 Collaborative spectrum sensing mechanisms: (a) Centralized. (b) Distributed. (c)
Relay-assisted. (d) Clustering.

relay-assisted, and clustering networks as Fig.2.3 shows. The centralized networks represent
the cognitive radio terminals that upload all sensed information to the database, and the
database collects and merges all the received information to make the final global decision,
the schematic diagram is as Fig.2.3(a). For the distributed networks as Fig.2.3(b), they do not
have a control center or coordination process, all the sensing nodes have the same weight in
the networks, after sensing they exchange information with each other, and make a global
decision together. In a relay-assisted CRN as Fig.2.3(c), the sensing nodes communicate
indirectly, through one or more relay nodes, instead of communicating with the database
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directly. The relay nodes can be either dedicated or opportunistic, depending on whether they
are specifically deployed for relaying or opportunistically take advantage of their location
and sensing capabilities to assist in the transmission. Considering a large number of sensing
nodes in the CRN, the clustering network like Fig.2.3(d), divides all the sensing nodes into
several clusters, and each cluster has a head node that collects and processes the data reported
from other nodes in the same cluster (the process of combining data within each cluster
is equivalent to centralized network), and then reports the processed results to the center
for a final decision. In this dissertation, we choose centralized network architecture, which
means combining sensing results from multiple cognitive radio nodes in one fusion center
(database), with the key objective of making accurate global decisions.

2.2 Database Model

In this section, we introduce a novel concept of a spectrum database that can be used to
achieve fully efficient spectrum sharing. The database for a REM can be used by cognitive
radio devices, for example, mobile phones or vehicles, to make decisions about how to adjust
their transmission parameters to optimize their performance while avoiding interference to
other devices.

The REM database can be created by combining the sensing and modeling techniques
together. The database can be generated by collecting data about the RF environment from
the cognitive radio devices and the estimated performance of the un-sensed locations.

Figure 2.4 A concept of the centralized spectrum database.
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Figure 2.5 A concept of the distributed spectrum database.

The database can be either centralized or distributed, depending on the particular
implementation. In a centralized REM database, all cognitive radio devices connect to a
central server to report and access the data, as Fig.2.4 shows. In contrast, each device in a
distributed database keeps a copy of the database and occasionally updates it using data from
its own local sensors as Fig.2.5 shows, each terminal has the information from the database,
and then will update its own datasets based on their own movements and measurements.

In this research, we use the centralized spectrum database in Fig.2.4. The terminals
collect data by measuring the received signals from primary users. The collected data is
location-specific and reported to the database, the reported dataset can be Table 2.1. Once
enough data is gathered, the database estimates the radio environment characteristics of
the PUs through statistical processing using the large dataset. And then the terminals can
connect to the database via a wireless access point, such as a cellular network, to learn the
radio environment around them and adjust their communication parameters, in order to avoid
disturbing the primary terminals’ communications.
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Table 2.1 Dataset information.

Item Type Size(Byte) Remarks
Measurement date datetime 8 YYYY/MM/DD hh:mm:ss

Transmission latitude double 8 Transmission latitude (◦)
Transmission longitude double 8 Transmission longitude (◦)

Reception latitude double 8 Reception latitude (◦)
Reception longitude double 8 Reception longitude (◦)

Center frequency double 8 Center frequency (Hz)
Received Signal Strength Indicator (RSSI) double 8 RSSI (mW)

Packet ID integer 4 -
Transmitter ID char 17 -

Receiver ID char 17 -
1Transmitter mesh code (10m) char 2 XXXX-XX-XX-XX-XX
Transmitter mesh code (5m) char 2 XXXX-XX-XX-XX-XX-XX
Receiver mesh code (10m) char 2 XXXX-XX-XX-XX-XX
Receiver mesh code (5m) char 2 XXXX-XX-XX-XX-XX-XX

Saved date datetime 8 YYYY/MM/DD hh:mm:ss
1 mesh code will be introduced in Section 2.3.3

2.3 REM Model

REM is a digital representation method which can provide the information including
the RF information at different locations and so on. It can be used in many different fields
including resource allocation, interference analysis, location estimation, optimization, etc.

2.3.1 Crowdsourcing

To determine the average values throughout the creation of the radio map, instantaneous
received signal power samples are necessary. The strong observation capability of the
spectrum analyzer makes it possible to precisely observe the instantaneous received signal
power. However, the analyzer always has a high cost, which means that it cannot be common
used in reality. In order to collect the received signal power samples at a cheap production
cost, a new measurement tool is needed.

In order to create a REM, one method known as "crowdsourcing" involves gathering
wireless signal data from a significant number of mobile terminals or other wireless sensors
placed throughout a certain area. For example, the smartphones. Due to their lower cost
and wide used, many researchers suggested to use them for measurement. This method
makes use of the common mobile devices to gather data and offers an affordable solution to
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get a complete understanding of the radio environment. The gathered information is then
combined and examined to create a REM that can be applied to various wireless applications.
Crowdsourcing enables the effective gathering of data from numerous sources across a big
geographic area. [26][56]

2.3.2 Data collecting

Figure 2.6 A concept of the conventional REM.

As crowdsourcing method we mentioned above, when the fixed transmitter sends a signal
in the interested area, the mobile terminals, like smartphones, collect data and store these data
at their own memory first. After a certain time, like one day, each terminal reports the stored
dataset to the database. The database can receive massive data in a short time and then merge
all the reported dataset on the server, the database statistically processed these datasets, and
generate the REM. In this dissertation, we also consider when the mobile terminals do not
have enough memory, they report their received dataset more often, we discuss the method
for database construct REM based on such insufficient dataset in Chapter 4 and 5.

A concept of the conventional REM is shown in Fig.2.6. Several terminals are used to
collect the spectrum information in the communication area. The terminals’ location can
be obtained from Global Positioning System (GPS). Terminals can collect the information
including the terminal’s ID, location, time, frequency and power send to the database. The
database can be installed in the cloud or a base station which can store massive data and then
base on these datasets generate the REM.
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2.3.3 Mesh structure

The average received signal strength might not be precisely understood because the
instantaneous received signal power includes a multipath fading component. An evenly split
geographic area is referred to as a mesh, or some researchers also call it a grid. To counteract
the fading effects, the database first computes a mesh based on latitude and longitude. The
average received signal power is then calculated from each mesh’s instantaneous received
signal power samples.

Figure 2.7 Schematic representation of mesh codes based on JIS X0410.

We can use the codes to distinguish each mesh square as a distinct location based on
latitude and longitude. The codes are also helpful for mesh square statistics data analysis.
Mesh codes are depicted schematically in Fig.2.7. Grid square codes based on JIS X0410
[57], often known as Japanese Industrial Standard (JIS), are utilized. Grid square statistics
generation processes for both government of Japan statistics and industry applications are
defined by JIS X0410. In Japan, some statistical surveys, such as censuses, economic
surveys, and censuses, national land numeric information, facilities, natural environment and
land usage, etc. are provided by the Statistics Bureau, the Ministry of Internal Affairs and
Communications, the Ministry of Land, Infrastructure, Transport and Tourism [58].

As the JIS X0410, the codes are represented by numerical digits whose lengths are
determined by the geographic resolution, and their notation is "puqvrw". The "1st mesh
code" for "pu" is four numerical digits and an 80 km mesh square. Additionally, "puqv" is
known as "2nd mesh code," which divides "1st mesh code" into 8 equal parts of length and
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breadth (10km mesh square code) and is expressed by six numerical digits. Additionally,
"puqvrw" is known as "3rd mesh code," which divides "2nd mesh code" by 10 equally (1km
mesh square code) and is represented by eight numeric digits. The "Standard Area Grid"
is the common name for the 3rd mesh code [59]. Additionally, the conversion process is
indicated as follows,

𝑝 = ⌊latitude×60/40⌋ (p is two digits), (2.4)

𝑢 = ⌊longtitude−100⌋, (2.5)


𝑎 = (latitude×60/40−p) ×40

𝑞 = ⌊𝑎/5⌋ (𝑞 is a one digit)
, (2.6)


𝑓 = longitude−100−u

𝑣 = ⌊ 𝑓 ×8⌋ (𝑣 is a one digit)
, (2.7)


𝑏 = (𝑎/5− 𝑞) ×5

𝑟 = ⌊𝑏×2⌋ (𝑟 is a one digit)
, (2.8)


𝑔 = ( 𝑓 ×8− 𝑣)
𝑤 = ⌊𝑔×80⌋ (𝑤 is a one digit)

, (2.9)

where, ⌊⌋ denotes the floor function. The mesh size can be set as 10m, 5m, 2m, or 1m
depends on the required accuracy [60].

2.3.4 Data processing

The database initially gives a mesh code to the received dataset based on the location
information. The database manager determined the mesh size throughout this procedure. The
average received signal power is then calculated for each divided mesh using the formula
below,

�̄�𝑚 =
1
𝑁𝑚

𝑁𝑚−1∑︁
𝑖=0

𝑃𝑚,𝑖 [mW], (2.10)
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where, �̄�𝑚 denotes the average received power in the 𝑚-th mesh, 𝑃𝑚,𝑖 [mW] indicates the 𝑖-th
data information in the 𝑚-th mesh. 𝑁𝑚 represents the number of received information in the
𝑚-th mesh.

2.4 Sensing Security Issues

Compared to traditional wireless networks, cognitive wireless networks are different
in their mode of operation and network architecture, therefore face unique security issues.
Due to the difference in priority between primary terminals and secondary terminals for
spectrum resource utilization, malicious attack nodes are able to gain access to launch attacks
on dynamic spectrum access links during the spectrum sensing part.

2.4.1 Attacking classification

Although CRNs hold the potential to enhance spectrum utilization, increase network
capacity, and reduce interference, they are not immune to security threats and attacks that can
compromise their functionality and performance. Such attacks can target various aspects of
CRNs, including spectrum sensing, allocation, access, sharing, and mobility. These attacks
can significantly impact the network performance and pose substantial challenges to the
design and deployment of secure CRNs. Figure 2.8 illustrates the different classes of attacks
in CRNs. This dissertation specifically focuses on data falsification attacks on spectrum
sensing, aiming to find effective ways to counter their impact on cognitive radio accuracy.

Figure 2.8 Diagram of attacks in CRNs.
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Above all attacking methods, SSDF can have a serious impact on the CRNs through
malicious users tampering with sensing information, thereby blinding the fusion center and
causing the database to make incorrect global decisions. With their low-cost and high-reward
attacking modes, as well as their flexibility and diversity of attacking methods, the SSDF
attacks have become a major component of cognitive radio network attacks. By simply
tampering with sensing information, global decisions can be influenced, which in turn can
have a deleterious effect on the cognitive network. Hence, it is a big challenge for the effective
defense against SSDF attacks. In our research, we investigate different algorithms to resist
SSDF attacks in order to maximize the accuracy of the global results.

2.4.2 Time and spatial domain attack

Time domain approaches primarily aim to comprehend the temporal attributes of signals,
encompassing their duration, timing, and temporal fluctuations. Time-domain spectrum
sensing methods analyze the amplitude and timing characteristics of signals to ascertain their
existence or absence within a specific frequency range. Energy detection, cyclostationary
feature detection, and matched filter detection all belong to the time domain sensing.

A time domain attack in spectrum sensing involves manipulating the temporal charac-
teristics of signals to deceive or disrupt the spectrum sensing process. Attackers may use
techniques such as jamming, altering signal timings, or introducing false temporal patterns to
mislead cognitive radios in their perception of spectrum occupancy. SSDF attack which we
will introduce in Section 4.2.3 falls into the time domain attack.

In contrast, the spatial domain in spectrum sensing refers to the use of multiple antennas
or spatial information to analyze signals. Spatial domain techniques involve examining the
spatial characteristics of signals, including their direction of arrival, and interference patterns.

A spatial domain attack in spectrum sensing could involve manipulating the spatial
characteristics of signals to deceive or disrupt the sensing process. For example, an attacker
might deploy directional jammers to interfere with signals in specific spatial directions or
attempt to create false spatial patterns to mislead the sensing system.

2.4.3 Data falsification attack

Cognitive radio is a technology that allows wireless communication devices to access the
idle radio spectrum dynamically, which is an effective way to improve spectrum utilization.
However, like any wireless communication system, cognitive radio networks are easy to be
attacked.
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Figure 2.9 Diagram of SSDF attack.

A data falsification attack is also called a Byzantine attack, which can cause massive
disruption to cognitive networks, based on the fact that CRNs rely on accurate sensing of the
radio spectrum to identify the spectrum conditions, to avoid interference with the licensed
users. SSDF attack can be carried out by one or a set of attackers who has the ability to
transmit signals on the same frequency bands as the cognitive radio network, they launch
false information to the database and can cause the database to make the wrong decisions
about the spectrum conditions. These attackers intentionally send error-aware reports to the
database in order to fulfill some of their selfish requirements, for example, to disturb the
licensed users’ communication or to occupy the idle band by themselves. The attackers, also
called malicious terminals, have some strategies to send the wrong information.

• Always Idle: The malicious terminals always send a lower report than the real received
signal power in a soft decision network. The same can be known, they always send Idle
condition to the database if they are in a hard decision network. By using this attacking
strategy, the malicious terminal even do not need to sense the channel, and their goal to
attack network is to lead a big interference to the primary terminals, as long as they
blind the database, they do not care about the real channel conditions.

• Always Busy: In contrast, the malicious terminals always send a higher report than the
real sensed power in order to blind the database as the channel is busy in every sensing
slot if they are in a soft decision network. Or they always send 1 to the database if they
are in a hard decision network. Different with the Always Idle attack, they should sense
the band although the malicious terminals always report the high power to the database.
Their goal to launch a Always Busy attack is to blind the database to make a wrong
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decision, and reduce the usage of the channel, then they can use the idle channel by
themselves.

• Always Opposite: In this attacking strategy, the malicious terminals need to sense the
channel and based on their real decision, rewrite their information and send to the
database. In this case, the reports from them are always wrong. Such strategy is highly
disruptive, but the malicious terminals are also relatively easy to be detected by the
system due to their constant error reporting.

• Hybrid attacking: Hybrid attacking is the attack method terminals combined different
strategies together to protect themselves and attack the network. In this strategy, some
slots the malicious terminals send the correct information and some slots they choose to
attack. When they choose to attack, the attacking strength also can be different. Since
attacks by malicious users are variable, it is difficult for the system to detect them.

In our research, we assume that there are malicious terminals present in the communication
environment. These terminals can compromise the integrity of the REM by manipulating the
sensing power of the spectrum and submitting false power information to the database. Such
erroneous data can result in significant errors in the REM, which could potentially serve the
selfish interests of the malicious terminals.

Here, we present the hybrid attack model as follows: malicious terminals alter their data
by comparing it to the 𝜅 power threshold. If the sensing power of the malicious terminal
exceeds the threshold in each sensing position, the sensing power is rewritten by multiplying
the attack index with the probability 𝑃𝑎 and the incorrect dataset is reported to the database.
If not, malicious terminals will transmit the correct dataset to the database. Following is the
reported strength of the malicious terminal:

𝑃′(𝑠𝑖) =


𝑃(𝑠𝑖) · 𝛿, if 𝑃(𝑠𝑖) > 𝜅 with 𝑃𝑎

𝑃(𝑠𝑖) · 𝛿, if 𝑃(𝑠𝑖) < 𝜅 with 𝑃𝑏

𝑃(𝑠𝑖), otherwise

, (2.11)

where 𝛿 represents the attacking index, and 𝑃𝑎 and 𝑃𝑏 represents the attack probability over
or lower than the threshold, respectively. If 𝛿 > 1, the attacking strength increases with the
attacking index, if the attacking index 0 < 𝛿 < 1, the attacking strength decreases as the
attacking index increases.

Fig. 2.10 shows the normalized Mean of Absolute value of Errors (MAE) and the Root
of the Mean of the Square of Errors (RMSE) under different attacking index 𝛿 ∈ [0.3,1.6],
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also we set the number of malicious terminals increased from 0 to 90 out of 100 in total.
In the figure, the legend means the MAE or RMSE under different attacking indexes, for
example, the first legend means the MAE curve when the attacking index is equal to 0.3.
The figure shows that when the attacking index 𝛿 is approached to 1, the MAE and RMSE
decreased, otherwise the error increased. Additionally, when the number of malicious
terminals increases, the error also increases.

Figure 2.10 Effect on data falsification attack.

2.5 Chapter Summary

In this chapter, we introduced various models. The chapter begins with the introduction
of spectrum sensing models and techniques, which involve network architectures usually
used. Additionally, the database model, which is used to manage spectrum usage information,
is introduced. Lastly, the REM model, which is used to simulate the radio propagation and
interference effects in the cognitive radio network, is discussed. Finally, the chapter also
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addresses the sensing security issues that arise due to malicious terminals attempting to
disrupt the sensing process or occupy the idle channel by themselves.



Chapter 3

An Improvement of Security Scheme for
REM Construction under Massive
Attacking

Radio Environment Map is a popular method to estimate the communication area.
However, the open characteristic of the wireless communication network always faces some
threats. To construct the radio map, usually we split the map into several small meshes, the
terminals which are located in the same mesh make the contribution on estimate the average
power of the mesh. Since it is very difficult to get the ground truth information, in this
chapter, we use the average power as the ground truth. However, although several terminals
work together to construct the part of the mesh, the database is still easy to be cheated by the
malicious terminals cheating.

The arrangement of chapters as follows: Section 3.1 introduces the background of our
study, section 3.2 explains the system models, and the implementation framework of our
proposed method is discussed in section 3.3. The attacking strategies in this chapter is shown
as section 3.4. Finally, the simulation results are shown at section 3.5, and finally, the chapter
summary is in section 3.6.

3.1 Background

The REM can be used to manage inter-transmitter interference by storing and analyzing
extensive information, such as the mean received signal power within the communication
area. By analyzing the measurement datasets, an estimate of the average received signal
power can also be obtained. In the case of TVWS systems, the REM, which is stored in



32 An Improvement of Security Scheme for REM Construction under Massive Attacking

the spectrum database, is used by SUs to identify available white spaces and allowable
interference power. According to [20], an effective spectrum-sharing system can be achieved
through the utilization of REM.

The REM generation process necessitates the utilization of environmental information
sourced from a database. Terminals are positioned at random within the communication area
and record several details including received signal power, terminal ID, and location, among
others. To construct REM, a sufficient dataset from the communication area is necessary.
Hence, the precision of the terminal-reported information is vital for REM, and the accuracy
of REM construction serves as a crucial metric that directly impacts spectral efficiency.

In [23], REM was created without taking into account its shadowing impact. Reference
[61] modeled spatial spectrum sharing over log-normal channels, and the results indicated
that the Kriging-aided method can simplify the model. In [62], a neural network was utilized
to enhance accuracy for both fixed and distributed transmitter systems. REM can be generated
using experimental measurement datasets. References [63][64] constructed a model for a
distributed transmitter system, analyzed the frequency correlation of shadowing, and modeled
the V2V communication environment using measurements.

One approach for producing REMs involves utilizing data from terminals within the
communication area. The accuracy of these REMs relies heavily on the quality of the received
data. However, if there are malicious terminals present in the area, they can manipulate
the data and upload incorrect information to the database, attempting to deceive the system
for their own benefit. As reported in [45, 65, 66], known as data falsification attacks, these
types of attacks are common in the spectrum sensing field, and there are various examples
of them, including always present, always absent, and always opposite attacks. Malicious
terminals may also work independently or collaboratively to perform attacks [45]. Various
methods have been proposed to address these attacks, such as using optimal likelihood ratio
tests [67] or a penalty-based Dempster-Shafer theory of evidence to deal with uncertainty
representation [68–70]. However, when the number of datasets is limited, especially after
removing malicious terminals, the REMs may not be accurate enough. To enhance the
precision of the REMs, researchers have demonstrated that shadowing in the communication
area exhibits spatial correlation, and the interpolation method can be employed to estimate
unknown points’ data [71–73].
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(a) Without malicious terminals (True Map) (b) With malicious terminals (Fake Map)

Figure 3.1 A concept of the conventional REM.

3.2 System Description

3.2.1 REM model

To create a REM for the communication area, we assume the utilization of multiple
mobile terminals for gathering spectrum information. These terminals are randomly placed
based on their movements. As stated in [61], they can gather information and transmit it to a
database, which may be located in the cloud or base station, capable of storing substantial
amounts of data. Once the database obtains adequate information from the terminals, it can
construct a REM. Our research only considers information such as the terminal ID, location,
and received signal power. The received signal power is used to construct the REM since
mobile terminals can quickly obtain it. For example, a smartphone can use the API of the
Android OS to obtain the received signal power of the cellular system and WLAN. Hence, the
measurement cost of received power is low. Fig.3.1 depicts the conventional REM concept.

In order to mitigate the effects of small-scale fading, we divide the communication area
into several two-dimensional meshes. We compute the average power of each mesh using
data collected from within it. When the mesh size is small enough, shadowing effects can
be disregarded and the accuracy of the REM can be enhanced. Nonetheless, in cases where
there are malicious terminals present in the communication area, the REM’s accuracy can be
compromised by the transmission of malicious information, which means the constructed
map may have big differences between the real condition due to the effect caused by the
malicious terminals. To address this issue, it is necessary to develop an algorithm that can
discern between valid and malicious information from such terminals, as stated in [74].
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3.2.2 Attacking model

In the communication environment, we take into account the presence of malicious
terminals that may try to attack the database. Their goal is to satisfy their own interests, such
as interfering with primary terminal frequency bands or monopolizing free frequency bands.
To construct REM, it is necessary to collect the received signal power from mobile terminals
distributed in space and calculate the average power of each mesh. However, the accuracy
of REM can be compromised by an efficiency attack known as data falsification, which can
cause damage to the system.

Data falsification attacks, also known as Byzantine attacks, involve terminals that
maliciously alter the data they sense from the spectrum in order to deceive the database.
Previous research, such as [65], has presented examples of this type of attack. In this study,
we assume malicious terminals modify their data by comparing it with a power threshold
𝜅. During each sensing slot, if the sensing power of the malicious terminal surpasses the
threshold, they rewrite the sensing power by multiplying a specific factor 𝛿 (known as the
attacking index) with the probability 𝑃𝑎, and report the false data to the database. Conversely,
if the sensing power is below the threshold, the malicious terminals report the correct dataset
to the database. The reported power of a malicious terminal is calculated as follows,

𝑃′(𝑖) =

𝑃(𝑖) · 𝛿, if 𝑃(𝑖) > 𝜅 with 𝑃𝑎

𝑃(𝑖), otherwise
, (3.1)

If 𝛿 > 1, the attacking strength increases with the attacking index, if the attacking index is
0 < 𝛿 < 1, the attacking strength decreases as the attacking index increases. The concept of
REM damage from a data falsification attack is shown in Fig.3.1(b).

3.3 Sensing Scheme Against Data Falsification Attack

This section considers the scenario where multiple terminals move randomly within a
communication area, and they transmit information directly to the database, or after rewriting
it. The database accumulates data over multiple time slots, resulting in a large amount of
stored data. To improve the performance of the REM, a technique called Double-Layer
Monitor mechanism is proposed, which identifies and eliminates malicious terminals and
their corresponding data from the database.
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3.3.1 Double-layer monitor (DLM)

Numerous security issues plague wireless communication networks with an open charac-
teristic, the Double-Layer Monitor technique is proposed as a way to improve the estimation
accuracy of REM. We configure the weight allocation component to enhance the performance
of malicious terminal evaluations. The DLM consists of two layers: the similarity comparison
method and the sustainable monitor.

3.3.1.1 Similarity comparison (first layer)

In order to detect malicious datasets within the database, we examine the possibility of
determining their similarity in the initial layer. This involves computing the similarity degree
between every pair of datasets located within the same mesh. If the mesh is of a small enough
size, the shadowing index can be regarded as uniform throughout the mesh. This means that
terminals within the same mesh will only experience differences in path loss and fading. If
the mesh size is small, the path loss values are also similar, therefore, it is reasonable to use
the similarity degree as an indicator to identify malicious datasets.

During their movements, the malicious terminals carry out attacks on the data by rewriting
the information they receive and sending false information to the database. As a result, even
when located in the same place, the data from the malicious terminals differ from those of the
honest terminals, which would normally differ due to fading. We determine the similarity
between pairs of data and compare them. If the terminals exhibit a high degree of similarity,
we conclude that they are likely to be honest terminals. Conversely, if the similarity degrees
are low, we consider them to be malicious.

The equation for calculating the similarity degree is calculated as follows,

𝑠𝑖𝑚(𝑖, 𝑗) = 𝑚𝑎𝑥(𝑃′(𝑖), 𝑃′( 𝑗))
1
2 (𝑃′(𝑖) +𝑃′( 𝑗))

, (3.2)

where 𝑖 and 𝑗 indicate different reports in one mesh. The following similarity matrix can be
constructed for the received signal strength across the entire mesh.

𝑆𝑖𝑚 =



1 · · · 𝑠𝑖𝑚(1, 𝑗) · · · 𝑠𝑖𝑚(1, 𝑛)
...

...
...

...
...

𝑠𝑖𝑚(𝑖,1) · · · 1 · · · 𝑠𝑖𝑚(𝑖, 𝑛)
...

...
...

...
...

𝑠𝑖𝑚(𝑛,1) · · · 𝑠𝑖𝑚(𝑛, 𝑗) · · · 1


, (3.3)
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then, the support level of each data can be calculated as follows,

𝑆𝑢𝑝(𝑖) =
𝑛∑︁
𝑗=1

𝑠𝑖𝑚(𝑖, 𝑗) 𝑗 ≠ 𝑖 𝑖, 𝑗 = 1 · · ·𝑛, (3.4)

consequently, the terminal 𝑖’s reliability can be achieved by normalizing the support as
follows:

𝑅𝑒𝑙 (𝑖) = 𝑆𝑢𝑝(𝑖)
𝑚𝑎𝑥(𝑆𝑢𝑝(1), 𝑆𝑢𝑝(2), · · · , 𝑆𝑢𝑝(𝑛)) . (3.5)

The similarity comparison method is like Algorithm 1 represented below, where 𝑚 =

1,2,3, ..., 𝐷 represents the mesh number, and we presume there are a total of 𝐷 meshes
separated from the communication area. 𝑖 = 1,2,3, ..., 𝑁 represents the number of reports,
and we presume that each mesh contains 𝑁 reports. HT andMT denote, respectively, the
set names of honest terminals and malicious terminals. 𝛼 represents the similarity threshold;
if 𝑅𝑒𝑙 (𝑖) is greater than 𝛼, the terminal is deemed trustworthy; otherwise, it is malicious.

In cases where malicious datasets make up a significant portion of the datasets within
a mesh, relying solely on similarity degree to determine reliability may not be effective in
removing them. Additionally, if malicious terminals engage in dynamic attacks by changing
their attack patterns, constantly resetting the threshold during their movement may not be a
practical solution. To tackle this issue, a sustainable monitoring approach is being considered.

3.3.1.2 Sustainable monitor (second layer)

As noted previously, depending on only a similarity comparison is insufficient to eliminate
malicious data from the power fusion. In order to address this issue, we explored the
possibility of utilizing a sustainable monitor to improve performance. A sustainable monitor
employs terminal ID information and monitors the terminal’s behavior as it transitions to
another mesh network. This enables ongoing evaluation of reliability, and if a terminal’s
behavior is consistently flagged as malicious, all data associated with that terminal can be
removed from the database.

Real-step confidence When comparing the reported power to the average power after
power fusion in each mesh, the difference is known as the real-step confidence. We regard
the terminal to be confident if the difference is small; otherwise, we recommend lowering
confidence. The formula for the 𝐵𝑖𝑎𝑠 confidence index is as follows:
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Algorithm 1 Similarity Comparison
Require:

The parameters related to the Database, such as 𝑃′(𝑖),HT ,MT , 𝛼, etc.
Ensure:

1: for Each mesh 𝑚 ∈ 𝐷 do
2: InitializeMT = 𝜙,HT = 𝑁 ,𝑃𝑎𝑙𝑙 = 0
3: for Each reported power in each mesh 𝑖 ∈ 𝑁 do
4: Calculate the similarity degree
5: Generate the similarity matrix
6: Calculate the 𝑆𝑢𝑝(𝑖) for each dataset
7: Normalization get 𝑅𝑒𝑙 (𝑖)
8: if 𝑅𝑒𝑙 (𝑖) ≥ 𝛼 then
9: 𝑃𝑎𝑙𝑙 ← 𝑃𝑎𝑙𝑙 +𝑃′(𝑖)

10: else
11: MT ←MT +{𝑖}
12: HT ←HT −{𝑖}
13: end if
14: end for
15: Calculate the average power 𝑃𝑚 =

𝑃𝑎𝑙𝑙

|HT |
16: end for
17: Generate the REM

𝐵𝑖𝑎𝑠(𝑖) = |𝑃′(𝑖) −𝑃 |, (3.6)

where 𝐵𝑖𝑎𝑠(𝑖) represents the absolute value of the difference between the reported power
from 𝑖-th terminal and the mesh average power.

Historical reliability Historical reliability records are gradually updated. When the
terminal’s historical reliability is less than the threshold, it is considered malicious, and all
data associated with that ID are eliminated from the power fusion.

𝐻𝑖𝑠𝑅𝑒𝐻𝑖 = 𝑙 ∗𝐻𝑖𝑠𝑅𝑒𝐻−1
𝑖 + (−1)𝑝𝑎𝑟𝑎 ∗Re(·), (3.7)

here, 𝐻𝑖𝑠𝑅𝑒𝐻
𝑖

denotes the 𝑖-th terminal’s historical record of reliability at the 𝐻 (𝐻 = 2,3,4, ...)
step.The influence of historical reliability may be thought of as impact factor 𝑙 pair, with
a bigger value of 𝑙 having a greater effect. The reward-penalty parameter, 𝑝𝑎𝑟𝑎 = 0,1,
indicates that the historical reliability should increase or decrease. When 𝐵𝑖𝑎𝑠 < 𝜁 , 𝑝𝑎𝑟𝑎 = 0,
the historical reliability increases. And decrease when 𝑝𝑎𝑟𝑎 = 1. Here, 𝜁 is the real-step
confidence threshold. By resetting the reward-penalty function Re(·), we are able to get a
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more accurate historical computation compared to our earlier study [74]. The 𝐵𝑖𝑎𝑠-related
fitting function is denoted by Re(·). It is expected that as 𝐵𝑖𝑎𝑠 climbs, 𝑅𝑒(·) will decline
slowly, but when 𝐵𝑖𝑎𝑠 ≥ 𝜁 , Re(·) will increase quickly.

Weight allocation Once we have computed the historical reliability, we modify the weight
assigned to each terminal accordingly. Terminals that exhibit greater reliability are given
higher weights, while those that do not are given lower weights. If a terminal’s weight falls to
zero, its reliability is also set to zero.

𝑤_𝐻𝑖𝑠𝑅𝑒𝐻𝑖 =
𝐻𝑖𝑠𝑅𝑒𝐻

𝑖

max(𝐻𝑖𝑠𝑅𝑒𝐻)
, (3.8)

here 𝑤_𝐻𝑖𝑠𝑅𝑒 represents the weight, and max(𝐻𝑖𝑠𝑅𝑒𝐻) represents the maximum 𝐻𝑖𝑠𝑅𝑒 for
all the terminals in the same mesh.

The DLM is like Algorithm 2 illustrated below. The parameter 𝛽 denotes the threshold
for historical reliability, and 𝐻 represents the step number of the terminal. By utilizing the
terminal ID data, we can continuously monitor the performance of the terminals as they
move, enabling us to evaluate their reliability constantly. This allows us to detect malicious
terminals even in cases of dynamic attacks (when malicious terminals alter their attacking
indexes while moving) or small-scale attacks. We can identify such malicious terminals
step-by-step based on their historical reliability and exclude them from the database.

3.3.2 DLM with spatial information

As previously mentioned, a DLM has the ability to detect and remove datasets transmitted
by malicious terminals from the power fusion. This can result in varying numbers of reports
for each mesh, not only due to the presence of malicious terminals, but also because of the
random movements of the terminals. The REM is generated by the database based on the
reports received from the terminals. In cases where there are insufficient datasets from a
particular mesh, the REM may deviate significantly from reality. By obtaining more reliable
datasets in the database, the accuracy of the REM can be improved in this collaborative
sensing network. Interpolation may be considered as a solution to address the issue of uneven
distribution of information across the meshes.

3.3.2.1 DLM based on spatial correlation

The exponential decay model is a widely recognized representation of the spatial
correlation of shadowing, and the correlation index can be defined as follows [75],
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Algorithm 2 Double Layer Monitor
Require:

The parameters related to the Database, such as 𝑃′(𝑖),HT ,MT , 𝛼, 𝛽, terminal ID, etc.
Ensure:

1: for Each reported power in each mesh 𝑖 ∈ 𝑁 do
2: InitializeMT = 𝜙,HT = 𝑁 ,𝑃𝑎𝑙𝑙 = 0,𝐻𝑖𝑠𝑅𝑒𝐻

𝑖
= 0.1

3: for Each terminal’s step 𝐻 do
4: Calculate the Similarity comparison get the 𝑅𝑒𝑙 (𝑖)
5: if 𝑅𝑒𝑙 (𝑖) > 𝛼 && 𝑤_𝐻𝑖𝑠𝑅𝑒𝐻

𝑖
≥ 𝛽 then

6: 𝑃𝑎𝑙𝑙 ← 𝑃𝑎𝑙𝑙 +𝑃′(𝑖)
7: else
8: MT ←MT +{𝑖}
9: HT ←HT −{𝑖}

10: end if
11: Calculate the average power 𝑃
12: Calculate the Real-step confidence 𝐵𝑖𝑎𝑠(𝑖) and 𝑝𝑎𝑟𝑎

13: Calculate the Historical reliability 𝐻𝑖𝑠𝑅𝑒𝐻
𝑖

14: Do the weight allocation
15: end for
16: Update the 𝐻𝑖𝑠𝑅𝑒𝐻

𝑖
and 𝑤_𝐻𝑖𝑠𝑅𝑒𝑖𝐻

17: Move to next step 𝐻← 𝐻 +1
18: end for
19: Generate the REM

𝜌𝑖 𝑗 =
𝐸 [𝑊 (𝑠𝑖)𝑊 (𝑠 𝑗 )]

𝜎2 = exp(−
Δ𝑑𝑖 𝑗

𝑑cor
ln2), (3.9)

where Δ𝑑𝑖 𝑗 [m] represents the distance between two different terminals 𝑖 and 𝑗 , and 𝑑cor[m]
is the correlation distance, defined as the location where 𝜌𝑖 𝑗 = 0.5. In an urban area, the
correlation distance was approximately 20 [m] according to an experiment [76].

When the correlation distance is held constant, as in Fig.3.2, a smaller distance between
two points indicates a greater correlation. The cumulative distribution function (CDF) curves
at various thresholds are shown in Fig.3.3. The significance level for the 𝜌 index is denoted
by 𝜃. The observation reports may be utilized to estimate the information at the test locations
only when 𝜌 > 𝜃. The values shown in Fig.3.3 are tabulated in reference Table 3.1.

In order to address the issue of unequal information distribution across the meshes and
enhance the accuracy of the REM, we utilize a DLM based on a spatial correlation algorithm,
illustrated in Algorithm 3. By performing appropriate interpolation, we can gather adequate
data for estimating the environment, thereby compensating for the lack of information caused
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Figure 3.2 Relationship between distance [m] and the correlation index.

by random movements of the terminals and resolving the problem of information loss caused
by malicious attacks on the terminals.

Table 3.1 Detail value of spatial correlation.

MAE [dB] 𝜇 𝜎

No Algorithms 3.4799 -0.1443 0.8231
𝜃 = 0.75 3.4090 -0.1147 0.8122
𝜃 = 0.85 2.8055 -0.0260 0.7078
𝜃 = 0.95 2.3808 0.1338 0.5947

3.3.2.2 DLM based on inverse distance weighting (IDW)

When we can do interpolation based on a large number of known observation points, IDW
is a deterministic approach may be used. Each value is derived using a weighted average of
nearby known observation locations, with each observation point’s weight determined by the
inverse of the distance between itself and the unknown location.

We assume 𝑁 observation sites, with coordinates (𝑥𝑖, 𝑦𝑖), where 𝑖 = 1,2,3, ..., 𝑁 , are
spread out uniformly throughout the region of interest. Since we are only concerned with a
two-dimensional scenario here, we may interpret the 𝑥𝑖, 𝑦𝑖 as representing the horizontal and
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Figure 3.3 Cumulative distribution function of spatial correlation.

vertical distances, respectively, from the point of observation. Power data associated with
coordinates is denoted by the notation 𝑃(𝑥𝑖, 𝑦𝑖). The ordinary IDW interpolation function
can be expressed as follows,

𝑃(𝑥0, 𝑦0) =
∑𝑁

𝑖=1𝑤𝑖𝑃(𝑥𝑖, 𝑦𝑖), if 𝑑𝑖 ≠ 0 for all 𝑖

𝑃(𝑥0, 𝑦0) = 𝑃(𝑥𝑖, 𝑦𝑖), if 𝑑𝑖 = 0 for some 𝑖
, (3.10)

where 𝑥0, 𝑦0 is the position of the interpolated point, 𝑃(𝑥0, 𝑦0) is the power interpolated at the
location, 𝑤𝑖 is the given weight from each observation point, which can be represented as
follows,

𝑤𝑖 =
𝑑
−𝑝
𝑖∑𝑁

𝑖=1 𝑑
−𝑝
𝑖

, (3.11)

here, the distance between the 𝑖-th observation point and the interpolated point is denoted
by 𝑑𝑖, and is defined as 𝑑𝑖 =

√︁
(𝑥0− 𝑥𝑖)2 + (𝑦0− 𝑦𝑖)2. For a bigger value of the IDW power

parameter, 𝑝 (a positive real number), the nearest points have a greater impact on the
interpolated point. Typically, [0.5,3] is the widely used range of 𝑝. [77] [78]

Because a larger value of 𝑝 results in a greater degree of related on the points next to
the one being interpolated, the performance of the interpolation improves as demonstrated
in Fig.3.4. Sensing power is impacted by path loss, shadowing, and fading; path loss and



42 An Improvement of Security Scheme for REM Construction under Massive Attacking

Algorithm 3 DLM based on Spatial Correlation
Require:

The parameters related to the Database, such as 𝑃′(𝑖),HT ,MT , 𝛼, 𝛽, terminal ID, etc.
Ensure:

1: for Each reported power in each mesh 𝑖 ∈ 𝑁 do
2: Do the Double Layer Monitor
3: GetMT andHT
4: Calculate the amount of data which need to be interpolation
5: Generate the random location in the mesh
6: Interpolation by Spatial Correlation
7: end for
8: Generate the REM

Table 3.2 Detail value of IDW.

MAE [dB] 𝜇 𝜎

No Algorithms 3.4799 -0.1443 0.8231
𝑝 = 1 2.3127 -0.0694 0.5760
𝑝 = 2 1.4599 -0.0155 0.4013
𝑝 = 3 1.1435 0.0077 0.3219

shadowing, in turn, are influenced by the placements of the terminals. Fading does not have
an effect on the location. Therefore, if there is a shorter distance between two terminals, then
the sensing power values of those terminals will be more comparable to one another, and the
mistake caused by interpolation should be lower. The values that are shown in Fig.3.4 are
presented in further detail in Table 3.2. As can be seen, an increased value for the IDW power
parameter is associated with a decreased value for the inaccuracy in the interpolated point.

Interpolation is one method that may be used to address the issue of uneven information
distribution throughout the meshes, as was discussed before. IDW interpolation is a technique
that, like Algorithm 3, which makes use of knowledge of the geographical information, has
the potential to address this issue and provide adequate data in order to create the REM. In
addition, the estimated data that are created by IDW are more connected to the points that are
closer, as a result of the addition of the weight that varies according to distance. This should
result in improved performance when compared with the spatial correlation. Algorithm 4
provides a description of the DLM that is based on IDW.
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Figure 3.4 Cumulative distribution function of IDW.

3.4 Different Attack Strategies

The construction of REMs using regular algorithms is always at risk of malicious terminal
attacks. These attacks can impact the REM in various ways. To provide a comprehensive
evaluation of performance, this section introduces different attack strategies, categorized as
black-box and white-box.

3.4.1 Black-box attack

A black-box attack refers to a scenario where the malicious terminals do not possess
knowledge about the database. Although they may have a head of the attacker to make the
decision of the attack strategy, they lack information about the algorithms and parameters
used in the database setup. This limits their ability to plan the attack strategy.

3.4.1.1 Static attack and dynamic attack

Without loss of generality, we examine both static and dynamic attacks in our research. A
static attack involves all the malicious terminals employing the same attack strategy. These
terminals utilize a constant attacking index throughout the sensing process, without the ability
to pause or modify the index. Conversely, a dynamic attack allows the malicious terminals to
alter their attack strategy during the sensing process. They can choose to change the attacking



44 An Improvement of Security Scheme for REM Construction under Massive Attacking

Algorithm 4 DLM based on IDW
Require:

The parameters related to the Database, such as 𝑃′(𝑖),HT ,MT , 𝛼, 𝛽, terminal ID, etc.
Ensure:

1: for Each reported power in each mesh 𝑖 ∈ 𝑁 do
2: Do the Double Layer Monitor
3: GetMT andHT
4: Calculate the amount of data which need to be interpolation
5: Generate the random location in the mesh
6: Interpolation with Inverse Distance Weighting
7: end for
8: Generate the REM

index at any time, and may even abstain from attacking in certain sensing slots to evade
detection by the database.

3.4.1.2 Independent attack and collaborative attack

An independent attack allows malicious terminals to operate autonomously, choosing
the attacking index and attacking slot based on their individual preferences. This approach
offers greater subjective initiative to the attackers and can increase the complexity of the
attack system. Since attackers make decisions independently, the risk of being detected is
significantly reduced. In contrast, a collaborative attack requires all malicious terminals to
select the same attack strategy. While this type of attack may have a greater impact on the
sensing system, it also has a higher risk of being detected compared to independent attacks.

3.4.2 White-box attack

In contrast to a black-box attack, a white-box attack is carried out by malicious terminals
that have comprehensive knowledge of the security system of the whole network. Although
this information may be used to perform the functions of a database, the terminals’ primary
objective is to raise the mistake rate of the REM in order to reap the advantages of using the
incorrect map.

Malicious terminals may perform an attack that is most effective by utilizing the information
provided by the security system. According to Equ.(3.1), as the attacking index 𝛿(𝛿 ≥ 1)
grows, the attacking strength increases, the reliability 𝑅𝑒𝑙 (𝑖) of malicious terminals falls, and
the detection likelihood of malicious terminals increases. All of these results are reflected
by the fact that the attacking index is increasing. On the other hand, as the attacking
index 𝛿(0 < 𝛿 < 1) decreases, the attacking strength rises, the reliability 𝑅𝑒𝑙 (𝑖) of malicious
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terminals declines, and the detection likelihood of malicious terminals increases. This is
because the attacking index is inversely proportional to the reliability of malicious terminals.
When 𝑅𝑒𝑙 (𝑖) ≤ 𝛼, even though 𝐵𝑖𝑎𝑠(𝑖) is small, the data can be judged as malicious terminals
at the first layer similarity comparison step; therefore, there is a trade-off problem that is 𝛿
need to be strong and do not be distinguished at the same time. This is why it is important
to consider 𝑅𝑒𝑙 (𝑖). 𝛿 has to be specified in the following manner in order to get the ideal
attacking index:

argmax
𝛿

𝑀∑︁
𝑖=1
[𝑅𝑒𝑙 (𝑖) > 𝛼] ∗𝐵𝑖𝑎𝑠(𝑖). (3.12)

where [𝐴 · 𝐵] represents a "SPECIAL IF FUNCTION", select all values 𝐴 that satisfy 𝐴 · 𝐵.
𝛿 is the attacking index, when 𝛿 increases, 𝑅𝑒𝑙 (𝑖) decreases, and 𝐵𝑖𝑎𝑠(𝑖) increases.

Equ.(3.12) represents, changing attacking index 𝛿 and select all 𝑅𝑒𝑙 (𝑖) satisfy 𝑅𝑒𝑙 (𝑖) > 𝛼,
and multiply the selected values by 𝐵𝑖𝑎𝑠(𝑖). Find the value of 𝛿 when the following formula
reaches the maximum value.

We make the assumption that the malicious terminals have access to an attack center,
similar to a database. We also assume that the attack center may hack the database and
acquire confidential information. As a result, the attack center has complete knowledge of the
DLM operation method and its associated parameters. This allows the malicious terminals to
generate their optimal attack strategy within our security network. Here, the optimal attack
strategy means the strongest attack strategy to our system.

The optimal approach is to ensure that the malicious datasets can participate in the power
fusion step and create as many errors as possible. In this scenario, the 𝐻𝑖𝑠𝑅𝑒 metric is
monitored, and as long as it is lower than the threshold, the attacker should set the attack
model to silent and transmit accurate data to increase 𝐻𝑖𝑠𝑅𝑒. Once 𝐻𝑖𝑠𝑅𝑒 is deemed safe,
the attacker can resume the attack, resulting in errors in the REM.

3.5 Results and Discussion

In this part, we will demonstrate the simulation results that are used to validate the
performance of the algorithms discussed before. Additionally, "sim" is the abbreviated name
for similarity comparison, and "corr" is the abbreviated name for spatial correlation. The
term "histo" in this context indicates that the algorithms take the historical reliability into
consideration; hence, it is the shortened version for DLM. In the first column of Table 3.5,
the following methods are listed: DLM based on IDW, DLM based on spatial correlation,
DLM alone, similarity comparison (first layer) based on IDW, similarity comparison based
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on spatial correlation, similarity comparison alone, bi_weight from reference [79], average
combination from reference [80], IDW alone, spatial correlation alone, no algorithms and
only normal terminals. Besides, MAE is used to represent accuracy in the CDF figures in
this chapter.

For the ‘average combination’ [80] is using the sample mean and sample standard deviation
of the energy values of all users to calculate the outlier factors,

𝑜𝑛 =
𝑒𝑛− 𝜇
𝜎

, (3.13)

where, 𝜇 and 𝜎 are the mean and standard deviation of the dataset, respectively. The users
whose outliers values have a magnitude above the threshold are considered as malicious.

The ‘bi_weight’ [79] can be calculated as follows,

�̂� =

∑
𝑤𝑛𝑒𝑛∑
𝑤𝑛

, (3.14)

where,

𝑤𝑛 =


(1− ( 𝑒𝑛−�̂�

𝑐1𝑆

2)2, 𝑒𝑛−�̂�
𝑐1𝑆

2
< 1

0, otherwise
, (3.15)

and,

𝑆 = median|en− �̂� |. (3.16)

The median absolute deviation (MAD) of the ‘bi_weight’ is given by,

�̂� =

√︄
𝑁
∑

𝑢𝑛
2 (𝑒𝑛− �̂�)2(1−𝑢2

𝑛)4

𝑠(−1+ 𝑠) , (3.17)

where,
𝑠 =

∑︁
𝑢𝑛

2<1

(1−𝑢2
𝑛) (1−5𝑢2

𝑛), (3.18)

and,
𝑢𝑛 =

𝑒𝑛− �̂�
𝑐2 ·median|en− �̂� |

. (3.19)

Overall, the comparison methods are shown in Table 3.3.
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Table 3.3 Comparison methods.

Names Algorithms
histo+IDW Double layer monitor based on IDW
histo+corr Double layer monitor based on spatial correlation
histo only Double layer monitor only
sim+IDW Similarity comparison (1st layer) based on IDW
sim+corr Similarity comparison (1st layer) based on spatial correlation
sim only Similarity comparison (1st layer) only
bi_weight Reference [79]

average combination Reference [80]
IDW only inverse distance weighting
corr only spatial correlation

with all terminals No any secure or spatial algorithms
ON Only normal terminals’ information is selected

3.5.1 Simulation setup

We form a square that was 10 meters on each side inside the communication area. For
purposes of simplicity, we will assume that each terminal takes a random path (a random
walk from one mesh to the next mesh), that they all travel the same distance of 20 steps from
one side of the communication area to the other, and that they only upload a single set of data
at each step. Because the movement of each terminal is unpredictable, the total number of
reports generated by each mesh is unique. A mesh that is traversed by a greater number of
terminals may produce more reports. Overall, 900 routes are generated by random, and from
those, 100 are selected by random to operate as malicious terminals. The parameters of the
simulation can be found in Table 3.4.

3.5.2 Radio propagation model

Let 𝑠𝑠𝑠𝑇𝑥 denote the primary user’s transmitter location, therefore, we assume that the
received signal power of the terminal which is located at 𝑠𝑠𝑠 = (𝑥, 𝑦) is given as follows,

𝑃(𝑠𝑠𝑠) = 𝑃𝑇𝑥 − 𝐿 (𝑑0) −10𝜂log10(
𝑑𝑚

𝑑0
) +𝑊 +𝐹, (3.20)

where 𝑃𝑇𝑥 represents the primary transmission power in the dBm domain and 𝑑𝑚 = | |𝑠𝑠𝑠𝑇𝑥 − 𝑠𝑠𝑠 | |
represents the distance [m] between the transmitter and the sensing terminal which located at
𝑠𝑠𝑠, 𝑑0 represents the reference distance [m], 𝜂 represents the path loss index, 𝑊 represents
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Table 3.4 Simulation parameters.

Parameter Value
Mesh size [m2] 10×10
Mesh amount 20×20

Center frequency [GHz] 3.5
Transmission power [dBm] 29

Reference distance [m] 10
path-loss index 𝜂 3.5

Standard deviation of 𝑊 6
Similarity threshold 𝛼 0.95

Bias threshold 𝜁 0.8
Historical reliability threshold 𝛽 0.1

Correlation threshold 0.75
IDW power parameter 3
The number of routes 900

Percentage of malicious routes 11.11
Steps for each route 20

attacking index 0.5-1.5

the shadowing loss [dB] at the location 𝑠𝑠𝑠 and 𝑊 follows a log-normal distribution with a
standard deviation of 𝜎 [dB]. 𝐹 represents the small-scale fading [dB]. 𝐿 (𝑑0) represents the
free-space path loss [dB], which is calculated as follows,

𝐿 (𝑑0) = 10log10(
4𝜋𝑑0
𝜆
)2, (3.21)

where 𝜆 represents the wavelength [m].

3.5.3 Fixed-terminal condition

In this subsection, we check the simple condition, in which we do not consider the random
routes of the terminals. The environment is simple and ideal. We set the terminals on the
map at fixed locations.

First, we would like to check when the number of malicious-terminal reports increases,
the error of the REM, where the error is the distance between the REM constructed power
strength with the real power strength. We set 200 reports in each mesh, and the ratio of
malicious reports ranges from 5% to 20%. The attacking index is set to 𝛿 = 0.7 all the time,
the Mean Absolute Error (MAE) which can be denoted as,



3.5 Results and Discussion 49

𝑀𝐴𝐸 =
1
𝐷

𝐷∑︁
𝑖=1
( |𝑃true(𝑖) −𝑃′(𝑖) |). (3.22)

where, 𝑃true(𝑖) is the ground-truth power strength of the 𝑖-th interested mesh, 𝑃′(𝑖) is
the estimated power strength of the 𝑖-th interested mesh under attacking. MAE of the
fixed-terminal condition is shown in Fig.3.5.

Figure 3.5 MAE versus of fixed reports.

We can find the MAE increases fast when the ratio of malicious-terminal reports increases
with all terminals and, obviously, the error comes from the effects of the malicious terminals
attack. When the amount of malicious terminals increases, the database receives more
malicious reports, and the rate of honest reports decreases, the accuracy of the performance
decreases. After adding the histo part, the methods have a similar performance when the
ratio of malicious terminals increases that is because by using the historical method with the
reputation, the database can judge the terminals continuously, so the malicious terminals are
easy to be found. By using the similarity method, when the amount of malicious terminals
increases, the performance has a slight increase, since the amount of honest terminals is still
over the amount of malicious, by comparison, the database can make the correct decision.
bi_weight and average combination worse than our proposed method, since they only consider
the reports of power, they didn’t use any geo-information to do the interpolation.

In addition, we examine the performance when the ratio of malicious reports is fixed but
the number of reports received in each mesh varies. The ratio of malicious-terminal reports
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Figure 3.6 MAE versus of fixed ratio.

is set to 15%, and the number of reports in each mesh ranges between 100 and 300. As
demonstrated in Fig.3.6, the error rises as the total number of reports increases.

But in fact, the situation is more complicated since the terminals’ movements are
unpredictable, the quantity of reports received and the malicious reports in each mesh are
distinct. We test how well it works under a variety of random terminal movements and attack
scenarios in the following sections.

3.5.4 Under static attack

As previously stated, in a static attack, malicious terminals execute the same attack at
all times, they do not alter their attack strategy (including the attacking index and attacking
position) during their movements. They are unable to stop once they start acting in an
attacking manner. We categorize static attacks as either independent or cooperative. The
malicious terminals rate for each mesh in our interested area is shown as Fig.3.7. In mesh
1-20, the malicious terminals’ rate is 0.03448, and more normal terminals passed by than
the malicious ones, however, in mesh 13-13, the malicious terminals’ rate is 0.6429, which
means, malicious terminals’ information is over half. The performance of these two meshes
also detailed in the following.
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Figure 3.7 Malicious terminals’ rate.

3.5.4.1 Under independent strategy

During a static attack using the independent approach, malicious terminals choose their
attacking indexes randomly and launch attacks at any point in their trips. After settling on a set
of attacking indices, they don’t alter them mid-move. Assume for the moment that malicious
nodes choose their attacking indices at random between 0.5 and 1.5. The attacking-index
information of each malicious route is shown in Fig.3.8, and the CDF curves after applying
the security method are displayed in Fig.3.9.

As shown in Fig.3.8, we set 100 malicious terminals in total and the horizontal axis
indicates the route number of the malicious terminal, and the vertical axis indicates the
attacking index 𝛿, from the figure can find, the first malicious route take 𝛿1 = 1.31 as the
attacking strength and do this attack during its movement entirely. Additionally, as the
definition of the falsification attack, when the attack index is approached to 1, the attacking
strength becomes weaker.

DLM based on IDW outperforms DLM based on spatial correlation when malicious
terminals use a static attack using the independent method, as illustrated in Fig.3.9. Algorithms
that take into account past reliability do better than those that focus just on similarities in the
present. Algorithms that take into account geographical information also have an advantage
over their non-spatial counterparts.

Table 3.5 displays the results of these estimate measurements, including the average
accuracy and the individual accuracy in mesh 1-20 and 13-13. The accuracy here is checked
by calculating MAE which is denoted as Equ.(3.22).
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Figure 3.8 Attacking index of malicious terminals.

Table 3.5 MAE [dB] under independent static attack.

Total avg. 1-20 13-13
histo+IDW 0.0422 0.0115 0.0078
histo+corr 0.0478 0.0143 0.0031
histo only 0.0579 0.0299 0.0190
sim+IDW 0.7400 0.0115 12.9669
sim+corr 0.7474 0.0230 12.8949
sim only 0.7515 0.0299 13.4674

bi_weight 3.0371 0.0141 24.5666
average combination 4.7192 0.1249 26.5893

IDW only 10.7568 0.8229 22.3174
corr only 10.7733 0.9963 20.9597

with all terminals 10.7779 0.9978 21.5496
ON 0.0579 0.0299 0.0190

The MAEs are minimized in DLM based on IDW, and DLM based on spatial correlation is
superior to employing only the DLM as Table 3.5 shows. Using geographical information and
including historical data both boost performance over relying just on similarity comparison.
Without the security method, employing simply geographical information might actually
result in a bigger inaccuracy rather than an improvement in REM precision. This is due to
the fact that malicious information might be used for estimating purposes in the interpolated
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Figure 3.9 CDF of static attack under independent.

locations, which could result in much more mistake than would occur without interpolation.
When the security technique is implemented at the lowest possible level, however, malicious
information may be purged from the database and interpolation can improve precision.

3.5.4.2 Under collaborative strategy

When malicious terminals work together, they are unable to independently make the
choice to launch an attack, which is not the case with the independent method. To submit
false data to the database, the malicious terminals need to choose the same attacking index
and follow the same procedure. Due to this subsection’s emphasis on the static attack method,
all malicious terminals use the same attacking index and continuously transmit inaccurate
data to the database regardless of where they are located.

Fig.3.10 shows the performance under collaborative attack. Based on the definition of the
SSDF attack, when 𝛿 < 1, the attacking strength decreases when the attacking index increases,
and the detection of the malicious terminals becomes harder if only using the first layer.
Conversely, when 𝛿 > 1, the attacking strength increases when the attacking index increases.

From Table 3.6 shown, except for our proposed methods, all other methods lead to a big
error when the malicious information in one mesh is over half, although some of them are
able to have a good performance in the total average, they can make a big interference in
some certain mesh. By using our DLM based algorithm, this problem is solved, which means,
we have a good performance when malicious information is localized over 50%.
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Figure 3.10 CDF of static attack under collaborative.

Table 3.6 MAE [dB] under collaborative static attack.

Total avg. 1-20 13-13
histo+IDW 0.0472 0.0115 0.0078
histo+corr 0.0513 0.0143 0.0031
histo only 0.0625 0.0299 0.0190
sim+IDW 1.4157 0.0115 24.0892
sim+corr 1.4352 0.0230 24.0883
sim only 1.4391 0.0299 24.0963

bi_weight 1.9437 0.0141 24.0097
average combination 1.9737 0.1249 24.0097

IDW only 7.2928 0.6721 15.8268
corr only 7.2915 0.8127 15.1970

with all terminals 7.3014 0.8128 15.4836
ON 0.0579 0.0299 0.0190

3.5.5 Under dynamic attack

As we noted before, a dynamic attack is an intelligent attack approach in which malicious
terminals may vary their attacking parameter as they are moving. This allows the malicious
terminals to more effectively carry out their attacks. They are able to adjust the attacking
indexes they use and even determine when those attacks launch; as a result, they are able to
choose given steps which to undertake an attack and select other steps during which they will
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not attack in order to defend the detection from the database. In this scenario, the attacking
behavior of the malicious terminals is not fixed; rather, they are able to modify it whenever
they deem it necessary. Dynamic attacks are divided into independent and collaborative
categories.

Figure 3.11 Attacking parameter condition.

3.5.5.1 Under independent strategy

In a dynamic attack utilizing an independent strategy, malicious terminals can indepen-
dently make the attacking decision and establish the attacking parameters, including selecting
and modifying their attacking indexes. At each phase, they can also determine whether or not
to attack. In this paper, steps in which malicious terminals do not attack are referred to as
"Silent Mode," and steps in which they do attack are referred to as "Active Mode." The Silent
Mode refers to the positions in which malicious terminals appear as trustworthy terminals.
To protect themselves and avoid detection, they should send the correct information to the
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Figure 3.12 CDF of dynamic attack under independent.

database in this mode. Thus, 𝛿 = 1 in the Silent Mode. For this section, we also presume
that the attacking index ranges from 0.5 to 1.5 in the Active Mode, because, according
to the preceding analysis, it is simpler to identify malicious terminals when the attacking
strength is too high. In addition, each malicious terminal chooses its transition steps randomly
throughout its entire journey. The attacking parameter conditions are depicted in Fig.3.11,
while the CDF curves following the implementation of the security algorithm are depicted in
Fig.3.12.

Fig.3.11 shows the attacking parameter of the dynamic attack. There are 100 malicious
terminals in the interested communication area in total, and each terminal has 20 reports
during their moving. The horizontal axis indicates the ID of the malicious terminals’ route,
the vertical axis indicates the different steps during their moving, and the bar height indicates
the attacking index. The attacking index during the Silent Mode period has been set to 0 in
this figure so that the attacking slot may be seen more clearly, however, in reality, it should be
set to 1. Each terminal has three states during their moving, during the first and the third
states, the malicious terminals do attack, and during the second state, the malicious terminals
act as honest terminals. The time point for them to change their states and the attacking
strength during their first and third states are chosen randomly by themselves. Consequently,
in Fig.3.11, for the steps that lack the data, the malicious terminals behave as honest terminals,
transmitting the correct information and not launching an attack. Each terminal randomly
chooses the attacking index and determines the Silent Mode and Active Mode. Fig.3.12
depicts the performance of each algorithm under this attack strategy. The estimation precision
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Table 3.7 MAE [dB] under independent dynamic attack.

Total avg. 1-20 13-13
histo+IDW 0.1044 0.0115 0.0078
histo+corr 0.1184 0.0143 0.0031
histo only 0.1242 0.0299 0.0190
sim+IDW 0.3077 0.0115 9.3373
sim+corr 0.3155 0.0230 9.6441
sim only 0.3206 0.0299 10.0708

bi_weight 1.7590 0.0141 22.3640
average combination 4.3876 0.1249 22.3640

IDW only 12.1743 0.6199 30.0273
corr only 12.1908 0.7493 27.3028

with all terminals 12.1905 0.7489 28.0240
ON 0.0579 0.0299 0.0190

is shown in Table 3.7. The algorithms that use historical data outperform those that use
only similarity data, and both outperform those that do not use security data. The security
algorithms that take spatial information into account outperform those that do not. IDW-based
DLM obtains the highest accuracy among the algorithms.

3.5.5.2 Under collaborative strategy

In contrast to the independent attack strategy, the collaborative strategy is a group attack
in which malicious terminals attack synchronously, they share the same attacking parameters,
and can be considered to have the same brain. After the leader of the malicious terminals
chooses the attacking index and steps, the other terminals adopt the same strategy.

In this subsection, the independent attack plan is implemented by the first malicious
terminal, which acts as the network’s de facto leader. The attacking parameter condition is
set to the same as the 9th malicious route depicted in Fig.3.11, the Silent Mode lasts from
step 9 to step 11, and the attacking indexes in Active Mode are 0.979523385210219 and
1.49949162009770, respectively. The other terminals all attack in the same way that the
leader does. Fig.3.13 displays the CDF curves, whereas Table 3.8 displays the estimate
accuracy. Results from simulations show that DLM based on IDW provides the highest
performance, and that using historical data may boost estimate precision.
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Figure 3.13 CDF of dynamic attack under collaborative.

Table 3.8 MAE [dB] under collaborative dynamic attack.

Total avg. 1-20 13-13
histo+IDW 0.0892 0.0115 0.7754
histo+corr 0.0942 0.0143 0.5829
histo only 0.1013 0.0299 0.7628
sim+IDW 1.7445 0.0115 7.9138
sim+corr 1.7746 0.0230 7.6009
sim only 1.8013 0.0299 7.7489

bi_weight 1.1218 0.0141 11.9594
average combination 1.1504 0.1249 11.9594

IDW only 5.4660 0.3316 7.9138
corr only 5.4589 0.3984 7.6009

with all terminals 5.4736 0.3954 7.7489
ON 0.0579 0.0299 0.0190

3.5.6 Under optimal attack

To comprehensively evaluate the performance, we also generated the optimal (strongest)
white-box attack strategy condition. As stated in section 3.4.2, if the malicious terminals have
an attack center that can acquire the complete information of the security network, including
algorithm operation and parameter setting, they can function as a database and emulate the
reliability of each malicious terminal. In this scenario, the types of attacks become complex
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and diverse, and the network’s security can be severely compromised. The attacking index 𝛿

must satisfy Equ.(3.12) due to a trade-off problem between the detection probability and the
attacking intensity. In addition, the attack strategy must take into account 𝐻𝑖𝑠𝑅𝑒 to ensure
that malicious terminals can join the power fusion.

The results of attacks using various attacking indices are shown in Fig.3.14. The usual
attacking is shown by the colored dashed lines, while the malicious terminals constantly
launch attacks. Different colored solid lines represent optimal attacking, where past reliability
is tracked. As long as the 𝐻𝑖𝑠𝑅𝑒 is lower than the threshold, the malicious terminals should
switch their mode to Silent Mode in order to improve the system’s reliability. This will
guarantee that the incorrect information may join the power fusion, which will result in an
error in the REM. They should switch back to Active Mode whenever the 𝐻𝑖𝑠𝑅𝑒 is high
enough to join into power fusion. This structure needs to be used repeatedly.

The proportion of malicious terminals that are not discovered after the first layer (similarity
comparison) is shown by the color green in Fig.3.14. If the percentage of the malicious
terminals is higher, it demonstrates that the attacking performance was better. The findings
of the simulation indicate that the optimal attack approach is superior to the standard method
in terms of effectiveness. Similarly, the color yellow represents the proportion of malicious
terminals that remain undetected after the second layer of protection (DLM). The ideal attack
performs better, once more. In addition, when the attacking index is less than 0.8, malicious
terminals are simple to identify even when using similarity comparison only. This is due to
the fact that malicious information is noticeably distinct from original information. When
the attacking index is greater than 0.9, the malicious terminals are not easily distinguishable
even when using DLM. This is due to the fact that the difference between the malicious
information and the original information is tiny. Additionally, when taking into consideration
the fact that different terminals suffer from different channel conditions, such as path loss
and fading, the algorithm is unable to determine whether the difference was caused by the
malicious action or by the channel difference. The lines of light-blue depict the typical
degree of similarity degree across malicious terminals; a greater value implies that it will be
more challenging to determine whether or not the terminal is malicious. Both the weight
allocation and the historical reliability of malicious terminals are represented by the red
and grey colors, respectively. The historical reliability is similar with the similarity degree;
in both cases, a greater value suggests a lesser possibility of being found. The RMSE for
various attacking indices is shown in a dark blue color. When the attacking index is close to
0.9, attacking effectiveness is at its peak. When the attacking index is raised, the attacking
strength is weakened, resulting in a smaller RMSE. As an example, when the attacking index
is extremely near to 1, the REM error is minor even do not use a security method.
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Figure 3.14 Attacking performance under different attacking index.

Figs.3.15 and 3.16 show the historical reliability under the optimal attack with an attacking
index 𝛿 = 0.9. The former shows the total map for all the malicious routes, there are 100
malicious terminals in the interested communication area, and each terminal has 20 reports
during their moving. The horizontal axis indicates the ID of the malicious terminals’ route,
the vertical axis indicates the different steps during their moving, the bar height indicates the
historical reliability of each terminal at different steps of its movement.

The first six malicious routes are shown on the map in Fig.3.16. The grey bar represents an
attack being carried out by the malicious terminal. When there is no gray area, the malicious
terminal is behaving like a trustworthy terminal throughout that process step. The orange
bar shows how reliable every step has been in the past. Since the results of the historical
reliability calculation for each terminal are collected at the end of the step and influence the
next step, we can identify the moment the malicious terminal switches to Silent Mode. After
this step, the historical reliability gradually improves. Additionally, the reliability of past
events can quickly decline when the malicious terminal launches an attack.

The CDF curves obtained with the DLM under various attacking indices are shown in
Fig.3.17, and the errors obtained with various techniques are displayed in Table 3.9. The
error that occurs when an attacker performs the optimal attack using the DLM algorithm is
shown in the "DLM(optimal)" column, the error that occurs when an attacker uses the normal
attack using the DLM algorithm is shown in the "DLM" column, and the error that occurs
when no security methods are employed is shown in the rightmost column, named as "with all
terminals". The figure and table show that the REM suffers the most errors when challenged
with an optimal attack technique, when attackers launched small strength attacks, 𝛿 = 0.9
reached the optimal behavior for the malicious terminals, which means the worst condition
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Figure 3.15 Historical reliability under optimal attack.

for the normal fusion database, but that DLM errors remain less than 0.5dB regardless of the
severity of the attack.

3.5.7 Discussion

From the multiple simulation results, we found that the DLM has significant advantages for
data falsification attacks. After historical information is added, the database can continually
monitor the behavior of malicious terminals, and the performance improves significantly after
the historical reliability is calculated. In addition, we considered using spatial information
to improve the algorithm. The simulation results indicated that the DLM based on IDW is
better than the DLM based on spatial correlation, and both have better performance than the
DLM alone. Finally, we used the full knowledge of the network and launched the optimal
attack (strongest attack), and the results indicated that the optimal attack (strongest attack) has
advantages (the error of the REM increases), nonetheless, our security algorithm can ensure
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Figure 3.16 Attacking condition of first 6 malicious routes.

Table 3.9 MAE [dB] under optimal attack.

𝛿
Total avg.

DLM(optimal) DLM with all terminals
0.85 0.0684 0.0999 1.2877
0.87 0.1529 0.1076 1.1160
0.90 0.3878 0.2240 0.8585
0.93 0.2846 0.1600 0.6009
0.95 0.2104 0.1241 0.4292

the accuracy of the network. The complexity of algorithms we mentioned in this chapter are
as follows:

histo: O(𝑛2)
sim: O(𝑛2)
bi_weight: O(𝑚𝑛)
average combination: O(𝑛)
Combined with the simulation results above, it is easy to find that the average combination

method has the lowest complexity, however, the accuracy is the worst. Although bi_weight
can have a good performance under the condition that the number of malicious terminals’
reports is less than half, when the malicious reports’ number is over half, the performance of
this method decreases significantly. However, our methods are relatively complex compared
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Figure 3.17 CDF under different attacking index.

with others, by using our proposed method, even when the malicious reports are over half in
one mesh, still can maintain the high accuracy of the REM.

Additionally, we stored data in large-capacity and high-computing places, such as a
database, to complete the elimination of malicious nodes. Our algorithm indeed has a high
complexity, but it is very effective for sensing environments that require higher precision.

3.6 Chapter Summary

We proposed DLM based on spatial information algorithms, including IDW and spatial
correlation, to deal with various data falsification attacks in the network. To ensure that the
historical reliability decreases rapidly for malicious terminals and increases slowly for honest
ones, we introduced the reward-penalty function of the DLM algorithm. The algorithm
was evaluated under different attack scenarios such as static, dynamic, independent, and
collaborative attacks, and the simulation results demonstrated its effectiveness in eliminating
malicious information and improving the REM’s accuracy. Furthermore, we defined the
optimal attack (strongest attack) model based on our algorithm and attempted to check the
network’s robustness, and the simulation results revealed the superiority of the proposed
attack strategy over the normal one. Importantly, our security algorithm remained effective
even under the optimal attack scenario.





Chapter 4

Kriging-based Trust Nodes Aided REM
Construction Method

The utilization of crowdsourcing for spectrum sensing offers a promising solution for
generating the REM in large communication areas. In this chapter, we introduce the KTNA-
REM system, which is based on Kriging and aided by trust nodes. By incorporating a small
number of trust nodes, the database can continuously evaluate the reputation of terminals
and generate the REM based on highly reliable data, even when the number of malicious
terminals is significant. Simulation results demonstrate the effectiveness and accuracy of the
proposed approach.

The chapter is organized as follows: Section 4.1 introduces the background of our study,
section 4.2 explains the system models, and the implementation framework of our proposed
method is discussed in section 4.3. The simulation results are shown at section 4.4 and finally,
the chapter summary is in section 4.5.

4.1 Background

Radio Environment Map, or REM, is a tool that may be used to control the interference
caused by several transmitters. For example, secondary users in TVWS systems often identify
the white spaces and the permitted interference level based on the REM that is recorded in the
spectrum database. The information included in the REM may be used to offer an efficient
spectrum sharing system, as shown by the reference [20], which illustrates that employing
this information can give an efficient spectrum sharing system.

The accuracy of REM construction is critical as it directly impacts spectral efficiency.
The REM is generated by analyzing information from multiple terminals that sense the
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environment conditions and send their data to the database. This information includes details
such as received signal power, terminal ID, and location. Based on this data, the database can
generate the REM for a given communication area. Therefore, the accuracy of the information
reported by the terminals to the database plays a crucial role in ensuring the accuracy of the
REM construction.

Kriging-based methods are widely used to improve the accuracy of REM construction. In
Kriging-based REM construction, the database first collects a limited number of datasets and
estimates the signal strength at unsampled locations using a mathematical model. Kriging
interpolation is a popular approach that utilizes the spatial correlation between different
locations to interpolate the signal strength at unsampled locations. By minimizing the
variance of the estimation error under the unbiased estimation constraint, Kriging-based
methods can generate a high accuracy REM with a limited amount of data. Moreover, the
addition of trust nodes, which can provide reliable information and help to evaluate the
reputation of the terminals, can further improve the accuracy of the REM. By applying the
Kriging interpolation method, the database can use less data to estimate and interpolate a
high accuracy REM [81].

It is important to note that the reliability of the reporting data can be compromised
by various security threats in the open environment of crowdsourced REM construction.
One such threat is the SSDF attack, also known as Byzantine attacks, where malicious or
dishonest terminals intentionally or unintentionally provide false information to the database.
This can significantly degrade the accuracy of the REM and affect the spectral efficiency
of the system. Reputation-based algorithms have been proposed as a solution to deal with
malicious terminals by updating the reputation of each terminal based on rewarding or
punishing mechanisms [82]. Another approach is to use classifiers to detect and filter out the
malicious terminals during sensing [47]. However, there is still limited research on addressing
these challenges specifically in the context of REM construction, where the location and
transmission activity of primary terminals are known, but the signal strength needs to be
estimated at each location of interest. Chapter 3 has focused on collecting a large amount of
data to remove malicious information, which can lead to significant time overheads in the
initial phase of the system [83].

The KTNA-REM algorithm, introduced in this chapter, addresses the challenge of
constructing a high-precision radio map using only a small number of terminals in a
threatening environment. Unlike previous methods, the KTNA-REM algorithm does not
require storing a large amount of data to begin detecting and is a real-time construction
method that only stores high-reliability data, discarding lower reliability data in every sensing
slot. The algorithm achieves map updates through data-driven methods.
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Figure 4.1 A concept of the conventional REM based on KTNA.

4.2 System Description

4.2.1 REM model

To create the REM for a communication area, multiple terminals are utilized to collect
spectrum information within the area. The locations of these terminals are determined
based on random movements, and both normal and malicious terminals are assumed to be
present. Additionally, a small number of trust nodes are placed at fixed locations within
the communication area to provide reliable information. The information collected by the
terminals includes their ID, location, time, frequency, and power, which is then sent to the
database for storage. The database, which can be located in the cloud or a base station
with ample storage capacity, uses these datasets to generate the REM. A representation of a
conventional REM is provided in Figure 4.1.

To mitigate the impact of small-scale fading, we divide the communication area into
two-dimensional grids or meshes. This allows us to group the datasets from the same mesh
together and calculate the average power for that particular mesh. When the mesh size is
small enough, the impact of shadowing can be neglected, and the accuracy of the REM can
be improved.

4.2.2 Radio propagation model

In this section, we define the dataset vector 𝑆𝑆𝑆 = (𝑃(𝑠𝑠𝑠111), 𝑃(𝑠𝑠𝑠222), ..., 𝑃(𝑠𝑠𝑠𝑁𝑁𝑁 ))𝑇 , where
𝑠𝑠𝑠𝑖𝑖𝑖 = (𝑥𝑖, 𝑦𝑖) is the measurement location of each terminal and 𝑃(𝑠𝑠𝑠𝑖𝑖𝑖) is the received signal
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power. Let 𝑠𝑠𝑠𝑻𝒙 = (𝑥𝑇𝑥 , 𝑦𝑇𝑥 ) denote the primary user’s transmitter location, therefore, the
received signal power of the terminal which is located at 𝑠𝑠𝑠 is given as follows,

𝑃(𝑠𝑠𝑠) = 𝑃𝑇𝑥 − 𝐿 (𝑠𝑠𝑠) +𝑊 +𝐹, (4.1)

where 𝑃𝑇𝑥 represents the primary transmission power in the dBm domain and 𝐿 (𝑠𝑠𝑠) is the
path loss between 𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑻𝒙 . 𝑊 represents the shadowing loss [dB] at the location 𝑠𝑠𝑠 and
𝑊 follows a log-normal distribution with a standard deviation of 𝜎 [dB]. As both 𝐿 and 𝑊

are location-dependent scalars, we express them as functions of the location vector 𝑠𝑠𝑠. 𝐹

represents the small-scale fading [dB]. Here, we assume the spatial correlation in shadowing
follows a typical model [75],

𝜌𝑖, 𝑗 =
E[(𝑊 (𝑠𝑠𝑠𝑖𝑖𝑖) −E[𝑊 (𝑠𝑠𝑠𝑖𝑖𝑖)]) ((𝑊 (𝑠𝑠𝑠 𝑗𝑗𝑗 ) −E[𝑊 (𝑠𝑠𝑠 𝑗𝑗𝑗 )])]

𝜎𝑖𝜎𝑗

≈ exp
{(−||𝑠𝑠𝑠𝑖𝑖𝑖 − 𝑠𝑠𝑠 𝑗𝑗𝑗 | | ln2

𝑑𝑐𝑜𝑟

)} , (4.2)

where | | · | | is Euclidean distance, 𝜎𝑖 represents the standard deviation of 𝑊 (𝑠𝑠𝑠𝑖𝑖𝑖). 𝑑𝑐𝑜𝑟 is the
correlation distance, defined as a point on 𝜌𝑖, 𝑗 = 0.5.

4.2.3 Attacking model

We assume that there are malicious terminals in the communication environment, and
these terminals have the ability to blind the database by rewriting the sensing power of the
spectrum and reporting incorrect information about the power to the database. As a result,
these incorrect datasets can cause a significant amount of error in the REM. This is done
in order to fulfill the malicious terminals’ own self-serving requirements. Data falsification
attack is the name given to the technique of attack that involves rewriting the sensing power.

In a data falsification attack, also known as a Byzantine attack, malicious terminals alter
the data they collect using their sensing capabilities in the spectral domain in order to deceive
the database. This kind of attack model was shown by reference [65]. One such traditional
method of data fabrication attack is outlined here. In order to alter their data, malicious
terminals check it against a power threshold, denoted by 𝜅. If the malicious terminal’s sensing
power is over the threshold for any given sensing slot, it will rewrite the sensing power
multiplied by an attack index 𝜅 with a probability 𝑃𝑎 to submit an incorrect dataset to the
database. If not, malicious terminals will upload the right dataset. Here is the reported
strength of the malicious terminal,
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𝑃′(𝑖) =

𝑃(𝑖) · 𝛿, if 𝑃(𝑖) > 𝜅 with 𝑃𝑎

𝑃(𝑖), otherwise
, (4.3)

where, the probability of an attack, denoted by 𝑃𝑎, and the attacking index, denoted by 𝛿. If
the attacking index is greater than one, the attacking strength rises with the attacking index;
otherwise, when attacking index is less than one, the attacking strength falls as the attacking
index rises.

4.2.4 Ordinary Kriging

Ordinary Kriging 1 is one of the most popular way to do the spatial interpolation for the
REM. The method to interpolate the unknown value is like follows,

�̂�(𝑠𝑠𝑠 𝑗𝑗𝑗 ) =
𝑁∑︁
𝑖=1

𝜔(𝑖)𝑃(𝑠𝑠𝑠𝑖𝑖𝑖), (4.4)

where, 𝜔(𝑖) is the weight factor of the 𝑖-th terminal multiplied by the known value 𝑃(𝑖),
and �̂�(𝑠𝑠𝑠 𝑗𝑗𝑗 ) is the interpolated value of 𝑃(𝑠𝑠𝑠 𝑗𝑗𝑗 ). Kriging minimizes the estimation error by
optimizing the 𝜔(𝑖). Additionally, ordinary Kriging assumes that E[𝑃(𝑠𝑠𝑠𝑖𝑖𝑖)] = 𝑐𝑜𝑛𝑠𝑡. over any
𝑖, besides, the spatial correlation property of 𝑃(𝑠𝑠𝑠𝑖𝑖𝑖) is static over the entire measurement area.
Usually, ordinary Kriging can be applied for the estimate the shadowing index 𝑊 (𝑠𝑠𝑠 𝑗𝑗𝑗 ), and
the interpolation result at 𝑗 can be given by,

�̂�(𝑠𝑠𝑠 𝑗𝑗𝑗 ) = �̂�𝑇𝑥 −10𝜂 log10 | |𝑠𝑠𝑠 𝑗𝑗𝑗 − 𝑠𝑠𝑠𝑻𝒙 | |

+
𝑁∑︁
𝑖=1

𝜔(𝑠𝑠𝑠𝑖𝑖𝑖) (𝑃(𝑠𝑠𝑠𝑖𝑖𝑖) − (�̂�𝑇𝑥 −10𝜂 log10 | |𝑠𝑠𝑠𝑖𝑖𝑖 − 𝑠𝑠𝑠𝑻𝒙 | |))
, (4.5)

where, �̂�𝑇𝑥 and 𝜂 are the estimated 𝑃𝑇𝑥 and 𝜂.
Ordinary Kriging determines the optimal weight which can minimize the variance of

estimation error 𝜎2
𝐿
= Var[�̂�𝑠𝑠𝑠 𝑗𝑗𝑗 −𝑊𝑠𝑠𝑠 𝑗𝑗𝑗 ], where Var[·] is the variance of the random variable.

The wights need to satisfy:
∑𝑁

𝑖 𝜔(𝑖) = 1. By using Lagrange multiplier, the objective function

1Gaussian Process (GP) is a common non-parametric model in the field of machine learning, similar to
kriging. If the covariance function is identical, the output of simple and ordinary kriging is identical to the
mathematical expectation of the output of GP under normal likelihood. The difference between Kriging and GP
is that the former assumes the random field is an inherently smooth process and provides its optimal unbiased
estimate across the test sample, whereas the latter assumes the random field is a Gaussian process and provides
its entire distribution over the test sample’s posterior.[84–86]
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can be written as,

𝜙(𝜔(𝑖), 𝜐) = 𝜎2
𝐿 −2𝜐(

𝑁∑︁
𝑖=1

𝜔(𝑖) −1), (4.6)

where, 𝜐 is the Lagrange multiplier. Here, 𝜎2
𝐿

can be written as follows,

𝜎2
𝐿 = −𝛾(𝑑 𝑗 , 𝑗 ) −

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜔(𝑖)𝜔( 𝑗)𝛾(𝑑𝑖, 𝑗 ) +2
2∑︁
𝑖=1

𝜔(𝑖)𝛾(𝑑𝑖, 𝑗 ), (4.7)

where, 𝑑𝑖, 𝑗 ≜ | |𝑠𝑠𝑠𝑖𝑖𝑖 − 𝑠𝑠𝑠 𝑗𝑗𝑗 | |. In addition, 𝛾 is the semivariogram defined as,

𝛾(𝑑𝑖, 𝑗 ) =
1
2

Var[�̂� (𝑠𝑠𝑠𝑖𝑖𝑖) −�̂� (𝑠𝑠𝑠 𝑗𝑗𝑗 )] . (4.8)

The solution of the optimal 𝜔(𝑖) is given by,



𝜔(1)
𝜔(2)
...

𝜔(𝑁)
𝜐


=



𝛾(𝑑1,1) · · · 𝛾(𝑑1,𝑁 ) 1
𝛾(𝑑2,1) · · · 𝛾(𝑑2,𝑁 ) 1

...
. . .

...
...

𝛾(𝑑𝑁,1) · · · 𝛾(𝑑𝑁,𝑁 ) 1
1 · · · 1 0



−1 

𝛾(𝑑1, 𝑗 )
𝛾(𝑑2, 𝑗 )

...

𝛾(𝑑𝑁, 𝑗 )
1


. (4.9)

4.3 Proposed Method

This section presents the KTNA-REM algorithm, which involves incorporating a limited
number of trust nodes to counteract attacks. The trust nodes have predetermined, fixed
locations, and to minimize overhead, they are only active during the initial sensing slot.
Following the first sensing round, the trust nodes remain inactive, and their sensing data is
added directly to the trust set.

4.3.1 Real-time comparison

To identify malicious datasets in the database, we compare the received power of each
terminal with its estimated power using the interpolated map. We use the sensed information
from the trust set and a Kriging-based interpolation method to compute the real-time REM,
where the interpolated data at a particular point represents the terminals’ estimated power.
Due to the fact that the Kriging-based REM is highly accurate even with limited data, the trust
set initially stores only data from the trust nodes during sensing. We compute the difference
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between the received and estimated power as follows,

𝐵𝑖𝑎𝑠𝑘 (𝑖) = |𝑃′𝑘 (𝑠𝑠𝑠𝑖𝑖𝑖) − �̂�𝑘 (𝑠𝑠𝑠𝑖𝑖𝑖) |, (4.10)

where �̂�𝑘 (𝑠𝑠𝑠𝑖𝑖𝑖) is the power estimated at the 𝑘-th sensing slot using Kriging interpolation. We
should get rid of the really big outliers since they may have high 𝐵𝑖𝑎𝑠 and influence the
reputation evaluation of other terminals. The formula for determining an outlier is as follows,

𝑜𝑘 (𝑖) =
𝐵𝑖𝑎𝑠𝑘 (𝑖) − 𝜇𝑘

𝜎𝑘

, (4.11)

where, the sample mean and standard deviation of the differential value 𝐵𝑖𝑎𝑠 at the 𝑘-th
sensing slot are denoted by 𝜇𝑘 and 𝜎𝑘 , respectively. The outlier of the 𝑖-th terminal in the 𝑘-th
sensing slot is denoted by 𝑜𝑘 (𝑖). The max-min scaling is as follows, excluding the estimated
values for the 𝑖-th terminal if 𝑜𝑘 (𝑖) > 𝜃,

𝐵𝑖𝑎𝑠∗𝑘 (𝑖) =
𝐵𝑖𝑎𝑠𝑘 (𝑖) −min

max−min
, (4.12)

where, 𝐵𝑖𝑎𝑠∗
𝑘
(𝑖) is the normalized sensed-and-estimated difference (NSED), max and min

are the maximum and minimum data after remove the extremely large outliers at the 𝑘-th
sensing slot.

4.3.2 Accumulative-total reputation

When malicious terminals conduct data falsification attacks, they change the received
information and send incorrect data to the database, even if they are at the same location as
honest terminals. As a result, the datasets of malicious terminals are different from those of
honest terminals. After calculating the NSED of each dataset, we compare it with the system
threshold 𝜁 and update the real-time comparison accordingly.

𝐴𝑇𝑅𝑒𝑘+1(𝑖) = 𝐴𝑇𝑅𝑒𝑘 (𝑖) + 𝑎, if 𝐵𝑖𝑎𝑠∗
𝑘
(𝑖) < 𝜁

𝐴𝑇𝑅𝑒𝑘+1(𝑖) = 𝐴𝑇𝑅𝑒𝑘 (𝑖) − 𝑏, otherwise
, (4.13)

where, 𝐴𝑇𝑅𝑒𝑘 (𝑖) is the accumulative-total reputation of 𝑖-th terminals at 𝑘-th sensing slot.
𝑎 and 𝑏 are the reward and penalty index, respectively. Note that, to effectively remove
malicious terminals, it is important to ensure that the rate of decrease is faster than the rate
of increase. If the calculated value of 𝐴𝑇𝑅𝑒𝑘 (𝑖) is high enough, it is considered that the
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terminal has a high probability of being an honest terminal, and the sensing data from that
terminal can be added to the trust set.

4.4 Simulation Results

We will compare the performance of the proposed KTNA-REM algorithm with four other
strategies in this section. The communication area contains a total of 100 sensing terminals,
including some malicious ones, and the trust nodes are evenly distributed across the area.
The four strategies that we will compare are,

• All Sensed Terminals under Real-Time (AST/RT): the database utilizes all information
from the terminals, including malicious data, during the real-time sensing slot.

• All But Malicious Terminals under Real-Time (ABMT/RT): the database constructs the
REM by using only the honest information in real-time.

• All Sensed Terminals under Accumulative-Total (AST/AT): the database collects and
stores all information from the terminals, including the malicious ones, in real-time and
from previous sensing slots. This means that all information is used equally without
any distinction in each sensing slot.

• All But Malicious Terminals under Accumulative-Total (ABMT/AT): the database
constructs the REM using both real-time and previous rounds’ information, but removes
the malicious information before constructing the REM. Note that since it is impossible
for the database to know which terminals are malicious, the accuracy of this strategy
can be considered as the upper bound of any mechanism that can be achieved.

The parameters in this part is shown as TABLE 4.1.

4.4.1 Impact of different attacking strength

In this section, we evaluate the performance of our algorithm under different levels of
attack after convergence. Specifically, we consider a scenario where 40 out of 100 terminals
are malicious and there are 10 trust nodes. To assess the performance, MAE is an essential
measurement to check the performance which can be calculated as Equ.(3.22).

As defined in section 4.2.3, the attacking index 𝛿 determines the attack’s intensity. When
𝛿 approaches 1, the attacking power decreases; otherwise, the attacking power increases.
MAEs under AST/RT, ABMT/RT, AST/AT, ABMT/AT, and our proposed method with
increased attacking strength (𝛿 = 0.5 ∼ 0.9) are depicted in Fig.4.2. Note that the ABMT/AT
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Table 4.1 Simulation parameters.

Parameter Value
Communication area [m2] 100 × 100

Mesh size [m2] 5×5
The number of meshes 400

The number of terminals 100
Center frequency [GHz] 3.5

Transmission power [dBm] 29
Reference distance [m] 10

Path-loss index 𝜂 3.5
Standard deviation of 𝑊 6

curve is unaffected by the change in attacking intensity, as it represents the sum of all the
honest terminals. In this case, this curve is depicted as a reference for the algorithm’s
upper bound. As shown in Fig.4.2, the MAE of AST/AT is the best performance when only
Ordinary Kriging is used to generate the REM, the real-time generated REM is is worse
than the accumulative total since less information can be analyzed, and the MAE of both
decreases as the attacking strength decreases. After convergence, the performance of our
proposed method is comparable to that of the upper bound (ABMT/AT). The performance
of the ABMT under real-time sensing is also stable; the error in this results from the lesser
quantity of information that can be used in a given sensing period.

Figure 4.2 MAE under different attacking strength.
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(a) proposed (𝛿 = 0.5) (b) AST (𝛿 = 0.5)

(c) proposed (𝛿 = 0.7) (d) AST (𝛿 = 0.7)

(e) proposed (𝛿 = 0.9) (f) AST (𝛿 = 0.9)

Figure 4.3 REM [dBm] under different attacking strength
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(a) 𝛿 = 0.5 (b) 𝛿 = 0.7

(c) 𝛿 = 0.9

Figure 4.4 𝐴𝑇𝑅𝑒 under different attacking strength.

The maps generated under different attacking strengths are shown in Fig.4.3. The figures
in the left column show the maps generated by our proposed method, while those in the right
column show the maps generated by AST/AT. The figures in the left column are similar
because even with different levels of attack, the algorithm generates a REM that excludes
terminals with low accumulative total reputations. This iterative process effectively removes
the malicious terminals and selects the reliable ones. On the other hand, the figures in the
right column have clearer differences due to the interference from the malicious terminals.
As the attacking strength weakens from top to bottom, the differences between the proposed
method and AST also decrease.

We can check the general trend of 𝐴𝑇𝑅𝑒 under different attacking strengths for each
sensing slot in Fig.4.4. The approach is more efficient at detecting malicious terminals with
𝛿 = 0.5 and 𝛿 = 0.7 than with 𝛿 = 0.9 since the former have a stronger attacking strength, a
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bigger 𝐵𝑖𝑎𝑠, and are thus easier to identify. As can be shown in Fig.5.6(c), the system is able
to identify malicious reports after 40 iterations, even though the malicious terminals only
make little changes.

4.4.2 Impact of the amount of malicious terminals

Figure 4.5 MAE under different amount of malicious terminals.

In this section, we examine the effect of increasing the number of malicious terminals
from 20 to 90 out of 100. When the number of malicious terminals over 50, it indicates that
the malicious terminals occupied more than half of the total terminals. Fig.4.5 depicts MAEs
with varying amounts of maliciousness. As the number of malicious terminals increases,
AST errors increase rapidly. Using accumulative information still results in a significant
error, especially when more than half of terminals are malicious. In contrast, as the number
of malicious terminals increases, the proposed algorithm’s error slightly increases. When
the number of malicious terminals is less than 84 out of 100, the MAE of our proposed
method is very similar to the bound. The performance improved significantly after adding the
trust nodes aided system, and by examining the performance as depicted in Fig.4.5, we can
conclude that the system functions properly. In addition, Fig.4.6 displays the mean errors for
each sensing slot. The convergence pace varied barely based on the variations in malicious
terminals, and the algorithm can converge under various conditions within 50 rounds.

Fig.4.7 illustrates the trend of 𝐴𝑇𝑅𝑒 under varying numbers of malicious terminals
per sensing slot. In comparison to 20 malicious terminals, when the number of malicious
terminals increases, convergence speed increases as well. This is the reason why Fig.4.6(a)
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(a) The number of MT=20 (b) The number of MT=40

(c) The number of MT=60 (d) The number of MT=80

Figure 4.6 MAE [dB] under different amount of malicious terminals.

converges more slowly than in other situations: when the number of malicious terminals is
small, the algorithm is able to eliminate them effectively, but with a higher probability of
false alarms (mistakenly identifying normal terminals as malicious).

4.4.3 Impact of different amount of trust nodes

This section demonstrates the impact of increasing the number of trust nodes from 1 to 20.
In this section, we set the attacking index to 𝛿 = 0.7 and the number of malicious terminals
to 40. Since trust nodes are distinct from normal terminals, estimation precision is fixed
when using AST and ABMT. Similarly to what was stated previously, the ABMT utilizing
accumulative total information only with honest terminals provides the highest achievable
performance. Fig.4.8 demonstrates that by using a system aided by trust nodes, performance
was significantly enhanced. And the more trust nodes we employ, the higher the system’s
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(a) Malicious terminals=20 (b) Malicious terminals=40

(c) Malicious terminals=60 (d) Malicious terminals=80

Figure 4.7 𝐴𝑇𝑅𝑒 under different amount of malicious terminals.

performance. However, when the number of trust nodes in the system increased from 10 to 20,
the performance did not change significantly. Regard to the fact that adding trust nodes also
increases the overheads of the network, the simulation results indicate that ten trust nodes are
preferable. Fig.4.9 illustrates the trend of 𝐴𝑇𝑅𝑒 for varying numbers of trust nodes. A round
icon indicates a normal terminal’s reputation and a cross indicates a malicious terminal’s
reputation. After adding trust nodes, the system can reliably separate terminals based on their
status.
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Figure 4.8 CDF under different amount of trust nodes.

(a) Trust nodes=1 (b) Trust nodes=3 (c) Trust nodes=5

(d) Trust nodes=10 (e) Trust nodes=15 (f) Trust nodes=20

Figure 4.9 𝐴𝑇𝑅𝑒 under different amount of trust nodes.
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4.5 Chapter Summary

In this chapter, we introduced the design of the Kriging-based Trust Nodes aided REM
construction method. By adding a small number of trust nodes, the system evaluates real-time
comparisons and accumulative total reputations to select reliable datasets for constructing the
REM in a threatening environment. The proposed method achieves high map accuracy by
monitoring the cumulative behavior of even a small number of participants. Furthermore, the
system maintains stable performance even when more than half of the terminals are malicious.
Simulation results demonstrate the robustness and stability of the proposed method under
varying conditions.



Chapter 5

A REM Construction and Channel
Estimation System in Threatening
Environments

An accurate REM can bring the CRN with lots of benefits. This chapter aims to propose
a solution to the security threats in REM construction while ensuring accurate channel
estimation. To achieve this goal, we introduce the Kriging-based trust nodes aided (KTNA)
REM construction method, complemented with a channel estimation (KTNA+) system. By
incorporating a small number of trust nodes, the proposed method mitigates the effects
of malicious attacks and enhances the precision of channel estimation. Simulation results
demonstrate the effectiveness of the proposed method in accurately estimating the average
path-loss and shadowing impacts in threatening environments.

The arrangements of this chapter are as follows: the background of our research is
represented in section 5.1, the system related model is shown in section 5.2, and our channel
estimated model is as section 5.3 shown. Some simulation results are shown in section 5.4,
finally, the summary of this chapter is in section 5.5.

5.1 Background

It is essential to comprehend how each application associated with the REM concept is
determined by the use of location information in the system model and what type of quantity
comprises the REM concept. In this study, we regard the REM to represent a physical quantity
of the environment, namely the signal intensity, or radio signal power. By analyzing data
from multiple terminals that perceive the environment and transmit it to a database, the REM
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can be generated. The database then generates the REM for a particular communication area
based on information such as the received signal strength, terminal ID, and terminal location,
among other things. As the precision of REM construction has a direct impact on spectral
efficiency, it is crucial that terminals report accurate data to the database.

Due to the open nature of networks, a number of security risks put the accuracy of data
reporting at risk. For instance, even though several terminals worked together to generate a
portion of the map, the database is still susceptible to being compromised by information
sent by egotistical or dishonest terminals to meet their needs (occupying the channel or
causing a significant amount of interference from licensed terminals). The accuracy of REM
is considerably decreased by this kind of attack, also called as a Byzantine attack or a SSDF
attack.[29, 40–47].

Reputation-based algorithms are key strategies for dealing with threatening terminals,
and anti-attack studies have recently attracted a lot of interest. By rewarding or punishing
the terminals to differentiate between their various statuses, they update each terminal’s
reputation [42–45]. Using a classifier to identify malicious terminals is another prevalent
trend; researchers have trained classifiers to identify and filter malicious terminals during
sensing using SVM [46]. Although the primary terminal’s location and transmission activity
are known, these studies do not apply to REM construction because it is necessary to assess
the signal intensity at each important point.

Additionally, using a crowdsourcing-assisted radio map, which has been the subject of
research in recent years [56][64], is a typical way to obtain high-precision maps. The average
power is then calculated using the location-based data that the database initially gathers in an
adequate amount. By figuring out the average receiving power at each place, the REM may
be made to be very near to the actual situation. Large-scale sensor networks are expensive to
operate and maintain in practice, and a lack of environmental knowledge can result in critical
mistakes while building REMs.

The spatial statistical characterisation of the radio environment, which is challenging
due to the numerous wireless channel propagation mechanisms, is directly related to the
applicability of spatial predictions to wireless communication systems [87][88]. These
mechanisms have an impact on the signals that are received, which has an impact on the REM
generating process. As a result, processing geo-located observations to accurately produce
coverage maps is challenging.

We enhanced our Kriging-based trust nodes aided (KTNA) REM generation method
into a channel estimation (KTNA+) system to address these issues. This system generates a
high-precision radio map utilizing a minimal number of terminals in such dangerous areas.
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5.2 System Description

5.2.1 REM model

To illustrate the REM for the communication space, we suppose that the spectrum data
is gathered in the communication area using a number of terminals. The locations of the
terminals, including both harmless and malicious terminals, are determined at random based
on their random movements. Additionally, we place a few trust nodes in the communication
area whose positions are fixed and whose information is always trustworthy. The terminal’s
ID, location, time, frequency, and power can all be collected by the terminal and sent to
the database. The database can be setup in the cloud or at a base station, where it can store
vast amounts of data. The REM is then produced based on these datasets. Fig.4.1 depicts a
concept of the conventional REM.

5.2.2 Reputation model

The KTNA-REM construction approach, which augments anti-attacking with a few trust
nodes, is described in section 4.3. Keep in mind that the trust node’s location is fixed, and in
order to reduce overhead, trust nodes only need to work during the initial slot for sensing.
After that, they are free to remain silent. The reports from trust nodes are stored directly in
the trustset.

In order to ensure safety, we also think about the reboot phase. After sorting the
accumulative reliability, if the top reliable nodes have a large 𝐵𝑖𝑎𝑠 value, this indicates
that the environment may change while sensing (for example, it may rain or snow). In this
situation, we must reboot the system, which entails clearing the trust set and launching the
trust nodes for sensing again.

Fig.5.1(a) and 5.1(b) illustrate the KTNA-based realization and estimation maps, respec-
tively. Fig.5.1(c) illustrates how the estimated mean error of the KTNA method varies with
sensing slot. We deploy 100 sensing terminals in the communication zone, of which 30 are
malicious. Ten nodes of trust are equitably spread throughout the entire communication area.
We evaluate the performance against the next four strategies which we introduced in section
4.4.

The results of the simulations demonstrate the effectiveness of our KTNA method in
removing malicious terminals and estimating REM. After the algorithm’s convergence, the
performance infinitely approaches the upper bound. The difference map between the real
reception power and the estimated map produced by our KTNA method is shown in Fig.5.1(d).
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(a) (b) (c)

(d) (e) (f)

Figure 5.1 Simulation results of reputation model [dB]: (a) Real Reception Power. (b)
Estimated REM with the KTNA method. (c) Average error vary with sensing slot. (d)
Difference Map: difference between the real reception power and the estimated map. (e)
Difference REM: difference between the real reception power and the ABMT/AT based
estimated map. (f) Difference REM: difference between the real reception power and the
AST/AT based estimated map.

Fig.5.1(e) and 5.1(f) are the difference maps based on the two comparison methods, with the
former being the upper bound of what can be achieved.

It is crucial to emphasize that these conclusions only apply to a single realization of the
fix-attacking procedure. More attacking techniques and performance analyses are provided
in section 5.4. With the help of our KTNA algorithm, we can quickly determine how the
malicious terminals are affecting the overall communication network in this subsection. We
introduce the channel estimation approach in the part after that to evaluate the effects of path
loss and shadowing in a safe environment.
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5.3 Adjusted Channel Estimation

In this section, we discussed the radio environment’s interpretation as a spatial random
process denoted by 𝑄. The process is composed of two fundamental components, and it is
defined for all spatial locations 𝑠𝑠𝑠 = (𝑥, 𝑦). The representation of 𝑄(𝑠𝑠𝑠) can be expressed as
follows,

𝑄(𝑠𝑠𝑠) = 𝜇(𝑠𝑠𝑠) + 𝜉 (𝑠𝑠𝑠),with 𝑠𝑠𝑠 ∈ 𝐷, (5.1)

where 𝜇(𝑠𝑠𝑠) denotes the spatial process drift, which is often known as the trend in geo-statistical
terminology, 𝜉 (𝑠𝑠𝑠) consists of the zero-mean spatial random fluctuations of the spatial model,
and the two-dimensional spatial domain 𝐷 indicates the coverage region of interest.

In this research, 𝜉 (𝑠𝑠𝑠) represents the shadowing effects of the wireless channel, whereas
𝜇(𝑠𝑠𝑠) represents path-loss in the wireless communication environment. The random variables
𝑄(𝑠𝑠𝑠𝑖𝑖𝑖) collected to form the spatial random process 𝑄(𝑠𝑠𝑠) are measurements of reception
power, whose statistical properties depend on 𝜇(𝑠𝑠𝑠) and 𝜉 (𝑠𝑠𝑠). Therefore, the aim of spatial
estimation is to estimate the impact of these components from the relevant measurement data.

5.3.1 Path-loss estimation

The mean component 𝜇(𝑠𝑠𝑠) in trend modeling is based on the average path-loss of the
wireless channel. It is determined by the average received signal power and can be expressed
as follows,

𝜇(𝑠𝑠𝑠) = 𝑃𝑇𝑥 −
𝑝∑︁

𝑘=1
𝑎𝑘 𝑓𝑘 (𝑠𝑠𝑠), (5.2)

where 𝑃𝑇𝑥 [dBm] represents the transmission power, 𝑓𝑘 (𝑠𝑠𝑠) represents the model’s base
function, and 𝑎𝑘 represents the unknown constant trend coefficients. This chapter considers
the well-known log-distance model for the path-loss model, which can be represented as [89],

𝐿 (𝑑𝑠𝑠𝑠𝑻𝒙 ,𝑠𝑠𝑠) = 𝐿0(𝑑0) +10log10(
𝑑𝑠𝑠𝑠𝑻𝒙 ,,,𝑠𝑠𝑠

𝑑0
)𝜂, (5.3)

𝑑0 [m] is the reference distance, also known as the critical distance, 𝜂 is the path-loss index,
and 𝐿0 is the free-space path-loss, and it can be calculated as follows,

𝐿0(𝑑0) = 10log10(
4𝜋𝑑0
𝜆
)2, (5.4)
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where 𝜆 [m] is the signal’s wavelength. Using the model’s base function, the average path-loss
can be expressed as,

𝜇(𝑠𝑠𝑠) = 𝑃𝑇𝑥 −𝜂 𝑓 (𝑠𝑠𝑠) = 𝑃𝑇𝑥 −10𝜂 log10(𝑑𝑠𝑠𝑠𝑻𝒙 ,,,𝑠𝑠𝑠). (5.5)

5.3.2 Spatial estimation

The spatial random fluctuation exponent 𝜉 (𝑠𝑠𝑠) in the wireless communication system
affects the received signal power, as shown in the model presented in Equ.(5.1). This is
due to the presence of obstacles such as buildings, mountains, and other obstructions that
surround the terminals. These obstacles can cause random changes in the signal broadcast
system. As the location, size, and dielectric characteristics of these obstructions are not
known beforehand, statistical models that can characterize such fluctuations become crucial.

In our study, the random fluctuation is characterized by log-normal shadowing, and the
model can be stated as [90],

𝑄(𝑠𝑠𝑠) = 𝜇(𝑠𝑠𝑠) + 𝜉 (𝑠𝑠𝑠) = 𝑃𝑇𝑥 −10𝜂 log10(𝑠𝑠𝑠𝑻𝒙 ,,, 𝑠𝑠𝑠) + 𝜉 (𝑠𝑠𝑠), (5.6)

where 𝜉 (𝑠𝑠𝑠) represents the shadowing at location 𝑠(𝑥𝑖, 𝑦𝑖), which is a zero-mean Gaussian
spatial random process with standard deviation 𝜎. Additionally, the covariance between two
different random variables can be denoted as,

𝐶 (𝑠𝑠𝑠𝑖𝑖𝑖, 𝑠𝑠𝑠 𝑗𝑗𝑗 ) = E{[𝑄(𝑠𝑠𝑠𝑖𝑖𝑖) − 𝜇(𝑠𝑠𝑠𝑖𝑖𝑖)] [𝑄(𝑠𝑠𝑠 𝑗𝑗𝑗 ) − 𝜇(𝑠𝑠𝑠 𝑗𝑗𝑗 )]}, (5.7)

where E{·} represents the expectation operator. The formula for the semivariogram function
is,

𝛾(𝑠𝑠𝑠𝑖𝑖𝑖, 𝑠𝑠𝑠 𝑗𝑗𝑗 ) =
1
2

Var{𝑄(𝑠𝑠𝑠𝑖𝑖𝑖) −𝑄(𝑠𝑠𝑠 𝑗𝑗𝑗 )}

=
1
2
E{[𝑄(𝑠𝑠𝑠𝑖𝑖𝑖) −𝑄(𝑠𝑠𝑠 𝑗𝑗𝑗 ) −E{𝑄𝑠𝑠𝑠𝑖𝑖𝑖 −𝑄(𝑠𝑠𝑠 𝑗𝑗𝑗 )}]2}

. (5.8)

Note that the received signal power is influenced by the location of the receiving terminals
and the path-loss trend affects the stationarity of the process. Therefore, it is essential to
estimate the trend component first. Once the trend component is estimated, the covariance
and semivariance between any two points can be computed based on their separation vector
ℎ where ℎ ≡ 𝑠𝑠𝑠𝑖𝑖𝑖 − 𝑠𝑠𝑠 𝑗𝑗𝑗 . As a result, the covariance and semivariogram can be expressed as
functions of the separation vector ℎ only. Thus the covariance and semivariogram can be
re-written as,
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𝐶 (ℎ) = E{[𝑄(𝑠𝑠𝑠𝑖𝑖𝑖 + ℎ) − 𝜇] [𝑄(𝑠𝑠𝑠𝑖𝑖𝑖) − 𝜇]}, ∀𝑠𝑠𝑠𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑖𝑖𝑖 + ℎ ∈ 𝐷,

𝛾(ℎ) = 1
2Var{𝑄(𝑠𝑠𝑠𝑖𝑖𝑖 + ℎ) −𝑄(𝑠𝑠𝑠𝑖𝑖𝑖)}, ∀𝑠𝑠𝑠𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑖𝑖𝑖 + ℎ ∈ 𝐷.

(5.9)

The Gudmundson model is commonly used to characterize the correlation of shadowing
and belongs to the class of correlation models that consider the separated distance ℎ between
received data sets. Empirical studies and measurement campaigns have demonstrated that the
spatial correlation of the log-normal shadowing in wireless communication channels decays
exponentially with distance. Therefore, in this study, an isotropic-exponential structured
covariance model is selected for constructing the spatial random process, which is given by
[90],

𝐶 ( |ℎ |) = 𝑚𝑒−
|ℎ |
𝑟 , (5.10)

where 𝑚 indicates the variance of the spatial random process which is called sill variance,
and 𝑟 here is called as range and reflects the exponential decay of the covariance function.
Since the covariance function and the semivariogram function have a direct relationship
under the wide sense stationarity condition, which is 𝐶 (𝑠𝑠𝑠𝑖𝑖𝑖, 𝑠𝑠𝑠 𝑗𝑗𝑗 ) = 𝐶 (0) − 𝛾(𝑠𝑠𝑠𝑖𝑖𝑖, 𝑠𝑠𝑠 𝑗𝑗𝑗 ). So the
semivariogram model can be written as,

𝛾( |ℎ |) = 𝑚

{
1− 𝑒−

|ℎ |
𝑟

}
. (5.11)

Since the estimation of the power at the unknown location needs to depend on the ability
of the environment, the semivariogram evaluation is important for the REM construction.

5.3.3 Adjusted REM construction

To clarify, as previously mentioned, the estimation approach presented in Equ.(5.1)
involves estimating the path-loss and shadowing maps separately before combining them
to generate the overall map. The reason for estimating the path-loss map first is due to its
impact on the stationarity of the spatial random process, which in turn can affect the spatial
estimation and semivariogram, leading to biased results. Therefore, the path-loss is estimated
first, and based on the estimated model, the measurement dataset is detrended. This means
that the data used in the spatial estimation and semivariogram are given by,

𝑄′(𝑠𝑠𝑠) =𝑄(𝑠𝑠𝑠) − 𝜇(𝑠𝑠𝑠). (5.12)
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(a) (b) (c)

(d) (e)

Figure 5.2 Simulation results of channel estimation [dB]: (a) Estimated path-loss map.
(b) Estimated shadowing map. (c) Estimated REM. (d) Estimated path-loss index. (e)
Experimental semi-variogram.

The experimental semivariogram is produced from the regionalized measurements using the
moments of Matheron approach, which is given by [91],

�̂�(ℎ) = 1
2𝑁ℎ

∑︁
𝑠𝑠𝑠𝑖𝑖𝑖−𝑠𝑠𝑠 𝑗𝑗𝑗=ℎ

[𝑄′(𝑠𝑠𝑠𝑖𝑖𝑖) −𝑄′(𝑠𝑠𝑠 𝑗𝑗𝑗)]2,∀𝑠𝑠𝑠𝑖𝑖𝑖 ∈ 𝐷,𝑖 = 1,2, ..., 𝑁, (5.13)

where 𝑁ℎ is the number of data pairs whose distance from the location is ℎ. In reality, 𝑁ℎ

must be suitably large because measurements must be taken for each ℎ, however, the set
of measurements is finite. To address this issue, the semivariogram can be estimated via
pre-calculated separate distances, known as lag distance.

The spatial estimation model’s simulation results are displayed in Fig.5.2. The average
path-loss impact is depicted in Fig.5.2(a) and the estimated shadowing impact is depicted
in Fig.5.2(b), The combination of these two maps results in the spatial random process
depicted in Fig.5.2(c). Fig.5.2(d) displays the estimated path-loss index, the estimated
𝜂 = 4.77824654048242, which the reference index 𝜂0 = 3.5, the semivariogram is shown
as Fig.5.2(e), the upper bound parameter 𝑚 = 23.5223582293268 is referred to as sill, and
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Figure 5.3 The structure of KTNA+ system.

can be used to measure shadowing intensity. 𝑟 = 19.7715335842846 is referred to as the
range parameter. In particular, the spatial correlation is stronger for data separated by smaller
distances than 𝑟 . Range is proportional to the semivariogram’s slope and can be interpreted
as the correlation distance 𝑑𝑐𝑜𝑟 = 20 [m] of the shadowing. Parameter 𝑐0 = 0 indicates a
sudden change in the spatial variability of the random process at small separation distances,
which may be influenced by measurement errors, local variability, or superimposed noise.

As shown in Fig.5.2, although the algorithm can estimate the channel condition well,
it still has some errors. In order to proceed with a more accurate REM, we calculate the
combination map of the Adjusted Error (AE) based on the dataset as follows,

𝜖 =

∑𝑁
𝑖=1(𝑄(𝑠𝑠𝑠) − �̂�(𝑠𝑠𝑠))

𝑁
=

∑𝑁
𝑖=1(𝑄(𝑠𝑠𝑠) − ( �̂�(𝑠𝑠𝑠) + 𝜉 (𝑠𝑠𝑠))

𝑁
)

=

∑𝑁
𝑖=1(𝑄(𝑠𝑠𝑠) − (𝑃𝑇𝑥 −10𝜂 log10(𝑑𝑠𝑠𝑠𝑻𝒙 ,,,𝑠𝑠𝑠,𝑠𝑠𝑠) + 𝜉 (𝑠𝑠𝑠)))

𝑁
.

(5.14)

Here, 𝑠𝑠𝑠 = (𝑥𝑖, 𝑦𝑖) is the measurement location, �̂� and 𝜉 is the estimated path-loss impact and
the shadowing impact, respectively. Then we rewrite the Equ.(5.1) as,

�̂�(𝑠𝑠𝑠) = �̂�(𝑠𝑠𝑠) + 𝜉 (𝑠𝑠𝑠) + 𝜖, (5.15)

where, �̂�(𝑠𝑠𝑠) is the adjusted REM, also we named the whole system based on the reputation
model and adjusted channel estimation model as KTNA+ system, and the structure is like
Fig.5.3. Note that, once the KTNA convergences, the KTNA+ system can store the spatial
estimated impact, as long as we get the random spatial information, the secure system can be
simplified as a linear regression problem.
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Table 5.1 Simulation parameters.

Parameter Value
Communication area [m2] 500 × 500

Mesh size [m2] 5×5
The number of meshes 10000

The number of terminals 100
Center frequency [GHz] 3.5

Transmission power [dBm] 29
Reference distance [m] 10

Path-loss index 𝜂 3.5
Standard deviation of 𝑊 6

5.4 Simulation Results

In this section, we present the results of several simulations conducted using the proposed
method. The simulations were carried out using MATLAB R2022a. We considered an
area of interest for communication and placed 100 terminals in this area. All terminals
were assumed to have the same moving speed and a random direction within the area. The
parameters in this part are shown as TABLE 5.1.

5.4.1 Different amount of malicious terminals

The number of malicious terminals increases from 20 to 40 out of 100 in this subsection.
We examine the CDF of the MAE as depicted in Fig.5.4, which is a crucial performance
measurement. MAE can be calculated as Equ.(3.22).

In the reputation phase, we compared our proposed method with two secure methods, the
similarity degree method (SimD) and Histo based reputation method, which are extensively
used in the spectrum sensing field to eliminate the impact of malicious terminals. Typically,
these methods use the power similarity of neighboring nodes for malicious node exclusion,
and the average power of normal terminals is used to update historical information [40]. In
addition, because the output of the first two methods is based on the average power of the
mesh, in order to obtain a higher quality REM, we examined two widely used interpolation
methods, IDW and Kriging.

As Fig.5.4 shows, the proposed method has a better performance than the traditional
average power output methods. The performance decreases when the amount of malicious
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Figure 5.4 CDF under different amount of malicious terminals.

terminals decreases. After doing the interpolation and adding the spatial information, the
performance improved for the Histo and SimD methods.

Additionally, Fig.5.5(a) and Fig.5.5(b) show the reputation trend of each terminal when
the amount of malicious is 30 out of 100 under the proposed method and Histo based method,
respectively. The reputation can be calculated as Equ.(4.13). Both of these methods are
effective at identifying malicious terminals and rejecting them from the database. Additionally,
the Histo-based method has a stronger reward performance than the proposed method, but
the estimated map is not as accurate as ours. The efficacy of the proposed method is superior
to that of traditional REM construction techniques due to the elimination of the need to
calculate the average power of each mesh. Instead, interpolation is performed using the raw
data from the normal terminals. SimD and Histo-based methods must compute the average
power during their procedure; despite having a decent reputation for removing malicious
terminals, they still result in varying degrees of information loss when constructing the REM.

Truly, it is possible to eliminate the loss of information by ignoring the outputted average
power and using the raw information defined as the normal terminals to interpolation, however,
the computational requirements can be quite significant. Fig.5.5(c) depicts the quantity of
data stored by the trust set. As indicated by the blue color bar, the trust nodes assisted phase
determines that the database can store fewer records for the intended purpose.

The performance of the estimation phase is presented in Table 5.2, and lines 2 through 7
indicate the MAE of the estimated RSSI when using various methodologies. 𝜂 represents the
estimated path-loss index, whereas 𝑑𝑐𝑜𝑟 [m] represents the estimated correlation distance.
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(a) (b) (c)

Figure 5.5 The Comparison of different methods: (a) The reputation trend under proposed
method. (b) The reputation trend under Histo-based method. (c) The selected number of
different method.

Table 5.2 Performance under different amount of malicious terminals.

Methods Parameters 20% 40% 60% 80%
AST MAE_RSSI 5.262156 10.53644 15.88108 21.19951

SimD-Krig MAE_RSSI 5.179132 10.10587 16.79927 22.42956
SimD-IDW MAE_RSSI 6.144702 10.79592 17.00903 22.47131
Histo-Krig MAE_RSSI 4.116176 4.825126 25.69812 26.22508
Histo-IDW MAE_RSSI 4.233108 4.785248 25.83612 26.31063

KTNA+

MAE_RSSI 0.593164 0.678816 1.064683 1.114734
MAE_W 0.80597 0.893773 1.238783 1.274118

𝜂 3.44829 3.44859 3.44543 3.44437
𝑑𝑐𝑜𝑟 20.7715 18.7074 17.6088 16.3715

According to the table, the traditional methodologies (SimD and Histo) for estimating RSSIs
have large discrepancies with the ground truth. In contrast, our proposed method KTNA+
system performs well in channel estimation and REM construction.

5.4.2 Different attacking strength

Impact on various levels of attacking strength is evaluated here. The percentage of
malicious terminals is set at 30 while the percentage of trust nodes is set at 10. According to
the definition in section 4.2.3, the attack’s power is determined by the attacking index 𝛿. It’s
simple math: if 𝛿 is less than 1, the attacker’s strength drops when 𝛿 increases; if it’s more
than 1, the attacker’s strength rises when 𝛿 increases.
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Table 5.3 Performance under different attacking strength.

Methods Parameters 𝛿 = 0.5 𝛿 = 0.7 𝛿 = 0.9 𝛿 = 1.2
AST MAE_RSSI 13.13383 7.87430 2.656462 5.291361

SimD-Krig MAE_RSSI 11.51336 7.359291 4.610962 5.863282
SimD-IDW MAE_RSSI 12.42125 8.348438 4.829906 6.491345
Histo-Krig MAE_RSSI 4.248715 4.083502 4.63966 4.090303
Histo-IDW MAE_RSSI 4.4088 4.261046 4.952128 4.19464

KTNA+

MAE_RSSI 0.674949 0.674776 0.675088 0.674051
MAE_W 0.88657 0.886485 0.892108 0.880136

𝜂 3.4496 3.45004 3.45048 3.44994
𝑑𝑐𝑜𝑟 19.3911 19.5169 19.4004 19.2658

Table 5.3 displays the MAE as well as certain specific performances. The theoretical
average path loss in the environment is 𝜂 = 3.5 and the correlation distance is 𝑑𝑐𝑜𝑟 = 20
[m] [92]. When the attacking strength is high (𝛿 is away from one), KTNA is better able
to identify malicious terminals, leading to more precise estimates. Aside from that, the
malicious information is too close to the actual information for KTNA to make a decision
without further data. Our suggested technique outperforms competing algorithms in two key
areas: minimizing the impact of malicious attacks and generating an accurate environment
estimate over a range of attack intensities. Even if malicious information is removed, the
massive fusion of information causes the output data to lose the texture structure contained
in the information itself, which has a significant effect on the estimation of the channel
environment, leading to a larger error for the SimD and Histo methods.

(a) (b) (c) (d)

Figure 5.6 The performance under different attacking strength: (a)𝛿 = 0.5. (b) 𝛿 = 0.7. (c)
𝛿 = 0.9. (d) 𝛿 = 1.2.

Fig.5.6 depicts the progression of the reputation. Equ.(4.13) determines whether a node’s
reputation should improve or decrease based on whether or not its normalized 𝐵𝑖𝑎𝑠∗

𝑘
is

below the threshold value, at which point it is assumed to have a high likelihood of being a
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(a) (b) (c)

(d) (e) (f)

Figure 5.7 The performance of the different maps [dB]: (a)Estimated shadowing by KTNA+.
(b) Estimated shadowing by AST. (c) Estimated shadowing by ABMT. (d) Estimated REM by
KTNA+. (e) Estimated REM by AST. (f) Estimated REM by ABMT.

normal terminal. Here, we adjust the reward index to 𝑎 = 𝜁 −𝐵𝑖𝑎𝑠∗
𝑘
, where 𝜁 is the threshold.

Furthermore, 𝑏 = 𝐵𝑖𝑎𝑠∗
𝑘

is the penalty index. This means that the standing of any terminal
might rise or fall rather quickly. As can be seen in Fig.5.6, when the attacking index 𝛿 < 1, as
in Fig.5.6(a)-5.6(c), the attacking strength is weaker when 𝛿 approaches to one, the difference
between the estimated power and the reported power is less, and the database needs more
rounds to distinguish the status of the terminals, so the reputation of Fig.5.6(c) rises or falls
more slowly. When the attacking index is greater than one, the attacking strength increases as
𝛿 far away from one. That’s why Fig.5.6(d)’s reputation shifts are picking up speed once
again.

Note that the ABMT approach may be thought of as the upper limit that the algorithm
can reach; the difference between the AST maps and the ABMT maps can be thought of as
the effect of the malicious terminals. The estimated map under 𝛿 = 0.5 is shown in Fig.5.7.
The predicted shadowing effect is shown in Fig.5.7(a)-Fig.5.7(c). Fig.5.7(c) is the ideal way
for estimating the effects of shadowing since it takes into account only trustworthy pieces
of data while immediately discarding anything malicious. Since Fig.5.7(b) incorporates all
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available data, including malicious terminal information, into its shadowing effect estimate,
it stands in contrast to Fig.5.7(c). Our proposed method’s projected shadowing effect is
shown in Fig.5.7(a). We discover that our method’s performance is comparable to that of
the Fig.5.7(c), which indicates that it is able to identify malicious terminals and provide an
accurate assessment of the shadowing effect.

The simulated results of the estimated REM are shown in Fig.5.7(d)-Fig.5.7(f). The
significance of the malicious terminals’ impact is shown by contrasting Fig.5.7(e) with
Fig.5.7(f). Analyzing the differences between Fig.5.7(d) and Fig.5.7(f), the simulation results
indicate our method reduces the impact of malicious terminals on the environment effectively.

5.5 Chapter Summary

In this chapter, we introduced the design of the KTNA+ system, which aims to achieve a
secure REM construction and channel estimation in a threatening wireless communication
environment. Our approach involves the incorporation of trust nodes in the system to ensure
the rejection of malicious data from the database by awarding or punishing the terminals
in the interest area. We also developed a method for estimating the channel conditions,
taking into account the path-loss and shadowing effects in the wireless communication area.
Through extensive simulations, we validated the effectiveness of our proposed system in
constructing the REM and accurately estimating the channel under various attack scenarios.





Chapter 6

Conclusions and Future Scopes

This chapter marks the conclusion of our research on highly efficient and secure REM
construction. To begin, we provide a summary of the contributions and findings from each
preceding chapter. Following this, potential future research directions are explored and
discussed.

6.1 Conclusions

In order to improve the quality of wireless communication and meet the infinite growth
of wireless communication demand, REM plays a crucial role in evaluating the wireless
environment. However, when the relevant technology is applied to real-world applications,
such as collecting information from various mobile phones, the absolute honesty of all
users cannot be guaranteed, and it is difficult to prevent selfish users from attempting to
monopolize spectrum resources or disrupt the primary user’s communication. Motivated by
the fact that the efficiency of the dynamic spectrum access strongly depends on the accuracy
of the constructed REM, we have comprehensively investigated the highly secure REM
construction methods under threatening environments satisfied with 1) distinguishing the
malicious terminals and 2) improving the REM accuracy. As the comprehensive conclusion
of the analysis, the individual methods appearing in this dissertation have shown the following
accomplishments in meeting the two targets:

Our proposed DLM can deal with the condition in which the malicious terminals amount
is less than normal terminals. Our method and bi_weight can easily distinguish malicious
terminals and construct the REM when the amount of malicious terminals is less than 50%,
however, the performance of similarity degree, and average_combination depends on the
attacking index 𝛿 a lot, where, when 𝛿 is approach to one, attacking strength is weak, it
is difficult for them to distinguish the difference between malicious terminals and normal
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Table 6.1 Performance under different algorithms.

Algorithms Target 1 Target 2 Complexity CE
< 50% > 50% < 50% > 50%

DLM ◦ △ ◦ △ O(𝑛2) −−
similarity degree △ × ◦ × O(𝑛2) −−

bi_weight ◦ × ◦ × O(𝑚𝑛) −−
average combination △ × ◦ × O(𝑛) −−

AST/RT −− −− × × O(𝑛3) −−
ABMT/RT −− −− ◦ ◦ O(𝑛3) −−
AST/AT −− −− × × O(𝑛3) −−

ABMT/AT −− −− ◦ ◦ O(𝑛3) −−
KTNA ◦ ◦ ◦ ◦ O(𝑛3) −−

KTNA+ ◦ ◦ ◦ ◦ O(𝑛3) ◦
1 ◦◦◦ : good performance
2 ××× : bad performance
3 △△△ : performance discusses by case
4 −−−−−− : no performance
5 CE : channel estimation capability

terminals, although they can meet target 2, it comes at the cost of a higher probability of false
alarms.

When the amount of malicious terminals is over 50%, the comparison methods all lose
their functions, since they do not have the memory to trace the past performance, when
the malicious terminal occupies more than normal, they will mis-detect the normal as the
malicious. Our proposed DLM has the historical reliability layer, we can target the malicious
behavior and mark them, finally, in some mesh in which more malicious terminals passed by,
still can maintain the performance. However, our method only works in the case where fewer
meshes have more malicious information, if the total amount of malicious terminals is larger
than normal, we also lose the precision.

AST/RT, ABMT/RT, AST/AT, and ABMT/AT do not have the performance about
distinguishing malicious terminals, since they are references. All AST methods used all
the information from the database, and all ABMT methods used all the normal terminals’
information from the database. KTNA and KTNA+ can face all the targets since they add trust
nodes in the surrounding environment, based on the sensing information from the trust nodes,
we distinguish the malicious or normals. Even when the number of malicious terminals is
over half, KTNA and KTNA+ still can distinguish the malicious and construct the REM
precisely.
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By the way, KTNA is the algorithm by compares with the trust nodes, selects reliable
information, and uses reliable information to do interpretation and generate the REM directly.
KTNA+ is the system, which uses reliable information to estimate the channel condition and
then construct the REM. Both of them have good performances.

The common outlier and abnormal detection methods are mainly focused on eliminating
values with large differences from others. The datasets are considered as independent, which
means not time-related. Outlier detection is more suited for the condition in which the outliers
are caused by unstable sensing, not malicious nature.

Different from the common outlier and abnormal, malicious terminals have the nature to
destroy networks on purpose instead of unintentionally, and the performance can be monitored
continuously. Especially, when the malicious reports in one mesh are larger than the normal
reports, by using the outlier detection, it will judge the normal reports as outliers falsely.
Also, when an extremely large outlier exists, it will affect other outlier detection. By using
our proposed method, since we judge the error continuously, this could be solved.

As we mentioned in Section 1.1.2, REM can be used to make decisions in a variety of
applications, including coverage optimization [19], resource allocation [22], interference
analysis [23], location estimation [24][25], and so on. The accuracy of the REM is indeed
required to be different for different applications, but certainly, an estimation error higher
than 5 dB is definitely not allowed. Regardless of the intended use, most REM errors need
to be kept below 3dB error or even less, however, as the results shown in our dissertation,
without our methods, the error of the REM is quite high on average or in some certain mesh,
especially when the rate of malicious terminals is high. It is shown that, as the REM error
increases, interference is significantly affected in reference [23], and for 2dB error in REM,
caused around 10% capacity decrease for the small cell users in reference [93].

Most studies presume that information provided by terminals is trustworthy, and our
research precisely bridges this part of the gap and makes an important contribution to the
comprehensive and wide range of practical applications in the future.

6.2 Future Scopes

The primary objective of this dissertation is to enhance the wireless communication quality
by constructing the REM. We found the precision of the REM could decrease significantly
when facing data falsification attacks. Additionally, there are several research areas that offer
opportunities for future investigation. In the final section of this dissertation, we provide a
brief overview of the outstanding issues and potential avenues for further research.
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Toward a more flexible system for REM construction In this dissertation, we mainly
concentrated on against the data falsification attack, due to it is easy to launch, and can
have an important impact on the entire network system, and can even completely destroy
the communication system, so in recent years, it has been the focus of scholars’ research.
However, as we mentioned in section 1.1.3, SSDF is not the only attack method that can be
launched in the CRNs. More flexible attacks could happen in the communication network.
Therefore, a system that can effectively identify attack methods and respond quickly to ensure
the stability and security of the communication system needs to be studied.

Toward the completion of distributed networks In this dissertation, the fixed primary
terminal operating within the centralized network was the main focus. However, given
the prevalence of interconnected systems and devices today, studying distributed networks
has become increasingly important. Distributed networks have the potential to increase
extensibility, lower costs, and increase system efficiency. Distributed network research can
also aid the ever-increasing need for connectivity as a result of the expanding number of
devices.

Toward five-dimensional REM construction Although we assumed a two-dimensional
radio environment in this research, the transmitter and receiver heights have a substantial
impact on radio propagation characteristics. Additionally, we must take into account the
activities in the time domain and various frequency bands. For example, the efficiency of
sharing the spectrum can be increased through statistical analysis in the time domain, such as
occupancy rate and transition rate. As a result, it is important to study the five-dimensional
(longitude-latitude-altitude-time-frequency) model in the future.
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