
DESIGNING HIGHLY EFFICIENT
AND RELIABLE SECURE

TWO-ROUND MULTI-SIGNATURE
SCHEME

Kaoru Takemure

The University of Electro-Communications

Graduate School of

Informatics and Engineering

A Dissertation Submitted for
Doctor of Philosophy in Engineering

March, 2024

DESIGNING HIGHLY EFFICIENT
AND RELIABLE SECURE

TWO-ROUND MULTI-SIGNATURE
SCHEME

Supervisory Committee

Chairperson: Professor Yasutada Oohama

Member: Professor Mitsugu Iwamoto

Member: Professor Kazuki Yoneyama

Member: Associate Professor Tomohiro Ogawa

Member: Associate Professor Hideki Yagi

Member: Associate Professor Bagus Santoso

© Copyright 2024 by Kaoru Takemure

和文概要

電子署名方式は、現実世界において印鑑のような役割を担う暗号方式で
ある。 具体的には、署名者は秘密鍵を用いて文書に対して署名を生成
し、検証者は公開鍵を用いて署名検証を行う。 近年、ブロックチェーン
を利用した暗号資産等のアプリケーションにおいては、それぞれ自身の
秘密鍵を持つ複数の署名者で共通の文書に対して署名を生成するという
状況が考えられる。 通常の電子署名方式を利用する素朴な方法として、
複数の署名者により生成される複数の署名を１つの署名と見なし、検証
者はすべての署名が正当であれば合格とする方法が考えられる。 しかし
ながら、この方法では署名のサイズが署名者数に線形に依存して増大し
てしまう。 これは、暗号資産の抱える課題の１つであるスケーラビリ
ティ問題を悪化させる。

上記の問題を解決可能な署名方式の１つとして、多重署名方式があ
る。 多重署名方式では、複数の署名者が各々の秘密鍵と公開鍵を持ち、
１つの文書を共有した署名者全員で署名生成プロトコルを実行すること
で、署名者数に依存しない署名長の署名を生成する。 署名は、すべての
署名者の公開鍵により検証可能である。 したがって、多重署名方式を
用いることで、署名長を大幅に悪化させることなく、複数の署名者で共
通の文書に署名を発行することができる。 多重署名方式の効率性の評
価軸として、署名長だけでなく、署名生成プロトコルの通信回数(ラウ
ンド)や通信量も重要な指標となる。 本研究では、特に離散対数ベース
の多重署名方式に着目する。 Bitcoin等では離散対数ベースの署名方式が
用いられているため、離散対数ベースの多重署名方式は高い互換性を持
つ。 また、ライブラリも充実しており、実装は比較的容易である。 一
般に非対話型の離散対数ベースの多重署名方式の構成は困難であること
が知られているため、 署名生成プロトコルの方式は2ラウンドが最適と
考えられている。

離散対数ベースの多重署名方式において、現在2ラウンドの署名生成
プロトコルを達成する方式は複数提案されている。 既存の2ラウンド方
式らは、帰着ロスの大きい方式と小さい方式に分類できる。 帰着ロスと
は、安全性証明より導ける、方式を破る困難性と計算問題の困難性との
差を示す指標である。 信頼性の高い安全性を達成するためには、実装す

i

る際に用いるパラメタは帰着ロスを考慮して設定される必要がある。 一
般に帰着ロスが大きくなるほどより大きなパラメタが必要となる。 大き
な帰着ロスを持つ既存方式は、信頼性の高い安全性を保証するためには
非常に大きなパラメタを必要とし効率性は悪い。 また、これらの方式
は、標準的な安全性レベルである128ビット安全性を保証可能な標準化楕
円曲線を持たない。 帰着ロスが小さい既存方式は、小さいパラメタを用
いることができるため高効率であり、また128ビット安全性を保証可能
な標準化楕円曲線を持つ。 一方で、これらの方式は、すべての離散対
数ベースの既存方式で用いられているハッシュ関数に関する理想的な仮
定であるRandom Oracle Model (ROM)に加え、さらに攻撃者の演算に制
限を設けるAlgebraic Group Model (AGM)という理想的な仮定も用いてい
る。 現在、AGMを使わずにROMのみを用いることで、128ビット安全性
を保証可能な標準化楕円曲線を持つ程の小さい帰着ロスを達成する効率
的な多重署名方式、すなわち高い効率性と信頼性の高い安全性の両方を
達成する方式は知られていない。
本論文では、そのような高効率と高信頼の安全性の両方を達成する初

めての2ラウンド多重署名方式を提案する。 本研究では、安全性の根拠
となる計算問題が判定問題であるような2ラウンド方式を構成する新たな
手法を考案することで提案方式を構成する。 具体的には、この手法は、
安全性の根拠として探索問題を用いるある既存2ラウンド方式で用いら
れているテクニックを基に考案される。 本論文では提案方式を2つ提案
する。1つ目の方式は既存方式より微妙に弱い安全性のみを達成する方
式である。 2つ目の方式は1つ目の改善方式であり、効率性の悪化や仮定
を追加することなく既存方式と同等の安全性を達成可能な方式である。
提案方式は、AGM は用いずに、判定Diffie-Hellman(DDH)仮定とROMの
下で安全性が証明される。 DDH 問題は、実用的な世界では離散対数問
題と同程度の困難性を持つと考えられている標準的な計算問題の１つ
である。 提案方式が小さい帰着ロスを達成したことにより、この方式
は128ビット安全性を保証可能な標準化曲線を持つこととなった。 提案
方式はAGMを用いずにこれを達成する初めての方式である。 提案方式
は、AGMを用いない方式の中で最も小さい署名長と通信量を達成してい
る。 また、提案方式について実装を行い、署名生成および署名検証の計
算時間を測定し、実用的な計算時間であることを確認した。
本研究の結果は、離散対数ベースの多重署名方式において、安全性の

信頼性、効率性、仮定の強さ間における新たなトレードオフを示唆して
いる。 これは、よりユーザの要求に適したアプリケーションの実現可能
性を高めることが期待される。 本論文の提案方式は、安全性の信頼性と
方式の効率性の両方を要求するユーザに対し、最も適した方式であると
いえる。

ii

Abstract

Digital signatures are one of the fundamental cryptographic primitives. In
digital signatures, a signer generates a signature on a message to prove the
validity of a message by using a secret key. The signature is verified by the
corresponding public key. In blockchain-based applications, e.g., cryptocur-
rencies, we consider a situation where multiple signers generate signatures
on the same message m. The naive approach to achieve this is as follows.
Multiple signers generate signatures on m by using their own secret key. The
set of signatures is regarded as a signature onm. A verifier accepts a message
if all signatures are valid. However, this approach makes signature schemes
inefficient since the size of the signature grows linearly with the number of
keys. This exacerbates an issue in cryptocurrencies, namely, the problem of
scalability. Thus more advanced cryptosystems are needed.

Multi-signatures are one of the cryptosystems that solve this issue. In
a multi-signature scheme, for a single common message m, multiple sign-
ers cooperatively generate a multi-signature σ, which is a combination of
multiple individual signatures on the message m where each is created by
each party using its secret key. The multi-signature σ is verified by all
public keys involved in the signing protocol. An essential property of the
multi-signatures is that its size is kept constant independently of the number
of signers. Thus using a multi-signature scheme allows us to generate the
constant size signature on m by multiple signers without making the issue
in cryptocurrencies worse. In addition to the signature size, the number of
communication rounds and the communication complexity of the signing pro-
tocol are also important factors of efficiency. In this research, we focus on the
discrete logarithm (DL)-based multi-signature scheme. Since the DL-based
signature schemes are used in current cryptocurrencies, e.g., Bitcoin, they
are highly compatible. Also, they are easy to implement due to great library
support. Due to the widely held belief that it is hard to construct a non-
interactive DL-based multi-signature scheme, a two-round signing protocol
is regarded as optimal.

To date, several DL-based two-round multi-signature schemes have been

iii

proposed. We can classify the existing schemes into two types, schemes with
non-constant reduction losses (non-tight security) or with constant reduction
losses (tight security). The reduction loss expresses the gap between the
hardness of breaking the security of the cryptographic primitive and that of
solving the computational problem on which the security of the primitive is
based. When we guarantee highly reliable security, we need to implement
schemes under provable secure parameters which are derived by considering
the reduction loss. The existing schemes with non-tight security have large
reduction losses which does not allow us to ensure the standard security level,
e.g., 128-bit security, under standardized elliptic curves (EC), e.g., NIST
Prime Curves. Since these schemes require large parameters, these schemes
are inefficient under provable secure parameters. While the other existing
schemes with tight security can ensure 128-bit security and short signature
size under provable secure parameters, they require not only the Random
Oracle Model (ROM) but also the Algebraic Group Model (AGM) which are
idealized models of hash functions and computation, respectively. Note that
all existing DL-based schemes use the ROM to prove the security of them.
At present, there is no two-round scheme achieving a small reduction loss,
which can ensure 128-bit security under the standardized EC, without using
the AGM, namely, a scheme that achieves both high efficiency and reliable
security.

In this thesis, we propose new two-round multi-signature schemes that
achieve high efficiency and reliable security. We construct our scheme by
devising a new approach to construct a two-round scheme whose security
relies on a decisional problem. This approach is devised from a technique
employed in an existing scheme, the security of which is proven under a
search problem. We propose two schemes. The first scheme only achieves
slightly weak security compared with related schemes. The second scheme is
an improvement of the first scheme. This is proven secure as same as existing
schemes without compromising the efficiency and adding assumptions. The
security of our schemes is proven under the decisional Diffie-Hellman (DDH)
assumption in the random oracle model (ROM). In practice, the DDH prob-
lem is considered to be about as hard as the DL problem. Moreover, due
to achieving the small reduction loss, our scheme can use the standardized
elliptic curve (EC) to ensure 128-bit security, in practice. The use of a stan-
dardized EC guarantees reliable implementations. Our scheme is the first
scheme that achieves it without using the AGM. Also, our signature size
and communication complexity are the smallest among the schemes without
using the AGM. In addition, our experiment on an ordinary machine shows
that for signing and verification, each can be completed in about 65 ms under
100 signers. This shows that our scheme has sufficiently reasonable running

iv

time in practice.
Our proposed scheme shows new trade-offs between reliability of security,

efficiency, and strength of underlying assumptions. This gives us a new candi-
date for multi-signatures that meets the user’s requirements. This enhances
the feasibility of cryptocurrencies and blockchain-based applications, making
them better suited to meet user demands. Indeed, our scheme is desirable
for users who do not want to compromise on the reliability of the security,
efficiency, and strength of assumptions.

v

vi

Publication Related to This
Thesis

1. Kaoru Takemure, Yusuke Sakai, Bagus Santoso, Goichiro Hanaoka,
Kazuo Ohta, “More Efficient Two-Round Multi-Signature Scheme with
Provably Secure Parameters for Standardized Elliptic Curve”, IEICE
Transaction on Fundamentals of Electronics, Communications and Com-
puter Sciences, Vol. E107-A, No.7, pp.-, Jul. 2024. (to appear, total
number of pages: 24)

vii

viii

Acknowledgements

I would like to deeply thank my main supervisor Professor Yasutada Oohama
for helpful suggestions regarding my research and great support. I would
like to express my appreciation to Associate Professor Bagus Santoso. The
fascination with the research of cryptography was first taught to me by him.
Since I joined his lab in my fourth year of undergraduate studies, I have
had fruitful discussions and received great support and advice from him, not
limited to research. I also would like to thank Associate Professor Hideki
Yagi for meaningful suggestions and comments in the joint seminar in the
laboratory. I would like to express my appreciation to all of them for their
helpful and significant comments on my thesis and presentation.

I would like to gratefully thank the supervisory committee members, Pro-
fessor Mitsugu Iwamoto, Professor Kazuki Yoneyama, and Associate Profes-
sor Tomohiro Ogawa. Their comments and suggestions were insightful and
provided valuable guidance for enhancing my thesis and presentation.

I would like to gratitude to the members of Cyber Physical Security
Research Center at National Institute of Advanced Industrial Science and
Technology. I would like to deeply thank Goichiro Hanaoka and Takahiro
Matsuda for their thoughtful support and advice, without limited to research.
I would like to thank Kazuo Ohta and Yusuke Sakai for fruitful discussions
and insightful suggestions in research, including that of multi-signatures of
this thesis. I would like to thank Shota Yamada and Shuichi Katsumata for
the productive discussions and precious experiences of recent joint work. I
also would like to thank other members for sharing the latest research results
and interesting research.

I would like to thank all members of Santoso Laboratory for the discus-
sions, delightful chats, and enjoyable time. I have enjoyed my research life
in this laboratory thanks to them. Thank you, Yuto Kou, Taichi Yaguchi,
Akitaka Yokota, Arga Dhahana Pramudianto, Tihang Wijaya, Daigo Kuroki,
Takumi Yada, Toma Uetsu, Subaru Fuji, Riku Yoneya, Koshiro Yamashita,
Jin Yang, and Lukas Palmqvist.

Finally, I would like to thank my family for their financial and mental

ix

support.

x

Contents

1 Introduction 1
1.1 Backgrounds . 1

1.1.1 Digital Signatures . 1
1.1.2 Multi-Signatures . 2

1.2 Concrete Security . 5
1.2.1 Concrete Security and Tightness 5
1.2.2 Benefits for Efficiency and Reliability of Implementation 6

1.3 Motivation . 7
1.4 Our Contribution . 10
1.5 Multi-Signatures Based on Other Computational Problem . . 13
1.6 Organization . 14

2 Preliminaries 15
2.1 General Notations . 15
2.2 Discrete Logarithm . 16

2.2.1 Problems and Assumptions 16
2.2.2 Randomizing Algorithm of (non-)DH Tuple 18

2.3 General Forking Lemma . 18
2.4 Definition of Multi-Signatures 19

2.4.1 Syntax . 20
2.4.2 Correctness . 22
2.4.3 Unforgeability . 23
2.4.4 Slightly Weak and Strong Unforgeability 25

3 Discrete-Logarithm-Based Multi-Signatures 33
3.1 Schnorr Signature Scheme . 34
3.2 Rogue Key Attack and Restricted Key Setup Models 35
3.3 Three-Round DL-Based Multi-Signatures 37

3.3.1 Bellare-Neven Scheme 37
3.3.2 MuSig-DL . 38

3.4 Two-Round DL-Based Multi-Signatures 40

xi

3.4.1 Modified BCJ . 40
3.4.2 MuSig-DN . 42
3.4.3 MuSig2 . 42
3.4.4 HBMS . 45
3.4.5 Pan-Wagner Schemes 45

3.5 Proof of Theorem 3 . 48

4 New Two-Round Multi-Signature Schemes with Small Re-
duction Loss 53
4.1 Technical Overview . 54

4.1.1 Difficulty to Construct Two-Round Schemes and Ex-
isting Techniques . 54

4.1.2 DDH-Based Lossy Identification 55
4.1.3 Naive Approach and Difficulty 56
4.1.4 Our Solutions . 57

4.2 Proposed Scheme HBMSDDH-1 58
4.3 Correctness of HBMSDDH-1 61
4.4 Intuition of Security Proof . 61
4.5 Formal Security Proof for HBMSDDH-1 64
4.6 Improved Scheme HBMSDDH-2 85

4.6.1 Construction of HBMSDDH-2 86
4.6.2 Security Proof of HBMSDDH-2 86

5 Analysis of Efficiency 95
5.1 Comparison in Concrete Security 95

5.1.1 Estimation of the Underlying Group Size 96
5.1.2 Comparison . 97

5.2 Computation Time . 100
5.2.1 Environment and Setting 100
5.2.2 Results . 100
5.2.3 Comparison . 101

5.3 Communication Time . 102

6 Discussion 105

7 Conclusion 109

References 110

Chapter 1

Introduction

1.1 Backgrounds

1.1.1 Digital Signatures

Digital signatures [DH76, RSA78, GMR88] are cryptosystems that ensure
the validity of digital data. In the physical world, we prove the authenticity
of a document through a signature or a stamp. Digital signatures make this
possible in the digital realm. Along with public key encryptions, digital sig-
natures are one of the most fundamental cryptographic systems. In practice,
digital signature schemes are used in numerous systems.

A digital signature scheme is defined by three efficient algorithms, the key
generation algorithm, the signing algorithm, and the verification algorithm.
The key generation algorithm provides the public key and secret key. The
public key is publicly opened and the secret key is kept secret by the signer.
To authenticate a message, the signer generates a signature by using the
signing algorithm and the secret key. Anyone having the public key can
verify the signature by using the verification algorithm.

The security of digital signatures guarantees that anyone who does not
know the secret key cannot generate a forgery. This security notion is called
unforgeability. The unforgeability of most signature schemes is proven under
certain computational assumptions. In other words, we prove that breaking
the unforgeability of a scheme is about as hard as solving a certain com-
putational problem. To prove this statement, we usually show that the
contraposition of the statement holds. Namely, we show that there exists
an efficient algorithm solving a certain problem if there exists an efficient ad-
versary breaking the security of a scheme. Note that this way is a common
practice in provable security and is not limited to digital signatures.

The notion of digital signatures was introduced by Diffie, Hellman, and

1

Merkle [DH76, Mer78, MH78]. Rivest, Shamir, and Adleman constructed the
public-key encryption scheme, a.k.a. RSA, and also proposed the first dig-
ital signature scheme based on it [RSA78]. Goldwasser, Micali, and Rivest
defined the security classes of digital signatures. Currently, the typical se-
curity class that needs to be guaranteed is existential unforgeability under a
chosen message attack (EUF-CMA). This security notion ensures that any
adversary cannot forge a signature on any message even though it can obtain
valid signatures on messages that are adaptively chosen by it and are not
the same as the message to be forged. They also constructed the first digital
signature scheme that achieves EUF-CMA.

Bellare and Rogaway introduced the notion of the random oracle model
(ROM) and constructed efficient signature schemes from the trapdoor one-
way function, which is called the full-domain hash signatures [BR96]. These
schemes were proven EUF-CMA under the ROM. While the ROM is an ideal-
ized model for the hash function, it allows us to obtain efficient schemes. Fiat
and Shamir proposed a way to transform from an interactive identification
to a digital signature, which is called the Fiat-Shamir transform [FS87]. The
Schnorr signature scheme is one of the famous digital signature schemes based
on the discrete logarithm problem constructed by this transformation [Sch90].
No formal security proofs of such signature schemes were given at the time.
Pointcheval and Stern proved that the Schnorr signature scheme is EUF-
CMA under the ROM by using the rewinding technique [PS96]. Boneh et al.
proposed a practical signature scheme based on pairing [BLS01]. Numerous
signature schemes that are proven secure under the ROM are constructed
from various assumptions so far.

There are some practical digital signature schemes that are secure in the
standard model, in which the ROM is not used. The signature schemes [GHR99,
CS99] were proven secure in the standard model under the strong RSA as-
sumption. It is known that digital signature schemes can be obtained from
identity-based encryption schemes (IBE) [BF01, SOK00]. In this manner,
signature schemes based on the pairing [BB04, Wat05, Gen06] were proposed.

1.1.2 Multi-Signatures

In blockchains and cryptocurrencies, we often face a situation where multiple
signers produce signatures on the same message M. The naive way is that
each signer generates a signature on M by using his secret key. The signature
on M consists of all signers’ signatures. Then, a verifier accepts the signature
if all signatures are valid. This is known as Multi-Sig in the context of
cryptocurrencies.

Multi-Sig is one of the ways to improve the security of cryptocurrencies,

2

e.g., Bitcoin [Nak08]. The theft of funds is a serious problem for them. The
cause of this is the compromise of secret keys of digital signatures. When
a sender spends funds, it produces a signature on a transaction by using its
secret key to certify the validity of a transaction. However, if the secret key is
compromised, anyone can generate a valid signature on a fake transaction and
consequently steal funds. In fact, many incidents have occurred so far due to
secret key compromises. Multi-Sig is one of the ways to prevent secret key
compromise. In a nutshell, a sender keeps multiple secret keys in a distributed
manner and produces multiple signatures associated with these keys (or a
part of these keys) to spend funds. Due to this countermeasure, even if a
part of the secret keys are leaked, we can prevent the theft of funds. The
statistical study [dAS20a, dAS20b] on the blockchain-based cryptocurrency
Ethereum’s main chain up to block 1,1500,000 (mined on Dec 22, 2020) shows
that 12.5% of all wallets are actually Multi-Sig Wallets.

However, unfortunately, this approach exacerbates another problem fac-
ing cryptocurrencies, i.e., the problem of scalability. Specifically, if we de-
velop Multi-Sig in a system, the size of the signature to be stored in a block
increases linearly with the number of signers. However, there is a limit to
the amount of data that can be stored in one block. Thus, increasing the
size of signatures included in transactions causes delays in the transaction
processing and increases the transaction fees. Therefore, the countermeasures
without increasing the signature size are desirable.

Fortunately, we have some solutions, one of which ismulti-signatures [IN83].
In the multi-signatures, for a single common message M, multiple signers
cooperatively generate a signature σ̃, known as a multi-signature, which is
basically a combination of multiple individual signatures (σi)i on M where
each is created by each signer using its own secret key. The unforgeabil-
ity of multi-signature schemes guarantees that any efficient adversary can-
not forge, even if it corrupts all signers except for one signer. The essen-
tial and worthwhile property of multi-signatures is that the size of multi-
signatures is independent of the number of signers. Therefore, using a
multi-signature scheme instead of the naive way of Multi-Sig improves the
security against the theft of funds without harming the scalability. Multi-
signature schemes based on several hardness problems have been proposed
so far, e.g., the discrete logarithm (DL)-based schemes [MOR01, BN06,
MPSW19, DEF+19, NRSW20, NRS21, AB21, BD21, LK22, TZ23, PW23],
pairing-based schemes [Bol03, BGOY07, LBG09, LOS+06, RY07], lattice-
based schemes [ES16, MJ19, FH20, DOTT21, BTT22, Che23a], and so on.

Remark 1. We can use the threshold signatures [Des90, DF90] as another
solution. In T -out-of-N threshold signatures, a secret key is distributed to N

3

signers and a signature on a message is generated by any set of T ≤ N sign-
ers. Multi-signatures can be regarded as a special case of threshold signatures,
i.e., N-out-of-N threshold signatures. In the threshold signatures, all signers
generate a public key and secret key shares by executing the distributed key
generation (DKG). While we can easily execute the DKG if there is a trusted
third party, all signers execute the DKG protocol by interacting with each
other without such a trusted one. The threshold signatures are verified by
one public key. In contrast, all signers generate public and secret keys by
themselves in the multi-signatures, and the multi-signatures are verified by
multiple public keys.

Discrete-Logarithm-Based Multi-Signatures. In this research, we focus
on the (pairing-free) Discrete Logarithm-based (DL-based) multi-signature
schemes, which are well-studied by a lot of literature referred to above. The
DL-based scheme can be implemented under the elliptic curves used to im-
plement standard digital signature schemes, e.g., the ECDSA [Nat13] and
the Schnorr signature scheme [Sch90], used in some cryptocurrencies, e.g.,
Bitcoin. In such applications, DL-based multi-signature schemes have high
compatibility. While the use of pairing, which has a special algebraic struc-
ture, i.e., the bilinear map, allows us to construct aggregatable signature
schemes including multi-signature schemes (see Section 1.5), pairing-friendly
elliptic curves are not supported by highly-verified standard cryptographic
libraries, e.g., NSS and BoringSSL, as mentioned in [CKM+23]. This suggests
that focusing on the pairing-free DL-based scheme which can be implemented
under the standard pairing-free elliptic curves supported by such libraries is
worthwhile. Now we briefly review the DL-based multi-signature schemes.
For more detailed previous research of DL-based multi-signature schemes,
see Chapter 3.

The multi-signature schemes proposed in early literature [IN83, LHL95,
Lan96, MH96, OO93, OO99, Har94] are not secure against the rogue-key
attack, in which an adversary maliciously generates cosigners’ public keys
to forge. A naive way to prevent this attack is to attach the certification
of knowledge of a secret key to a public key. Another way is to execute a
trusted key generation protocol [MOR01]. However, these ways make the
scheme inefficient and are not suitable for some applications.

Bellare and Neven proposed the first secure three-round multi-signature
scheme without a trusted key setup [BN06]. Such an unrestricted key setup
model is called the plain public key (PPK) model. Here ‘three-round’ means
that the signing protocol has three-round communications between signers.
Also, Maxwell et al. [MPSW19] introduced a notion of key aggregation, which
provides the compression of public keys and efficient verification, in the con-

4

text of the application of cryptocurrencies. Due to these works, the primary
desirable features of the multi-signatures are the security in the PPK model,
the two-round signing protocol, and the support of the key aggregation.

Although some two-round multi-signature schemes [BCJ08, MWLD10,
STV+16, MPSW18] were proposed after the three-round scheme [BN06] was
proposed, Drijvers et al. [DEF+19] suggested the vulnerability of them by
demonstrating attacks, which were improved by [BLL+21]. They also pro-
posed the first secure two-round multi-signature scheme. To date, several
schemes achieving the three desirable properties described above have been
proposed [NRSW20, NRS21, AB21, BD21, LK22, PW23, TZ23].

1.2 Concrete Security

1.2.1 Concrete Security and Tightness

Theoretically, a security proof of a cryptosystem consists of a reduction from
solving some computational problem to breaking the cryptosystem under a
defined adversarial model. From the security proof, usually, we can derive
a relation between the working factors WFA = tA/ϵA and WFP = tP/ϵP ,
where tA and ϵA are the adversary’s running time and success probability for
breaking the cryptosystem and tP and ϵP are the algorithm’s running time
and success probability for solving the computational problem. Intuitively,
the working factors WFA and WFP express the expected time required to
break the cryptosystem and solve the computational problem, respectively.
A typical relation between WFP and WFA derived from the security proof is
as follows: WFA ≥ WFP/Φ, where Φ ≥ 1 is often referred to as the reduction
loss. In concrete security, the parameters of the cryptosystem are provided
from this relation. We call such parameters as provable secure parameters.

Provable secure parameters are significant from the point of view of reli-
able security. The gap, i.e., the reduction loss Φ, suggests the existence of a
potential attack against the cryptosystem. This means that the parameters
without considering Φ may be not sufficient to ensure the security level we
desire. However, when we derive the size of parameters, e.g., an order of
the underlying group in a DL-based scheme, for guaranteeing the security
of the cryptosystem in practice, a reduction loss Φ was often disregarded.
Then, this disregard sometimes makes schemes vulnerable. Indeed, there are
some examples of this vulnerability [CMS12, KZ20]. In [KZ20], Kales and
Zaverucha demonstrate an attack on the MQDSS signature scheme [SSH11].
Their attack exploits the fact that the parameter of MQDSS was derived
without considering Φ. Therefore, it is important to derive the parameters

5

by considering Φ based on the security proof, and thus we should implement
cryptosystems with provable secure parameters for reliable security.

In general, if Φ is a relatively small constant value independent of the
parameters of the cryptosystem and the adversary, we say that the security
proof is tight. In contrast, we say that the security proof is non-tight if Φ
depends on those parameters. The tight security proof states that breaking
the cryptosystem is as hard as solving a certain computational problem.
There are numerous works that study the tight security of many crypto-
graphic primitives from theoretical and practical aspects, e.g., (identity-
based) public-key encryption [BBM00, HJ12, LJYP14, LPJY15, HKS15,
AHY15, BJLS16, GHKW16, GCD+16, Hof17], signatures [GJKW07, Sch11,
HJ12, AFLT12, BKKP15, BJLS16, BL16, KMP16, DGJL21, PW22], multi-
signatures [BN05, WSQL08, PP16, Yan18, FH19, FH21, KSH23, PW23], etc.
Hence, research directed toward achieving tight security is meaningful both
in practice and theory.

1.2.2 Benefits for Efficiency and Reliability of Imple-
mentation

Under considering concrete security, tight security is preferable from the
aspect of efficiency. To ensure 128-bit security, which guaranteesWFA ≥ 2128,
the cryptosystem with tight security can be implemented under the provable
secure parameters whose size ensures WFP = 2128. In contrast, if Φ is large,
we need to ensure that WFP is sufficiently large so that the derived lower
bound of WFA, i.e., WFP/Φ, is not too small to have a practical meaning.
Usually, the only way to make WFP larger is by setting larger parameters,
which means higher costs for implementation in practice. Thus the smaller
Φ is desired in practice.

We now clearly explain the effect of the reduction loss on efficiency by
demonstrating how provable secure parameters are derived. Let us consider
a scheme that is proven secure under the DL assumption. The known fastest
algorithm for solving the DL problem is Pollard’s ρ algorithm [Pol78], which
requires O(

√
p) time where p is the prime order of the underlying group.

Then, we set a 256-bit prime integer to p to obtain WFP ≥ 2128. Typically,
the parameters guaranteeing 128-bit security are set so that WFA ≥ 2128.
Now we show how to derive provable secure parameters. When Φ = 1 holds,
we can set a 256-bit prime integer to p to ensure 128-bit security sinceWFA ≥√
2256 ≥ 2128 holds. This means that we can use the group of 256-bit prime

order. When Φ = 260 holds, we can use the group of a 376-bit prime order
since WFA ≥

√
2376/260 ≥ 2128 holds. When Φ is 2160, a scheme requires a

6

group of 576-bit prime order, since WFA ≥
√
2576/280 ≥ 2128 holds. This

demonstration suggests that a scheme with a smaller Φ can provide security
as reliable as one with a large reduction loss but using smaller parameters.

A smaller reduction loss also makes implementation reliable due to the use
of standardized tools. For example, for the DL-based schemes with tight se-
curity, an elliptic curve (EC) with a 256-bit prime order ensures to guarantee
128-bit security, as shown in the demonstration above. Then, we can use the
standardized ECs, e.g., NIST P-256 [CMR+23] and Secp256k1 [Bro10], for
128-bit security. If Φ is small even though Φ is not constant, we may be able
to avoid the inconvenient situation where there is no suitable standardized
tool. Specifically, in the second example considered in the demonstration
above, we are able to use the standardized ECs, e.g., NIST P-384 and P-
521 [CMR+23], instead of that with a 256-bit order. Whereas, it is difficult
for a scheme with a large reduction loss to use the standardized cryptographic
tools. Indeed, there is no standardized EC for 128-bit security in the last
case of the above demonstration. For such a scheme with very large Φ, we
need to design a new desirable EC. This makes the implementation difficult
and less reliable. In this thesis, for the DL-based scheme, if Φ is not constant
but sufficiently small to ensure the existence of a standardized EC for 128-bit
security, we say that the reduction loss is small. If not so, we say that the
reduction loss is large.

1.3 Motivation

Here, we review the existing DL-based two-round multi-signature schemes in
terms of the tightness of a reduction. We note that the security of all related
schemes is proven in the random oracle model (ROM) [BR93].

Most of them can be categorized into two types: The first type is the
schemes with non-tight security (namely, having a large reduction loss) and
the second type is the schemes with a tight security. The schemes of the
first type include MuSig-DN [NRSW20], MuSig2-1 [NRS21]1, HBMS [BD21],
TZ [TZ23], and mBCJ-PPK [DEF+19]2, while the schemes of the second type
include MuSig2-2 [NRS21], DWMS [AB21], HBMS-AGM [BD21]3, LK [LK22].

1MuSig2 is proven secure both with and without the use of the AGM. We call the
former and latter as MuSig2-2 and MuSig2-1, respectively.

2The original of mBCJ is proven secure in a restricted key setup model. In Section 3.4.1,
we present a variant of it that is secure in the PPK model. We call this variant scheme
mBCJ-PPK.

3HBMS is proven secure both with and without the use of the AGM. We especially call
the former as HBMS-AGM.

7

Note that for MuSig2-1, MuSig2-2, TZ, and DWMS, the first round of the
signing protocol can be done as pre-processing.

When taking tightness into consideration, even for 128-bit security, the
first-type schemes require elliptic curves (EC) with a very large order. In or-
der to provably ensure 128-bit security, MuSig-DN, MuSig2-1, HBMS, TZ, and
mBCJ-PPK, respectively, require 740-bit, 750-bit, 986-bit, 742-bit, and 574-
bit groups. Importantly, these schemes no longer have standardized curves
that provably ensure 128-bit security.

The cause of the large reduction losses of these schemes is that, to prove
the security based on the DL problem (or other search problem), the reduc-
tion performs the rewinding of the adversary. This is similar to the security
proof of the Schnorr signature scheme, on which these schemes are con-
structed based. Moreover, for schemes with key aggregation, the number of
rewindings has to be increased. Thus, these schemes have larger reduction
losses compared to the Schnorr signature scheme.

The schemes of the second type achieve tight security by using not only
the ROM but also the Algebraic Group Model (AGM) [FKL18], which is an
idealized model of computation. The schemes allow us to use an EC of a
small order, e.g., 256-bit. Then, we can use NIST P-256 or Secp256k1 to
implement such schemes, resulting in high efficiency.

From the perspective of minimizing the usage of idealized assumptions,
we can consider a scheme that is proven secure by relying on only the ROM
as more desirable than one that is requiring both the ROM and the AGM to
prove the security. It is known that the Schnorr signature scheme cannot be
proven secure in the standard model [PV05]. This implies that the ROM is
necessary to prove the security of DL-based multi-signature schemes based on
the Schnorr signature scheme. This fact allows us to consider that a scheme
whose security does not rely on the AGM is desirable in terms of minimizing
the use of ideal models.

Notes of Validity of the ROM and the AGM. Bellare and Rogaway
introduced the ROM in 1993 [BR93]. The difference between concrete hash
functions and the random oracle has been scrutinized for thirty years. Canetti
et al. constructed artificial schemes that are secure in the ROM but insecure
with any implementation of the ROM [CGH98]. Moreover, much cryptan-
alytic literature investigates and analyzes the difference between a concrete
hash function from a random oracle [Nie02, GK03, BBP04, CGH04, MRH04,
DOP05, AM09, KN10, LMR+09, GP10, RSS11, KM15, Zha22a]. These lines
of research provide a more fine-grained understanding of how far (or near)
concrete hash functions are from a random oracle.

The AGM is an assumption introduced by Fuchsbauer et al. in 2018.

8

In this idealized model, when an adversary outputs a group element, it is
required to output the linear representation of it relative to all group ele-
ments received so far. The gap between this assumption and the real world
is investigated by some recent research [KP19, AHK20, Zha22b, ZZK22]. In
[KP19], Kastner and Pan instantiate the AGM from the knowledge of expo-
nent assumption [Dam92, BP04, WS07], which is unfalsifiable. After that,
Agrikola et al. [AHK20] instantiate the AGM from a falsifiable but strong
computational assumption, which is the existence of subexponentially strong
indistinguishability obfuscation. Zhandry showed the one-time message au-
thentication code that is secure in the AGM but insecure in the standard
model [Zha22b].

The difference between AGM and ROM is the duration of research to
provide an understanding of how far the models are from real-world im-
plementations. As mentioned above, while the gap for the ROM has been
investigated for three decades, that for the AGM has been studied for half of
a decade. The AGM is expected to be better supported by further research.

As concurrent and independent of our result, Pan and Wagner proposed
two two-round multi-signature schemes that can guarantee 128-bit security
under standardized ECs. The first scheme PW-1 achieves tight security but
does not support key aggregation. The second scheme PW-2 has a small
reduction loss, e.g., O(QS) where QS is the number of the signing queries.4

The second scheme is more efficient than the first one and supports key
aggregation. Both are proven secure under the decisional Diffie-Hellman
(DDH) assumption in the ROM.

However, under provably secure parameters, the two schemes do not im-
prove the signature size and the communication complexity over the existing
non-tight secure schemes even though those achieve tight security or a small
reduction loss. Indeed, as shown in Table 1.1, the signature size of PW-1 is
largest among the existing schemes without using AGM and the size of PW-2
is larger than MuSig-DN and MuSig2-1.

On this context, we have the following question.

Can we construct a two-round multi-signature scheme that achieves
both (i) reliable security and (ii) high efficiency while minimizing
the use of idealized models?
More specifically, can we construct a two-round signature scheme
with a small reduction loss without using the AGM while achieving
a short signature size?

4In [GHKP18], QS for the multi-signatures is set about 230. We note that the signers
can control the number of the signing queries by regenerating keys.

9

1.4 Our Contribution

In this thesis, we provide a positive answer to the above question by propos-
ing a two-round multi-signature scheme HBMSDDH-1, which achieves both
(i) and (ii) mentioned above. We prove that HBMSDDH-1 is secure under
the DDH assumption in the ROM. HBMSDDH-1 guarantees 128-bit security
under a standardized EC, e.g., NIST P-384. The signature size and the
communication complexity under provable secure parameters are the most
efficient among the existing two-round schemes without using the AGM.
Moreover, our scheme is proven secure in the PPK model and supports key
aggregation, which are desirable property for multi-signatures. Note that
HBMSDDH-1 only achieves the slightly weak unforgeability. We also propose
a variant HBMSDDH-2 which achieves the standard unforgeability without
compromising the efficiency.

Our schemes have reduction losses O(QS) where QS is the number of
signing queries of an adversary. As the result of the estimation of provable
secure parameters under the setting QS = 230, it only needs an EC with at
least 321-bit order to ensure 128-bit security.5 Therefore, the curve P-384 is
sufficient. Under P-384, the signature sizes and the communication complex-
ity per one signer of both schemes are 1152 bits and 1538 bits, respectively.
These values achieve the shortest size among the existing schemes without
using the AGM. Below, we compare our scheme with the existing scheme in
detail. Note that we focus on HBMSDDH-1 although it only achieves slightly
weak security because HBMSDDH-2 is as efficient as this scheme.

Firstly, we compare our scheme with the existing non-tight schemes with-
out using the AGM, e.g., MuSig-DN, MuSig2-1, HBMS, TZ, and mBCJ-PPK.
Our signature size is reduced by more than 22%, 23%, 60%, 45%, and 49%,
respectively. Compared to MuSig2-1, HBMS, TZ, and mBCJ-PPK, our total
communication complexity is reduced by more than 59%, 48%, 65%, and
46%, respectively. Note that the first round for MuSig2-1 and TZ can be
executed as pre-processing. For these two schemes, the communication com-
plexity in online communication are 750 and 1484, respectively, which are
smaller than ours. While the public key of our scheme consists of two group
elements, those of those schemes consist of only one group element. However,
the public key size of our scheme under P-384 is 770 bits. This size is almost
the same as theirs except for mBCJ-PPK. While the key size of mBCJ-PPK
is smaller than ours, it does not support key aggregation. Therefore, we
conclude that our scheme is more efficient compared to the existing schemes
whose security does not rely on the AGM when we consider concrete secu-

5We explain the way to estimate provable secure parameters in Section 5.1.1.

10

rity and ignore the online-offline paradigm. Considering the online-offline
paradigm, the online communication complexity of MuSig2-1 and TZ are
more efficient than ours. This shows a trade-off between the signature size
and the online communication complexity.

Secondly, we compare ours with PW-1 and PW-2. The signature size
of our scheme is reduced by more than 67% and 40% , respectively. The
communication complexity of our scheme is also reduced by more than 57%
and 41%. The public keys of them are two group elements. The public key
size of PW-1 is 1028 bits and this scheme does not support key aggregation.
The key size of PW-2 is 770 bits as same as ours. Thus, we also conclude
that our scheme is more efficient than Pan-Wagner’s schemes.

We implement our scheme on an ordinary machine and measure the run-
ning time of our implementation. We set the number of signers N = 3, 5,
10, and 15, as typical numbers of signers in a real-world Multi-Sig Wallet,
and N = 50 and 100 as large-scale settings. For more details of the setting
and the environment, see Section 5.2. Both the running time of the signing
protocol and that of the verification under N = 15 are less than 10 ms. For
large-scale settings, both the running time of the signing protocol and that
of the verification are about 30 ms under N = 50, and those are about 65
ms under N = 100. Moreover, since our proposed scheme also supports key
aggregation, by precomputing an aggregated key, both the running time of
signing and that of verification can be shortened to less than 2 ms irrelevantly
to N . Thus, we can conclude that our scheme has a realistic running time
in practice.

Our Techniques for Constructing Proposed Scheme. To achieve a
scheme with a small reduction loss, we start with the tightly secure Katz-
Wang signature scheme [GJKW07] based on the DDH problem. Towards
constructing a two-round multi-signature scheme, since there are some three-
round multi-signature schemes based on the Katz-Wang signature scheme,
we attempt to reduce the number of rounds of the signing protocol. Then, we
can use the technique of a two-round scheme mBCJ to achieve the two-round
signing protocol. This scheme has a two-round signing protocol by applying
a special commitment scheme based on the DL problem to a DL-based three-
round scheme. Since this approach is modular, we can construct a two-round
signature scheme by constructing a suitable special commitment scheme for
the DDH problem.

Unfortunately, the two-round scheme constructed by applying the mod-
ular way of mBCJ, e.g., PW-2, leads to the inefficient signature size. The
cause of this is the inefficiency of a DDH-based special commitment scheme.
Such a commitment scheme needs to have equivocability and binding prop-

11

Table 1.1: Signature size and communication complexity for two-round multi-
signature schemes without using the AGM.

Scheme Signature Size (bit) Communication Comp. (bit)

MuSig-DN 1481 -
MuSig2-1 1501 3754 (750)
HBMS 2959 2959
TZ 2227 4456 (1484)

mBCJ-PPK 2297 2872
PW-1 3590+N 3591
PW-2 1920 2691

HBMSDDH-1 1152 1538
∗ Columns 2 and 3 show the signature size and the sum of the online and offline communi-
cation complexity, respectively. For MuSig2-1 and TZ, the values in () in the third column
are the online communication complexity. For PW-1, PW-2, and HBMSDDH-1, we show
the sizes of the multi-signature and elements sent in the signing protocol per a signer under
the NIST standardized ECs for 128-bit security. For other schemes, we show the sizes of
them under groups of the smallest order that guarantees 128-bit security. N indicates the
number of signers. For communication complexity of MuSig-DN, we write “-” because it
includes a proof generated by another cryptographic tool whose size considering concrete
security is explicitly unknown.

erty, which are required to prove the security of the resulting two-round
scheme. To ensure these properties, the commitment scheme requires a large
commitment key and decommitment. This brings about a large size of the
signature.

We then focus on the technique of a two-round scheme HBMS to resolve
inefficiency. HBMS is a similar scheme to mBCJ but improves the signature
size. Nevertheless, the cause of the improvement is not explained. However,
upon our careful observation, the improvement is achieved by removing the
binding property from the commitment scheme and simplifying it. In the
security proof, the reduction embeds a special structure in commitment keys
so that it can solve the DL problem from forgeries without binding property.
Unfortunately, we cannot simply apply this technique to our case since the
technique of HBMS is strongly dependent on the structure of the DL-based
Schnorr signature scheme.

To overcome this challenge, we construct our scheme HBMSDDH-1 by
tuning the approach observed in HBMS to the scheme based on the DDH
problem. In short, we construct a special commitment scheme in which we
can embed a special structure to prove the security of the DDH-based scheme
instead of ensuring the binding property in the commitment keys. Then, we

12

achieve a smaller commitment key and decommitment than those of the
scheme based on mBCJ, e.g., PW-2. Specifically, while those of PW-2 consist
of nine and three group elements, respectively, those of our scheme consist of
two group elements and only one group element,respectively. Consequently,
the signature of our scheme consists of three scalars, which is equivalent to
HBMS. We prove that HBMSDDH-1 satisfies the slightly weak unforgeability
under the DDH assumption. In this weak unforgeability, the forgery on an
already signed message does not count as forgery, as opposed to the standard
unforgeability, in which the forgery on an already signed message and a set
of public keys does not count as forgery. We also propose a variant scheme
HBMSDDH-2. This variant scheme achieves the standard unforgeability with-
out compromising the efficiency and reliability of the security of the original
scheme HBMSDDH-1.

1.5 Multi-Signatures Based on Other Com-

putational Problem

RSA-Based Multi-Signatures. Although there are some RSA-based multi-
signature schemes, all of them have special limitations. Most of them achieve
only sequential signing protocol [Oka88, HK89, Oka93, PPKW97, DMO00,
MM00]. While Desmedt and Frankel [DF92] proposed a non-interactive sign-
ing protocol, it requires a trusted third party who distributes all signers’ se-
cret keys. Recently, Tessaro and Zhu [TZ23] proposed not only a DL-based
scheme but also an RSA-based scheme, in which the public parameters must
be generated honestly.

Pairing-Based Multi-Signatures. Pairing provides a suitable algebraic
structure for aggregating signatures. Indeed, there is a non-interactive aggre-
gate signature scheme based on pairing [BGLS03], which aggregates multiple
signatures on different messages into one signature. Multi-signatures are
a special case of aggregate signatures. On the other hand, the security is
less reliable compared to the DL-based schemes due to cryptanalytic efforts,
e.g., [KB16, Gui20], and libraries for the implementation are not sufficiently
supported.

The original pairing-based aggregate signature scheme [BGLS03] cannot
be used as the multi-signatures since the security requires a condition where
all messages are distinct. The variant scheme removes such the restriction
and is compatible with multi-signatures [BNN07]. Boldyreva [Bol03] pro-
posed a pairing-based multi-signature scheme that is secure in the knowledge
of secret key (KOSK) model, and Ristenpart and Yilek [RY07] proved the

13

security of the scheme in the proof-of-possession (PoP) model by applying
a simple PoP protocol. Le et al. [LBG09] proposed a pairing-based three-
round scheme that is secure in the PPK model. Lu et al. [LOS+06] proposed
a scheme without using the random oracle model. Boneh et al. [BDN18] pro-
posed a scheme supporting key aggregation and achieving security in the PPK
model and an accountable-subgroup multi-signature scheme. Drijvers et al.
[DGNW20] constructed a forward-secure multi-signature scheme. While Ko-
jima et al. [KSH23] constructs the two-round pairing-based multi-signature
scheme supporting key aggregation, the security of this scheme is proven in
the PoP model.

Lattice-Based Multi-Signatures. There are some three-round lattice-
based multi-signatures [ES16, MJ19, FH20] following the Fiat-Shamir with
abort paradigm [Lyu09, Lyu12]. Damgard et al. [DOTT21] constructed a
two-round scheme by using an equivocal commitment scheme, like mBCJ.
Boschini et al. [BTT22] proposed a two-round scheme that is similar to
MuSig2. Chen [Che23b] proposed a more efficient two-round scheme that
has an analogous structure to HBMS.

1.6 Organization

The remainder of this thesis is organized as follows: In Chapter 2, we explain
the notations and recall a lemma, definitions of the computational problems
and assumptions based on the discrete logarithm, and the syntaxes and se-
curity definitions of the multi-signatures. In Chapter 3, we first explain the
basic DL-based signature scheme, e.g., the Schnorr signature scheme, and
the key setup model, and then we review some DL-based multi-signature
schemes. In Chapter 4, we propose our new two-round multi-signature
schemes and show their security. In Chapter 5, we compare our proposed
schemes with the related two-round schemes in concrete security, and also
we evaluate the computation time and communication time. In Chapter 6,
we discuss the result of this thesis. In Chapter 7, we describe the conclusion
of this thesis.

14

Chapter 2

Preliminaries

In this chapter, we prepare the notations and recall a lemma, the definitions
of the computation problems and assumptions, and syntaxes and security
definitions of the multi-signatures.

Road Maps. In Section 2.1, we prepare the general notations. In Section 2.2,
we recall some computational problems and assumptions based on the dis-
crete logarithm. In Section 2.3, we recall the general forking lemma [BN06].
In Section 2.4, we show the syntaxes of multi-signature schemes and the
definitions of the correctness and the unforgeability.

2.1 General Notations

We denote the security parameter by λ. Unless noted otherwise, any al-
gorithm is probabilistic. For an algorithm A, we write b

$← A(α1, . . .) to
mean that A takes as inputs α1, . . . and a uniformly chosen random tape and
outputs b. For a list L, we write the i-th element in L as L[i] and the size
of L as |L|. For any tuple a, the number of elements in a is denoted by |a|.
For any value a, we write a← b means the assignment of a into b.

For a prime integer p, we denote the ring of integers modulo p by Zp.
Let G be an additive cyclic group of order p and let G be a generator of
G. We denote the identity element of G by O. Let GrGen be a probabilistic
polynomial-time algorithm that takes as input a security parameter 1λ and
outputs a group description (G, p, G) consisting of a group G of order p,
where p is a prime and log p = Ω(λ), and G is a generator of G.

For A,B,G,H ∈ G and x ∈ Zp, we write (A,B)⊤ ← x(G,H)⊤ to
mean that A and B are computed by xG and xH, respectively. Also, for
A,B,G,H,X, Y ∈ G, we write (A,B)⊤ ← (G,H)⊤ + (X, Y)⊤ to mean that
A and B are computed by G+X and H + Y , respectively.

15

2.2 Discrete Logarithm

2.2.1 Problems and Assumptions

Below, we recall the definitions of the discrete logarithm (DL) problem, the
decisional Diffie-Hellman (DDH) problem, and the algebraic one-more dis-
crete logarithm (AOMDL) problem.

Definition 1 (Discrete Logarithm Problem). The advantage of an adversary
A for the discrete logarithm (DL) problem is defined by

AdvdlA(1
λ) = Pr[GamedlA(1

λ) = 1].

We say that an adversary A (t, ϵ)-solves the DL problem if it runs in time
at most t and satisfies AdvdlA(1

λ) ≥ ϵ. We also say that the DL assumption
holds if AdvdlA(1

λ) is negligible for any PPT algorithm A.

Definition 2 (Decisional Diffie-Hellman Problem). The advantage of an ad-
versary A for the decisional Diffie-Hellman (DDH) problem is defined by

AdvddhA (1λ) = Pr[GameddhA (1λ) = 1].

We say that an adversary A (t, ϵ)-solves the DDH problem if it runs in time
at most t and satisfies AdvddhA (1λ) ≥ ϵ. We say that the DDH assumption
holds if AdvddhA (1λ) is negligible for any PPT adversary A. We also say that
G is a (t, ϵ)-DDH group if there is no adversary A that (t, ϵ)-solves the DDH
problem.

For G,H,X, Y ∈ G, the tuple (G,H,X, Y) is called a DH-tuple (resp.
non-DH tuple) if there exists (resp. does not exist) x ∈ Zp such that
x(G,H)⊤ = (X, Y)⊤.

The AOMDL problem is a variant of the OMDL problem introduced
by [NRS21]. The difference between them is queries to the DL oracle. An
adversary against the OMDL problem is allowed to query any group elements
in G to the DL oracle, which returns the discrete logarithm of the queried
group element. Notice that the OMDL assumption is unfalsifiable since the
oracle needs to solve the DL problem to answer queries. On the other hand,
an adversary against the AOMDL problem is only allowed to query linear
combinations of group elements given as a challenge instance. The AOMDL
assumption is falsifiable since the challenger can know all discrete logarithms
of challenge group elements.

16

Definition 3 (Algebraic One-More Discrete Logarithm Problem [NRS21]).
The advantage of an adversary A for the ℓ algebraic one-more discrete loga-
rithm (ℓ-AOMDL) problem is defined by

Advℓ-aomdl
A (1λ) = Pr[Gameℓ-aomdl

A (1λ) = 1].

We say that an adversary A (t, ϵ)-solves the ℓ-AOMDL problem if it runs
in time at most t and satisfies Advℓ-aomdl

A (1λ) ≥ ϵ. We also say that the
ℓ-AOMDL assumption holds if Advℓ-aomdl

A (1λ) is negligible for any PPT ad-
versary A.

GamedlA(1
λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : x
$← Zp, X ← xG

3 : x′ ← A((G, p,G), X)

4 : return (x = x′)

GameddhA (1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : b
$← {0, 1}

3 : x, y,
$← Zp, z ← Zp\{xy}

4 : X ← xG, Y ← yG

5 : if b = 0,

6 : Z ← xyG

7 : else

8 : Z ← zG

9 : b′ ← A((G, p,G), X, Y, Z)

10 : return (b = b′)

Gameℓ-aomdl
A (1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : ctr← 0

3 : for i ∈ [0, ℓ] do

4 : xi
$← Zp, Xi ← xG

5 : X← (X0, X1, . . . , Xℓ)

6 : (x′i)
ℓ
i=0 ← AOdl((G, p,G),X)

7 : return ((xi)
ℓ
i=0 = (x′i)

ℓ
i=0) ∧ (ctr < ℓ)

Odl((ai)
ℓ
i=0):

1 : ctr← ctr + 1

2 : s←
ℓ∑

i=0

aixi

3 : return s

Figure 2.1: The game of the DL problem, the DDH problem, and the
AOMDL problem.

Now we recall the definition of the algebraic group model (AGM) [FKL18].
This is an idealized model for computations over a group G. In short, this

17

assumption states that an adversary can only produce a new group element
by linearly combining group elements that it has seen so far.

Definition 4 (Algebraic Group Model [FKL18]). An adversary A is alge-
braic if for every group element X ∈ G that it outputs, it is required to output
a representation a = (a0, a1, . . .) ∈ Z|a|

p such that X = a0G +
∑

i aiYi where
Y1, Y2, . . . ∈ G are group elements that A has seen so far.

2.2.2 Randomizing Algorithm of (non-)DH Tuple

Bellare et al. proposed a randomizing algorithm of a (non-)DH tuple in
[BBM00]. Their algorithm on input a (non-)DH tuple outputs a re-randomized
(non-)DH tuple. More concretely, the algorithm is given a tuple (G,H, P,Q) ∈
G4 as input and outputs a tuple (G,H ′, P ′, Q′) ∈ G4. If (G,H, P,Q) is a
DH tuple, (G,H ′, P ′, Q′) satisfies that (H ′, P ′) is uniformly distributed over
G2 and (G,H ′, P ′, Q′) is a DH tuple. If (G,H, P,Q) is a non-DH tuple,
(G,H ′, P ′, Q′) satisfies that (H ′, P ′, Q′) is uniformly distributed over G3.

In this thesis, we use the subtly modified algorithm RandDH. This algo-
rithm on input a (non-)DH tuple outputs a re-randomized (non-)DH tuple of
which the second element is also the same as the second one of a tuple given
as input. Specifically, if (G,H, P,Q) is a DH tuple, (G,H, P ′, Q′) satisfies
that P ′ is uniformly distributed over G and (G,H, P ′, Q′) is a DH tuple. If
(G,H, P,Q) is a non-DH tuple, (G,H, P ′, Q′) satisfies that (P ′, Q′) is uni-
formly distributed over G2. The description of this algorithm is shown in
Fig. 2.2.

RandDH(G,H, P,Q):

1 : s, t
$← Zp

2 : P ′ ← sG+ tP,Q′ ← sH + tQ

3 : return (P ′, Q′)

Figure 2.2: The description of the randomizing algorithm of (non-)DH tuple.

2.3 General Forking Lemma

Here, we review the General Forking Lemma [BN06].

Lemma 1 (General Forking Lemma [BN06]). Let Q ≥ 1 be an integer, and
H be a set of size |H| ≥ 2, where |H| is the size of H. Let IG be a randomized

18

algorithm that is called the input generator and A be a randomized algorithm
that, on input (par, h1, . . . , hQ) where par is an input of the forking lemma
generated by IG and hi ∈ H for ∀i ∈ [1, Q], returns (I, σ) ∈ [0, Q] × {0, 1}∗.
The accepting probability of A, denoted acc, is defined as the probability
that J ≥ 1 in the experiment par

$← IG, ρ
$← R, h1, . . . , hQ

$← H, (J, σ) ←
A(par, h1, . . . , hQ; ρ) where R is the set of random tapes. The forking algo-
rithm ForkA(par) associated to A is the randomized algorithm that takes input
par proceeds as in Fig. 2.3. Let

frk = Pr[b = 1 : par
$← IG, (b, σ, σ′)

$← ForkA(par)].

Then,

frk ≥ acc ·
(
acc

Q
− 1

|H|

)
.

Algorithm ForkA(par)

1 : ρ
$← R

2 : h1, . . . , hQ
$← H

3 : (J, σ)← A(par, h1, . . . , hQ; ρ)
4 : if J = 0

5 : return (0,⊥,⊥)

6 : h′J , . . . , h
′
Q

$← H
7 : (J ′, σ′)← A(par, h1, . . . , hJ−1, h

′
J , . . . , h

′
Q; ρ)

8 : if (J = J ′ ∧ hJ ̸= hJ ′)

9 : return (1, σ, σ′)

10 : else

11 : return (0,⊥,⊥)

Figure 2.3: Description of the forking algorithm ForkA.

2.4 Definition of Multi-Signatures

In this section, we show the syntaxes and security definitions for multi-
signatures. Specifically, we show the syntaxes of a two-round multi-signature
scheme, a one-round multi-signature scheme with pre-processing, and a three-
round multi-signature scheme. The difference between them is the signing

19

protocol. Specifically, a two-round multi-signature scheme has two signing
algorithms for the first round and the second round. On the other hand, a
one-round multi-signature scheme with pre-processing has two algorithms for
the pre-processing and the signing. Moreover, a three-round multi-signature
scheme has three signing algorithms for the first, second, and third rounds.
For correctness and unforgeability, we show the definition of them for each
type of multi-signature scheme.

2.4.1 Syntax

We first show the syntaxes for each type of multi-signature scheme, i.e., a two-
round multi-signature scheme, a one-round multi-signature scheme with pre-
processing, and a three-round multi-signature scheme. Since they have the
same syntax except for signing algorithms, we describe the signing algorithm
for each type of multi-signature scheme.

A two-round multi-signature scheme, a one-round multi-signature scheme
with pre-processing, and a three-round multi-signature scheme consist of the
following algorithms. Let N be the number of signers, namely N = |vkList|.

Setup(1λ)→ par. The setup algorithm takes as input the security parameter
1λ and outputs a public parameter par.

KeyGen(par)→ (pk, sk). The key generation algorithm takes as input a public
parameter par and outputs a public key pk and a secret key sk.

Two-Round: Sign(2) = (Sign
(2)
1 , Sign

(2)
2). The signing protocol Sign of a two-

round multi-signature scheme consists of the following two algorithms
Sign

(2)
1 and Sign

(2)
2 .

Sign
(2)
1 (par, vkList,M, i, ski)→ (pmi, sti). The signing algorithm for the
first round takes as input a public parameter par, a public key
list vkList = (pkj)j∈[N], a message M to be signed, an index i of
the signer, and a secret key ski of signer i, and outputs a protocol
message pmi and a state sti.

Sign
(2)
2 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i})→ psigi. The signing algo-
rithm for the second round takes as input a public parameter par,
a public key list vkList, a message M to be signed, an index i of
the signer, a secret key ski and a state sti of signer i, and a tuple
of protocol messages (pmj)j∈[N]\{i} and outputs a partial signature
psigi.

20

One-Round with Pre-Processing: Sign(1-1) = (Sign
(1-1)
0 , Sign

(1-1)
1). The sign-

ing protocol Sign of a one-round multi-signature scheme with pre-
processing consists of the following two algorithms Sign

(1-1)
0 and Sign

(1-1)
1 .

Sign
(1-1)
0 (par, i, ski)→ (pmi, sti). The signing algorithm for pre-processing
takes as input a public parameter par, an index i of the signer, and
a secret key ski of signer i, and outputs a protocol message pmi

and a state sti.

Sign
(1-1)
1 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i})→ psigi. The signing al-
gorithm for signing takes as input a public parameter par, a public
key list vkList, a message M to be signed, an index i of the signer,
a secret key ski and a state sti of signer i, and a tuple of protocol
messages (pmj)j∈[N]\{i} and outputs a partial signature psigi.

Three-Round: Sign(3) = (Sign
(3)
1 , Sign

(3)
2 , Sign

(2)
3). The signing protocol Sign

of a three-round multi-signature scheme consists of the following three
algorithms Sign

(3)
1 , Sign

(3)
2 , and Sign

(2)
3 .

Sign
(3)
1 (par, vkList,M, i, ski)→ (pm1,i, sti). The signing algorithm for the
first round takes as input a public parameter par, a public key list
vkList, a message M to be signed, an index i of the signer, and
a secret key ski of signer i, and outputs a protocol message pm1,i

and a state sti.

Sign
(3)
2 (par, vkList,M, i, ski, sti, (pm1,j)j∈[N]\{i})→ (pm2,i, sti). The sign-
ing algorithm for the second round takes as input a public pa-
rameter par, a public key list vkList, a message M to be signed,
an index i of the signer, a secret key ski and a state sti of signer
i, and a tuple of protocol messages (pm1,j)j∈[N]\{i} and outputs a
protocol message pm2,i and a state sti.

Sign
(3)
3 (par, vkList,M, i, ski, sti, (pm2,j)j∈[N]\{i})→ psigi. The signing al-
gorithm for the third round takes as input a public parameter par,
a public key list vkList, a message M to be signed, an index i of the
signer, a secret key ski and a state sti of signer i, and a tuple of
protocol messages (pm2,j)j∈[N]\{i} and outputs a partial signature
psigi.

Agg(par, vkList,M, (pmi, psigi)i∈[N])→ s̃ig. The aggregation algorithm takes
as input a public parameter par, a public key list vkList, a message M
to be signed, and all signers’ protocol messages and partial signatures
(pmi, psigi)i∈[N] and deterministically outputs a multi-signature. Note

21

that pmi for a three-round multi-signature scheme includes both of the
protocol messages pm1,i and pm2,i.

Verify(par, vkList,M, s̃ig)→ {0, 1}. The verification algorithm takes as inputs
a public parameter par, a public key list vkList, a message M to be
signed, and a multi-signature s̃ig and deterministically outputs 1 (Ac-
cept) or 0 (Reject).

2.4.2 Correctness

Now we define the correctness for each type of multi-signature schemes.

Definition 5 (Correctness for Two-Round Multi-Signature Scheme). We say
that a two-round multi-signature scheme MS(2) satisfies correctness if, for all
λ ∈ N, N ∈ poly(λ), positive integer n ≤ N , and message M, the following
holds:

Pr
[
Gamems2-cor

MS(2)
(1λ, n,M) = 1

]
= 1,

where Gamems2-cor
MS(2)

is shown in Fig. 2.4.

Definition 6 (Correctness for One-Round Multi-Signature Scheme with
Pre-Processing). We say that a one-round multi-signature scheme with pre-
processing MS(1-1) satisfies correctness if, for all λ ∈ N, N ∈ poly(λ), positive
integer n ≤ N , and message M, the following holds:

Pr
[
Gamems1-1-cor

MS(1-1)
(1λ, n,M) = 1

]
= 1,

where Gamems1-1-cor
MS(1-1)

is shown in Fig. 2.5.

Definition 7 (Correctness for Three-Round Multi-Signature Scheme). We
say that a three-round multi-signature scheme MS(3) satisfies correctness if,
for all λ ∈ N, N ∈ poly(λ), positive integer n ≤ N , and message M, the
following holds:

Pr
[
Gamems3-cor

MS(3)
(1λ, n,M) = 1

]
= 1,

where Gamems3-cor
MS(3)

is shown in Fig. 2.6.

22

Gamems2-cor
MS (1λ, n,M):

1 : par
$← Setup(1λ)

2 : for i ∈ [n] do

3 : (pki, ski)
$← KeyGen(par)

4 : for i ∈ [n] do

5 : (pmi, sti)
$← Sign

(2)
1 (par, vkList,M, i, ski)

6 : for i ∈ [n] do

7 : psigi
$← Sign

(2)
2 (par, vkList,M, i, ski, sti, (pmj)j∈[n]\{j})

8 : s̃ig← Agg(par, vkList,M, (pmi, psigi)i∈[n])

9 : return Verify(par, vkList,M, s̃ig)

Figure 2.4: Correctness game for a two-round multi-signature scheme.

2.4.3 Unforgeability

Here we show the definition of the existential unforgeability under a chosen
message attack for a multi-signature scheme. The notion of unforgeability
requires that any adversary be infeasible to forge multi-signature involving
at least one honest signer. An adversary is allowed to corrupt all signers
except for one honest signer. It can query a message and a public-key list
including at least one challenge key to the signing oracle and executes the
signing protocol with the oracle by (maliciously) behaving as all cosigners.
The goal of an adversary is to output a non-trivial valid multi-signature as
a forgery. Note that “non-trivial” means that it is required to be forgery on
a pair of a message and a public-key list which does not appear in signing
queries. Moreover, it can maliciously choose all cosigners’ public keys.

We show the unforgeability game for each type of multi-signature scheme.
Note that all definitions are in the random oracle. We omit the description
of the random oracle. Without loss of generality, we suppose that the hon-
est signer corresponding to the challenge key has the signer index 1. The
unforgeability games for each type are depicted in Figs. 2.7 to 2.9.

Definition 8 (Unforgeability for Two-Round Multi-Signature Scheme). For
a two-round multi-signature signature scheme MS(2), the advantage of an
adversary A against the unforgeability of MS(2) in the random oracle model
is defined as

Advms2-uf
MS(2),A(1

λ, N) = Pr
[
Gamems2-uf

MS(2),A(1
λ, N) = 1

]
,

23

Gamems1-1-cor
MS (1λ, n,M):

1 : par
$← Setup(1λ)

2 : for i ∈ [n] do

3 : (pki, ski)
$← KeyGen(par)

4 : for i ∈ [n] do

5 : (pmi, sti)
$← Sign

(1-1)
0 (par, i, ski)

6 : for i ∈ [n] do

7 : psigi
$← Sign

(1-1)
1 (par, vkList,M, i, ski, sti, (pmj)j∈[n]\{j})

8 : s̃ig← Agg(par, vkList,M, (pmi, psigi)i∈[n])

9 : return Verify(par, vkList,M, s̃ig)

Figure 2.5: Correctness game for a one-round multi-signature scheme with
pre-processing.

Gamems3-cor
MS (1λ, n,M):

1 : par
$← Setup(1λ)

2 : for i ∈ [n] do

3 : (pki, ski)
$← KeyGen(par)

4 : for i ∈ [n] do

5 : (pm1,i, sti)
$← Sign

(3)
1 (par, vkList,M, i, ski)

6 : for i ∈ [n] do

7 : (pm2,i, sti)← Sign
(3)
2 (par, vkList,M, i, ski, sti, (pm1,j)j∈[n]\{j})

8 : for i ∈ [n] do

9 : psigi
$← Sign

(3)
3 (par, vkList,M, i, ski, sti, (pm2,j)j∈[n]\{j})

10 : pmi := (pm1,i, pm2,i)

11 : s̃ig← Agg(par, vkList,M, (pmi, psigi)i∈[n])

12 : return Verify(par, vkList,M, s̃ig)

Figure 2.6: Correctness game for a three-round multi-signature scheme.

where Gamems2-uf
MS(2),A(1

λ, N) is described in Fig. 2.7. We say that A is (t, QS, QH ,

N, ϵ)-breaks the 2-MS-UF of MS(2) if A runs in at most t time, makes at most

QS signing queries and QH random oracle queries, and Advms2-uf
MS(2),A(1

λ, N) ≥ ϵ

24

for all λ ∈ N. We also say MS(2) is (t, QS, QH , N, ϵ)-2-MS-UF if there is no
A that (t, QS, QH , N, ϵ)-breaks the 2-MS-UF of MS(2).

Definition 9 (Unforgeability for One-Round Multi-Signature Scheme with
Pre-Processing). For a one-round multi-signature signature scheme MS(1-1),
the advantage of an adversary A against the unforgeability of MS(1-1) in the
random oracle model is defined as

Advms1-1-uf
MS(1-1),A(1

λ, N) = Pr
[
Gamems1-1-uf

MS(1-1),A(1
λ, N) = 1

]
,

where Gamems1-1-uf
MS(3),A(1

λ, N) is described in Fig. 2.8. We say that A is (t, QS, QH ,

N, ϵ)-breaks the (1-1)-MS-UF of MS(1-1) if A runs in at most t time, makes at

most QS signing queries and QH random oracle queries, and Advms1-1-uf
MS(1-1),A(1

λ,

N) ≥ ϵ for all λ ∈ N. We also say MS(1-1) is (t, QS, QH , N, ϵ)-(1-1)-MS-UF if
there is no A that (t, QS, QH , N, ϵ)-breaks the (1-1)-MS-UF of MS(1-1).

Definition 10 (Unforgeability for Three-Round Multi-Signature Scheme).
For a three-round multi-signature signature scheme MS(3), the advantage of
an adversary A against the unforgeability of MS(3) in the random oracle model
is defined as

Advms3-uf
MS(3),A(1

λ, N) = Pr
[
Gamems3-uf

MS(3),A(1
λ, N) = 1

]
,

where Gamems3-uf
MS(3),A(1

λ, N) is described in Fig. 2.9. We say that A is (t, QS, QH ,

N, ϵ)-breaks the 3-MS-UF of MS(3) if A runs in at most t time, makes at most

QS signing queries and QH random oracle queries, and Advms3-uf
MS(3),A(1

λ, N) ≥ ϵ

for all λ ∈ N. We also say MS(3) is (t, QS, QH , N, ϵ)-3-MS-UF if there is no
A that (t, QS, QH , N, ϵ)-breaks the 3-MS-UF of MS(3).

2.4.4 Slightly Weak and Strong Unforgeability

We use slightly different definitions of unforgeability from the conventional
one when we prove the security of our schemes, which will be proposed later in
Chapter 4. Specifically, we use the slightly strong definition and the slightly
weak definition. The strong one slightly relaxes the requirement of the forgery
and allows an adversary to obtain multiple partial signatures generated from
the challenge key in one signing query. In the weak one, the goal of an ad-
versary is slightly raised. Below, we first explain the two differences between
the conventional definition and the strong one.

25

First, we explain the subtle difference in the winning conditions. The

challenger in our unforgeability game counts (vkList∗,M∗, s̃ig
∗
) as a success-

ful forgery even if a signing protocol for (vkList∗,M∗) is opened but not com-
pleted. In other words, the forgery is valid even if (vkList∗,M∗) is queried to
the signing oracle as long as any signature on (vkList∗,M∗) has never been
received. In the conventional game, the outputs of an adversary do not
count as a forgery. This modification captures adversaries who exploit the
interruption of the signing protocol. To see the difference, let us consider
the following example. An adversary sends a pair (vkList∗,M∗) to the signing
oracle as a signing query and receives a response of the first round from the
oracle. Then, it outputs a forgery on (vkList∗,M∗) without completing the
signing protocol. If the forgery on (vkList∗,M∗) is valid, it wins.

Next, we describe the difference in the signing oracle. We consider the
case where an adversary makes a signing query whose public-key list vkList
includes multiple challenge public keys. In the conventional game, the signing
oracle responds by behaving as one honest signer. In our game, it responds
by behaving as all honest signers who have the same public key. This mod-
ification captures the situation where the signing protocol is executed by a
set of signers including some honest signers with the same public key.

Finally, we explain the difference between the strong one and the weaker
one. The difference is that, in the game of the weak one, an adversary’s

output (vkList∗,M∗, s̃ig
∗
) does not count as a successful forgery if an adversary

has received a signature on the message M∗ from the signing oracle. In the

game of the strong one, (vkList∗,M∗, s̃ig
∗
) counts as a forgery even if an

adversary has ever received a signature on M∗ as long as the forger has
received a signature on (vkList∗,M∗). Our first scheme will be proven secure
under the slightly weaker unforgeability game. After that, we will modify
our first scheme and show that the modified scheme achieves slightly strong
unforgeability.

We show the slightly modified definitions of unforgeability for the two-
round multi-signature scheme.

Definition 11 (Slightly Modified Unforgeability for Two-round Multi-Sig-
nature Scheme). For a two-round multi-signature signature scheme MS(2),
the advantages of an adversary A against the slightly strong and weak un-
forgeability of MS(2) in the random oracle model are respectively defined as

Advms2-uf1
MS(2),A(1

λ, N) = Pr[Gamems2-uf1
MS(2),A(1

λ, N) = 1],

and Advms2-uf2
MS(2),A(1

λ, N) = Pr[Gamems2-uf2
MS(2),A(1

λ, N) = 1],

where Gamems2-uf1
MS(2),A(1

λ, N) and Gamems2-uf2
MS(2),A(1

λ, N) are described in Fig. 2.10.

26

We say that adversary A is (t, QS, QH , N, ϵ)-breaks the 2-MS-UF-1 (resp.
(t, QS, QH , N, ϵ)-breaks the 2-MS-UF-2) of MS(2) if A runs in at most t
time, makes at most QS signing queries and QH random oracle queries, and
Advms2-uf1

MS(2),A(1
λ, N) ≥ ϵ (resp. Advms2-uf2

MS(2),A(1
λ, N) ≥ ϵ) for all λ ∈ N. We

also say MS(2) is (t, QS, QH , N, ϵ)-2-MS-UF-1 (resp. (t, QS, QH , N, ϵ)-2-MS-
UF-2) if there is no A that (t, QS, QH , N, ϵ)-breaks the 2-MS-UF-1 (resp.
(t, QS, QH , N, ϵ)-breaks the 2-MS-UF-2) of MS(2).

27

Gamems2-uf
MS(2),A(1

λ, N)

1 : QM ← ∅,Qst[·]← ⊥

2 : par
$← Setup(1λ)

3 : (pk, sk)
$← KeyGen(par)

4 : (vkList∗,M∗, s̃ig
∗
)

$← A
O

Sign
(2)
1

,O
Sign

(2)
2

,H
(par, pk)

5 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK ∧ J(vkList∗,M∗) /∈ QMK

6 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

O
Sign

(2)
1
(sid, vkList,M)

1 : req Jpk ∈ vkListK ∧ JQst[sid, 1] = ⊥K ∧ J|vkList| ≤ NK
2 : QM ← QM ∪ {(vkList,M)}

3 : (pm1, st1)
$← Sign

(2)
1 (par, vkList,M, 1, sk)

4 : Qst[sid, 1]← (vkList,M, st1)

5 : return pm1

O
Sign

(2)
2
(sid, (pmj)j∈[|vkList|]\{1})

1 : req JQst[sid, 1] ̸= ⊥K ∧ JQst[sid, 2] = ⊥K
2 : (vkList,M, st1)← Qst[sid, 1]

3 : psig1
$← Sign

(2)
2 (par, vkList,M, 1, sk, st1, (pmj)j∈[|vkList|]\{1})

4 : Qst[sid, 2]← psig1

5 : return psig1

Figure 2.7: Unforgeability game for a two-round scheme in the random oracle
model, where H denotes the random oracle.

28

Gamems1-1-uf
MS(1-1),A(1

λ, N)

1 : QM ← ∅,Qst[·]← ⊥

2 : par
$← Setup(1λ)

3 : (pk, sk)
$← KeyGen(par)

4 : (vkList∗,M∗, s̃ig
∗
)

$← ASign
(1-1)
0 ,Sign

(1-1)
1 ,H(par, pk)

5 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK ∧ J(vkList∗,M∗) /∈ QMK

6 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

Sign
(1-1)
0 (sid)

1 : req JQst[sid, 0] = ⊥K

2 : (pm1, st1)
$← Sign

(1-1)
0 (par, 1, sk)

3 : Qst[sid, 0]← st1

4 : return pm1

Sign
(1-1)
1 (sid, vkList,M, (pmj)j∈[|vkList|]\{1})

1 : req Jpk ∈ vkListK ∧ J|vkList| ≤ NK ∧ JQst[sid, 0] ̸= ⊥K ∧ JQst[sid, 1] = ⊥K
2 : QM ← QM ∪ {(vkList,M)}
3 : (vkList,M, st1)← Qst[sid, 0]

4 : psig1
$← Sign

(1-1)
1 (par, vkList,M, 1, sk, st1, (pmj)j∈|vkList|\{1})

5 : Qst[sid, 1]← psig1

6 : return psig1

Figure 2.8: Unforgeability game for a one-round scheme with pre-processing
in the random oracle model, where H denotes the random oracle.

29

Gamems3-uf
MS(3),A(1

λ, N)

1 : QM ← ∅,Qst[·]← ⊥

2 : par
$← Setup(1λ)

3 : (pk, sk)
$← KeyGen(par)

4 : (vkList∗,M∗, s̃ig
∗
)

$← A
O

Sign
(3)
1

,O
Sign

(3)
2

,O
Sign

(3)
3

,H
(par, pk)

5 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK ∧ J(vkList∗,M∗) /∈ QMK

6 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

O
Sign

(3)
1
(sid, vkList,M)

1 : req Jpk ∈ vkListK ∧ JQst[sid, 1] = ⊥K ∧ J|vkList| ≤ NK
2 : QM ← QM ∪ {(vkList,M)}

3 : (pm1,1, st1)
$← Sign

(3)
1 (par, vkList,M, 1, sk)

4 : Qst[sid, 1]← (vkList,M, st1)

5 : return pm1,1

O
Sign

(3)
2
(sid, (pm1,j)j∈[|vkList|]\{1})

1 : req JQst[sid, 1] ̸= ⊥K ∧ JQst[sid, 2] = ⊥K
2 : (vkList,M, st1)← Qst[sid, 1]

3 : (pm2,1, st1)
$← Sign

(3)
2 (par, vkList,M, 1, sk, st1, (pm1,j)j∈[N]\{1})

4 : Qst[sid, 2]← (vkList,M, st1)

5 : return pm2,1

O
Sign

(3)
3
(sid, (pm1,j)j∈[|vkList|]\{1})

1 : req JQst[sid, 2] ̸= ⊥K ∧ JQst[sid, 3] = ⊥K
2 : (vkList,M, st1)← Qst[sid, 2]

3 : psig1
$← Sign

(3)
3 (par, vkList,M, 1, sk, st1, (pm2,j)j∈[|vkList|]\{1})

4 : Qst[sid, 3]← psig1

5 : return psig1

Figure 2.9: Unforgeability game for a three-round scheme in the random
oracle model, where H denotes the random oracle.

30

Gamems2-uf1
MS(2),A(1

λ, N), Gamems2-uf2
MS(2),A(1

λ, N)

1 : QM ← ∅,Qst[·]← ⊥
2 : par

$← Setup(1λ)

3 : (pk, sk)
$← KeyGen(par)

4 : (vkList∗,M∗, s̃ig
∗
)

$← A
O

Sign
(2)
1

,O
Sign

(2)
2

,H
(par, pk)

5 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK ∧ J(vkList∗,M∗) /∈ QMK // For Gamems2-uf1
MS(2),A.

6 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK ∧ JM∗ /∈ QMK // For Gamems2-uf2
MS(2),A.

7 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

O
Sign

(2)
1
(sid, vkList,M)

1 : req Jpk ∈ vkListK ∧ JQst[sid, 1] = ⊥K ∧ J|vkList| ≤ NK
2 : HSsid ← ∅
3 : parse (pki)i∈[|vkList|] ← vkList

4 : for i ∈ [|vkList|] do

5 : if pki = pk then

6 : HSsid ← HSsid ∪ {i}

7 : for i ∈ HSsid do (pmi, sti)
$← Sign

(2)
1 (par, vkList,M, i, sk)

8 : Qst[sid, 1]← (vkList,M,HSsid, (sti)i∈HSsid)

9 : return (pmi)i∈HSsid

O
Sign

(2)
2
(sid, (pmj)j∈[|vkList|]\HS)

1 : req JQst[sid, 1] ̸= ⊥K ∧ JQst[sid, 2] = ⊥K
2 : (vkList,M,HSsid, (sti)i∈HSsid)← Qst[sid, 1]

3 : for i ∈ HSsid do psigi
$← Sign

(2)
2 (par, vkList,M, i, sk, sti, (pmj)j∈[|vkList|]\{i})

4 : Qst[sid, 2]← (psigi)i∈HSsid
5 : QM ← QM ∪ {(vkList,M)} // For Gamems2-uf1

MS(2),A.

6 : QM ← QM ∪ {M} // For Gamems2-uf2
MS(2),A.

7 : return (psigi)i∈HSsid

Figure 2.10: Slightly strong and weak unforgeability games for a two-round
schemes in the random oracle model, where H denotes the random oracle.

31

32

Chapter 3

Discrete-Logarithm-Based
Multi-Signatures

In this chapter, we review DL-based multi-signature schemes. From the first
multi-signature scheme proposed by [IN83] to this day, many DL-based multi-
signature schemes have been proposed. Let us roughly look back at this long
history of the DL-based multi-signature schemes. We divide this long history
into three periods by focusing on the two papers [BN06] and [DEF+19]. In
the first paper [BN06], Bellare and Neven proposed the first three-round
multi-signature scheme in the plain public-key (PPK) model. The second
paper by Drijvers et al . suggested the vulnerability of two-round multi-
signature schemes proposed so far and proposed the first secure two-round
multi-signature scheme in the PPK model.

Most of the early proposed schemes [IN83, LHL95, Lan96, MH96, OO93,
OO99, Har94] before the first paper appeared are insecure against the rogue-
key attack. In this attack, an adversary maliciously generates cosigners’
public keys to forge. This emphasizes the importance of the key setup. A
naive approach to prevent this attack is to append the certification of knowl-
edge of the secret key to the public key. This restriction is modeled as the
key verification model [BJ08] or the proof-of-possession model [RY07]. As a
more theoretical model, there exists the knowledge of secret key model [Bol03,
LOS+06]. In the unforgeability game under such key setup models, a chal-
lenger forces an adversary to output not only cosigners’ public keys but also
the corresponding secret keys or certifications of knowledge of secret keys.
Another approach is the dedicated key generation introduced by [MOR01], in
which all potential signers execute the interactive protocol to generate each
public and secret key. While this approach prevents the attack, it makes
schemes not practical. We will provide the details on the rogue-key attack
and the key setup models in Section 3.2.

33

Bellare and Neven proposed the first multi-signature scheme that is secure
against the rouge-key attack without impractical interaction protocols and
assuming restricted key setup models [BN06]. This unrestricted key setup
model is called the plain public-key (PPK) model, in which an adversary
is allowed to generate cosigners’ public keys freely. Moreover, the multi-
signature of this scheme consists of one group element and one scalar as same
as the Schnorr signature. After this scheme was proposed, the main research
direction is to reduce the number of rounds of the signing protocol, namely,
to construct a two-round multi-signature scheme. Moreover, Maxwell et
al. introduced the notion of the key aggregation [MPSW19]. This prop-
erty provides more efficient verification and is significant in the application
of cryptocurrencies. Within this context, the primary desirable features of
multi-signature schemes are the security in the PPK model, supporting key
aggregation, and the two-round signing protocol.

Although some two-round schemes [BCJ08, MWLD10, STV+16, MPSW18]
have been proposed since the Bellare-Neven scheme was proposed, Drijvers et
al. suggested that they are insecure [DEF+19]. Indeed, they showed the sub-
exponential attack based on Wagner’s k-sum algorithm [Wag02] exploiting
the concurrent signing session. Subsequently, Benhamouda et al. proposed
a more efficient attack of polynomial complexity under a certain condition,
a.k.a, the ROS attack [BLL+21]. Drijvers et al. also proposed the first two-
round multi-signature scheme that is secure in the PPK model. After that,
several two-round schemes are constructed achieving the above-mentioned
desirable properties.

Road Maps. In Section 3.1, we first review the Schnorr signature scheme
on which most DL-based multi-signature schemes are based. In Section 3.2,
we explain the rogue-key attack and the restricted key setup model. In
Section 3.3, we show the constructions and the security theorems of some
three-round multi-signature schemes. Finally, we show the constructions
and the security theorems of some two-round multi-signature schemes in
Section 3.4.

3.1 Schnorr Signature Scheme

In this section, we review the Schnorr signature scheme [Sch90]. The con-
struction of this scheme is shown in Section 3.1.

The Schnorr signature scheme is proven secure under the discrete loga-
rithm (DL) assumption and the random oracle model. We briefly explain
how the security of this is proven. We construct an adversary B against
the DL problem that internally runs an adversary A against the scheme. B

34

KeyGen(1λ)

1 : (G, p,G)
$← GrGen(1λ)

2 : x
$← Zp

3 : X ← xG

4 : sk← x

5 : pk← X

6 : return (pk, sk)

Sig(sk,M)

1 : r
$← Zp

2 : R← rG

3 : c← H(R,M)

4 : s← r + cx mod p

5 : sig← (c, s)

6 : return sig

Vf(pk,M, sig)

1 : parse (c, s)← Sig

2 : R← sG− cX

3 : return (c = H(R,M))

Figure 3.1: The Schnorr signature scheme. H is a hash function H : {0, 1}∗ →
Zp modeled as a random oracle.

takes as input X, which is an instance of the DL problem, and embeds X
into the challenge public key pk. It runs A by giving pk and answering sign-
ing queries. It responds to signing queries by exploiting the random oracle
and the honest verifier zero-knowledge (HVZK). Specifically, it first chooses

s, c
$← Zp and computes R← sG−cX. Before returning (s, c) to A, it assigns

H(R,M) ← c in the random oracle. Eventually, A outputs a forgery (s∗1, c
∗
1)

on a message M∗, which has never appeared in the signing queries. Then,
it rewinds A at the point when H(s∗1G − c∗1X,M∗) is queried to the random
oracle, re-defines H(s∗1G − c∗1X,M∗) ← c∗2, and runs A again. If A outputs
a forgery (s∗2, c

∗
2) under the same H(s∗1G − c∗1X,M

∗), it obtains (s∗1, c
∗
1) and

(s∗2, c
∗
2) such that s∗1G− c∗1X = s∗2G− c∗2X and then can extract the discrete

log of X as (s∗1 − s∗2)/(c∗1 − c∗2) when c∗1 ̸= c∗2. The success probability of B
can be evaluated by using the forking lemma [PS00, BN06]. Consequently,
it has the reduction loss O(QHϵ) where QH is the number of the random
oracle queries and ϵ is the advantage of A. On the other hand, additionally
assuming the algebraic group model, we can prove that the Schnorr signature
scheme is tightly secure[FPS20].

3.2 Rogue Key Attack and Restricted Key

Setup Models

In order to demonstrate the rogue-key attack, we consider an insecure multi-
signature scheme based on the Schnorr signature scheme. The secret and
public keys are the same as those of the Schnorr signature scheme, namely,
sk = x ∈ Zp and pk = X = xG ∈ G, respectively. In the signing protocol,
each signer first generates Ri and broadcasts it to other cosigners. After
receiving (Ri)i, it aggregates them into R̃ =

∑
iRi, computes c ← H(R̃,M)

35

and s ← ri + cixi mod p and broadcasts si. Finally, it obtains (si)i and
produces the multi-signature (c, s̃) on M by computing s̃ =

∑
i si. The

multi-signature is verified by computing R̃ ← s̃G − c
∑

iXi and checking

c = H(R̃,M).

In the rogue-key attack, an adversary maliciously generates cosigners’
public keys to forge the multi-signature. The attack against the above in-
secure scheme is quite simple. Let X1 be an honest signer’s public key.
The adversary produces the cosigner’s public key by X2 ← x2G −X where
x2 ∈ Zp. Then, since X1 + X2 = x2G holds, it can easily generate a
forgery on any message. One may wonder if we can prevent the rogue-
key attack if the hash function additionally takes as input the public key,
e.g., H(R̃,M, pki). Indeed, X1 is not canceled out by c1X1 + c2X2 where

ci = H(R̃,M, Xi) for i ∈ {1, 2}. However, the modified scheme is also inse-
cure. Specifically, the adversary embeds X1 in all cosigners’ public keys as
Xi ← xiG + aiX1 where xi, ai ∈ Zp. It can make many ci = H(R̃,M, Xi) by
re-choosing xi and then it can find (ci)i satisfying

∑
i ciai ≡ 0 mod p. Then,∑

i ciXi =
∑

i cixiG+
∑

i ciaiXi =
∑

i cixiG holds where x1 = 0 and a1 = 1.
Since an adversary knows (xi)i, it can forge on any message.

A naive way to prevent the rogue-key attack is that each signer issues a
certification of knowledge of the secret key together with the public key. If the
adversary generates cosigners’ public keys from an honest signer’s key, it can-
not generate such certifications since it does not know the secret keys. This
approach is effective in some applications, in which a trusted key registration
server exists. On the other hand, in the case where the existence of such a
trusted party is not guaranteed, the approach makes the multi-signature
scheme meaningless. In such a case, the verifier needs to verify not only a
multi-signature but also certifications. This means that the multi-signature
scheme is as inefficient as simply concatenating individual signatures.

Another approach is the dedicated key generation introduced by [MOR01].
The set of potential signers executes the interactive key generation protocol,
as a pre-processing. While this prevents the rogue-key attack, the signer set
is necessarily static. Whereas this is a good solution in static applications,
this approach is not suitable for dynamic situations. Moreover, this approach
obviously makes schemes inefficient.

The key verification (KV) model [BJ08] and proof-of-possession (PoP)
model [RY07] are the restricted key setup models that capture the first
naive approach. In these models, while an adversary is allowed to gener-
ate cosigners’ public keys, it needs to issue the certifications of knowledge
of corresponding secret keys. If the certifications are invalid, it is defeated
in the unforgeability game. As a more theoretical model, there exists the

36

knowledge of secret key (KOSK) model [Bol03, LOS+06]. In this model, an
adversary needs to output cosigners’ secret keys instead of the certifications.
This model is theoretical since issuing a secret key is unrealistic in practice.

Bellare-Neven multi-signature scheme is the first secure DL-based multi-
signature scheme without restricted key setup models. This key setup model
is called the plain public key (PPK) model. We will review the construction
of this scheme in Section 3.3. Here, we explain the intuition of how it prevents
the rogue-key attack. In this scheme, the challenge c is generated by the hash
function H(R̃,M, vkList, pki) where vkList is the list of public keys. We notice
that (ci)i is completely linked to all signers’ public keys. In other words,
when one replaces a key with a different key, all values in (ci)i are changed
with overwhelming probability since the inputs of the hash are changed. This
means that any adversary can no longer find (ci)i canceling out the public
key of the honest signer except for a negligible probability.

3.3 Three-Round DL-Based Multi-Signatures

In this section, we survey some three-round multi-signature schemes. Specif-
ically, we show the constructions of the Bellare-Neven scheme and MuSig-DL
and restate the security theorems for them. Note that we restate them under
a common notation and definition in Chapter 2 to help with comparisons.
Moreover, since the security of all schemes is proven in the random oracle
model and the PPK model, we do not mentioned them explicitly.

3.3.1 Bellare-Neven Scheme

Bellare and Neven proposed the first DL-based three-round multi-signature
scheme BN-DL which is proven secure under the DL assumption. We show
the construction in Fig. 3.2. In the document [BN05], they also proposed a
DDH-based scheme which is built from the tightly secure signature scheme,
i.e., the Katz-Wang signature scheme.

We restate the security theorem below.

Theorem 1 ([BN06, Theorem 4]). If there exists an adversary A that (t, QS, QH ,
N, ϵ)-breaks the 3-MS-UF of BN-DL, then there exists an adversary B that
(t′, ϵ′)-solves the DL problem such that

ϵ′ ≥ ϵ2

QH +QS

− 2QH + 16N2QS

2ℓ
− 8NQS + 1

p
,

t′ = 2t+QStmul +O((QH +QS)(QH +NQS + 1)),

where tmul is the time of an scalar multiplication in G.

37

Setup(1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : Select Hc // Hc : {0, 1}∗ → Zp

3 : Select Hcom // Hcom : {0, 1}∗ → {0, 1}ℓ

4 : return par = (G, p,G,Hc,Hcom).

KeyGen(par)→ (pk, sk):

1 : x
$← Zp

2 : X ← xG

3 : pk← X

4 : sk← x

5 : return (pk, sk)

Agg(par, vkList,M, (pmi, psigi)i∈[N]):

1 : parse (ti, Ri, si)i∈[N] ← (pmi, psigi)i∈[N]

2 : R̃←
N∑
i=1

Ri

3 : s̃←
N∑
i=1

si

4 : s̃ig← (R̃, s̃)

5 : return s̃ig

Verify(par, vkList,M, s̃ig) :

1 : parse (Xi)i∈[N] ← vkList

2 : parse (R̃, s̃)← s̃ig

3 : for i ∈ [N] do

4 : ci ← Hc(R̃,M, vkList, Xi)

5 : if

t

R̃ = s̃G−
N∑
i=1

ciXi

|

then

6 : return 1

7 : return 0

Sign
(3)
1 (par, vkList,M, i, ski):

1 : ri
$← Zp

2 : Ri ← riG

3 : ti ← Hcom(Ri)

4 : sti ← (ri, Ri, ti)

5 : pm1,i ← ti

6 : return (pm1,i, sti)

Sign
(3)
2 (par, vkList,M, i, ski, sti, (pm1,j)j∈[N]\{i}):

1 : parse (tj)j∈[N]\{i} ← (pm1,j)j∈[N]\{i}

2 : parse (ri, Ri, ti)← sti

3 : sti ← sti ∪ {(tj)j∈[N]\{i}}
4 : pm2,i ← Ri

5 : return (pm2,i, sti)

Sign
(3)
3 (par, vkList,M, i, ski, sti, (pm2,j)j∈[N]\{i}):

1 : parse (Rj)j∈[N]\{i} ← (pm2,j)j∈[N]\{i})

2 : parse (ri, Ri, ti, (tj)j∈[N]\{i})← sti

3 : req
r
∀i ∈ [N], ti = Hcom(Ri)

z

4 : R̃←
N∑
i=1

Ri

5 : ci ← Hc(R̃,M, vkList, Xi)

6 : si ← xici + ri mod p

7 : psigi ← si

8 : return psigi

Figure 3.2: The construction of BN-DL. Hc and Hcom are modeled as random
oracles. N is the number of the signers in vkList.

3.3.2 MuSig-DL

Boneh et al. [BDN18] and Maxwell et al. [MPSW19] proposed a variant
scheme MuSig-DL of BN-DL that supports key aggregation [MPSW19]. The
construction of MuSig-DL is similar to that of BN-DL as shown in Fig. 3.3.

38

Setup(1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : Select Hc // Hc : {0, 1}∗ → {0, 1}ℓ

3 : Select Hcom // Hcom : {0, 1}∗ → {0, 1}ℓ

4 : Select Hagg // Hagg : {0, 1}∗ → {0, 1}ℓ

5 : return par = (G, p,G,Hc,Hcom,Hagg).

KeyGen(par)→ (pk, sk):

1 : x
$← Zp

2 : X ← xG

3 : pk← X

4 : sk← x

5 : return (pk, sk)

Agg(par, vkList,M, (pmi, psigi)i∈[N]):

1 : parse (ti, Ri, si)i∈[N] ← (pmi, psigi)i∈[N]

2 : R̃←
N∑
i=1

Ri

3 : s̃←
N∑
i=1

si

4 : s̃ig← (R̃, s̃)

5 : return s̃ig

Verify(par, vkList,M, s̃ig) :

1 : parse (Xi)i∈[N] ← vkList

2 : parse (R̃, s̃)← s̃ig

3 : for i ∈ [N] do

4 : ai ← Hagg(Xi, vkList)

5 : X̃ =
N∑
i=1

aiXi

6 : c← Hc(R̃,M, X̃)

7 : if
r
R̃ = s̃G− cX̃

z
then

8 : return 1

9 : return 0

Sign
(3)
1 (par, vkList,M, i, ski):

1 : ri
$← Zp

2 : Ri ← riG

3 : ti ← Hcom(Ri)

4 : sti ← (ri, Ri, ti)

5 : pm1,i ← ti

6 : return (pm1,i, sti)

Sign
(3)
2 (par, vkList,M, i, ski, sti, (pm1,j)j∈[N]\{i}):

1 : parse (tj)j∈[N]\{i} ← (pm1,j)j∈[N]\{i}

2 : parse (ri, Ri, ti)← sti

3 : sti ← sti ∪ {(tj)j∈[N]\{i}}
4 : pm2,i ← Ri

5 : return (pm2,i, sti)

Sign
(3)
3 (par, vkList,M, i, ski, sti, (pm2,j)j∈[N]\{i}):

1 : parse (Rj)j∈[N]\{i} ← (pm2,j)j∈[N]\{i})

2 : parse (ri, Ri, ti, (tj)j∈[N]\{i})← sti

3 : parse (Xi)i∈[N] ← vkList

4 : req
r
∀i ∈ [N], ti = Hcom(Ri)

z

5 : for i ∈ [N] do

6 : ai ← Hagg(Xi, vkList)

7 : X̃ =
N∑
i=1

aiXi

8 : R̃←
N∑
i=1

Ri

9 : c← Hc(R̃,M, X̃)

10 : si ← xiaic+ ri mod p

11 : psigi ← si

12 : return psigi

Figure 3.3: The construction of MuSig-DL. Hc,Hcom and Hagg are modeled as
random oracles. N is the number of the signers in vkList.

39

In [FH21], a variant scheme of MuSig-DL that is proven tightly secure un-
der the DDH assumption is proposed. Below, we only restate the security
theorem of MuSig-DL.

Theorem 2 ([MPSW19, Theorem 1]). If there exists an adversary A that
(t, QS, QH , N, ϵ)-breaks the 3-MS-UF of MuSig-DL, then there exists an ad-
versary B that (t′, ϵ′)-solves the DL problem such that

ϵ′ ≥ ϵ4

(QH +QS + 1)3
− 16QS(QH +NQS)

p
− 16(QH +NQS)

2 + 3

2ℓ
,

t′ = 4t+ 4Ntmul + (N(QH +QS + 1)),

where tmul is the time of an scalar multiplication in G.

3.4 Two-Round DL-Based Multi-Signatures

In this section, we survey two-round signature schemes. Specifically, we show
the constructions of schemes and restate the security theorems. Note that we
restate them under a common notation and definition in Chapter 2 to help
with comparisons. Moreover, unless noted otherwise, the security of schemes
is proven in the random oracle model and the PPK model.

3.4.1 Modified BCJ

Drijvers et al. proposed a first secure two-round multi-signature scheme
mBCJ-KV [DEF+19]. This scheme was constructed by applying the patch to
the insecure two-round multi-signature scheme BCJ [BCJ08]. They showed
the construction and proved that mBCJ-KV is secure under the DL assump-
tion in the key verification model. Moreover, they roughly described how to
modify it to be secure in the PPK model. However, there is no concrete
construction and no formal security proof. Here, we show a variant scheme
of mBCJ which is secure in the PPK model by applying the way. We call this
scheme as mBCJ-PPK. We show the construction of mBCJ-PPK in Fig. 3.4.

The following theorem states that mBCJ-PPK is secure under the DL
assumption in the PPK model. We will prove this theorem in Section 3.5.

Theorem 3. If there exists an adversary A that (tA, QS, QH , N, ϵA)-breaks
the 2-MS-UF of mBCJ-PPK, then there exists an adversary B that (tB, ϵB)-
solves the DL problem such that

ϵB ≥
(
1− QS

p

)2
ϵ2A

N(QH +QS + 1)e2(QS + 1)2
− 1

p
, and

40

Setup(1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : Select Hc // Hc : {0, 1}∗ → Zp

3 : Select Hck // Hck : {0, 1}∗ → G3

4 : return par = (G, p,G,Hc,Hck).

KeyGen(par)→ (pk, sk):

1 : x
$← Zp

2 : X ← xG,

3 : pk← X

4 : sk← x

5 : return (pk, sk)

Agg(par, vkList,M, (pmi, psigi)i∈[N]):

1 : parse (Xi)i∈[N] ← vkList

2 : parse (Ti,1, Ti,2, si, αi, βi)i∈[N]

← (pmi, psigi)i∈[N]

3 : T̃1 ←
N∑
i=1

Ti,1

4 : T̃2 ←
N∑
i=1

Ti,2

5 : for i ∈ [N] do

6 : ci ← Hc(Xi, T̃1, T̃2, vkList,M)

7 : s̃←
N∑
i=1

si mod p

8 : α̃←
N∑
i=1

αi mod p

9 : β̃ ←
N∑
i=1

βi mod p

10 : R̃← s̃G−
N∑
i=1

ciXi

11 : s̃ig← (R̃, s̃, α̃, β̃)

12 : return s̃ig

Sign
(2)
1 (par, vkList,M, i, ski):

1 : (U1, U2, U3)← Hck(M, vkList)

2 : ri, αi, βi
$← Zp

3 : Ti,1 ← αiG+ βiU2

4 : Ti,2 ← αiU1 + βiU3 + riG

5 : pmi ← (Ti,1, Ti,2)

6 : sti ← (ri, αi, βi, Ti,1, Ti,2)

7 : return (pmi, sti)

Sign
(2)
2 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i}):

1 : parse (Tj,1, Tj,2)j∈[N]\{i} ← (pmj)j∈[N]\{i}

2 : parse (ri, αi, βi, Ti,1, Ti,2)← sti

3 : T̃1 ←
N∑
j=1

Tj,1

4 : T̃2 ←
N∑
j=1

Tj,2

5 : ci ← Hc(Xi, T̃1, T̃2, vkList,M)

6 : si ← xici + ri mod p

7 : psigi ← (si, αi, βi)

8 : return psigi

Verify(par, vkList,M, s̃ig) :

1 : parse (Xi)i∈[N] ← vkList

2 : parse (R̃, s̃, α̃, β̃)← s̃ig

3 : (U1, U2, U3)← Hck(M, vkList)

4 : T̃1 ← α̃G+ β̃U2

5 : T̃2 ← α̃U1 + β̃U3 + R̃

6 : for i ∈ [N] do

7 : ci ← Hc(Xi, T̃1, T̃2, vkList,M)

8 : if

t

R̃ = s̃G−
N∑
i=1

ciXi

|

then

9 : return 1

10 : return 0

Figure 3.4: The construction of mBCJ-PPK. Hc and Hck are modeled as
random oracles. N is the number of the signers in vkList.

tB ≤ 2tA + (6QH + 12QS + 2N + 16)tmul +O(N(QS +QH)),

41

where e is the base of the natural logarithm and tmul is the time of an scalar
multiplication in G.

3.4.2 MuSig-DN

MuSig-DN [NRSW20] is a two-round multi-signature scheme. To prevent the
ROS attack (and the k-sum attack), all signers execute the signing protocol
with deterministic nonces. This means that the multi-signature is determined
by a public-key list and a message to be signed. This scheme achieves a two-
round signing protocol by using pseudorandom functions (PRF), pseudoran-
dom number generators (PRNG), and succinct non-interactive arguments of
knowledge (SNARKs) [BBB+18] to make the signing protocol deterministic.
Note that this scheme requires additionally one round when all signers who
participate in the signing protocol do not share the keys deterministically
computed from the secret key by using the PRNG. We do not show the con-
struction and the security theorem of this scheme since it is quite complex
due to many cryptographic tools.

3.4.3 MuSig2

MuSig2 [NRS21] is a one-round multi-signature scheme with pre-processing.
The multi-signature of it is the same form as the Schnorr signature. We show
the construction of MuSig2 in Fig. 3.5.

In [NRS21], the authors prove the security of MuSig2 with and without
the algebraic group model (AGM). Specifically, MuSig2 with ν = 4 is proven
secure under the AOMDL assumption without using AGM, and MuSig2 with
ν = 2 is proven secure under the AOMDL assumption in the AGM. We call
the former and the latter MuSig2-1 and MuSig2-2, respectively. Below, we
restate the security theorems of both of them.

Theorem 4 ([NRS21, Theorem 1]). If there exists an adversary A that
(tA, QS, QH , N, ϵA)-breaks the (1-1)-MS-UF of MuSig2-1, then there exists
an adversary B that (tB, ϵB)-solves the 4QS-AOMDL problem such that

ϵB ≥
ϵ4A
Q3

T

− 32Q2
T + 22

p
, and

tB ≤ 4tA + 4(N + 6)QT tmul +O(NQT),

where QT = 2QH +QS +1 and tmul is the time of an scalar multiplication in
G.

42

Setup(1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : Select Hc // Hc : {0, 1}∗ → Zp

3 : Select Hnon // Hck : {0, 1}∗ → Zp

4 : Select Hagg // Hagg : {0, 1}∗ → Zp

5 : return par = (G, p,G,Hc,Hck).

Agg(par, vkList,M, (pmi, psigi)i∈[N]):

1 : parse (Xi)i∈[N] ← vkList

2 : parse ((Ri,k)k∈[ν], si)i∈[N]

← (pmi, psigi)i∈[N]

3 : for i ∈ [N] do ti ← Hagg(Xi, vkList)

4 : p̃k←
N∑
i=1

tiXi

5 : for k ∈ [ν] do Rk ←
N∑
j=1

Rj,k

6 : b← Hnon(p̃k, (Rk)k∈[ν],M)

7 : R̃←
ν∑

k=1

bk−1Rk

8 : s̃←
N∑
i=1

si

9 : s̃ig← (R̃, s̃)

10 : return s̃ig

Verify(par, vkList,M, s̃ig) :

1 : parse (Xi)i∈[N] ← vkList

2 : parse (R̃, s̃)← s̃ig

3 : for i ∈ [N] do ti ← Hagg(Xi, vkList)

4 : p̃k←
N∑
i=1

tiXi

5 : c← Hc(R̃,M, p̃k)

6 : if
r
R̃ = s̃G− c · p̃k

z
then

7 : return 1

8 : return 0

KeyGen(par)→ (pk, sk):

1 : x
$← Zp

2 : X ← xG,

3 : pk← X

4 : sk← x

5 : return (pk, sk)

Sign
(1-1)
0 (par, i, ski):

1 : for k ∈ [ν] do

2 : ri,k
$← Zp

3 : Ri,k ← ri,kG

4 : pmi ← (Ri,k)k∈[ν]

5 : sti ← (ri,k, Ri,k)k∈[ν]

6 : return (pmi, sti)

Sign
(1-1)
1 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i}):

1 : parse (Xj)j∈[N] ← vkList

2 : parse (Rj,k)j∈[N],k∈[ν] ← (pmj)j∈[N]\{i}

3 : parse (ri,k, Ri,k)k∈[ν] ← sti

4 : for j ∈ [N] do

5 : tj ← Hagg(Xj , vkList)

6 : p̃k←
N∑
j=1

tjXj

7 : for k ∈ [ν] do

8 : Rk ←
N∑
j=1

Rj,k

9 : b← Hnon(p̃k, (Rk)k∈[ν],M)

10 : R̃←
ν∑

k=1

bk−1Rk

11 : c← Hc(R̃,M, p̃k)

12 : si ← xitic+
ν∑

k=1

bk−1ri mod p

13 : psigi ← si

14 : return psigi

Figure 3.5: The construction of MuSig2. Hc,Hnon, and Hagg are modeled as
random oracles. N is the number of the signers in vkList.

43

Theorem 5 ([NRS21, Theorem 2]). If there exists an algebraic adversary
A that (tA, QS, QH , N, ϵA)-breaks the (1-1)-MS-UF of MuSig2-2, then there
exists an adversary B that (tB, ϵB)-solves the 2QS-AOMDL problem such that

ϵB ≥ ϵA −
26Q3

T

p
, and

tB ≤ tA +O(NQT)tmul +O(Q3
T),

where QT = 2QH + (N + 2)(QS + 1) and tmul is the time of an scalar multi-
plication in G.

DWMS [AB21] is a one-round multi-signature scheme with pre-processing
that is similar to MuSig2. This scheme was proposed independently at the
same time as MuSig2 was proposed. Since the construction of this scheme is
similar to MuSig2, we do not show it. This scheme is proven secure under the
OMDL problem in the AGM by using newly introduced the entwined sum
problem. Below, we restate the security theorem of this scheme. Note that
the running time overhead of the reduction is not evaluated in the security
proof in [AB21]. We obtain the relationship of the running time in the
following theorem by following the same argument as [BD21, Appendix A].

Theorem 6 ([AB21]). If there exists an algebraic adversary A that (tA, QS,
QH , N, ϵA)-breaks the (1-1)-MS-UF of DWMS, then there exists an adversary
B that (tB, ϵB)-solves the 2QS-AOMDL problem and an adversary B′ that
(tB′ , ϵB′)-solves the DL problem such that

ϵB + ϵB′ ≥ ϵA −
QSQH + 2QS + 4QH

p
− QH√

p
− QS

p2
, and

tB, tB′ = O(tA).

Tessaro and Zhu proposed a one-round multi-signature scheme TZ with
pre-processing [TZ23] based on the above schemes. Roughly, this scheme is
a variant of MuSig2 based on the Okamoto signature scheme. This scheme
is proven secure under the DL assumption. We omit the construction of this
scheme. Below, we restate the security theorem of this scheme.

Theorem 7 ([TZ23]). If there exists an adversary A that (tA, QS, QH , N, ϵA)-
breaks the (1-1)-MS-UF of TZ, then there exists an adversary B that (tB, ϵB)-
solves the DL problem such that

ϵB ≥
ϵ4A
2Q3

T

− 8QT + 8

p
, and

tB ≈ 4tA,

where QT = QH +QS + 1.

44

3.4.4 HBMS

Bellare and Dai proposed an improvement of mBCJ as HBMS [BD21]. We
show the construction of HBMS in Fig. 3.6.

Below, we restate the security theorems of HBMS.

Theorem 8 ([BD21]). If there exists an adversary A that (tA, QS, QH , N, ϵA)-
breaks the 2-MS-UF of HBMS, then there exists an adversary B that (tB, ϵB)-
solves the DL problem such that

ϵB ≥
ϵ4

Q3
He

4(QS + 1)4
− 3

p
, and

tB ≈ 4tA,

where e is the base of the natural logarithm.

They also proved that the scheme is tightly secure under the DL assump-
tion in the AGM.

Theorem 9 ([BD21]). If there exists an algebraic adversary A that (tA, QS,
QH , N, ϵA)-breaks the 2-MS-UF of HBMS, then there exists an adversary B
that (tB, ϵB)-solves the DL problem such that

ϵB ≥ ϵA −
QH(QH + 1)

p
, and

tB ≈ tA.

We call HBMS as HBMS-AGM when the security of HBMS is given by the
following theorem.

Lee and Kim proposed a two-round scheme LK [LK22] based on HBMS
and the Okamoto signature scheme. They proved that this scheme is secure
under the DL assumption in the AGM. Note that their unforgeability game is
slightly different from one in Fig. 2.7. Specifically, as the winning condition,
the challenger checks M∗ ∈ QM instead of (M∗, vkList∗) ∈ QM. We omit the
construction of this scheme and the security theorem.

3.4.5 Pan-Wagner Schemes

Pan and Wagner proposed two two-round multi-signature schemes based on
the DDH assumption [PW23]. This work is concurrent and independent work
of our work. These schemes are constructed by combining the technique of
mBCJ and the Katz-Wang signature schemes. The first scheme PW-1 achieves
tight security but key aggregation is not supported. The second scheme PW-2

45

Setup(1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : Select Hc // Hc : {0, 1}∗ → Zp

3 : Select Hck // Hck : {0, 1}∗ → G

4 : Select Hagg // Hagg : {0, 1}∗ → Zp

5 : return par = (G, p,G,Hc,Hck,Hagg).

Agg(par, vkList,M, (pmi, psigi)i∈[N]):

1 : parse (Xi)i∈[N] ← vkList

2 : parse (Ti, di, si)i∈[N] ← (pmi, psigi)i∈[N]

3 : T̃ ←
N∑
i=1

Ti

4 : d̃←
N∑
i=1

di mod p

5 : s̃←
N∑
i=1

si mod p

6 : s̃ig← (T̃ , d̃, s̃)

7 : return s̃ig

Verify(par, vkList,M, s̃ig) :

1 : parse (Xi)i∈[N] ← vkList

2 : parse (T̃ , d̃, s̃)← s̃ig

3 : for i ∈ [N] do

4 : ti ← Hagg(Xi, vkList)

5 : p̃k←
N∑
i=1

tiXi

6 : c← Hc(T̃ , p̃k,M)

7 : U ← Hck(M, vkList)

8 : if
r
T̃ = d̃U + s̃G− c · p̃k

z
then

9 : return 1

10 : return 0

KeyGen(par)→ (pk, sk):

1 : x
$← Zp

2 : X ← xG

3 : pk← X

4 : sk← x

5 : return (pk, sk)

Sign
(2)
1 (par, vkList,M, i, ski):

1 : parse (Xj)j∈[N] ← vkList

2 : for j ∈ [N] do

3 : tj ← Hagg(Xj , vkList)

4 : p̃k←
N∑
j=1

tjXj

5 : U ← Hck(M, vkList)

6 : ri, di
$← Zp

7 : Ti ← diU + riG

8 : pmi ← Ti

9 : sti ← (ri, di, ti, Ti, p̃k)

10 : return (pmi, sti)

Sign
(2)
2 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i}):

1 : parse (Tj)j∈[N]\{i} ← (pmj)j∈[N]\{i}

2 : parse (ri, di, ti, Ti, p̃k)← sti

3 : T̃ ←
N∑
j=1

Tj

4 : c← Hc(T̃ , p̃k,M)

5 : si ← xitic+ ri mod p

6 : psigi ← (di, si)

7 : return psigi

Figure 3.6: The construction of HBMS. Hc,Hck, and Hagg are modeled as
random oracles. N is the number of the signers in vkList.

supports key aggregation and achieves a small reduction loss. We omit the
construction of them.

Below, we restate the security theorems of them.

46

Theorem 10 ([PW23]). If there exists an adversary A that (tA, QS, QH , N, ϵA)-
breaks the 2-MS-UF of PW-1, then there exists an adversary B that (tB, ϵB)-
solves the DDH problem such that

ϵB ≥
ϵA
4
− Q2

H + 2QH + 3QS + 5

p
− QH

2λ−2
, and

tB ≈ tA.

Theorem 11 ([PW23]). If there exists an adversary A that (tA, QS, QH , N, ϵA)-
breaks the 2-MS-UF of PW-2, then there exists an adversary B that (tB, ϵB)-
solves the DDH problem such that

ϵB ≥
ϵA
8QS

− 3Q2
H + 3QS + 4

p
, and

tB ≈ tA.

Note that, in their formal theorem, these schemes are proven secure under
not only the DDH assumption but also the variant of the DDH assumption.
Since the variant is tightly equivalent to the DDH assumption, which is ex-
plained in [PW23], we obtain the relationship of the advantages by regarding
the variant as the DDH assumption.

Remark 2. Our scheme which will be proposed in the next chapter achieves
a more efficient signature size and communication complexity than PW-2
although ours and PW-2 have something in common. Specifically, as shown in
Table 5.1, they have common points, e.g., a security assumption, a reduction
loss, and a standardized EC for 128-bit security. While the signature size of
PW-2 is 5|Zp|, that of ours achieves 3|Zp| where |Zp| is the size of Zp.

Whereas Pan and Wagner dedicated the effort to present their construc-
tion in a generic and modular way, we trade generality and modularity for
more efficiency. Our improvement is a benefit of this. PW-2 is an instantia-
tion of their generic construction. PW-2 is constructed by combining a special
commitment scheme and other building blocks in a generic manner. The
scheme requires the binding property of the commitment scheme to prove the
unforgeability. On the other hand, we construct our scheme in a specific way
to be able to directly prove the unforgeability without using the binding prop-
erty of the commitment scheme. In short, in our scheme, the binding property
is not a necessary condition. Then, we can reduce the size of the commitment
key, the commitment, and the decommitment. This gives a smaller signature
size and communication complexity. However, our scheme cannot be captured
by Pan-Wagner’s generic construction because the commitment scheme used
in ours deviates from the syntax of the special commitment scheme.

47

3.5 Proof of Theorem 3

Here, we prove Theorem 3, establishing the security of mBCJ-PPK under the
DL assumption.

Proof of Theorem 3. We construct B which solves the DL problem using A.
B on input (G, p, G) and X, which are a parameter and an instance of the
DL problem, outputs x such that X = xG. Specifically, it runs the forking
algorithm in Lemma 1 for an algorithm C that internally runs A to extract
x.

To construct B, we construct another algorithm C as follows. On input
(G, p, G,X), a random tape ρ and h1, . . . , hN(QH+QS+1) ∈ Zp, it internally
runs A on input (G, p, G) and X as a public parameter par and a public
key pk. It initiates a counter ctr = 1, tables THck

[·], THc [·], Ttd[·], Qst[·] to
⊥, and a set QM to ∅, where THck

[·] and THc [·] are random oracle tables for
Hck and Hc, respectively, and Ttd[·] is a table to store the trapdoors of the
commitment keys. Also, it responds to random oracle queries and signing
queries as follows.

Random Oracle Hck(M, vkList): It returns THck
[M, vkList] if THck

[M, vkList]
is already defined. If THck

[M, vkList] is undefined, it responds as follows.
It chooses a bit b which becomes 1 with probability δ = QS/(QS + 1).

If b = 1, it chooses (ω1,1, ω1,2, ω1,3)
$← Z3

p, computes U1 ← ω1,1G,

U2 ← ω1,2G, and U3 ← ω1,3X. If b = 0, it chooses (ω0,1, ω0,2, ω0,3)
$← Z3

p,
computes U1 ← ω0,1G, U2 ← ω0,2X, and U3 ← ω0,3G. It assigns
THck

[M, vkList] ← (U1, U2, U3) and Ttd[M, vkList] ← (b, ωb,1, ωb,2, ωb,3)
and returns THck

[M, vkList].

Random Oracle Hc(Xi, T̃1, T̃2, vkList,M): If THck
[M] is undefined, it makes

a query Hck(M). If THc [Xi, T̃1, T̃2, vkList,M] is already defined, it returns

h where (h, J) = THc [Xi, T̃1, T̃2, vkList,M]. If THc [Xi, T̃1, T̃2, vkList,M]
is undefined, it responds as follows.

Case (X ∈ vkList): For j s.t. X ̸= Xj ∈ vkList, it assigns THc [Xj, T̃1, T̃2,
vkList,M] ← (hctr, ctr) and sets ctr ← ctr + 1. After that, for

j s.t. X = Xj ∈ vkList, it assigns THc [Xi, T̃1, T̃2, vkList,M] ←
(hctr, ctr) and sets ctr ← ctr + 1. It returns h where (h, J) =

THc [Xi, T̃1, T̃2, vkList,M].

Case (X /∈ vkList): It assigns THc [Xi, T̃1, T̃2, vkList,M]← (hctr, ctr), sets

ctr← ctr+1, and returns h where (h, J) = THc [Xi, T̃1, T̃2, vkList,M].

Signing Queries: Note that the honest signer is corresponding to pk1.

48

O
Sign

(2)
1
(sid, vkList,M): If (pk ∈ vkList)∧(Qst[sid, 1] = ⊥)∧(|vkList| ≤ N)

is not true, it returns ⊥. It sets QM ← QM ∪ {(vkList,M)}. It
makes a query Hck(M, vkList) if THck

[M, vkList] is undefined. It
looks up (b, ωb,1, ωb,2, ωb,3) from Ttd[M, vkList]. If b = 0 holds, then

it halts with output (0, ∅). Otherwise, it chooses (u, v, w)
$← Z3

p,
computes T1,1 ← uG and T1,2 ← vG − wX, stores Qst[sid, 1] ←
(vkList,M, (u, v, w, T1,1, T1,2)), and sets pm1 ← (T1,1, T1,2). It re-
turns pm1.

O
Sign

(2)
2
(sid, (pmj)j∈[|vkList|]\{1}): If (Qst[sid, 1] ̸= ⊥) ∧ (Qst[sid, 2] = ⊥) is

not true, it returns ⊥. It looks up (vkList,M, (u, v, w, T1,1, T1,2))←
Qst[sid, 1] and (b, ωb,1, ωb,2, ωb,3) from Ttd[M, vkList]. If ω1,3 = 0, it
halts with output (0, ∅). Otherwise, it sets n← |vkList| and com-

putes T̃1 ←
∑n

j=1 Tj,1, T̃2 ←
∑n

j=1 Tj,2, c← Hc(X, T̃1, T̃2, vkList,M),
β1 ← (c−w)/ω1,3 mod p, α1 ← u−ω1,2β1 mod p, and s1 ← v−
ω1,1α1 mod p. It sets psig1 ← (s1, α1, β1) and Qst[sid, 2] ← psig1.
It returns psig1.

If A’s forgery (M∗, vkList∗, s̃ig
∗
= (R̃∗, s̃∗, α̃∗, β̃∗)) does not satisfy (pk ∈

vkList∗)∧(|vkList∗| ≤ N)∧((vkList∗,M∗) /∈ QM)∧(Verify(par, vkList∗,M∗, s̃ig
∗
) =

1) or b = 0 where (b, ωb,1, ωb,2, ωb,3) = Ttd[M
∗, vkList∗], then C halts with out-

put (0, ∅). Otherwise, C can get a forgery (M∗, vkList∗, s̃ig
∗
= (R̃∗

1, s̃
∗, α̃∗, β̃∗))

s.t. X ∈ vkList∗, |vkList∗| ≤ N , (vkList∗,M∗) /∈ QM, Verify(par, vkList
∗,M∗, s̃ig

∗
) =

1, and (0, ω0,1, ω0,2, ω0,3) = Ttd[M
∗, vkList∗]. Let J be the integer such that

(c, J) = THc [X, T̃
∗
1 , T̃

∗
2 , vkList

∗,M∗]. It outputs (J, σ = (vkList∗, ω0,1, ω0,2, ω0,3, s̃
∗, α̃∗, β̃∗,

(ci)
|vkList∗|
i=1)) where (ci, Ii) = THc [Xi, T̃

∗
1 , T̃

∗
2 , vkList

∗,M∗].

Following the same argument in the proof of [DEF+19, Theorem 3], the
distribution of C’s responses of the signing oracles is identical to the distri-
bution of the honest signer’s responses.

Let acc be the probability that C outputs J > 0. Also, we define the
following events.

• E1: A’s forgery satisfies the winning conditions in the game of the
security definition.

• E2: A’s forgery satisfies b = 1 where (b, ωb,1, ωb,2, ωb,3) = Ttd[M
∗, vkList∗].

• E3: C halts because of b = 0 in O
Sign

(2)
1
.

• E4: C halts because of ω1,3 = 0 in O
Sign

(2)
2
.

49

Then, we obtain the following equations.

acc = Pr[E1 ∧ E2 ∧ E3 ∧ E4]

= Pr[E3] Pr[E4|E3] Pr[E1|E3 ∧ E4] Pr[E2|E1 ∧ E3 ∧ E4]

We first evaluate Pr[E3]. E3 means that, for all messagesM chosen byA as
signing queries, the bit b becomes 1 when THck

[M, vkList] is defined. Since the
distributions of the responses of THck

[M, vkList] are identical in both cases
b = 0 and b = 1, A does not obtain information on THck

[M, vkList] from
them. Also, it only now THck

[M, vkList] = 1 for (M, vkList) queried to signing
oracles. Thus, the view of A does not leak THck

[M, vkList] = 0. Because b = 1
occurs with probability δ and A makes at most QS signing queries, we obtain
Pr[E3] ≥ δQS .

Next, We evaluate Pr[E4|E3]. Conditioned on E3, ω1,3 is picked uniformly
at random from Zp. Pr[E4|E3] is equal to the probability that ω1,3 ̸= 0 for
all messages M queried to the signing oracle. Thun, we get Pr[E4|E3] =
(1− 1/p)QS .

Now we evaluate Pr[E1|E3 ∧ E4]. Conditioned on E3 ∧ E4, C does not halt
the game. Also, the condition of E1 is identical to that in the unforgeability
game. Thus, we obtain Pr[E1|E3 ∧ E4] = ϵA.

Finally, we evaluate Pr[E2|E1∧E3∧E4]. Because the distribution of Hck(·)
is independent of the value of bits, A cannot know the value of the bit for
(M∗, vkList∗). Thus, the event that b = 0 for M∗ happens with probability
1− δ. Therefore, Pr[E2|E1 ∧ E3 ∧ E4] = 1− δ.

From the above arguments, we obtain acc ≥ δQS (1− 1/q)QS ϵA(1 − δ).
Since we set δ = QS/(QS + 1), we have

acc =
1

(1 + 1/QS)
QS

(
1− 1

p

)QS

ϵA
1

QS + 1

≥
(
1− QS

p

)
ϵA

e(QS + 1)

by using the facts that (1 + 1/QS)
QS < e for QS ≥ 0, where e is the base

of the natural logarithm, and (1 + a)b ≥ 1 + ab for a ≥ −1 and a natural
number b.

Let tC be the running time of C. We assume that tmul time is required
for one scalar multiplication in G, and unit time is required for the other
non-cryptographic operations. C runs A at once. For time to answer random
oracle queries, we consider only the case of Hc because Hc takes a longer
time than Hck. C makes one query to Hck and executes O(N) other non-
cryptographic operations to respond to a query to Hc. Three scalar multi-
plications and O(1) other non-cryptographic operations are required for one

50

random oracle query to Hck. Thus, in total, C executes three scalar multi-
plications and O(N) other non-cryptographic operations to respond to one
random oracle query to Hc. In each signing query, C needs to execute one
random oracle query to Hck, three scalar multiplications, and O(N) other
non-cryptographic operations. The verification involves at most (N + 5)
scalar multiplications, one random oracle query to Hck, and O(N) other non-
cryptographic operations. Also C needs O(N) other non-cryptographic op-
erations to output (J, σ) after checking A’s output. Therefore, tC is at most
tA + (3QH + 6QS +N + 8)tmul +O(N(QS +QH)).

B runs the forking algorithm ForkC(G, p, G,X) in Lemma 1. If ForkC suc-
ceeds in outputting (1, σ, σ′), B obtains σ = (vkList∗, ω0,1, ω0,2, ω0,3, s̃

∗, α̃∗, β̃∗,

(ci)
|vkList∗|
i=1) and σ′ = (vkList′∗, ω′

0,1, ω
′
0,2, ω

′
0,3, s̃

′∗, α̃′∗, β̃′∗, (c′i)
|vkList′∗|
i=1) such that

(vkList∗, ω0,1, ω0,2, ω0,3, (ci)i∈K∗) = (vkList′∗, ω′
0,1, ω

′
0,2, ω

′
0,3, (c

′
i)i∈K′∗),X ∈ vkList∗,

(ci = cj) ∧ (c′i′ = c′j′) ∧ (ci ̸= ci′) for all i, j ∈ [|vkList∗|] \ K∗ and i′, j′ ∈
[|vkList′∗|] \K ′∗,

α̃∗G+ β̃∗(ω0,2X) = α̃′∗G+ β̃′∗(ω′
0,2X), and,

α̃∗(ω0,1G) + β̃∗(ω0,3G) + s̃∗G−
|vkList∗|∑
j=1

cjXj

= α̃′∗(ω0,1G) + β̃′∗(ω′
0,3G) + s̃′∗G−

|vkList′∗|∑
j=1

c′jX
′
j

where K∗ and K ′∗ are the sets of the indices s.t. X ̸= Xi ∈ vkList∗ and
X ̸= Xi ∈ vkList′∗, respectively. Due to the above conditions, B can obtain
the following equations

(α̃∗ − α̃′∗)G = (β̃′∗ − β̃∗)ω0,2X, and

((α̃∗ − α̃′∗)ω0,1 + (β̃∗ − β̃′∗)ω0,3 + (s̃∗ − s̃′))G = −(|vkList∗| − |K∗|)(c− c′)X

where c and c′ are ci and c
′
i for i ∈ [|vkList∗|] \K∗ and i ∈ [|vkList′∗|] \K ′∗,

respectively. (|vkList∗|− |K∗|) ̸= 0 holds because vkList∗ includes at least one
X. Therefore, B can compute and output the discrete logarithm x of X as
follows.

Case (β̃′∗ ̸= β̃∗) ∧ (ω0,2 ̸= 0): B outputs x as

α̃∗ − α̃′∗

(β̃′∗ − β̃∗)ω0,2

.

51

Case (β̃′∗ ̸= β̃∗) ∧ (ω0,2 = 0): In this case, α̃∗ = α̃′∗ holds. Thus, B outputs
x as

−(β̃∗ − β̃′∗)ω0,3 + (s̃∗ − s̃′)
(|vkList∗| − |K∗|)(c− c′)

.

Case β̃′∗ = β̃∗: In this case, α̃∗ = α̃′∗ holds. Thus, B outputs x as

− s̃∗ − s̃′

(|vkList∗| − |K∗|)(c− c′)
.

To complete this proof, we evaluate the success probability and the run-
ning time of B. Because B can output the solution of the DL problem if
ForkC outputs (1, σ, σ′), B can solve the DL problem with the probability
that ForkC outputs (1, σ, σ′) in time as same as the running time of ForkC.
Applying the Lemma 1, B solves the DL problem with probability at least ϵ
such that

ϵ ≥ acc

(
acc

N(QH +QS + 1)
− 1

p

)
≥ acc2

N(QH +QS + 1)
− 1

p

≥
(
1− QS

p

)2
ϵ2A

N(QH +QS + 1)e2(QS + 1)2
− 1

p
.

Because B runs C twice, the running time of B is at most twice as long as the
running time of C. Thus, the running of B is at most 2tA + (6QH + 12QS +
2N + 16)tmul +O(N(QS +QH)). This completes the proof.

52

Chapter 4

New Two-Round
Multi-Signature Schemes with
Small Reduction Loss

In this chapter, we propose a new two-round multi-signature scheme with a
small reduction loss and an improved one. Specifically, we first propose a
new two-round multi-signature scheme HBMSDDH-1 and show that it satis-
fies the slightly weak unforgeability, which is described in Section 2.4.4. After
that, we propose a variant of HBMSDDH-1 achieving the slightly strong un-
forgeability, which we call it HBMSDDH-2 hereafter. The modification is very
small and the construction of this scheme is almost the same as HBMSDDH-1.

Toward constructing a two-round scheme with a small reduction loss, we
attempt to combine the Katz-Wang DDH-based signature scheme [GJKW07]
and the DL-based two-round multi-signature scheme HBMS [BD21]. The
Katz-Wang DDH-based signature scheme achieves tight security under the
DDH assumption. Also, there are tight secure three-round multi-signature
schemes [BN05, FH21] based on this scheme. HBMS achieves the two-round
signing protocol by using the special commitment scheme. Thus, in partic-
ular, we attempt to apply the technique of HBMS to the DDH-based three-
round scheme to reduce the number of rounds of the signing protocol while
maintaining the small reduction loss.

At first glance, although this attempt seems to work naively, it is non-
trivial. This is because the special commitment used in HBMS is tailored to
the multi-signature scheme based on the Schnorr signature scheme. In other
words, even if we apply the special commitment scheme to the DDH-based
three-round scheme, we cannot prove the security of such a scheme. Thus
we need other approaches or new techniques.

To overcome this obstacle, we construct a new special commitment scheme

53

that perfectly suits our needs. Specifically, we construct a HBMS-like spe-
cial commitment scheme tailored to the DDH-based multi-signature scheme.
Due to this new commitment scheme, we can construct the two-round scheme
with a small reduction loss and show its security under the DDH assump-
tion. Moreover, our commitment scheme provides a shorter signature size
and smaller communication complexity rather than using the more general
commitment scheme used in [PW23].

Road Maps. We first provide an overview of our techniques in Section 4.1.
In Section 4.2, we show the construction of our scheme HBMSDDH-1. In
Section 4.3, we show the correctness of HBMSDDH-1. After that, we explain
the intuition of how we prove the security of HBMSDDH-1 under the DDH
assumption in Section 4.4. In Section 4.5, we show that HBMSDDH-1 is 2-
MS-UF-2 . Finally, we provide a modified scheme HBMSDDH-2 and show
that HBMSDDH-2 is 2-MS-UF-1 in Section 4.6.

4.1 Technical Overview

Our goal is to construct a two-round multi-signature scheme with a small
reduction loss. Our technique is based on a tightly secure DDH-based vari-
ant of the Schnorr signature scheme (i.e., a DDH-based lossy identification
employed in the Katz-Wang signature scheme). Before describing our tech-
niques in detail, we explain the difficulty of constructing a two-round multi-
signature scheme from the basic Schnorr signature scheme in Section 4.1.1.
Next, in order to explain the idea of our technique to construct a two-round
multi-signature scheme from a tightly secure signature scheme, i.e., the Katz-
Wang signature scheme, we first review the DDH-based lossy identification
in Section 4.1.2. Then, we explain in detail the difficulties we face if we
only naively combine already existing techniques in Section 4.1.3. Finally,
we explain our solutions to overcome those difficulties in Section 4.1.4.

4.1.1 Difficulty to Construct Two-Round Schemes and
Existing Techniques

Here, we explain the difficulty to construct a two-round multi-signature
scheme from the Schnorr signature scheme. Schnorr signatures seem pos-
sible to be aggregated by using linearity. However, we cannot do that easily
because a hash function used to sign does not have linearity. The well-
known approach for this obstacle is to generate a multi-signature interac-
tively as follows. Firstly each signer broadcasts a commitment Ri ∈ G of the

54

Schnorr protocol and computes R̃ ←
∑

iRi. Each signer computes a chal-

lenge ci ∈ Zp of the Schnorr protocol by the random oracle Hc(R̃, pki,M),
generates a response si ∈ Zp mod p of the Schnorr protocol, and sends it
to all the cosigners where pki is a public key corresponding to the signer i
and M is a message to be signed. Finally, each signer computes s̃ ←

∑
i si

and outputs (R̃, s̃) as a multi-signature on M. The verification equation is

R̃ = s̃G−
∑

i ci ·pki. Unfortunately, this two-round multi-signature scheme is
insecure. In this case, honest verifier zero-knowledge does not work because
the reduction needs to return R to a forger before deciding c in the random
oracle. There are attacks [BLL+21, DEF+19] against this multi-signature
scheme.

As a solution to the above problem, Drijvers et al. proposed the secure
two-round multi-signature scheme mBCJ by combining the Schnorr protocol
and a homomorphic (special) equivocal commitment scheme. In a nutshell,
all signers broadcast their homomorphic commitment T to R in the first
round, and they broadcast their decommitment d and response s in the sec-
ond round. The commitment key is generated by the random oracle that takes
a message as input, e.g., Hck(M). Thus, in the security proof, the reduction
can embed either a binding commitment key or an equivocal commitment
key into the random oracle Hck(M). The reduction can simulate the honest
signer without the secret key by exploiting (special) equivocability if the com-
mitment keys corresponding to queried messages are equivocal keys. It can
also extract the secret key of the honest signer due to the binding property
and the special soundness of the Schnorr protocol if the commitment key
corresponding to the forgery is a binding key.

Bellare and Dai proposed a more efficient DL-based two-round multi-
signature scheme HBMS than mBCJ by using a tool like the Pedersen com-
mitment [Ped92] instead of the homomorphic equivocal commitment scheme.

4.1.2 DDH-Based Lossy Identification

As in a well-known approach to achieve tight security of (standard) signature
schemes, we attempt to construct a two-round multi-signature scheme from
the Katz-Wang (standard) signature scheme [GJKW07] which employs a
DDH-based lossy identification.

Here, we review the DDH-based lossy identification. The secret key is
x ∈ Zp and the public key is (X, Y) = x(G,H)⊤, which is a Diffie-Hellman
(DH) tuple. The identification protocol is as follows. At first, the prover
generates and sends (R1, R2)

⊤ = r(G,H)⊤ ∈ G2 to the verifier where r is

uniformly chosen from Zp. Next, the verifier uniformly chooses c
$← Zp and

55

sends it to the prover. After that, the prover computes s← r+cx mod p and
sends it to the verifier. Finally, the verifier checks R = s(G,H)⊤− c(X, Y)⊤.

The soundness is proven under the DDH assumption as follows: First,
we prove that impersonation is statistically hard under the lossy key which
is a non-DH tuple, i.e., there exists no x ∈ Zp s.t. (X, Y) = x(G,H)⊤.
Namely, under the lossy key, even for a computationally unbounded adver-
sary, the success probability of an adversary is negligible.1 Next, assume that
there is an adversary that can perform impersonation with a non-negligible
probability under a real public key, i.e., a DH tuple. Notice that this assump-
tion induces a non-negligible gap between the adversary’s success probability
under a lossy key and that under a real public key. Based on this, we can con-
struct an algorithm solving the DDH problem by internally running (without
rewinding) an adversary given an instance of the DDH problem as a public
key.

4.1.3 Naive Approach and Difficulty

To construct a two-round scheme with a small reduction loss, we attempt to
combine the technique of HBMS and the DDH-based lossy identification. In
the signing protocol of HBMS, for a commitment key ck ∈ G, each signer
generates a commitment T by T ← d · ck + R, where d is a randomness for
the commitment. Then, the verification equation is T = d · ck+s ·G− c ·pk.2
Note that one having the discrete logarithm of ck can extract the secret key
from two forgeries (T, c, (d, s)) and (T ′, c′, (d′, s′)) s.t. T = T ′ and c ̸= c′

like the special soundness. Then, the binding property is no longer needed.
Our observation means that we can replace the commitment scheme in mBCJ
with a simpler and more efficient tool that has equivocability3 and the above
property like the special soundness.

We require a tool that has similar properties to HBMS to achieve our
goal. More concretely, in our case, a tool needs to have the following two
types of commitment keys. The first type Type-1 ensures that forgery is
statistically hard under this commitment key and a lossy key like the lossy
identification. The second type Type-2 has (special) equivocability.

We need to newly construct such a tool tailored to the DDH-based lossy

1Indeed, the probability of an adversary outputting s s.t. R = s(G,H)⊤ − c(X,Y)⊤

after the verifier uniformly chooses c is at most 1/p independently of the behavior of the
adversary because (s, c) is uniquely determined according to R when (G,H) and (X,Y)
are linearly independent.

2For simplicity, we consider the case where there is only one signer.
3The equivocal key is generated by embedding the public key, and one having a trapdoor

can simulate the honest signer without using the secret key.

56

identification because we cannot reuse the tool used in HBMS. In contrast
to the Schnorr protocol, R of the DDH-based lossy identification consists of
two group elements. Thus, we cannot just apply the tool of HBMS to the
DDH-based lossy identification.

One may think that the following naive way is sufficient, but it is not
true. Below, we explain why the naive way fails. Each signer generates
two keys ck1 and ck2 of the tool used in HBMS by hashing the message
and generates a commitment T1 of R1 and a commitment T2 of R2 by using
ck1 and ck2, respectively. Then, the verification equation is (T1, T2)

⊤ =
d1(ck1, O)

⊤+d2(O, ck2)
⊤+s(G,H)⊤− c(X, Y)⊤ where c = Hc(T1, T2,M, pk),

and d1, d2 ∈ Zp. The important observation is that as long as the verification
equation includes the term d1(ck1, O)

⊤ + d2(O, ck2)
⊤, we cannot prove that

forgery under the lossy key is statistically hard. Note that a forger can
maliciously choose d1 and d2 so that d1(ck1, O)

⊤ + d2(O, ck2)
⊤ is a non-DH

tuple. This means that a computationally unbounded forger can forge by
generating d1, d2, and s so that they cancel out the lossy key even if (X, Y) is
a non-DH tuple. Therefore, we must modify the term to ensure the property
of Type-1.

4.1.4 Our Solutions

Our solution is aggregating two terms d1(ck1, O)
⊤ and d2(O, ck2)

⊤ into d(ck1,
ck2)

⊤ and programming the random oracle to let (ck1, ck2) be a random
DH tuple. This programming is validated by the DDH assumption. When
(ck1, ck2) is a DH tuple, we can rewrite (ck1, ck2)

⊤ = a(G,H)⊤ where a ∈ Zp,
and we obtain (T1, T2)

⊤ = (ad + s)(G,H)⊤ − c(X, Y)⊤ as the verification
equation. Notice that because (G,H) and (X, Y) are linearly independent,
c satisfying the equation is determined uniquely at the point when (T1, T2)
is determined. Since c is uniformly chosen from Zp by the random oracle on
input (T1, T2), we can prove that forgery is statistically hard. Remind that
(ck1, ck2) is generated by the random oracle, and thus (ck1, ck2) uniformly
distributes over G in the real environment. Then, due to the DDH assump-
tion, we can program the random oracle to output a random DH tuple in G2

instead of a random tuple in G2.
We can construct keys of Type-2 by embedding the public key into a DH

tuple. Specifically, we program the random oracle to output (ck1, ck2)
⊤ ←

ρ(G,H)⊤ + (X, Y)⊤ where ρ is a trapdoor uniformly chosen from Zp. Due
to the above approach, all terms in the verification equation are DH tuples.
Then, the simulator can generate (T1, T2) with embedded (X, Y) in the first
round and can generate (d, s) by exploiting ρ and the state information in
the first round, after c is determined.

57

We need to guarantee that the forgery is valid under the commitment
key Type-1 and embedd those two types of commitment keys into the same
random oracle to make our solution work well. Then, we use the technique
of the security proof of the RSA-FDH signature scheme by Coron [Cor00].
Consequently, our scheme has a reduction loss O(QS).

4.2 Proposed Scheme HBMSDDH-1

Below, we show the construction of our two-round multi-signature scheme
HBMSDDH-1. For the readability, our scheme is also shown in Fig. 4.1.

Setup(1λ)→ par. The public parameter generation algorithm takes as input
the security parameter 1λ. It sets up (G, p, G) by GrGen. It chooses
a random element H ∈ G, hash functions Hc : {0, 1}∗ → Zp, Hck :
{0, 1}∗ → G2, and Hagg : {0, 1}∗ → Zp, and then it outputs par =
(G, p, G,H,Hc,Hck,Hagg).

KeyGen(par)→ (pk, sk). The key generation algorithm takes as input par,

chooses x
$← Zp, computes (X, Y)⊤ ← x(G,H)⊤ and outputs a public

key pk = (X, Y) and a secret key sk = x.

Sign(2) = (Sign
(2)
1 , Sign

(2)
2). The signing protocol of our scheme consists of the

following two algorithms. Let N be the number of signers, namely,
N = |vkList|.

Sign
(2)
1 (par, vkList,M, i, ski)→ (pmi, sti). The signing algorithm for the
first round takes as inputs a security parameter par, a public key
list vkList = (pkj)j∈[N], a message M to be signed, an index i of the
signer, and a secret key ski of signer i. It parses (Xj, Yj)j∈[N] from
vkList, computes tj ← Hagg((Xj, Yj), vkList) for all j ∈ [N] and

p̃k ←
∑N

j=1 tj(Xj, Yj)
⊤. It computes (U1, U2) ← Hck(M), chooses

ri, di
$← Zp and computes Ti ← di(U1, U2)

⊤+ri(G,H)⊤. It outputs

a protocol message pmi = Ti and a state sti = (ri, di, ti, Ti, p̃k).

Sign
(2)
2 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i})→ psigi. The signing algo-
rithm for the second round takes as input a public parameter par,
a public key list vkList, a message M to be signed, an index i
of the signer, a secret key ski and a state sti of signer i, and a
tuple of protocol messages (pmj)j∈[N]\{i}. It parses (Tj)j∈[N]\{i}

from (pmj)j∈[N]\{i} and (ri, di, ti, Ti, p̃k) from sti. It computes

58

T̃ ←
∑N

j=1 Tj, c ← Hc(T̃ , p̃k,M), and si ← xitic + ri mod p.
It outputs psigi = (di, si).

Agg(par, vkList,M, (pmi, psigi)i∈[N])→ s̃ig. The aggregation algorithm takes
as input a public parameter par, a public key list vkList, a message M
to be signed, and all signers’ protocol messages and partial signatures
(pmi, psigi)i∈[N]. It parses (Xi, Yi)i∈[N] from vkList and (Ti, di, si)i∈[N]

from (pmi, psigi)i∈[N]. It computes ti ← Hagg((Xi, Yi), vkList) for all

i ∈ [N], p̃k ←
∑N

i=1 ti(Xi, Yi)
⊤, T̃ ←

∑N
i=1 Ti, c ← Hc(T̃ , p̃k,M), d̃ ←∑N

i=1 di mod p, and s̃←
∑N

i=1 si mod p and outputs s̃ig = (c, d̃, s̃).

Verify(par, vkList,M, s̃ig)→ {0, 1}. The verification algorithm takes as inputs
a public parameter par, a public key list vkList, a message M to be
signed, and a multi-signature s̃ig. It parses (Xi, Yi)i∈[N] from vkList

and (c, d̃, s̃) from s̃ig. It computes ti ← Hagg((Xi, Yi), vkList) for all

i ∈ [N], p̃k ←
∑N

i=1 ti(Xi, Yi)
⊤, (U1, U2) ← Hck(M), T̃ ← d̃(U1, U2)

⊤ +

s̃(G,H)⊤ − c · p̃k. It outputs 1 if c = Hc(T̃ , p̃k,M) holds. Otherwise, it
outputs 0.

Remark 3. The aggregation algorithm can be executed by anyone who knows
the public information required to run this algorithm, even if they did not
participate in the signing protocol. To capture this situation, our aggregation
algorithm computes the aggregated key, the aggregated commitment T̃ , and
the challenge c. However, if the aggregation algorithm is executed by one
who participated in the signing protocol, it no longer computes them since it
has already computed them in the signing protocol. This means that it can
efficiently aggregate the partial signatures to produce the multi-signature. We
implement our scheme for this situation in Section 5.2.

59

Setup(1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : H
$← G

3 : Select Hc // Hc : {0, 1}∗ → Zp

4 : Select Hck // Hck : {0, 1}∗ → G2

5 : Select Hagg // Hagg : {0, 1}∗ → Zp

6 : par← (G, p,G,H,Hc,Hck,Hagg)

7 : return par

KeyGen(par)→ (pk, sk):

1 : x
$← Zp

2 : (X,Y)⊤ ← x(G,H)⊤

3 : pk← (X,Y)

4 : sk← x

5 : return (pk, sk)

Agg(par, vkList,M, (pmi, psigi)i∈[N]):

1 : parse (Xi, Yi)i∈[N] ← vkList

2 : parse (Ti, di, si)i∈[N]

← (pmi, psigi)i∈[N]

3 : for i ∈ [N] do

4 : ti ← Hagg((Xi, Yi), vkList)

5 : p̃k←
N∑
i=1

ti(Xi, Yi)
⊤

6 : T̃ ←
N∑
i=1

Ti

7 : c← Hc(T̃ , p̃k,M)

8 : d̃←
N∑
i=1

di mod p

9 : s̃←
N∑
i=1

si mod p

10 : s̃ig← (c, d̃, s̃)

11 : return s̃ig

Sign
(2)
1 (par, vkList,M, i, ski):

1 : parse (Xj , Yj)j∈[N] ← vkList

2 : for j ∈ [N] do tj ← Hagg((Xj , Yj), vkList)

3 : p̃k←
N∑
j=1

tj(Xj , Yj)
⊤

4 : (U1, U2)← Hck(M)

5 : ri, di
$← Zp

6 : Ti ← di(U1, U2)
⊤ + ri(G,H)⊤

7 : pmi ← Ti

8 : sti ← (ri, di, ti, Ti, p̃k)

9 : return (pmi, sti)

Sign
(2)
2 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i}):

1 : parse (Tj)j∈[N]\{i} ← (pmj)j∈[N]\{i}

2 : parse (ri, di, ti, Ti, p̃k)← sti

3 : T̃ ←
N∑
j=1

Tj

4 : c← Hc(T̃ , p̃k,M)

5 : si ← xitic+ ri mod p

6 : psigi ← (di, si)

7 : return psigi

Verify(par, vkList,M, s̃ig) :

1 : parse (Xi, Yi)i∈[N] ← vkList

2 : parse (c, d̃, s̃)← s̃ig

3 : for i ∈ [N] do ti ← Hagg((Xi, Yi), vkList)

4 : p̃k←
N∑
i=1

ti(Xi, Yi)
⊤

5 : (U1, U2)← Hck(M)

6 : T̃ ← d̃(U1, U2)
⊤ + s̃(G,H)⊤ − c · p̃k

7 : if
r
c = Hc(T̃ , p̃k,M)

z
then

8 : return 1

9 : return 0

Figure 4.1: The construction of HBMSDDH-1. Hc,Hck, and Hagg are modeled
as random oracles. N is the number of the signers in vkList.

60

4.3 Correctness of HBMSDDH-1

Here, we show that our scheme is correct.

Theorem 12. HBMSDDH-1 in Section 4.2 (and in Fig. 4.1) satisfies cor-
rectness.

Proof. If all signers participated in the signing protocol honestly executes
the signing protocol on M and vkList, then we have

d̃(U1, U2)
⊤ + s̃(G,H)⊤ − c · p̃k

=
N∑
i=1

di(U1, U2)
⊤ +

N∑
i=1

si(G,H)⊤ − c ·
N∑
i=1

tixi(G,H)⊤

=
N∑
i=1

di(U1, U2)
⊤ +

N∑
i=1

(xitic+ ri)(G,H)⊤ − c ·
N∑
i=1

tixi(G,H)⊤

=
N∑
i=1

di(U1, U2)
⊤ + ri(G,H)⊤ =

N∑
i=1

Ti = T̃ .

Therefore, our scheme satisfies correctness.

4.4 Intuition of Security Proof

Before showing the full security proof, we show a proof sketch.
As in the Katz-Wang signature scheme, we prove the unforgeability of

HBMSDDH-1 by replacing the public key with a non-DH tuple due to the
DDH assumption and proving that forgery is statistically hard under such a
public key. The main strategy is that we ensure a situation where we can
statistically evaluate the adversary’s success probability ϵA, namely, we can
show that ϵA is negligible even if the adversary is computationally unbounded
when the public key is a non-DH tuple. To ensure such a situation, we replace
(U1, U2) generated by the random oracle Hck(M) with a random DH tuple.
The effect of this replacement is guaranteed to be negligible by the DDH
assumption. However, if we replace all (U1, U2) with DH tuples, we cannot
simulate the honest signer without the secret key sk. To solve this issue, we
provide another way to generate (U1, U2) which allows simulating the honest
signer without sk. Then, to make these two contrasting ways compatible,
we use the technique of Coron [Cor00], which is to prove the security of the
RSA Full Domain Hash (RSA-FDH) signature scheme [BR93], as in mBCJ
and HBMS.

61

Our proof is a game-hopping proof. We start with the game of the se-
curity definition and sequentially change it into a game in which forgery is
statistically hard. Specifically, we consider the following game-hopping.

Game G1 (Game1-Game3): We change the game of the security game as
follows: The challenger generates two types of (U1, U2) instead of uni-
formly choosing from G2 and assigns one of them to the random oracle
table of Hck(M) according to a biased coin which comes out heads with
a certain probability, like the technique of Coron [Cor00]. The first
type (Type-1) is to statistically evaluate the success probability of an
adversary in the final game. The other type (Type-2) is to simulate
the honest signer without sk in the signing oracle.

Game G2 (Game4): We change the above game as follows: The challenger
simulates the honest signer without sk by using the property of (U1, U2)
of Type-2.

Game G3 (Game5-Game6) : We change the above game as follows: The
challenger embeds a non-DH tuple into pk, like the security proof of
the Katz-Wang signature scheme.

In a nutshell, first, we show our procedure to prove that G1 and G3 are
computationally indistinguishable under the DDH assumption. First, we
prove that G1 and G2 are perfectly indistinguishable by proving that the dis-
tribution of responses of the signing oracle with sk and that of the response
of the signing oracle using the property of (U1, U2) of Type-2 are perfectly
indistinguishable. Next, we prove that G2 and G3 are computationally in-
distinguishable by proving that pk generated by KeyGen in G2 and G3 which
are a DH tuple and a non-DH tuple are indistinguishable under the DDH
assumption.

Using the property of (U1, U2) of Type-1, in Game G3, we can statis-
tically evaluate ϵA and then prove that forgery is statistically hard. Then,
to complete the explanation of this proof sketch, it remains to show the
construction of two types of (U1, U2) and the indistinguishability between
the game of the security definition and Game G1. We explain these below.

First, we explain the way to generate (U1, U2) of Type-1. The challenger
generates it satisfying that it is uniformly distributed in the span of (G,H).

Specifically, the challenger chooses ρ
$← Zp and computes (U1, U2)

⊤ ←
ρ(G,H)⊤. To explain why this is necessary, we consider the simple case
where there is only one signer and key aggregation is not supported. Then,
the verification equation is T1 = d1(U1, U2)

⊤ + s1(G,H)⊤− c(X1, Y1)
⊤ where

c = Hc(T1, (X1, Y1),M). Notice that, when (G,H,X1, Y1) is a non-DH tuple

62

and (U1, U2) is in the span of (G,H), c satisfying the above equation is deter-
mined uniquely at the point when T1 is determined. Because c is uniformly
chosen from Zp by the random oracle, the probability that c satisfies the
above equation is at most 1/p.4

Next, we explain the way to generate (U1, U2) of Type-2. The challenge
key (X1, Y1) is embedded in this type of (U1, U2). More concretely, the chal-

lenger chooses ρ
$← Zp and computes (U1, U2)

⊤ ← ρ(G,H)⊤ + (X1, Y1)
⊤.

Then, the challenger has ρ as the trapdoor. The equivocal commitment T1
is generated by α(G,H)⊤ + β(X1, Y1)

⊤ where α and β are uniformly cho-
sen from Zp. We need to produce d1 and s1 satisfying T1 = d1(U1, U2)

⊤ +
s1(G,H)⊤− c(X1, Y1)

⊤ given c. Notice that sk is no longer required since T1
and (U1, U2)

⊤ is expressed by linear combinations of (G,H)⊤ and (X1, Y1)
⊤.

Specifically, by using ρ, α, and β, we can produce d1 and s1 satisfying T1 =
α(G,H)⊤+β(X1, Y1)

⊤ = d1(ρ(G,H)⊤+(X1, Y1)
⊤)+s1(G,H)⊤−c(X1, Y1)

⊤.
For indistinguishability between the distribution of responses of the sign-
ing oracle with sk and that of responses of the signing oracle using ρ, see
Lemma 6.

Finally, we explain that the game of the security definition and G1 are
computationally indistinguishable under the DDH assumption. Notice that,
for both types of (U1, U2), the challenger generates (U1, U2) by producing
a random DH tuple ρ(G,H)⊤. Then, we can prove that the distribution
of (U1, U2) uniformly chosen from G2 and the one of (U1, U2) generated by
Hck(M) in G1 are computationally indistinguishable under the DDH assump-
tion. Therefore, the game of the security definition and G1 are computation-
ally indistinguishable under the DDH assumption.

As a result, we can show that HBMSDDH-1 is secure under the DDH
assumption in the random oracle model.

Remark 4. Since we need to guarantee that the adversary only produces
forgery which is valid under (U1, U2) of Type-1, we need to add a condition
that a forgery is valid under (U1, U2) of Type-1 into the winning condition of
the adversary in G1. In the full proof, we consider intermediate games between
the original game of the security definition and G1 with the above additional
winning condition. Thus, HBMSDDH-1 has the reduction loss e(QS + 1),
which is the same as the reduction loss of the RSA-FDH signature scheme
proven by Coron [Cor00].

4Because our scheme supports key aggregation, we need to consider a more complex
setting. For more details, see Lemma 8.

63

4.5 Formal Security Proof for HBMSDDH-1

Theorem 13. If G is a (t, ϵ)-DDH group, then HBMSDDH-1 is (tA, QS, QH ,
N, ϵA)-2-MS-UF-2 s.t.

ϵA ≥ e(QS + 1)

(
2ϵ+

2QH +QS + 2

p

)
and

tA ≤ min(t1, t2) where

t1 = t− (4QH + 6QSN + 4QS + 2N + 12)tmul −O(QH +QSN),

t2 = t− (2QH + 6QSN + 2QS + 2N + 8)tmul −O(QH +QSN),

where e is the base of the natural logarithm and tmul is the time of a scalar
multiplication in G.

Proof of Theorem 14. First, we prepare two notations. Let us denote the
time for a scalar multiplication in G by tmul. We write Pr[Gamei = 1] to
mean the probability that a forger wins the game Gamei.

Let A be an adversary that (tA, QS, QH , N, ϵA)-breaks the 2-MS-UF-2 of
HBMSDDH-1. For A, we consider a sequence of games where the first hybrid
Game0 is the slightly weak unforgeability game in Fig. 2.10 for HBMSDDH-1.
Game0 is shown in Fig. 4.2. Because Game0 is the unforgeability game of
HBMSDDH-1, we have Pr[Game0 = 1] ≥ ϵA.

Now we change Game0 as follows.

Game1: In this game, the challenger makes a query Hck(M) at the beginning
of both the random oracle Hc and the signing oracle O

Sign
(2)
1
. The

changed game is depicted in Fig. 4.3. These newly added steps do not
affect the probability of A winning the game. Therefore, we have

Pr[Game0 = 1] = Pr[Game1 = 1].

Game2: In this game, the challenger partition the outputs (U1, U2) of Hck(M)
into two groups following a biased coin bK ∈ {0, 1} and aborts the
game if a bit bK corresponding to (U1, U2) used in a signing query is 0
at the beginning of the second round. Moreover, it additionally checks
the condition Tb[M

∗] = 0. The changed game is depicted in Fig. 4.4.
Specifically, it additionally initializes a table Tb[·]← ⊥ at the beginning
of the game. It firstly chooses a bit bK ∈ {0, 1} which becomes 1 with
probability δ = QS/(QS + 1) and assigns Tb[M] ← bK . Note that the
way to generate (U1, U2) is unchanged. In the signing oracle O

Sign
(2)
2
, it

aborts the game if Tb[M] = 0 holds. Otherwise, it continues the game.

64

Game0 = Gamems2-uf2
HBMSDDH-1,A(1

λ, N)

1 : QM ← ∅,Qst[·]← ⊥
2 : THc [·]← ⊥,THck

[·]← ⊥,THagg [·]← ⊥

3 : (G, p,G)
$← GrGen(1λ)

4 : H
$← G

5 : x
$← Zp

6 : (X,Y)⊤ ← x(G,H)⊤

7 : pk← (X,Y)

8 : sk← x

9 : (vkList∗,M∗, s̃ig
∗
)

$← A
O

Sign
(2)
1

,O
Sign

(2)
2

,Hc,Hck,Hagg

(par, pk)

10 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK ∧ J(M∗) /∈ QMK

11 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

O
Sign

(2)
1
(sid, vkList,M)

1 : req Jpk ∈ vkListK ∧ JQst[sid, 1] = ⊥K ∧ J|vkList| ≤ NK
2 : HSsid ← ∅
3 : N ← |vkList|
4 : parse (pki)i∈[N] ← vkList

5 : for i ∈ [N] do

6 : if pki = pk then

7 : HSsid ← HSsid ∪ {i}
8 : parse (Xj , Yj)j∈[N] ← vkList

9 : for j ∈ [N] do

10 : tj ← Hagg((Xj , Yj), vkList)

11 : p̃k←
N∑
j=1

tj(Xj , Yj)
⊤

12 : (U1, U2)← Hck(M)

13 : for i ∈ HSsid do

14 : ri, di
$← Zp

15 : Ti ← di(U1, U2)
⊤ + ri(G,H)⊤

16 : pmi ← Ti

17 : sti ← (ri, di, ti, Ti, p̃k)

18 : Qst[sid, 1]
$← (vkList,M,HSsid, (sti)i∈HSsid)

19 : return (pmi)i∈HSsid

Hc(T̃ , p̃k,M):

1 : if
r
THc [T̃ , p̃k,M] = ⊥

z

2 : c
$← Zp

3 : THc [T̃ , p̃k,M]← c

4 : return THc [T̃ , p̃k,M]

Hck(M):

1 : if JTHck
[M] = ⊥K

2 : (U1, U2)
$← G2

3 : THck
[M]← (U1, U2)

4 : return THck
[M]

Hagg((X, Y), vkList):

1 : if
q
THagg [(X,Y), vkList] = ⊥

y

2 : t
$← Zp

3 : THagg [(X,Y), vkList]← t

4 : return THagg [(X,Y), vkList]

O
Sign

(2)
2
(sid, (pmj)j∈[|vkList|]\HS)

1 : req JQst[sid, 1] ̸= ⊥K ∧ JQst[sid, 2] = ⊥K
2 : (vkList,M,HSsid, (sti)i∈HSsid)← Qst[sid, 1]

3 : N ← |vkList|
4 : parse (Tj)j∈[N]\HS ← (pmj)j∈[N]\HS

5 : for i ∈ HSsid do

6 : parse (ri, di, ti, Ti, p̃k)← sti

7 : T̃ ←
N∑
j=1

Tj

8 : c← Hc(T̃ , p̃k,M)

9 : parse x← sk

10 : for i ∈ HSsid do

11 : si ← xtic+ ri mod p

12 : psigi ← (di, si)

13 : Qst[sid, 2]← (psigi)i∈HSsid

14 : QM ← QM ∪ {M}
15 : return (psigi)i∈HSsid

Figure 4.2: The initial game Game0, that identical to the slightly weak un-
forgeability game in Fig. 2.10 for HBMSDDH-1.

At the end of the game, it checks the condition Tb[M
∗] = 0 in addition

to other conditions. Due to Lemma 2, which we will prove later, we
have

Pr[Game1 = 1] ≤ e(QS + 1)Pr[Game2 = 1].

65

Game1:

O
Sign

(2)
1
(sid, vkList,M)

1 : req Jpk ∈ vkListK ∧ JQst[sid, 1] = ⊥K ∧ J|vkList| ≤ NK

2 : (U1, U2)← Hck(M)

3 : // Identical to Lines 2 to 18 of O
Sign

(2)
1

in Game0.

Hc(T̃ , p̃k,M):

1 : (U1, U2)← Hck(M)

2 : if
r
THc [T̃ , p̃k,M] = ⊥

z

3 : c
$← Zp

4 : THc [T̃ , p̃k,M]← c

5 : return THc [T̃ , p̃k,M]

Figure 4.3: The first game Game1. The changes from Game0 are highlighted
in blue. For readability, we omit the lines of O

Sign
(2)
1

that are identical to

those of O
Sign

(2)
1

in Game0.

Game2, Game3

1 : QM ← ∅,Qst[·]← ⊥
2 : THc [·]← ⊥,THck

[·]← ⊥,THagg [·]← ⊥

3 : Tb[·]← ⊥ , Ttd[·]← ⊥

4 : (G, p,G)
$← GrGen(1λ)

5 : H
$← G

6 : x
$← Zp

7 : (X,Y)⊤ ← x(G,H)⊤

8 : pk← (X,Y)

9 : sk← x

10 : (vkList∗,M∗, s̃ig
∗
)

$← A
O

Sign
(2)
1

,O
Sign

(2)
2

,Hc,Hck,Hagg

(par, pk)

11 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK ∧ J(M∗) /∈ QMK

12 : req JTb[M
∗] = 0K

13 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

O
Sign

(2)
2
(sid, (pmj)j∈[|vkList|]\HS)

1 : req JQst[sid, 1] ̸= ⊥K ∧ JQst[sid, 2] = ⊥K

2 : if JTb[M] = 0K then

3 : abort

4 : // Identical to Lines 2 to 15 of O
Sign

(2)
2

in Game0

Hck(M):

1 : if JTHck
[M] = ⊥K

2 : bK = 0

3 : bK ← 1 with probability δ = QS/(QS + 1)

4 : Tb[M]← bK

5 : (U1, U2)
$← G2 // For Game2.

6 : ρ
$← Zp

7 : if JTb[M] = 0K then

8 : (U1, U2)
⊤ ← ρ(G,H)⊤

9 : else

10 : (U1, U2)
⊤ ← ρ(G,H)⊤ + (X,Y)⊤

11 : Ttd[M]← ρ

12 : THck
[M]← (U1, U2)

13 : return THck
[M]

Figure 4.4: The second game Game2 and the third game Game3. The changes
from Game1 and Game2 are highlighted in blue and boxed, respectively. For
readability, we omit the lines of O

Sign
(2)
2

that are identical to those of O
Sign

(2)
2

in Game0.

66

Game3: In this game, the challenger modifies how it generates (U1, U2) in
Hck(M) corresponding to a value Tb[M]. The changed game is depicted
in Fig. 4.4. Specifically, it additionally initializes a table Ttd[·] ← ⊥
at the beginning of the game. In Hck, instead of (U1, U2)

$← G2, it

chooses ρ
$← Zp, computes (U1, U2)

⊤ $← ρ(G,H)⊤ when Tb[M] = 0, and

computes (U1, U2)
⊤ $← ρ(G,H)⊤ + (X, Y)⊤ when Tb[M] = 1. Then, it

assigns Ttd[M] ← ρ. Due to Lemma 3, which we will prove later,
assuming that G is a (t, ϵ)-DDH group, for A such that tA ≤ t −
(4QH + 6QSN + 4QS + 2N + 12)tmul −O(QH +QSN), we have

|Pr[Game2 = 1]− Pr[Game3 = 1]| ≤ ϵ.

Game4: In this game, the challenger modifies how it generates protocol mes-
sages and partial signatures. This is depicted in Fig. 4.5. Specifically,
in O

Sign
(2)
1
, it chooses (αi, βi)

$← Z2
p and computes Ti ← αi(G,H)⊤ +

βi(X, Y)⊤. In O
Sign

(2)
2
, it computes di ← βi+c mod p and si ← αi−diρ

mod p by using the trapdoor ρ corresponding to (U1, U2) = Hck(M).
Due to Lemma 6, which we will prove later, we have

Pr[Game3 = 1] = Pr[Game4 = 1].

Game5: In this game, the challenger changes how it generates the challenge
key. This game is depicted in Fig. 4.6. Specifically, it additionally
chooses y

$← Zp\{x} and computes X ← xG and Y ← yH, instead
of (X, Y)⊤ ← x(G,H)⊤. Due to Lemma 7, which we will prove later,
assuming G is a (t, ϵ)-DDH group, for A such that tA ≤ t − (2QH +
6QSN + 2QS + 2N + 8)tmul −O(QH +QSN), we have

|Pr[Game4 = 1]− Pr[Game5 = 1]| ≤ ϵ.

Game6: In this game, the challenger defines Hagg((Xi, Yi), vkList) for all (Xi,
Yi) ∈ vkList. This is depicted in Fig. 4.6. Specifically, when ((X, Y),
vkList) is queried to Hagg, after defining Hagg((X, Y), vkList), it chooses

ti
$← Zp and assigns THagg [(Xi, Yi), vkList] ← ti for all (Xi, Yi) ∈ vkList.

Since the challenger gives A only THagg [(X, Y), vkList], where ((X, Y),
vkList) is queried, this change does not affect the probability of A win-
ning the game. Thus, we have

Pr[Game5 = 1] = Pr[Game6 = 1].

67

Game4:

O
Sign

(2)
1
(sid, vkList,M)

1 : req Jpk ∈ vkListK ∧ JQst[sid, 1] = ⊥K
∧ J|vkList| ≤ NK

2 : (U1, U2)← Hck(M)

3 : HSsid ← ∅
4 : N ← |vkList|
5 : parse (pki)i∈[N] ← vkList

6 : for i ∈ [N] do

7 : if pki = pk then

8 : HSsid ← HSsid ∪ {i}
9 : parse (Xj , Yj)j∈[N] ← vkList

10 : for j ∈ [N] do

11 : tj ← Hagg((Xj , Yj), vkList)

12 : p̃k←
N∑
j=1

tj(Xj , Yj)
⊤

13 : for i ∈ HSsid do

14 : αi, βi
$← Zp

15 : Ti ← αi(G,H)⊤ + βi(X,Y)⊤

16 : pmi ← Ti

17 : sti ← (αi, βi, ti, Ti, p̃k)

18 : Qst[sid, 1]
$← (vkList,M,HSsid, (sti)i∈HSsid)

19 : return (pmi)i∈HSsid

O
Sign

(2)
2
(sid, (pmj)j∈[|vkList|]\HS)

1 : req JQst[sid, 1] ̸= ⊥K ∧ JQst[sid, 2] = ⊥K
2 : if JTb[M] = 0K then

3 : abort

4 : (vkList,M,HSsid, (sti)i∈HSsid)← Qst[sid, 1]

5 : N ← |vkList|
6 : parse (Tj)j∈[N]\HS ← (pmj)j∈[N]\HS

7 : for i ∈ HSsid do

8 : parse (αi, βi, ti, Ti, p̃k)← sti

9 : T̃ ←
N∑
j=1

Tj

10 : c← Hc(T̃ , p̃k,M)

11 : ρ← Ttd[M]

12 : for i ∈ HSsid do

13 : di ← βi + c mod p

14 : si ← αi − diρ mod p

15 : psigi ← (di, si)

16 : Qst[sid, 2]← (psigi)i∈HSsid
17 : QM ← QM ∪ {M}
18 : return (psigi)i∈HSsid

Figure 4.5: The fourth game Game4. The changes from Game3 are highlighted
in blue.

From Lemma 8, which we will prove later, the advantage of A against
Game6 is statistically bounded as

Pr[Game6 = 1] ≤ 2QH +QS + 2

p
.

By combining all arguments, we obtain the the following statement. If G
is a (t, ϵ)-DDH group, for A such that

tA ≤ t− (4QH + 6QSN + 4QS + 2N + 12)tmul −O(QH +QSN),

and tA ≤ t− (2QH + 6QSN + 2QS + 2N + 8)tmul −O(QH +QSN),

68

Game5

1 : QM ← ∅,Qst[·]← ⊥
2 : THc [·]← ⊥,THck

[·]← ⊥,THagg [·]← ⊥
3 : Tb[·]← ⊥,Ttd[·]← ⊥

4 : (G, p,G)
$← GrGen(1λ)

5 : H
$← G

6 : x
$← Zp, y

$← Zp\{x}

7 : X ← xG, Y ← yH

8 : pk← (X,Y)

9 : (vkList∗,M∗, s̃ig
∗
)

$← A
O

Sign
(2)
1

,O
Sign

(2)
2

,Hc,Hck,Hagg

(par, pk)

10 : if Jpk ∈ vkList∗K ∧ J(M∗) /∈ QMK ∧ JTb[M
∗] = 0K then

11 : return 0

12 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

Game6:

Hagg((X, Y), vkList):

1 : if
q
THagg [(X,Y), vkList] = ⊥

y

2 : t
$← Zp

3 : THagg [(X,Y), vkList]← t

4 : N ← [vkList]

5 : parse ((Xi, Yi))i∈[N] ← vkList

6 : for i ∈ [N] do

7 : if
q
THagg [(Xi, Yi), vkList] = ⊥

y

8 : ti
$← Zp

9 : THagg [(Xi, Yi), vkList]← ti

10 : return THagg [(X,Y), vkList]

Figure 4.6: The fifth game Game5 and the sixth game Game6. The changes
from the previous game are highlighted in blue.

ϵA satisfies the following inequalities.

ϵA = Pr[Game1 = 1]

≤ e(QS + 1)Pr[Game2 = 1]

≤ e(QS + 1)(ϵ+ Pr[Game4 = 1])

≤ e(QS + 1)(2ϵ+ Pr[Game6 = 1])

≤ e(QS + 1)

(
2ϵ+

2QH +QS + 2

p

)
.

Therefore, if G is a (t, ϵ)-DDH group, HBMSDDH-1 is (tA, QS, QH , N, ϵA)-2-
MS-UF-2 such that

ϵA ≥ e(QS + 1)

(
2ϵ+

2QH +QS + 2

p

)
and

tA ≤ min(t1, t2) where

t1 = t− (4QH + 6QSN + 4QS + 2N + 12)tmul −O(QH +QSN),

t2 = t− (2QH + 6QSN + 2QS + 2N + 8)tmul −O(QH +QSN).

This completes the proof.

Below, we prove Lemmas 2, 3 and 6 to 8.

Proof of Lemma 2. Here, we provide the proof of Lemma 2.

69

Lemma 2. Pr[Game1 = 1] ≤ e(QS + 1)Pr[Game2 = 1].

Proof. First, we show that the added steps of Hck in Game2 do not affect
the probability of A winning the game. Since (U1, U2) in Game2 is generated
by uniformly choosing from G2 independently of the value of Tb[M], the
distributions of the responses of Hck in both games are identical. Therefore,
the steps do not affect the probability of A winning the game.

Second, we show that Pr[Game1 = 1] ≤ e(QS + 1)Pr[Game2 = 1]. For
Game2, let EGame2

1 be the event where the game does not terminate in the
signing oracle O

Sign
(2)
2
, EGame2

2 be the event where A’s output satisfies the

added condition Tb[M
∗] = 0, and EGame2

3 be the event where A’s output
satisfies the winning conditions as same as Game1. Then, we have

Pr[Game2 = 1] = Pr[EGame2
1 ∧ EGame2

2 ∧ EGame2
3]

= Pr[EGame2
1] Pr[EGame2

3 |EGame2
1] Pr[EGame2

2 |EGame2
1 ∧ EGame2

3].

Firstly, we evaluate Pr[EGame2
1]. The game aborts in O

Sign
(2)
2

if Tb[M] = 0

holds for a queried message. Thus, EGame2
1 occurs when Tb[M] = 1 holds at

that point for all messages queried to the signing oracle. Since the responses
of the random oracles and the responses of the signing oracle O

Sign
(2)
1

leak

no information on the value of Tb[M] for any m, A can know Tb[M] only
when it observes whether the game continues or not. Also, A can only know
Tb[M] = 1 for all messages queried to O

Sign
(2)
2

as long as the game continues.

Therefore, the probability that Tb[M] = 0 holds for a queried message is
equal to (1 − δ). In consequence, because A can make at most QS signing
queries, we have Pr[EGame2

1] ≥ δQS . Setting δ = QS/(QS + 1), we have
Pr[EGame2

1] ≥ δQS ≥ 1/e. The last inequality holds because of the fact that
(1 + 1/QS)

QS < e for QS > 0.
Next, we evaluate Pr[EGame2

3 |EGame2
1]. Conditioned on EGame2

1 , Game2 does
not terminate, and the distribution of the view of A in Game2 is identical
to the distribution of the view of A in Game1. Thus, A’s output in Game2
satisfies the winning conditions of Game1 with the same probability as in
Game1. Namely, we have Pr[EGame2

3 |EGame2
1] = Pr[Game1 = 1].

Finally, we evaluate Pr[EGame2
2 |EGame2

1 ∧ EGame2
3]. Conditioned on EGame2

1

and EGame2
3 , since M∗ has never queried to the signing oracles, A cannot

know Tb[M
∗]. Then, Pr[EGame2

2 |EGame2
1 ∧ EGame2

3] = (1 − δ) holds. Setting
δ = QS/(QS + 1), we obtain Pr[EGame2

2 |EGame2
1 ∧ EGame2

3] = 1/(QS + 1).
Combining all bounds, we obtain Pr[Game1 = 1] ≤ e(QS +1)Pr[Game2 =

1]. This completes the proof.

Proof of Lemma 3. Here we show Lemma 3.

70

Lemma 3. If G is a (t, ϵ)-DDH group, for A such that tA ≤ t − (4QH +
6QSN + 4QS + 2N + 12)tmul −O(QH +QSN), the following holds.

|Pr[Game2 = 1]− Pr[Game3 = 1]| ≤ ϵ.

Proof. To prove this lemma, we construct an adversary B against the DDH
problem that internally runs an adversary A against unforgeability game
Game2 or Game3. B takes as input an instance of the DDH problem ((G, p, G),
H, P,Q). B behaves as same as the challenger in Game2 and Game3 ex-
cept for how it generates par and (U1, U2) in the random oracle Hck(M).
Specifically, it assigns (G, p, G,H) of input to (G, p, G,H) of par, instead
of generating by GrGen and uniformly choosing H. Moreover, it gener-
ates (U1, U2) in the random oracle Hck(M) as follows. It first generates
(P ′, Q′) ← RandDH(G,H, P,Q) defined in Section 2.2.2. If Tb[M] = 0,
it assigns (U1, U2) ← (P ′, Q′). If Tb[M] = 1, it computes (U1, U2)

⊤ ←
(P ′, Q′)⊤ + (X, Y)⊤. Finally, B outputs 1 if A wins the game. Otherwise, it
outputs 0.

Now we evaluate the running time tB of B. We assume that tmul time
is required for one scalar multiplication in G, and unit time is required for
the other non-cryptographic operations. B computes 2 scalar multiplica-
tions to generate pk. For time to answer random oracle queries, we consider
only the case of Hc because Hc takes longer time than Hck and Hagg. To
respond to a query to Hc, B makes one query to Hck and executes O(1)
other non-cryptographic operations. 4 scalar multiplications and O(1) other
non-cryptographic operations are required for one query to Hck. Thus, in
total, A executes 4 scalar multiplications and O(1) other non-cryptographic
operations to respond to one query to Hc. For each signing query, there are
at most 6N scalar multiplications, one query to Hck, one query to Hc, N
queries to Hagg, and O(N) other non-cryptographic operations, thus totally
QS(6N + 4)tmul + O(QSN) time is required for responding to all signing
queries. There are 2N +6 scalar multiplications, one query to Hck, one query
to Hc, N queries to Hagg, and O(N) other non-cryptographic operations to
verify the adversary’s output. From these evaluations and the fact that A
runs A once, we obtain tB ≤ tA + (4QH + 6QSN + 4QS + 2N + 12)tmul +
O(QH +QSN).

Now we show that AdvddhB (1λ) = |Pr[Game2 = 1] − Pr[Game3 = 1]|. We
can prove this equality by proving the followings.

(i): Pr[Game2 = 1] is equal to the probability that B outputs 1 conditioned
on (G,H, P,Q) is a non-DH tuple.

(ii): Pr[Game3 = 1] is equal to the probability that B outputs 1 conditioned
on (G,H, P,Q) is a DH tuple.

71

The differences between the behavior of B and the behavior of the chal-
lenger in Game2 or Game3 are the way to generate par and the way to generate
(U1, U2) in Hck(M). It is clear that the first difference does not affect the
probability of A winning the game. Therefore, to prove the above (i) and
(ii), it is sufficient to prove the following (I) and (II), respectively.

(I): The distribution of the responses of Hck(M) in Game2 is identical to the
distribution of the responses of Hck(M) in B conditioned on (G,H, P,Q)
is a non-DH tuple.

(II): The distribution of the responses of Hck(M) in Game3 is identical to the
distribution of the responses of Hck(M) in B conditioned on (G,H, P,Q)
is a DH tuple.

Below, we prove (I) and (II).

(I): In Game2, the challenger chooses (U1, U2)
$← G2 independently of

Tb[M]. B generates (P ′, Q′) by RandDH(G,H, P,Q), assigns (U1, U2)
⊤ ←

(P ′, Q′)⊤ if Tb[M] = 0, and computes (U1, U2)
⊤ ← (P ′, Q′)⊤ + (X, Y)⊤ if

Tb[M] = 1. Because of the property of RandDH, conditioned on (G,H, P,Q)
is a non-DH tuple, (P ′, Q′) is uniformly distributed overG2. Then, (P ′, Q′)⊤+
(X, Y)⊤ is also uniformly distributed over G2. Therefore, the responses of
Hck(M) of B are uniformly distributed over G2 in both cases where Tb[M] = 0
and Tb[M] = 1. Therefore, (I) holds.

(II): In Game3, the challenger chooses ρ
$← Zp, assigns (U1, U2)

⊤ ←
ρ(G,H)⊤ if Tb[M] = 0, and computes (U1, U2)

⊤ ← ρ(G,H)⊤ + (X, Y)⊤ if
Tb[M] = 1. B generates (P ′, Q′) by RandDH(G,H, P,Q), assigns (U1, U2)

⊤ ←
(P ′, Q′)⊤ if Tb[M] = 0, and assigns (U1, U2)

⊤ ← (P ′, Q′)⊤ + (X, Y)⊤ if
Tb[M] = 1. Because of the property of RandDH, conditioned on (G,H, P,Q)
is a DH tuple, (P ′, Q′) satisfies that P ′ is uniformly distributed over G and
(G,H, P ′, Q′) is a DH tuple. Thus, the distribution of (P ′, Q′)⊤ is identical to
the distribution of ρ(G,H)⊤ where ρ is uniformly chosen from Zp. Therefore,
(II) holds.

By combining all arguments, we obtain AdvddhB (1λ) = |Pr[Game2 = 1] −
Pr[Game3 = 1]|.

By assuming that G is a (t, ϵ)-DDH group, for B such that tB ≤ t, we
have AdvddhB (1λ) ≤ ϵ. Since tB ≤ tA + (4QH +6QSN +4QS +2N +12)tmul +
O(QH + QSN) and AdvddhB (1λ) = |Pr[Game2 = 1] − Pr[Game3 = 1]|, if G is
a (t, ϵ)-DDH group, for A such that tA ≤ t− (4QH + 6QSN + 4QS + 2N +
12)tmul −O(QH +QSN), the following inequality holds.

|Pr[Game2 = 1]− Pr[Game3 = 1]| ≤ ϵ.

This completes the proof.

72

Proof of Lemma 6. Here we prove Lemma 6. To prove Lemma 6, we use
the following lemma.

Lemma 4. Let Gameeqv(1λ) be the following game between a challenger and
an adversary A, which is also depicted in Fig. 4.7.

Setup: The challenger generates (G, p, G) by GrGen. It sends (G, p, G) to
A and receives H ∈ G and x ∈ Zp from A. It computes (X, Y)⊤ ←
x(G,H)⊤ and initializes a table TS[·]. It chooses a bit b

$← {0, 1}.

Oracles: The challenger allows A to access to the following oracles concur-
rently at most Q times. Note that A is allowed to make only one query
for each session identifier I, which is included in each query to oracles.

Oeqv1(b, ·, ·): As a query, the challenger receives a session identifier I
and ρ ∈ Zp. It computes (U1, U2)

⊤ ← ρ(G,H)⊤ + (X, Y)⊤. It
responds as follows.

Case b = 0: It chooses r, d
$← Zp and computes T ← d(U1, U2)

⊤+
r(G,H)⊤. It stores TS[I] ← ((U1, U2), ρ, r, d, T) and returns
T .

Case b = 1: It chooses α, β
$← Zp and computes T ← α(G,H)⊤+

β(X, Y). It stores TS[I] ← ((U1, U2), ρ, α, β, T) and returns
T .

Oeqv2(b, ·, ·): As a query, the challenger receives a session identifier I
and c ∈ Zp. If TS[I] is empty, then it return ⊥. Otherwise, it
responds as follows.

Case b = 0: The challenger looks up ((U1, U2), ρ, r, d, T) from TS[I],
computes s← xc+ r mod p and returns (d, s).

Case b = 1: The challenger looks up ((U1, U2), ρ, α, β, T) from TS[I],
computes d ← β + c mod p and s ← α − dρ mod p and
returns (d, s).

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ holds, then A wins
this game.

The advantage of A against the above game is defined as

AdveqvA (1λ) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

For any computationally unbounded adversary A, AdveqvA (1λ) = 0 holds.

73

Gameeqv(1λ)

1 : (G, p,G)
$← GrGen(1λ)

2 : (H,x, stA)
$← A(G, p,G) // H ∈ G, x ∈ Zp

3 : (X,Y)⊤ ← x(G,H)⊤

4 : TS [·]← ⊥
5 : b

$← {0, 1}
6 : b′

$← AOeqv1,Oeqv2(stA)

7 : return (b = b′)

Oeqv1(b, I, ρ)

1 : req Jρ ∈ ZpK

2 : (U1, U2)
⊤ ← ρ(G,H)⊤ + (X,Y)⊤

3 : if b = 0 then

4 : r, d
$← Zp

5 : T ← d(U1, U2)
⊤ + r(G,H)⊤

6 : TS [I]← ((U1, U2), ρ, r, d, T)

7 : else

8 : α, β
$← Zp

9 : T ← α(G,H)⊤ + β(X,Y)

10 : TS [I]← ((U1, U2), ρ, α, β, T)

11 : return T

Oeqv2(b, I, c)

1 : req JTS [I] ̸= ⊥K ∧ Jc ∈ ZpK
2 : if b = 0 then

3 : ((U1, U2), ρ, r, d, T)← TS [I]

4 : s← xc+ r mod p

5 : else

6 : ((U1, U2), ρ, α, β, T)← TS [I]

7 : d← β + c mod p

8 : s← α− dρ mod p

9 : return (d, s)

Figure 4.7: The game Gameeqv.

Before we prove Lemma 4, we explain the intuition of the proof.

To prove this lemma, we should prove that, in Gameeqv, the statistical
distance between the distribution of an adversary’s view in the case where
b = 0 and the distribution of an adversary’s view in the case where b = 1 is
equal to 0. However, it is hard to prove it directly because an adversary can
concurrently access stateful oracles.

To overcome this difficulty, we prove Lemma 4 step by step. We re-
solve the difficulty arising from concurrently accessing by using the hybrid
argument. To carry out this strategy, we consider the intermediate game
Gameeqvk in which an adversary is allowed to access the stateful oracles that
switch behavior on the k-th query. Moreover, to evaluate the advantage of

74

an adversary in this game, we consider the simple game Gameeqv0 in which an
adversary needs to make all queries to the interactive oracles at the beginning
of the game. We prove the advantage of an adversary in Gameeqv0 is 0 (in
Lemma 5), and by using this, we prove the advantage of an adversary in
Gameeqvk is also 0.

Now we start the proof of Lemma 4. First, we prove the following lemma.

Lemma 5. We consider the following game Gameeqv0 between a challenger
and an adversary A, which is depicted in Fig. 4.8.

Setup: The challenger generates (G, p, G) by GrGen. It sends (G, p, G) to A
and receives H ∈ G and x, ρ, c ∈ Zp from A. It computes (X, Y)⊤ ←
x(G,H)⊤ and (U1, U2)

⊤ ← ρ(G,H)⊤ + (X, Y)⊤. It chooses a bit b
$←

{0, 1}. It allows A to access to the following oracle only once.

Oracle Oeqv0(b): The challenger responds as follows.

Case b = 0: The challenger chooses r, d
$← Zp, computes T ← d(U1, U2)

⊤

+ r(G,H)⊤ and s← xc+ r mod p and returns (T, d, s).

Case b = 1: The challenger chooses α, β
$← Zp and computes T ←

α(G,H)⊤ + β(X, Y), d← β + c mod p, and s← α− dρ mod p
and returns (T, d, s).

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ holds, then A wins
this game.

The advantage of A against the above game is defined as

Adveqv0A (1λ) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

For any computationally unbounded adversary A, Adveqv0A (1λ) = 0 holds.

Proof. For W ∈ {V ∈ G2|V = v(G,H)⊤, v ∈ Zp}, let log(G,H)W be the

element w ∈ Zp s.t. W = w(G,H)⊤. Below, we write Oeqv0’s response
(T, z, s) using matrices and vectors with Zp coefficients.

• In the case b = 0, the response of Oeqv0 satisfies T = d(U1, U2)
⊤ +

r(G,H)⊤ = (r+(ρ+ x)d)(G,H)⊤ and s = xc+ r mod p where r, d
$←

Zp. Thus, we obtainlog(G,H) T
d
s

 =

1 ρ+ x
0 1
1 0

(
r
d

)
+

 0
0
xc

 . (4.1)

75

Gameeqv0 (1λ)

1 : (G, p,G)
$← GrGen(1λ)

2 : (H,x, ρ, c, stA)
$← A(G, p,G)

// H ∈ G, x, ρ, c ∈ Zp

3 : (X,Y)⊤ ← x(G,H)⊤

4 : (U1, U2)
⊤ ← ρ(G,H)⊤ + (X,Y)⊤

5 : b
$← {0, 1}

6 : b′
$← AOeqv1,Oeqv2(stA)

7 : return (b = b′)

Oeqv0(b)

1 : if b = 0 then

2 : r, d
$← Zp

3 : T ← d(U1, U2)
⊤ + r(G,H)⊤

4 : s← xc+ r mod p

5 : else

6 : α, β
$← Zp

7 : T ← α(G,H)⊤ + β(X,Y)

8 : d← β + c mod p

9 : s← α− dρ mod p

10 : return (T, d, s)

Figure 4.8: The game Gameeqv0 .

• In the case b = 1, the response of Oeqv0 satisfies T = α(G,H)⊤ +
β(X, Y)⊤ = (α + βx)(G,H)⊤, d = β + c mod p, and s = α − dρ

mod p where α, β
$← Zp. Thus, we obtainlog(G,H) T
d
s

 =

1 x
0 1
1 −ρ

(
α
β

)
+

 0
c
−cρ

 . (4.2)

The advantage of A in Gameeqv0 is equal to the statistical distance between
the distribution of the response of Oeqv0 in the case b = 0 and that in the
case b = 1. Therefore, to prove Adveqv0A (1λ) = 0 for any computationally
unbounded adversary A, we prove that the distribution of (log(G,H) T, d, s)

⊤

in Eq. (4.1) is identical to that in Eq. (4.2) when r, d
$← Zp and α, β

$← Zp.
For a matrix C, let Im(C) denote the column space of C. Let D0 and D1

be the column spaces as follows.

D0 = Im

1 ρ+ x
0 1
1 0

 , D1 = Im

1 x
0 1
1 −ρ

 .

Note that the distribution of (log(G,H) T, d, s)
⊤ in Eq. (4.1) and that in

Eq. (4.2) are identical if and only if

D0 + (0, 0, xc)⊤ = D1 + (0, c,−cρ)⊤

76

holds, where the above equality means the equality of the left and the right
affine subspaces. Furthermore, the above equality holds when the followings
hold.

• D0 = D1.

• (0, 0, xc)⊤ − (0, c,−cρ)⊤ ∈ D0.

Now, we prove D0 = D1 by showing D0 ⊆ D1 and D1 ⊆ D0. For any
z0 ∈ D0, we can write z0 as follows:

z0 = r

1
0
1

+ d

ρ+ x
1
0

= r

1
0
1

+ d

ρ0
ρ

− d
ρ0
ρ

+ d

ρ+ x
1
0

= (r + dρ)

1
0
1

+ d

 x
1
−ρ

 ∈ D1.

where r, d ∈ Zp. Thus, any z0 ∈ D0 is in D1. This implies D0 ⊆ D1. On the
other hand, for any z1 ∈ D1, we can write z1 as follows:

z1 = α

1
0
1

+ β

 x
1
−ρ

= α

1
0
1

− β
ρ0
ρ

+ β

ρ0
ρ

+ β

 x
1
−ρ

= (α− βρ)

1
0
1

+ β

ρ+ x
1
0

 ∈ D0.

where α, β ∈ Zp. Thus, any z1 ∈ D1 is in D0. This implies D1 ⊆ D0.
Next, we show (0, 0, xc)⊤ − (0, c,−cρ)⊤ ∈ D0. This holds because, for

(0, 0, xc)⊤ and (0, c,−cρ)⊤, we have 0
0
xc

−
 0

c
−cρ

 =

 0
0
xc

+

c(ρ+ x)
0
0

−
c(ρ+ x)

0
0

−
 0

c
−cρ

77

= c(x+ ρ)

1
0
1

− c
ρ+ x

1
0

 ∈ D0.

This completes the proof.

Now we show Lemma 4 from the above lemma.

Proof of Lemma 4. We consider the following game Gameeqvk (1λ) where k ∈
[Q] between a challenger and an adversary, which is depicted in Fig. 4.9.

Setup: The challenger generates (G, p, G) by GrGen. It sends (G, p, G) to
A and receives H ∈ G and x ∈ Zp from A. It computes (X, Y)⊤ ←
x(G,H)⊤. It initializes tables TS[·] and a counter ctr = 1. It chooses a

bit b
$← {0, 1}.

Oracles: The challenger allows A to access to the following oracles concur-
rently at most Q times. Note that A is allowed to make only one query
for each session identifier I, which is included in each query to oracles.
We assume that the adversary sequentially generates I from 1 to Q.

Oeqv1,k(b, ·, ·): As a query, the challenger receives a session identifier I
and ρ ∈ Zp. It computes (U1, U2)

⊤ ← ρ(G,H)⊤ + (X, Y)⊤. It
responds as follows.

Case (I > k) or (I = k) ∧ (b = 0): The challenger responds as
Oeqv1(0, ·, ·) in Gameeqv.

Case (I < k) or (I = k) ∧ (b = 1): The challenger responds as
Oeqv1(1, ·, ·) in Gameeqv.

Oeqv2,k(b, ·, ·): The challenger receives a session identifier I and c ∈ Zp

as a query. If TS[I] is empty, then it return ⊥. Otherwise, it
responds as follows.

Case I > k or (I = k) ∧ (b = 0): The challenger responds asOeqv2(0, ·, ·)
in Gameeqv.

Case I < k or (I = k) ∧ (b = 1): The challenger responds asOeqv2(1, ·, ·)
in Gameeqv.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ holds, then A wins
this game.

Then, the advantage of A against the above game is defined as

Adveqv,kA (1λ) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

78

Gameeqvk (1λ)

1 : (G, p,G)
$← GrGen(1λ)

2 : (H,x, stA)
$← A(G, p,G) // H ∈ G, x ∈ Zp

3 : (X,Y)⊤ ← x(G,H)⊤

4 : TS [·]← ⊥
5 : b

$← {0, 1}
6 : b′

$← AOeqv1,k,Oeqv2,k(stA)

7 : return (b = b′)

Oeqv1,k(b, I, ρ)

1 : req Jρ ∈ ZpK

2 : (U1, U2)
⊤ ← ρ(G,H)⊤ + (X,Y)⊤

3 : if JI > kK ∨ J(I = k ∧ b = 0)K then

4 : r, d
$← Zp

5 : T ← d(U1, U2)
⊤ + r(G,H)⊤

6 : TS [I]← ((U1, U2), ρ, r, d, T)

7 : else

8 : α, β
$← Zp

9 : T ← α(G,H)⊤ + β(X,Y)

10 : TS [I]← ((U1, U2), ρ, α, β, T)

11 : return T

Oeqv2,k(b, I, c)

1 : req JTS [I] ̸= ⊥K ∧ Jc ∈ ZpK
2 : if JI > kK ∨ J(I = k ∧ b = 0)K then

3 : ((U1, U2), ρ, r, d, T)← TS [I]

4 : s← xc+ r mod p

5 : else

6 : ((U1, U2), ρ, α, β, T)← TS [I]

7 : d← β + c mod p

8 : s← α− dρ mod p

9 : return (d, s)

Figure 4.9: The game Gameeqvk .

Bellow, we show that Adveqv,kA′ (1λ) = 0 for any computationally unbounded
adversary A′ and any k ∈ [Q] from Lemma 5. To show this, we construct
an adversary B against the game Gameeqv0 in Lemma 5 from A′ as follows. B
takes as inputs (G, p, G). It first sends it to A′ and receives (H, x) from A′.
It computes (X, Y)⊤ ← x(G,H)⊤ and initializes a table TS[·]. B responds
the queries to oracles as same as them in Gameeqvk when I ̸= k. When I = k,
it responds the query by accessing the oracle Oeqv0 in Gameeqv0 . Specifically,

in Oeqv1,k, it uniformly chooses c′
$← Zp and outputs (H, x, ρ, c′) with stA′ ,

that is stored all state information of A′. Then, it takes as input stA′ , obtains
(T, d, s) by accessing toOeqv0, stores TS[I]← (d, s, c′) and returns T toA′. In
Oeqv2,k, it halts with output 0 if c ̸= c′ where c is queried from A′. Otherwise,

79

it returns (d, s). Eventually, it obtains a guess b′ from A′ and returns b′.
Now we evaluate the relation between advantages of B and A′. B outputs

the guess b′ of A′ if it does not halt because of c = c′ in Oeqv2,k in the case
I = k. So, we get the following equation.

Adveqv0B (1λ) = |Pr[b′ = 1 ∧ c = c′|b = 1]− Pr[b′ = 1 ∧ c = c′|b = 0]| (4.3)

where b is a bit chosen by the challenger in Gameeqv0 . Since Oeqv0 generates
T without using c′ in both cases where b = 0 and b = 1, A′ obtain no
information about c′ before A′ makes a query (k, c) to Oeqv2,k. Also, c′ is
uniformly chosen from Zp. Therefore, we have Pr[c = c′|b = 1] = Pr[c =
c′|b = 0] = 1/p. Then, we obtain

|Pr[b′ = 1 ∧ c = c′|b = 1]− Pr[b′ = 1 ∧ c = c′|b = 0]|

=
1

p
|Pr[b′ = 1|c = c′ ∧ b = 1]− Pr[b′ = 1|c = c′ ∧ b = 0]| . (4.4)

In the k-th query to Oeqv1,k, conditioned on c = c′, Oeqv0 generates (T, d, s)
in the same way to Oeqv1 and Oeqv2. Thus, for all b ∈ {0, 1}, conditioned on
c = c′, the distribution of the responses of Oeqv1,k and Oeqv2,k in B is iden-
tical to the distribution of the responses of them in the real game Gameeqvk ,
respectively. Then, from Eqs. (4.3) and (4.4), we have

Adveqv0B (1λ) =
1

p
Adveqv,kA′ (1λ). (4.5)

From Lemma 5, Adveqv0B (1λ) = 0 holds. Therefore, for any computationally
unbounded adversary A′ and any k ∈ [Q], we have Adveqv,kA′ (1λ) = 0.

From here, we evaluate AdveqvA (1λ), which is the advantage ofA in Gameeqv

for any computationally unbounded adversary A. By the hybrid argument,
we have

AdveqvA (1λ) ≤
Q∑
i=1

Adveqv,kA′ (1λ).

Since Adveqv,kA (1λ) = 0 for all k ∈ [Q], we have AdveqvA (1λ) ≤ 0. Also
AdveqvA (1λ) ≥ 0 because the advantage is a non-negative real number. There-
fore, we obtain AdveqvA (1λ) = 0. This completes the proof.

Now we prove Lemma 6 by using this lemma.

Lemma 6. Pr[Game3 = 1] = Pr[Game4 = 1].

80

Proof. To show this lemma, we construct an adversary B against the game
Gameeqv in Lemma 4, where Q = NQS, from an adversary A against the
unforgeability game Game3 or Game4. B takes as inputs (G, p, G). It chooses
H

$← G and assigns (G, q, G,H) to (G, q, G,H) of a public parameter par. It
additionally initializes a counter ctr to count the number of times of oracle
accessing. It executes the remaining part of the setup as same as in Game3 or
Game4. After that, it outputs (H, sk) with a state stB and receives stB from
the challenger in Gameeqv. Then, it runs A on inputs par and pk. For the
random oracle queries, it responds them as in Game3 or Game4. In the signing
oracles, while it behaves as same as those in Game3 or Game4 when Tb[M] = 0,
it produces the responses by accessing the oracles Oeqv1 and Oeqv2 in Gameeqv

when Tb[M] = 1. Specifically, in O
Sign

(2)
1
, for all i ∈ HS, it sets Ii ← ctr,

obtains Ti by querying (Ii, ρ) to Oeqv1, computes ctr ← ctr + 1 and sets

sti ← (ti, Ti, Ii, p̃k). After that, it stores Qst[sid] ← (vkList,M,HS, (sti)i∈HS)
and returns (Ti)i∈HS. In O

Sign
(2)
2
, it looks up (vkList,M,HS, (sti)i∈HS) from

Qst[sid] and (ti, Ti, Ii, p̃k) ← sti for all i ∈ HS, computes T̃ and c as same as
the signing oracle in Game3 or Game4. Then, for all i ∈ HS, it obtains (si, di)
by querying (Ii, tic) to Oeqv2 and returns {(di, si)}i∈HS. Eventually, B returns
1 if A wins the game. Otherwise, it returns 0.

Now, we evaluate the advantage of B. For the signing oracle simulated by
B, the distribution of responses is the same as in Game3 when b = 0 where b
is a bit chosen by the challenger in Gameeqv. That also is the same as that
in Game4 when b = 1. Thus, we have

AdveqvB (1λ) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|
= |Pr[Game3 = 1]− Pr[Game4 = 1]|

where b′ is B’s output. From Lemma 4, we have AdveqvB (1λ) = 0. Thus, we
obtain Pr[Game3 = 1] = Pr[Game4 = 1]. This completes the proof.

Proof of Lemma 7. Here we provide the proof of Lemma 7.

Lemma 7. If G is a (t, ϵ)-DDH group, for A such that tA ≤ t − (2QH +
6QSN + 2QS + 2N + 8)tmul −O(QH +QSN), the following inequality holds.

|Pr[Game4 = 1]− Pr[Game5 = 1]| ≤ ϵ.

Proof. We construct an adversary B against the DDH problem that internally
runs A. B takes as inputs a DDH problem instance (G,H, Y, Z) ∈ G4. It
behaves as same as the challenger in Game4 or Game5 except for the setup
phase. Specifically, it uses H instead of uniformly choosing H from G for

81

a public parameter par and assigns (pk, sk) ← ((X, Y),⊥). Eventually, it
outputs 1 if A wins the game. Otherwise, it returns 0.

Now we consider the running time tB of B. For the signing queries,
responding a query to O

Sign
(2)
1

and a query to O
Sign

(2)
2

requires at most 6N

scalar multiplications, O(N) other non-cryptographic operations, a query to
Hc, a query to Hck, and O(N) queries to Hagg. For random oracle queries,
we only evaluate the cost of Hck because Hck is more expensive than Hc

and Hagg. In one query to Hck, there are 2 scalar multiplications and O(1)
other non-cryptographic operations. To verify the output of A, it computes
2N +6 scalar multiplications and O(N) other non-cryptographic operations,
and makes a query to Hc, a query to Hck, and O(N) queries to Hagg. From
these evaluations and the fact that B runs A once, we obtain tB ≤ tA +
(2QH + 6QSN + 2QS + 2N + 8)tmul +O(QH +QSN).

Below, we evaluate the advantage of B. B can respond to the signing
oracles though B does not have the secret key because the secret key no
longer be used in the signing oracle due to the modification we made in
Game4. If (G,H, Y, Z) is a DH tuple, the distribution of pk is the same as
that in Game4. If (G,H, Y, Z) is a non-DH tuple, the distribution of pk is the
same as that in Game5. Then, we have

AdvddhB (1λ)

= |Pr[b′ = 1|(G,H, P,Q) is a DH tuple]

−Pr[b′ = 1|(G,H, P,Q) is a non-DH tuple]|
= |Pr[Game4 = 1]− Pr[Game5 = 1]|

where b′ is B’s output.
By assuming that G is a (t, ϵ)-DDH group, for B such that tB ≤ t, we

have AdvddhB (1λ) ≤ ϵ. Since tB ≤ tA + (2QH + 6QSN + 2QS + 2N + 8)tmul +
O(QH + QSN) and AdvddhB (1λ) = |Pr[Game4 = 1] − Pr[Game5 = 1]|, if G is
a (t, ϵ)-DDH group, for A such that tA ≤ t− (2QH + 6QSN + 2QS + 2N +
8)tmul −O(QH +QSN), the following inequality holds.

|Pr[Game4 = 1]− Pr[Game5 = 1]| ≤ ϵ.

This completes the proof.

Proof of Lemma 8. Here we show Lemma 8.

Lemma 8.

Pr[Game6 = 1] ≤ 2QH +QS + 2

p
.

82

Proof. At the end of Game6, A outputs M∗, vkList∗, and s̃ig
∗
= (c∗, d̃∗, s̃∗). If

A wins, then (X, Y) ∈ vkList∗, Tb[M
∗] = 0, and s̃ig

∗
is a valid forgery on M∗

under (U1, U2) = Hck(M
∗). Then, there exists c∗ = Hc(T̃

∗, p̃k
∗
,M∗) in THc s.t.

(a) T̃ ∗ = d̃∗(U1, U2)
⊤ + s̃∗(G,H)⊤ − c∗ · p̃k

∗
,

(b) p̃k
∗
is the aggregated key computed from vkList∗,

(c) (U1, U2)
⊤ = ρ∗(G,H)⊤.

Below, we show that A can make such a query with probability at most
(2QH +QS + 2)/p.

To evaluate the probability, we rewrite the right-hand of the equation in
(a) by (G,H)⊤ and (X, Y)⊤. Since (G,H,X, Y) in Game6 is a non-DH tuple,
(G,H)⊤ and (X, Y)⊤ are linearly independent. Then, we can denote the ag-

gregated key p̃k
∗
as ϕ∗ (G,H)⊤+ψ∗ (X, Y)⊤ where ϕ∗, ψ∗ ∈ Zp. Substituting

the above and (c) in the equation in (a), we have

T̃ ∗ =
(
d̃∗ρ∗ + s̃∗ − c∗ϕ∗

)
(G,H)⊤ − c∗ψ∗ (X, Y)⊤ . (4.6)

Since (G,H)⊤ and (X, Y)⊤ are linearly independent, the values of coefficients
(d̃∗ρ∗+s̃∗−c∗ϕ∗) and c∗ψ∗ which make Eq. (4.6) hold are uniquely determined

when (T̃ ∗, p̃k
∗
,M∗) is queried to Hc. Moreover, the values of ϕ∗ and ψ∗ are

uniquely determined at the same point since the query includes p̃k
∗
. For the

coefficient c∗ψ∗, c∗ is determined by Hc and ψ
∗ is also determined by Hagg.

Here, we evaluate Pr[Game6 = 1]. For R ∈ G2, let ϕ(R) and ψ(R) be the
elements in Zp s.t. R = ϕ(R)(G,H)⊤ + ψ(R)(X, Y)⊤. Let Eagg be the event
where there exists at least one random oracle query Hagg((X

′, Y ′), vkList′) s.t.

(X, Y) ∈ vkList′ and ψ(p̃k
′
) = 0 for the aggregated key p̃k

′
computed from

vkList′. Then, we have

Pr[Game6 = 1]

= Pr[Game6 = 1 ∧ Eagg] + Pr[Game6 = 1 ∧ Eagg]

≤ Pr[Eagg] + Pr[Game6 = 1 ∧ Eagg]. (4.7)

Also, let Echal be the event where there exists at least one random oracle

query c′ = Hc(T̃
′, p̃k

′
,M′) s.t. ψ(p̃k

′
) ̸= 0, Tb[M

′] = 0, and ψ(T̃ ′) = c′ψ(p̃k
′
).

If Game6 = 1 occurs, Tb[M
∗] = 0 holds from the winning conditions. Also, if

Game6 = 1 occurs, there exists at least one random oracle query to Hc making

ψ(T̃ ∗) = c∗ψ(p̃k
∗
) hold since A’s output satisfies Eq. (4.6). There is no query

83

Hagg((X
′, Y ′), vkList′) s.t. (X, Y) ∈ vkList′ and ψ(p̃k

′
) = 0 when Eagg occurs.

Thus, if Eagg occurs, then ψ(p̃k
∗
) ̸= 0 holds. Therefore, if Game6 = 1 and Eagg

occur, then Echal occurs. Then, we have Pr[Game6 = 1 ∧ Eagg] ≤ Pr[Echal].
Applying this fact to Eq. (4.7), we obtain

Pr[Game6 = 1] ≤ Pr[Eagg] + Pr[Echal]. (4.8)

First, we evaluate Pr[Eagg]. For an aggregate key p̃k
′
computed from

vkList′, ψ(p̃k
′
) =

∑n′

i=1 tiψ(vkList
′[i]) holds where n′ is the number of the

public keys in vkList′ and ti = Hagg(vkList
′[i], vkList′). Since the challenger

defines the value ti for all i ∈ [n′] when vkList′ is first queried to Hagg, (ti)
n′
i=1

is uniformly chosen from Zn′
p after (ψ(vkList′[i]))n

′
i=1 is fixed. If vkList

′ includes
(X, Y), there exists at least one i s.t. ψ(vkList′[i]) ̸= 0. Thus, per one query

to Hagg,
∑n′

i=1 tiψ(vkList
′[i]) = 0 holds with probability at most 1/p. Since at

most QH +QS + 1 public key lists appear in THagg , we obtain

Pr[Eagg] ≤
QH +QS + 1

p
. (4.9)

Next, we evaluate Pr[Echal]. Let Echal,j be the event where the j-th random

oracle query c′j = Hc(T̃
′
j , p̃k

′
j,M

′
j) satisfies following conditions.

Ej,1 : ψ(p̃k
′
j) ̸= 0, Ej,2 : Tb[M

′
j] = 0, and Ej,3 : ψ(T̃

′
j) = c′jψ(p̃k

′
j).

Note that there are at most QH + 1 queries Hc(T̃
′, p̃k

′
,M′) s.t. Tb[M

′] = 0.
From this fact and the union bound, we have

Pr[Echal] ≤
QH+1∑
i=1

Pr[Echal,j]

=

QH+1∑
i=1

Pr[Ej,1 ∧ Ej,2 ∧ Ej,3]

≤
QH+1∑
i=1

Pr[Ej,3|Ej,1 ∧ Ej,2]. (4.10)

As described previously, when (T̃ ′
j , p̃k

′
j,M

′
j) is queried to Hc, the value of

ψ(T̃ ′
j) and ψ(p̃k

′
j) are fixed. Also, conditioned on Ej,1, ψ(p̃k

′
j) ̸= 0 holds.

Thus, conditioned on Ej,1 and Ej,2, before c
′
j is chosen, c′j making ψ(T̃ ′

j) =

c′jψ(p̃k
′
j) hold is determined uniquely. Since c′j is uniformly chosen from Zp

84

independently of the j-th random oracle query, Pr[Ej,3|Ej,1 ∧ Ej,2] is at most
1/p. From this and Eq. (4.10), we have

Pr[Echal] ≤
QH+1∑
i=1

1

p
=
QH + 1

p
. (4.11)

From Eqs. (4.8), (4.9) and (4.11), we obtain

Pr[Game6 = 1] ≤ 2QH +QS + 2

p
.

This completes the proof.

4.6 Improved Scheme HBMSDDH-2

In this section, we improve the HBMSDDH-1 in Section 4.2 to be 2-MS-UF-
1 . To achieve this goal, we subtly modify the original scheme HBMSDDH-1.
Specifically, we add the aggregated key p̃k to the input of the hash function
Hck. Then, we can show that the modified scheme HBMSDDH-2 satisfies the
slightly strong unforgeability described in Section 2.4.4. Below, we provide
the intuition of this improvement.

We need to modify the original scheme to be 2-MS-UF-1 because it is
insecure under the winning condition (vkList∗,M∗) /∈ QM. Indeed, we can
construct an adversary that generates a forgery satisfying such the winning
condition. Under such the winning condition, an adversary is allowed to forge
the multi-signature on M∗ under the commitment key (U1, U2) = Hck(M

∗)
already used in the signing queries. This means that an adversary is allowed
to reuse the commitment key. For our scheme, the ROS attack is prevented
by not reusing commitment keys. Namely, the winning condition makes
the ROS attack feasible. Therefore, we need to modify HBMSDDH-1 to be
slightly strongly unforgeable.

The naive approach is adding vkList to the input of Hck, but such a scheme
no longer supports key aggregation. This modification makes the reuse of
the commitment key infeasible. However, the verification algorithm no longer
can verify a multi-signature without vkList. Thus, the verification algorithm
always needs to take vkList as input. This makes the key aggregation mean-
ingless.

To maintain the advantage of the key aggregation, we add p̃k to the
input of Hck, instead of vkList. This modification can prevent the reuse of
the commitment key without compromising the key aggregation. To reuse
the commitment key, an adversary needs to find distinct two public key

85

lists that lead to the same aggregated key. However, the aggregated key is
deterministically computed from vkList and Hagg. Also, the output of Hagg

for each vkList is uniformly generated by the random oracle after vkList is
fixed via the signing query. Then, we can prove that the probability of an
adversary finding such two public key lists is negligible.

4.6.1 Construction of HBMSDDH-2

We give the construction of HBMSDDH-2 in Fig. 4.10. This is almost the
same as HBMSDDH-1. The difference is that the hash function Hck takes
as input (M, p̃k). We should note that this modification does not affect the
signature size, communication complexity, and computational complexity.
We omit the proof of the correctness of HBMSDDH-2 since it is easy to check
it by following the proof of Theorem 12.

4.6.2 Security Proof of HBMSDDH-2

Here, we show that HBMSDDH-2 satisfies the slightly strong unforgeability
defined in Section 2.4.4.

Theorem 14. If G is a (t, ϵ)-DDH group, then HBMSDDH-2 is (tA, QS, QH ,
N, ϵA)-2-MS-UF-1 s.t.

ϵA ≥ e(QS + 1)

(
2ϵ+

2QH +QS + 2

p

)
+

(QH +QS + 1)2

p
and

tA ≤ min(t1, t2) where

t1 = t− (2NQH + 6QSN + 4QS + 2N + 12)tmul −O(QHN +QSN),

t2 = t− (2NQH + 6QSN + 2QS + 2N + 8)tmul −O(QHN +QSN),

where e is the base of the natural logarithm and tmul is the time of a scalar
multiplication in G.

Proof of Theorem 14. First, we prepare two notations. Let us denote the
time for a scalar multiplication in G by tmul. We write Pr[Gamei = 1] to
mean the probability that a forger wins the game Gamei.

Let A be an adversary that (tA, QS, QH , N, ϵA)-breaks the 2-MS-UF-1 of
HBMSDDH-2. For A, we consider a sequence of games where the first hybrid
Game0 is the slightly strong unforgeability game in Fig. 2.10 for HBMSDDH-2.
Game0 is shown in Fig. 4.11. Because Game0 is the unforgeability game of
HBMSDDH-2, we have Pr[Game0 = 1] ≥ ϵA.

Now we change Game0. We consider the similar sequence of games to
that in the proof of Theorem 14.

86

Game1: In this game, the challenger makes the random oracle query Hck(M, p̃k)
at the beginning of both the random oracle Hc and the signing oracle
O

Sign
(2)
1
. This modification is as same as that we made in Game1 in the

proof of Theorem 14. Since an adversary cannot detect this modifica-
tion, we have

Pr[Game0 = 1] = Pr[Game1 = 1].

Game2: In this game, the challenger defines Hagg((Xi, Yi), vkList) for all (Xi,
Yi) ∈ vkList. This modification is as same as that we made in Game6 in
the proof of Theorem 14. Since the challenger givesA only THagg [(X, Y),
vkList], where ((X, Y), vkList) is queried, this change does not affect the
probability of A winning the game. Thus, we have

Pr[Game1 = 1] = Pr[Game2 = 1].

Game3: In this game, the challenger adds an abort condition in Hagg. Specif-
ically, it additionally initializes a table Tagg[·] at the beginning of the
game. In Hagg, after defined Hagg((Xi, Yi), vkList) for all (Xi, Yi) ∈
vkList, it computes an aggregated key p̃k from the queried vkList if
vkList includes the challenge key. Then, it checks Tagg[p̃k] = ⊥. If it is
true, it assigns Tagg[p̃k] ← vkList and continues the game. Otherwise,
it aborts the game.

Now we evaluate the probability of the challenger aborting the game.
It aborts the game when the distinct vkList1 and vkList2 lead to the
same aggregated key p̃k. Let us denote this event by Ebad. Note that
both lists include the challenge key. Let us consider the two types of
vkList. The first type is that, for all (Xi, Yi) ∈ vkList, (G,H,Xi, Yi) is a
DH-tuple. The second type is that there exists at least one (Xi, Yi) such
that (G,H,Xi, Yi) is a non-DH tuple. Since (ti)i is uniformly chosen

from Z|vkList|
p by Hagg after vkList is fixed, the aggregated key computed

from the first type is uniformly distributed in the span of (G,H)⊤, and
that computed from the second type is uniformly distributed over G2.
Thus, when both vkList1 and vkList2 are first type, the probability of
collision of the aggregated keys computed from them is maximized and
is at most 1/p. Since at most QH +QS + 1 public key lists are queried
to Hagg, we have Pr[Ebad] ≤ (QH + QS + 1)2/p. Unless the challenger
aborts the game, this game is identical to the previous game, we have

|Pr[Game2 = 1]− Pr[Game3 = 1]| ≤ (QH +QS + 1)2

p
.

87

Game4: In this game, the challenger partition the outputs (U1, U2) of Hck(M,

p̃k) into two groups by following a biased coin bK ∈ {0, 1} and aborts
the game if a bit bK corresponding to (U1, U2) used in a signing query
is 0 at the beginning of the second round. Moreover, it additionally

checks the condition Tb[M
∗, p̃k

∗
] = 0, where p̃k

∗
is the aggregated key

computed from vkList. Specifically, it additionally initializes a table
Tb[·] ← ⊥ at the beginning of the game. In Hck, it firstly chooses a
bit bK ∈ {0, 1} which becomes 1 with probability δ = QS/(QS + 1)

and assigns Tb[M, p̃k] ← bK . Note that the way to generate (U1, U2)
is unchanged. In the signing oracle O

Sign
(2)
2
, it aborts the game if

Tb[M, p̃k] = 0 holds. Otherwise, it continues the game. At the end

of the game, it checks the condition Tb[M
∗, p̃k

∗
] = 0 in addition to

other conditions.

Now we relate the advantage of an adversary for this game to that for
the previous game. Let us consider the following three events for this
game.

E1: The event where the game does not terminate in the signing oracle
O

Sign
(2)
2
.

E2: The event where the output of A satisfies the added condition

Tb[M
∗, p̃k

∗
] = 0.

E3: The event where the output of A satisfies the winning conditions
as same as Game2.

Then, we have

Pr[Game3 = 1] = Pr[E1 ∧ E2 ∧ E3]

= Pr[E1] Pr[E3|E1] Pr[E2|E1 ∧ E3].

First, we evaluate Pr[E1]. The game aborts in O
Sign

(2)
2

if Tb[M, p̃k] = 0

holds for a queried message and an aggregated key computed from the
queried public key list. Thus, E1 occurs when Tb[M, p̃k] = 1 holds for
all messages and public key lists queried to the signing oracle. Since
the responses of the random oracles and the responses of the signing
oracle O

Sign
(2)
1

leak no information on the value of Tb[M, p̃k] for any m

and p̃k, A can know Tb[M, p̃k] only when it observes whether the game

continues or not. Also, A can only know Tb[M, p̃k] = 1 for all messages
and public key lists queried to O

Sign
(2)
2

as long as the game continues.

88

Therefore, the probability that Tb[M, p̃k] = 0 holds for each queried
message and public key list is equal to (1−δ). In consequence, because
A can make at most QS signing queries, we have Pr[E1] ≥ δQS . Setting
δ = QS/(QS + 1), we have Pr[E1] ≥ δQS ≥ 1/e. The last inequality
holds because of the fact that (1 + 1/QS)

QS < e for QS > 0.

Next, we evaluate Pr[E3|E1]. Conditioned on E1, this game does not
terminate, and the distribution of the view ofA in this game is identical
to the distribution of the view of A in the previous game. Thus, A’s
output in this game satisfies the winning conditions of the previous
game with the same probability as in the previous game. Namely, we
have Pr[E3|E1] = Pr[Game3 = 1].

Finally, we evaluate Pr[E2|E1 ∧ E3]. Conditioned on E1 and E3, since
(M∗, vkList∗) has never queried to the signing oracles. Moreover, the
modification that we made in the previous game guarantees that the

aggregated key p̃k
∗
computed from vkList∗ does not have a collision

with other aggregated keys that appeared in Hagg. Thus, A cannot

know Tb[M
∗, p̃k

∗
]. Then, Pr[E2|E1 ∧ E3] = (1 − δ) holds. Setting δ =

QS/(QS + 1), we obtain Pr[E2|E1 ∧ E3] = 1/(QS + 1). Combining all
bounds, we obtain

Pr[Game3 = 1] ≤ e(QS + 1)Pr[Game4 = 1].

Game5: In this game, the challenger modifies how it generates (U1, U2) in

Hck(M, p̃k) corresponding to a value Tb[M, p̃k]. This modification is
the same as the modification that we made in Game3 in the proof of
Theorem 14. Specifically, it additionally initializes a table Ttd[·] ← ⊥
at the beginning of the game. In Hck, instead of (U1, U2)

$← G2, it

chooses ρ
$← Zp, computes (U1, U2)

⊤ $← ρ(G,H)⊤ when Tb[M, p̃k] = 0,

and computes (U1, U2)
⊤ $← ρ(G,H)⊤ + (X, Y)⊤ when Tb[M, p̃k] = 1.

Then, it assigns Ttd[M]← ρ.

We construct an adversary B against the DDH problem that internally
runs A as same as the proof of Lemma 3. The description of B is the
same as B in the proof of Lemma 3 except for the parts related to the
input of Hck.

We evaluate the running time tB of B. The running time of B is not
equal to that of B in the proof of Lemma 3 because of the modification
that we made in Game3. For the random oracle queries, Hagg takes
longer time than Hc and Hck. Responding to one query to Hagg re-
quires 2N scalar multiplication and O(N) other non-cryptographic op-

89

erations. Combining this and the argument in the proof of Lemma 3, we
have tB ≤ tA+(2NQH+6QSN+4QS+2N+12)tmul+O(QHN+QSN).

Now we evaluate the advantage of B. Since the difference in the in-
put of Hck does not affect the advantage of B, we have AdvddhB (1λ) =
|Pr[Game4 = 1]− Pr[Game5 = 1]|.
By assuming that G is a (t, ϵ)-DDH group, for B such that tB ≤ t,
AdvddhB (1λ) ≤ ϵ holds. Since tB ≤ tA + (2NQH + 6QSN + 4QS +
2N + 12)tmul + O(QHN + QSN) and AdvddhB (1λ) = |Pr[Game4 = 1] −
Pr[Game5 = 1]|, if G is a (t, ϵ)-DDH group, for A such that tA ≤
t − (2NQH + 6QSN + 4QS + 2N + 12)tmul − O(QHN + QSN), the
following inequality holds.

|Pr[Game4 = 1]− Pr[Game5 = 1]| ≤ ϵ.

Game6: In this game, the challenger modifies how it generates protocol mes-
sages and partial signatures. This modification is the same as the
modification that we made in Game4 in the proof of Theorem 14.

To evaluate the advantages of an adversary in this game, we construct
an adversary B against the game Gameeqv in Lemma 4. The description
of B is the same as B in the proof of Lemma 6 except for the parts
related to the inputs of Hck. Since the difference in the input of Hck does
not affect the advantage of B compared to B in the proof of Lemma 6,
due to Lemma 4, we have

Pr[Game5 = 1] = Pr[Game6 = 1].

Game7: In this game, the challenger changes how it generates the challenge
key. This modification is the same as the modification that we made
in Game5 in the proof of Theorem 14.

We construct an adversary B against the DDH problem that internally
runs A as same as the proof of Lemma 7. The description of B is the
same as B in the proof of Lemma 7 except for the parts related to the
input of Hck. The running time of B is not equal to that of B in the
proof of Lemma 7 because of the modification that we made in Game3.
For the random oracle queries, Hagg takes a longer time than Hc and
Hck. Responding to one query to Hagg requires 2N scalar multiplication
and O(N) other non-cryptographic operations. Combining this and
the argument in the proof of Lemma 3, we have tB ≤ tA + (2NQH +
6QSN + 2QS + 2N + 8)tmul + O(QHN + QSN). Moreover, since the

90

difference in the input of Hck does not affect the advantage of B, we
have AdvddhB (1λ) = |Pr[Game6 = 1]− Pr[Game7 = 1]|.
By assuming that G is a (t, ϵ)-DDH group, for B such that tB ≤ t,
AdvddhB (1λ) ≤ ϵ. Since tB ≤ tA+(2NQH +6QSN +2QS+2N +8)tmul+
O(QHN + QSN) and AdvddhB (1λ) = |Pr[Game6 = 1]− Pr[Game7 = 1]|,
if G is a (t, ϵ)-DDH group, for A such that tA ≤ t− (2NQH +6QSN +
2QS + 2N + 8)tmul −O(QHN +QSN), the following inequality holds.

|Pr[Game6 = 1]− Pr[Game7 = 1]| ≤ ϵ.

For the game Game7, Lemma 8 holds even if we add p̃k to the inputs of
Hck. Thus, we have

Pr[Game7 = 1] ≤ 2QH +QS + 2

p
.

By combining all arguments, if G is a (t, ϵ)-DDH group, for A such that

tA ≤ t− (2NQH + 6QSN + 4QS + 2N + 12)tmul −O(QHN +QSN),

and tA ≤ t− (2NQH + 6QSN + 2QS + 2N + 8)tmul −O(QHN +QSN),

the following inequalities holds.

ϵA = Pr[Game2 = 1]

≤ Pr[Game3 = 1] +
(QH +QS + 1)2

p

≤ e(QS + 1)Pr[Game4 = 1] +
(QH +QS + 1)2

p

≤ e(QS + 1)(ϵ+ Pr[Game5 = 1]) +
(QH +QS + 1)2

p

≤ e(QS + 1)(2ϵ+ Pr[Game7 = 1]) +
(QH +QS + 1)2

p

≤ e(QS + 1)

(
2ϵ+

2QH +QS + 2

p

)
+

(QH +QS + 1)2

p
.

Therefore, ifG is a (t, ϵ)-DDH group, then HBMSDDH-2 is (tA, QS, QH , N, ϵA)-
2-MS-UF-1 s.t.

ϵA ≥ e(QS + 1)

(
2ϵ+

2QH +QS + 2

p

)
+

(QH +QS + 1)2

p
and

tA ≤ min(t1, t2) where

91

t1 = t− (2NQH + 6QSN + 4QS + 2N + 12)tmul −O(QHN +QSN),

t2 = t− (2NQH + 6QSN + 2QS + 2N + 8)tmul −O(QHN +QSN).

This completes the proof.

92

Setup(1λ):

1 : (G, p,G)
$← GrGen(1λ)

2 : H
$← G

3 : Select Hc // Hc : {0, 1}∗ → Zp

4 : Select Hck // Hck : {0, 1}∗ → G2

5 : Select Hagg // Hagg : {0, 1}∗ → Zp

6 : return par = (G, p,G,H,Hc,Hck,Hagg).

KeyGen(par)→ (pk, sk):

1 : x
$← Zp

2 : (X,Y)⊤ ← x(G,H)⊤

3 : pk← (X,Y)

4 : sk← x

5 : return (pk, sk)

Agg(par, vkList,M, (pmi, psigi)i∈[N]):

1 : parse (Xi, Yi)i∈[N] ← vkList

2 : parse (Ti, di, si)i∈[N] ← (pmi, psigi)i∈[N]

3 : for i ∈ [N] do

4 : ti ← Hagg((Xi, Yi), vkList)

5 : p̃k←
N∑
i=1

ti(Xi, Yi)
⊤

6 : T̃ ←
N∑
i=1

Ti

7 : c← Hc(T̃ , p̃k,M)

8 : d̃←
N∑
i=1

di mod p

9 : s̃←
N∑
i=1

si mod p

10 : s̃ig← (c, d̃, s̃)

11 : return s̃ig

Sign
(2)
1 (par, vkList,M, i, ski):

1 : parse (Xj , Yj)j∈[N] ← vkList

2 : for j ∈ [N] do

3 : tj ← Hagg((Xj , Yj), vkList)

4 : p̃k←
N∑
j=1

tj(Xj , Yj)
⊤

5 : (U1, U2)← Hck(M, p̃k)

6 : ri, di
$← Zp

7 : Ti ← di(U1, U2)
⊤ + ri(G,H)⊤

8 : pmi ← Ti

9 : sti ← (ri, di, ti, Ti, p̃k)

10 : return (pmi, sti)

Sign
(2)
2 (par, vkList,M, i, ski, sti, (pmj)j∈[N]\{i}):

1 : parse (Tj)j∈[N]\{i} ← (pmj)j∈[N]\{i}

2 : parse (ri, di, ti, Ti, p̃k)← sti

3 : T̃ ←
N∑
j=1

Tj

4 : c← Hc(T̃ , p̃k,M)

5 : si ← xitic+ ri mod p

6 : psigi ← (di, si)

7 : return psigi

Verify(par, vkList,M, s̃ig) :

1 : parse (Xi, Yi)i∈[N] ← vkList

2 : parse (c, d̃, s̃)← s̃ig

3 : for i ∈ [N] do

4 : ti ← Hagg((Xi, Yi), vkList)

5 : p̃k←
N∑
i=1

ti(Xi, Yi)
⊤

6 : (U1, U2)← Hck(M, p̃k)

7 : T̃ ← d̃(U1, U2)
⊤ + s̃(G,H)⊤ − c · p̃k

8 : if
r
c = Hc(T̃ , p̃k,M)

z
then

9 : return 1

10 : return 0

Figure 4.10: The construction of HBMSDDH-2. The differences from
HBMSDDH-1 are highlighted in blue. Hc,Hck, and Hagg are modeled as ran-
dom oracles. N is tne number of the signers in vkList.

93

Game0 = Gamems2-uf1
MS(2),A(1

λ, N)

1 : QM ← ∅,Qst[·]← ⊥
2 : THc [·]← ⊥,THck

[·]← ⊥,THagg [·]← ⊥

3 : (G, p,G)
$← GrGen(1λ)

4 : H
$← G

5 : x
$← Zp

6 : (X,Y)⊤ ← x(G,H)⊤

7 : pk← (X,Y)

8 : sk← x

9 : (vkList∗,M∗, s̃ig
∗
)

$← A
O

Sign
(2)
1

,O
Sign

(2)
2

,Hc,Hck,Hagg

(par, pk)

10 : req Jpk ∈ vkList∗K ∧ J|vkList∗| ≤ NK J(vkList∗,M∗) /∈ QMK

11 : return Verify(par, vkList∗,M∗, s̃ig
∗
)

O
Sign

(2)
1
(sid, vkList,M)

1 : req Jpk ∈ vkListK ∧ JQst[sid, 1] = ⊥K ∧ J|vkList| ≤ NK
2 : HSsid ← ∅
3 : N ← |vkList|
4 : parse (pki)i∈[N] ← vkList

5 : for i ∈ [N] do

6 : if pki = pk then

7 : HSsid ← HSsid ∪ {i}
8 : parse (Xj , Yj)j∈[N] ← vkList

9 : for j ∈ [N] do

10 : tj ← Hagg((Xj , Yj), vkList)

11 : p̃k←
N∑
j=1

tj(Xj , Yj)
⊤

12 : (U1, U2)← Hck(M, p̃k)

13 : for i ∈ HSsid do

14 : ri, di
$← Zp

15 : Ti ← di(U1, U2)
⊤ + ri(G,H)⊤

16 : pmi ← Ti

17 : sti ← (ri, di, ti, Ti, p̃k)

18 : Qst[sid, 1]
$← (vkList,M,HSsid, (sti)i∈HSsid)

19 : return (pmi)i∈HSsid

Hc(T̃ , p̃k,M):

1 : if
r
THc [T̃ , p̃k,M] = ⊥

z

2 : c
$← Zp

3 : THc [T̃ , p̃k,M]← c

4 : return THc [T̃ , p̃k,M]

Hck(M, p̃k):

1 : if
r
THck

[M, p̃k] = ⊥
z

2 : (U1, U2)
$← G2

3 : THck
[M, p̃k]← (U1, U2)

4 : return THck
[M, p̃k]

Hagg((X, Y), vkList):

1 : if
q
THagg [(X,Y), vkList] = ⊥

y

2 : t
$← Zp

3 : THagg [(X,Y), vkList]← t

4 : return THagg [(X,Y), vkList]

O
Sign

(2)
2
(sid, (pmj)j∈[|vkList|]\HS)

1 : req JQst[sid, 1] ̸= ⊥K ∧ JQst[sid, 2] = ⊥K
2 : (vkList,M,HSsid, (sti)i∈HSsid)← Qst[sid, 1]

3 : N ← |vkList|
4 : parse (Tj)j∈[N]\HS ← (pmj)j∈[N]\HS

5 : for i ∈ HSsid do

6 : parse (ri, di, ti, Ti, p̃k)← sti

7 : T̃ ←
N∑
j=1

Tj

8 : c← Hc(T̃ , p̃k,M)

9 : parse x← sk

10 : for i ∈ HSsid do

11 : si ← xtic+ ri mod p

12 : psigi ← (di, si)

13 : Qst[sid, 2]← (psigi)i∈HSsid

14 : QM ← QM ∪ {(vkList,M)}
15 : return (psigi)i∈HSsid

Figure 4.11: The initial game Game0, that identical to the slightly strong
unforgeability game in Fig. 2.10 for HBMSDDH-2.

94

Chapter 5

Analysis of Efficiency

In this chapter, we compare our schemes with the related schemes and ana-
lyze the efficiency of them. Specifically, we estimate the required size of the
underlying group for 128-bit security for all schemes and compare the signa-
ture size and communication complexity in concrete security. Moreover, we
show the result of the implementation experiment of our scheme and analyze
the computation time. We also evaluate the communication time under a
certain communication model.

RoadMaps. In Section 5.1, we compare our scheme with the related schemes
in concrete security. In Section 5.2, we show and evaluate the result of our
implementation experiment. In Section 5.3, we estimate the communication
time considering a certain communication environment and evaluate it.

5.1 Comparison in Concrete Security

In this section, we compare our scheme with other related two-round multi-
signature schemes, which are proven secure in the PPK model based on the
DL, the DDH, the AOMDL, or the OMDL assumptions, e.g.,MuSig2 [NRS21],
DWMS [AB21], HBMS [BD21], LK [LK22], MuSig-DN [NRSW20], TZ [TZ23],
mBCJ [DEF+19], PW-1 [PW23], and PW-2 [PW23].

We remark on the followings on HBMS and mBCJ. For HBMS, in [BD21],
Bellare and Dai showed the security proof of HBMS both under the AGM
and without using it. Especially, we call the former HBMS-AGM. For mBCJ,
instead of the original mBCJ, we use a modified mBCJ which is proven secure
in the PPK model. We call this scheme mBCJ-PPK. This is because the
original mBCJ is proven secure in the key verification model.

We compare the underlying group sizes for 128-bit security. Thus, we
need to estimate the requirements of the sizes of the underlying groups con-

95

sidering the reduction loss under 128-bit security for all schemes. We also
compare whether there exists the NIST standardized EC that enables a pa-
rameter choice with 128-bit security, which is called the recommended EC
hereafter. The way to estimate the size of the underlying group considering
the reduction loss for 128-bit security is described in Section 5.1.1. Table 5.1
summarizes the comparison.

5.1.1 Estimation of the Underlying Group Size

Here, we explain how to estimate |p|128 which is the size of the underlying
group G for 128-bit security.

We estimated |p|128 by the following steps:

Step 1. We obtained inequalities ϵP ≥ Bϵ(ϵA, QS, QH , N, p) and tP ≤ Bt(tA,
QS, QH , N, p) from the security proof, where Bϵ and Bt are functions
derived by the security proof, ϵP and tP are the success probability and
the running time of an algorithm for solving an underlying problem P ,
respectively, and ϵA and tA are the success probability and the running
time of a forger, respectively.

Step 2. We derived the inequality tP/ϵP ≤ Bt(tA, QS, QH , N, p)/Bϵ(ϵA, QS,
QH , N, p) =: Bt/p(tA, ϵA, QS, QH , N, p) from the previous step.

Step 3. We solved
√
p = Bt/p(2

128, 1, 230, 280, 215, p) for p and set |p|128 ←
⌈log2 p⌉.1

In Step 3, we assumed tdl/ϵdl = tddh/ϵddh = taomdl/ϵaomdl = tomdl/ϵomdl

=
√
p. This assumption is natural because of the following two facts. The

first fact is that the best-known attack for solving the DDH problem, the
AOMDL problem, and the OMDL problem is to solve the DL problem. The
second one is that the known fastest algorithm for solving the DL problem is
Pollard’s ρ algorithm [Pol78], which requires O(

√
p) scalar multiplications in

G. Also, in the same step, we consider the setting where QH = 280, QS = 230,
and N = 215. We set QH = 280 referring to a recent collision attack [LP20]
to SHA-1 with complexity 261.2 with a margin. We set QS = 230 for a large
scenario as in [GHKP18]. We set N = 215 for a large-scale setting.2

Remarks for Estimation. We estimate |p|128 according to the steps de-
scribed above and show the results of this estimation in Column 8 in Ta-
ble 5.1. Here, we should remark on the following points for this estimation.

1To simplify the calculation, we ignore non-dominant terms in Bt/p.
2This large-scale setting had little effect on the estimation here because the terms

related to N in Bt/p are not dominant.

96

For MuSig2-1, we suppose ν = 4 where ν is a unique parameter. For
MuSig2 and DWMS, we obtained Bϵ and Bt from [BD21, Appendix A]. For
HBMS-AGM, we obtained Bϵ and Bt from [BD21, Theorem 7.1]. For LK, we
obtained Bϵ and Bt from [LK22, Theorem 4.1]. For Bt of this, we suppose
tP = tA because there is no evaluation of the running time of the reduction
and the fact that the reduction runs a forger only one time. ForMuSig-DN, we
obtained Bϵ and Bt from [BD21, Appendix A]. For Bϵ and Bt of this scheme,
the terms except for constants and the ones related to the DL assumption
were ignored. For HBMS, we obtained Bϵ and Bt from [BD21, Theorem 3.2,
3.4, and 7.2]. For TZ, we obtained Bϵ and Bt from [TZ23, Theorem 2]. For
mBCJ-PPK, we obtain Bϵ and Bt from Theorem 3. For PW-1 and PW-2, we
obtained Bϵ and Bt from [PW23, Theorem 3.5 and 3.3], respectively.

For MuSig2-2, DWMS, HBMS-AGM, LK, and PW-1 the results of their
estimation of |p|128 are 257, 258, or 260. We chose the P-256 curve as the
recommended EC, even though the order of this curve is slightly smaller
for 128-bit security. We ignore the very small exceedance of the group size,
whose effects on concrete security are small.

5.1.2 Comparison

We compare the efficiency of the related two-round multi-signature schemes
in Table 5.1 under provably secure parameters. Here, since both of our
schemes HBMSDDH-1 and HBMSDDH-2 achieve the same |p|128, we compare
HBMSDDH-1 to the related two-round schemes.

First, we compare our scheme HBMSDDH-1 to the schemes having large
reduction losses which are proven secure without using the AGM, i.e.,MuSig2-1,
MuSig-DN, HBMS, TZ, and mBCJ-PPK. Among these schemes, HBMSDDH-1
has the most efficient signature size and communication complexity. More
concretely, |s̃ig|128 of ours is reduced by about 22% from MuSig2-1 and
MuSig-DN, about 60% from HBMS, and about 45% from TZ and mBCJ-PPK.
Moreover, we can use NIST standardized P-384 to ensure 128-bit security for
our scheme, while other schemes have no such standardized EC. These bene-
fits are because the DDH assumption enables us to prove the security of our
scheme without the rewinding technique. However, we should state that the
DDH assumption is a stronger (not weaker) computational assumption than
the DL assumption. For MuSig2-1, the AOMDL assumption is also stronger
than the DL assumption. Multi-signatures of MuSig2-1 and MuSig-DN con-
sist of only an element in G and an element in Zp, whose form is the same
as the ordinary Schnorr signature. Thus, these schemes are more compatible
with a currently deployed scheme than the other schemes. For MuSig2-1 and
TZ, the first round of signing protocols can be executed before a message

97

to be signed is determined. The online communication complexity of these
schemes is smaller than ours.

Next, we compare HBMSDDH-1 to the schemes proven secure in the
AGM, i.e., MuSig2-2, DWMS,HBMS-AGM, and LK. The signature size and
the communication complexity of these schemes are more efficient than ours.
Concretely, |s̃ig|128 of our scheme is about 2.2 times longer than MuSig2-2
and DWMS and about 1.5 times longer than HBMS-AGM and LK. This is
because these schemes are proven secure without rewinding by using AGM
and achieve tight security.3 Our scheme also does not require rewinding to
prove the security because of the DDH assumption, while ours has the reduc-
tion loss yielded from the technique of the proof of the RSA-FDH signature
scheme by Coron. Thus, |p|128 of ours is larger than the other schemes. Note
that our scheme does not require the AGM. For MuSig2-2, and DWMS, the
signature size is the most efficient among all the two-round schemes.

Finally, we compare our scheme to PW-1 and PW-2. To ensure 128-bit
security, PW-1 can use P-256, and PW-2 and our scheme can use P-384.
The signature size and communication complexity of our scheme are the
most efficient among these schemes. The signature size of ours is reduced by
about 67% and 40% from PW-1 and PW-2, respectively. The communication
complexity of ours is reduced by about 57% and 41% from PW-1 and PW-2,
respectively. PW-1 does not support key aggregation. All schemes are proven
secure under the DDH assumption in the random oracle model. Thus, our
scheme can be considered an improvement on PW-1 and PW-2 under provably
secure parameters.

Conclusion of Comparison. The above comparison shows a trade-off
between the efficiency and the strength of underlying assumptions and one
between the efficiency and the necessity of the AGM.

Among schemes that do not need the AGM to prove their security, in con-
crete security, our scheme achieves the smallest signature size and the total
communication complexity. On the other hand, considering the online-offline
paradigm, the online communication complexity of our scheme is larger than
that of MuSig2-1 and TZ. This shows a trade-off between the signature size
and the online communication complexity. Our scheme has a recommended
EC, i.e., P-384, for 128-bit security. This fact makes the implementation of
our scheme easier because we do not need to design a new suitable EC.

3HBMS-AGM can eliminate the reduction loss caused by the technique of Coron [Cor00]
due to the AGM. For more details, see [BD21, Appendix I].

98

T
ab

le
5.
1:

D
et
ai
le
d
p
er
fo
rm

an
ce

co
m
p
ar
is
on

am
on

g
tw

o-
ro
u
n
d
m
u
lt
i-
si
gn

at
u
re

sc
h
em

es
.

S
ch
em

e
A
ss
u
m
p
ti
on

M
o
d
el

L
os
s

S
ig
n
at
u
re

C
om

m
u
n
ic
at
io
n

P
u
b
.
K
ey
|p
| 12

8
(b
it
)
|s̃i
g|

1
2
8
(b
it
)
|C
C
| 12

8
(b
it
)

K
ey

A
gg
.

S
iz
e

C
om

p
le
x
it
y

S
iz
e

C
u
rv
e

|s̃i
g|

E
C
(b
it
)
|C
C
| E

C
(b
it
)

M
uS

ig
2-
2
[N

R
S
21
]

A
O
M
D
L

O
(1
)

|G
|+
|Z

p
|

2|
G
|+
|Z

p
|

|G
|

25
7

51
5

77
3

Y
es

P
-2
56

51
3

77
0

D
W
M
S
[A

B
21
]

O
M
D
L

A
G
M
,

O
(1
)

|G
|+
|Z

p
|

2|
G
|+
|Z

p
|

|G
|

25
7

51
5

77
3

R
O
M

P
-2
56

51
3

77
0

H
B
M
S
-A
G
M

[B
D
21
]

D
L

O
(1
)

|G
|+

2|
Z p
|

|G
|+

2|
Z p
|

|G
|

25
7

77
2

77
2

P
-2
56

76
9

76
9

L
K

[L
K
22
]

D
L

A
G
M
,

O
(1
)

3|
Z p
|

|G
|+

2|
Z p
|

|G
|

25
8

77
4

77
5

N
P
R
O
M

P
-2
56

76
8

76
9

M
uS

ig
-D

N
[N

R
S
W

20
]

D
L
,
D
D
H
,
P
R
N
G

R
O
M

O
(Q

3 H
/ϵ

3
)

|G
|+
|Z

p
|

2|
G
|+
|Z

p
|+
|π
|

|G
|

74
0

14
81

-

Y
es

zk
-S
N
A
R
K
s,
P
R
F

N
ot

E
x
is
t

-
-

M
uS

ig
2-
1
[N

R
S
21
]

A
O
M
D
L

O
(Q

3 H
/ϵ

3
)

|G
|+
|Z

p
|

4|
G
|+
|Z

p
|

|G
|

75
0

15
01

37
54

N
ot

E
x
is
t

-
-

H
B
M
S
[B
D
21
]

D
L

O
(Q

4 S
Q

3 H
/ϵ

3
)

|G
|+

2|
Z p
|

|G
|+

2|
Z p
|

|G
|

98
6

29
59

29
59

N
ot

E
x
is
t

-
-

T
Z
[T
Z
23
]

D
L

O
(Q

3 H
/ϵ

3
)

|G
|+

2|
Z p
|

4|
G
|+

2|
Z p
|

|G
|

74
2

22
27

44
56

N
ot

E
x
is
t

-
-

m
B
C
J-
P
P
K

[D
E
F
+
19
]

D
L

O
(Q

2 S
Q

H
/ϵ
)

|G
|+

3|
Z p
|

2|
G
|+

3|
Z p
|

|G
|

57
4

22
97

28
72

N
o

N
ot

E
x
is
t

-
-

26
0

36
46
+
N

36
47

P
W
-1

[P
W

23
]

D
D
H

O
(1
)

6|
G
|+

8|
Z p
|+

N
6|
G
|+

8|
Z p
|+

1
4|
G
|

P
-2
56

35
90
+
N

35
91

N
o

32
2

16
10

22
57

P
W
-2

[P
W

23
]

D
D
H

R
O
M

O
(Q

S
)

5|
Z p
|

3|
G
|+

4|
Z p
|

2|
G
|

P
-3
84

19
20

26
91

Y
es

H
B
M
S
D
D
H
-1

32
1

96
3

12
86

H
B
M
S
D
D
H
-2

D
D
H

R
O
M

O
(Q

S
)

3|
Z p
|

2|
G
|+

2|
Z p
|

2|
G
|

P
-3
84

11
52

15
38

Y
es

∗
C
o
lu
m
n
2
sh

o
w
s
th

e
se
cu

ri
ty

a
ss
u
m
p
ti
o
n
s.

C
o
lu
m
n
3
sh

o
w
s
w
h
et
h
er

id
ea

li
ze
d
m
o
d
el
s
a
re

u
se
d
fo
r
a
cy

cl
ic

g
ro
u
p
a
n
d
h
a
sh

fu
n
ct
io
n
s.

C
o
lu
m
n
4
sh

o
w
s
th

e
re
d
u
ct
io
n

lo
ss
.
C
o
lu
m
n
s
5
,
6
a
n
d

7
sh

o
w

th
e
si
ze

o
f
a
m
u
lt
i-
si
g
n
a
tu

re
,
el
em

en
ts

se
n
t
in

th
e
si
g
n
in
g
p
ro
to
co

l
p
er

a
si
g
n
er
,
a
n
d

a
p
u
b
li
c
k
ey
,
re
sp

ec
ti
v
el
y.

C
o
lu
m
n

8
sh

o
w
s
th

e
re
q
u
ir
ed

u
n
d
er
ly
in
g
g
ro
u
p
si
ze

|p
| 1

2
8
a
n
d
th

e
N
IS
T

st
a
n
d
a
rd

iz
ed

E
C

th
a
t
en

a
b
le
s
a
p
a
ra
m
et
er

ch
o
ic
e
w
it
h
1
2
8
-b
it
se
cu

ri
ty
,
w
h
ic
h
is

ca
ll
ed

th
e
re
co

m
m
en

d
ed

E
C

h
er
ea

ft
er
.

C
o
lu
m
n

9
sh

o
w
s
th

e
si
g
n
a
tu

re
si
ze
s
|s̃
ig
| 1

2
8
a
n
d

|s̃
ig
| E

C
u
n
d
er

th
e
|p
| 1

2
8
-b
it

E
C

g
ro
u
p

a
n
d

th
e
re
co

m
m
en

d
ed

E
C
,
re
sp

ec
ti
v
el
y.

C
o
lu
m
n

1
0
sh

o
w
s
th

e
co

m
m
u
n
ic
a
ti
o
n

co
m
p
le
x
it
ie
s
|C

C
| 1

2
8
a
n
d
|C

C
| E

C
u
n
d
er

th
e
|p
| 1

2
8
-b
it

E
C

g
ro
u
p
a
n
d
th

e
re
co

m
m
en

d
ed

E
C
.
C
o
lu
m
n
1
1
sh

o
w
s
w
h
et
h
er

ea
ch

sc
h
em

e
a
ll
o
w
s
k
ey

a
g
g
re
g
a
ti
o
n
.
G

a
n
d
Z p

in
d
ic
a
te

th
e
u
n
d
er
ly
in
g
g
ro
u
p
G

o
f
a
p
ri
m
e
o
rd

er
p
a
n
d
th

e
ri
n
g
o
f
in
te
g
er
s
m
o
d
u
lo

p
,
re
sp

ec
ti
v
el
y.

W
e
a
ss
u
m
e
th

a
t
th

e
si
ze
s
o
f
|G

|a
n
d
|Z

p
|o

v
er

a
p
-b
it

E
C

a
re

p
+

1
a
n
d
p
b
it
s,

re
sp

ec
ti
v
el
y.

R
O
M

a
n
d
N
P
R
O
M

in
d
ic
a
te

th
e
ra
n
d
o
m

o
ra
cl
e
m
o
d
el

a
n
d
th

e
n
o
n
-p
ro
g
ra
m
m
a
b
le

ra
n
d
o
m

o
ra
cl
e
m
o
d
el
.
Q

H
a
n
d
Q

S
in
d
ic
a
te

th
e
n
u
m
b
er

o
f

ra
n
d
o
m

o
ra
cl
e
q
u
er
ie
s
a
n
d
si
g
n
in
g
o
ra
cl
e
q
u
er
ie
s,

re
sp

ec
ti
v
el
y.

ϵ
in
d
ic
a
te
s
th

e
a
d
v
a
n
ta
g
e
o
f
a
n
a
d
v
er
sa
ry

a
g
a
in
st

th
e
sc
h
em

e.
N

in
d
ic
a
te
s
th

e
n
u
m
b
er

o
f
si
g
n
er
s.

|π
|i
s

th
e
si
ze

o
f
th

e
zk

-S
N
A
R
K

p
ro
o
f.

F
o
r
M
u
S
ig
-D

N
,
w
e
w
ri
te

“
-”

in
C
o
lu
m
n
1
0
b
ec
a
u
se

th
e
si
ze

o
f
|π
|c

o
n
si
d
er
in
g
co

n
cr
et
e
se
cu

ri
ty

is
ex

p
li
ci
tl
y
u
n
k
n
o
w
n
.

99

5.2 Computation Time

In this section, we describe our machine implementation of the proposed
scheme and the evaluation of the running time of our implementation. The
result of our evaluation shows that our proposed scheme can be implemented
easily in a real-world environment with reasonable running time in practice.
We show the detailed results of our evaluation in Table 5.2. In particular,
we focus on HBMSDDH-1 because HBMSDDH-2 does not need additional
computation and communication compared to the original one.

5.2.1 Environment and Setting

Environment. Our implementation is written in C++. We implemented
our scheme by using the mcl library [Mit22] and P-384 for the EC. We used
g++ version 9.4.0 for compilation. We evaluated the running time of al-
gorithms of our scheme on a computer provided with a 1.30GHz Intel(R)
Core(TM) i7-1065G7 CPU and 16.0 GB of RAM and running WSL2 on
Windows 10 Home version 21H2.

Settings. Here, we describe the details of the setting of the evaluation. In
Table 5.2, we show the average time of the 1000 loops of executions under a
fixed public parameter. As a message to be signed, we generated a random al-
phabet string of 100 characters for each loop by using the command mt19937
in the random library. We set the size of a message as above considering the
size of the hash value (256 bits) of a transaction to be signed in Bitcoin with
a margin. We evaluated the running time for the setting where N are 3, 5,
10, 15, 50, and 100. The cases where N are 3, 5, 10, and 15 are the typical
numbers of signers for Multi-Sig Wallets, and the cases where N are 50 and
100 are larger-scale settings, respectively.

We consider the case where the signer participated in the signing protocol
aggregates the partial signatures. For details on the aggregation algorithm,
see Remark 3. We measured Sign

(2)
1 of the signing protocol in two phases.

Specifically, one phase is computing the aggregated key p̃k from a public key
list vkList, and the other phase is computing other computations. For the
verification, we measured the time for the verification algorithm without p̃k
shown in Section 4.2 and for the one given an aggregated key p̃k instead of
a public key list vkList.

5.2.2 Results

The key generation took about 0.5 ms. This can be regarded as the time of
two scalar multiplications in G.

100

The total running time of whole algorithms in the signing protocol are
about 2.4, 3.6, 6.1, and 9.1 ms under the settings N = 3, 5, 10, and 15,
respectively. For the settings where N = 50 and N = 100, those are about
30.1 ms and 65.2 ms, respectively. From these results, notice that the time of
the scalar multiplication in G is a dominant factor for running time. There
are 2N scalar multiplications in Sign

(2)
1 of the signing protocol for the com-

putation of an aggregated key p̃k. By precomputing p̃k, Sign
(2)
1 took only

about 1 ms because it needs 4 scalar multiplications irrelevantly to N . Since
there is no scalar multiplication in Sign

(2)
2 and the aggregation by the signer

participated in the signing protocol, they were completed within 0.2 ms even
when N = 100.

For Verify without p̃k, which is the normal verification, it was completed
within 10 ms when N = 15. Also, it took about 66 ms even when N = 100.
Since the verification needs only 6 scalar multiplications by using p̃k, Verify
with p̃k took about 1.6 ms irrelevantly to N .

The above result shows that each algorithm is completed within 100ms
even when N = 100. This can be regarded as sufficiently reasonable running
time in practice.

5.2.3 Comparison

From a comparison with the computation time of PW-2, our scheme is more
efficient than PW-2 when N is small or an aggregated key is pre-computed.
Note that we adopted PW-2 as the peer for comparison because of the two
reasons. The first reason is that it can be implemented under the same
EC, i.e., P-384, for 128-bit security. The second reason is that other related
schemes have no standardized EC for 128-bit security.

In comparison here, we only compare for the computation time of Sign
(2)
1

of the signing protocol and the verification because of the two facts. The first
fact is that the key generation algorithms of both schemes are identical. The
second fact is that Sign

(2)
2 and the aggregation by the signer participated in

the signing protocol of both schemes have no scalar multiplication.
We estimate the computation time of PW-2 by using the result of the

above measurement. Specifically, we assume that one scalar multiplication
in G takes 0.25 ms. We estimate the computation time by multiplying the
number of scalar multiplications and 0.25 ms.

In the cases where N is small or an aggregated key is pre-computed,
our scheme is more efficient than PW-2. Sign

(2)
1 of PW-2 except for the

computation of an aggregated key takes about 2.8 ms because there are 11
scalar multiplications. Verify with p̃k of PW-2 takes about 3.3 ms because it
requires 13 scalar multiplications, which is more than twice as many as ours.

101

Additionally, our scheme is as efficient as PW-2 when N is large. This is
because the time of computation of the aggregated key is dominant over the
computation times of Sign

(2)
1 and the verification. For example, the compu-

tation time of an aggregated key is about 64 ms for both schemes when N
is 100. Then, the computation times of Sign

(2)
1 and the verification for PW-2

are about 67 ms. There are only slight differences between the times of ours
and PW-2.

5.3 Communication Time

In this section, we estimate the communication time of our scheme and PW-2
and compare them.

As the result of the estimation under the situation where each signer
is connected to a hub by WAN, the latency is dominant even when N =
100 for both schemes. In other words, there is a small difference in the
communication times between both schemes. Specifically, the communication
time for each round of our scheme is about 61 ms, and the communication
time for each round of PW-2 is about 62 ms. For both schemes, 60 ms of
these communication times is the latency.

Here, we show how we derived the communication times of both schemes.
We suppose the WAN environment with a bandwidth of 100 Mbps and a
latency of 30 ms. In our signing protocol, in the first round, each signer
sends 2 elements in G to the hub and receives 2(N − 1) elements in G from
the hub, and in the second round, it sends 2 elements in Zp to the hub
and receives 2(N − 1) elements in Zp from the hub. Then, when N is 100,
the communication time for the first round is 770/(100× 103) + 30 + 770×
99/(100 × 103) + 30 ≈ 61 ms, and that for the second round is 768/(100 ×
103) + 30 + 768× 99/(100× 103) + 30 ≈ 61 ms. In PW-2, in the first round,
each signer sends 3 elements in G to the hub and receives 3(N − 1) elements
in G from the hub, and in the second round, it sends 4 elements in Zp to
the hub and receives 4(N − 1) elements in Zp from the hub. Then, when
N is 100, the communication time for the first round is 1155/(100× 103) +
30 + 1155 × 99/(100 × 103) + 30 ≈ 62 ms, and that for the second round is
1536/(100× 103) + 30 + 1536× 99/(100× 103) + 30 ≈ 62 ms.

102

T
ab

le
5.
2:

E
x
ec
u
ti
on

ti
m
e
ev
al
u
at
io
n
of

ou
r
sc
h
em

e
u
n
d
er

P
-3
84

(i
n
m
il
li
se
co
n
d
s)
.

N
=

3
N

=
5

N
=

10
N

=
15

N
=

50
N

=
10
0

K
ey

G
en
er
at
io
n
.

K
ey
G
en

4.
6
×

10
−
1

4.
7
×

10
−
1

4.
8
×

10
−
1

4.
9
×

10
−
1

5.
1
×

10
−
1

5.
2
×

10
−
1

S
ig
n
in
g
P
ro
to
co
l.

S
ig
n(

2
)

1
(C

om
p
u
ti
n
g
p̃k
)

1.
4

2.
5

5.
0

8.
0

29
64

S
ig
n(

2
)

1
(O

th
er
s)

1.
0

1.
1

1.
1

1.
1

1.
1

1.
2

S
ig
n(

2
)

2
1.
7
×

10
−
2

2.
0
×

10
−
2

2.
7
×

10
−
2

3.
5
×

10
−
2

9
×

10
−
2

1.
7
×

10
−
1

A
gg
re
ga
ti
on

1.
8
×

10
−
4

2.
2
×

10
−
4

3.
0
×

10
−
4

4.
1
×

10
−
4

1
×

10
−
3

2
×

10
−
3

V
er
ifi
ca
ti
on

.

V
er
if
y
w
it
h
ou

t
p̃k

3.
0

4.
1

6.
9

9.
6

31
66

V
er
if
y
w
it
h
p̃k

1.
5

1.
6

1.
6

1.
6

1.
7

1.
7

F
or

th
e
ag
gr
eg
at
io
n
al
go
ri
th
m
,
w
e
co
n
si
d
er

th
e
si
tu
a
ti
o
n
w
h
er
e
th
e
si
g
n
er

p
a
rt
ic
ip
a
te
d
in

th
e
si
g
n
in
g
p
ro
to
co
l
a
g
g
re
g
a
te
s
th
e
p
a
rt
ia
l

si
gn

at
u
re
s.

103

104

Chapter 6

Discussion

In this chapter, we discuss our results from both practical and theoretical
aspects. We first review the research question and result of this thesis. Next,
we describe the benefits of our scheme in practical terms. After that, we
explain our results in theoretical terms. Finally, we mention open problems.

Review of Our Research Question and Result. In our research, we
aim to construct a two-round multi-signature scheme that achieves reliable
security and high efficiency without relying on the algebraic group model
(AGM). In other words, we tried to construct a scheme whose signature size
is smaller than related schemes without using the AGM under the provable
secure parameters, which is derived by considering the reduction loss. As the
result of this research, we proposed two two-round multi-signature schemes
that are proven secure under the DDH assumption in the random oracle
model (ROM). While the first one only achieves subtly weak unforgeability,
the second one is as secure as the related schemes. We focus on the second
one hereafter since this is exactly an improvement of the first one. Our
scheme can ensure 128-bit security by implementing under the standardized
elliptic curve (EC) P-384 due to the small reduction loss O(QS), where QS

is the number of signing queries of an adversary. Under provable secure
parameters, the signature size and communication complexity of our scheme
are the smallest among related schemes without using the AGM. Hence we
can conclude that our scheme is an answer to our research question.

Practical Interpretation and Contribution of Our Result. For DL-
based multi-signatures, we can consider three evaluation items: (i) reliability
of the security (i.e., concrete security), (ii) efficiency, and (iii) strength of as-
sumptions. Which multi-signature scheme is recommended depends on which
of the items the user considers important for his application. For example, if
the user requires a short signature size at the expense of others, MuSig2 and

105

DWMS are recommended since the sizes of their signatures are the shortest
among all schemes under P-256. For users who are more concerned about
the strength of assumptions than anything else, the recommended schemes
are TZ and HBMS if he also wants the efficiency of online communication
complexity and total communication complexity, respectively.

Our scheme is a new candidate for multi-signature schemes that can fulfill
all three requirements. Indeed, our scheme is recommended for users who
see these items as important since the security of our scheme is based on the
DDH assumption and relies on only the ROM, and the signature size and
total communication complexity are smallest among schemes without using
the AGM. Using MuSig2-2, DWMS, HBMS-AGM, or LK allows us to ensure
(i) and (ii) but it forces us to compromise (iii). We benefit from schemes
without using the AGM, e.g., HBMS,TZ,PW-1,PW-2, with respect to (i)
and (iii), but the signature sizes are about or larger than 2000-bit. While
the signature size of MuSig2-1 is smaller than theirs, its security requires
an interactive assumption. Thus we can conclude that our scheme is only
one solution to fulfill all three requirements without compromising one of
them. This result enhances the feasibility of cryptocurrencies and blockchain
applications making them more suitable for the requirements of users.

For a fair discussion, we should note that our scheme has a limitation
of (ii). Specifically, the first round of our signing protocol needs to be ex-
ecuted in the online phase. Thus it is difficult to recommend applying our
scheme to applications in which online communication is much expensive.
MuSig2-1,MuSig2-2,DWMS, and TZ are recommended for such applications.
But we remind that we need to compromise some of the three requirements
when we use them.

Theoretical Interpretation and Contribution of Our Result. When
focusing solely on the scheme constructed by an approach, our scheme achieves
the optimal signature size and communication complexity.1 Currently, it is
known that there are mainly two approaches known for constructing DL-
based two-round multi-signature schemes. The first approach is the mBCJ-
like approach in which a scheme is constructed by combining the signa-
ture scheme and the special commitment scheme. Our scheme and some
related schemes, e.g., HBMS,HBMS-AGM, LK,mBCJ,PW-1, and PW-2, are
constructed by following this approach. The second approach is the MuSig2-
like approach in which a scheme is based on one-more style assumptions.
MuSig2-1,MuSig2-2,DWMS,TZ are constructed by following this approach.

1Note that we ignore an optimization. Specifically, in PW-1 and PW-2, each signer
sends to a seed used to generate the decommitment instead of the decommitment itself.
This optimization can be applied to our scheme and mBCJ-like related schemes.

106

Before explaining why our scheme is optimal when focusing on the first
approach, we roughly review this approach. In this approach, a two-round
scheme is based on a signature scheme, like the Schnorr signature scheme,
which is obtained by applying the Fiat-Shamir transform to the three-pass
identification scheme, Σ-protocol [Cra96]. The size of the multi-signature and
communication complexity depend on both the signature size of the based
signature scheme and the sizes of the commitment and the decommitment
of the commitment scheme. Moreover, due to using the special commitment
scheme, at least O(QS) reduction loss occurs.

Now we move to the analysis of the signature size and communication
complexity of our scheme. Our scheme is built from the DDH-based tightly
secure Katz-Wang signature scheme. This is one of the tightly secure signa-
ture schemes based on DL-type assumptions. In the signing protocol of our
scheme, each signer sends two group elements and two scalars to all signers
in the first and second rounds, respectively. For the first round, the number
of group elements to be sent is equivalent to that of group elements of the
first prover’s message of the DDH-based lossy identification on which the
Katz-Wang signature scheme is based. For the second round, one of the
two scalars to be shared is equivalent to the second prover’s message of the
lossy identification and the other is the decommitment of the commitment
scheme. For the details of the lossy identification, see Section 4.1.2. Our
multi-signature consists of three scalars. Two of these scalars are equivalent
to the signature of the Katz-Wang signature scheme while the remaining
scalar is decommitment. Moreover, our scheme has only a reduction loss
O(QS). From the above analysis, as long as following this approach and
adopting the Katz-Wang signature scheme, it is difficult to further reduce
the signature size and communication complexity. Indeed, if the size of the
multi-signature were reduced, then the decommitment would disappear or the
signature size of the Katz-Wang signature scheme would be reduced to only
one scalar. Such schemes are no longer based on the Katz-Wang signature
scheme or a commitment scheme. Also, it is hard to use the property of the
signature scheme or the special commitment scheme, i.e., lossiness and equiv-
ocability, if the commitment of the commitment scheme is one group element.
Therefore we can conclude that our scheme achieves the optimal signature
size and communication complexity when focusing on the first approach.

We now mention the drawback of our scheme, that the first round should
be executed in the online phase, in the terms of theoretical aspect. This dis-
advantage arises from the use of the commitment scheme. In the mBCJ-like
two-round scheme built from the first approach, the commitment keys need
to be generated depending on the message and the aggregated key. This
is to prevent the reuse of the commitment key. Remind that the reuse of

107

the commitment key allows us to enable the ROS attack. The message to be
signed and the set of signers are decided at the beginning of the online phase.
Thus if we want to execute the first round in the offline phase, we require
a way to generate the commitment keys that are distinct with overwhelm-
ing probability for each signing session. However, it seems to be infeasible
since the signers are not necessarily synchronous and we are not allowed to
communicate with each other and share some information before the offline
phase to achieve a two-round protocol. Therefore, we need to attempt other
approaches to overcome this obstacle, e.g., the MuSig2-like approach or a
new approach.

Open Problems. Here we show two open problems for constructing a two-
round multi-signature scheme with a small reduction loss.

The first one is whether or not we can construct such a scheme by fol-
lowing the MuSig2-like approach. We remind that this approach allows us
to obtain a one-round scheme with pre-processing. This approach typically
requires the one-more style assumptions. Specifically, MuSig2 and DWMS
require the (algebraic) one-more DL problem and TZ requires the algebraic
one-more preimage resistance [TZ23], which is established by the DL as-
sumption. To ensure a small reduction loss without relying on the AGM, we
require one-more style assumptions from which we can construct a signature
scheme with tight security or a small reduction loss, e.g., the computational
Diffie-Hellman (CDH) assumption and the DDH problem. Recently, Bacho
et al. introduced one-more style assumptions that are established by the one-
more CDH assumption or the standard DDH assumption. It is an interesting
question if a two-round scheme with a small reduction loss can be constructed
from such assumptions.

The second one is whether there exists another approach to construct
two-round signature schemes. As described above, it is known that there
are mainly two approaches. This fact can be observed when constructing the
two-round scheme based on the signature scheme that is obtained by the Fiat-
Shamir transform, e.g., lattice-based two-round multi-signatures [DOTT21,
BTT22, Che23b]. Addressing this issue would expand the possibilities for
constructing multi-signature schemes, not only DL-based schemes but also
schemes based on other algebraic structures containing the post-quantum
schemes.

108

Chapter 7

Conclusion

In this thesis, we attempt to construct an efficient two-round multi-signature
scheme with a small reduction loss without using the AGM. As a result,
we proposed two schemes as the answer to the research question. The first
scheme achieves only slightly weak unforgeability, which corresponds to my
publication in Publication Related to This Thesis. The second scheme
achieves slightly strong unforgeability without compromising efficiency and
supporting additional assumptions. This scheme is exactly an improvement
of the first one. The security of our schemes was proven under the DDH
assumption and the random oracle model. The reduction loss of both our
schemes is small enough to guarantee the 128-bit security under the NIST
standardized EC P-384. The signature size and total communication com-
plexity of our schemes are the smallest among the related schemes without
relying on the AGM under provable secure parameters. Moreover, by im-
plementing our first scheme, we confirmed that our schemes have a realistic
running time in practice.

Our result shows the new trade-off between reliability of security, effi-
ciency, and strength of underlying assumptions. This provides a new can-
didate for multi-signatures that can fulfill the requirements of users. Our
scheme is suitable for users who do not want to compromise on the relia-
bility of the security, efficiency, and strength of assumptions. This leads to
improved feasibility of cryptocurrencies and blockchain-based applications
more suited to the user’s requirements.

109

References

[AB21] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip
schnorr multi-signatures via delinearized witnesses. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, vol-
ume 12825 of LNCS, pages 157–188, Virtual Event, August 2021.
Springer, Heidelberg.

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and
Mehdi Tibouchi. Tightly-secure signatures from lossy identifi-
cation schemes. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 572–
590. Springer, Heidelberg, April 2012.

[AHK20] Thomas Agrikola, Dennis Hofheinz, and Julia Kastner. On in-
stantiating the algebraic group model from falsifiable assump-
tions. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 96–126.
Springer, Heidelberg, May 2020.

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada.
A framework for identity-based encryption with almost tight
security. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 521–549.
Springer, Heidelberg, November / December 2015.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguish-
ers for reduced keccak-f and for the core functions of luffa and
hamsi. Presented at the rump session of CHES 2009, 2009.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random
oracles. In Christian Cachin and Jan Camenisch, editors, EU-
ROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer,
Heidelberg, May 2004.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE Symposium
on Security and Privacy, pages 315–334. IEEE Computer Society
Press, May 2018.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-
key encryption in a multi-user setting: Security proofs and im-

provements. In Bart Preneel, editor, EUROCRYPT 2000, vol-
ume 1807 of LNCS, pages 259–274. Springer, Heidelberg, May
2000.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio.
An uninstantiable random-oracle-model scheme for a hybrid-
encryption problem. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 171–
188. Springer, Heidelberg, May 2004.

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Mul-
tisignatures secure under the discrete logarithm assumption and
a generalized forking lemma. In Peng Ning, Paul F. Syverson,
and Somesh Jha, editors, ACM CCS 2008, pages 449–458. ACM
Press, October 2008.

[BD21] Mihir Bellare andWei Dai. Chain reductions for multi-signatures
and the HBMS scheme. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS,
pages 650–678. Springer, Heidelberg, December 2021.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-
signatures for smaller blockchains. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of
LNCS, pages 435–464. Springer, Heidelberg, December 2018.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption
from the Weil pairing. In Joe Kilian, editor, CRYPTO 2001, vol-
ume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August
2001.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Ag-
gregate and verifiably encrypted signatures from bilinear maps.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 416–432. Springer, Heidelberg, May 2003.

[BGOY07] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and
Dae Hyun Yum. Ordered multisignatures and identity-based
sequential aggregate signatures, with applications to secure rout-
ing. In Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson, editors, ACM CCS 2007, pages 276–285. ACM
Press, October 2007.

111

[BJ08] Ali Bagherzandi and Stanislaw Jarecki. Multisignatures using
proofs of secret key possession, as secure as the Diffie-Hellman
problem. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Vis-
conti, editors, SCN 08, volume 5229 of LNCS, pages 218–235.
Springer, Heidelberg, September 2008.

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the
impossibility of tight cryptographic reductions. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 273–304. Springer, Heidelberg, May
2016.

[BKKP15] Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, and Jiaxin Pan.
Tightly-secure signatures from chameleon hash functions. In
Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
256–279. Springer, Heidelberg, March / April 2015.

[BL16] Xavier Boyen and Qinyi Li. Towards tightly secure lattice short
signature and id-based encryption. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 404–434. Springer, Heidelberg, December
2016.

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele
Orrù, and Mariana Raykova. On the (in)security of ROS. In
Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53.
Springer, Heidelberg, October 2021.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures
from the Weil pairing. In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, De-
cember 2001.

[BN05] Mihir Bellare and Gregory Neven. New multi-
signature schemes and a general forking lemma, 2005.
https://soc1024.ece.illinois.edu/teaching/ece498ac/

fall2018/forkinglemma.pdf.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain
public-key model and a general forking lemma. In Ari Juels, Re-
becca N. Wright, and Sabrina De Capitani di Vimercati, editors,

112

https://soc1024.ece.illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf
https://soc1024.ece.illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf

ACM CCS 2006, pages 390–399. ACM Press, October / Novem-
ber 2006.

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Un-
restricted aggregate signatures. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007,
volume 4596 of LNCS, pages 411–422. Springer, Heidelberg, July
2007.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and
blind signatures based on the gap-Diffie-Hellman-group signa-
ture scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567
of LNCS, pages 31–46. Springer, Heidelberg, January 2003.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent
assumptions and 3-round zero-knowledge protocols. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
273–289. Springer, Heidelberg, August 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In Dorothy E.
Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press,
November 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures: How to sign with RSA and Rabin. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416.
Springer, Heidelberg, May 1996.

[Bro10] Daniel RL Brown. Sec 2: Recommended elliptic curve domain
parameters. Standars for Efficient Cryptography, 2010.

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi.
MuSig-L: Lattice-based multi-signature with single-round on-
line phase. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 276–305.
Springer, Heidelberg, August 2022.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random or-
acle methodology, revisited (preliminary version). In 30th ACM
STOC, pages 209–218. ACM Press, May 1998.

113

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-
oracle methodology as applied to length-restricted signature
schemes. In Moni Naor, editor, TCC 2004, volume 2951 of
LNCS, pages 40–57. Springer, Heidelberg, February 2004.

[Che23a] Yanbo Chen. DualMS: Efficient lattice-based two-round multi-
signature with trapdoor-free simulation. Cryptology ePrint
Archive, Report 2023/263, 2023. https://eprint.iacr.org/

2023/263.

[Che23b] Yanbo Chen. DualMS: Efficient lattice-based two-round multi-
signature with trapdoor-free simulation. In Helena Handschuh
and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume
14085 of LNCS, pages 716–747. Springer, Heidelberg, August
2023.

[CKM+23] Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tes-
saro, and Chenzhi Zhu. Snowblind: A threshold blind signature
in pairing-free groups. In Helena Handschuh and Anna Lysyan-
skaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS,
pages 710–742. Springer, Heidelberg, August 2023.

[CMR+23] Lily Chen, Dustin Moody, Karen Randall, Andrew Regenscheid,
and Angela Robinson. Recommendations for discrete logarithm-
based cryptography: Elliptic curve domain parameters, 2023-02-
02 05:02:00 2023.

[CMS12] Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another
look at tightness. In Ali Miri and Serge Vaudenay, editors, SAC
2011, volume 7118 of LNCS, pages 293–319. Springer, Heidel-
berg, August 2012.

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash.
In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,
pages 229–235. Springer, Heidelberg, August 2000.

[Cra96] Ronald Cramer. Modular design of secure, yet practical crypto-
graphic protocols. PhD thesis, University of Amsterdam, 1996.

[CS99] Ronald Cramer and Victor Shoup. Signature schemes based
on the strong RSA assumption. In Juzar Motiwalla and Gene
Tsudik, editors, ACM CCS 99, pages 46–51. ACM Press, Novem-
ber 1999.

114

https://eprint.iacr.org/2023/263
https://eprint.iacr.org/2023/263

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure
against chosen ciphertext attacks. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer,
Heidelberg, August 1992.

[dAS20a] Monika di Angelo and Gernot Salzer. Wallet contracts on
ethereum. In IEEE ICBC, pages 1–2. IEEE, 2020.

[dAS20b] Monika di Angelo and Gernot Salzer. Wallet contracts on
ethereum – identification, types, usage, and profiles, 2020.

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Ju-
lian Loss, Gregory Neven, and Igors Stepanovs. On the security
of two-round multi-signatures. In 2019 IEEE Symposium on Se-
curity and Privacy, pages 1084–1101. IEEE Computer Society
Press, May 2019.

[Des90] Yvo Desmedt. Abuses in cryptography and how to fight them.
In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS,
pages 375–389. Springer, Heidelberg, August 1990.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 307–315. Springer, Heidelberg, August 1990.

[DF92] Yvo Desmedt and Yair Frankel. Shared generation of authen-
ticators and signatures (extended abstract). In Joan Feigen-
baum, editor, CRYPTO’91, volume 576 of LNCS, pages 457–
469. Springer, Heidelberg, August 1992.

[DGJL21] Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. More
efficient digital signatures with tight multi-user security. In Juan
Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages
1–31. Springer, Heidelberg, May 2021.

[DGNW20] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck
Wee. Pixel: Multi-signatures for consensus. In Srdjan Capkun
and Franziska Roesner, editors, USENIX Security 2020, pages
2093–2110. USENIX Association, August 2020.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6):644–
654, 1976.

115

[DMO00] Hiroshi Doi, Masahiro Mambo, and Eiji Okamoto. On the secu-
rity of the RSA-based multisignature scheme for various group
structures. In Ed Dawson, Andrew Clark, and Colin Boyd, edi-
tors, ACISP 00, volume 1841 of LNCS, pages 352–367. Springer,
Heidelberg, July 2000.

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On
the generic insecurity of the full domain hash. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 449–466.
Springer, Heidelberg, August 2005.

[DOTT21] Ivan Damg̊ard, Claudio Orlandi, Akira Takahashi, and Mehdi
Tibouchi. Two-round n-out-of-n and multi-signatures and
trapdoor commitment from lattices. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 99–130.
Springer, Heidelberg, May 2021.

[ES16] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-
based multisignature scheme with applications to bitcoins. In
Sara Foresti and Giuseppe Persiano, editors, CANS 16, volume
10052 of LNCS, pages 140–155. Springer, Heidelberg, November
2016.

[FH19] Masayuki Fukumitsu and Shingo Hasegawa. A tightly-secure
lattice-based multisignature. In Proceedings of the 6th on ASIA
Public-Key Cryptography Workshop, APKC ’19, page 3–11, New
York, NY, USA, 2019. Association for Computing Machinery.

[FH20] Masayuki Fukumitsu and Shingo Hasegawa. A lattice-based
provably secure multisignature scheme in quantum random ora-
cle model. In Khoa Nguyen, Wenling Wu, Kwok-Yan Lam, and
Huaxiong Wang, editors, ProvSec 2020, volume 12505 of LNCS,
pages 45–64. Springer, Heidelberg, November / December 2020.

[FH21] Masayuki Fukumitsu and Shingo Hasegawa. A tightly secure
ddh-based multisignature with public-key aggregation. Int. J.
Netw. Comput., 11(2):319–337, 2021.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The alge-
braic group model and its applications. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

116

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind
schnorr signatures and signed ElGamal encryption in the alge-
braic group model. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–
95. Springer, Heidelberg, May 2020.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–
194. Springer, Heidelberg, August 1987.

[GCD+16] Junqing Gong, Jie Chen, Xiaolei Dong, Zhenfu Cao, and Shao-
hua Tang. Extended nested dual system groups, revisited. In
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-
Yin Yang, editors, PKC 2016, Part I, volume 9614 of LNCS,
pages 133–163. Springer, Heidelberg, March 2016.

[Gen06] Craig Gentry. Practical identity-based encryption without ran-
dom oracles. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 445–464. Springer, Heidelberg,
May / June 2006.

[GHKP18] Romain Gay, Dennis Hofheinz, Lisa Kohl, and Jiaxin Pan. More
efficient (almost) tightly secure structure-preserving signatures.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 230–258.
Springer, Heidelberg, April / May 2018.

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee.
Tightly CCA-secure encryption without pairings. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 1–27. Springer, Heidelberg,
May 2016.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-
sign signatures without the random oracle. In Jacques Stern,
editor, EUROCRYPT’99, volume 1592 of LNCS, pages 123–139.
Springer, Heidelberg, May 1999.

[GJKW07] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang.
Efficient signature schemes with tight reductions to the Diffie-
Hellman problems. Journal of Cryptology, 20(4):493–514, Octo-
ber 2007.

117

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of
the Fiat-Shamir paradigm. In 44th FOCS, pages 102–115. IEEE
Computer Society Press, October 2003.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digi-
tal signature scheme secure against adaptive chosen-message at-
tacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[GP10] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis:
Improved attacks for AES-like permutations. In Seokhie Hong
and Tetsu Iwata, editors, FSE 2010, volume 6147 of LNCS, pages
365–383. Springer, Heidelberg, February 2010.

[Gui20] Aurore Guillevic. A short-list of pairing-friendly curves resis-
tant to special TNFS at the 128-bit security level. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part II, volume 12111 of LNCS, pages 535–
564. Springer, Heidelberg, May 2020.

[Har94] Lein Harn. Group-oriented (t, n) threshold digital signature
scheme and digital multisignature. IEE Proceedings-Computers
and Digital Techniques, 141(5):307–313, 1994.

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures
and public-key encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
590–607. Springer, Heidelberg, August 2012.

[HK89] L Harn and T Kiesler. New scheme for digital multisignatures.
Electronics letters, 25(15):1002–1003, 1989.

[HKS15] Dennis Hofheinz, Jessica Koch, and Christoph Striecks. Identity-
based encryption with (almost) tight security in the multi-
instance, multi-ciphertext setting. In Jonathan Katz, editor,
PKC 2015, volume 9020 of LNCS, pages 799–822. Springer, Hei-
delberg, March / April 2015.

[Hof17] Dennis Hofheinz. Adaptive partitioning. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part III, volume 10212 of LNCS, pages 489–518. Springer, Hei-
delberg, April / May 2017.

118

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suit-
able for digital multisignatures. NEC research & development,
1983.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number
field sieve: A new complexity for the medium prime case. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 543–571. Springer, Heidel-
berg, August 2016.

[KM15] Neal Koblitz and Alfred Menezes. The random oracle model:
A twenty-year retrospective. Cryptology ePrint Archive, Report
2015/140, 2015. https://eprint.iacr.org/2015/140.

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security
proofs for signatures from identification schemes. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 33–61. Springer, Heidelberg, Au-
gust 2016.

[KN10] Dmitry Khovratovich and Ivica Nikolic. Rotational cryptanaly-
sis of ARX. In Seokhie Hong and Tetsu Iwata, editors, FSE 2010,
volume 6147 of LNCS, pages 333–346. Springer, Heidelberg,
February 2010.

[KP19] Julia Kastner and Jiaxin Pan. Towards instantiating the
algebraic group model. Cryptology ePrint Archive, Report
2019/1018, 2019. https://eprint.iacr.org/2019/1018.

[KSH23] Rikuhiro Kojima, Jacob C. N. Schuldt, and Goichiro Hanaoka.
A new pairing-based two-round tightly-secure multi-signature
scheme with key aggregation. IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sci-
ences, advpub:2023CIP0022, 2023.

[KZ20] Daniel Kales and Greg Zaverucha. An attack on some signature
schemes constructed from five-pass identification schemes. In
Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors,
CANS 20, volume 12579 of LNCS, pages 3–22. Springer, Heidel-
berg, December 2020.

[Lan96] Susan K. Langford. Weakness in some threshold cryptosystems.
In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS,
pages 74–82. Springer, Heidelberg, August 1996.

119

https://eprint.iacr.org/2015/140
https://eprint.iacr.org/2019/1018

[LBG09] Duc-Phong Le, Alexis Bonnecaze, and Alban Gabillon. Mul-
tisignatures as secure as the Diffie-Hellman problem in the plain
public-key model. In Hovav Shacham and Brent Waters, editors,
PAIRING 2009, volume 5671 of LNCS, pages 35–51. Springer,
Heidelberg, August 2009.

[LHL95] Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee. Threshold-
multisignature schemes where suspected forgery implies trace-
ability of adversarial shareholders. In Alfredo De Santis, ed-
itor, EUROCRYPT’94, volume 950 of LNCS, pages 194–204.
Springer, Heidelberg, May 1995.

[LJYP14] Benôıt Libert, Marc Joye, Moti Yung, and Thomas Peters. Con-
cise multi-challenge CCA-secure encryption and signatures with
almost tight security. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 1–21.
Springer, Heidelberg, December 2014.

[LK22] Kwangsu Lee and Hyoseung Kim. Two-round multi-signatures
from Okamoto signatures. Cryptology ePrint Archive, Report
2022/1117, 2022. https://eprint.iacr.org/2022/1117.

[LMR+09] Mario Lamberger, Florian Mendel, Christian Rechberger, Vin-
cent Rijmen, and Martin Schläffer. Rebound distinguishers: Re-
sults on the full Whirlpool compression function. In Mitsuru
Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
126–143. Springer, Heidelberg, December 2009.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and
Brent Waters. Sequential aggregate signatures and multisigna-
tures without random oracles. In Serge Vaudenay, editor, EURO-
CRYPT 2006, volume 4004 of LNCS, pages 465–485. Springer,
Heidelberg, May / June 2006.

[LP20] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a shambles: First
chosen-prefix collision on SHA-1 and application to the PGP
web of trust. In Srdjan Capkun and Franziska Roesner, editors,
USENIX Security 2020, pages 1839–1856. USENIX Association,
August 2020.

[LPJY15] Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung.
Compactly hiding linear spans - tightly secure constant-size
simulation-sound QA-NIZK proofs and applications. In Tetsu

120

https://eprint.iacr.org/2022/1117

Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I,
volume 9452 of LNCS, pages 681–707. Springer, Heidelberg,
November / December 2015.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications
to lattice and factoring-based signatures. In Mitsuru Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–
616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors.
In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer,
Heidelberg, April 2012.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels.
Commun. ACM, 21(4):294–299, apr 1978.

[MH78] R. Merkle and M. Hellman. Hiding information and signatures in
trapdoor knapsacks. IEEE Transactions on Information Theory,
24(5):525–530, 1978.

[MH96] Markus Michels and Patrick Horster. On the risk of disruption
in several multiparty signature schemes. In Kwangjo Kim and
Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of
LNCS, pages 334–345. Springer, Heidelberg, November 1996.

[Mit22] Shigeo Mitsunari. mcl - a portable and fast pairing-based cryp-
tography library, 2022. 2022/Apr/10 v1.60, https://github.
com/herumi/mcl.

[MJ19] Changshe Ma and Mei Jiang. Practical lattice-based multisig-
nature schemes for blockchains. IEEE Access, 7:179765–179778,
2019.

[MM00] Shirow Mitomi and Atsuko Miyaji. A multisignature scheme
with message flexibility, order flexibility and order verifiability.
In Ed Dawson, Andrew Clark, and Colin Boyd, editors, ACISP
00, volume 1841 of LNCS, pages 298–312. Springer, Heidelberg,
July 2000.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-
subgroup multisignatures: Extended abstract. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages
245–254. ACM Press, November 2001.

121

https://github.com/herumi/mcl
https://github.com/herumi/mcl

[MPSW18] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter
Wuille. Simple schnorr multi-signatures with applications to
bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018.
https://eprint.iacr.org/2018/068.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter
Wuille. Simple schnorr multi-signatures with applications to bit-
coin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. In-
differentiability, impossibility results on reductions, and applica-
tions to the random oracle methodology. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Hei-
delberg, February 2004.

[MWLD10] Changshe Ma, Jian Weng, Yingjiu Li, and Robert Deng. Ef-
ficient discrete logarithm based multi-signature scheme in the
plain public key model. Designs, Codes and Cryptography,
54:121–133, 2010.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem, 2008. https://bitcoin.org/bitcoin.pdf.

[Nat13] National institute of standards and technology. FIPS Pub 186-
4 Federal Information Processing Standards Publication Digital
Signature Standard (DSS). 2013.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from com-
plexity theoretic proofs: The non-committing encryption case.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 111–126. Springer, Heidelberg, August 2002.

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple
two-round Schnorr multi-signatures. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS,
pages 189–221, Virtual Event, August 2021. Springer, Heidel-
berg.

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille.
MuSig-DN: Schnorr multi-signatures with verifiably determinis-
tic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Gio-
vanni Vigna, editors, ACM CCS 2020, pages 1717–1731. ACM
Press, November 2020.

122

https://eprint.iacr.org/2018/068
https://bitcoin.org/bitcoin.pdf

[Oka88] Tatsuaki Okamoto. A digital multisignature scheme using bijec-
tive public-key cryptosystems. ACM Transactions on Computer
Systems (TOCS), 6(4):432–441, 1988.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification
schemes and corresponding signature schemes. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53.
Springer, Heidelberg, August 1993.

[OO93] Kazuo Ohta and Tatsuaki Okamoto. A digital multisigna-
ture scheme based on the Fiat-Shamir scheme. In Hideki
Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASI-
ACRYPT’91, volume 739 of LNCS, pages 139–148. Springer,
Heidelberg, November 1993.

[OO99] Kazuo Ohta and Tatsuaki Okamoto. Multi-signature schemes
secure against active insider attacks. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, 82(1):21–31, 1999.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992.

[Pol78] John M. Pollard. Monte Carlo methods for index computation
mod p. Mathematics of Computation, 32:918–924, 1978.

[PP16] Jong Hwan Park and Young-Ho Park. A tightly-secure multisig-
nature scheme with improved verification. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci., 99-A(2):579–589, 2016.

[PPKW97] Sangjoon Park, Sangwoo Park, Kwangjo Kim, and Dongho Won.
Two efficient RSA multisignature schemes. In Yongfei Han, Tat-
suaki Okamoto, and Sihan Qing, editors, ICICS 97, volume 1334
of LNCS, pages 217–222. Springer, Heidelberg, November 1997.

[PS96] David Pointcheval and Jacques Stern. Security proofs for sig-
nature schemes. In Ueli M. Maurer, editor, EUROCRYPT’96,
volume 1070 of LNCS, pages 387–398. Springer, Heidelberg, May
1996.

123

[PS00] David Pointcheval and Jacques Stern. Security arguments for
digital signatures and blind signatures. Journal of Cryptology,
13(3):361–396, June 2000.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signa-
tures may not be equivalent to discrete log. In Bimal K. Roy,
editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 1–20.
Springer, Heidelberg, December 2005.

[PW22] Jiaxin Pan and Benedikt Wagner. Lattice-based signatures with
tight adaptive corruptions and more. In Goichiro Hanaoka, Junji
Shikata, and Yohei Watanabe, editors, PKC 2022, Part II, vol-
ume 13178 of LNCS, pages 347–378. Springer, Heidelberg, March
2022.

[PW23] Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-
round multi-signatures from non-interactive assumptions. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 597–627. Springer, Hei-
delberg, April 2023.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryp-
tosystems. Communications of the Association for Computing
Machinery, 21(2):120–126, February 1978.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimp-
ton. Careful with composition: Limitations of the indifferen-
tiability framework. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer,
Heidelberg, May 2011.

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-
possession: Securing multiparty signatures against rogue-key at-
tacks. In Moni Naor, editor, EUROCRYPT 2007, volume 4515
of LNCS, pages 228–245. Springer, Heidelberg, May 2007.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Gilles Brassard, editor, CRYPTO’89, volume 435
of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[Sch11] Sven Schäge. Tight proofs for signature schemes without random
oracles. In Kenneth G. Paterson, editor, EUROCRYPT 2011,

124

volume 6632 of LNCS, pages 189–206. Springer, Heidelberg, May
2011.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryp-
tosystems based on pairing. In The 2000 Symposium on Cryp-
tography and Information Security, Japan, January 2000.

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-
key identification schemes based on multivariate quadratic poly-
nomials. In Phillip Rogaway, editor, CRYPTO 2011, volume
6841 of LNCS, pages 706–723. Springer, Heidelberg, August
2011.

[STV+16] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky,
Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi,
and Bryan Ford. Keeping authorities “honest or bust” with
decentralized witness cosigning. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 526–545. Ieee, 2016.

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-
signature schemes from linear hash functions. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 628–658. Springer, Heidelberg, April 2023.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 288–303.
Springer, Heidelberg, August 2002.

[Wat05] Brent R. Waters. Efficient identity-based encryption without
random oracles. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May
2005.

[WS07] J. Wu and D.R. Stinson. An efficient identification protocol
and the knowledge-of-exponent assumption. Cryptology ePrint
Archive, Report 2007/479, 2007. https://eprint.iacr.org/

2007/479.

[WSQL08] Zecheng Wang, Taozhi Si, Haifeng Qian, and Zhibin Li. A cdh-
based multi-signature scheme with tight security reduction. In
Proceedings of the 9th International Conference for Young Com-
puter Scientists, ICYCS 2008, Zhang Jia Jie, Hunan, China,
November 18-21, 2008, pages 2096–2101. IEEE Computer Soci-
ety, 2008.

125

https://eprint.iacr.org/2007/479
https://eprint.iacr.org/2007/479

[Yan18] Naoto Yanai. Meeting tight security for multisignatures in the
plain public key model. IEICE Trans. Fundam. Electron. Com-
mun. Comput. Sci., 101-A(9):1484–1493, 2018.

[Zha22a] Mark Zhandry. Augmented random oracles. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part III, vol-
ume 13509 of LNCS, pages 35–65. Springer, Heidelberg, August
2022.

[Zha22b] Mark Zhandry. To label, or not to label (in generic
groups). In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part III, volume 13509 of LNCS, pages 66–96.
Springer, Heidelberg, August 2022.

[ZZK22] Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz. An analysis
of the algebraic group model. In Shweta Agrawal and Dong-
dai Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of
LNCS, pages 310–322. Springer, Heidelberg, December 2022.

126

List of Publications

Journal Paper

[1] Kaoru Takemure, Yusuke Sakai, Bagus Santoso, Goichiro Hanaoka,
Kazuo Ohta, “More Efficient Two-Round Multi-Signature Scheme with
Provably Secure Parameters for Standardized Elliptic Curve”, IEICE
Transaction on Fundamentals of Electronics, Communications and Com-
puter Sciences, Vol. E107-A, No.7, pp.-, Jul. 2024. (to appear, total
number of pages: 24)

[2] Kaoru Takemure, Yusuke Sakai, Bagus Santoso, Goichiro Hanaoka,
Kazuo Ohta, “Achieving Pairing-Free Aggregate Signatures using Pre-
Communication between Signer”, IEICE Transaction on Fundamen-
tals of Electronics, Communications and Computer Sciences, 104-A(9):
1188-1205 (2021).

Refereed Conference Paper

[3] Kaoru Takemure, Yusuke Sakai, Bagus Santoso, Goichiro Hanaoka,
Kazuo Ohta, “Achieving Pairing-Free Aggregate Signatures using Pre-
Communication between Signers”, Provable and Practical Security (ProvSec2020).
Lecture Notes in Computer Science, vol 12505.

Preprint

[4] Goichiro Hanaoka, Kazuo Ohta, Yusuke Sakai, Bagus Santoso, Kaoru
Takemure, Yunlei Zhao, “Cryptanalysis of Aggregate Γ-Signature and
Practical Countermeasures in Application to Bitcoin”, Cryptology ePrint
Archive, Report2020/1484.

127

Non-Refereed Conference Papers and Posters

[5] 竹牟禮 薫, バグス サントソ,“任意の環におけるイデアル格子問題に
基づいた本人確認方式”, 信学技報Vol.118, No.478, pp39-44, 2019.

[6] 竹牟禮薫,バグスサントソ,荒井嵩博, “任意の環におけるイデアル
格子問題に基づいた本人確認方式”, 2019年暗号と情報セキュリティ
シンポジウム(SCIS2019), 滋賀, 2019年1月.

[7] 竹牟禮 薫, 坂井 祐介, Bagus Santoso, 花岡 悟一郎, 太田 和夫, “事前
通信モデルにおけるペアリングを用いない集約署名”, 2020年暗号と
情報セキュリティシンポジウム(SCIS2020), 高知, 2020年1月.

[8] 竹牟禮 薫, 坂井 祐介, バグス サントソ, 花岡 悟一郎, 太田 和夫, “帰
着ロスを考慮したパラメタの下でより効率的な2ラウンド多重署名
方式”, 2023年暗号と情報セキュリティシンポジウム(SCIS2023), 福
岡, 2023年1月.

[9] 横田 明卓, 竹牟禮 薫, Bagus Santoso, “新たなNP困難なMorphism
of Polynomials問題に基づいた本人確認方式”, 2023年暗号と情報セ
キュリティシンポジウム(SCIS2023), 福岡, 2023年1月.

[10] Kaoru Takemure, Bagus Santoso, “Concurrently Secure Identification
Schemes Based on the Hardness of Ideal Lattice Problems in all Rings
and a General Simulatable Sampling”, 2019年情報理論とその応用シ
ンポジウム(SITA2019), 鹿児島, 2019年11月.

128

	Introduction
	Backgrounds
	Digital Signatures
	Multi-Signatures

	Concrete Security
	Concrete Security and Tightness
	Benefits for Efficiency and Reliability of Implementation

	Motivation
	Our Contribution
	Multi-Signatures Based on Other Computational Problem
	Organization

	Preliminaries
	General Notations
	Discrete Logarithm
	Problems and Assumptions
	Randomizing Algorithm of (non-)DH Tuple

	General Forking Lemma
	Definition of Multi-Signatures
	Syntax
	Correctness
	Unforgeability
	Slightly Weak and Strong Unforgeability

	Discrete-Logarithm-Based Multi-Signatures
	Schnorr Signature Scheme
	Rogue Key Attack and Restricted Key Setup Models
	Three-Round DL-Based Multi-Signatures
	Bellare-Neven Scheme
	MuSig`-DL

	Two-Round DL-Based Multi-Signatures
	Modified BCJ
	MuSig`-DN
	MuSig2
	HBMS
	Pan-Wagner Schemes

	Proof of mBCJ-security

	New Two-Round Multi-Signature Schemes with Small Reduction Loss
	Technical Overview
	Difficulty to Construct Two-Round Schemes and Existing Techniques
	DDH-Based Lossy Identification
	Naive Approach and Difficulty
	Our Solutions

	Proposed Scheme HBMSDDH`-1
	Correctness of HBMSDDH`-1
	Intuition of Security Proof
	Formal Security Proof for HBMSDDH`-1
	Improved Scheme HBMSDDH`-2
	Construction of HBMSDDH`-2
	Security Proof of HBMSDDH`-2

	Analysis of Efficiency
	Comparison in Concrete Security
	Estimation of the Underlying Group Size
	Comparison

	Computation Time
	Environment and Setting
	Results
	Comparison

	Communication Time

	Discussion
	Conclusion
	References

