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We numerically study the dynamic state of a low-Reynolds-number turbulent channel flow
from the viewpoints of symbolic dynamics and nonlinear forecasting. A low-dimensionally (high-
dimensionally) chaotic state of the streamwise velocity fluctuations emerges at a viscous sublayer
(logarithmic layer). The possible presence of the chaotic states is clearly identified by orbital
instability-based nonlinear forecasting and ordinal partition transition network entropy in com-
bination with the surrogate data method.

I. INTRODUCTION

Since the outstanding discovery of Lorenz chaos [1] rep-
resenting the atmospheric turbulent flow, nonlinear time
series analysis based on dynamical systems theory has
steadily been developed over the last twenty years and be-
come a valuable tool for revealing the complex dynamics
appearing in several different scientific disciplines, with
possible applications in biology, medicine, electrical, and
mechanical engineering [2–4]. It has undoubtedly con-
stituted a firm platform for extracting the deterministic
chaos in randomly fluctuating physical quantities, focus-
ing mainly on two important features: (i) fractal as a self-
similarity structure and (ii) short-range forecastability
and long-range unforecastability associated with strong
sensitivity to initial conditions in dynamical systems.
Orbital-instability-based forecasting [5] ensures a reason-
able performance in the short-range prediction of chaotic
dynamics [2]. This method can be considered an inverse
approach in the sense that underlying dynamics is ex-
pressed by a forecasting model constructed from the ob-
served temporal behavior. Gotoda and co-workers have
shown that orbital-instability-based forecasting method
(OIFM) incorporating the updated library data in phase
space, which is an extended version of the Sugihara–
May algorithm [5], is valid for extracting the short-range
predictability and long-range unpredictability features of
chaotic dynamics in various complex nonlinear phenom-
ena [6–9].
Recent substantial breakthroughs in ordinal-pattern-

based analysis in terms of symbolic dynamics [10], have
recently opened up a new way to explore the determin-
istic nature of complex spatiotemporal dynamics. The
most fundamental quantity obtained by ordinal-pattern-
based analysis is permutation entropy [11] considering
the probability distribution of ordinal patterns in a time
series. Permutation entropy enables us to quantify the
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randomness of aperiodic fluctuations in a wide spectrum
of fluid systems [7, 12–15]. On the basis of the Bandt–
Pompe concept [11], an ordinal-pattern-based complex
network in accordance with the Markov chain, namely,
the ordinal partition transition network (OPTN), has
been proposed by Small and co-workers [16, 17]. The
network consists of nodes (ordinal patterns) and links be-
tween nodes (transition probability between ordinal pat-
terns). Gotoda and co-workers [8, 9, 18, 19] have more
recently shown the applicability of OPTN entropy for
examining complex dynamic behaviors in various chemi-
cally reacting fluids.
Wall-turbulence, which is the most well-recognized

class of shear turbulent flow, possesses strong aperiodic
velocity fluctuations in both space and time, in accor-
dance with Kolmogorov’s five-third scaling law in power
spectra. Direct numerical simulation (DNS) of wall-
turbulence has led to the identification of a rich variety of
prominent coherent structures involving high-low-speed
streaks and hairpin vortices [20]. The discovery of these
coherent structures implies that it is inadequate to de-
scribe aperiodic fluctuations in a wall-turbulent flow as
an entirely random events. The identification of a deter-
ministically chaotic state in seemingly random-like fluid
motions is a challenging and longstanding topic in con-
temporary fluid physics and various disciplines of nonlin-
ear science. Thus far, many previous studies [21–26] us-
ing DNS have revealed the details of coherent structures
in a wall-turbulent flow in a broad range of Reynold num-
bers. However, notwithstanding the progress in DNS over
a long period of wall-turbulent flow research, the dynamic
state and short-range forecastability of the flow velocity
field still remain unexplored, even for a low-Reynolds-
number turbulent channel flow, from the viewpoints of
symbolic dynamics and nonlinear forecasting.
Our main aim in this study is to clarify the dynamic

state and short-range forecastability of streamwise
velocity in a low-Reynolds-number turbulent channel
flow, focusing on two sophisticated analytical methods:
OIFM and OPTN. Recent advances in machine learning
technology have led to deserve time series prediction
methods such as long short-term memory networks [27]
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and reservoir computing (RC) [28, 29]. These supervised
machine learning methods belong to a subclass of
recurrent neural networks. The applicability of RC as
the model-free prediction of chaos has been highlighted
in many numerical studies on various fluid dynamics
and related nonlinear dynamical systems [30–41]. In
this study, we compare the forecastability of streamwise
velocity obtained by OIFM and that obtained by RC.

II. NUMERICAL COMPUTATION AND
ANALYTICAL METHODS

We perform the DNS of a fully developed and in-
compressible turbulent channel flow under a constant
pressure gradient condition. We solve the same govern-
ing equations, that is, the continuity and Navier–Stokes
equations, as those in a previous study [42]. The no-
slip boundary conditions are imposed on the flow veloc-
ities on walls, and the periodic boundary conditions are
applied in the streamwise and spanwise directions. All
the simulations start from the fully developed and tur-
bulent velocity field. The DNS code is based on Ref. [42]:
for the spatial discretization, energy-conservative second-
order finite difference method; for the time integra-
tion, the low-storage third-order Runge–Kutta/Crank–
Nicolson method: for the velocity-pressure coupling, a
higher-order SMAC-like method. A fast Fourier trans-
form and a tridiagonal matrix solver are used for the
pressure Poisson equation in the homogeneous and wall-
normal directions, respectively. The friction Reynolds
number Reτ (= u∗

τδ
∗/ν∗, where ν∗ is the kinematic vis-

cosity, δ∗ is the channel half-width, and u∗
τ is the fric-

tion velocity) is set to be 180 as a representative low-
Reynolds-number turbulent flow, and corresponds to the
bulk Reynolds number Reb(= 2u∗

bδ
∗/ν∗, where u∗

b is the
bulk mean velocity.) ≈ 5600. We set the computational
domain (= Lx × Ly × Lz), number of grid points (=
Nx×Ny×Nz), and the time resolution ∆t+ to 4π×2×π,
256 × 96 × 128, and 9 × 10−2, respectively. We confirm
that the profiles of statistics, that is, the mean velocity
profile and the root-mean-square of the velocity fluctu-
ations, are in good agreement with the DNS database
obtained by Moser et al. [22]. Note that the viscous sub-
layer corresponds to y+ < 6, the buffer layer corresponds
to 6 ≲ y+ ≲ 30, and the logarithmic layer corresponds
to y+ > 30.
We estimate the OPTN entropy [17, 18] of streamwise

velocity

St = −
De!

2∑
i=1

De!
2∑

j=1

wij lnwij/ lnDe!
2

in this study. The components of the adjacency ma-
trix wij correspond to the transition probability from
a permutation pattern of streamwise velocity πi(i =

1, 2, ..., De!) to πj(j = 1, 2, ..., De!). Nomi et al. [9] have
recently proposed a method to determine a suitable value
of De, focusing on the possible presence of transition pat-
terns in the OPTN. Missing permutation (ordinal) pat-
terns [43] of a time series appear for deterministic dynam-
ics, whereas they do not appear for stochastic dynamics
[44]. They have reported that missing transition patterns
appear at De ≥ 4 for Gaussian noise and Brownian mo-
tion [9], which means that De should be set to 3 for the
construction of the OPTN. On this basis, we set De to
3 for the estimation of St. If the temporal evolution of
the streamwise velocity u is monotonically increasing or
decreasing, St takes zero, observing only one transition
permutation pattern. If the temporal evolution of u is
governed by a completely random process, St takes unity
owing to the formation of a uniform transition probabil-
ity distribution for ordinal patterns. In this work, we use
the surrogate data method [45] for u, which is a popu-
lar statistical test for validating nonlinear determinism in
an irregular time series. The null hypothesis of surrogate
data we considered in this study is that a Gaussian lin-
ear random process governs the irregular components of
a time series, preserving the probability density function
and power spectra of the original time-series data.
For the OIFM [7], u is first divided into two parts:

the library data and reference data set. After con-
structing the De-dimensional phase space consisting of
u = (u(t+i ), u(t

+
i + τ+e ), ..., u(t+i + τ+e (De − 1))) from the

library data, we obtain the predicted point û(t+f + T+)
of a trajectory in the phase space

û(t+f +T+) =

∑K
k=1 u(t

+
k + T+)exp(−∥u(t+f )− u(t+k )∥)∑K

k=1 exp(−∥u(t+f )− u(t+k )∥)
,

where u(t+k ) is a point near the final point u(t+f ) of the

trajectory in the phase space. Here, τ+e is the delay time
in the phase space, T+ is the time step, and K is the
number of nearby points. The temporal evolution of the
predicted û(t+f + T+) is inversely proportional to û(t+f +

T+). An important point in this method is the update of
the library data to continue the capturing of determinism
in the current temporal dynamics, maintaining the size
of library data constant. We systematically change the
duration t+p of the actual temporal evolution of u added

to the library data, where t+p corresponds to predictable
time. We examine the short-range predictability feature
by estimating the correlation coefficient C between the
predicted û(t+f + T+) and the reference u(t+f + T+) as a

function of t+p . In accordance with a numerical study [44]
on missing patterns of a time series and the false nearest
neighboring method [46], De is set to 5 for the OIFM.
Note that the suitable value of De is not identical to that
for the OPTN on the basis of a type of ordinal pattern
which one has to consider. In a preliminary test, we
systematically varied K from 20 to 100. The values of K
within this range were found to have little effect on C. We
set K to 50 in this study. Both τ+e and T+ are set to 1.08
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FIG. 1. (A) Temporal evolution of streamwise velocity u. (B)
Instantaneous streamwise velocity field u on x-z plane. (a) y+

= 4 and (b) y+ = 35.
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FIG. 2. Frequency distributions of the OPTN entropy St for
the original and surrogate data. (a) y+= 4 and (b) y+ = 35.
Here, the sampling interval τ+ = 1.08.

so as to sufficiently capture visible determinism in terms
of the statistical complexity [47] and orbital instability
in phase space. Note that u at 0 ≤ t+ ≤ 5000 are used
for the library data, whereas those at 5000 < t+ ≤ 9000
are used as reference data for the predicated u.
For RC, we first construct an input layer, a reservoir

network, and a linear output layer. The update equation
of the state vector r of the reservoir network is defined
as

r(t+i +T+) = (1−α)r(t+i )+α tanh[Wr(t+i )+Winu(t
+
i )],

where u is the input vector of streamwise velocity and
α is the leakage rate. Here, 0 < α ≤ 1. We use u at

0 ≤ t+ ≤ 5000 for training the reservoir computer. The
matrices W and Win represent the weight of the internal
connection of reservoir nodes and the weight of the input,
respectively. W consists of the Dr×Dr adjacency matrix
and includes a sparse random matrix with nonzero com-
ponents. Similarly to a recent study [36], Dr = 1500
and the number of nonzero components is set to 20% of
the total number of the adjacency matrix elements (=
450000). The elements in the matrix W have a uniform
distribution. The output vector v of the reservoir system
is taken to be a linear function of the reservoir state and
the input vector.

v
(
t+i

)
= Wout

 1
u
(
t+i

)
r
(
t+i

)
 ,

where Wout is the solely adjusted matrix in the training
stage. On the basis of Tikhonov–Arsenin regularization
[48], we optimize Wout by minimizing the error between
the output data v and the training data vd (see Ref. [36]
on the mathematical formula of Wout and the setting
value of the regularization coefficient). Here, u

(
t+i

)
=(

1;u
(
t+i

))
and vd

(
t+i

)
= u

(
t+i + T+

)
. We use u(t+i ) =

(1;uo(t
+
i )) every t+p in the forecasting process and finally

obtain the output vector v(t+i ) = up(t
+
i +T+), where the

subscript o(p) denotes the original (predicted) data. This
forecasting process is adopted for 5000 < t+ ≤ 9000.

III. RESULTS AND DISCUSSION

Figure 1 shows the temporal evolution of the stream-
wise velocity u at y+ = 4 and 35, together with the
instantaneous flow velocity field on the x-z plane. u
exhibits aperiodic fluctuations in the viscous sublayer
during a wall-turbulent flow. This is strongly associ-
ated with the formation of low-high-speed streaks. The
structural destabilization of these streaks and the sub-
sequent formation/collapse of streamwise vortices via a
three-dimensional nonlinear process give rise to coherent
structures with various scales and strengths in the buffer
layer. The irregularity and amplitude of u increase no-
tably in the logarithmic layer owing to the complex spa-
tiotemporal dynamics of the coherent structures. The
encompassing physical mechanism by which these com-
plex behaviors emerge is mainly explained by the self-
sustaining process of wall-turbulence [20].
Figure 2 shows the frequency distributions of the

OPTN entropy St for the original and surrogate data
at y+= 4 and 35. In this study, the number of surrogate
data sets is 10000. St for the original data is approxi-
mately 0.53 (0.81) at y+ = 4 (y+ = 35). The value of St

for the original data at y+ = 4 does not correspond to
those for all the surrogate data sets, which clearly shows
the rejection of the hypothesis. In contrast, the value of
St for the original data at y+ = 35 coincides with those of
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FIG. 3. (a) Temporal evolutions of the original streamwise
velocity uo and predicted streamwise velocity up at y+= 4,
together with (b) power spectrum and (c) probability density
distribution. Here, the sampling interval τ+ = 1.08.

6 from 10000 surrogate data sets. However, the hypoth-
esis can be sufficiently rejected with 99.9% reliability as
determined by a t-test of estimates of St for the surrogate
data sets. This indicates the possible presence of a non-
linear deterministic process at both the viscous sublayer
and logarithmic layer.

Figure 3 shows the temporal evolutions of the origi-
nal and predicted u at y+= 4, together with the power
spectrum and probability density distribution. Here, τ+

= 1.08. Note that the original (predicted) u denotes uo

(up). up at y+= 4 nearly coincides with that of uo. The
power density of uo in terms of f+ exhibits a scaling-
law decay with the exponent –5/3; this is an important
feature of a well-developed turbulent flow. The power
density distribution of up coincides with that of uo in a
wide range of frequencies. The probability density dis-
tribution of up is also in good agreement with that of
uo. Note that we observe a similar coincidence of the
power spectrum and probability density distribution for
up at y+= 35. These findings show that the OIFM can
reproduce the power spectrum and probability density
distribution of streamwise velocity in both the viscous
sublayer and logarithmic layer.

Figure 4(a) shows the variation in the correlation co-
efficient C between uo and up at y+ = 4 and 35 as a
function of the predicable time t+p . Here, τ+ is set to

1.08. For y+ = 4, C at t+p = 1.08 is approximately 0.99
with high predictive accuracy. It decreases exponentially
with increasing t+p , indicating the regime of short-range
forecastability and long-range unforecastability. This is
a typical feature of chaos based on orbital instability in
phase space. A similar trend is obtained for y+= 35,

(a) (b)

RC
OIFM

FIG. 4. (a) Variation in the correlation coefficient C between
uo and up at y+ = 4 and 35 as a function of the predicable
time t+p for the OIFM. (b) Variation in the predicable time
t+p,c in terms of y+ for the OIFM and RC. Here, the sampling
interval τ+ = 1.08.

showing a slight decrease in predictive accuracy in the
entire range of t+p . The results shown in Figs. 2–4(a)
demonstrate that the dynamic state of streamwise ve-
locity represents the low- and high-dimensional chaotic
states at the viscous sublayer and logarithmic layer, re-
spectively. Low-dimensional chaos can be produced by
numerically solving high-dimensional dynamical systems
with infinity freedom such as the Navier–Stokes equa-
tion. However, no numerical or theoretical studies have
extracted low-dimensional chaos in a well-developed wall-
turbulent flow. The advanced methodologies based on
nonlinear forecasting and complex networks we employed
in this study enables us to find hidden low-dimensional
chaos in a well-developed wall-turbulent flow. The vari-
ation in the predictable time t+p,c in terms of y+ for the

OIFM and RC is shown in Fig. 4(b). Here, t+p,c is de-

fined as t+p at which C is 0.9. t+p,c for the OIFM is ap-

proximately 8.6 at 1 < y+ ≲ 5 and monotonically de-
creases to 2.2 at y+ higher than 35 near the boundary
between the buffer and logarithmic layers. It remains
nearly unchanged at y+ ≳ 31 at the logarithmic layer.
The most interesting and important point to emphasize
here is that the predicable time at y+ = 4(y+ = 35)
is approximately 100 (20) times the time resolution of
DNS. This means that the OIFM has potential for use
in predicting the streamwise velocity in a wide variety of
layers such as the viscous sublayer, buffer, and logarith-
mic layers in a low-Reynolds-number channel flow. In
contrast, t+p,c for RC is shorter than that for the OIFM

at y+ ≲ 10 and corresponds to that for the OIFM in
the logarithmic layers. An important point to note here
is the decrease in the predictability of u in the viscous
sublayer and buffer layer. Many numerical studies have
reported that RC is well suited for the prediction of low-
dimensional and high-dimensional chaos. In particular,
Chen et al. [35] have shown that for the Lorenz chaos,
the geometric metrics including the correlation dimension
and the multiscale entropy are nearly identical between
the original reference data and the predicted data. In
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FIG. 5. Variation in the correlation coefficient C between uo

and up at t+p = 1.08 as a function of the sampling interval τ+

at different y+.

(a)

(b)

FIG. 6. Variation in the OPTN entropy Sp for (a) uo and
(b) up as a function of the sampling interval τ+ at different
vertical y+ locations.

this sense, RC ensures sufficient prediction performance
of low-dimensional chaos. We do not adopt any potential
recurrent neural networks in this study, but at least, RC
does not necessarily yield a superior prediction of low-
dimensional chaotic streamwise velocity fluctuations in a
wall-turbulent flow. This enables us to reaffirm the sig-

nificance of the temporal evolution of orbits in the phase
space on the basis of the embedding theorem [49].

Figure 5 shows the variation in C between uo and up

at t+p = 1.08 as a function of the sampling interval τ+

for different y+ locations. C decreases with τ+ at all
y+ locations, which indicates that the coarse-graining of
u reduces the predictability of u. C takes high values
at 4 ≤ y+ ≲ 8, with high short-term forecastability of
streamwise velocity in the viscous sublayer. The high
short-term forecastable region can be arranged by uτ and
corresponds to the scaling region in the root-mean-square
of u. The profile of the root-mean-square does not nearly
change at y+ ≲ 8 regardless of the friction Reynolds
number [22, 26]. This provides us an important phys-
ical interpretation that the high short-term forecastabil-
ity of the streamwise velocity explains the emergence of
the universal streak structure without the dependency
on the Reynolds numbers. The variations in St for uo

and up are shown in Fig. 6 as a function of τ+ at dif-
ferent y+ locations. St for the original data increases
with τ+ at all y+ locations. On the basis of the results
shown in Fig. 5, the decrease in the predictability of u
in terms of τ+ is strongly associated with the high ran-
domness due to the coarse-graining of u. St significantly
decreases at 4 ≤ y+ ≲ 8, indicating that the dynamic
behavior of streamwise velocity possesses a high deter-
minism in the viscous sublayer. An important finding
in Fig. 6 is that the distribution of St for up shows a
fair correspondence to that for uo. This clearly shows
that up preserves the randomness of uo. Thus far, the
root-mean-square, power spectrum, and probability den-
sity function have been used to evaluate the predictive
performance of wall-turbulent flows. The results shown
in Fig. 6 also indicate that OPTN entropy is helpful in
assessing predictability in terms of randomness.

The forecasting of various physical quantities is a clas-
sical problem in time series analysis in the field of nonlin-
ear physics, but the conceptual importance of short-term
prediction in itself is not limited to cases in which the
control of complex flow fields is desired. On the other
hand, the applicability of the prediction method in the
framework of dynamical systems theory still remains con-
troversial, particularly when the system is governed by
high dimensionality. Wall-turbulence is a typical class of
high-dimensional systems emerging with a rich variety of
spatiotemporal dynamics with coexisting low- and high-
dimensional chaotic states. Although this study is re-
stricted to a low-Reynolds-number condition, the OIFM
has potential applications to predicting the complex dy-
namic behavior of streamwise velocity in wall-turbulence.
Finally, we should consider the following point related to
dynamical systems producing deterministic chaos. Vari-
ous dynamical systems [50–54] that can be described by
nonlinear ordinary differential equations, which were de-
rived for wall-turbulence, can produce a wide spectrum
of dynamics from limit-cycle oscillations to intermittency
and deterministic chaos. Such dynamical systems are
simplified and one should keep in mind that the forma-
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tion of a chaotic state is rather limited in actual turbu-
lent systems. However, despite their simplicity, we need
to clarify the forecastability of deterministic chaos pro-
duced by dynamical systems, to obtain deeper insight
into the inherent forecastability of streamwise velocity
obtained by the OIFM. Comparison of the forecastabil-
ity of streamwise velocity obtained by DNS with that of
deterministic chaos is required in our future work.

IV. SUMMARY

We have studied the dynamic state and predictability
of streamwise velocity in a low-Reynolds-number turbu-
lent channel flow obtained by DNS from the viewpoints
of symbolic dynamics and non-linear forecasting. A
low-dimensional chaotic state of streamwise velocity
fluctuations emerges at a viscous sublayer, whereas
it changes to a high-dimensional chaotic state at the
logarithmic layer. The possible presence of these chaotic

states is clearly identified by the OPTN entropy in
combination with the surrogate data method and OIFM.
The predicable time of the low-dimensional chaotic state
in streamwise velocity at the viscous sublayer is approxi-
mately 100 times the time resolution of DNS. The OIFM
has potential for use in predicting the chaotic streamwise
velocity at all the layers from the viscous sublayer to the
logarithmic layer under a low-Reynolds-number channel
flow.
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