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和文概要 
 
 
現在の固定的な周波数割り当てに起因する周波数資源不足問題の解決法と

して、コグニティブ無線の活用が提案されている。コグニティブ無線性能改善の

ため、ダイナミックスペクトルアクセスおよびソフトウェア無線が大きな役割を

果たすと期待されている。ダイナミックスペクトルアクセスを実現するための鍵

となる技術の一つとして、スペクトルセンシングがある。スペクトルセンシング

は、目的の周波数帯域において、プライマリユーザの存在をスキャンして検出す

ることで実現することができる。 
本論文は二つのパートに分けることができる。一つ目のパートは、スペク

トルセンシングの理論的検討であり、二つ目のパートは、SDR技術によるスペク

トルセンシングの実装に関するものである。理論的研究のパートでは、検出性能

に対するチャネルの影響を軽減することを目標とする。無線通信チャネルではプ

ライマリ信号が変動し、その結果としてコグニティブユーザがプライマリユーザ

を検出することを難しくしている。本研究ではこの問題を解決するために、コグ

ニティブユーザの検出器に、複数アンテナを用いたダイバーシティ手法を用いる

ことを注目している。コグニティブ無線環境では既存システムが分からないため、

チャネル推定ができないことから、コグニティブデバイスは低いSNRに耐性が必

要となる可能性があり、このことがプライマリユーザ検出をさらに難しくしてい

る。従来のダイバーシティ手法、および上記に記載されている条件も考慮し、本

研究ではプライマリユーザをブラインド検出するための二つのダイバーシティ合

成手法を提案している。最初の合成手法は、EGCの考え方に基づいた同一利得の

ウェイトを用いた合成手法である。ここでは、ウェイトを決定する際にチャネル

情報を使用できないことを注意する必要がある。本手法では、誤警報確率を設定

するために、理論的に閾値を求める手法についても提案している。もう一つの手

法はMRCの考え方に基づいた合成手法である。この手法では、受信信号共分散

に対する固有ベクトルに対応した振幅及び位相が変化するウェイトを用いる。双

方の手法共に、理論的および数値的に解析を行う。シミュレーション結果により、

提案手法ではチャネル情報を使用しなくてもプライマリシステムの検出性能が改

善できることが確認できる。 
本研究で検討しているコグニティブ無線は、GNU Radioと呼ばれるソフト

ウェア無線技術の活用が実用化の重要な技術と考えられている。そこで、本論文

ではこの実装技術についても検討を行っている。最初に、GNU Radioデバイスを

用いた通信システムを構築した。これを活用し、本論文の前半部分の実装として、

スペクトル検出センサーを作成した。このセンサーを使い、GNU Radioを用いた

二つの平均化されたスペクトルセンシングの感度性能について導出した。一つは

サンプル数を変化させた結果であり、もう一方は受信信号のSNRを変化させた場

合の性能である。 
 



Abstract

Due to the scarcity of the frequency spectrum and to overcomethe static spectrum
access problems cognitive radio has been proposed. Dynamicspectrum access
and software defined radios are expected to play a main role inimproving the
performance of a cognitive radio system. One of the primary keys for realizing the
dynamic spectrum access is spectrum sensing. Spectrum sensing can be achieved
by scanning and detecting the primary users’ existence in the targeted frequency
bands. We divide this thesis into two parts; one is the theoretical research of
spectrum sensing, while the other is an implementation partof spectrum sensing
using a proposed SDR technology.

As for the theoretical part we aimed for mitigating the channel effect on the de-
tection performance. Wireless channel fluctuates the primary signal which makes
it even more difficult for the cognitive users to detect the primary users. We fo-
cused in solving this problem by utilizing the diversity schemes using multiple
antennas at the cognitive user detector.

Furthermore, we consider the fact that in cognitive radio environment cogni-
tive devices might suffer a low SNR problem which makes the task even harder,
because we cannot estimate the channel. Studying the conventional diversity
schemes and considering the mentioned constrains we proposed two schemes
for blindly detecting the primary users’ signals with diversity combining. The
first combining scheme is based on the EGC idea of using an equal gain weights
for combining, while keeping in mind, not to use the channel information when
deciding the weights. A theoretically derived threshold has been proposed for
fixing the false alarm probability of this scheme. The secondproposed scheme
is based on the MRC weights, where it changes the amplitude andphase of the
weights corresponding to the eigenvectors of the received signal’s covariance ma-
trix. Both schemes have been analyzed theoretically and numerically. Simulation
results show the improvement added to the system’s detection performance using
the proposed schemes without knowing about the channel state information.

In the practical part of this research we utilize an important candidate for real-
izing software defined radio technology called GNU Radio system. At the begin-
ning we build a communication system using GNU Radio devices.Then we cre-
ate a spectrum sensor device as an implementation for the first part of this thesis.
We derived the sensitivity performance of this GNU Radio device by two means.
Once by changing the number of samples used in detection, then, by changing the
SNR level of the received signal.
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Chapter 1

Introduction

Recently Wireless communication applications have been developing rapidly. Most
of these applications, such as WLAN, WiMAX, LTE and so on, havea fixed as-
signed spectrum bands. This create two main problems, one isthe scarcity of the
frequency spectrum, and the other is the variation in temporal and geographical
insufficient utilization of the fixed spectrum bands. To overcome this problem
Cognitive Radio have been proposed as a solution by realizing dynamic spectrum
access (DSA).
Spectrum sensing is crucial to achieve dynamic spectrum access in cognitive ra-
dio. Since it is important to sense a very low signal power (around -100 dBm), we
had to find a robust method to achieve this sensitivity using the available sensing
approaches.
Our main concern was to utilize multiple antennas signal processing schemes for
improving the sensing performance. Diversity schemes are one of the best so-
lutions to overcome the fading channel using multi-antenna. However, to utilize
one of the multi-antenna processing schemes (as diversity)in cognitive radio en-
vironment we face the problem of estimating the channel state information (CSI)
of the primary user’s signal. To prevail over this problem weuse blind diversity
combining schemes.
Based on the two primary diversity combining schemes, EGC andMRC, we pro-
posed two combining schemes to be utilized in blind detection without needed
knowledge about CSI. The first one is based on EGC, and is called the quantiza-
tion weights (QUAL) combining scheme. QUAL scheme results in a non fixed
PFA, so we have to derive a new threshold to fix the realPFA. The other one is the
EVD scheme, which is based on MRC. As the evaluation results will show, these
two schemes have almost the same performance in low SNR region.
After we finish the blind detection part, we will demonstratea new technology
on wireless communication systems called GNU Radio. GNU Radiois a soft-
ware defined radio (SDR) candidate for implementing cognitive radio systems. It
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uses C++ and Python with the interpreter compiler SWIG to interface between the
software world and the hardware radio. Using GNU Radio we built two systems.
One is a transceiver system with a lost packets recovery functionality. The other
is a cognitive radio sensor using energy blind detection. Weevaluated both sys-
tems and demonstrate how they work in the result section. As for the sensor, we
managed to evaluate the sensitivity and probability of detection of the GNU Radio
hardware device.
The rest of the paper is organized as follows. At first, in chapter 2 we give a
fast overview about cognitive radio. Then chapter 3 shows important Probability
Density Function (PDF) statistics. After that, in chapter 4we explain some basics
for spectrum sensing and detection theory. Chapter 5 is aboutwireless channels.
At the first part of this chapter we explain the wireless channel’s problems, while
in the second part some solutions for these problems are shown. Finally, we get
to chapter 6 at which we explain and analyze the proposed schemes. In chapter
7 the simulation results of the proposed schemes are shown and discussed. The
practical part of the research about GNU Radio is explained inchapter 8. In this
chapter we give an overview about GNU Radio hardware and software, then we
explain both of our systems, followed by the results. Finally appendix A shows
how to install GNU Radio in your PC.
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Chapter 2

Cognitive Radio

Due to the scarcity of the frequency spectrum and the variation of temporal and
geographical utilization of the spectrum, cognitive radiohave been proposed as a
key technology to overcome those impediments. A cognitive radio system can be
defined as an intelligent wireless communication system that is aware of its envi-
ronment and uses some learning algorithms to learn from the surrounding radio
environment and adapts its parameters to adequate with it. Cognitive radio (CR)
systems still do not have a clear definition, or an exact functions. The mentioned
definition is one among many definitions of CR. For a simple CR there are some
functions which can be extracted from the famous cognitive cycle, fig.2.1.

• We will simply discuss about this figure, starting from the spectrum sens-
ing step. This is our research subject, Detecting unused frequency bands
and spectrum holes which can be shared without harmful interference with
other users (spectrum holes are a primary user’s (PU) frequency bands, how-
ever, at a particular time and specific geographic location,these bands are
not being utilized). This function (Spectrum Sensing) can be implemented
through many approaches as :

1. Transmitter Detection: is based on detecting the weak signals of the
primary transmitters. In this paper we consider this kind ofdetection
to reach our goal.

2. Cooperative Detection: incorporates the information from multiple
cognitive users (CU) to improve the PU detection performance. This
kind of detection can be implemented using one of two technologies.
Centralized and distributed cooperative detection. The advantage of
this type of detection is it’s ability to overcome the hiddenterminal

3
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Figure 2.1: Basic Cognitive Radio Cycle

and shadowing problems.

3. Interference Temperature Detection: accounts for the cumulative RF
energy and sets a maximum level called Interference temperature. De-
pending on this level we decide whether to use the band or not.

4. Receiver Detection: detects the PU receiver instead of thePU trans-
mitter. This type of detection needs infrastructure detectors to be set.

• After explaining about spectrum sensing function we move tothe spectrum
management functionality of CR. By utilizing this function a CU should be
able to capture the best available spectrum to meet the user’s communica-
tion requirements.

• A CU should have a spectrum mobility functionality to be able to maintain a
seamless communication requirements during the transition to better spec-
trum hole.
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• Finally, the spectrum sharing step, which is necessary for aCU systems to
provide the fair spectrum scheduling method among coexisting CU users.

• Moreover, a CU system should have the ability for orientationand prioritiz-
ing by binding the observation to a previously known set of radio stimuli.

• It should also have methodologies for learning and planing from the previ-
ous experience to the future improvement of the system.

• Finally, using all the previous parameters, CU system shouldbe able to de-
cide, among the available candidates, and act, by initiating its parameters
based on its decision.

• One of the main advantages of CR system is its reconfigurability. This ad-
vantage is based on using the SDR (Software Defined Radio) platform in
CR system. In SDR system the radio”s physical layer behavior is primarily
defined using a software. Furthermore, it accepts fully programmable traffic
and control information, while at the same time it can changeits initial con-
figuration to satisfy the user requirements. Not lastly, SDRhave the ability
to support a broad range of frequencies, air interfaces, andapplication soft-
ware. One of the hardware implementation for SDR system is GNU Radio
(USRP, Universal Software Radio Peripheral). In the last chapter of this
thesis we will discuss our two implemented projects using GNU Radio and
USRP.

5



Chapter 3

Important statistics Probability
Density Functions (PDFs)

3.1 Introduction

As we have mentioned before, spectrum sensing is one of the key points to realize
dynamic spectrum access for cognitive radio. To achieve an optimized spectrum
sensing process, we have to intensely analyze the sensed data and then adjust the
detector to achieve optimal detection. Therefore, in this chapter we are going to
analyze, discuss a set of data distributions, which some of are well known, while
the others might be not widely known distributions.

3.2 Gaussian distribution

Gaussian Random Distribution (also referred to as Normal distribution) is one
of the most important distributions in the probability theory and detection theory.
Under some conditions, any random variable X consist of general distributed com-
ponents tends to have Gaussian distribution if the number ofits variables becomes
large enough (also referred to as Central Limit Theorem). Thenormal probability
density function can be expressed as

p(x) =
1√

2πσ2
exp[− 1

2σ2
(x − µ)2], (3.2.1)

where,µ is the mean andσ2 is the variance of x. As in Fig.3.2.1, the normal
distribution can be characterized by its variance and mean as, X ∼ N (µ, σ2).
Therefore, if we knewµ andσ2 of the normal distribution, we can analyze the
signal behavior. A specific case of a normal distribution in awireless communi-
cation system is AWGN (Additive White Gaussian Noise) which have zero mean

6



and unity variance. When the mean is zero the moment of normal distribution is
given by

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0
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0.16
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µ σ− µ σ+

68.3%

3µ =

Figure 3.2.1: Basic Gaussian distribution

E(xn) =

{
1.3.4 . . . (n − 1)σn n even
0 n odd

. (3.2.2)

The cumulative distribution function (CDF) for∼ N (0,1) distribution is expressed
as

Φ(x) =

∫ x

−∞

1√
2π

exp(−1

2
t2)dt. (3.2.3)

Since our concern is about detection theory (deciding the probability of false
alarm and mis detection), it is unavoidable to mention aboutthe right tail distribu-
tion of a normal random variables. The Gaussian right tail distribution is defined
as (error probability)Q(x) = 1 − Φ(x), and can be expressed as

Q(x) =

∫ ∞

x

1√
2π

exp(−1

2
t2)dt. (3.2.4)

It is known that Q function can be expressed in term of the error function as

Q(x) =
1

2
erfc(

x√
2
). (3.2.5)

Figure 3.2.2 shows the complementary of right tail probability for a Gaussian
distribution.
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Figure 3.2.2: Complementary of right-tail probability for normal distribution.

3.3 Chi-Square(Central)

The chi-square distribution straddles to both exponentialand Gaussian distribu-
tions. Chi-square PDF hasv degrees of freedom, and is given by

p(x) =

{
1

2
v
2 Γ( v

2
)
x

v
2
−1 exp(−1

2
x) x > 0

0 x < 0
, (3.3.1)

where,Γ(.) is the Gamma function. The chi-square degrees of freedom considered
to bev > 0. If we haveX =

∑v
i=1 x2

i , wherexi ∼ N (0, 1) and thexis are IID
among each other, then X follows the chi-square distribution, denoted asχ2

v. For
χ2

v we have
E(x) = v, (3.3.2)

var(x) = 2v. (3.3.3)

As for the probability of the right tail (for signal detection concern) it can be found
in [7]. It is important to notice that the distribution of theoutput of energy detector
follows chi-square distribution.
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3.4 Chi-Square (Non Central)

In the previous sub section we considered the case where thexis components
of the chi-square are∼ N (0, 1). If the random variablesxis do not have zero
mean, the output will be chi-square (Non Central), with non centrality parameter
λ =

∑v
i=1 µ2

i . From Fig.3.4.1 we can notice that for a chi-square distribution, the
larger the number of the summedxi the closer to the Gaussian distribution we are.
Non central chi-square denoted asχ

′2
v (λ), and its PDF is given by

p(x) =

{
1
2
(x

λ
)

v−2
4 exp[−1

2
(x + λ)]I v

2
−1(

√
xλ) x > 0

0 x < 0
, (3.4.1)

whereIr(u) is the modified Bessel function of the first kind. The mean and vari-
ance of chi-square non central distribution is expressed as

E(x) = v + λ, (3.4.2)

var(x) = 2v + 4λ. (3.4.3)

As for the the right-tail probability of the non central chi-square it can be
calculated using generalized Marcum Q-function as in [7].
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Figure 3.4.1: Chi-Square Non Central distribution with

3.5 Rayleigh Distribution

In wireless communication systems there are many channel models to help us
emulating the wireless channels. Depending on the channel’s time and frequency
characteristics the model changes. For example, if we consider large scale fading
or small scale fading the channel model will be different. For small scale fading
channels we can use one of four channels models depending on both time and
frequency characteristics (coherence time, coherence frequency). Based on the
channel’s coherence frequency we have flat fading and Frequency Selective fad-
ing. On the other hand, based on channel’s coherence time we classify the channel
into fast and slow fading channels. It is common in wireless communication to use
Rayleigh distribution to model the envelope of a fully scattered multi-path, with-
out direct ray received signal, which endure a flat fading channel. The Rayleigh
distribution PDF is given by

p(r) =

{
r
σ2 exp(− 1

2σ2 (r
2)) r > 0

0 r < 0
, (3.5.1)

where, r is considered as a random variable given byr =
√

x2
1 + x2

2, σ2 is the
variance for the random variablesx1 andx2. Rayleigh distribution has mean and
variance expressed by
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E(r) = σ

√
π

2
, (3.5.2)

var(r) = σ2(2 − π/2). (3.5.3)
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3.6 Generalized Extreme Value Distribution

In chapter 6 we are going to present our proposed scheme for blind detection.
One of these scheme based on choosing the maximum of multiplebranches of
the receiving antennas after multiplying them by phase weights ( refer to chapter
6 for more details). The process of choosing the maximum branch results in a
distribution called extreme value distribution.

Definition:if a large number of independent random variables are generated from
the same probability distribution, then we take their maximum values, the
resulting distribution of the maximized values is approximated as a gener-
alized extreme value (GEV) distribution.

The GEV was first introduced by Jenkinson (1955) and it has three types of dis-
tributions depending on the shape factor (which will be introduce later on this
section). It is important to know cumulative distribution function (CDF) of GEV
because we are going to use it in our calculation of the threshold for the false
alarm probability (one of the error probabilities in detection theory, see chapter
4). The CDF of three types of GEV is given as [10]:

• Type 1, (Gumbel-type distribution), forξ = 0

F (x; µ, σ) = exp(−e−(x−µ)/σ), (3.6.1)

• Type 2, (Frechet-type distribution), forξ > 0

Fx(x) = exp−(
x − µ

σ
)−ξ µ < x < ∞, (3.6.2)

• Type 3, (Weibull-type distribution), forξ < 0

Fx(x) = exp−(
µ − x

σ
)ξ µ > x > −∞, (3.6.3)

whereσ andµ are the standard deviation and the mean of the original random
variables, andξ is a new parameter called the shape parameter and it can be used
to model a wide range of tail behavior. The above three distributions corresponds
to different tails distribution.ξ > 0 is for polynomially decreasing tail function.
ξ = 0 is for exponentially decreasing tail function (Gaussian tails). Finally, ξ < 0
is for short limited tails. Our concern will be the case whenξ = 0 (Gumbel
distribution), which follows the following PDF

pX(x) = e−e−(x−µ)/σ 1

σ
e−(x−µ)/σ −∞ < x < ∞. (3.6.4)
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The mean and variance of the Gumbel distribution are given as

E(X) = u + βσ = µ + 0.57722σ, (3.6.5)

V ar(X) =
π2

6
σ2, (3.6.6)

whereβ is Euler’s value.
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Chapter 4

Spectrum Sensing and Detection
Theory

4.1 Background of Detection Theory

In this subsection we introduce a general background about the detection theory.
Starting from a general detection principles, followed by the optimal detector prin-
ciples with full knowledge about the signal parameters (coherent detector). Then,
we introduce detection with unknown parameters (non coherent detector). Finally,
we show a comparison between the non coherent and coherent detection.

4.1.1 General Detection Principles

Figure 4.1.1 shows the principles of detection. To explain this figure let us con-
sider the following equation

x[n] =

{
w[n] H0(signal is absent),n = 0, 1, . . . , N − 1
A + w[n] H1(signal is exist),n = 0, 1, . . . , N − 1

. (4.1.1)

For simplicity, In equation (4.1.1) we consider only a constant DC signal (A),
so the received signal x[n] has two hypotheses. The first hypothesis isH0, for
x[n] = w[n], where, w[n] is Additive White Gaussian Noise (AWGN). The second
hypothesis isH1, for x[n] = A + w[n], where, A is the signal level. In a wireless
system A is varying, and is equivalent to hs[n], where h is theRayleigh channel
and s[n] is the transmitted symbols. In this case we considerboth hypotheses have
the Gaussian distribution. The evaluation process of a detector is done by using a
correct detection probability, an error detection probability or both of them.

As in Fig.4.1.1 there are 3 detection probabilities, one is correct probabil-
ity, and two are error probabilities. The correct one can be calculated using the
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Figure 4.1.1: Principle of Detection theory

conditional PDFp(u(x) > γthres; H1), where u(x) is the test statistic. Test statis-
tic changes from one detector to another, but in this exampleit is equivalent to
u(x) = (1/N)

∑N−1
n=0 x[n], and follows Gaussian distribution. The detector de-

cide one of the two hypotheses according to the following equation

u[x]
> γthres

decide→ signal exist:H1

< γthres
decide→ signal does not exist:H0

. (4.1.2)

According to Fig.4.1.1, the correct detection probabilityPD occurs if the test
statistic of the observed sample/s is larger than a certain threshold in the case
of H1 (decideH1 whenH1 is true). As for Type 1 error probability, it occurs
when the detector decideH1, but H0 is true. That is, the probability that the
observed sample/s is larger than a certain threshold in the case ofH0 is true. Type
1 error probability is also called probability of false alarm PFA. Moreover, Type 2
error probability occurs when the detector decideH0, butH1 is true. That is, the
probability that the observed sample/s is less than a certain threshold in the case
of H1 is true. Type 2 error probability is also called probabilityof miss detection
PMD. As for Gaussian PDF thePFA for x[0] can be shown as in [7]
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PFA = P [H1 : H0]

= Pr[x[0] > γthres;H0]

=

∫ ∞

γthres

1√
2π

exp(−1

2
t2)dt

= Q(γthres)

, (4.1.3)

where, Q is the Gaussian right tail probability. The probability of detection can be
calculated in the same way.

PD = P (H1 : H1)

= Pr[x[0] > γthres;H1]

=

∫ ∞

γthres

1√
2π

exp(−1

2
(t − A)2)dt

= Q(γthres − A)

, (4.1.4)

There is a trade off betweenPFA andPMD based on the chosen threshold
(γthres). If we increase the threshold,PFA will decrease andPMD will increase.
On the other hand, if we decrease the threshold,PMD will decrease andPFA will
increase.
Using the mentioned probabilities we can evaluate the system performance. A
common evaluation method is to plotPMD/PD versus SNR. Another evaluating
method is to plotPMD/PD versusPFA and it is called complementary/Receiver
Operating Characteristics (CROC/ROC).
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4.1.2 Optimal Detectors (NP)

Neyman-Pearson Theorem: To maximizePD for a givenPFA = α decideH1 if

L(x) =
p(x;H1)

p(x;H0)
> γthres, (4.1.5)

where, the thresholdγthres can be found from

PFA =

∫

{x:L(x)>γthres}

p(x;H0)dx = α, (4.1.6)

and L(x) is the likelihood ratio (liklihood ofH1 and liklihood ofH0). Equation
(4.1.5) referred to as likelihood ratio test (LRT). Lets Consider equation (4.1.1),
underH1, X ∼ N (0, σ2I), while underH0, X ∼ N (A1, σ2I). Then NP detector
decideH1 if

1
(2πσ2)N/2 exp[ 1

2σ2

∑N−1
n=0 (x[n] − A)2]

1
(2πσ2)N/2 exp[ 1

2σ2

∑N−1
n=0 (x[n])2]

> γthres. (4.1.7)

After taking logarithm and simplify the equation we have

1

N

N−1∑

n=0

x[n] >
σ2

NA
lnγthres +

A

2
= γ′

thres (4.1.8)

where, as we defined beforeu(x) = (1/N)
∑N−1

n=0 x[n] is the test statistic under
each hypothesis. Finally, by consideringPFA = Pr[u(x) > γ′

thres;H0] andPD =
Pr[u(x) > γ′

thres;H1], we have a relation ship betweenPD andPFA as

PD = Q(

√

σ2/NQ−1(PFA) − A
√

σ2/N
)

= Q

(

Q−1(PFA) −
√

NA2

σ2

), (4.1.9)

which can be used to evaluate the detector ROC performance. In wireless com-
munication literature NP detector is called matched filter.
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4.1.3 Detection with unknown Signal Parameters

In previous section we considered detection with knowing all signal parameters,
however in this section we consider the detection performance with some or all
of the signal‘s parameters are unknown. In detection theoryliterature, there are
some known tests for the case of unknown signal parameters. As an example,
GLRT (Generalize Likelihood Ratio Test) and Bayesian test, both as a general
test. Furthermore, Wald test and Rao test can be used for a specific unknown
parameters. Some of the common unknown parameters are arrival time, frequency
band, amplitude, PDF and so on. The more the knowledge we haveabout these
parameters the better the detection accuracy will be. For simplicity, we consider
GLRT with the same signal as in equation (4.1.1), but with no knowledge about
the amplitude (A). The GLRT detector decidesH1 if the LG(x) > γthres, where
LG(x) is the GLRT likelihood function of the two hypothesesH1 andH0. After
doing some simplification for theLG(x) function we have

lnLG(x) = − 1

2σ2

(
N−1∑

n=0

x2[n] − 2x̄
N−1∑

n=0

x[n] + Nx̄2 −
N−1∑

n=0

x2[n]

)

= − 1

2σ2
(−2Nx̄2 + Nx̄2)

=
Nx̄2

2σ2

. (4.1.10)

That is, we decideH1 if |x̄| > γ′
thres, wherex̄ =

∑N−1
n=0 x[n]. From equation

(4.1.10) we can confirm that the knowledge of the signal amplitude is not nec-
essary for deciding the new thresholdγ′

thres. This kind of detectors called non
coherent blind detectors. In section 4.1.4 we show a comparison between coher-
ent and non coherent detectors. From This comparison we confirm the advantage
of coherent detectors, because it utilizes the knowledge ofthe received signal’s
parameters.
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4.1.4 Comparison between Coherent and Non Coherent Detec-
tors

The lack of knowledge about the signal’s parameters resultsin a degradation of
detection performance when compared with the optimal matched detector. In
this section we compare a GLRT detector (unknown signal’s parameter detector)
performance with clairvoyant (NP, matched detector which have full knowledge
about the signal’s parameters). The upper bound of any suboptimal detector is
decided using the performance of the optimal detector (matched filter NP), which
expressed by

PD = Q(Q−1(PFA) −
√

d2), (4.1.11)

whered2 = ξ is the deflection coefficient andξ is the signal energy. The deflection
coefficient is a measure to express the difference between the mean of the signal
+ noise PDF and the mean of noise PDF. As for the GLRT detector,consider

x[n] =

{
w[n] H0(signal is absent),n = 0, 1, . . . , N − 1
s[n] + w[n]H1(signal is exist),n = 0, 1, . . . , N − 1

, (4.1.12)

wheres[n] is deterministic and completely unknown signal. To obtainŝ[n] using
the MLE (Maximum Likelihood Estimation) underH1, we maximize the like-
lihood function over the signal samples. Then, we obtain theMLE values as
ŝ[n] = x[n]. Subtitute the MLE values in the GLRT’sH1 equation, we get

1

(2πσ2)
N
2

1

(2πσ2)
N
2

exp
(

1
2σ2

∑N−1
n=0 x2[n]

) > γthres, (4.1.13)

by simplification, we deduct that the test statisticu(x) =
∑N−1

n=0 x2[n] > γ′
thres,

which equivalent to energy detection. Assuming large N, we can find the energy
detector’s deflection coefficient as

d2
ED =

( ξ
σ2 )

2

2N
. (4.1.14)

Where, the Matched filter deflection coefficient is given by

d2
ED =

ξ

σ2
. (4.1.15)

Combining both (4.1.14) and (4.1.15) and using a givenPD to calculate the nec-
essary input SNR in dB as [7]

10log10ηMF = 10log10d
2 − 10log10N

10log10ηED = 5log10d
2 + 1.5 − 5log10N

(4.1.16)
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Equation (4.1.16) is plotted in Fig.4.1.2. As shown, we notice the degradation of
energy detection comparing to matched filter detection, atN = 1000, around 11.5
dB.

Figure 4.1.2: Required input SNR for given detection performance.
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4.2 Overview for Transmitter Detectors in Spectrum
Sensing

As we have mentioned before, one of the spectrum sensing approaches is the trans-
mitter detection. For detecting the PU transmitter signal,depending on our target
we select one of the following detectors, energy detector, cyclostationary detector
and matched filter detector. In this subsection we will discuss both matched filter
and cyclostationary detector. Since we are using it in the proposed methods, en-
ergy detection is going to be discussed in details in next sections, for AWGN and
Rayleigh fading channels.

4.2.1 Matched filter

In Sects. 4.1.2 and 4.1.4, the principle of optimal detection have been explained.
Matched filter is an optimal detector, it has the following characteristics:

1. Less sensing time due to coherency of the receiver.

2. Achieving maximum SNR due to the knowledge of the PU signal(modula-
tion type, time synchronization, frequency band and etc...).

3. Channel equalization and carrier synchronization is possible.

On the other hand, the main draw back of this method is that itsrequired a ded-
icated receiver for each signal type. Moreover, it requiresthe knowledge of the
primary signal and channel which is difficult to obtain in a cognitive radio envi-
ronment (because it considered in low SNR).

4.2.2 Cyclostationary Detection

Cyclostationary detection utilizes the periodicity of the signal due to the modu-
lation type, coding or by intentionally produced periodicity to help in estimation
the channel. Cyclostationary detection is recognized by itsrobust signal detection
under low SNR region. This is because AWGN is random, therefore by knowing
the periodicity of the signal, the detector can differentiate between the signal and
AWGN. The Cyclostationary detection uses the Cyclic Autocorrelation Function
(CAF) for detecting the signal as follows [15]

Rα(τ) =

{
σ2

ae
j2παt0X

∫
G∗(f + α)G(f)ej2πfτdf , α = k

T0

0, otherwise
. (4.2.1)
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The functionRα(τ) is the CAF andα0 is the cyclic frequency. As in equation
(4.2.1), givenα0 the CAF can determine the correlation between spectral compo-
nents of the signal separated, in frequency, byα0. As for detection, the CAF has
a nonzero value only for multiple integers ofα0.
Even though Cyclostationary detection is more powerful thanED in detecting
the signals under low SNR, but it needs exhaustive computational complexity to
achieve it’s performance.

4.2.3 Energy Detection

We are going to discuss about the Energy Detector in details in the next section
(4.3).
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4.3 Spectrum Sensing Using Energy Detector

In Sect.4.1.3 we have already started to introduce the energy detection (ED), that
it does not require any information about the signal. Then, in Sect.4.1.4 we com-
pared the Non-coherent detection (ED) with coherent detection performance. In
this section we are going to explain the energy detector for detecting a determin-
istic unknown PU signal in details. For now, lets assume AWGN channel, latter
on we assume wireless channel (Rayleigh, multi-antenna Rayleigh). [6],[7],[8]
Assuming the received signal as

Y (t) =

{
n(t) H0(signal is absent)
x(t) + n(t) H1(signal is exist)

, (4.3.1)

wheren(t) is the AWGN with zero mean and varianceσ2, x(t) is the PU signal.
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Figure 4.3.1: Basic Energy Detector.

As in Fig.4.3.1, we receive the signal at a certain center frequency, and then
we do the squaring and averaging over the summation ofN samples. By choosing
a largeN, the sensing time will increase, but on the other hand, the performance
and accuracy of detection will also improve. The result of this process called
test statistic (which mentioned in previous sections with the same or different
definitions), noted asU(t). The test statisticU(t) is described as:

U(t) =
N∑

n=1

|Yn(t)|2. (4.3.2)

Then,U(t) is compared with the threshold and the detector decides the existence
of the primary signal (similar to equation(4.1.2)) as follows:

U(t)
> γthres

decide→ signal exist

< γthres
decide→ signal does not exist

. (4.3.3)

In the case of PU absence, the test statistic consists of summation ofN squared
independent identical (IID) variables with zero means, which results in central
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chi-square variables withN degree of freedom (DOF). If we consider largeN, we
can treat the test statistic as a normal distribution, as stated in the Central Limit
Theorem (CLT). While in the case of PU presence the test statistic consists of
summation ofN squared IID variables with nonzero means, which results in Non-
central Chi-square distribution withN DOF. By assuming largeN, we can apply
the CLT for signal distribution. Then, we consider the test statistic as normal
distribution with mean and variance as follows:[6],[8]

U ∼

Normal(σ2
n, 2σ

4
n/N) underH0

Normal(σ2
n + σ2

x), 2(σ2
n + σ2

x)
2/N) underH1

. (4.3.4)

As introduced in previous sections, we evaluate a detector performance by cal-
culatingPFA andPD/PMD. We can calculate the ED performance’s probabilities
by two means. One is approximating the test statistics as a Gaussian distribution
to findPFA. The other is exact calculation of bothPFA andPD/PMD. At first we
describe the approximating approach then we mention the exact approach.
Approximation approach:As shown in Fig. 4.3.2, since the false alarm probabil-
ity is occupying the tail of a Gaussian distribution, we can find PFA using theQ
function for a given threshold as follows [8]

Misdetection False Alarm 

Noise 

Signal + Noise 

Signal + Noise  

(Improved system) 

d2

d1

γ

Figure 4.3.2: Principles of Gaussian distribution detection.

PFA = Q(
γthres − σ2

n

σ2
n/
√

N/2
). (4.3.5)
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Furthermore, if we want to find the threshold for a certain false alarm we can solve
equation (4.3.5) to find:

γthres,FA = σ2
n(1 +

Q−1(PFA)
√

N/2
). (4.3.6)

Figure 4.3.2 shows the way of improving the detecting performance of an energy
detector. Consider the curve for improved S+N (Signal + Noise) hasd2 mean
(referenced from the Noise mean) is larger than thed1 of normal (not improved)
S+N curve. This can be utilized by either fixing the thresholdto improvePD or by
adjust the threshold to decrease thePFA and fixPD. A point should be mentioned
here, is that equation (4.3.5) should be considered when we have a fixed mean of
the received signal. Otherwise we have to adjust the threshold according to the
signal and noise mean.
Exact approach:From equation (4.3.2) we can see that the test statistic is the sum
of the squares of 2z Gaussian variables, z is the time bandwidth product. Thus,
from equation (4.3.1), underH0, U(t) follows a central chi-square distribution
with 2z degrees of freedom (we’ve mentioned this before, butusing N as another
definition for 2z). On the other hand, underH1 hypothesis, U(t) is a non-central
chi-square distribution with 2z degrees of freedom and2λ as a non-centrality pa-
rameter. As a result we have U(t) as

U(t) ∼
{

X 2
2z H0

X 2
2z(2λ) H1

. (4.3.7)

Then we find the PDF of U(t) as

fU(u) =

{
1

2zΓ(z)
uz−1eu/2, H0

1
2
( u

2λ
)

z−1
2 e−

2λ+u
2 Iz−1(

√
2λu), H1

, (4.3.8)

whereΓ(.) is the gamma function, andIv(.) is thevth-order modified Bessel func-
tion. Using the definition ofPFA andPD

PD = Pr(U > γthres|H1)
PFA = Pr(U > γthres|H0)

. (4.3.9)

Integrating the tail of theH0 part of equation (4.3.8), we can find the false alarm
probability as

PFA =
Γ(z, λ/2)

Γ(z)
. (4.3.10)

The CDF of equation (4.3.8) can be shown as

FU(u) = 1 − Qz(
√

2λ,
√

u), (4.3.11)
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where,Qz is generalized Marcum Q-function. Hence,

PD = Qz(
√

2λ,
√

u). (4.3.12)

26



Chapter 5

Wireless channels and Diversity
Schemes

Since our research concerns about signal detection in wireless channel, it is nec-
essary to discuss the different types of wireless channels.Each of these wireless
channels has its specific causes and effects on the transmitted signal. Then, we
move to discuss the means of overcoming these problems. Someof these solu-
tions are already utilized in our research, while the othersare either on the process
of being utilized or cannot be utilized due to our system characteristics.

5.1 Wireless Channels

The wireless communication channels has three main types. One is a free path
loss, which attenuates the signal depending on the traveleddistance, it is also
called large term (scale) path loss. Another is shadowing effect, which fluctu-
ates the transmitted signal over smaller time period (compared to the free path
loss). Finally, small scale (multi-path) fading, which cause a signal fluctuation
even faster (and within smaller distance) compared to shadowing effect. The pre-
viously mentioned channel effects are due to distance traveled by the signal, re-
flection, diffraction, and signal scattering (in addition to the terminal mobility). In
this section we will discuss the last channel effect, small scale fading. As for the
small scale fading there are many factors should be taken into account. As, multi-
path propagation, speed of the mobile terminal, speed of surrounding objects, and
the transmission bandwidth. We are going to start by explaining the parameters,
upon which we classify the channels.
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5.1.1 Time dispersive parameters: delay spread and coherent
bandwidth

Excess delay (delay spread)is the relative delay of theith multi-path component
as compared to the first arriving component and is given byτi. The maximum
excess delay of the channel is given byN∆τ , where N is the number of equally
time separated multi-paths, and∆τ is an equal time separation between every path
and the next one, e.g∆τ = τ1 − τ0. The channel time dispersiveness properties
can be quantified by using the rms excess delay. The rms excessdelay is the
square root of the second central moment of the power delay profile, given by [1]

στ =

√

τ̄ 2 − (τ̄)2, (5.1.1)

where,τ̄ is the mean excess delay. Therefore the channel time dispersive param-
eters can be obtained from the power delay profile. It is important to mention that
rms excess delay and coherence bandwidth (which is going to be explained later)
are inversely proportional. Analogous to the delay spread parameters in the time
domain, coherence bandwidth is used to characterize the channel in the frequency
domain.
Coherence bandwidthis a statistical measure of the range of frequencies over
which the channel can be considered flat, i.e. it passes all the frequency compo-
nents with approximately equal gain and linear phase. Coherence bandwidth is
approximated as

Bc =
1

50στ

. (5.1.2)

5.1.2 Time varying parameters (frequency dispersiveness): Doppler
Shift and coherence time

Doppler spread and coherence time describes the time varying nature of the chan-
nel in a small-scale region.Doppler Shift BD is a measure of the received spec-
tral broadening caused by the mobile radio channel. Encountering a Doppler shift
caused to see the spectral of the received signal varying in the range offc + fd to
fc+fd, where,fd is the Doppler shift andfc is the carrier frequency. Doppler shift
depends on both the velocity of the mobile radio terminal andthe angle between
the direction of movement and the direction of arrival.

Coherence Timeis the time domain dual of Doppler shift, and it is used to
quantify the channel frequency dispersiveness property intime domain. Coher-
ence time is defined as a statistical measure of the time duration over which the
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channel impulse response is invariant. We can relate both Doppler shift and co-
herence time as

Tc =
1

fm

, (5.1.3)

where,fm is the maximum Doppler shift given byfm = v/λ.
Finally, after discussing the channel parameters, we can classify the wireless chan-
nel due to small scale fading to 4 types:

• Flat Fading: Bandwidth of signal< Bandwidth of channel and Delay spread
< Symbol period

• Frequency Selective Fading: Bandwidth of signal> Bandwidth of channel
and Delay spread> Symbol period

• Fast Fading: High Doppler spread and Coherence time< Symbol period

• Slow Fading: Low Doppler spread and Coherence time> Symbol period

At the earlier stages of our research we focused on slow flat fading channel.
Then, we started to consider frequency selective fading channels.
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5.2 Diversity Schemes

As we introduced in the previous section, in this research weconsider a flat fading
channel. As far as our knowledge, the main counteract to flat fading channels is to
use diversity combining schemes. The diversity principle is based on the fact that
when a signal passes through an independent fading channels, the probability of
experiencing a deep fading is low. To mitigate the fading channel we can utilize
several types of diversity combining.

• In a frequency selective channel it is possible to utilize the frequency diver-
sity. Because the spectral components of the frequency selective channel are
varying by varying the band, then by considering receiving on a bandwidth
larger than the coherent bandwidth we can achieve frequencydiversity. This
type of diversity is usually used in wide band signals.

• The other type is time diversity, which can be achieved by using the proper
coding and interleaving schemes. To achieve this type of diversity it is nec-
essary to transmit (using interleaving) over a time periodslarger than the
channel coherence time.

• In this paper, to mitigate the fading effect we are going to utilize space (an-
tenna) diversity. There are two factors to be considered forachieving this
type of diversity (lets consider the receiving space diversity not transmitter
diversity). One factor is to use multiple antennas with a separation larger
than 0.38λ (wave length). This is in case we are experiencing uniform
scattering environment and omni directional transmit and receive antennas.
If we are using directional antennas, the antenna separation should be in-
creased. The other factor is the scattering environment. Itis more likely
that the independent channels environment can be found under rich scatter-
ing environments. After receiving different faded signalswe should use an
effective combiner (the optimal one is the coherent combiner) to combine
between the faded signals constructively to achieve additional array gain
(array gain results from coherent combining, diversity gain results from ex-
periencing independent fading channels). A common diversity linear com-
biner is shown in Fig.5.2.1

In this section, we analyze several space diversity schemesbecause we are go-
ing to use it in our evaluation of our proposed schemes as upper or lower bounds.
The analysis method is by deriving the overall (combined) SNR versus both, Bit
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W1 W2 WL

Output of the Combiner

Inputs of the Combiner from the antennas branchs

Figure 5.2.1: Space diversity linear combiner.

Error Rate (BER for BPSK modulation case), and the probability of detection
[9],[12]. To avoid notation confusing we usedγthres to note the detection thresh-
old. Hereafter, we are going to useγ, γt or γ to denote the SNR.
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5.2.1 EGC Diversity

1. SNR andPb Analysis:

We describe the EGC scheme assuming perfect knowledge of Channel State
Information (CSI) because we are going to use it as the lower bound (opti-
mal performance) for our evaluation of the proposed QUAL scheme (pro-
posed schemes will be explained later on Ch. 6). Furthermore,the pro-
posed QUAL shares the same principle with EGC, where it selects equal
gain, variable phase weights. After that, theoretically wederive the de-
tection performance which has been already discussed in other papers [4].
Considering a flat slow fading channel, the channel response is given by

hi = αie
jφi, (5.2.1)

and the received signal at receiver side is expressed as

yi = hix + ni, (5.2.2)

whereyi is the received signal vector at branchi, ni is the AWGN of branch
i. And hi is theith antennas’s channel response, follows Rayleigh distribu-
tion, whereα is its amplitude,φ is the phase. In EGC scheme we combine
the signals from the different antenna branches after multiplying them by
weights equal to conjugate of the channel phase expressed as

wi =
|hi|
hi

= e−jφ. (5.2.3)

EGC scheme achieves full phase combining coherency, which results in an
output SNRγt equal to the sum of each branch’s SNRγi, as expressed by

γt =
L∑

i=1

γi =
1

N0L

(
L∑

i=1

√

Es

)2

. (5.2.4)

where,Es is the average energy per branch. Later on we will see that the
proposed QUAL scheme has partial phase coherence but not a full one.

Then the averaged probability of bit error for 2-antennas case can be ex-
pressed as

P̄e,EGC =
1

2

[

1 −
√

1 −
(

1

1 + γ̄

)]

. (5.2.5)

where,̄γ is the averaged SNR, which is equal for all branches.
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2. Detection Analysis:

After combining the signals we apply the energy detector to the output com-
bined signal. Then we can express the probability of detection for EGC
output of AWGN channel as [4]

PdEGC = QLu

(√

2γt,
√

γthres

)

, (5.2.6)

whereu is the TW (time bandwidth) product,γthres is the threshold and
Qu(a, b) is the generalized Marcum Q-function. To find the probability of
detection under Rayleigh fading channel, we average equation (5.2.6) over
thePDF of IID Rayleigh fading branches, as expressed in the following

f(γt) =
1

(L − 1)!γL
γL−1

t exp (−γt/γ) , (5.2.7)

whereγ̄ is the average SNR. After averaging equation (5.2.6) over equa-
tion (5.2.7) we have the averaged detection probability of EGC over fading
channel given by

P̄d,EGC = α

[

G1 + β
u−1∑

n=1

(γthres/2)n

2(n!)
F1(L; n + 1;

γthres

2

Lγ̄

2L + Lγ̄
)

]

,

(5.2.8)
where,G1, F1, β, andα are as defined in [4], and̄γ is the averaged SNR,
which is equal for all branches.
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5.2.2 MRC Diversity

1. SNR andPb Analysis:

Consider the channel as in equation (5.2.1). Using MRC scheme,we com-
bine the signals from the different antenna branches after multiplying them
by weights equal to the channel conjugate values. This meansthat we have
combining coherency in both amplitude and phase. The outputof the MRC
combiner is expressed as:

y =

∑L
i=1 hiyi

∑L
i=1 hih

∗
i

, (5.2.9)

where,L is the number of used antennas.

Comparing to the EGC’s total output SNR, we can see that the MRC’s total
SNR is larger.

γt,MRC =
L∑

i=1

Es

N0

=
L∑

i=1

γi = Lγ, (5.2.10)

whereγi is the SNR of branchi, L is the number of used antenna. Thus,
the total output SNRγt,MRC equal to averaged SNR per branch times the
number of antennas. Then, we find the averaged error probability as given
by

P̄e,MRC =

(
1 − Γ

2

)L L−1∑

m=0

(
L − 1 + m

m

)(
1 + Γ

2

)

. (5.2.11)

whereΓ =
√

γ/(1 + γ).
It is important to mention that for amplitude coherence combining schemes
(as MRC) we have to use a correct normalization factor to get a correct
detection performance.

2. Detection Analysis
As for the detection performance of MRC, the same way of deriving the
detection performance for EGC can be applied to MRC. We averagethePD

in AWGN channel over Rayleigh channels PDF to get the final equation,
which can be calculated iteratively as in equation (9) in [3].

P̄d,MRC(γ̄, L) = P̄d,MRC(γ̄, L − 1) +

√

γ̄

π

e
γ2
thres
1+γ̄

(L − 1)!(1 + γ̄)L−0.5
I1(2L − 2)

(5.2.12)
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5.2.3 Selection Diversity

1. SNR andPb Analysis:

If we consider the noise power at all antenna branches is the same, we
deduct that SNR is equivalent to S+N (Signal plus Noise is equivalent to
signal over noise ratio), this is the reason why in this paperwe name SC
(Selection Combining) as MSPN (Maximum Signal Plus Noise). Then, the
output SNR is equal to the maximum branch’s SNR. However, in this kind
of diversity scheme, it is required to have detector at all branches to keep
track of the branch SNR, then compare all of them to decide the maximum
SNR. The average total SNR (the average combiner output SNR) isgiven
by

γt,MSPN = γ̄

L∑

i=1

1

i
. (5.2.13)

Then, we find the averaged probability of error as

P̄e,MSPN =
L

2

L−1∑

l=0

(−1)l

(
L − 1

l

)

1 + l + γ̄
. (5.2.14)

2. Detection Analysis:
The PDF of the maximum SNR branch out of IID Rayleigh branches is
given by: [4]

fγmax(γ) =
L

γ̄

(
1 − e−γ/γ̄

)L−1
e−γ/γ̄. (5.2.15)

Hence, the averagedPd of the MSPN can be evaluated as

P̄d,MSPN = L

L−1∑

i=0

(−1)i

i + 1

(
L − 1

i

)

P̄dRay

(
γ̄

i + 1

)

, (5.2.16)

whereP dRay

(
γ

i+1

)
is the averaged detection probability over one branch

Rayleigh channel, and given by:

P dRay = e−
γthres

2

u−2∑

n=0

1

n!

(γthres

1

)2

+

(
1 + γ/(i + 1)

γ/(i + 1)

)u−1

[

e
γthres

2(1+γ/(i+1)) − e−γthres/2

u−2∑

n=0

1

n!

γthresγ/(i + 1)

2(1 + γ/(i + 1))

]. (5.2.17)
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Chapter 6

Proposed Schemes

6.1 Introduction

At the beginning of this chapter we will discuss and analyze the proposed QUAL
scheme. This scheme is based on EGC, since it selects an equal gain variable
phase antenna’s weights. EGC selects the phase corresponding to the channel
phase conjugate, however, proposed QUAL scheme selects thephase randomly.
Therefore, QUAL does not require knowledge about CSI. In later sections, we
analyze the proposed QUAL scheme. Then we derive both simulation and theo-
retical threshold to fixPFA, since it varies due to the selection of the maximum
branch and the increment of the noise mean.
After that, we discuss the second proposed scheme, Eigen Value Decomposition
(EVD). EVD scheme is also called blind MRC, from its name we conclude that
it is based on MRC scheme. MRC selects the weights according to the amplitude
and phase of the channel, while EVD selects the weights basedon the received
signal amplitude and phase. Therefore, EVD does not requireknowledge about
CSI.
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6.2 Proposed QUAL System Analysis

In our proposed QUAL spectrum sensing scheme, we consider unknown CSI be-
tween PU transmitter and the CU receiver. The channel is multi-path Rayleigh
channels of multiple antennas are independent, and are considered as flat Rayleigh
fading channels. The AWGN has zero mean and varianceσ2

n is independent in
each antenna branch. The PU signal is assumed to be IID randomprocess with
variance ofσ2

s . For modeling simplicity, the proposed scheme is explainedby
using the example of three antennas with four quantization weights per antenna.
Figure 6.2.1 shows the CU detector system model. In this modelwe use the first
antenna’s signal as a reference without multiplying it by any weight. As for the
other antennas (the second and the third antennas in this case) we multiply each
branch byki (wherei is the antenna number) number of pre-decided weights, in
our modelk = k2 = k3 = 4. The weights consist of uniformly random distributed
random variables, phase random variable (equal gain), distributed over the angles
from 0 to 2π. In our simulation, we select the weights in two different ways. The
first way is selecting weights uniformly, as shown in Fig.6.2.2(a). The second
way is selecting the weights with a randomly selected phase for both antennas as
shown in Fig.6.2.2(b). This comparison is done for comparing the difference by
changing the antenna’s pattern. However, the results showed that both of them
have the same impact.

After weighting the antenna branches, we add the first signalwith one of the
four weighted signals from the second antenna branch, plus one of the weighted
signals from the third antenna branch. Repeat this process for all the weights in
both the second and the third antennas. As a result, this operation producesk2 ∗k3

output signals. The output signals derived by this model canbe represented by the
following equation

y′
m = y1 + y2.w1i + y3.w2j

. . . i, j = 1, . . . , 4

m = i + (j − 1).k

, (6.2.1)

here,y1,y2,y3 are the received signals from antenna1, 2, 3 respectively.w1i,w2j

are the weights for antenna2, 3 respectively. And m is the sequence number of the
signals results from this process. Then, we apply equation (6.2.1) to the energy
detector to get 16 test statistics. After that, we compare the output test statistics
∑N

n=1 |y′
n,m|2 and choose the maximum as in equation (6.2.3). In other word,

compare the Signal-plus-Noise value and choose the largestone among them as
shown in the following equations:

σ2
y′

m

= σ2
s1+s′2+s′3

+ σ2
n1+n2+n3

(6.2.2)

37



Squaring and Averaging Device
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y3

y2

y’1y’16

y’ts,max

w13

w12

Choosing the maximum branch

This is a summation operation
4-phase weights for each antenna

Figure 6.2.1: Receiver system model for Proposed QUAL scheme.

s′ is the weighted signal. After the selection process, the output signaly′
ts,max is

be given by:

y′
ts,max = max(

N∑

n=1

|y′
n,m|2) (6.2.3)

wherey′
n,m is the complex received signal after weightingy′

m. Then we apply
the maximum test statistic to the decision making step and compare it with the
threshold to decide the existence of the PU.
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Figure 6.2.2: Distribution of QUAL scheme’s Weights.

6.3 Threshold derivation of Proposed QUAL Sys-
tem

As we previously explained, our proposed system chooses themaximum output
among many test statistics. This is different from other combining schemes, which
results in a variation in the variance and mean of the output.Consequently, if we
use the same threshold as we used in the conventional combining schemes we
cannot obtain a fixedPFA. This means that we cannot apply our system in a
real situation, because we will have large range of error fluctuation in the false
alarm probability. Furthermore, deriving a wrong threshold might fix thePFA but
results in a degradedPD performance, which we took care of in our both threshold
derivation methods.
To solve the previously mentioned problems, we derived a newthreshold by two
ways:

6.3.1 Simulation threshold

In which we adjust the old mean and variance of the original threshold by the mean
and variance of the new maximum selected test statistics. Adjusting equation
(4.3.6) as shown in the following equation,

γthres,FA = µmax +
σ2

maxerfc−1(2PFA)√
N

, (6.3.1)

whereµmax is the mean of the maximum branch, andσ2
max is the variance of the

maximum branch.
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6.3.2 Theoretical threshold

As we have explained in Sect.3.6, if a large number of independent random vari-
ables are generated from the same probability distribution, then we take their max-
imum values, the resulting distribution of the maximized values is approximated
as a Generalized Extreme Value (GEV) distribution. We have the same case in
QUAL proposed scheme. Before choosing the maximum value among the 16 test
statistics, the distribution is independent normal distribution. Therefore the max-
imum output follows the distribution of GEV Type 1. The CDF of GUMBEL
distribution is given by equation(3.6.1), from equation (4.1.3) we get the proba-
bility of False alarm as

PFA = 1 − CDFGEV = 1 − exp(−e(−(x−µ)/σ)). (6.3.2)

Solving equation (6.3.2), we get the following threshold:

γthres,gumb = −σ log(− log(1 − PFA)) + u (6.3.3)

After substitutingµ andσ by the original mean and variance values we have the
final equation as:

γthres,gumb =
−σ2

noise√
N

log(− log(1 − PFA)) + σ2
noise (6.3.4)

We will see in Sect.7 that this threshold fixes the false alarmprobability, com-
paring to the original threshold, while having the improveddetection probability.
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6.4 Proposed EVD to Achieve Blind MRC Detection

As discussed in some literatures [11], the wireless environment consists of direc-
tional sources and white Gaussian noise, the Eigen values ofthe received signal
correlation matrixRy can be divided into two sets. Since the eigenvectors ofRy

are orthogonal to each others, it can be considered as L-dimension space. This
L-dimensional space can be linked to the directional signalsources and the noise.
It can be divided into two subspaces as below.
The largestM eigenvalues are associated with theM directional sources, and the
corresponding eigenvectors called signal eigenvectors; these signal eigenvectors
are corresponding to first subspace called signal subspace.
TheL−M smallest eigenvalues are associated with noise, and the corresponding
eigenvectors called noise eigenvectors; these noise eigenvectors are corresponding
to the second subspace called noise subspace.

The Eigen structure-based method searches for signal directions, in which the
steering vectors associated with these directions are orthogonal to the noise sub-
space and contained the signal subspace. The source directions correspond to the
local minimal (maximal) of the function|wHsth|. In this functionsth denotes
a steering vector andwH are the weights. When these steering vectors are not
guaranteed to be corresponding to the signal subspace, due to some large interfer-
ence or large noise variance, there may be more minimum (maximum) values than
the number of sources. This method can be also called Eigen-Beamspace beam
former [16]. It can be used for anticipating the number of incident plane waves.

After this discussion, we present a way for using the eigenvalue decomposition
theory to achieve the MRC optimal performance without the necessity to estimate
the channel. If we use the eigenvector, corresponding to thelargest eigenvalue of
the received signal’s covariance matrix, as a weight vectorfor the array antenna,
the same performance of MRC in high SNR region can be achieved.Therefore we
consider this performance as the best blind detection scheme which does not need
knowledge of CSI. Starting from equation (5.2.2), we can calculate the covariance
matrix of the received signal as:

Ry = YYH, (6.4.1)

whereRy is the covariance matrix of the received signalY . The received matrix
Y is expressed as:

Y =
[

y1 y2 . . . yL

]T
. (6.4.2)

In Ry, each row contains the covariance values of the corresponding branch with
other branches according to the column number,

RyV = VΛ, (6.4.3)
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where

Λ =








v1 · · ·
· v2 · ·
· · . . . ·
· · · vL








,V =
[

v1 . . . vL

]
. (6.4.4)

In equation (6.4.4),v1 ≥ v2 ≥ . . . ≥ vL are the covariance matrix’s eigenval-
ues, starting from the largestv1 (which is corresponding to the dominant channel.
At which the SNR is maximum and we can achieve better communication capac-
ity and interference avoidance).v1, . . . ,vL are the corresponding eigenvectors.
To realize the maximum SNR and to achieve the performance of MRC, we use
the eigenvector (corresponding to the largest eigenvalue)as a weightw for the
array antenna.

w = [v1]
T , (6.4.5)

where the output of the combiner will be expressed as:

yout = wHy = wHHx + wHn. (6.4.6)

When evaluating the detection performance for EVD, it is compulsory to nor-
malize the test statistics values with the proper factor, because it will effect the
detection performance.
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6.5 System Characteristics

In this section, we explain the main characteristics of the proposed schemes. As
we mentioned in Sect. 4.3, to improve the detection performance, we have to de-
crease the probability of false alarm or probability of miss-detection (which mean
to increase probability of detection). As in Fig4.3.2 the detection performance
can be improved by increasing the mean of theS+N distribution. In other word,
by increasing the distanced2 more than the distanced1, the probability of error
detection decrease. We can make use this increment by two ways, either by fixing
the threshold which automatically causes the increasing ofPD, or, by changing
the threshold to fix thePD and decrease thePFA. The results which shows the
improvement of the test statistics’s PDF means for the proposed QUAL and EGC
schemes are shown in both Fig.7.0.1 and table 7.0.2 in Sect.7

6.5.1 Discussion of the Conventional Schemes

The improvement of the conventional schemes are due to two factors. One is
diversity gain, and the other is the coherency in combining,both phase and am-
plitude coherency. In Sect.7 we will see that the order of system improvement
is (from best performance) MRC, EGC, EVD/QUAL, MSPN. One commonim-
provement gain for all schemes is the diversity gain which achieved due to using
multiple antennas experiencing IID fading channels. The MRC’s improvement is
due to the amplitude, phase coherence combining. On the other hand, EGC has
only phase coherence, that is why it has lower performance than MRC. As for the
MSPN (select the maximum signal plus noise variance branch)the improvement
is due to only the diversity principle (no combining scheme), therefore it achieve
the worse performance. Later on in this section we will see the difference between
only selecting the maximum signal plus noise (MSPN) branch directly, compar-
ing to, selecting the maximum branch after applying the proposed QUAL scheme
(which has combining scheme).

6.5.2 Difference between Power Gain and Diversity Gain in
Detection Performance

An important concept to be explained is the difference between the space diver-
sity gain and the power gain (PG) concepts. By having multipleantennas at the
receiver side we have two main sources of gain. One is diversity gain and the
other is power gain. The diversity gain results from the diversity principle. The
power gain results from increasing the observation time forone antenna to have
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an overall samples as many as the multi-antennas case. This cause the total SNR
to be increased linearly by a factor ofL, whereL is the number of antennas or the
factor by which we increased the observation time. Considering the inner term
of the error probability for BPSK, we can divide it to show these two gains, as
follows:[12]

‖h‖2 SNR = LSNR
︸ ︷︷ ︸

P.G

.
1

L
‖h‖2

︸ ︷︷ ︸

D.G

, (6.5.1)

where the first term corresponds to the power gain(P.G) and the second term
shows the diversity gain(D.G). In the high SNR region the diversity gain can
be shown as an exponent of(1/SNR)L, while the power gain expressed as the
previous linear term,

(
2L − 1

L

)

︸ ︷︷ ︸

P.G

1

(4SNR)L

︸ ︷︷ ︸

D.G

. (6.5.2)

In Sect.7, Fig. 7.0.8 shows a comparison between achieving the power gain
and achieving the diversity gain for all schemes which have been explained in this
paper.

6.5.3 Discussion of the Proposed QUAL System and the Corre-
lation Coefficient

For the proposed QUAL system, the mean ofS+N depends on the number of
weights. Increasing the number of candidate weights will increase the mean of the
output signals. However, in this cased2 (as in Fig.4.3.2) does not depends only
on S+N mean, because the noise mean is also changing (increasing the number
of weights will also increase the noise mean). Therefore thesystem improvement
depends on the difference between both means ofS+N and noise of the proposed
QUAL system. We can discuss the origin of increasing theS+N mean in the
proposed QUAL scheme by two ways.

• The first wayis by using the vector chart (graph) as in Fig.6.5.1, in which
we consider only two antennas for simplicity. The first antenna branch is
marked by”Ant.#1”, while the second antenna’s four weighted branches
marked by”′Ant.#2, wi”

′, where ′i′ is the weight’s number. When we
combine the two branches the best choice is to select the closest”Ant.2”
vector to”Ant.1” vector, which, in our case is”Ant.#2, w3”. In this case
the output of the combiner will be the largest comparing to the others vector;

44



this is what we called phase coherence combining. And the worst choice
will be to combine with”Ant.#2, w1”. If ”Ant.#2, w3” is exactly aligned
to ”Ant.#1” vector, it will be the EGC weight case. The proposed scheme
drawback, is that this concept does not apply only for the signal’s vectors
but also for the noise vector. Therefore, sometime we might improve the
noise mean by choosing the maximum output of the combiner.

Ant. #2, w2
Ant. #1

Ant. #2, w4

Ant. #2, w3

Ant. #2, w3

Figure 6.5.1: Reference and Quantized Weighted vectors for the QUAL proposed
scheme.

• The second wayis by checking the complex correlation coefficients. As we
know, the output after combining two IID signals will have variance given
by

V ar(Z) = σ2
x + σ2

y. (6.5.3)

whereZ = X + Y . However, if there is a correlation betweenX andY ,
the value of the output variance will change (improves for positive correla-
tion and degrades for negative correlation) as can be derived easily in the
following:

V ar(Z) = σ2
x + σ2

y + 2ρx,y.
√

σ2
xσ

2
y, (6.5.4)

45



where,ρx,y is the complex correlation coefficient betweenX andY . Im-
proving of the combiner output’s variance leads to improvement in the mean
of the test statisticu(t). Checking from Table 6.1 the value”ρref,max =
0.361” is the correlation coefficient between the reference branchand the
maximum branch, which is positive and is not equivalent to zero as the oth-
ers. The notation is considered as (ρref,1 correspond tow1 branch,ρref,2

correspond tow2 branch,ρref,3 correspond tow3 branch,ρref,4 correspond
to w4 branch ).

Table 6.1: Correlation Coefficient matrix of proposed system branches.
Ref. Max. W1 W2 W3 W4
branch branch branch branch branch branch

(ρref,max) (ρref,1) (ρref,2) (ρref,3) (ρref,4)

1 0.361 -0.010 -0.000 -0.009 -0.006

This partial phase coherency in combining of multiple branches is the source
of improving the detection performance of the proposed QUALsystem comparing
to the MSPN system. Where, on the later one we achieve only diversity, however,
on the formal one, we achieve diversity gain plus partial combining coherency.
But, its not full coherency, therefore, the QUAL system detection improvement is
less than the EGC scheme.

Another crucial point to be cleared is the different betweenmultiplying the
antenna branches by a QUAL weights and multiplying the antenna branches by
an equal gain weights equivalent to the Signal + Noise phase.The later method is
equivalent to taking absolute of the received signal, whichmeans that we add the
noise’s phase every time we multiply by weights or take absolute. This method
results in a destructive combining among multiple antennas. Therefore, the later
method does not achieve neither diversity nor combining gains, it achieves only
power gain. On the other hand, the formal method (proposed QUAL) achieves
diversity and (constructive addition) combining gains as in Sect.7.
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Chapter 7

Numerical Results

In this section we quantify the receiver performance by three evaluation methods
using the parameters described in Table 7.0.1. One is using the complementary
receiver operating characteristic (ROC) curvesPMD versusPFA. Another evalua-
tion method isPFA V.S SNR, to show the robustness of the new derived threshold.
The last one is by depictingPMD V.S SNR, to show the improvement of the de-
tection performance by increasing the SNR. It is important tomention that one
crucial applications for blind sensing in a very low SNR (around -100 dBm) is the
DTV band using 802.22 WRAN [17].

Table 7.0.1: SIMULATION PARAMETERS.
Parameter Name Value
# used antennas 1,2,3
Fixed weights for 4-4
2nd − 3rd

Averaging bits 128, 256
Fixed Primary SNR -10 dB,-5 dB
# sent packets/one probability value5000, 50000

Table 7.0.2 and Fig.7.0.1 shows the normalized values of theoutput test statis-
tics distributions means, after/before applying both the EGC scheme and the pro-
posed QUAL scheme. The normalization factor follows the Zero-Mean normal-
ization,

u′ = (u − µnoise) /σnoise. (7.0.1)

Considering the noise only (H0 case), before and after applying it to the EGC
scheme, it’s mean does not have large changes, close to zero.However, checking
the shifted value of the S+N mean before and after applying itto the EGC com-
biner, it is shifted from”1.1216” to ”2.0273” . As for the proposed system, the
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Figure 7.0.1: Gaussian Shifts according to the proposed QUAL scheme.

mean ofH0 case, after applying the proposed scheme, has increased to”0.3704” .
However the increment when applying the proposed scheme to S+N is larger than
that for H0, which reaches”1.8366” , this clarify the reason of the system im-
provement. Even though the values of the means for S+N of the EGC and the
proposed scheme are almost the same but the shift in the noisemean for both
cases is not the same, which give the advantage to EGC comparing to the pro-
posed scheme.
After this discussion, we can say that if we combined the multiple branches with-
out any weight, we can be sure that there will be no improvement, because the
combining is totally destructive (no phase coherence). Then, we confirm that us-
ing the QUAL weights results in a partially coherence combining, which cause
the shifting the mean of S+N.

Table 7.0.2: Shifted means of the proposed QUAL scheme & EGC.
Detection case /
before, after applying EGC Proposed System
the system
Noise / Before 0 0
Noise / After 0.0395 0.3704
Signal + Noise / Before 1.1216 1.1339
Signal + Noise / After 2.0273 1.8366
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Figure 7.0.2: Detection performance of combining signals using the proposed
QUAL scheme.

Figure 7.0.2 shows the sensing performance of the proposed QUAL scheme.
Here, we use 1, 2, 3-multiple antennas with 4-quantization weights. From this
figure, by using the proposed QUAL scheme, the performance ofthe primary sig-
nal detection is improved compared to that of the single antenna reception case.
In the same figure we plot the performance of EGC scheme with perfect channel
estimation, which can be considered as a lower bound (optimal performance) for
the QUAL scheme. We can see that forPFA = 0.1 the improvement in thePMD

for power gain is about(0.5024-0.5918)0.09. As for the 2-antenna and 3-antenna
case the improvement is about0.1520 and0.2892 respectively. On the other hand,
for EGC 2-antennas case, the improvement inPMD performance is about0.22118,
which is larger than the similar QUAL case and lower than QUAL’s 3-Antennas
case.
Figure 7.0.3 evaluates the sensing detection performance by changing the SNR.

From this figure, we confirm that the performance ofPMD is improved by in-
creasing SNR values from−20 to 0 dB when the false alarm probability is fixed
asPFA = 0.1, for different numbers of antennas. It is possible to say that the
improvement in the detection performance caused by enhancing the SNR using
QUAL scheme. For SNR more than−13 dB we confirm the noticeable improve-
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Figure 7.0.3: Performance ofPMD of QUAL scheme by changing SNR.

ment of the proposed method (about2 dB for 2-antennas case and4 dB for 3-
antennas case). However for very low SNR (SNR = −20 dB) the performance
of the QUAL system does not have a noticeable improvement.
In Fig. 7.0.4 we compare the probability of false alarm between two methods,

using the adaptively derived GUMBEL threshold and using normal ED thresh-
old both with 4-QUAL weights . Using GUMBEL threshold we obtain almost
fixed PFA around 0.1. We notice that thePFA achieved by the normal threshold
is shifted to around0.16. Furthermore, the varying range ofPFA is from 0.12
to 0.19. On the other hand, using GUMBEL threshold thePFA is fixed around
0.1, while the varying range is from0.08 to 0.12. This shows the accuracy of our
derived threshold.
Figure 7.0.5 shows the Bit Error Rate performance for different diversity schemes.

These schemes are Maximum Ratio Combining (MRC) and Eigen Value Decom-
position combining (EVD), and they are considered for 1, 2, 3, 4-antennas re-
spectively, where the first line is for 1-antenna case. The main point here is not
to discuss the MRC BER performance, because it has been discussed deeply in
many literatures. The point is to compare the EVD performance to the MRC per-
formance. As we know, because the MRC has phase and amplitude coherence, it
achieves the optimal performance among all diversity combining schemes. How-
ever, MRC needs CSI to detect the signal. In Fig.7.0.5, EVD achieves exactly the
same performance as MRC in moderate and high SNR region, without any neces-
sity to know about CSI. From this result, we confirm that the EVDcombining is
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Figure 7.0.4: Performance of False alarm using the Gumbel and the conventional
threshold versus SNR.

the best blind combining scheme in moderate SNR. In spite of achieving exactly
the same performance of MRC inSNR > 0, EVD scheme performance degrades
in low SNR region.
Figure 7.0.6 evaluates the performance ofPMD versus SNR using 2-3-4 anten-

nas of EVD case. We confirm the improvement achieved by using more antennas
from 2 to 4. Furthermore, it is clear that if the SNR increases, thePMD decreases.
So, we achieve around0.1 PMD for -5, -7, -8.5 dB by using 2, 3, 4-antennas re-
spectively. Therefore, we confirm the diversity gain (D.G) improvement 2, 1.5 dB
between 2-3, 3-4 antennas cases. Where D.G decreases by increasing the number
of antennas (largest case is for 1-2 antenna). It is clear that around−8 dB the
improvement of 2-antennas is larger that−15 dB.
Figure 7.0.7 evaluates the probability of miss-detection performance for four an-
tennas using EVD, MRC, EGC and MSPN (selecting Maximum Signal Plus Noise
branch) by changing the SNR. From this figure, we can confirm that the perfor-
mance ofPMD is improved by increasing SNR values from−20 to 0 dB when the
false alarm probability is fixed asPFA = 0.1, for all the schemes. As it is shown,
EVD scheme get closer to MRC with increasing the SNR. It agrees with what we
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Figure 7.0.5: Bit Error Rate for MRC and EVD versus SNR.

have seen in Fig. 7.0.5, which shows that EVD achieve the sameperformance as
MRC in high SNR region.

Figure 7.0.8, is the last result, and it compares the detection performance us-
ing the CROC (Complementary Receiver Operating Characteristics) among all
implemented diversity schemes, in low SNR region. In this figure we show the di-
versity gain improvement of each combining scheme and compare it to the power
gain case. As mentioned before, the power gain can be realized by considering
averaging time equal to double the one in 2-antennas case (which tagged in the
figure by”1-Ant, Ave256”). Considering the diversity gain improvement, in as-
cending order, the schemes can be ordered as follows, MSPN, EVD, QUAL, EGC
and MRC. As expected, the optimal scheme is MRC, followed by EGC. Then
the proposed QUAL and EVD schemes have almost the same detection perfor-
mance without CSI. This is important results show that these two schemes have
the optimal blind detection performance under low SNR region. They have al-
most the same diversity gain. Even though the proposed schemes have a degraded
performance compared to MRC and EGC, however the proposed schemes do not
required any knowledge about CSI. This makes the QUAL and EVD scheme more
likely to be implemented when we start sensing the spectrum.
To calculate the weight of EVD, we need to calculate the received signal’s covari-
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Figure 7.0.6: Performance ofPMD of EVD by changing SNR, and changing the
number of antennas.

ance matrix, and then extract the eigen vector which is corresponding to the maxi-
mum eigen value from that covariance matrix. Then we multiply this Eigen vector
by the received signal to realize EVD combining. This required a large amount of
computational power and complexity. On the other hand, QUALscheme is very
simple just to multiply the branches by a 4-random phase weights, then combine
them and choose the maximum branch will give the same resultsas EVD.
Finally, the lowest diversity gain achieved by MSPN selection combining. This is
because the selection combining schemes does not utilize any coherency in com-
bining signals, because it selects one branch only.
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Chapter 8

GNU Radio

8.1 Introduction.

In chapter 2 we talked about SDR systems and how does it play animportant role
for realizing cognitive radio system. One of the candidatesfor implementing SDR
is GNU Radio implemented using a USRP (Universal Software RadioPeripheral)
device. USRP is produced by ETTUS research center [19].
GNU Radio is a free software development toolkit that provides the signal pro-
cessing runtime and processing blocks to implement software radios using readily-
available, low-cost external RF hardware and commodity processors. It is widely
used in hobbyist, academic and commercial environments to support wireless
communications research as well as to implement real-worldradio systems. GNU
Radio applications are primarily written using the Python programming language,
while the supplied, performance-critical signal processing path is implemented in
C++ using processor floating point extensions where available. Thus, the devel-
oper is able to implement real-time, high-throughput radiosystems in a simple-
to-use, rapid-application-development environment. While not primarily a sim-
ulation tool, GNU Radio does support development of signal processing algo-
rithms using pre-recorded or generated data, avoiding the need for actual RF
hardware.[18]
In this chapter we explain the utilization of GNU Radio as a tool for our spectrum
sensing research. We start by a fast overview about the Software part of GNU
Radio. Then, we present a Hardware glance, including some necessary parts of
USRP1 to keep the reader familiar with it. Finally, in the lastsections we present
our implemented work using GNU Radio, which is divided into two parts. In
appendix A we explain about the GNU Radio’s installation procedures.
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8.2 GNU Radio - Software.

In this section we give a fast overview about the GNU Radio’s software based
part. As shown in Fig.8.2.1 GNU Radio software is based on two-tire structure.
These tires are Python and C++, we can think of this as two processing layers for
different purposes. These two languages are tied together using SWIG interpreter.

Figure 8.2.1: Software Architecture in GNU Radio.

The lower programming layer is to take care of the performance-critical and
complex signal processing parts. It is done using C++ becauseof its high pro-
cessing capabilities. For example, source, sink which playthe role of obtaining
and outputting data from and to the real world are in the lowerlayer. Filtering and
coding needs high complexity mathematical operations, therefore it is done in the
lower layer.
On the other hand, the higher layer processing part is done using Python, which
is an object oriented programming language (OOP). The higher layer is taking
services from the lower layer and giving it inputs. At the same time, it orga-
nizes, directs and glues the different signal processing block from the lower layer.
Debugging is easily done through the higher layer. Interfacing with hardware
(USRP) is done through the lower layer. An interesting capability of GNU Radio
is using python we can glue different and many C++ signal processing blocks to
create the needed system, e.g receiver, transmitter, walkie-talkie, modulator, radar
etc.
SWIG is an interface compiler that connects programs writtenin C and C++ with
scripting languages such as Perl, Python, and Ruby. It works by taking the decla-
rations found in C/C++ header files and using them to generate the wrapper code
that scripting languages need to access the underlying C/C++ code. In addition,
SWIG provides a variety of customization features that let you tailor the wrapping
process to suit your application.
In the next section, we explain a hardware background for GNURadio. With this
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background the reader should have enough information to understand our discus-
sion of the implemented systems in later sections.
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8.3 GNU Radio - Hardware (USRP).

The Universal Software Radio Peripheral (USRP) is designed toallow general
purpose computers to function as high bandwidth software radios. In essence,
it serves as a digital baseband and IF section of a radio communication system.
In This paper we are going to discuss the important parts of USRP. Figure 8.3.1
shows a photo of a real USRP1, and 8.3.2 shows a simple schematic diagram of
the USRP motherboard.

Figure 8.3.1: USRP Real Photo.

As shown in Fig.8.3.2, the USRP Motherboard is connected to a PC through
a ’FX2 Micro-controller (USB Interface)’. The high speed math part is done in
the FPGA part of the motherboard. The FPGA is connected to a 4-DA/AD high
speed converter. ADC/DAC are connected to 2 daughter boards in side A, and
two daughter boards in side B. Before discussing about the motherboard’s parts,
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Figure 8.3.2: A schematic diagram of the USRP motherboard.

we would like to draw your attention to the fact that there arethree configuration
modes for FPGA, as shown in the Table8.3.1. Now lets start ourjourney in the
motherboard parts.

Table 8.3.1: FPGA Operating Modes.
rbf file name FPGA description
multi 2rxhb 2tx.rbf there are two or more USRPs
std 2rxhb 2tx.rbf contains 2 Rx paths with halfband filters and 2 tx paths
std 4rx 0tx.rbf contains 4 Rx paths without halfbands and 0 tx paths

• Digital Down Converter.
In the receiving path the standard FPGA configuration includes digital down
converters (DDC) implemented with 4 stages cascaded integrator-comb (CIC)
filters. CIC filters are very high-performance filters using only adds and de-
lays. For spectral shaping and out of band signals rejection, there is also
31 tap half-band filters cascaded with the CIC filters to form complete DDC
stage. The standard FPGA configuration implements 2 complete DDC. Also

60



there is an image (configuration mode) with 4 DDCs but without half-band
filters. This allows 1, 2 or 4 separate RX channels. A schematicdiagram of
the USRP’s standard DDC is shown in Fig.8.3.3.

Complex

Multiplier

S
IN

(2
*

P
I*

F
c+

P
h

i)

S
IN

(2
*

P
I*

F
c+

P
h

i)

NCO

(Cordic)

IN-1

IN-2

From Any of the 4

ADC Or Zero

From Any of the 4

ADC

(a+jb)(c+jd)

4 Stage CIC Decimator

Divide by N

4 Stage CIC Decimator

Divide by N

31 Tap HBF

Divide by 2

31 Tap HBF

Divide by 2
I

Q

Figure 8.3.3: A schematic diagram of the USRP DDC.

Now let’s see what does the DDC do. First, it down converts thesignal from
the IF band to the base band. Second, it decimates the signal so that the data
rate can be adapted by the USB 2.0 and is reasonable for the computers’
computing capability. The complex input signal (IF) is multiplied by the
constant frequency (usually also the IF) exponential signal. The resulting
signal is also complex and centered at 0. Then we decimate thesignal with
a factor N. This decimation stage can be thought of as a low pass filter
followed by a down sampler. The decimation rate must be in between [8,
256]. Finally the complex I/Q signal enters the computer viathe USB. Note
that when there are multiple channels (up to 4), the channelsare interleaved.

• Digital Up Converter.
Typically, what happened in the Rx path happens in the Tx path,with some
reversing changes. We need to send a baseband I/Q complex signal to the
USRP board. The digital up converter (DUC) will interpolate the signal, up
convert it to the IF band and finally send it through the DAC.
The digital up converters (DUC) on the transmitter side are actually con-
tained in the AD9862 CODEC chips, not in the FPGA (as shown in the
Fig.8.3.4). The only transmit signal processing blocks in the FPGA are the
CIC interpolators.
The interpolator outputs can be routed to any of the 4 CODEC inputs. In
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multiple TX channels (1 or 2) all output channels must be the same data rate
(i.e. same interpolation ratio).
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Figure 8.3.4: A schematic diagram of the USRP DUC.

• Analogue Digital Converter.
There are 4 high-speed 12-bit AD converters. The sampling rate is 64M
samples per second. In principle, it could digitize a band aswide as 32MHz.
The AD converters can bandpass-sample signals of up to about200MHz.
The higher the frequency of the sampled signal, the more the SNR will be
degraded by jitter. 100MHz is the recommended upper limit.
The full range of the ADCs is 2V peak to peak, and the input is 50 ohms
differential. This is 40mW, or 16 dBm. There is a programmablegain
amplifier (PGA) before the ADCs to amplify the input signal to utilize the
entire input range of the ADCs, in case the signal is weak. The PGA is up
to 20 dB.

• Digital Analogue Converter.
At the transmitting path, there are also 4 high-speed 14-bitDA converters.
The DAC clock frequency is 128 MS/s, so Nyquist frequency is 64MHz.
However, we will probably want to stay below it to make filtering easier. A
useful output frequency range is from DC to about 44MHz. The DACs can
supply 1V peak to a 50 ohm differential load, or 10mW (10 dBm). There
is also PGA used after the DAC, providing up to 20 dB gain. This PGA is
software programmable.
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• Daughter boards.
There are different types of daughter boards, which can be inserted in both
sides of the mother board. These daughter boards have different capabilities,
to know more about it, refer to the original sources as [18], [19].

– Basic TX/RX Daughter boards.
Each has two SMA connectors that can be used to connect external
up/down tuners or signal generators. We can treat it as an entrance or
an exit for the signal without affecting it. Some form of external RF
front end is required.

– Low Frequency TX/RX Daughter boards.
The LFTX and LFRX are very similar to the Basic-TX and Basic-RX,
respectively, with 2 main differences. Because the LFTX and LFRX
use differential amplifiers instead of transformers, theirfrequency re-
sponse extends down to DC.

– TVRX Daughter boards.
This is a receive-only daughter board.

– DBSRX Daughter boards.
This is a receive-only daughter board.

– RFX Daughter boards.
The RFX family of daughter boards is a complete RF transceiver sys-
tem.

At the end of this section, it is a suitable summary to check Fig.8.3.5 . This
figure shows the schematic diagram of the mother board, for both receiving and
transmitting paths. This figure shows how do we receive a signal from the RF
front passing by ADC, then MUX, followed by DDC, till it reach the USB port of
the PC (receiver path). At the same time it shows how the signal goes out from the
USB port to the sender front end (transmitter path), throughDEMUX, then DUC
and DAC.
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8.4 Packet Recovery Transceiver

In this section we are discussing one of the two parts of the our practical imple-
mentation. This part works as a half duplex transceiver device. So, one USRP
device can transmit and receiver signals to and from the other USRP. In wireless
channels fading effect cause the loss of a number of packets.As a solution for
this problem, we use a simple acknowledgment (ACK) exchange policy between
the transceivers to assure the complete reception of the packets. As we have pin-
pointed to in Sect.8.2, using python, GNU Radio programmer can glue between
the C++ signal processing blocks. Gluing among the differentblocks enables us
to create a whole complete system. The gluing of the system’sparts creates a
system flow graphs. In this section we will have a fast overview of a GNU Ra-
dio’s flow graph system. After that we explain our transceiver model, followed by
snapshot results. In this section, as in the next sections, we might explain some
code samples which is crucial for understanding the system.

8.4.1 A GNU Radio System Flow Graph using Python

As explained in Sect.8.2, the idea of the flow graph system (which based on graph
theory) is to connect the C++ signal processing blocks together to form a whole
system. To give GNU Radio more flexibility, each C++ signal processing block
performs one task. Lets see some examples for already created flow graph systems
by connecting individual signal processing blocks.

Sine generator (350Hz)

Audio Sink

Sine generator (440Hz)

Figure 8.4.1: The flow graph of dial tone generator.
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• Dial Tone Generator. As in Fig.8.4.1, we can see how it is possible to create
a dial tone generator using three blocks. One sink and two sources. So as
we can see all source do not have input, while all sinks can nothave output.

USRP Source Frequency sync Matched filter

Symbol demodulator

Bit mappingChannel decoderSource decoder

Application

Complex Samples

DATA

BITS

Complex Symbols

Figure 8.4.2: The flow graph of QPSK demodulator.

• QPSK Demodulator. Figure 8.4.2 shows how to connect different mono
task block to form the QPSK demodulator system. As we know from com-
munication basic letirature these are the necessary blocksfor creating this
kind of demodulator. We notice that there are many middle blocks which
has both input and output. Some blocks has the input and output as complex
data, some have complex input and bits output.

USRP Source NBFM Demodulator Squelch Audio Sink

USRP SinkNBFM ModulatorAudio Source

Figure 8.4.3: The flow graph of a Walkie Talkie.

• Walkie Talkie. I never created walkie talkie in my life, but I’ve tested the
idea behind this flow graph and it works well. The idea behind the walkie
talkie flow graph, Fig.8.4.3, is to show the capability of GNURadio flow
graph system to handle the parallel independent flow graphs.

From the previous flow graphs we can conclude the following:

• All signal processing in GNU Radio is done through flow graphs.

• A flow graph consists of blocks. A block does one signal processing opera-
tion.

• Data passes between blocks in various formats, complex or real integers,
etc.
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• Every flow graph needs at least one sink and source.

As an example to show the how to connect the flow graph using python con-
sider the following code lines (this code is taken from the module gnuradio-
examples/python/audio/dialtone.py).
src0 = gr.sig source f(sample rate, gr.GRSIN WAV E, 350, ampl)
src1 = gr.sig source f(sample rate, gr.GR SIN WAV E, 440, ampl)
dst = audio.sink(sample rate, ””)
self.connect(src0, (dst, 0))
self.connect(src1, (dst, 1))
The first and the second code lines create signal source with different frequency.
The third line creates the audio sink. Finally the last two lines connect the first
and the second sources with the audio sink. Because Python is an OOP, we pass
the returned value of the module’s (class) constructor to a specific named variable,
which can be used always as an object of that module. Finally,we are going to
mention some important characteristics of the GNU Radio flow graph system.

• It is possible to combine two blocks into one hierarchical block using the
module ’gr.hier block2’. This make the work easier and more flexible
sometimes. The hierarchical block can be a source, sink or middle block.

• Sometimes it is crucial to use two or more flow graphs working at the same
time. GNU Radio’s flow graph system enables us to do so. To do multiple
flow graph control we have to create a top block and connect allthe flow
graph (which will be considered as sub flow graphs) to this topblock. This
is as explained in the Walkie Talkie example.

• Dynamic flow graph control is possible by using some already created meth-
ods as stop, run, connect, start, wait, etc. It is also possible to control a flow
graph from a different module (or class) by calling its corresponding object.

8.4.2 Implemented Transceiver System.

After thinking about a nice and easy way for explaining the system, we decided
to show an overall system flow graph, and then explain it. Eachof the graph
rectangles correspond to one programming block (made by either C++ or Python).
In each sub flow-graph the blocks are connected together fromright (up) to left
(down). The dotted line indicate that there is a relation between the connected
blocks. Figure 8.4.4 shows the whole system flow-graph. We explain each first
level sub flow-graph individually, starting from ’usrp receive path’.
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Figure 8.4.4: The flow graph of the implemented transceiver.

• usrp receive path: This block acts as a hierarchical block for the sub flow-
graph’s blocks of the receiving path. As we mentioned in Sect.8.4.1, it is
possible to combine many blocks which have different tasks into one large
block. This large block deals with all the sub tasks in a specified organized
timing, so it increases the reliability and flexibility of the system.
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• HardwareUSRP RX: This is the receiving Hardware.

• generic usrp rx: This block takes care of setting the hardware (USRP)
configurations. It set the PGA before the ADC. It passes the required dec-
imation rate to the corresponding DDC, and also decides the multiplexer’s
value based on how many channels do we have. Power gain, Centerfre-
quency are also controlled in a flexible way using this block.All the previ-
ously mentioned parameters can be specified for both daughter boards (DB)
A and B. Some of them are independently assigned for DB A and B, while
others must have the same values for both DB. All of these parameters are
taken from the′usrp options′ block, which is entrusted to carefully decides
these values.

• usrp options: This block is responsible for recognizing the users’ desired
options of both transmitting and receiving paths. It also examines the user’s
input data, and the desired device configuration, whether ornot they are
available, suitable, and achievable.

• receive path: This block deals with the received signal just after receiving
it from hardware. It is responsible for channel filtering, carrier checking,
demodulation, error checking. As for error checking, thereare two built-in
error checking methods. One way is Cyclic Redundancy Check (CRC). The
other one is code access correlation for synchronization.

• channel filter:Is the closest block of the receiving flow graph to the hard-
ware part. We create filter coefficients corresponding to thedesired filter
type. Here we use a low pass filter. Furthermore, we can selectdiffer-
ent windows types such as a Hanning window ’gr.firdes.WIN HANN ’.
Other windows are available as, Hamming, Blackman, Kaiser and Black-
man Harris. The main role for this block is to compensate for the transmis-
sion channel.

• probe: It Computes a running average of the magnitude squared of thethe
input. The level and indication as to whether the level exceeds a threshold
can be retrieved with the level and unmuted accessors. This block can be
thought of as carrier power detector.

• packet receive: As its named, this block is for managing the received pack-
ets.

• demodulator: This is a demodulation block should be assigned correspond-
ing to the modulator in the transmitting path. It is possibleto select different
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types of demodulation as PSK (from 2 to 8), DBPSK (2-8) and QAM (8,
16, 64, 256).

• correlator: This block examines its input for specified access code, onebit
at a time. It is considered for synchronization purposes. The input data of
this block is: stream of bits, 1 bit per input byte (data in LSB). The output
data is: stream of bits, 2 bits per output byte (data in LSB, flagin next higher
bit).

• framer sink: Works as a message queue to hold the packet from the physi-
cal layer and then use it inhandling the receive and transmit data flow−
graph.

Then we explain ’usrp transmit path’.

• usrp transmit path: This block acts as ’usrp receive path’, but for the
transmitting path.

• packet input: This is the source of data which we want to send. Here we
use ’message source’ module to convert the received (input) messages into
a stream.

• data modulator: This is a modulation block should be assigned corre-
sponding to the demodulator in the receiving path. It is possible to select
different types of modulation as PSK (from 2 to 8), DBPSK (2-8)and QAM
(8, 16, 64, 256).

• packet transmitter: As its named, this block is for managing the transmit
packets.

• amplifier: This block multiply the signal by a desired amplitude to amplify
the signal.

• transmit path: This block deals with the transmit signal before passing it
to the hardware. It is responsible for generating, modulating and amplifying
the signals.

• usrp options: Performs just asusrp options in usrp receive path.

• generic usrp tx: This block takes care of setting the hardware (USRP)
configurations. It passes the required interpolation rate to the correspond-
ing DUC, and also decides the de-multiplexer’s value based onhow many
channels do we have. Power gain, Center frequency are also controlled in
a flexible way using this block. All the previously mentionedparameters
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can be specified for both daughter boards (DB) A and B. Some of them are
independently assigned for DB A and B, while others must have the same
values. All of these parameters are taken from the ’usrp options’ block,
which is entrusted to carefully decides these values.

• Hardware : USRP TX: This is the receiving Hardware.

Finally we explain ’handling the receive and transmit data’.

• handling the received and transmit data: In this block we handle both
the transmitted and received data. This block is created by only python.
As for the transmitted data we decide which file do we want to transmit.
Then we divide the whole file into a suitable number of packetsaccording
to USRP specifications and roles. After that, we attached the corresponding
header to the data. Sometime we transmitted an ACK, which takes only
one packet to be transmitted. This ACK packets are organized through the
received data handling part. After we create the data/ACK packets we pass
it to ’usrp tranmit path’ to prepare this data to be transmittable through
USRP.
On the other hand, when we receive the packet from ’usrp receive path’
block we separate both header and data in the packet. This enables us to rec-
ognize whether we received packet is ACK packet or data packet. Starting
from this point we begin the explanation of the simple proposed exchange
system for recovering the lost packets. According to the header we take one
of the next actions, as follow:

– If the header is for ACK packet; We inform the user that the sentmes-
sage has been received in the other side correctly.

– If the header is for NACK packet. This happens when the transmit-
ted packets were lost in the channel; Therefore, we request adata re-
transmission from the transmitter handler. In this case we only trans-
mit the lost data.

– If the header is for data packet; We check the packet number ifit is the
last packet we close and save the file. If it is not the last packet, we
add it to the receiving matrix.

– If the header is for a lost retransmitted data packet; We add it to the
correct location in the receiving matrix. Then save the file.

This recovery algorithm is explained in Fig.8.4.5.

At last, Fig.8.4.6 shows a summary block diagram for the our communica-
tion system.
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Figure 8.4.5: The Recovery Algorithm for Lost Packets.

Figure 8.4.6: The Overall Block Diagram of our communicationsystem, Imple-
mented using GNU Radio.
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8.5 Spectrum Sensor

In this section we explain our GNU Radio based spectrum sensor. This sensor is a
reconfigurable sensor, which has the ability to sense any number of channels with
any required bandwidth per channel. All it takes is to changeits parameters. This
sensor works in two modes, Noise calibration and sensing mode.
Any sensing period starts by noise calibration mode to decide the noise variance
which is necessary to calculate the threshold. Depending onhow accurate do
we want the observed noise variance to be, we should increasethe number of
averaged samples of the noise. Therefore, this mode is operated with an option for
increasing the number of iteration independently from the sensing mode. Before
operating in this mode we should assure that the radio environment is free from
any signals, especially in the sensed sub-channels. Otherwise all available signals
will be considered under the noise level, thus, we will not beable to detect them.
After it finishes the noise calibration mode the sensor goes automatically into the
sensing mode. There are many factors to be considered for deciding how this
mode is operating.

• The frequency and time resolution: which decide how many FFTbins and
the corresponding number of sensed channels per one FFT block. If the
highest sampling rate is considered, for USRP is 8M, considering an over-
lapping factor is 0.25, and the bandwidth per sub-channel is1 M, then we
can sense up to 6 sub-channels at a time. This sub-channels can be scanned
per one chunk. If we increase the overall sensed spectrum to 100 sub-
channels, we have to change the center frequency of the devise [100/6] = 17
times.

• The overlapping between the sensed channels. The larger theoverlapped
period, till a certain value, the better the sensing, however it increases the
required sensing time.

Figure 8.5.1 shows the flow graph of the sensor. As in the transceiver part each
of these blocks created either by python or C++. In the following we explain the
task of each block individually

• Hardware: The sensed signal comes from the USRP. Then we input it to a
stream-to-vector transformer.

• s2v: This block converts a stream of items into a stream of blockscontain-
ing nitems per block. So we use it to convert the inputed stream signal to
series vectors (blocks). Each of those blocks have the same size of FFT.
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Figure 8.5.1: The Overall Block Diagram of our Sensing system, Implemented
using GNU Radio.

• Windowing: We useblack man harris window to smoothen the time sig-
nal. Without using a time window we cannot reduce the leakagein the
filter’s frequency response.

• FFT : This block computes the forward or reverse FFT, with complex input
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and output. According to the size of FFT and the sampling ratewe divide
the whole spectrum into sub-channels.

• c2mag: It computes the magnitude and square for the complex input.

• bin statistics f : This block has many tasks, it can be considered as the
heart of this flow graph, some of these tasks are:

– It keeps track of the signal output of the squaring device.

– It waits for a pre-specified tune delay to make sure that we obtained
the samples corresponding to the assigned center frequency.

– It also waits for a dwelling time, is needed to observe a pre-specified
number of samples for averaging.

– Finally, it calls the python’s tuning function to tune and change the
frequency to the next value (this is effective in case of sensing a wide
spectrum).

• Sensing, C + + part: This is not a signal processing block, but it is
responsible to deliver the data obtained by the C++ signal processing blocks
to the python blocks.

• Sensing, Python part: Starting from this block we begin the python part.
It takes the sensed values from ’bin statistics f ’ block.

• Calculated Needed Parameters: In this block we discuss some hard-
ware considerations and parameters that affect the spectrum sensing pro-
cess. These parameters have variable or fixed values. Some ofthese values
are expressed as:

– Tune Delay Time (1ms default):
To achieve a correct sensing performance we should wait (a delay
time) for the ADC samples of the specified wanted centered frequency.
This delay occur because of many delays along the digitization path
(RF synthesizer, settling time and propagation pipe-FPGA and USB
transferring time).

– Dwell Delay Time (10ms default):
The purpose of this delay time is to stay at the same frequencyto get
enough samples to achieve a certain detection sensitivity.The more
we increase this time the more samples we have, to be averaged, this
improve the performance of sensing.
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– USB Limitation:
As we have discussed in a previous section, USRP is using a USB
micro-controller to interface between the USRP and the USB port.
Because of the speed limitation, the USB cannot keep up with the
USRP speed (64 Mbit/sec). This obligates us to use the decimation
rate higher than 8, results in a final sampling rate= 64M/8 = 8M .

• Calibrate Noise V ariance: This block is the first block in the process of
sensing. We make sure that there is no primary user’s signalsand then start
assembling the noise samples. This is assembling process isaverage over
all sample to get a noise variance as close as possible to the real one. If we
are sensing a wide bandwidth we separate the bands and then average over
all of them. Therefore, this process takes more than it does take us to scan
all channels.

• Threshold: In this block we use both the estimated noise variance and the
number of averaged samples to calculated the threshold, as given by

γthres,FA = σ2
n(1 +

Q−1(PFA)
√

N/2
). (8.5.1)

whereσ2
n is the noise variance which has been estimated in a previous block,

Q is the macrum function and N is the number of averaged samples.

• Divide into sub − channels: If we are sensing a wide frequency band,
in this block we divide the samples into different sub-bandsand sense each
band individually.

• Averaging & decision: We just average each sub-channel’s samples to
find the test statistic. After that we compare the test statistic to a threshold
to make the decision, either the primary user exist or not.
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8.6 Transceiver and Sensor Results

In this section we show the results of both the transceiver and the sensor GNU
Radio based devices. Some results are only snap shots of the output command
window, which is to show how the system works. While others areperformance
evaluating results.

8.6.1 Transceiver results

At first we show the transmitter with no lost packet. In this case the receiver will
receive all the packets correctly and then transmit an ACK packet to the transmit-
ter, which is going to show it in the output command line window. Figure 8.6.1
shows the system parameters and then starting transmitting.

1

This is the command which start 

the program and specify the

necessary parameters: 1.2GHz, 

dbpsk, and 0.25 signal amplitude

This is the characteris!cs of the 

modulator, and the daughter 

board, no!ce that ‘set auto (auto 

T/R)’ = True

Demodulator characteris!cs

Press ‘1’ to transmit, and then write the 

name of the file with the extension.

First show how many step is 

necessary to transmit the whole file 

and some specifica!on for the packet

The configured receiving path characteris!cs. 

TRANSMITTER 

WITH NO LOSS -1-

Figure 8.6.1: Transceiver Results, Transmitter side # 1.

Figure 8.6.2 shows the last part of the transmitting process.
Figure 8.6.3 shows the receiver system parameters and starting of the packet

receiving process.
Figure 8.6.4 shows the last stage of receiving the transmitted packet. After

finishing receiving it starts to send ACK.
Figure 8.6.5 shows the receiver side going from a receiver toa transmitter.
Figure 8.6.6 shows the receiver side when there are lost packets. These packets

lost because of the sever fading channel or low SNR environment.

77



TRANSMITTER WITH NO LOSS -2-

2

Transmi!ng all packets

Transmi!ng last packet

The ACK is True, we received ACK 

from the transmi"er that all packets 

has been received correctly

Figure 8.6.2: Transceiver Results, Transmitter side # 2.

3

This is how the receiver side start 

receiving .

RECEIVER WITHOUT 

LOSS-1-

Figure 8.6.3: Transceiver Results, Receiver side # 3.

Figure 8.6.7 shows the last stage of receiving the lost packets. After that it
sends NACK to notify the transmitter about the lost packets. Then it receives only
the lost packets.

Figure 8.6.8 shows the last stage of receiving the lost packets after retransmit-
ting them by the transmitter. Then it transmit an ACK to the transmitter.
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RECEIVER WITHOUT LOSS-2-

4

Receiving data packet so: 

‘False’ ACK, ‘True’ Data packet, 

‘False’ Lost_ACK.

Please no!ce that the lost index is 

null when the lostpkt =0;

ok= True

A"er receiving the last data packet 

send ACK to the transmi#er

This is the last-data informa!on.

Figure 8.6.4: Transceiver Results, Receiver side # 4.

5

This is to show how our 

system transfer from the 

receiving side (above frame) 

to be the transmi!er side 

(below frame)

MULTI TRANSMITTER-RECEIVER 

FUNCTIONALITY

Figure 8.6.5: Transceiver Results, Multi-Transmitter-Receiver functionality, # 1.

Figure 8.6.9 shows the transmitter side after receiving NACKthen it retransmit
only the lost packets, using their sent indexes. Finally, itreceives ACK from the
receiver side.

79



6

RECEIVING IN SEVER 

CHANNEL -1-

(LOOSING PACKETS)

As we can see here, this is 

the case when the receiver 

start loosing packets. We 

store the lost packet indexes 

in an array to send LOST-ACK 

to the transmi!er a"er 

receiving all packet.

Figure 8.6.6: Transceiver Results, Receiver side with Lost Packets # 1.

7

RECEIVING IN SEVER 

CHANNEL -2-

(LOOSING PACKETS)

Finish receiving the first transmission 

with some lost packets

Send the lost-ACK to the transmi"er to 

retransmit the lost packet with the sent 

indexes

Start to receive the retransmi"ed 

packets

Figure 8.6.7: Transceiver Results, Receiver side with Lost Packets # 2.

8.6.2 Sensor Results

In this subsection we are going to start by showing the command line window
environment of the sensing process. Then we show result of evaluating the total
observation time of sensing 102 channels versus the Dwelling time. After that, we
show the results of evaluating the USRP sensitivity versus the number of averag-
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8

RECEIVING IN SEVER 

CHANNEL -3-

(LOOSING PACKETS)

This output shows the receiver a!er 

receiving all retransmi"ed lost packets.

Then sending ACK that the receiving is 

finished.

Figure 8.6.8: Transceiver Results, Receiver side with Lost Packets # 3.

9

SENDER AT THE 

RETRANSMITTING STAGE

We show here how the 

transmi!er receive the lost-

ACK packet from the receiver, 

then start to retransmi"ng 

data to the receiver again. At 

the end receiver ACK.

Figure 8.6.9: Transceiver Results, Transmitter side with Lost Packets ACK
(NACK)# 1.

ing samples. At last, we present the results ofPD versus received power (dBm).
Figure 8.6.10 shows the sensor in noise calibration mode. Some notes are

needed here:

• a. This command start the sensing from 1.2 GHz to 1.22 GHz.
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1

a

c

b

Figure 8.6.10: Sensing Results / Noise calibration mode.

• b. This is an array of all the center frequencies which are going to be
scanned.

• c. This is the stage where we measure the energy of the noise toget the
noise variance value.

Figure 8.6.11 shows the sensing mode with no PU occupying thechannels. It
tunes the center frequency to scan the required channels.

Figure 8.6.12 shows the sensing mode with PU occupying some channels and
not occupying others.

Table 8.6.1: Sensor Parameters for Evaluating Sensing Time.
Parameter Name Value
FFT size 5120/10240
Decimation rate 8
# Tuning steps for 100 MHz 17
sampling Freq 6Mbit

Considering the system parameters presented in Table 8.6.1,Fig.8.6.13 evalu-
ates the total observation period (msec) versus the dwelling time (observation per
one chunk). We can see how the total observation period increases by increasing
the dwelling time for one chunk.

We changed the system parameters (for simplification) to be as shown in Table
8.6.2. Then, in Fig.8.6.14 we evaluate the systemPD versus the received power.
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Showing the sensed value 

at the corresponding 

frequency. Comparing to 

the mentioned threshold, 

we decide the PU doesnot

exist.

Figure 8.6.11: Sensing Results / PU Detection with no PU signal occupying the
channels.

4

When we transmit signals using 

benchmark_tx, the sensing 

results changes from:

Primary User: 0

To

Primary User: 1

Figure 8.6.12: Sensing Results / PU Detection with PU signal occupying the some
channels.

To be able to obtain an exactPD we had to start by fixing the realPFA. From Fig.
8.6.14 we confirm that for−86 dBm we get around0.8 PD. This means that we
need more samples to improve the performance, and be able to detect−100 dBm
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Results for Sensing !me

Total sensing !me for 102 channels
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Figure 8.6.13: Sensing Results / Total Observation Time versus One Dwelling
Time.

Table 8.6.2: Simulation Parameters for GNU Radio Based Sensor(PD V.S Re-
ceived Power).

Parameter Name Value
# used antennas 1
Averaging samples 1000
Dewlling Time 7msec
# sent samples/one probability value1000
Averaged samples for 50000
estimating the noise variance
ActualPFA 0.1
USRP Compensated Gain 45 dB
Bandwidth per chunk 250KHz
# of Sensed sub-bands 100
Sub-band Bandwidth 250KHz

signal level.
Figure 8.6.15 we evaluates the sensor sensitivity level versus the number of the

averaged samples. Consider the Y-Axis values is the SNR (in - dB), it follows the
same parameters of table 8.6.2 without fixing the realPFA. We can confirm that
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Figure 8.6.14:PD versus received power dBm for GNU Radio based sensor.
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Figure 8.6.15: Sensing Results / USRP sensitivity levels versus # Averaging Sam-
ples

by increasing the number of averaging samples the sensitivity level decreases and
therefore the sensor can sense more low level PU signal. Thisresults is realistic
since we gather more signal’s energy. The fluctuating in the slope of this curve is
caused by two factors:

• Not enough averaging time per sensed sub-channel.

• Not fixed real False Alarm probability.
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Chapter 9

Conclusion

Finally, we conclude this thesis by pointing to the fact thatwe mostly achieve
the objective of this research, which is using multi-antennas for blind spectrum
sensing in cognitive radio. In this paper we proposed two novel schemes for pri-
mary user detection using multi-antennas. Using multi-antennas we achieve di-
versity plus combining gain, and utilizing two new ideas based on both EGC and
MRC we managed to achieve blind detection. The first proposed scheme based
on EGC, it selects equal gain antennas’ weights, and we call itQUAL scheme.
Using QUAL weights creates a problem of varyingPFA, because we select the
maximum branch out of multiple (equal to the number of weights times number
of antennas). Therefore, we had to derive a new threshold based on extreme value
distribution to fix thePFA. The second proposed scheme is by considering the
fact that the eigenvectors of the received variance matrix are corresponding to the
MRC weights. At the end, the simulation results show that the new proposed
schemes achieve a diversity combining gains without the necessity of the channel
information. After we finish the theoretical part of this research, and using a pri-
mary candidate for deploying SDR systems called GNU Radio, weimplemented
both communication and sensing SDR systems. We derived the sensitivity of the
sensor versus the number of averaging samples and the SNR level.
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Appendix A

Install GNU Radio

In this section we discuss the installation of GNU Radio. We will try to be as
direct as possible to reach the target point, so it is advisable that the reader is
familiar with Ubuntu system. There are two ways to install GNU Radio on your
PC. [18]

• Download the packages from GNU Radio website and compile them. We
are not explaining this method, because we did not use it in our installation.

• Using the already compiled binary package. In the followingwe are going
to explain this method.

At the beginning we mention some pre-requisites packages needed to be taken
care of before the installation of GNU Radio binary packages.

• Development Tools (need for compilation)

– g++

– subversion

– make

– autoconf, automake, libtool

– sdcc (from ”universe”; 2.4 or newer)

– guile (1.6 or newer)

– ccache (not required, but recommended if you compile frequently)

• Libraries (need for runtime and for compilation)

– python-dev

– FFTW 3.X (fftw3, fftw3-dev)
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– cppunit (libcppunit and libcppunit-dev)

– Boost 1.35 (or later)

– libusb and libusb-dev

– wxWidgets (wx-common) and wxPython (python-wxgtk2.8)

– python-numpy (via python-numpy-ext) (for SVN on or after 2007-
May-28)

– ALSA (alsa-base, libasound2 and libasound2-dev)

• SWIG

• QWT

To install the needed packages you first update the local dpkgcache using the
command

$ sudo apt-get update

We used Ubuntu-Karmic 9.10, then the installation using command line will be as

sudo apt-get -y install swig g++ automake libtool python-dev libfftw3-dev \
libcppunit-dev libboost1.38-dev libusb-dev fort77 sdcc sdcc-libraries\
libsdl1.2-dev python-wxgtk2.8 subversion git-core guile-1.8-dev\
libqt4-dev python-numpy ccache python-opengl libgsl0-dev \
python-cheetah python-lxml doxygen qt4-dev-tools\
libqwt5-qt4-dev libqwtplot3d-qt4-dev pyqt4-dev-tools

Then we install QWT 5.0.2 using commands

$ sudo wget http://superb-east.dl.sourceforge.net/sourceforge/qwt/qwt-5.0.2.tar.bz2
$ sudo tar jxf qwt-5.0.2.tar.bz2
$ cd qwt-5.0.2

Be carefull that the source URL might change from time to time. Now edit qwt-
config.pri. Change the unix version of ”INSTALLBASE” to ”/usr/local”. Change
”doc.path” to ”$$INSTALLBASE/doc/qwt”. Then,

$ sudo qmake
$ sudo make
$ sudo make install
$ cd ..
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After that we install Boost package. After we download boost1 37 0.tar.bz2
from boost.sourceforge.net and unrar it as we have done withQWT. After that,
we follow the following commands

$ cd boost1 37 0
$ BOOSTPREFIX=/opt/boost1 37 0
$ ./configure –prefix=$BOOSTPREFIX –with-libraries=thread,datetime,programoptions

$ sudo make
$ sudo make install
$ cd ..

Installation of GNU Radio:

For installing GNU Radio packages, we follow the binary package installation.
At first please make sure that you un-installed any compiled GNU Radio pack-
ages using the following command

$ sudo make uninstall

Then, to track the stable release branch, insert the following in the deb manager.

deb http://gnuradio.org/ubuntu stable main

deb-src http://gnuradio.org/ubuntu stable main

To track the unstable release branch, insert the following.

deb http://gnuradio.org/ubuntu unstable main

deb-src http://gnuradio.org/ubuntu unstable main

Then update the package list using

$ sudo aptitude update

Finally, we Install the GNU Radio packages using,

$ sudo aptitude install gnuradio gnuradio-companion
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At this point you will probably face many dependent packages. To solve this prob-
lem, use the package manager in your Ubuntu release (in our case it is Synaptic
Package Manager) to un-install the conflict packages and install the required cor-
rect release packages.

Now GNU Radio is installed, however for a regular user to be able to use it
freely we have to create a group for this user as following.

$ sudo addgroup<USERNAME>usrp
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Publications

1. A. AL-ABBASI, T. FUJII “A Novel Spectrum Sensing Method using Multi-
Antennas without Channel State Information,”. IEICE. Technical Commit-
tee on Software Radio (SR), May.2009.

2. A. AL-ABBASI, T. FUJII. “A Novel Spectrum Sensing Method using Multi-
Antennas without Channel State Information,”. IEEE, International Sympo-
sium on Wireless Communication Systems. ISWCS, Sept. 2009.

3. A. AL-ABBASI, T. FUJII. “A Novel Blind Diversity Detection Scheme for
Multi-antenna Cognitive Radio Spectrum Sensing,”. IEEE 72ndVehicular
Technology Conference. VTC Sept. 2010 (accepted and to be published).

4. A. AL-ABBASI, O. Altintas, T. FUJII and other authors “Implementation
and Evaluation of Distributed Control and Data Channel Coordination Al-
gorithms for V2V Dynamic Spectrum Access,” SDR’10 (acceptedabstract,
paper submitted).
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Appendix C

Simulation Program

After the Acknowledgment page, the simulation program is attached.
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