An Efficient and Scalable Implementation of
Sliding-Window Aggregate Operator on FPGA

Yasin Oge*, Masato Yoshimi*, Takefumi Miyoshif, Hideyuki Kawashima®, Hidetsugu Irie*, and Tsutomu Yoshinaga*

* Graduate School of Information Systems, The University of Electro-Communications, Japan
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
E-mail: oge@comp.is.uec.ac.jp, {yoshimi,irie,yosinaga}@is.uec.ac.jp
e-trees.Japan, Inc.,
Daiwa Building 3F, 2-9-2 Oowada-cho, Hachioji, Tokyo, 192-0045
E-mail: miyoshi @e-trees.jp
¥ University of Tsukuba, Japan
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
E-mail: kawasima@cs.tsukuba.ac.jp

Abstract—This paper presents an efficient and scalable im-
plementation of an FPGA-based accelerator for sliding-window
aggregates over disordered data streams. With an increasing
number of overlapping sliding-windows, the window aggregates
have a serious scalability issue, especially when it comes to im-
plementing them in parallel processing hardware (e.g., FPGAs).
To address the issue, we propose a resource-efficient, scalable,
and order-agnostic hardware design and its implementation by
examining and integrating two key concepts, called Window-ID
and Pane, which are originally proposed for software implemen-
tation, respectively. Evaluation results show that the proposed
implementation scales well compared to the previous FPGA
implementation in terms of both resource consumption and
performance. The proposed design is fully pipelined and our
implementation can process out-of-order data items, or tuples,
at wire speed up to 200 million tuples per second.

I. INTRODUCTION

An important and growing class of applications deals with
continuous data streams to identify emerging trends in real-
time directly from the data streams. Many data processing
tasks, such as financial analysis, traffic monitoring, and data
processing in sensor networks, are required to handle a huge
amount of data with certain time restrictions. To address the
issue, database researchers have expanded the data processing
paradigm from the traditional “store-and-process” model to-
wards the “stream-oriented processing” model [1,2,4]. Data
Stream Management Systems (DSMSs) deal with potentially
infinite streams of data that must be processed for real-
time applications, executing SQL-like continuous queries over
data streams. Real-time processing is essential for DSMSs;
in particular, low-latency and high-throughput processing are
key requirements of systems that process unbounded and
continuous input streams rather than fixed-size stored data sets.

One of the key challenges for DSMSs is an efficient support
for window aggregation. It is a common approach for a
DSMS that subsequence of data stream elements (hereafter
tuples) is defined as a window. In other words, windows
decompose a data stream into possibly overlapping subsets

of tuples (i.e., each tuple belongs to multiple windows). After
that, according to a given query, window aggregate operators
repeatedly calculate aggregate functions such as COUNT,
SUM, AVERAGE, MIN, and MAX for each window.

Motivating Issues. Mueller er al. consider the use of
FPGAs for data stream processing as co-processors [11].
They present an implementation technique for sliding-window
queries on an FPGA. However, there remain two practical
issues related to the implementation of sliding-window ag-
gregation:

1) The first issue is that it is necessary to consider out-of-
order arrival of tuples at a windowing operator.

2) The second issue is that a large number of overlapping
sliding-windows cause severe scalability problems in
terms of both performance and area.

Unfortunately, Mueller et al. neither address nor discuss
both of the above issues. In our previous work [14, 15], we
address the first issue regarding out-of-order arrival of tuples.
To the best of our knowledge, however, the second issue is still
an open question. In this paper, we focus on the second issue
and present a scalable implementation for a sliding-window
aggregate query on an FPGA.

Our Contribution. This paper proposes a scalable and
order-agnostic hardware design of sliding-window aggregation
and its implementation on an FPGA, by examining and inte-
grating two key concepts: Pane [7] and Window-ID (WID) [8].
Instead of replicating a large number of aggregation modules
for overlapping sliding-windows, we divide each sliding win-
dow into non-overlapping sub-windows called panes. For each
sub-window, or pane, we first calculate a sub-aggregate (i.e.,
pane-aggregate), which is then shared by the aggregation of
the multiple windows (i.e., overlapping sliding-windows). The
pane-based approach is originally proposed for software-based
implementation to reduce the required buffer size and the
computation cost [7]. In this work, however, we show that the
same idea can provide significant benefits for hardware-based

©2013 IEEE. Reprinted, with permission, from Yasin Oge, Masato Yoshimi, Takefumi Miyoshi, Hideyuki Kawashima, Hidetsugu Irie, and Tsutomu Yoshinaga, “An Efficient and
Scalable Implementation of Sliding-Window Aggregate Operator on FPGA”, in Proc. of 2013 First International Symposium on Computing and Networking, Dec. 2013.

implementation, especially in terms of performance (i.e., the
maximum allowable clock frequency), area (i.e., the hardware
resource usage), and scalability.

Furthermore, we integrate the authors’ work [14, 15], which
is based on WID, into the proposed design in order to address
the first issue, namely out-of-order arrival of tuples. As a
result, the proposed implementation addresses both of the
two problems discussed above (i.e., the out-of-order arrival of
tuples and the scalability issues). To the best of our knowledge,
this is the first paper that integrates the two concepts, namely
Pane and WID, for hardware-based approach, by designing
and implementing an efficient and scalable sliding-window
aggregate operator on an FPGA.

Finally, to demonstrate the effectiveness of the proposed
design, we implement the same experimental system as that
of [15] using Xilinx ML605 Evaluation board and measure
data rates that the FPGA board can sustain. Our experiments
show that the proposed implementation can process signifi-
cantly high tuple rates at wire speed.

The rest of the paper is organized as follows. Section II
presents necessary background and briefly reviews related
work. Section III provides design concepts underlying the
proposed approach. Section IV introduces a target query and
presents its hardware implementation. Section V evaluates
the proposed implementation with some experimental results.
Finally, section VI concludes the paper by summarizing the
results.

II. BACKGROUND AND RELATED WORK
A. Continuous Query Processing on FPGAs

Mueller et al. show the potential of FPGAs as an accelerator
for data intensive operations [10]. It is demonstrated in [10]
that FPGAs can achieve competitive performance compared
to modern general-purpose CPUs while providing remarkable
advantages in terms of power consumption and parallel stream
evaluation. Due to their low-latency and high-throughput pro-
cessing advantages, FPGAs are used to process data streams.

For example, Sadoghi et al. propose an efficient event-
processing platform called fpga-ToPSS [16], and demon-
strate high-frequency and low-latency algorithmic trading so-
lutions [18]. These works mainly focus on queries with selec-
tion operator. Alternatively, another work [17] concentrates on
the execution of SPJ (Select-Project-Join) queries with multi-
query optimization. Other works such as [3, 12, 13] focus on
the acceleration of window join operators. The main focus
of this paper, however, differs from all of the above works
as we are primarily concerned with the scalability issue of
the FPGA-based implementation of sliding-window aggregate
queries.

B. Sliding-Window Aggregate Queries

Consider the following online auction example taken from
Li et al. [7]. In this example, an online auction system
monitors bids on auction items. We assume an input stream
that contains information about each bid, the schema of which
is defined as <item-id, bid-price, timestamp>. In addition,

assume that the online auction system runs over the Internet,
and each bid is streamed into a central auction server where
a DSMS is running. Query)1 (cited from [7]) shows an
example of a simple sliding-window aggregate query.

Query (1: “Find the maximum bid-price for the past 4
minutes and update the result every 1 minute.”

SELECT max (bid-price), timestamp
FROM bids [RANGE 4 minutes
SLIDE 1 minute
WATTR timestamp]

Following the definition of window semantics [8], Query @1
introduces a window specification which consists of a win-
dow type and a set of parameters that define a window. In
Query @1, sliding windows have three parameters: RANGE,
SLIDE, and WATTR. RANGE indicates the size of the win-
dows; SLIDF indicates the step by which the windows move;
WATTR indicates the windowing attribute—the attribute over
which RANGE and SLIDE are specified [8].

Given the specification above, the bid stream is divided into
overlapping 4-minute windows starting every minute, based
on the timestamp attribute of each tuple. For each window,
the maximum value of bid-price is calculated, and Query (),
generates an output stream with schema <max, timestamp>
where the timestamp attribute specifies the end of the window.

C. Glacier

Mueller et al. propose a query-to-hardware compiler, called
Glacier [11], which is a compiler that provides a library of
components and transforms continuous queries into logic cir-
cuits to be implemented on an FPGA. Glacier generates logic
circuits by composing library components on an operator-level
basis and supports basic continuous queries involving selec-
tion, aggregation, grouping, and windowing operators. The
windowing operator provides sliding-window functionality and
aggregate operator includes four distributive (i.e., COUNT,
SUM, MIN, and MAX) and an algebraic (i.e, AVERAGE)
aggregate functions, which are classified by Gray et al. [6].
As windowing and aggregation operators are provided by the
library, Glacier can compile sliding-window aggregate queries
into hardware circuits; however, there are two important issues
related to the implementation of sliding-window aggregation.

The first issue is that their implementation relies on an
implicit assumption about the physical order of incoming
tuples, that is to say, tuples arrive in correct order at the
windowing operator. The assumption does not always fit into
a realistic setting where some degree of disorder (i.e., out-of-
order arrival of tuples) might be happened. For example in
Query @1, input tuples arriving over a network from remote
sources may take different paths with different delays. As a
result, some tuples may arrive out of sequence according to
their timestamp values.

The second key issue is the scalability in terms of both
resource consumption and performance. Glacier relies on si-
multaneous evaluations of overlapping sliding-windows by in-
stantiating a number of aggregation modules on an FPGA. The

number of the aggregation modules required to be instantiated
by Glacier, Ngiacier, 1S calculated based on two parameters:
RANGE and SLIDE (see the following Equation 1).

RANGE
SLIDE

Although this approach may be considered as a possible
solution for a relatively small }g’zygEE ratio (e.g., a few
tens of the aggregation modules), the approach suffers from
the scalability issues for a large %‘2]}’[%3 ratio (e.g., several
hundreds or thousands of the aggregation modules).

It is stated in [7] that sliding-window aggregate queries
allow users to aggregate input streams at a user-specified
granularity (i.e., RANGE) and interval (i.e., SLIDFE), and
thus provide the users a flexible way to monitor streaming
data. However, due to the replication strategy of the aggre-
gation modules for overlapping sliding-windows, the number
of replicas linearly increases with increasing I_"S‘%]IVDC’EJ ratio.
This results in serious scalability problems especially for large
RANGE and/or small SLIDFE values. In fact, even if a small
RANGE ratio is considered, the replication strategy discussed

SLIDE
above leads to extremely poor resource utilization.

NGlacier = ’7 (1)

D. WID-based Implementation

Abadi et al. classify query operators into two categories:
order-agnostic and order-sensitive [1]. It is stated in [1] that
order-agnostic operators can always process tuples in the order
in which they arrive whereas order-sensitive operators can only
be guaranteed to execute with finite buffer space if they can
assume some ordering over their input streams.

Window-ID (WID) [8] is proposed for a software-based
implementation of order-agnostic window aggregation. It is
stated in [9] that WID provides a method to implement
window aggregate queries in an order-agnostic way by using
punctuations [19]. Informally, a punctuation is a kind of tuple
which contains control information and is embedded in a data
stream. It is stated in [8] that punctuations can be used to
indicate that no more tuples having certain attribute values
will be seen in the stream. Therefore, the punctuations are
useful to unblock some blocking operators, such as group-by
and aggregation, signaling the end of each window. The formal
definition and details of the punctuation can be found in [19].

Contrary to the software-based implementation [8], our
previous work [14] proposes hardware-based implementation
of WID. In the previous work [14], a sliding-window aggregate
query, which is directly connected with a UDP/IP stack [5],
is implemented on an FPGA. The proposed implementation
of sliding-window aggregate circuit demonstrates wire-speed
performance on a Xilinx ML605 FPGA board with a Gigabit
Ethernet connection [15].

In order to implement WID-based approach on an FPGA,
we need an upper bound for the required hardware resources.
For the purpose of determining the upper bound, our previous
work [14] introduces a new parameter, called slack [1]. Slack
defines an upper bound on the degree of disorder and any
tuple arriving after its corresponding period is discarded. It is

stated in [1] that some aggregate operators, such as COUNT,
SUM, AVERAGE, MIN, and MAX, can simply delay closing
windows according to the slack specification. This approach
enables us to handle disordered streams appropriately for
sliding-window aggregation.

The authors’ previous work basically relies on punctuations
to handle disorder and the slack parameter is used to calculate
the number of the window-aggregation modules required to
be instantiated. The number of the aggregation modules of
WID-based approach, Nywip, is determined by using window
parameters (i.e., RANGE and SLIDFE) and a slack specifica-
tion (see the following Equation 2).

RANGE + SLACK“

SLIDE @
As shown in Equation (1) and (2), the required numbers of
the aggregation modules (i.e., Ngiacier and Nywip) linearly
increase with increasing Rs‘zjlvgg ratio. This is because both
Glacier and our previous works rely on simultaneous evalua-
tions of overlapping sliding-windows by simply replicating the
window-aggregation modules. Since this approach causes the
scalability issues in terms of the maximum clock frequency
and the hardware resource usage, it is crucial to design and
implement a scalable hardware accelerator for sliding-window
aggregate operator that can handle large }g’zygEE ratios. In
this paper, we adopt a two-step aggregation method using
panes [7] and address the scalability problem of the previous

implementations even if a large %‘2]]\’55 ratio is considered.

Nwmp = {

III. DESIGN CONCEPT
A. Sliding Windows and Panes

In this paper, we first divide each sliding-window into
disjoint sub-windows, called panes, instead of replicating the
window-aggregation modules for overlapping windows. For
example, Fig. 1 illustrates overlapping sliding-windows (only
the first four windows) for Query)7 from Section II-B. Recall
from Query @); that the bid stream is divided into overlapping
4-minute windows, each of which starts every 1 minute.
Accordingly, in Fig. 1, all windows have RANGE = 4 and
SLIDE = 1, respectively.

How we divide these four sliding-windows into panes is
illustrated in Fig. 2. It is stated in [7] that the RANGE and the
SLIDE of panes equal to the same value (i.e., RANGEp,,e =
SLIDEp,,.) and, given a sliding-window aggregate query,
they are calculated as the greatest common divisor (GCD)
of the RANGE and the SLIDE of the original query. Since
the original query (i.e., Query (1) has RANGE = 4 and
SLIDE = 1, we obtain RANGEpane = SLIDEpan. =
GCD(4,1) = 1 minute. By the definition, the number of
panes per window is RANGEq, /RANGEpayne = 4. This can
be easily noticed that each 4-minute window is composed of
four consecutive panes as shown in Fig. 2.

B. Two-Step Aggregation: PLQ and WLQ

In addition to dividing each sliding-window into multiple
panes, the original aggregate query is decomposed into two

Window Range =4

<

| Window3]
Slide = 1 [Window?2)
| Window1 |
| Window0]
(O~(V~2)~(3)~a)~(5)~6)

Time

Fig. 1. Overlapping Sliding-Windows for Query Q1 from Section II-B
(RANGE = 4 minutes and SLIDE = 1 minute).

Window Range =4

[Pane3)(Pane4|(Pane5)(Panes6|
Slide=1 [PaneZ][Pane3][Pane4][Pane5]

<@=-{Panel|Pane2)[Pane3)(Pane4)

[PaneO][Pane1][Pane2][Pane3]

OaOzOROR 02020,

Time

Fig. 2. Each sliding window of Query i is divided into four non-
overlapping sub-windows (i.e., panes), each of which has RANGE = 1
minute and SLIDE = 1 minute, respectively.

sub-queries: a pane-level sub-query (PLQ) and a window-level
sub-query (WLQ) [7]. We adopt this two-step aggregation
approach and our hardware implementation of sliding-window
aggregation is based on these two sub-queries. It should be
also mentioned that Li et al. [7] use the term pane-aggregates
and window-aggregates for the results of the PLQ and the
WLQ, respectively. In this work, we use the same terms for
the results of the sub-queries.

In order to evaluate a sliding-window aggregate query by
using panes, we need to determine window specifications
and aggregate functions of the PLQ and WLQ sub-queries,
respectively. We can use the same windowing attribute (i.e.,
WATTR) as that of the original query for both sub-queries.
In addition, we have already discussed how to determine the
RANGE and the SLIDE of panes. As for the WLQ, we use
the same RANGE and SLIDE values as those of the original
query.

Li et al. point out that aggregate functions of the two
sub-queries depend on the aggregate function of the original
query [7]. In this paper, we focus on the same aggregate
functions as Glacier mentioned in Section II-C to implement
sliding-window aggregate queries on an FPGA. These are
typical aggregate functions in traditional database systems as
well as DSMSs. In fact, AVERAGE function can be obtained
with the combination of two aggregate values: SUM and
COUNT, by simply dividing SUM by COUNT for each
window. Therefore, we should consider the remaining four
distributive aggregate functions (i.e., COUNT, SUM, MIN,
and MAX). Table I summarizes the relation between the

TABLE I
RELATION BETWEEN ORIGINAL QUERY, PLQ, AND WLQ

Aggregate Functions

Original sliding-window query COUNT SUM MIN MAX
Pane-level sub-query (PLQ) COUNT SUM MIN MAX
Window-level sub-query (WLQ) SUM SUM MIN MAX

aggregate function of the original query and the corresponding
aggregates of the PLQ and WLQ. It turns out that, except for
COUNT, we use the same aggregate function as the original
query for both of the PLQ and WLQ sub-queries. When the
original query is COUNT, the PLQ is also COUNT and the
WLQ should be SUM, respectively.

It is stated in [7] that the PLQ is a simple tumbling-
window aggregation, which can be regarded as a special case
of a sliding-window aggregate query whose window size (i.e.,
RANGE) is equal to the hop size (i.e., SLIDE). For each
non-overlapping sub-window (i.e., pane), the PLQ calculates
an aggregate value, which is an intermediate result for the
original sliding-window aggregate query. For example, the
following Query Q2 shows the PLQ of the original query (i.e.,
Query Q1).

Query @5 “Find the maximum bid-price for the past I minute
and update the result every I minute.”

SELECT max (bid-price) as p-max,
FROM bids [RANGE 1 minute
SLIDE 1 minute
WATTR timestamp]

timestamp

In Query @5, the bid stream is divided into non-overlapping
1-minute windows starting every 1 minute. For each window,
the maximum value of bid-price is calculated and Query Q-
generates pane-aggregates with schema <p-max, timestamp>
where the timestamp attribute indicates the end of each pane.
The other sub-query, WLQ, is a sliding-window query over
the intermediate results of the PLQ and produces the final
result for each window. For example, the following Query Q3
shows the WLQ of the original query (i.e., Query Q7).
Query @Q3: “Find the maximum p-max value for the past 4
minutes (i.e., 4 panes) and update the result every 1 minute.”

SELECT max (p—max) as w-max, timestamp
FROM panes [RANGE 4 minutes
SLIDE 1 minute
WATTR timestamp]

Query Q3 accepts the pane-aggregates as its input and runs
over the output stream of Query Q- (i.e., the PLQ). In the
WLQ, each pane (except for the first three panes) contributes
four windows. For example, as shown in Fig. 2, Pane3
contributes to WindowO through Window3. Similarly, Pane4
contributes to Window1 through Window4 and so forth. For
each window, the WLQ computes the max of p-maxes of
the last four panes and generates the window-aggregate with
schema <w-max, timestamp> where the timestamp indicates
the end of the window.

C. Hardware Cost Model

1) Pane-Buffer: In addition to the PLQ and WLQ, we also
need to consider the design of pane-buffer when it comes
to implementing the two-step aggregation on an FPGA. The
pane-buffer is a cyclic first-in first-out (FIFO) buffer with sup-
port for random-access reads. As its name suggests, it stores
the intermediate results of the PLQ (i.e., pane-aggregates). It
should be also noted that, by using panes, a sliding-window
aggregate query can be evaluated with constant buffer space
in dependent of the number of input tuples. Given a set of
window specifications (i.e., RANGE, SLIDE, and WATTR),
we can determine the size of the pane-buffer, Spyfer, in terms
of the number of pane-aggregates. In fact, the required buffer
space is equal to the number of panes per window; therefore,
the following Equation 3 gives us the size of the pane-buffer.

RANGE
GCD(RANGE, SLIDE)

Given a set of window specification, we can easily calculate
Shbufer as a constant value. With the constant bound on the size
of the pane-buffer, we can efficiently implement the buffer
using on-chip Block RAMs (BRAMs) on an FPGA. This is
a significant difference between the approach adopted in this
paper and that of Glacier. While Glacier and our previous
works are not able to utilize BRAMs and only use the limited
logic resources on an FPGA, the proposed approach balances
logic and BRAM utilization. This results in a considerable
area reduction and a higher maximum frequency.

2) Number of the Aggregation Modules: The hardware
design of PLQ is based on the WID-based approach discussed
in Section II-D. The main difference, however, is that the
RANGE of the PLQ is always equal to its SLIDE value. As
a result, we can simplify Equation 2 to calculate the number of
the PLQ aggregate modules, Npr,q, required to be instantiated
(see the following Equation 4).

3)

Sbuffer =

RANGEp,ne + SLACK
Nerq = { SLIDEpane w @
By substituting RANGEpane = SLIDEp,,., we obtain
Equation 5.
SLACK
Nerq = {SLIDEpane—‘ . ©®)

The hardware design of WLQ is based on a sequential eval-
uation of the pane-aggregates. That is to say, with the pane-
buffer mentioned above, we merely require to instantiate a
single aggregation module to implement the WLQ. Therefore,
the number of the WLQ aggregate module, Nwr1.q, is always
equal to one (i.e, Nwrq = 1). Finally, by adding Np1q
and Nwrq, one obtains the total number of the aggregation
modules, Ngta1, required to implement the proposed design
(see the following Equation 6).

SLACK
SLIDEpane

Equation 6 suggests that the number of the total aggregation
modules of the proposed pane-based hardware design is not

Nriotal = NpLg + Nwrg = { -‘ +2 (6)

affected by Igﬁygg ratio. In other words, contrary to Glacier

(Equation 1) and WID-based implementation (Equation 2), the
proposed design can handle large %‘21}7[?; ratios on the order
of, say, hundreds or even thousands.
Moreover, recall from Section II-D that SLACK defines an
upper bound on the degree of disorder in order to wait for
late tuples to arrive before finishing aggregate calculations. It
is however stated in [1] that, given the real-time requirements
of many stream applications, it is essential that it be possible
to “time out” aggregate computations, even at the expense
of accuracy. Since larger SLACK values result in longer
latencies, we should restrict ourselves to a relatively small
SLACK value. For example, assuming the same SLACK as
in [14] (i.e., 60 seconds) for Query)1, one obtains Npr,q = 2
and Nwrq = 1, which yield Nrotar = 3. This means that
the required number of the aggregation modules (i.e., Nota1)
remains constant with increasing %ﬁ%gg ratio. Thus, the pro-
posed approach does not suffer from the scalability problems
observed in Glacier and the WID-based implementation.

IV. IMPLEMENTATION DETAILS
A. Motivating Application and Target Query

Glacier presents an implementation of a sliding-window
aggregate query on an FPGA. The implementation of the query
(Query Qs of Glacier [11]) includes a windowing operator
which implicitly relies on the arrival sequence of input tuples.
Contrary to Glacier, WID-based approach [14] permits win-
dowing on any attribute, allowing a bounded disorder of the
tuples. This work also focuses on the same query as a case
study and proposes a resource-efficient, scalable, and order-
agnostic hardware implementation by using panes.

We assume the same financial trading application as that of
previous work [11, 14, 15]. Similar to WID-based implemen-
tation, the proposed approach requires an explicit timestamp
attribute to define windows over an input stream. The schema
of the input stream, called Trades, is defined as follows:

CREATE INPUT STREAM Trades (

Symbol string(4), -—-- valor symbol
Price int, -— stock price
Volume int, —-— trade volume
Time int) —-— timestamp

An input tuple consists of four attributes each of which is
represented as a 32-bit field. Hence, each tuple has a total
size of 4 x 32 = 128 bits, or 16 bytes. Based on the definition
of window semantics [8], we can rewrite the sliding-window
aggregate query as follows.

Query Q4: “Count the number of trades of UBS (Union Bank
of Switzerland) shares for the past 600 seconds and update the
result every 60 seconds.”

SELECT Time,
FROM Trades

count () AS Number
[RANGE 600 seconds
SLIDE 60 seconds
WATTR Time]

WHERE Symbol = "UBSN"

punctuation data data
flag valid fields

Query ¢

Fig. 3. Wiring Interface (figure cited from [14]).

Given the window specification of Query ()4, the in-
put stream is divided into overlapping 10-minute windows
(RANGE = 600 seconds) starting every minute (SLIDE =
60 seconds), based on the Time attribute of each tuple. For
each window, Query 4 counts the number of trades whose
Symbol equal to UBSN (i.e., WHERE Symbol = “UBSN”).
The query produces an output stream with schema < Time,
Number > where the Time attribute indicates the end of each
window. The details of the implementation of Query Q4 are
provided in the following subsections.

B. Wiring Interface

We adopt the same notation as that of Glacier and WID-
based implementation. Following the notation of [11], Fig. 3
(cited from [14]) shows the black box view of a hardware
implementation for a query q. In Fig. 3, punctuation flag and
data valid are one-bit signals which indicate the presence
of a punctuation and a tuple, respectively. In addition, data
fields represent n-bit-wide data which are regarded as a set
of n parallel wires. For example, datum on the parallel wires
is considered as a punctuation when the punctuation flag is
asserted (i.e., set to logic “1”). Similarly, the data lines are
regarded as a valid tuple when the data valid is asserted.

C. Hardware Execution Plan

An overview of a hardware execution plan for Query Q4
is illustrated in Fig. 4. As shown in Fig. 4, Query Q4 is
implemented as a synchronous 5-stage pipeline. The first
three stages correspond to pane-level sub-query (PLQ) and
the remaining two stages are related to window-level sub-
query (WLQ). The implementation details of PLQ and WLQ
are discussed in the following subsections IV-D and IV-E,
respectively.

The gray-shaded boxes in Fig. 4 represent flip-flop registers
which can be regarded as pipeline registers. The pipeline
stages share a common clock signal and they are inserted
between each stage as shown in Fig. 4. These registers buffer
intermediate results at the end of each stage and the successive
stages can use the result of the previous stage. The arrows in
Fig. 4 indicate the connections between the pipeline stages.
According to the notation of [11], the data fields do not
represent the order of each field. Note that the label “x” means
“all of the remaining fields” in the data fields.

D. Implementation of Pane-Level Sub-Query (PLQ)

The PLQ is implemented as a 3-stage pipeline and the first
three stages of Fig. 4 (i.e., Stage 1, Stage 2, and Stage 3)
show its data flow. In Stage 1, Symbol field of the data bus

<Time, Number>

" WLQ
o Aggregate
&0 9 Module
3
n data-out
......... read_addr
< CWLtQ | write_addr | Pane-Buffer
-5 ontro >
%ﬁ 9 Module write_en (BRAMS)
)
A A
data-in

Select 2-way union
e
@ A
o0 9 | binary -
S d 2 x <Time, Pane-aggregate>
N encoder| ~,}, Je

| <

~ PLQ PLQ
o Aggregate Aggregate
%0 < Module 1 Module 2
~—
EEEEEE x ‘ x
eos eis |paney,q eos eis |paney,q
PLQ PLQ
Control Control
Module 1 Module 2
— L A Y L A Y
%)
%ﬂ <
)
95}

Trades
<Symbol, Price, Volume, Time>

Fig. 4. Hardware execution plan for Query Q4.

is compared to a constant string, “UBSN”, which is specified
in the WHERE expression of Query (), (indicated as [=]in
Fig. 4). At the same time, a logical AND gate (indicated as
in Fig. 4) computes whether an input tuple is valid for
the query, using the result of the comparison. If the tuple
should be discarded (i.e., not satisfy the WHERE condition),
the data valid flag is negated (i.e., set to logic “0”) for the next
PLQ control modules. The PLQ control modules correspond
to windowing operators that provide sliding-window function-
ality. We require the same number of PLQ control modules as
PLQ aggregate modules. Hence, the number of PLQ control

Algorithm 1 Maintain pane states for PLQ

Algorithm 2 Generate asynchronous control signals for PLQ

State Registers:
Panepegin(?): the beginning of the i-th pane instance
paneend(i): the end of the i-th pane instance

Initialization:

for all ¢ such that 1 < ¢ < NprLq do
panebegin(i) < WATTRgtart + (’L — 1) X SL[DEPLQ
paneend (1) < WATTRstart + 1 X SLIDEp1rqQ

end for

Synchronous Update:
for all ¢ such that 1 < ¢ < Nprq do
for each clock cycle do
if punctuation flag is asserted and
WATTR > paneend(i) then
panebegm(i) £ Paneépegin (Z) + NPLQ X SL]DEPLQ
Paneend (1) < paneend (i) + Nerq X SLIDEpLq
end if
end for
end for

modules to be instantiated is calculated by Equation 5 (see
Section III-C).

Each PLQ control module maintains pane states and pro-
vides two control signals, eis and eos, to the next stage of
the pipeline (i.e., Stage 2). The eis stands for enable input
stream and it indicates whether or not data on the data fields
should be considered as a valid tuple for the current pane.
The other signal, eos, stands for end of stream and it indicates
whether an input stream reaches the end of the current pane.
The PLQ control module is responsible for its own states by
updating its internal registers called panepegin and paneend.
These registers represent the beginning and the end of the
current pane, respectively. The control module uses panepegin
and paneonq registers to generate the two control signals, eis
and eos. Details about how to maintain these registers and to
generate the control signals are provided in Algorithm 1 and
Algorithm 2, respectively [14].

Algorithm 1 describes how to initialize and update the
two registers, panenegin and panecnq. Since the windowing
attribute (i.e., WATTR) of Query Q4 is defined as TIME,
WATTRgtart is equivalent to TIMFE .+ which indicates the
start time of the execution of the query. Initialization or update
operation described in Algorithm 1 can be completed in one
clock cycle. All of the PLQ control modules concurrently
perform the same operation on each cycle in a synchronous
manner.

Algorithm 2 describes how to generate the two control
signals, eis and eos. It is important to emphasize that the
implementation of eis and eos signals is fully asynchronous.
As shown in Fig. 4, eis and eos signals are connected to the
data valid and punctuation flag registers, respectively. This
means that these pipeline registers can be updated within the
same clock cycle as soon as eis and eos signals are changed.
In other words, all of the operations performed in Stage 1 can
be completed in a single clock cycle.

The next step is Stage 2 of the pipeline which corresponds
to aggregate operators. In Stage 2, two PLQ aggregate mod-

Asynchronous Signals:
eis(i): input enable signal for the i-th pane instance
eos(1): output enable signal for the i-th pane instance

Asynchronous Update:
for all ¢ such that 1 < ¢ < Nprq asynchronously do
if punctuation flag is negated then
negate eos(i) signal
if data valid is asserted and
panepegin (1) < WATTR < paneena(i) then
assert eis(7) signal
else
negate eis(z) signal
end if
else {punctuation flag is asserted}
negate eis(7) signal
if WATTR > paneend (i) then
assert eos(4) signal

else
negate eos(4) signal
end if
end if
end for
PLQ Aggregate Module
A .
Time Pane-aggregate
Y — -
0 [count] [sum] [miN] [max]
A A A A A A 4
eos| |eis pane, 4 *

Fig. 5. Block diagram of a PLQ aggregate module.

ules are instantiated as shown in Fig. 4. A more detailed block
diagram of a single PLQ aggregate module is depicted in
Fig. 5. The PLQ aggregate module includes four aggregate
operators as shown in Fig. 5. It is stated in [11] that aggregate
functions such as COUNT, SUM, MIN, and MAX can be
implemented in a straightforward fashion on an FPGA. Since
the PLQ requires count(x) function, the result of the COUNT
operator is selected as the output value (indicated as the broken
line in Fig. 5).

The aggregate operator incrementally computes aggregate
value and only stores the current (partial) result of the ag-
gregation. It requires two control signals (i.e., ets and eos)
to maintain its aggregate value. Whenever ets is asserted, the
aggregate operator accepts input tuple and records its contri-
bution to the partial result. If eis is negated, the aggregate
operator simply ignores the input data and waits for the next
tuple to arrive. When eos is asserted, it means that the current
pane is no longer active and the aggregate operator should reset

its internal state. It should be noted that, similar to Stage 1, all
operations performed in Stage 2 can be completed in a single
clock cycle.

We adopt a similar approach as in [15] to implement a union
operator, which is based on a multiplexer component. The
main difference however is the required size of the multiplexer.
In the previous work [15], the size of the multiplexer increases
with increasing %QJIVDGEE ratio and hence leads to scalability
problems. On the other hand, the proposed approach is not
affected by the }Z’Zﬁvﬁf ratio; in other words, our method
requires a constant-size multiplexer. This is a significant dif-
ference between the proposed implementation and that of [15].

According to a select signal, the multiplexer component
transfers the result of ¢-th PLQ aggregate module to the
output registers of Stage 3. As illustrated in Fig. 4, the select
signal is provided by a binary encoder component. It is stated
in [11] that, from a data flow point of view, the task of an
algebraic union operator is to merge the outputs of several
source streams into a single output stream. As shown in Fig. 4,
the 2-way union operator merges the outputs of two PLQ
aggregate modules and generates a single result stream. It
should be also mentioned that Stage 3 requires only one clock
cycle to complete its operation.

E. Implementation of Window-Level Sub-Query (WLQ)

The WLQ is implemented as a 2-stage pipeline and the
last two stages of Fig. 4 (i.e., Stage 4 and Stage 5) show
its data flow. Stage 4 includes a single WLQ control module
and the pane-buffer. Similar to the PLQ control module, the
WLQ control module maintains its internal states and provides
two control signals, eis and eos, to the final stage of the
pipeline (i.e., Stage 5). In addition, the WLQ control module
also provides read and write addresses to the pane-buffer.

Details about how to maintain the window states and to
generate the control signals are provided in Algorithm 3 and
Algorithm 4, respectively. Algorithm 3 describes how to ini-
tialize and update four internal registers: wr_addr, rd_addr,
rd_addr_prev, and pane_counter. It should be mentioned
that wr_addr and rd_addr registers are connected to the
write_addr and read_addr ports of the pane-buffer (see Stage 4
of Fig. 4), respectively. Algorithm 4 describes how to generate
the two control signals, eis and eos, for the WLQ aggregate
module.

As discussed in Section III-C, the pane-buffer is a cyclic
first-in first-out (FIFO) buffer and its implementation is based
on on-chip Block RAMs (BRAMs). BRAMs support dual-
ports and each port has its own data-in, data-out, and address
bus. We use simple dual-port mode, that is to say, one port can
only write and the other port can only read data. As illustrated
in Fig. 4, the data field of Stage 3 is connected to the data-
in port (i.e., write-only port) of the pane-buffer. Similarly, the
data-out port (i.e., read-only port) of the pane-buffer is directly
connected to the next stage (i.e., Stage 5).

Stage 4 requires a total of three clock cycles to complete its
operation when the last pane-aggregate of each window arrives
from the previous stage (i.e., Stage 3). Specifically, when the

Algorithm 3 Maintain window states for WLQ

State Registers:

wr_addr: write-address register of the pane-buffer
rd_addr: read-address register of the pane-buffer
rd_addr_prev: previous value of the read-address register
pane_counter: pane counts in the current window

Initialization:
wr_addr < 1
rd_addr < 0
rd_addr_prev < 0
pane_counter <— 0

Synchronous Update:
for each clock cycle do
rd_addr_prev < rd_addr
if pane_counter < PANES_PER_WINDOW then
if rd_addr # wr_addr and rd_addr +1 # wr_addr then
rd_addr < rd_addr + 1
pane_counter <— pane_counter + 1
end if
else
rd_addr < rd_addr — PANES_PER_WINDOW -+ 2
pane_counter < 1
end if
if punctuation flag is asserted then
wr_addr < wr_addr + 1
end if
end for

Algorithm 4 Generate asynchronous control signals for WLQ

Asynchronous Signals:
ets: input enable signal for the WLQ aggregate module
eos: output enable signal for the WLQ aggregate module

Asynchronous Update:

if rd_addr # rd_addr_prev then
assert e¢s signal

else
negate ets signal

end if

if pane_counter < PANES_PER_WINDOW then
negate eos signal

else
assert eos signal

end if

punctuation flag is asserted, one clock cycle is required to
update the wr_addr register. After that, another clock cycle is
consumed to update the rd_addr and pane_counter registers.
Finally, the third clock cycle is used to retrieve data from the
pane-buffer, which is implemented using BRAM primitives.

When it comes to the implementation of Stage 5 of Fig. 4,
the WLQ aggregate module is implemented almost in the
same way as PLQ aggregate module (see Fig. 5). Hence, all
operations performed in Stage 5 can be completed in a single
clock cycle. Mueller et al. [11] evaluate the complexity and
performance of the resulting circuits in terms of latency and
issue rates. Issue rate is defined as the number of tuples
that can be processed per cycle. The overall latency and the
issue rate of the proposed implementation are 7cycles and
1 tuple/cycle, respectively.

TABLE III

TABLE 1T BLOCK RAM UTILIZATION

SPECIFICATIONS OF
XC6VLX240T-1

RANGE

STIDE # of BRAMs

of Slice Registers 301,440 64 1 (0.2%)
of Slice LUTs 150,720 128 1 (0.2%)
. 256 1 02%)

of Slices 37,680 512 2 (0.5%)
of BRAM (36Kbit) 416 1024 4 (1.0%)
of DSP48 768 2048 8 (1.9%)
4096 17 (4.1%)

100 F— T T T T T

10

%

Resource Consumption [%]

0.1 L l l l l l l
64 128 256 512 1024 2048 4096

RANGE-to-SLIDE Ratio

Registers (proposed) —+— Registers (baseline)
LUTs (proposed) —>— LUTs (baseline) —l—
Slices (proposed) —%— Slices (baseline) —o—

Fig. 6. Comparison of the overall resource consumption between the
proposed implementation and the WID-based implementation (baseline) [14].

V. EVALUATION

We have developed the proposed design in VHDL
from scratch and implemented it on a Virtex-6 FPGA
(XC6VLX240T-1) included in a Xilinx ML605 evaluation
board.The specification of the FPGA is given in Table II.
Xilinx ISE 14.4 is used during the implementation.

A. Resource Utilization and Performance

In order to evaluate the scalability of the proposed ap-
proach, the proposed design (i.e., Fig. 4) and the WID-based
approach [14] are implemented for the same target query (i.e.,
Query (Q4). We have modified the RANGE parameter of the
query and the % ratio is increased by multiples of 2,
beginning with 64 up to 4096 (i.e., a total of seven different
configurations). The proposed implementation is synthesized
with a timing constraint of 5ns for each configuration, which
yields the target clock frequency of 200 MHz.

1) Resource Utilization: The comparison of the overall
resource consumption is shown in Fig. 6. The x-axis represents
% ratio of the time-based sliding window. The y-axis
indicates the resource consumption (in log scale) in terms
of percentages of the total available resources on the target
FPGA device. In Fig. 6, the proposed implementation and the
WID-based implementation [14] are labeled “proposed” and
“baseline”, respectively.

Results of Fig. 6 suggest that the proposed implementation

achieves significant area reduction compared to the baseline.

— 250 T T T T T T

N

T M\\
= 200 -
>

2

o 150 a
= proposed —+—

S .

& 100 - baseline —x— |
€

g

< 50 -
©

= 0 | | | | | | |

64 128 256 512 1024 2048 4096

RANGE-to-SLIDE Ratio

Fig. 7. Comparison of the maximum clock frequency between the proposed
implementation and the WID-based implementation (baseline) [14].

For instance, when % = 512, the baseline consumes

over 70% of the available slices on the target FPGA whereas
the proposed implementation only requires 0.6% of the avail-
able slices, by using only two BRAMs on the same FPGA
(i.e., about 0.5% of the total available BRAMs). The required
number of BRAMs for each configuration is given in Table III.
Moreover, as shown in Fig. 6, all three graphs of the
baseline almost linearly increases with increasing %
ratio. As a result, when % = 768, the baseline utilizes
over 90% of the available slices and if we increase the ratio
(i.e., % > 1024), the query cannot be implemented on
the target device due to finite area of the FPGA. On the other
hand, however, the proposed implementation does not suffer
from this limitation as shown in Fig. 6. All three graphs of
the proposed implementation are almost constant and do not
increase with increasing % ratio; therefore, the proposed
design provides better scalability compared to the baseline.
2) Performance Evaluation: The comparison of the maxi-
mum clock frequency is shown in Fig. 7. The x-axis and the
y-axis represent % ratio and the clock frequency, respec-
tively. The clock frequency is obtained from post-place & route
static timing report, which is provided by Xilinx’s Timing
Analyzer tool. As shown in Fig. 7, the clock frequency of
the baseline drops sharply with increasing % ratio. In
contrast, the clock frequency of the proposed design remains
largely unaffected by the % ratio. Specifically, the
proposed implementation meets the timing constraint of 5ns
and maintains the target clock frequency of 200 MHz for
each configuration. The fact that the proposed design can still
sustain high frequencies is a good indication for the scalability.
For instance, when % = 512, the baseline can operate at
only up to 50 MHz on the target FPGA whereas the proposed
implementation can operate at over 200 MHz. This means
that the proposed approach achieves over 4x performance

improvement with significantly reduced hardware cost.

Since the issue rate of the proposed design is equal to
1 tuple/cycle, the proposed implementation can process 200
million tuples per second. As for latency, recall that the latency
of the implemented queries is equal to 7 cycles, and the clock
period is Sns if we assume a clock rate of 200 MHz. Hence,

UDP Rx[*Punctuate Operator
and

UDP Tx Window Aggregation

/4

FPGA

i

GbE

I‘

Xilinx ML605
FPGA board

Host computer

Fig. 8. Overview of the Experimental System (figure cited from [15]).

multiplying 7 by S5ns yields 35ns. These data lead us to
the conclusion that the proposed design is scalable against
% ratio and can accomplish both high throughput (over
200 million tuples per second) and low latency (the order of

a few tens of nanoseconds).

B. Experimental Measurement

It is stated in [11] that a key aspect of using an FPGA for
data stream processing is its flexibility that enables us to insert
custom hardware logic into an existing data path. For example,
the proposed sliding-window aggregate circuit can be directly
connected to the physical network interface. In order to verify
the effectiveness of the proposed method, we implement the
same experimental system as that of [15].

Our experiments are based on a Xilinx ML605 FPGA
board, which includes the Virtex-6 FPGA and a Gigabit
Ethernet interface. An overview of the experimental system
is depicted in Fig. 8. The experimental system consists of the
ML605 FPGA board and a host computer, which are directly
connected by a dedicated Gigabit Ethernet cable (indicated as
“GbE” in Fig. 8). Further details of the experimental system
can be found in [15].

We have measured the effective throughput of the proposed
implementation on the ML605 FPGA board. Results of the
experiments show that the proposed implementation achieves
an effective throughput up to around 760 Mbps for different
% ratios. This is the upper bound of the available band-
width that the network interface (i.e., the UDP Rx module [5])
could handle. This is equivalent to nearly 6 million tuples per
second, which means that the proposed implementation can
process significantly high tuple rates at wire speed, even if

RANGE . : RANGE
large “57 57 ratios are considered (e.g., “5rp7 = 1024).

VI. CONCLUSIONS

In this paper, we have proposed an efficient and scalable
hardware design of sliding-window aggregate operator and its
implementation on an FPGA. The proposed design adopts
a two-step aggregation method using panes and supports
disordered data arrival with punctuations. The proposed im-
plementation is scalable with the increasing % ratio and
significantly reduces the required logic elements by efficiently
utilizing Block RAMs. Results show that the proposed imple-
mentation can achieve considerable performance improvement

o : RANGE .
over the baseline implementation for large “g7757 ratios. To

the best of our knowledge, this is the first paper that proposes
design and implementation of an FPGA-based sliding-window
aggregate operator by using panes. One direction for future
work is to provide flexibility allowing run-time configuration.
Another direction is to address multi-query execution. We also
plan to compare the proposed approach with other methods.

ACKNOWLEDGMENT

This work was supported in part by the Semiconductor
Technology Academic Research Center (STARC).

REFERENCES

[1] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. B. Zdonik, “Aurora: a new model and
architecture for data stream management,” VLDB J., vol. 12, no. 2, pp.
120-139, 2003.

[2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “Stream: The stanford data
stream management system,” Stanford InfoLab, Technical Report 2004-
20, 2004.

[3] J. bo Qian, H. bing Xu, Y. Dong, X. jun Liu, and Y. li Wang,
“FPGA acceleration window joins over multiple data streams,” Journal
of Circuits, Systems, and Computers, vol. 14, no. 4, pp. 813-830, 2005.

[4] C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk,
“Gigascope: A stream database for network applications,” in SIGMOD
Conference, 2003, pp. 647-651.

[5] e-trees.Japan, Inc., “e7UDP/IP IP-core,”
http://e-trees.jp/index.php/en/products/e7udpip-ipcore [Online; accessed
14-July-2013].

[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data Cube: A

relational aggregation operator generalizing Group-By, Cross-Tab, and
Sub-Total,” in ICDE, 1996, pp. 152-159.

[71 J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “No pane,
no gain: efficient evaluation of sliding-window aggregates over data
streams,” SIGMOD Record, vol. 34, no. 1, pp. 39-44, 2005.

[8] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics

and evaluation techniques for window aggregates in data streams,” in

SIGMOD Conference, 2005, pp. 311-322.

J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier,

“Out-of-order processing: a new architecture for high-performance

stream systems,” PVLDB, vol. 1, no. 1, pp. 274-288, 2008.

R. Mueller, J. Teubner, and G. Alonso, “Data processing on FPGAs,”

PVLDB, vol. 2, no. 1, pp. 910-921, 2009.

R. Mueller, J. Teubner, and G. Alonso, “Streams on wires - a query

compiler for FPGAs,” PVLDB, vol. 2, no. 1, pp. 229-240, 2009.

Y. Oge, T. Miyoshi, H. Kawashima, and T. Yoshinaga, “Design and

implementation of a handshake join architecture on FPGA,” IEICE

Transactions, vol. 95-D, no. 12, pp. 2919-2927, 2012.

Y. Oge, T. Miyoshi, H. Kawashima, and T. Yoshinaga, “A fast handshake

join implementation on FPGA with adaptive merging network,” in

SSDBM, 2013, pp. 44:1-44:4.

Y. Oge, M. Yoshimi, T. Miyoshi, H. Kawashima, H. Irie, and

T. Yoshinaga, “FPGA-based implementation of sliding-window aggre-

gates over disordered data streams,” IEICE Technical Report, vol. 112,

no. 376, pp. 105-110, 2013, CPSY2012-74.

Y. Oge, M. Yoshimi, T. Miyoshi, H. Kawashima, H. Irie, and

T. Yoshinaga, “Wire-speed implementation of sliding-window aggregate

operator over out-of-order data streams,” in MCSoC, 2013 (to appear).

M. Sadoghi, H.-A. Jacobsen, M. Labrecque, W. Shum, and H. Singh,

“Efficient event processing through reconfigurable hardware for algo-

rithmic trading,” PVLDB, vol. 3, no. 2, pp. 1525-1528, 2010.

M. Sadoghi, R. Javed, N. Tarafdar, H. Singh, R. Palaniappan, and H.-A.

Jacobsen, “Multi-query stream processing on fpgas,” in ICDE, 2012, pp.

1229-1232.

M. Sadoghi, H. Singh, and H.-A. Jacobsen, “Towards highly parallel

event processing through reconfigurable hardware,” in DaMoN, 2011,

pp. 27-32.

P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punctu-

ation semantics in continuous data streams,” IEEE Trans. Knowl. Data

Eng., vol. 15, no. 3, pp. 555-568, 2003.

[9

—

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

