Wire-Speed Implementation of Sliding-Window
Aggregate Operator over Out-of-Order Data Streams

Yasin Oge*, Masato Yoshimi*, Takefumi Miyoshif, Hideyuki Kawashima®, Hidetsugu Irie*, and Tsutomu Yoshinaga*

* Graduate School of Information Systems, The University of Electro-Communications, Japan
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
E-mail: oge@comp.is.uec.ac.jp, {yoshimi,irie,yosinaga}@is.uec.ac.jp
t e-trees.Japan, Inc.,
Daiwa Building 3F, 2-9-2 Oowada-cho, Hachioji, Tokyo, 192-0045
E-mail: miyoshi @e-trees.jp
i University of Tsukuba, Japan
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
E-mail: kawasima@cs.tsukuba.ac.jp

Abstract—This paper shows the design and evaluation of an
FPGA-based accelerator for sliding-window aggregation over
data streams with out-of-order data arrival. We propose an
order-agnostic hardware implementation technique for window-
ing operators based on a one-pass query evaluation strategy
called Window-ID, which is originally proposed for software
implementation. The proposed implementation succeeds to pro-
cess out-of-order data items, or tuples, at wire speed due to
the simultaneous evaluations of overlapping sliding-windows. In
order to verify the effectiveness of the proposed approach, we
have also implemented an experimental system as a case study.
Our experiments demonstrate that the proposed accelerator with
a network interface achieves an effective throughput around
760 Mbps or equivalently nearly 6 million tuples per second, by
fully utilizing the available bandwidth of the network interface.

I. INTRODUCTION

Nowadays, an increasing number of applications deal with
continuous data streams. For example, many data processing
tasks, such as financial analysis and high-speed network mon-
itoring, are required to handle a huge amount of data with
certain time restrictions. Real-time processing is essential for
systems such as Data Stream Management Systems (DSMSs)
which process unbounded and continuous input streams, exe-
cuting continuous queries over data streams [1]-[3].

One of the key challenges for DSMSs is an efficient support
for window aggregation. It is a common approach for a
DSMS that subsequence of data stream elements (hereafter
tuples) is defined as a window. In other words, windows
decompose a data stream into possibly overlapping subsets
of tuples (i.e., each tuple belongs to multiple windows). After
that, according to a given query, window aggregate operators
repeatedly calculate aggregate functions such as COUNT,
SUM, AVERAGE, MIN, and MAX for each window.

Motivating Issue. Mueller et al. [7] propose an imple-
mentation technique for a sliding-window aggregate query
on an FPGA. Their implementation relies on an implicit
assumption about the physical order of incoming tuples, that

is to say, tuples arrive in correct order at the windowing
operator. Obviously, this assumption simplifies the definition
and implementation of sliding windows; however, it does not
always fit into a realistic setting where some degree of disorder
(i.e., out-of-order arrival of tuples) might be expected.

It is mentioned in [6] that previous works on data streams
commonly model a data stream as an unbounded sequence of
tuples arriving in order of some timestamp-like attribute; how-
ever, disorder naturally occurs in real-world stream systems.
This means that, in reality, we cannot always assume all tuples
to be ordered by their timestamp values when they arrive in
a DSMS. For example, input tuples arriving over a network
from remote sources may take different paths with different
delays. As a result, some tuples may arrive out of sequence
according to their timestamp values.

Unfortunately, Mueller ef al. [7] do not address or discuss
the issue regarding out-of-order arrival of tuples. To the best
of our knowledge, it is still an open question how to design
and implement an efficient hardware accelerator for sliding-
window aggregate operator that can handle out-of-order arrival
of tuples. In this paper, we address the problem and present
an improved implementation for a sliding-window aggregate
query on an FPGA.

Our Contributions. This paper proposes an order-agnostic
implementation of a sliding-window aggregate query on an
FPGA, based on a one-pass query evaluation strategy called
the Window-ID (WID) [5]. With the proposed method, we
can process out-of-order tuples at wire speed due to the one-
pass query evaluation strategy and simultaneous evaluations
of overlapping sliding-windows by taking advantage of the
hardware parallelism. The proposed implementation can han-
dle disorder by utilizing punctuations [9]. It is stated in [5]
that WID does not require a specific type of assumption about
the physical order of tuples in a data stream and can process
out-of-order tuples as they arrive without sorting them into the
“correct” order. Since the proposed implementation is based
on WID approach, it can also process input tuples on the fly

©2013 IEEE. Reprinted, with permission, from Yasin Oge, Masato Yoshimi, Takefumi Miyoshi, Hideyuki Kawashima, Hidetsugu Irie, and Tsutomu Yoshinaga, “Wire-Speed
Implementation of Sliding-Window Aggregate Operator over Out-of-Order Data Streams”, Proc. 2013 IEEE 7th International Symposium on Embedded Multicore/Many-core

SoCs, Sept. 2013.



without reordering them into the correct order.

The rest of the paper is organized as follows. Section II
briefly reviews related work. Section III provides design con-
cepts underlying the proposed approach. Section IV describes
a motivating example. Section V introduces the proposed
hardware implementation. Section VI evaluates the proposed
implementation with some experimental results. Finally, sec-
tion VII concludes the paper by summarizing the results.

II. RELATED WORK

An important work related to the present study is
Glacier [7], which is a compiler that provides a library
of components and transforms continuous queries into logic
circuits to be implemented on an FPGA. Glacier supports
selection, aggregation, grouping, and windowing operators.
It can compile sliding-window aggregate queries since both
windowing and aggregation operators are provided by the
library, and logic circuits are generated by composing library
components on an operator-level basis. Glacier, however, does
not address the issue regarding disordered data.

Another important work is Window-ID (WID) [5]. WID
is proposed for a software-based implementation of order-
agnostic window aggregation. It is stated in [6] that WID
provides a method to implement window aggregate queries
in an order-agnostic way, using punctuations that indicate the
end of the windows.

Informally, a punctuation is a kind of tuple which contains
control information, and it is embedded in a data stream.
The punctuation can be used to indicate that no more tuples
having certain attribute values will be seen in the stream [5].
Therefore, punctuations are useful to unblock some blocking
operators such as group-by and aggregation. The formal defi-
nition and further details of the punctuation are found in [9].

Abadi et al. [1] classify types of operators as order-agnostic
or order-sensitive. Order-agnostic operators can always pro-
cess tuples in the order in which they arrive whereas order-
sensitive operators can only be guaranteed to execute with
finite buffer space if they can assume some ordering over their
input streams [1].

Slack [1] defines an upper bound on the degree of disorder
that can be handled by an order-sensitive operator. Aurora [1]
assumes some ordering (potentially with bounded disorder)
over input streams. Any tuple arriving after its corresponding
period specified by a slack parameter is discarded. In Aurora,
the slack parameter is used to specify the number of tuples
to be stored and sorted before an order-sensitive operator
processes input tuples. Aurora classifies window aggregation
as an order-sensitive operation. In Aurora, therefore, aggregate
operators require buffering and reordering of tuples before
computation to handle disorder.

III. DESIGN CONCEPT

Glacier implements a windowing operator as an order-
sensitive operator and does not discuss the issue regarding out-
of-order arrival of tuples. In order to address the problem, this
paper proposes an alternative implementation technique for

windowing operators. The proposed implementation follows
the same approach as WID [5] to handle disorder. In other
words, aggregation operation is order-agnostic, and punctua-
tions are used to unblock window-aggregate operators.

On the other hand, WID is proposed for a software-based
implementation. The main interests of WID [5] are to calculate
window aggregates with the one-pass evaluation strategy and
to handle disorder by using punctuations. However, hardware-
based implementation of order-agnostic window aggregation
is neither provided nor discussed in [5].

Contrary to the software-based implementation proposed
in [5], this paper presents hardware-based implementation
which handles multiple windows with a single clock cycle.
The proposed implementation instantiates multiple window-
aggregation modules by taking advantage of hardware par-
allelism. Upon arrival of a new tuple, each of the window-
aggregation modules can simultaneously evaluate the tuple
within the same clock cycle. This is the main difference
between software-based WID [5] and our proposed approach.

The number of the window-aggregation modules is deter-
mined by using window parameters (RANGE and SLIDE)
and a slack [1] specification. As mentioned before, Aurora [1]
uses a slack parameter to determine the number of tuples to
be buffered and reordered before aggregation. The proposed
approach, however, relies on punctuations to handle disorder,
and the slack parameter is used to calculate the number of
the window-aggregation modules required to be instantiated.
This is a significant difference between the approach adopted
in this paper and that of Aurora.

IV. MOTIVATING APPLICATION

Glacier [7] demonstrates how to implement a window
aggregate query on an FPGA. The implementation of the query
(Query Q3 of [7]) includes a windowing operator which im-
plicitly relies on the arrival sequence of input tuples. Contrary
to Glacier, the proposed approach permits windowing on any
attribute, allowing a bounded disorder of the tuples. This work
focuses on the same query as a case study and shows how to
implement the query in an order-agnostic manner. It should
be emphasized that the proposed approach is general enough
to apply a wide range of window aggregate queries which
include the algebraic aggregate functions [4] considered in [7]
(i.e., COUNT, SUM, AVERAGE, MIN, and MAX).

We assume the same financial application as [7]. Our
approach, however, requires an explicit timestamp attribute to
define windows over an input stream. Instead of a sequence
number attribute, a timestamp attribute has been added. The
schema of the stream Trades [7] is redefined as follows:

CREATE INPUT STREAM Trades (

Symbol string(4), —-- valor symbol
Price int, —-— stock price
Volume int, —-— trade volume
Time int) -— timestamp

An input tuple consists of four attributes each of which is
represented as a 32-bit value. Based on the definition of



punctuation data data
flag valid fields

Query ¢

Fig. 1. Wiring Interface (figure cited from [8]).

window semantics [5], we can rewrite the sliding-window
aggregate query (Query (s of [7]) as follows.

Query Q3: “Count the number of trades of UBS (Union Bank
of Switzerland) shares for the past 10 minutes (600 seconds)
and update the result every 1 minute (60 seconds).”

SELECT Time,
FROM Trades

count (*) AS Number
[RANGE 600 seconds
SLIDE 60 seconds
WATTR Time]

WHERE Symbol = "UBSN"

In Query Q3, WATTR indicates the windowing attribute (i.e.,
Time) over which RANGE and SLIDFE are specified [5]. The
details of the implementation of Query (3 are provided in the
following section.

V. IMPLEMENTATION DETAILS
A. Wiring Interface

Following the notation of [7], Fig. 1 (cited from [8]) shows
the black box view of a hardware implementation for a query
q. In Fig. 1, punctuation flag or data valid is a one-bit signal
which indicates the presence of a punctuation or a tuple,
respectively. In addition, data fields represent n-bit-wide data
which are regarded as a set of n parallel wires. For example,
datum on the parallel wires is considered as a punctuation
when the punctuation flag is asserted (i.e., set to logic “1”).
Similarly, the data lines are regarded as a valid tuple when the
data valid is asserted.

B. Hardware Execution Plan

We implement a 4-stage pipeline hardware for Query Q3 as
illustrated in Fig. 2. The gray-shaded boxes in Fig. 2 represent
flip-flop registers which store intermediate results at the end
of each stage. These registers can be regarded as pipeline
registers, and each stage of the pipeline can use the result
of the previous stage. It should be also mentioned that each
stage requires only one clock cycle to complete. The arrows
in Fig. 2 indicate the connections between the pipeline stages.
According to the notation of [7], the data fields do not
represent the order of each field. Note that the label “x” means
“all of the remaining fields” in the data fields.

1) Selection Operation: The beginning two stages of Fig. 2
correspond to a selection operation. In Stage 1, Symbol field
of the data bus is compared to a constant value (“UBSN”)
which is specified in the WHERE expression of Query (3
(indicated as [=] in Fig. 2). At the same time, the result of
the comparison is labeled as a one-bit is_equal flag and added
to the data bus. In Stage 2, a logical AND gate (indicated

<Time, Number>

Select n-way union
<
%< o A
s binary et n*data width
N encoder nkn -
| <
T T Timej‘ ‘fNumber T T TimeT TNumber
0 Control [—->| Aggr. ||e e e||Control 7> Aggr.
) eos eos
o0 J Module o Module Module ois Module
]
W) [ A A7 )
Z [ |
hd

L l *

"""""" | ——
(g\] [ A [
*)
S0
~N
N

........... =
- A
%)
&

Trades
<Symbol, Price, Volume, Time>

Fig. 2. Hardware execution plan for Query Q3.

as in Fig. 2) computes whether an input tuple is valid
or not. If the tuple should be discarded, the data valid flag
is negated (i.e., set to logic “0”) for the next pipeline stage.
Actually, these two stages are implemented based on the
approach proposed in [7], providing the same functionality
as the beginning two stages of Query ()1 in [7]. The main
difference, however, is the presence of the punctuation flag
field which is required for Stage 3. It is stated in [5] that some
operators, such as selection, simply pass punctuations through
to the next operator in a query plan. Stage 1 and Stage 2 meet
the above requirement since punctuation flag field is directly
connected to the next stage of the pipeline as shown in Fig. 2.

2) Windowing and Aggregation: The next step is Stage 3 of
the pipeline which corresponds to windowing and aggregation
operators. In Stage 3, a number of window-aggregation mod-
ules are instantiated as shown in Fig. 2. They provide sliding-
window functionality and can concurrently compute aggregate
functions. The number of window-aggregation modules to be
instantiated is calculated by using RANGE, SLIDE, and
SLACK parameters (see the following Equation 1 and 2).
The detail about the calculation of Ny is discussed in [8].

RANGE
SLIDE

SLACK + RANGE {RANGE"‘

Nwin = { —‘ + 1, where x € ZT (D)

2

= SLIDE SLIDE



Window-Aggregation Module

TimeT Number

[counT| [sum| [ MIN| [MAX]
A A A - A 4

Control

Module
L A A

s

Fig. 3.

eos

eis

Block diagram of a window-aggregation module.

Aggregation Module. Each window instance consists of
aggregation module and control module as shown in Stage 3
of Fig. 2. A more detailed block diagram of a single window-
aggregation module is depicted in Fig. 3. It is stated in [7]
that algebraic aggregate functions such as COUNT, SUM,
AVERAGE, MIN, and MAX can be implemented in a straight-
forward fashion on an FPGA. Glacier [7] supports the above
five aggregate functions, and in this work, we also focus on the
same aggregate operators. In fact, AVERAGE can be obtained
with the combination of two aggregate values: SUM and
COUNT. Therefore, we implement other four aggregate op-
erators as shown in Fig. 3. Since Query Q3 requires count(x)
function, the result of the COUNT operator is selected as the
output value (indicated as the broken line in Fig. 3).

The aggregate operator incrementally computes aggregate
value and only stores the current (partial) result of the ag-
gregation. It requires two control signals, enable input stream
(eis) and end of stream (eos), to maintain the aggregate value.
These signals are provided by the control module as illustrated
in Fig. 3. The eis signal indicates whether or not data on
the data fields should be considered as a valid tuple for the
current window. Whenever eis is asserted, the aggregation
operator accepts input tuple and records its contribution to
the partial result. If eis is negated, the aggregation operator
simply ignores the input data and waits for the next tuple to
arrive. The other signal, eos, indicates whether an input stream
reaches the end of the current window. When eos is asserted,
it means that the current window is no longer active, and the
aggregate operator should reset its internal state.

Control Module. Each control module maintains its own
window states and provides two control signals (i.e., eis and
eos) to the aggregation module. The control module maintains
window states by updating its internal registers called winyegin
and wine,q. These registers represent the beginning and the
end of the current window, respectively. The control module
USES Wilhegin and winenq registers to generate the two control
signals, ets and eos. Details about how to maintain these
registers and to generate the control signals are provided in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Maintain window states (winpegin and winend)

State Registers:
WiNpegin (1): the beginning of the ¢-th window instance
WiNena (¢): the end of the i-th window instance

Initialization:
for all ¢ such that 1 < i < Nwn do

Wilbegin (1) <= WATTRgtare + (i — 1) x SLIDE

Winend (1) + WATTRgstart+(i—1) x SLIDE+ RANGE
end for

Synchronous Update:
for all ¢ such that 1 < i < Nwin do
for each clock cycle do
if punctuation flag is asserted and
WATTR > winenq(i) then
winbegin(i) — winbegin(i) + Nwin X SLIDE
wmend(i) — winend(z’) + Nwin X SLIDE
end if
end for
end for

Algorithm 2 Generate asynchronous signals (e¢s and eos)

Asynchronous Signals:
eis(i): input enable signal for the i-th window instance
eos(i): output enable signal for the i-th window instance

Asynchronous Update:
for all i such that 1 < i < Nwin asynchronously do
if punctuation flag is negated then
negate eos(7) signal
if data valid is asserted and
WiNpegin (1) < WATTR < winena (i) then
assert eis(4) signal
else
negate eis(i) signal
end if
else {punctuation flag is asserted}
negate eis(i) signal
if WATTR > winepq (i) then
assert eos(i) signal
else
negate cos(i) signal
end if
end if
end for

Algorithm 1 describes how to initialize and update the
two registers, wWinpegin and winenq. Since the windowing
attribute (i.e., WATTR) of Query (s is defined as TIMFE,
WATTRgiar is equivalent to TIMFE;,, which indicates the
start time of the execution of the query. Initialization or update
operation described in Algorithm 1 can be completed in one
clock cycle. All of the control modules concurrently perform
the same operation on each cycle in a synchronous manner.



TABLE I

RESOURCE USAGE AND CLOCK FREQUENCY AGAINST DIFFERENT SIZES OF SLIDING WINDOWS

TABLE I
SPECIFICATIONS OF XC6VLX240T-1

Size of the Time-based Sliding Window (i.e., RANGE)

# of Slice Registers 301,440 10min  20min  30min  40min  50min 60 min
# of Slice LUTs 150,720 # of window-aggregation modules 11 21 31 41 51 61
# of Slices 37.680 # of Slice Registers 1,855 3442 4975 6453 8095 9,594
# of BRAM (36Kbif) 416 # of Slice LUTs 1764 3342 5011 6615 7844 9241
# of DSP48 768 # of Occupied Slices 663 1,153 1,550 2,073 2650 3,264
Maximum clock frequency (MHz) 160 157 157 158 157 157

10

Algorithm 2 describes how to generate the two control
signals, eis and eos. It is important to emphasize that the
implementation of eis and eos signals is fully asynchronous,
which means that the aggregation module can use these signals
within the same clock cycle as soon as they are generated. In
other words, all of the operations performed in a window-
aggregation module can be completed in a single clock cycle.

3) Union Operation: 1t is stated in [7] that, from a data
flow point of view, the task of an algebraic union operator is to
merge the outputs of several source streams into a single output
stream. As shown in Fig. 2, the n-way union operator merges
the outputs of n window-aggregation modules and generates
a single result stream.

The implementation of the union operator is based on
a multiplexer component. According to a select signal, the
multiplexer component transfers the result of ¢-th window-
aggregation module to the output registers of Stage 4. As
illustrated in Fig. 2, the select signal is provided by a binary
encoder component. It should be also mentioned that Stage 4
requires only one clock cycle to complete its operation.

Glacier [7] evaluates the complexity and performance of the
resulting circuits in terms of latency and issue rates. Issue rate
is defined as the number of tuples that can be processed per
cycle. The overall latency and the issue rate of the proposed
implementation are 4 cycles and 1 tuple/cycle, respectively.

VI. EVALUATION

The proposed design is implemented on a Virtex-6 FPGA
(XC6VLX240T-1) included in the Xilinx ML605 Evaluation
Kit. The specification of the FPGA used to implement the
design is given in Table I. Xilinx ISE 14.4 is used as an FPGA
development environment during the implementation process
(i.e., synthesis, map, and place & route).

A. Resource Utilization and Performance

In order to evaluate the resource utilization and performance
of the proposed design, Query Q3 is implemented with dif-
ferent sizes of sliding windows. The RANGE of a window
is increased from 10 minutes to 60 minutes, by increments
of 10 (i.e., a total of six different configurations). It should
be also noted that all of the implemented queries have the
same SLIDE parameter as Query Q3 (i.e., 60seconds). In
addition, SLACK value is also assumed 60 seconds for all
configurations. Finally, the query is synthesized with a timing

Slice Registers —+—
8t Slice LUTs
Occupied Slices —¥—

Resource consumption [%]

10 20 30 40 50 60
Window size [minutes]

Fig. 4. Overall resource consumption as a percentage of the total available
resources on a Xilinx XC6VLX240T-1 FPGA device.

constraint of 6.37 ns for each configuration, which yields the
target clock frequency of 157 MHz.

1) Resource Utilization: Overall resource consumption is
shown in Fig. 4. The x-axis of Fig. 4 represents the size
of the time-based sliding window (i.e., RANGE) from 10
to 60 minutes. The y-axis of the same figure indicates the
resource consumption as a percentage of the total available
resources on a Xilinx XC6VLX240T-1 FPGA device. As
shown in Fig. 4, all three graphs (i.e., Slice Registers, Slice
LUTs, and Occupied Slices) are almost linearly increased with
increasing window size, as expected. The increase in window
size results in a higher % ratio. This implies an increase
in the number of window-aggregation modules (i.e., Nwin,
recall from Equation 1). This is the main reason for the in-
creased resource utilization. It should be also emphasized that
a relatively small percentage of the overall FPGA resources
is required to implement the query. For example, when the
size of window is 10 minutes, slice usage is particularly low
(less than 2%). Even if the size of window is increased up to
60 minutes, overall slice utilization is still less than 9%.

Table II shows the hardware resource usage and the max-
imum clock frequency of the implemented query for each
window size. The number of window-aggregation modules
instantiated can be easily calculated by Equation 1 and Equa-
tion 2, using RANGE, SLIDE, and SLACK parameters. The
resource usage is measured in terms of the number of slice
registers, the number of slice LUTs (Look-Up Tables), and
the number of occupied slices. The clock frequency is obtained
from post-place & route static timing report, which is provided
by Xilinx’s Timing Analyzer tool.



UDP Rx Punctuate Operator
and

Window Aggregation

I

UDP Tx

/4
| 4

FPGA

|Xilinx ML605
FPGA board

GbE

Host computer

Fig. 5. Overview of the Experimental System.

2) Performance Evaluation: As shown in Table II, each im-
plementation achieves the target clock frequency of 157 MHz.
Equivalently, this means that all implementations meet the
timing constraint of 6.37ns. Since the issue rate of the
implemented queries is equal to 1tuple/cycle, the proposed
implementation can process 157 million tuples per second
for different sizes of windows. We can calculate the peak
throughput by multiplying the data width of an input tuple
by the clock frequency. Recall that the data width of a tuple
is 128bits; therefore, multiplying 157 million tuples/s by
128 bits/tuple yields 20,096 Mbps. Thus, the peak throughput
can be estimated at 20 Gbps. As for latency, recall that the
latency of the implemented queries is equal to 4 cycles, and the
clock period is 6.37 ns if we assume a clock rate of 157 MHz.
Hence, multiplying 4 by 6.37 ns yields 25.48 ns.

These data lead us to the conclusion that the proposed
approach can accomplish both high throughput (over 150
million tuples per second) and low latency (the order of
a few tens of nanoseconds) which are essential for stream
processing systems to handle a huge volume of data for real-
time applications.

B. Experimental Measurement

An overview of the experimental system is depicted in
Fig. 5. The experimental system consists of the ML605 FPGA
board and a host computer which are directly connected by
a dedicated Gigabit Ethernet cable (indicated as “GbE” in
Fig. 5). To simulate a disordered input stream, we implement
a data generator to produce an input stream with bounded dis-
order. The data generator on the host computer first randomly
generates input tuples in non-decreasing order with respect to
their timestamp attribute. After that, the positions of the tuples
are randomized in such a way that no tuples are to be late or
out-of-order more than 60 seconds in the stream.

We measured the number of clock cycles elapsed from when
the first tuple arrived at the UDP Rx module until the last
result was transferred from the UDP Tx module. For each
configuration given in Table II, we calculated the maximum
throughput achieved by the experimental system, using the
measured values. It should be noted that all results generated
by the query circuit have been verified by the host computer.
This has been confirmed by comparing expected results with
those sent from the UDP Tx module. In our experiments,

we obtained exactly the same results as those expected. This
means that the proposed implementation can properly handle
out-of-order tuples.

Results of the experiments show that the proposed im-
plementation achieves an effective throughput up to around
760 Mbps, which is the upper bound of the available band-
width that the network interface (i.e., the UDP Rx module)
could handle. This is equivalent to nearly 6 million tuples
per second, which means that the proposed implementation
can process significantly high tuple rates at wire speed.
Furthermore, we have also performed experiments on other
aggregation functions, such as SUM, MIN, and MAX, and
obtained almost the same performance as Query Q3 (i.e.,
around 760 Mbps and nearly 6 million tuples/s).

VII. CONCLUSIONS

In this paper, we have proposed a design and imple-
mentation of an FPGA-based accelerator for sliding-window
aggregates over disordered data streams. With the proposed
approach, a sliding-window query can be implemented on an
FPGA as an order-agnostic operator, which can process input
tuples in their arrival order without sorting them into the “cor-
rect” order. The proposed accelerator utilizes punctuations, and
this significantly reduces the input-to-output latency because
there is no need to buffer and reorder incoming tuples. Our
experiments demonstrate that nearly 6 million tuples can be
processed per second directly from the network interface. To
the best of our knowledge, this is the first paper that proposes
design and implementation of a punctuation-aware sliding-
window aggregate operator on an FPGA device.

One direction for future work is to conduct an experiment on
the scalability of the proposed approach, especially at higher

% ratios (more than 60). Another direction is to address

multi-query execution and its optimization.

REFERENCES

[1] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. B. Zdonik, “Aurora: a new model and
architecture for data stream management,” VLDB J., vol. 12, no. 2, pp.
120-139, 2003.

[2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Mot-
wani, U. Srivastava, and J. Widom, “Stream: The stanford data stream
management system,” Stanford InfoLab, Technical Report 2004-20, 2004.

[3] C.D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk, “Gigascope:
A stream database for network applications,” in SIGMOD Conference,
2003, pp. 647-651.

[4] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data Cube: A
relational aggregation operator generalizing Group-By, Cross-Tab, and
Sub-Total,” in ICDE, 1996, pp. 152-159.

[5] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics
and evaluation techniques for window aggregates in data streams,” in
SIGMOD Conference, 2005, pp. 311-322.

[6] J.Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier,
“Out-of-order processing: a new architecture for high-performance stream
systems,” PVLDB, vol. 1, no. 1, pp. 274-288, 2008.

[71 R. Mueller, J. Teubner, and G. Alonso, “Streams on wires - a query
compiler for FPGAs,” PVLDB, vol. 2, no. 1, pp. 229-240, 2009.

[8] Y. Oge, M. Yoshimi, T. Miyoshi, H. Kawashima, H. Irie, and T. Yoshi-
naga, “FPGA-based implementation of sliding-window aggregates over
disordered data streams,” IEICE Technical Report, vol. 112, no. 376, pp.
105-110, 2013, CPSY2012-74.

[9] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punctuation
semantics in continuous data streams,” IEEE Trans. Knowl. Data Eng.,
vol. 15, no. 3, pp. 555-568, 2003.



