
Throttling Control for Bufferless Routing in
On-Chip Networks

Yicheng Guan‡, CISSE AHMADOU DIT ADI‡, Takefumi Miyoshi‡, Michihiro Koibuchi†, Hidetsugu Irie‡

and Tsutomu Yoshinaga‡
‡ The University of Electro-Communications,1-5-1, Chofugaoka, Chofu-shi, Tokyo, Japan 182-8585

Email:{guan, ahmadou, miyoshi, yosinaga}@comp.is.uec.ac.jp
† National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

Email: koibuchi@nii.ac.jp

Abstract—As the number of core integration on a single die
grows, buffers consume significant energy, and occupy chip area.
A bufferless deflection routing that eliminates router’s input-
port buffers can considerably help saving energy and chip area
while providing similar performance of existing buffered routing,
especially for low-to-medium network loads. However when con-
gestion increases, the bufferless frequently causes flits deflections,
and misrouting leading to a degradation of network performance.
In this paper, we propose IRT(Injection Rate Throttling), a local
throttling mechanism that reduces deflection and misrouting for
high-load bufferless networks. IRT provides injection rate control
independently for each network node, allowing to reduce network
congestion. Our simulation results based on a cycle-accurate
simulator show that using IRT, IRT reduces average transmission
latency by 8.65% compared to traditional bufferless routing.

I. I NTRODUCTION

In recent years, significant work has examined novel designs
for on-chip networks different from traditional buffered virtual
channel (VC) routers in order to gain performance. In particu-
lar, recent works proposed a bufferless routing [1–3], in which
the input port buffers are eliminated and router port contention
is mitigated by temporal deflections. This novel architecture
yields significant network power saving with minimal perfor-
mance loss under low network workloads. However, generally
speaking, bufferless routing performs significantly worsethan
a traditional buffered routing with high network workloads; it
is clear that our key challenge is performance issue under the
network-intensive applications.

A straight-forward approach to mitigate this problem is
to take advantage of buffered routing only when network
is highly loaded. S. Jafri et al. proposed in [4] an adaptive
flow control (AFC) which adaptively switches routing mode.
AFC combines a bufferless (backpressureless) router, and
buffered (backpressure) router , and dynamically switches
between the two modes depending on network load. AFC
can gain the energy efficiency of bufferless routing at low
network load, and the performance of buffered routing at high
network load. When running at high load, AFC will switch
to buffered mode, increasing network capacity and requiring
power consumption similar to conventional buffered networks.
Although AFC can enjoy the power and energy benefits of
bufferless routing at low network load, as it incorporates both

bufferless and buffered routing side-by-side, it imposes an area
penalty because buffers remain present. Another approach is
to reduce the deflection rate of bufferless routing under high
network workloads.

Injection throttling has been proposed for buffered network
in [5] to prevent network saturation at high loads using
global network congestion information (buffers occupancy)
and adaptively decide injection or not of packets. Throttling
based on application has been proposed also for bufferless
using global information in [6, 7] to improve the performance
of bufferless routing under high network workloads.

In this paper, we propose a new injection rate throttling
mechanism (IRT) for bufferless routing. IRT imposes the
injection limitation based on only the congestion at local
node, that allows control of packet injection individually
needless to global network congestion information, meaning
injection controller in each node can locally throttle new
packet injection operations. As new packet injection may
impose different effect on the global network congestion, they
are treated differently depending on local node’s load. In one
hand nodes that tend to further increase network congestion
are not allowed to inject a new packet until a certain reduction
in node activity (number of flit traversing the local router).
On the other hand, no delay is added to inject a new packet
when the local network load is low (only few flits transverse
the local router in each cycle). IRT is expected to bring
the performance of bufferless networks closer to buffered
networks while keeping the benefits (area, power consumption)
of bufferless network. The contribution and our finding of this
work is as follows:

• We propose a simple and local self-throttling algorithm
for bufferless networks. Each router adopts dynamically
different injection rate for data communication according
to the node’s impact on the global network congestion
status.

• We estimate the network performance by evaluating the
number of misrouting in communications. We simulate
bufferless networks w/wo injection throttling under in-
tensive benchmarks using a cycle accurate many-core
processor simulator (SimMc) [8].

• We show how bufferless routing performance can be

©2012 IEEE. Reprinted, with permission, from Yicheng Guan, Cisse AhmadouDit ADI, Takefumi Miyoshi, Michihiro Koibuchi, Hidetsugu Irie, and Tsutomu Yoshinaga,
“Throttling Control for Bufferless Routing in On-Chip Networks”, Proc. 2012 IEEE 6th International Symposium on Embedded Multicore SoCs, Sept. 2012.

improved under high network workloads. By using IRT,
we are able to outperform conventional bufferless net-
works. Results show considerably gain in energy saving
due to the reduction of deflection and misrouting in
communications.

The rest of this paper is organized as follows: In Section II
we summarize the necessary background and related works.
Section III presents our novel IRT scheme for bufferless
networks. Section IV describes our reassembly buffer solution
for bufferless networks. In section V, we discuss our evaluation
methodology. Section VI presents our evaluation and simula-
tion results. And finally, we conclude this paper in section
VII.

II. BACKGROUND AND RELATED WORKS

Bufferless deflection routing was first proposed as “hot-
potato” routing for off-chip networks [9]. Recently, it hasbeen
proposed also for on-chip networks mainly for two reasons: It
reduces network hardware cost (no input port buffers), and
its design simplicity. Several prototype many core systems
point toward this trend. In MIT RAW, interconnect consumes
∼40% of overall system power [10]; in the Intel Terascale
chip, 30% [11]. Buffers consume a significant portion of this
power. In [12] baseline buffurless deflection routing (BLESS)
reduced network energy by 40% by eliminating the input port
buffers. Bufferless routers require only some pipeline registers,
a crossbar, and an arbitration logic allowing a significant
energy and area saving compared to buferred routers.

In BLESS, two bufferless routing schemes have been pro-
posed as FLIT-BLESS and WORM-BLESS. In FLIT-BLESS,
each flit of a packet contains header information and can
travel independently in the network. At each router, incoming
flits contend for output ports. When two flits contend for the
same output port, BLESS avoids the need for buffering by
misrouting one of the flit (the newest) to another free output
port. The flits continue through the network until they arrive
to the destination. Because FLIT-BLESS requires routing
information for each flit, it imposes an important overhead
to the packet. To reduce packet overhead WORM-BLESS
has been proposed. In WORM-BLESS, routing information is
added to each worm that may consists of several flits. In this
paper, we adopt WORM-BLESS routing in our simulations.

In bufferless routing, flits cannot be buffered at input ports.
Routers always forward incoming flits to an available output
port. To guarantee livelock freedom, BLESS uses an Oldest-
First priority rule. Flits arbitration is based on a timestamp.
The oldest flit is prioritized for a productive output port1.
Hence no livelock can occur because once a flit is the oldest
flit in the network, it cannot be deflected anymore and makes
forward progress until it arrives to the destination. We also use
Oldest-First policy in our simulation. BLESS allows injection
of a new flit whenever at least one input port is free. It
guarantees that all flits entering a router can leave it because
there are as many output ports as input ports.

1an output port towards the destination.

Flits or truncated worms from a packet may arrive in out-
of-order at destination in bufferless deflection routing; there-
fore, it is necessary to reconstruct the original packet before
ejection. The buffers allocated for this process are called
reassembly buffers. In [3], the authors propose a combination
of flow control (Retransmit-Once) and cache memory protocol
to provide a network level packet reassembly. The cache proto-
col’s cache miss buffers are used to handle packets reassembly.
In our case, as in BLESS [12], we assume an infinite receiver
buffers without flow control. We set the receiver buffer unit
size to be equal to a worm-buffer. A worm-buffer is set free
when a reassembly is completed. In the locally busy areas,
our throttling mechanism delay further new packet injection.
This can reduce the network deflection/misrouting rate, thus
avoiding excessive out-of-order delivery and the requiredlarge
reassembly buffer space.

By eliminating input port buffers, bufferless on-chip net-
works help saving significant network power with a mini-
mal performance loss under low-to-medium network loads.
However, when network load rises above a certain threshold,
deflection/misrouting in the network increases, leading to
higher transmission latency. To tackle this issue, injection rate
throttling mechanism has been proposed. In [6] the authors
used acentrally−coordinated application-layer information
in order to determine whom to throttle. An intensity ranking
of application’s IPF (instruction per fetch) is used to control
congestion periodically (every 100, 000 cycles). Based on
starvation rate in the network and IPF metric the appropriate
applications are throttled. The injection throttling mechanism
used in [7] also is based on application network intensity.
By grouping applications into clusters based on their network
intensity a throttling range (varying from 0 to 100%) is
applied to each cluster. In opposition to a global injection
rate throttling used in these mechanisms, we proposed a local
throttling algorithm. We use a local injection rate control
based on individual node’s (router’s) load to determine node
to throttle. A local injection rate throttling rather than aglobal
one has two advantages:

• No need for global control logic which requires commu-
nication among nodes to determine when to throttle new
packet injection.

• By locally detects the network load, and locally controls
the injection rate, congestion are detected earlier and
solved before further degradation.

III. I NJECTIONRATE THROTTLING: IRT

Bufferless network performs worse than traditional buffered
network under intensive network workloads. Because in
bufferless network, a new packet can be injected into the
network whenever at least one input port is free, conges-
tion easily occurs resulting to an increase of packets de-
flection/misrouting. In this section, we describe our proposed
injection rate throttling (IRT), a local throttling mechanism that
delay new packet injection at high network load allowing bet-
ter performance compare to conventional bufferless networks.
With the throttling mechanism, we can control local packet

injection rate at individual router injection port according to
the router’s load2. IRT is self-throttling, that means injection
controller existing in each node locally throttles injection
operations.

A. Throttling Mechanism

At high network load, injection rate throttling (IRT) works
by delaying new packet injection for nodes which routers are
highly loaded with packets on the input ports. Before a router
injects a new packet, it observes first the load of the local input
ports. If the router is highly loaded3 the injection of new packet
is delayed allowing a local control of network injection rate.

In this work we propose a local injection rate throttling
based on node and set our router load threshold to two, three
input ports occupied by incoming flits, respectively then, new
packet injection is delayed when the local load is higher than
the threshold.

The throttling is used to control new packet injection in
order to reduce network load when the network is congested.
This reduces interference leading to less deflection of flits
in the network. Throttling a particular node’s injection rate
at high network workload can lead to an overall gain in
network performance. In a bufferless network, injection rate
directly contributes to network utilization. High utilization
in a bufferless network causes a high deflection rate, which
distributes flits throughout the network and degrades its overall
performance. By delaying new packet injection of a node
in a congested area, the throttling mechanism reduces the
deflection probability of other input packets of the node. As
delaying injection of a node in a high loaded area will reduce
deflection more than that of a node in low loaded area, our
IRT mechanism uses the following principles:

• Never delay Low-Loaded Nodes new packet injection:
Low-loaded nodes, or nodes that are within a low loaded
area of the network, contribute little to the neighboring
network load. Thus, delaying new packet injection for
such nodes will not usually benefit system performance.
Hence, IRT never delay injection of new packets for low-
loaded nodes.

• Always delay High-Loaded Nodes new packet injec-
tion: High-loaded nodes in the other hand contributes
a lot to the congestion of surrounded nodes. In other
words, many flits are incoming to this node occupying the
local node input ports with incoming flits. In such case,
local injection certainly increase the network congestion.
Hence, IRT always delay the injection of new flits for
those nodes.

In summary, IRT delay injection of new flits for high-
loaded nodes reducing further congestion of the network. This
reduces the probability of flits deflection hence may improve
the overall network performance.

2number of packet traversing the router at a given time.
3more than 2, 3 input ports (threshold), are occupied with incoming flits at

a given time.

Router Arbiter

XBAR
switch

N

E

W

S

inject eject

N

E

W

S

Detector

Injec on
Thro!ler

Fig. 1. IRT router architecture

B. Throttling Architecture

Our IRT router architecture is shown in Figure 1. Two
components are added to a conventional wormhole router [13]
: an input flit detector and an injection throttler at the inter-
node communication controller (INCC) between the node’s
memory and the router.

• Input flit detectors: Detects incoming flits from the
four input ports, in a case of 2D mesh, north (N), east
(E), west (W), and south (S) at each given time, and
propagates the result (number of incoming flits) to the
injection throttlers.

• Injection throttlers: Estimates the local router load
(number of incoming flits) and decides whenever new
packet injection is to be delayed or not.

C. Throttling Algorithm

1) Measuring Local Network Intensity:To measure local
network load, we use input port utilization, which is the
number of input ports occupied by incoming flits in the router
at a given time. Injection rate of each is locally managed. This
rate is dynamically controlled by the local router’s load. When
the node is lightly loaded, no throttling is necessary. As load
increases, the throttling mechanism becomes as aggressiveas
necessary to reduce congestion.

2) Throttling Procedure: The injection rate throttling is
performed as follows: Before the local injection port injects a
new packet:

• First step: The input flit detector checks the four input
ports and informs the injection throttle of the number of
incoming flits in the same cycle.

• Second step: Injection throttler defines the router’s load
intensity (high or low) according to a threshold, and delay
further new packet injection for highly-loaded router.

• When the local router load decreases below the threshold
new packet injection is allowed.

Algorithm 1 shows the throttling algorithm. At each router
cycle, the input ports detector check the input ports occupancy.
If the number of incoming flits is equal or larger than a

Algorithm 1 IRT Algorithm
At each router cycle :
Input Detector: Counts incoming flits from input ports
(NEWS) and informsInjection Throttler.
if injection of new packetthen :

if incoming flits≥ X then {X = IRT threshold}
delay sending flit

else{ incoming flitscount≺ Threshold}
inject flit

end if
end if

threshold (X in the algorithm) new packet injection will
be delayed. Otherwise packet is injected without any delay.
In conventional bufferless networks, a node can inject new
packet into the network with only one free input-port of its
local router, hence deflection of packets easily occurs at high
network load. Using local injection rate throttling, we can
improve the performance of conventional bufferless network
by limiting injection of packet using a certain threshold (2, 3
incoming flits to the router at the same time). At high load,IRT
reduces further degradation of congested area by delaying new
packet injection, hence less deflection/misrouting occurs.

IV. REASSEMBLY BUFFERS ATRECEIVERS

Bufferless networks must provide some buffer space at the
receivers side for packet reassembly (sorting). Because of
packet truncation in worms (groups of flits) and their deflection
during transmission, worms may arrive in out-of-order to
their destination. Thus a buffer space is required for packet
reassembly. Management of reassembly buffer is still yet an
issue in existing bufferless On-chip networks. Let’s assume
a simple reassembly buffer allocation algorithm that allocate
buffer to flits when they arrive at the destination node, and re-
lease buffers when an entire packet is reassembled. Bufferless
routing has no flow control, there is no credits flow feedback
to source nodes for injection control as in traditional buffered
network. A full reassembly buffer condition is not transmitted
to source nodes. When several packets from different source
nodes are sent to the same destination node, the reassembly
buffer is allocated to the first arrived flit. Once all buffers
are occupied, flits from other source nodes must wait in the
network until the partially reassembled packets are released.
However the remaining flits of the partially received packet
are deflected in the network giving priority for older flits to
be buffered, hence deadlock occurs. To avoid deadlock, a large
space of buffers is required. As in BLESS [12] we assume an
infinite size of buffers. Although in a real systems buffers are
finite, we considered a worst-case buffer size to allow each
destination node to reassemble packet from all sending nodes
at the same time.

A. Reassembly Buffer Architecture

Figure 2 shows the reassembly buffers architecture. At
the receiver-side we propose a worm-buffer size as unit of

Worm -buffer 1

R

Bufferless
Router

M

Local Memory

D D
Worm -buffer 2

Worm -buffer n

Worm -buffers

Fig. 2. Reassembly Buffer Architecture

packet recovery. The reassembly buffers are hence constituted
of multiple worm-buffers. One worm-buffer contains 10 flits
space4. There are two detectors, one for the buffers inputs, and
one for their outputs.

• The input detector is used to distinguish packets coming
from different source nodes. It also allow reordering of
worms from the same source node. The input detector
assigns a buffer space for the incoming flits. An empty
worm-buffer is allocated to newly incoming flits of a
packet.

• The output port detector checks if a packet is fully
recovered (full worm-buffer) and transfers the packet to
the local memory.

B. Reassembly Buffer Algorithm

To be able to reorder flits from out-of-order delivery, in
our algorithm we add two additional tags to each worm of
flits. One for distinguishing worms from different source nodes
(source node tag) and one for identifying worms order (worm
order tag) from the same packet. Our reassembly algorithm
has three steps:

1) Input Buffer: When a worm arrives at the destination
node, the input detector checks it source node tag. If it is
the first worm of a packet, a free worm-buffer is allocated
for buffering the entire packet. This worm-buffer is associated
with the corresponding source node tag. The following worms
of the packet are ordered in the same worm-buffer according
to their worm order tag. The Algorithm 2 summarizes the
input-side of the reassembly algorithm.

2) Worm flits reordering:We use a simple sort algorithm
that order worm of flits simply according to their tags. Worm
of flits from the same packet ID are buffered in the same
worm-buffer, and ordered according to the flit-ID.

3) Output Buffer:Output port detector checks if any worm-
buffer is full, and assigns an output port to the full worm-
buffer. The algorithm is detailed in Algorithm 3.

C. Advantages

Reassembly buffers are essential for bufferless routing net-
works. As packet flits may reach the destination node in out-
of-order due to deflection, a buffer space is required to be able
to reassemble the original packet. Although our proposal does

4Original simulator’s packet size.

Algorithm 2 Input-side Reassembly Buffer Algorithm
At destination:

if first worm arrival of a packetthen
Find empty worm-buffer
Input worm in worm-buffer-i, at positionj { Where i

is associated to the source node tag, andj the worm order
tag}

number ++ { For computing occupied buffer space}
else{not packet’s firstworm arrival}

Find worm-buffer-id corresponding tosource tag
Input worm in worm-buffer-id at positionworm order

tag
number ++

end if

Algorithm 3 Output-side Reassembly Buffer Algorithm
Output port detector checks for full worm-buffer:

if any full worm-buffer then
for (number !=0) do :

Output buffer
number - -

if number = = 0 then
Change worm-buffer state toempty

end if
end if
else{ no full worm-buffer}

break

not eliminate the usage of worst-case reassembly buffer size,
we can significantly reduce buffers utilization.

• We reduce the reassembly buffers size to a minimal
required to avoid deadlock. Using the injection rate
throttling we can reduce the deflection rate in the network
hence the number of out-of-order packet delivery.

• Allocation of worm-buffers according to source tag im-
proves the utilization of reassembly buffers, and acceler-
ates flits reassembly.

V. EXPERIMENTAL METHODOLOGY

A. Simulation environment

In our simulations, we use a cycle accurate many-core
processor architecture simulator SimMc [8]. We model 32
nodes(4x6), 64 nodes(8x8) and 128 nodes(8x16) 2D-mesh
networks. Table I summarizes the detailed simulation configu-
rations. Using bufferless, each network node contains a router,
an inter-node communication controller (ICNC), a core, and
a node’s memory. The Figure 3 shows a block diagram of a
single computational node.

B. NAS Parallel Benchmark

The NAS Parallel Benchmarks (NPB)[14] are a small set of
programs which are designed to help evaluate the performance
of parallel supercomputers. In this paper, simulation results
for four kernels (MG, CG, FT, and IS)[14] are shown in the

TABLE I
SIMULATION PARAMETERS

Parameter Setting

Network Topology 2D - Mesh

Routing Technique Wormhole Bufferless Routing

Virtual Channel None

Routing method X-Y dimension ordered routing.

Router Single cycle router

Benchmark NAS parallel benchmarks

Injection Policy Throttling

Input flits ≤ 2 Throttle when above 2 flits

Input flits ≤ 3 Throttle when above 3 flits

Router

Core

INCCMemory

Fig. 3. A Block Diagram of Computational Node [8]

following section. We propose throttling policy of injection
rate to improve network performance under heavy traffic
load. Hence, we choose the kernels which are good test for
communication performance.

1) Multigrid (MG) Benchmark:MG is a simplified multi-
grid kernel, which solves a 3-D Poisson PDE. This code is a
good test of both short and long distance for highly structured
communication.

2) Conjugate Gradient (CG) Benchmark:In this bench-
mark, a conjugate gradient method is used for computing an
approximation of the smallest eigenvalue of a large, sparse,
symmetric positive definite matrix. CG benchmark tests irreg-
ular long-distance communication and employs sparse matrix-
vector multiplication.

3) 3-D FFT PDE (FT) Benchmark:In this benchmark, a
3-D partial differential equation is solved by using FFTs. This
kernel performs the essence of many spectral methods. It is a
good test of long-distance communication performance.

4) Integer Sort (IS) Benchmark:A sorting operation that
is important in particle method codes. This application is
similar to particle-in-cell applications of physics, wherein
particles are assigned to cells and may drift out. The sorting
operation is used to reassign particles to the appropriate cells.
This benchmark tests both integer computation speed and
communication performance.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Fig. 4. An Example of Misrouting

C. Misrouting

As we introduced in section II, input port buffers are
eliminated in bufferless routing. BLESS always assigns a flit to
an output port even though this port does not provide minimal
path in a case of deflection. The flit does not always take the
shortest path to the destination(using X-Y dimension ordering
routing). In other words, flits are deflected or “misrouted” [13]
by the router to a non-productive output port when the best
request output port is not available.

Figure 4 illustrates an example of misrouting. In this case,
flit destined for 02 is misrouted to 23 at node 22. Hence,
the misrouting spends 2 extra hops(calculation method as can
be seen in equation 1). In our experiments, we compute total
number of misrouting hops in the entire network for all source-
destination communication pairs. The results of misrouting are
shown in the following section.

Totalmisrouting =
N∑

i=0

(HOPSActual i −HOPSRegular i).

(1)
WhereN is the total number of worms,HOPSActual is the
total number of hops taken in our simulation for a worm, and
HOPSRegular is the hop counts if no deflection occurs in the
worm’s communication (shortest path).

VI. EXPERIMENTAL EVALUATION

A. Performance

We evaluate the simulation latency of BLESS (baseline
bufferless routing) and IRT(injection rate throttling) with
different injection threshold: “ input flits≥ 2” means when
incoming flits are more than 2 flits (count by input port
detector), the injection will be delayed. “ input flits≥ 3”,
delays injection when the number of incoming flits is more
than 3 flits at the same time. The injection rate of “ input flits
≥ 3” becomes higher than the case of “ input flits≥ 2”.

We evaluate the simulation cycles of NAS parallel bench-
marks with 32, 64, 128 cores and compare with the baseline
BLESS and the baseline BLESS using our injection throttling
mechanism.

1) Multigrid (MG) Benchmark:The benchmark is a sim-
plified multigrid kernel, which solves a 3-D Poisson PDE. MG
is a good test of both short and long distance highly structured
communication. At 32, 64, and 128 cores, throttling algorithm
reduces simulation cycles by an average of 3.6%as shown in
Figure 5(a).

2) Conjugate Gradient (CG) Benchmark:The benchmark
is a simplified multigrid kernel, which solves a 3-D Poisson
PDE. MG is a good test of both short and long distance highly
structured communication. At 32, 64, and 128 cores, throttling
algorithm reduces simulation cycles by an average of 14.3%
as shown in Figure 5(b).

3) 3-D FFT PDE (FT) Benchmark:Figure 6(a) shows our
evaluation results for FT benchmark. In this benchmark a 3-D
partial differential equation is solved using FFTs. It is a good
test of long-distance communication performance for 32, 64,
and 128 cores, throttling algorithm reduces simulation cycles
by an average of 8.6%.

4) Integer Sort (IS) Benchmark:The Figure 6(b) shows
simulation cycles of IS (Integer Sort) benchmark with 32, 64,
and 128 cores, it tests a sorting operation which is important in
particle method codes, both in integer computation speed and
in communication performance. Throttling algorithm reduces
simulation cycles by an average of 8.1%.

B. Misrouting Reduction

Figure 7(a) shows total number of misrouting hops for NAS
parallel benchmarks with 32 nodes. These results show the
total number of misrouting hops. Both “ input flits≥ 2” and “
input flits≥ 3” of IRT demonstrate less misrouting hops count
than the baseline bufferless routing, due to the injection rate
throttling. Thus, in all cases, IRT designs take less misrouting
hops than traditional BLESS. In MG benchmark, total number
of misrouted hops is reduced by 10.2%, IRT has 22.2% less
misrouting hops for CG benchmark compare to BLESS. In FT
and IS benchmarks, the misrouted hops are reduced by 17.3%
and 28.7%, respectively.

C. Energy Consumption

In an on-chip network, the average energy consumption to
translate one single flit from the source to the destination can
be expressed with the following formula [15] :

Eflit = wHave(Esw + Elink) (2)

Wherew is the flit width, Have is the average hop count,
Esw is the average energy consumed in switching per bit
data through the router,Elink is the average energy per bit
for link traversal.

We compare the energy consumed by each flit transmitted
from source to destination of our throttling control mechanism
and the baseline bufferless using the equations (3), and (4).

Eflit(IRT) = wIRTHave(IRT) (3)

Eflit(BLESS) = wBLESSHave(BLESS) (4)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 8 16 32 64 128

S
im

u
la

ti
o

n
 L

a
te

n
c
y
 [
C

y
c
le

s
]

The Number of Nodes

BLESS
input flits >= 2
input flits >= 3

(a) MG

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 8 16 32 64 128

S
im

u
la

ti
o

n
 L

a
te

n
c
y
 [
C

y
c
le

s
]

The Number of Nodes

BLESS
input flits >= 2
input flits >= 3

(b) CG

Fig. 5. Simulation cycles evaluation for MG and CG benchmarks.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 8 16 32 64 128

S
im

u
la

ti
o

n
 L

a
te

n
c
y
 [
C

y
c
le

s
]

The Number of Nodes

BLESS
input flits >= 2
input flits >= 3

(a) FT

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 8 16 32 64 128

S
im

u
la

ti
o

n
 L

a
te

n
c
y
 [
C

y
c
le

s
]

The Number of Nodes

BLESS
input flits >= 2
input flits >= 3

(b) IS

Fig. 6. Simulation cycles evaluation for FT and IS benchmarks.

0

2x105

4x105

6x105

8x105

1x106

IS MG FT CG

BLESS

Input flits >= 2

Input flits >= 3

T
o

ta
l

n
u

m
b

e
r

o
f

m
is

ro
u

n

g
 [

h
o

p
s]

- 28.7%

- 17.3%

- 22.2%

- 10.2%32(4x8) Nodes

(a) Total Number of Misrouting. Hops

0

1x107

2x107

3x107

5x107
BLESS

Input flits >= 2

Input flits >= 3

32(4x8) Nodes

E
n

e
rg

y
 c

o
n

su
m

p

o
n

 [
P

J]

- 20.6%

- 7.9%

- 13.3%

- 0.7%

IS MG FT CG

(b) Energy consumption

Fig. 7. Number of Mirouting and Energy consumption evaluations.

We assume the same energy consumption for switching Esw

and link traversal Elink for both baseline and IRT bufferless
networks. Elink is 0.46, estimated link traversal energy in
[16]. We set 1-hop distance to2.33 mm assuming a typical
semiglobal interconnect in the 45nm CMOS technology [16].
For W , IRT adds the additional overhead bits in each flit. Be-
cause we must reassemble flits at the destination nodes. Figure
7(b) shows the transfer energy as a portion of system energy
for NPB in a 32 nodes(4x8) 2D-mesh network. Results show
a significant reduction in energy consumption using IRT as it
considerably reduces the number of deflected flits(misrouting
count) as shown in Figure 7(a).

VII. C ONCLUSION

To the best of our knowledge, IRT is the first work that
applies the local injection rate throttling to bufferless network
in order to improve its performance under heavy network load.
Other work studies tackle the bufferless-buffered performance
gap at high-loads using various alternatives. IRT is a local
throttling mechanism that improves performance of bufferless
routing under high network workloads. IRT delays injection
when nodes are in local highly congested areas. Using a cycle
accurate simulator, results show that IRT improves the average
performance by 8.65% compared to a baseline bufferless for
(4x8), (8x8), (8x16) NoCs under four kernels of NPB. IRT
retains the benefits of simplicity in router design for reducing
power and chip area. Therefore, a bufferless NoC with IRT
is a compelling option to improves performance of bufferless
routing under high-intensity workloads.

ACKNOWLEDGMENT

This research is supported in part by NII Joint research
and Grants-in-Aid for Scientific Research of Japan Society
for Promotion of Science (JSPS), No.22500042.

REFERENCES

[1] M. Hayenga, N. Jerger, and M. Lipasti, “Scarab: A
single cycle adaptive routing and bufferless network,”
in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, dec. 2009, pp.
244 –254.

[2] C. G. Requena, M. E. Go’mez, P. Lo’pez, and J. Duato,
“Reducing packet dropping in a bufferless noc,” inEuro-
Par 2008 - Parallel Processing, 14th International Euro-
Par Conference, Las Palmas de Gran Canaria, Spain,
August 26-29, 2008, Proceedings, ser. Lecture Notes in
Computer Science, E. Luque, T. Margalef, and D. Ben-
itez, Eds., vol. 5168. Springer, 2008, pp. 899–909.

[3] C. Fallin, C. Craik, and O. Mutlu, “Chipper: A low-
complexity bufferless deflection router,” inHigh Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, feb. 2011, pp. 144 –155.

[4] S. Jafri, Y.-J. Hong, M. Thottethodi, and T. Vijaykumar,
“Adaptive flow control for robust performance and en-
ergy,” in Microarchitecture (MICRO), 2010 43rd Annual

IEEE/ACM International Symposium on, dec. 2010, pp.
433 –444.

[5] M. Thottethodi, A. Lebeck, and S. Mukherjee, “Self-
tuned congestion control for multiprocessor networks,” in
High-Performance Computer Architecture, 2001. HPCA.
The Seventh International Symposium on, 2001, pp. 107
–118.

[6] G. Nychis, C. Fallin, T. Moscibroda, S. Seshan, and
O. Mutlu, “Congestion control for scalability in buffer-
less on-chip networks,” Microsoft Research , Carnegie
Mellon University, SAFARI Technical Report 2011-003,
July 2011.

[7] R. Ausavarungnirun, K. K.-W. Chang, C. Fallin, and
O. Mutlu, “Adaptive cluster throttling: Improving high-
load performance in bufferless on-chip networks,” Com-
puter Architecture Lab (CALCM) Carnegie Mellon Uni-
versity, SAFARI Technical Report 2011-006, September
2011.

[8] K. Uehara, S. Sato, T. Miyoshi, and K. Kise, “A study of
an infrastructure for research and development of many-
core processors,” inParallel and Distributed Computing,
Applications and Technologies, 2009 International Con-
ference on, dec. 2009, pp. 414 –419.

[9] P. Baran, “On distributed communications networks,”
Communications Systems, IEEE Transactions on, vol. 12,
no. 1, pp. 1 –9, march 1964.

[10] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design
of router microarchitectures in on-chip networks,” in
Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on, dec.
2003, pp. 105 – 116.

[11] T. Mattson, R. Van der Wijngaart, and M. Frumkin, “Pro-
gramming the intel 80-core network-on-a-chip terascale
processor,” inHigh Performance Computing, Network-
ing, Storage and Analysis, 2008. SC 2008. International
Conference for, nov. 2008, pp. 1 –11.

[12] T. Moscibroda and O. Mutlu, “A case for bufferless
routing in on-chip networks,” inProceedings of the
36th annual international symposium on Computer
architecture, ser. ISCA ’09. New York, NY,
USA: ACM, 2009, pp. 196–207. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555781

[13] W. Dally and B. Towles,Principles and Practices of
Interconnection Networks. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2003.

[14] S. Saini and D. H. Bailey, “Nas parallel benchmark
(version 1.0,” Report NAS 96-18, 1996.

[15] H. Wang, L.-S. Peh, and S. Malik, “A technology-aware
and energy-oriented topology exploration for on-chip
networks,” in Design, Automation and Test in Europe,
2005. Proceedings, march 2005, pp. 1238 – 1243 Vol. 2.

[16] A. Shacham, K. Bergman, and L. Carloni, “The case for
low-power photonic networks on chip,” inDesign Au-
tomation Conference, 2007. DAC ’07. 44th ACM/IEEE,
june 2007, pp. 132 –135.

