Throttling Control for Bufferless Routing in
On-Chip Networks

Yicheng Guan#, CISSE AHMADOU DIT ADI, Takefumi Miyoshi, Michihiro Koibuchi', Hidetsugu Irié
and Tsutomu Yoshinaga
! The University of Electro-Communications,1-5-1, Chofugao&hofu-shi, Tokyo, Japan 182-8585
Email:{guan, ahmadou, miyoshi, yosinggacomp.is.uec.ac.jp
T National Institute of Informatics, 2-1-2, Hitotsubashhigoda-ku, Tokyo, Japan 101-8430
Email: koibuchi@nii.ac.jp

Abstract—As the number of core integration on a single die bufferless and buffered routing side-by-side, it imposear@a
grows, buffers consume significant energy, and occupy chip area penalty because buffers remain present. Another appraach i

A bufferless deflection routing that eliminates router’s input- to reduce the deflection rate of bufferless routing undeh hig
port buffers can considerably help saving energy and chip area
network workloads.

while providing similar performance of existing buffered routing, o .
especially for low-to-medium network loads. However when con- Injection throttling has been prop_osed for _buffered neMor
gestion increases, the bufferless frequently causes flits deflests, in [5] to prevent network saturation at high loads using

and misrouting leading to a degradation of network performance. global network congestion information (buffers occupgncy
In this paper, we propose IRT(Injection Rate Throttling), a local and adaptively decide injection or not of packets. Throgtli

throttling mechanism that reduces deflection and misrouting for based on application has been proposed also for bufferless
high-load bufferless networks. IRT provides injection rate contol PP prop

independently for each network node, allowing to reduce network Using global information in [6, 7] to improve the performanc
congestion. Our simulation results based on a cycle-accurate of bufferless routing under high network workloads.
simulator show that using IRT, IRT reduces average transmission In this paper, we propose a new injection rate throttling
latency by 8.65% compared to traditional bufferless routing. mechanism (IRT) for bufferless routing. IRT imposes the
injection limitation based on only the congestion at local
node, that allows control of packet injection individually
In recent years, significant work has examined novel designgedless to global network congestion information, mesnin
for on-chip networks different from traditional bufferedtual injection controller in each node can locally throttle new
channel (VC) routers in order to gain performance. In particpacket injection operations. As new packet injection may
lar, recent works proposed a bufferless routing [1-3], inclvh impose different effect on the global network congestibeyt
the input port buffers are eliminated and router port catdan are treated differently depending on local node’s load.rie o
is mitigated by temporal deflections. This novel architeztuhand nodes that tend to further increase network congestion
yields significant network power saving with minimal perforare not allowed to inject a new packet until a certain reauncti
mance loss under low network workloads. However, generally node activity (number of flit traversing the local router)
speaking, bufferless routing performs significantly waitsgn On the other hand, no delay is added to inject a new packet
a traditional buffered routing with high network workloads when the local network load is low (only few flits transverse
is clear that our key challenge is performance issue under the local router in each cycle). IRT is expected to bring
network-intensive applications. the performance of bufferless networks closer to buffered
A straight-forward approach to mitigate this problem isetworks while keeping the benefits (area, power consumptio
to take advantage of buffered routing only when networdf bufferless network. The contribution and our finding abth
is highly loaded. S. Jafri et al. proposed in [4] an adaptiwgork is as follows:
flow control (AFC) which adaptively switches routing mode. « We propose a simple and local self-throttling algorithm
AFC combines a bufferless (backpressureless) router, and for bufferless networks. Each router adopts dynamically
buffered (backpressure) router , and dynamically switches different injection rate for data communication according
between the two modes depending on network load. AFC to the node’s impact on the global network congestion
can gain the energy efficiency of bufferless routing at low status.
network load, and the performance of buffered routing abhig « We estimate the network performance by evaluating the
network load. When running at high load, AFC will switch number of misrouting in communications. We simulate
to buffered mode, increasing network capacity and reqmirin bufferless networks w/wo injection throttling under in-
power consumption similar to conventional buffered neksor tensive benchmarks using a cycle accurate many-core
Although AFC can enjoy the power and energy benefits of processor simulator (SimMc) [8].
bufferless routing at low network load, as it incorporatethb « We show how bufferless routing performance can be

I. INTRODUCTION

©2012 IEEE. Reprinted, with permission, from Yicheng Guan, Cisse Ahm&ipADI, Takefumi Miyoshi, Michihiro Koibuchi, Hidetsugu Irie, and Tsutm Yoshinaga,
“Throttling Control for Bufferless Routing in On-Chip Networks”, Proc. 20lEEE 6th International Symposium on Embedded Multicore SoCs, Sep?. 201

improved under high network workloads. By using IRT, Flits or truncated worms from a packet may arrive in out-
we are able to outperform conventional bufferless netf-order at destination in bufferless deflection routirtgere-
works. Results show considerably gain in energy savirigre, it is necessary to reconstruct the original packeoitaef
due to the reduction of deflection and misrouting iejection. The buffers allocated for this process are called
communications. reassembly buffers. In [3], the authors propose a comioinati

The rest of this paper is organized as follows: In Section @f flow control (Retransmit-Once) and cache memory protocol
we summarize the necessary background and related wofRgProvide a network level packet reassembly. The cacheprot
Section Il presents our novel IRT scheme for bufferlesgPl’s cache miss buffers are used to handle packets reabsemb
networks. Section IV describes our reassembly buffer msiut In our case, as in BLESS [12], we assume an infinite receiver
for bufferless networks. In section V, we discuss our evidna buffers without flow control. We set the receiver buffer unit
methodology. Section VI presents our evaluation and simufize to be equal to a worm-buffer. A worm-buffer is set free

tion results. And finally, we conclude this paper in sectiowhen a reassembly is completed. In the locally busy areas,
VIL. our throttling mechanism delay further new packet injattio

This can reduce the network deflection/misrouting rates thu
Il. BACKGROUND AND RELATED WORKS avoiding excessive out-of-order delivery and the requiaege

Bufferless deflection routing was first proposed as “hoteassembly buffer space.
potato” routing for off-chip networks [9]. Recently, it hasen ~ BY eliminating input port buffers, bufferless on-chip net-
proposed also for on-chip networks mainly for two reasons: Works help saving significant network power with a mini-
reduces network hardware cost (no input port buffers), aftpl performance loss under low-to-medium network loads.
its design simplicity. Several prototype many core systerh¥oWever, when network load rises above a certain threshold,
point toward this trend. In MIT RAW, interconnect consume§eflection/misrouting in the network increases, leading to
~40% of overall system power [10]; in the Intel TerascalBigher transmission latency. To tackle this issue, ingectate
chip, 30% [11]. Buffers consume a significant portion of thigrottling mechanism has been proposed. In [6] the authors
power. In [12] baseline buffurless deflection routing (BLES used acentrally—coordinated application-layer information
reduced network energy by 40% by eliminating the input poiﬂ order to determine whom to throttle. An intensity ranking
buffers. Bufferless routers require only some pipelingstegs, ©f application’s IPF (instruction per fetch) is used to coht
a crosshar, and an arbitration logic allowing a significaf@ngestion periodically (every 100, 000 cycles). Based on
energy and area saving compared to buferred routers. starvation rate in the network and IPF metric the approgriat

In BLESS, two bufferless routing schemes have been p,@pplications are throttled. The injection throttling maantsm
posed as FLIT-BLESS and WORM-BLESS. In FLIT-BLESSUsed in [7] also is based on application network intensity.
each flit of a packet contains header information and c&Y grouping applications into clusters based on their netwo
travel independently in the network. At each router, inaegni intensity a throttling range (varying from 0 to 100%) is
flits contend for output ports. When two flits contend for th@Pplied to each cluster. In opposition to a global injection
same output port, BLESS avoids the need for buffering B te throttling used in these mechanisms, we proposed & loca
misrouting one of the flit (the newest) to another free outp rottling algorithm. We use a local injection rate control
port. The flits continue through the network until they agrivbased on individual node’s (router’s) load to determineenod
to the destination. Because FLIT-BLESS requires routird§ throttle. Alocal injection rate throttling rather thargkbal
information for each flit, it imposes an important overhea@n€ has two advantages:
to the packet. To reduce packet overhead WORM-BLESS. No need for global control logic which requires commu-
has been proposed. In WORM-BLESS, routing information is nication among nodes to determine when to throttle new
added to each worm that may consists of several flits. In this packet injection.
paper, we adopt WORM-BLESS routing in our simulations. « By locally detects the network load, and locally controls

In bufferless routing, flits cannot be buffered at input port the injection rate, congestion are detected earlier and
Routers always forward incoming flits to an available output solved before further degradation.
port. To guarantee livelock freedom, BLESS uses an Oldest-

First priority rule. Flits arbitration is based on a timesfa N
The oldest flit is prioritized for a productive output port —Bufferless network performs worse than traditional bufter

Hence no livelock can occur because once a flit is the oldéttwork under intensive network workloads. Because in
flit in the network, it cannot be deflected anymore and makBgfferless network, a new packet can be injected into the
forward progress until it arrives to the destination. Wevalse Network whenever at least one input port is free, conges-
Oldest-First policy in our simulation. BLESS allows injiest tion easily occurs resulting to an increase of packets de-
of a new flit whenever at least one input port is free. fi€ction/misrouting. In this section, we describe our pregub

guarantees that all flits entering a router can leave it kmeadniection rate throttling (IRT), a local throttling mechiam that
there are as many output ports as input ports. delay new packet injection at high network load allowing-bet

ter performance compare to conventional bufferless nddsvor
Lan output port towards the destination. With the throttling mechanism, we can control local packet

Il. I NJECTIONRATE THROTTLING: IRT

injection rate at individual router injection port accorgito Router Arbi
. . . . ter
the router’s loaél IRT is self-throttling, that means injection
controller existing in each node locally throttles injecti N - N
operations. f = f
N

A. Throttling Mechanism w H_) w

At high network load, injection rate throttling (IRT) works s H_) s
by delaying new packet injection for nodes which routers are __ L
highly loaded with packets on the input ports. Before a noute — 'T”r{fgftf;”r CBAR
injects a new packet, it observes first the load of the logaltin — switch)
ports. If the router is highly load&dhe injection of new packet inject —{ Detector | eject
is delayed allowing a local control of network injectioneat

In this work we propose a local injection rate throttling
based on node and set our router load threshold to two, three
input ports occupied by incoming flits, respectively theeywn
packet injection is delayed when the local load is highenth%_ Throttling Architecture
the threshold.

The throttling is used to control new packet injection in Our IRT router architecture is shown in Figure 1. Two
order to reduce network load when the network is congesté@mponents are added to a conventional wormhole router [13]
This reduces interference leading to less deflection of flitgan input flit detector and an injection throttler at the inte
in the network. Throttling a particular node’s injectiontea Node communication controller (INCC) between the node’s
at high network workload can lead to an overall gain ifiemory and the router.
network performance. In a bufferless network, injectiotera « Input flit detectors: Detects incoming flits from the

Fig. 1. IRT router architecture

directly contributes to network utilization. High utilidgan four input ports, in a case of 2D mesh, north (N), east
in a bufferless network causes a high deflection rate, which (E), west (W), and south (S) at each given time, and
distributes flits throughout the network and degrades iesail/ propagates the result (number of incoming flits) to the

performance. By delaying new packet injection of a node injection throttlers.

in a congested area, the throttling mechanism reduces tha Injection throttlers: Estimates the local router load
deflection probability of other input packets of the node. As (number of incoming flits) and decides whenever new
delaying injection of a node in a high loaded area will reduce packet injection is to be delayed or not.

deflection more than that of a node in low loaded area, our

IRT mechanism uses the following principles: C. Throttling Algorithm

« Never delay Low-Loaded Nodes new packet injection: 1y \easuring Local Network IntensityTo measure local
Low-loaded nodes, or nodes that are within a low loadgghnyork load, we use input port utilization, which is the
area of the network, contribute little to the neighboring,,mper of input ports occupied by incoming flits in the router
network load. Thus, delaying new packet injection oL 5 given time. Injection rate of each is locally manageds Th
such nodes will not usually benefit system performancgye i dynamically controlled by the local router's load. &kih
Hence, IRT never delay injection of new packets for lowge node is lightly loaded, no throttling is necessary. Aadlo
loaded nodes. . increases, the throttling mechanism becomes as aggressive

« Always delay High-Loaded Nodes new packet injec- necessary to reduce congestion.
tion: High-loaded nodes in the other hand contributes 2) Throttling Procedure: The injection rate throttling is

a lot to the congestion Of. surrour_1ded nodes. Ir_‘ Othﬁérformed as follows: Before the local injection port irifea
words, many flits are incoming to this node occupying the., packet:

local node input ports with incoming flits. In such case,
local injection certainly increase the network congestion
Hence, IRT always delay the injection of new flits for
those nodes.

o First step: The input flit detector checks the four input
ports and informs the injection throttle of the number of
incoming flits in the same cycle.

L . . « Second step: Injection throttler defines the router’s load
In summary, IRT_ delay injection O,f new flits for high- intensity (high or low) according to a threshold, and delay

loaded nodes reducing further congestion of the networls Th ¢ ihar hew packet injection for highly-loaded router.

reduces the probability of flits deflection hence may improve | \yhen the local router load decreases below the threshold
the overall network performance. new packet injection is allowed.

2number of packet traversing the router at a given time. Algorithm 1 shows the throttling algorithm. At each router

3more than 2, 3 input ports (threshold), are occupied withriniog flits at CyCIe' the inpUt porFs dete_ctor (_:he(_:k the inpUt ports oceoypa
a given time. If the number of incoming flits is equal or larger than a

Algorithm 1 IRT Algorithm T lwrfflnibliffTrT T ~
At each router cycle :
Input Detector Counts incoming flits from input ports LTI
(NEWS) and informdnjection Throttler —HR E]» Worm -buffer2 ﬂ M
if injection of new packethen :
if incoming flits> X then {X = IRT threshold Bufferless EEEEEEREEE
delay sending ﬂl'[" Worm -buffern B Local Memory
else{ incoming flitscount < Threshold} Worm -buffers
inject flit
end if Fig. 2. Reassembly Buffer Architecture
end if

packet recovery. The reassembly buffers are hence caestitu
| of multiple worm-buffers. One worm-buffer contains 10 flits

threshold (X in the algorithm) new packet injection wil .
é. There are two detectors, one for the buffers inputs, and

be delayed. Otherwise packet is injected without any delaySPac¢ _
In conventional bufferless networks, a node can inject nedif€ for their outputs.

packet into the network with only one free input-port of its « The input detector is used to distinguish packets coming
local router, hence deflection of packets easily occursgti hi from different source nodes. It also allow reordering of
network load. Using local injection rate throttling, we can ~ worms from the same source node. The input detector
improve the performance of conventional bufferless nekwor assigns a buffer space for the incoming flits. An empty
by limiting injection of packet using a certain threshold & worm-buffer is allocated to newly incoming flits of a
incoming flits to the router at the same time). At high load,IR packet.

reduces further degradation of congested area by delagiwg n « The output port detector checks if a packet is fully
packet injection, hence less deflection/misrouting occurs recovered (full worm-buffer) and transfers the packet to

the local memory.
IV. REASSEMBLY BUFFERS ATRECEIVERS

Bufferless networks must provide some buffer space at tRe Reassembly Buffer Algorithm
receivers side for packet reassembly (sorting). Because offo be able to reorder flits from out-of-order delivery, in
packet truncation in worms (groups of flits) and their deftect our algorithm we add two additional tags to each worm of
during transmission, worms may arrive in out-of-order tflits. One for distinguishing worms from different sourcedes
their destination. Thus a buffer space is required for packgource node tag) and one for identifying worms order (worm
reassembly. Management of reassembly buffer is still yet ander tag) from the same packet. Our reassembly algorithm
issue in existing bufferless On-chip networks. Let's assunmas three steps:
a simple reassembly buffer allocation algorithm that @tec 1) Input Buffer: When a worm arrives at the destination
buffer to flits when they arrive at the destination node, ad rnode, the input detector checks it source node tag. If it is
lease buffers when an entire packet is reassembled. Bagterlthe first worm of a packet, a free worm-buffer is allocated
routing has no flow control, there is no credits flow feedbadir buffering the entire packet. This worm-buffer is asseil
to source nodes for injection control as in traditional bugd with the corresponding source node tag. The following worms
network. A full reassembly buffer condition is not transi@it of the packet are ordered in the same worm-buffer according
to source nodes. When several packets from different soutgetheir worm order tag. The Algorithm 2 summarizes the
nodes are sent to the same destination node, the reassenmpt-side of the reassembly algorithm.
buffer is allocated to the first arrived flit. Once all buffers 2) worm flits reordering:We use a simple sort algorithm
are occupied, flits from other source nodes must wait in thigat order worm of flits simply according to their tags. Worm
network until the partially reassembled packets are reftasof flits from the same packet ID are buffered in the same
However the remaining flits of the partially received packetorm-buffer, and ordered according to the flit-1D.
are deflected in the network giving priority for older flits to 3) Output Buffer:Output port detector checks if any worm-
be buffered, hence deadlock occurs. To avoid deadlockgae lapyffer is full, and assigns an output port to the full worm-
space of buffers is required. As in BLESS [12] we assume @Qffer. The algorithm is detailed in Algorithm 3.
infinite size of buffers. Although in a real systems buffers a
finite, we considered a worst-case buffer size to allow eaéh Advantages
destination node to reassemble packet from all sendingsnodereassembly buffers are essential for bufferless routirtg ne
at the same time. works. As packet flits may reach the destination node in out-
of-order due to deflection, a buffer space is required to e ab

to reassemble the original packet. Although our proposasdo
Figure 2 shows the reassembly buffers architecture. At

the receiver-side we propose a worm-buffer size as unit of‘Original simulator's packet size.

A. Reassembly Buffer Architecture

TABLE |

Algorithm 2 Input-side Reassembly Buffer Algorithm SIMULATION PARAMETERS

At destination:

if first worm arrival of a packethen Parameter Setting
Find empty worm-buffer Network Topology || 2D - Mesh
Input worm in worm-buffer<, at positionj { Wherei Routing Technique|| Wormhole Bufferless Routing
is associated to the source node tag, aride worm order Virtual Channel None
tag} Routing method X-Y dimension ordered routing.
number ++ { For computing occupied buffer spgce Router Single cycle router
else{not packet’s firstvorm arrival} Benchmark NAS parallel benchmarks
Find worm-bufferid corresponding t@ource tag Injection Policy Throttling
Input worm in worm-bufferid at positionworm order Input flits < 2 Throttle when above 2 flits
tag Input flits < 3 Throttle when above 3 flits
number ++
end if

Algorithm 3 Output-side Reassembly Buffer Algorithm
Output port detector checks for full worm-buffer:

if any full worm-bufferthen Core
for (number '=0) do :
Output buffer

number - - Memory INCC
if number = = 0then
Change worm-buffer state tonpty »
end if RO@G—>
end if ~—
elseg{ no full worm-buffer }
break

Fig. 3. A Block Diagram of Computational Node [8]
not eliminate the usage of worst-case reassembly buffer siz

we can significantly reduce buffers utilization.]]]] S
gillowmg section. We propose throttling policy of injeati

« We reduce the reassembly buffers size to a minim . .
rate to improve network performance under heavy traffic

requw_ed to avoid deadlock. Usm_g the |_nject|0n ratF ad. Hence, we choose the kernels which are good test for
throttling we can reduce the deflection rate in the networ

hence the number of out-of-order packet deliver communication performance.
. P Yo o 1) Multigrid (MG) Benchmark:MG is a simplified multi-
« Allocation of worm-buffers according to source tag im-

proves the utilization of reassembly buffers, and accel rid kernel, which solves a 3-D Pplsson PDE'.ThIS code is a
ates flits reassembly ' good tesF of.both short and long distance for highly struexdur
’ communication.

V. EXPERIMENTAL METHODOLOGY 2) Conjugate Gradient (CG) Benchmarkn this bench-
mark, a conjugate gradient method is used for computing an
approximation of the smallest eigenvalue of a large, sparse

In our simulations, we use a cycle accurate many-cosgmmetric positive definite matrix. CG benchmark testggirre
processor architecture simulator SimMc [8]. We model 3@lar long-distance communication and employs sparse xnatri
nodes(4x6), 64 nodes(8x8) and 128 nodes(8x16) 2D-mesdttor multiplication.
networks. Table | summarizes the detailed simulation canfig 3) 3-D FFT PDE (FT) Benchmarkin this benchmark, a
rations. Using bufferless, each network node contains gerou 3-D partial differential equation is solved by using FFT&IisT
an inter-node communication controller (ICNC), a core, arkkrnel performs the essence of many spectral methods. It is a
a node’s memory. The Figure 3 shows a block diagram ofgmod test of long-distance communication performance.

A. Simulation environment

single computational node. 4) Integer Sort (IS) BenchmarkA sorting operation that
is important in particle method codes. This application is
B. NAS Parallel Benchmark similar to particle-in-cell applications of physics, whar

The NAS Parallel Benchmarks (NPB)[14] are a small set giarticles are assigned to cells and may drift out. The sprtin
programs which are designed to help evaluate the perforenaperation is used to reassign particles to the appropréte. ¢
of parallel supercomputers. In this paper, simulation ltesuThis benchmark tests both integer computation speed and
for four kernels (MG, CG, FT, and IS)[14] are shown in theommunication performance.

I | | 1) Multigrid (MG) Benchmark:The benchmark is a sim-

—1 00 01 02 03 }— plified multigrid kernel, which solves a 3-D Poisson PDE. MG
is a good test of both short and long distance highly strectur
? communication. At 32, 64, and 128 cores, throttling aldpomit
—1 10 11 12 |g— 13 — reduces simulation cycles by an average of 3.6%as shown in
Figure 5(a).
I T 2) Conjugate Gradient (CG) Benchmarlhe benchmark
—1 20 21 2 =9l 23 |— is a simplified multigrid kernel, which solves a 3-D Poisson
PDE. MG is a good test of both short and long distance highly
T structured communication. At 32, 64, and 128 cores, tlingttl
—130 31 2 33— algorithm reduces simulation cycles by an average of 14.3%

as shown in Figure 5(b).
I | | 3) 3-D FFT PDE (FT) BenchmarkFigure 6(a) shows our
evaluation results for FT benchmark. In this benchmark a 3-D
partial differential equation is solved using FFTs. It is@od
test of long-distance communication performance for 32, 64
C. Misrouting and 128 cores, throttling algorithm reduces simulationesc

As we introduced in section ll, input port buffers aré)y an average of 8.6%. i
eliminated in bufferless routing. BLESS always assigng &dfli %) Integer Sort (IS) BenchmarkThe Figure 6(b) shows

an output port even though this port does not provide minimainulation cycles of IS (Integer Sort) benchmark with 32, 64

path in a case of deflection. The flit does not always take tﬁ@d 128 cores, it tests a sorting operation which is impoiten

shortest path to the destination(using X-Y dimension onger Particle method codes, both in integer computation speed an
routing). In other words, flits are deflected or “misrouteti3] " colmmun|catl|onbperformance. Throttll)ng algorithm reessic
by the router to a non-productive output port when the begfnulation cycles by an average of 8.1%.

request output port is not available. B. Misrouting Reduction

Figure 4 illustrates an example of misrouting. In this case, _. h | ber of mi ina h ;
flit destined for 02 is misrouted to 23 at node 22. Hence, F19Ure 7(a) shows total number of misrouting hops for NAS

the misrouting spends 2 extra hops(calculation method 1as (ﬂ?r?”el bsnchfrnqus W_'th 32 nogesﬁ These f:gsuLts SQO‘YV the
be seen in equation 1). In our experiments, we compute to&%a num er’? misrouting hops. Bot |r)put ',52 an
number of misrouting hops in the entire network for all s@urc input flits > 37 of IRT demonstrate less misrouting hops count

destination communication pairs. The results of misrautire tEan It_he b_?hselm_e blljlfferless IrF(#n(;]g,_due tokthle Injectets r
shown in the following section. throttling. Thus, in all cases, esigns take less misngu

hops than traditional BLESS. In MG benchmark, total number
N of misrouted hops is reduced by 10.2%, IRT has 22.2% less
_ S o _ misrouting hops for CG benchmark compare to BLESS. In FT
Totalmisrouting = Z(HOPSACW”J HOPSpeguiar_i)- and IS benchmarks, the misrouted hops are reduced by 17.3%
(1) and 28.7%, respectively.
Where N is the total number of wormsfOPS 4ctua IS the .
total number of hops taken in our simulation for a worm, ang- EN€rgy Consumption
HOPSRgeguiar is the hop counts if no deflection occurs in the In an on-chip network, the average energy consumption to
worm’s communication (shortest path). translate one single flit from the source to the destinatam c
be expressed with the following formula [15] :

Fig. 4. An Example of Misrouting

=0

VI. EXPERIMENTAL EVALUATION
A. Performance Etiit = wHope(Egw + Elink) (2

We evaluate the simulation latency of BLESS (baselinfhere w is the flit width, Have is the average hop count,
bufferless routing) and IRT(injection rate throttling) ttvi E,, is the average energy consumed in switching per bit
different injection threshold: * input flits> 2” means when gata through the routerEy;,., is the average energy per bit
incoming flits are more than 2 flits (count by input porfor link traversal.
detector), the injection will be delayed. “ input flits 3", \e compare the energy consumed by each flit transmitted
delays injection when the number of incoming flits is morgom source to destination of our throttling control medisan

than 3 flits at the same time. The injection rate of “ input flitgng the baseline bufferless using the equations (3), and (4)
> 3” becomes higher than the case of “ input flit2”.

We evaluate the simulation cycles of NAS parallel bench-
marks with 32, 64, 128 cores and compare with the baseline
BLESS and the baseline BLESS using our injection throttling

mechanism. Efiit(BLESS) = WBLESS Have(BLESS) (4)

Etii4(1rRT) = WIRT Hane(IRT) 3

1.2e+07

' BLESS —A— 1e+08 - - - -
input flits >= 2 = <X+ - . BLESS ——
input flits >= 3 = @~ input flits >=2 * X< -
1e+07 [input flits >= 3 - @--
g & 8e+07 1
3} K]
& 8e+06 | %
& E‘ 6e+07 1
2 6e+06 |]
- ©
= -
S S 4e+07 1
I 4e+06 [k5]
2 E
£ E
& £
26+06 | P 2e+07]
0 M- . . . o - , , .
8 16 32 64 128 8 16 32 64 128
The Number of Nodes The Number of Nodes
(@) MG (b) CG
Fig. 5. Simulation cycles evaluation for MG and CG benchmarks.
T T T T 8e+06 T T T T
BLESS —A— e BLESS —A—
1e+08 [input flits >=2 - X input flits >=2 - X
input flits >= 3 - @-- 7e+06 [input flits >= 3 - @-- 1
w e 1
S seo7 | £ Bet08
o 3
= = 5e+06 1
2 6e+07 [=
& £ 4e+06]
- -
5 5
£ 40407 [g oJe+06
E =
7} & 2e+06 J
2e+07 [
1e+06 1
8 16 32 64 128 8 16 32 64 128
The Number of Nodes The Number of Nodes
(@) FT (b) IS
Fig. 6. Simulation cycles evaluation for FT and IS benchmarks.
_ 1x1067 32(4x8) Nodes 10,29 1 BLESS 5x1071 32(4x8) Nodes ~%;7% = BLESS
3 l mm Input flits >=2 N -7.9% mm Input flits >=2
= 8x105 mm Input flits >=3 = g = |nput flits >=3
w -17.3% 5
= =
=3 Q.
2 6x105 l £ 3x107 -
£ z
5 . 3 7
g 4x10 9 2x1074
Qo oo
g -22.2% 5 -13.3%
5 . 2 -20.6%
< a0 -28.7% i S 1x1071 l
°
e
IS MG FT cG 1S MG FT cG

(a) Total Number of Misrouting. Hops

Fig. 7.

(b) Energy consumption

Number of Mirouting and Energy consumption evaluation

We assume the same energy consumption for switching E
and link traversal E,, for both baseline and IRT bufferless

networks.

k. IS 0.46, estimated link traversal energy in [5]

[16]. We set 1-hop distance 33 mm assuming a typical
semiglobal interconnect in the 45nm CMOS technology [16].
For W, IRT adds the additional overhead bits in each flit. Be-
cause we must reassembile flits at the destination nodeseFigu
7(b) shows the transfer energy as a portion of system enerd§]
for NPB in a 32 nodes(4x8) 2D-mesh network. Results show
a significant reduction in energy consumption using IRT as it
considerably reduces the number of deflected flits(mianguti
count) as shown in Figure 7(a).

[7]

VIl. CONCLUSION

To the best of our knowledge, IRT is the first work that
applies the local injection rate throttling to bufferlesstwork
in order to improve its performance under heavy network load
Other work studies tackle the bufferless-buffered perforoe
gap at high-loads using various alternatives. IRT is a local®]
throttling mechanism that improves performance of budfesl
routing under high network workloads. IRT delays injection
when nodes are in local highly congested areas. Using a cycle
accurate simulator, results show that IRT improves theameer
performance by 8.65% compared to a baseline bufferless 0l
(4x8), (8x8), (8x16) NoCs under four kernels of NPB. IRT
retains the benefits of simplicity in router design for reidgc
power and chip area. Therefore, a bufferless NoC with IR#0]
is a compelling option to improves performance of buffesles
routing under high-intensity workloads.

ACKNOWLEDGMENT
[11]

This research is supported in part by NIl Joint research
and Grants-in-Aid for Scientific Research of Japan Society
for Promotion of Science (JSPS), N0.22500042.

[1]

2]

[3]

[4]

REFERENCES [12]

M. Hayenga, N. Jerger, and M. Lipasti, “Scarab: A
single cycle adaptive routing and bufferless network,”
in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium odec. 2009, pp.

244 —254,

C. G. Requena, M. E. Go’'mez, P. Lo’pez, and J. Duat§]3]
“Reducing packet dropping in a bufferless noc,Haro-

Par 2008 - Parallel Processing, 14th International Euro-
Par Conference, Las Palmas de Gran Canaria, Spaifil4]
August 26-29, 2008, Proceedingser. Lecture Notes in
Computer Science, E. Luque, T. Margalef, and D. Beiji5]
itez, Eds., vol. 5168. Springer, 2008, pp. 899—-909.

C. Fallin, C. Craik, and O. Mutlu, “Chipper: A low-
complexity bufferless deflection router,” idigh Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17tH6]
International Symposium oifieb. 2011, pp. 144 —155.

S. Jafri, Y.-J. Hong, M. Thottethodi, and T. Vijaykumar,
“Adaptive flow control for robust performance and en-
ergy,” in Microarchitecture (MICRO), 2010 43rd Annual

IEEE/ACM International Symposium pdec. 2010, pp.
433 —444,

M. Thottethodi, A. Lebeck, and S. Mukherjee, “Self-
tuned congestion control for multiprocessor networks,” in
High-Performance Computer Architecture, 2001. HPCA.
The Seventh International Symposium 2801, pp. 107
-118.

G. Nychis, C. Fallin, T. Moscibroda, S. Seshan, and
O. Mutlu, “Congestion control for scalability in buffer-
less on-chip networks,” Microsoft Research , Carnegie
Mellon University, SAFARI Technical Report 2011-003,
July 2011.

R. Ausavarungnirun, K. K.-W. Chang, C. Fallin, and
O. Mutlu, “Adaptive cluster throttling: Improving high-
load performance in bufferless on-chip networks,” Com-
puter Architecture Lab (CALCM) Carnegie Mellon Uni-
versity, SAFARI Technical Report 2011-006, September
2011.

K. Uehara, S. Sato, T. Miyoshi, and K. Kise, “A study of
an infrastructure for research and development of many-
core processors,” iRarallel and Distributed Computing,
Applications and Technologies, 2009 International Con-
ference ondec. 2009, pp. 414 —419.

P. Baran, “On distributed communications networks,”
Communications Systems, IEEE Transactionsvoh 12,

no. 1, pp. 1 -9, march 1964.

H. Wang, L.-S. Peh, and S. Malik, “Power-driven design
of router microarchitectures in on-chip networks,” in
Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium ,odec.
2003, pp. 105 — 116.

T. Mattson, R. Van der Wijngaart, and M. Frumkin, “Pro-
gramming the intel 80-core network-on-a-chip terascale
processor,” inHigh Performance Computing, Network-
ing, Storage and Analysis, 2008. SC 2008. International
Conference farnov. 2008, pp. 1 —-11.

T. Moscibroda and O. Mutlu, “A case for bufferless
routing in on-chip networks,” inProceedings of the
36th annual international symposium on Computer
architecture ser. ISCA ’'09. New York, NY,
USA: ACM, 2009, pp. 196-207. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555781

W. Dally and B. Towles,Principles and Practices of
Interconnection Networks San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2003.

S. Saini and D. H. Bailey, “Nas parallel benchmark
(version 1.0,” Report NAS 96-18, 1996.

H. Wang, L.-S. Peh, and S. Malik, “A technology-aware
and energy-oriented topology exploration for on-chip
networks,” in Design, Automation and Test in Europe,
2005. Proceedingsmarch 2005, pp. 1238 — 1243 \ol. 2.
A. Shacham, K. Bergman, and L. Carloni, “The case for
low-power photonic networks on chip,” iDesign Au-
tomation Conference, 2007. DAC '07. 44th ACM/IEEE
june 2007, pp. 132 -135.

