
An Implementation of Handshake Join on FPGA
Yasin Oge∗, Takefumi Miyoshi∗, Hideyuki Kawashima†, and Tsutomu Yoshinaga∗
∗ Graduate School of Information Systems, University of Electro-Communications, Japan

1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
E-mail: oge@comp.is.uec.ac.jp, {miyoshi, yosinaga}@is.uec.ac.jp

† University of Tsukuba, Japan
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

E-mail: kawasima@cs.tukuba.ac.jp

Abstract—This paper shows an implementation of handshake
join on field-programmable gate array (FPGA). Handshake join
is one of stream join algorithms, proposed by Teubner and
Mueller. It can support very high degrees of parallelism and
attain unprecedented success in throughput speed in order to
achieve efficient support for window-based join in streaming
databases. In handshake join, it is necessary to take into account
the problems with regard to the capacity of the output channel
and the limitation of the internal buffer sizes, in order to apply
join operation to input tuples efficiently in a correct manner.
However, the implementation has not necessarily clarified in
detail yet in their paper. In this paper, to solve the issues,
we propose the merging network and the admission controller.
Then we evaluate the architecture in terms of the hardware
resource usage, the maximum clock frequency, and the operation
performance.

I. INTRODUCTION

Nowadays, stream data processing systems demand more
functionality than in previous years. Many of these data
processing tasks, such as financial analysis, traffic monitoring
and data processing in sensor networks, are required to handle
the huge volume of data with certain time restrictions for
each specific application. Consequently, low-latency and high-
throughput processing are key requirements of such kind of
systems that process unbounded, continuous input streams
rather than fixed-size stored data sets.

Most of today’s modern general-purpose relational database
management systems (DBMSs) have been added powerful,
complicated features; however, all of these DBMSs should
provide basic set oriented operations or traditional set op-
erations including union, intersection, difference and Carte-
sian product. In addition to these basic operations, rela-
tional databases support special relational operators such as
join, selection, projection and division. Likewise, streaming
databases also support similar operation sets and one of these
fundamental operations is called stream join or window join
[1] that introduces window semantics besides value-based join
predicates.

Streaming databases deal with unbounded, infinite streams
of data that have to be processed immediately for real time
applications. It is a well-known fact that infinite inputs cause
semantic problems when join operator is applied to unbounded
input streams of data due to the nature of the join operation.
This is because a join operator has to take into account the all
combination of the input tuples.

In order to solve the problem mentioned above, the window
semantic is introduced for practical applications in streaming
databases. That is to say, a finite subset of the unbounded input
data is defined as “a window”, and join operation is evaluated
over windows which are finite subsets of the streams.

So far, the dominant strategy for executing window-based
stream join operation is mostly sequential. However, stream
joins are fundamental and costly operations in streaming
databases. Therefore, maximizing the parallelism of the stream
join operation is crucial in order to increase the performance
of stream joins.

Teubner and Mueller have provided new insight into stream
join algorithm, and proposed a novel approach, named hand-
shake join, which is a stream join implementation that can
support very high degrees of parallelism and attain unprece-
dented success in throughput speed in order to achieve efficient
support for window-based join in streaming databases[2]. It
is stated that handshake join naturally leverages available
hardware parallelism, which they demonstrate with an im-
plementation on a modern multi-core system and on top of
FPGA. Implementation of handshake join on top of a modern
multi-core CPU, in software side, considerably outperforms
CellJoin[3] which is another well-known implementation of
the window-based join for the Cell processor. On the other
hand, in hardware side, it is mentioned that the hardware
implementation is scalable, because the maximum clock fre-
quency is almost unaffected regardless of increased number
of cores. However, the hardware implementation has not
necessarily clarified in detail yet in [2]. Therefore, it is not
clarified whether handshake join is efficient to implement join
operator on FPGA or not.

It is a fact that the output generation rate, which is a
measurement of how frequent the output tuples are generated
by join cores, may exceed the input rate due to the nature of
the parallelized execution of the handshake join operator. In
handshake join, it is necessary to take into account following
three points in order to apply join operation to input tuples
efficiently in a correct manner:

1) a mechanism to transfer all generated result tuples
without any loss of results,

2) a mechanism to interrupt data injection from input buffer
when the join operator is unable to keep up with the rates
of the input streams,

©2011 IEEE. Reprinted, with permission, from Yasin Oge, Takefumi Miyoshi, Hideyuki Kawashima, and Tsutomu Yoshinaga, “An Implementation of Handshake Join on FPGA”,
Proc. 2011 Second International Conference on Networking and Computing, Dec. 2011.

3) and a scalable mechanism that collects result tuples
generated by all join cores as a single stream.

Since these mechanisms require large buffers and combina-
tional logics, the hardware resource usage and the signal delays
are not negligible for the overall implementation. Obviously,
these are difficult issues although they are ignored in the
original paper of handshake join[2].

In order to clarify the issues pointed out above, in this paper,
we discuss details of handshake join architecture onto FPGA,
and then evaluate the hardware resource usage, the maximum
operating frequency, and the throughput performance. It should
be noted that the proposed architecture of handshake join
operator is implemented on a FPGA and evaluated as a case
study. In our view, the major contribution of the paper is
that the study clarifies the details for the implementation
of handshake join operator and the proposed architecture is
verified by implementing on FPGA board. As a result, the
paper presents the performance comparison with the other
implementation in addition to the speed and the logic size of
the implemented handshake join hardware. To the best of our
knowledge, this is the first paper that implements handshake
join operator on FPGA.

The rest of the paper is organized as follows: Section 2
gives a background and briefly reviews the previous work.
Section 3 introduces handshake join and the implementation
issues onto FPGA. Section 4 proposes the details of handshake
join architecture to implement it onto FPGA. Then, Section 5
evaluates our proposed architecture. Finally, Section 6 gives
our conclusions and identifies future work.

II. BACKGROUND AND RELATED WORK

Due to increasing demand for processing unbounded, con-
tinuous input data streams, DBMS researchers have expanded
the data processing paradigm from the traditional store and
then process model towards the stream-oriented processing
model. Accordingly, an extensive range of research is taken
place for addressing and resolving the new problems that come
about because of the nature of stream-oriented processing
model.

Because of the tight response-time restriction for each
specific application, how to implement the stream join operator
is one of the most challenging tasks in streaming databases. In
addition, stream join operation needs a heavy computational
cost. Therefore, efficient implementation method of the stream
join operator is required for stream databases in order to over-
come the computational cost and meet the time requirement.
Consequently, acceleration of the stream join operation is one
of the most significant research issues regarding stream joins.

It is a well-known fact that the modern CPU architectures
are subjected to crucial restriction and limitations, some of
which are the high latency occurred when getting data in
and out of the system, and memory wall that can cause an
overwhelming bottleneck in the entire system. Nevertheless, as
stated in the previous section, low-latency and high-throughput
data processing are key requirements of streaming database
systems. Thus, in order to figure out this problem, FPGAs,

current window for Stream R
Stream R

current window for Stream S

Stream S

Fig. 1. The basic idea of the handshake join. Tuples from the two input
streams are flowed in opposite direction.

which are not bound by the von Neumann architecture, can be
proposed as an alternative platform to implement the stream
join operation. In fact, FPGAs are considered as a possible
solution for the inherent limitations of classical CPU-based
system architectures[4][5][6].

Terada et al.[7] suggest an implementation technique of
window join operator on the FPGA platform in order to
improve the performance and achieve high-throughput with
low-latency. Nonetheless, concurrent execution of only two
matching processes, which compare key values and perform
join operation have been accomplished although they have
tried to extract parallelism from window join operation. This
is because the widely used approach, including Terada et al.
[7], to perform the computation of the window-based join is
nearly sequential as defined in the operation semantics.

In this work, we study an implementation of parallel stream
join, namely handshake join, which is extremely tractable for
parallelized calculation on the FPGA platforms, and evaluate
the performance of the handshake join by using the dedicated
hardware implemented on a FPGA board.

III. HANDSHAKE JOIN IMPLEMENTATION

A. Handshake Join

The basic idea of the handshake join, which is a brand new
method for executing window based join introduced by Teub-
ner and Mueller[2], is to consider two input streams which
are allowed to flow in opposite direction as shown in Fig.
1. From this point of view, we obtain significant advantages
regarding parallelization and scalability. Consequently, we can
easily extract parallelism from window join semantics and this
enables us to implement parallelized execution of stream join.

The previous approaches of implementing stream join, in-
cluding the implementation technique suggested by Terada
et al.[7], are generally based on the three-step procedure,
proposed by Kang et al.[1], which results in the sequential
execution of the nested loop join in the most common case.

In reference [1], the three-step procedure, which introduces
windowing semantics and includes implicit semantics for
window-based stream joins, is described as follows: a window
join operator takes two streams of tuples as inputs; let us say
stream R and stream S. The output is also a stream of tuples

that consist of tuples (r, s), where r is from stream R, s is from
stream S, such that (i) r and s satisfy the join predicate, and
(ii) r was in the active window for stream R at the same time
that s was in the active window for S.

One of the crucial and fundamental problems of the three-
step procedure is that the approach adopted by Kang et al.
is not suitable for parallel execution of the stream join on
the modern system architectures. In fact, although the locality
of the data at the each processing core is highly significant
for achieving optimal performances in many-core systems, the
nature of the window join operation is contrary to the local
availability of the data since all tuples in one of the windows
have to be compared with the all tuples in the opposite side
window.

The main problem is that the traditional three-step procedure
gives rise to control flow problem that brings about scalability
issues when the number of processing cores increases. In
order to resolve this problem, the distributed data flow-style
processing model without a dedicated centralized coordinator,
which manages computing resources as well as the data to be
processed, is proposed with the handshake join approach.

In Fig. 1, each rectangular box represents a tuple from two
input streams that are named stream R and stream S. If we
presuppose each window is tuple-based window, all tuples
in the window shift one-step to the side whenever a new
tuple arrives at the entrance of the respective windows, so
that the oldest tuple always flows out of the each window.
In addition, both of the stream windows are oriented side by
side in order that tuples from the two input streams flow in
opposite direction. When two streams of tuples r and s, where r
is from stream R and s is from stream S, encounter each other,
the join condition is evaluated over r and s. As a result, if the
join condition is satisfied, a result tuple (r, s) is generated as a
tuple of the output stream. With this approach, a great number
of processing elements or cores are able to evaluate the join
condition simultaneously (at the same time), allowing us to
parallelize the stream join operation over available computing
resources without a central coordinator that manages data and
available resources.

It is indicated in Teubner et al.[2] that despite the fact that an
altogether new approach is adopted in handshake join, it still
produces exactly the same output tuples as classical window-
based stream join procedure. As a result, the handshake join
can be deliberated as safe substitute for current window join
implementations.

The parallelization of the handshake join calculation is
illustrated in Fig. 2. In these illustrations, how handshake
join can be executed in a parallel manner with two and three
processing units (or cores) is shown respectively (see Fig. 2
(a) and (b)). As shown in Fig. 2, by increasing the number
of processing units, the degree of parallelism can be easily
increased a higher level than ever achieved before. Since
each of the processing units is responsible for only its own
segment of the two stream windows, all tuple comparisons
and evaluation of the join condition are carried out locally and
independently. Hence, theoretically, it can be readily scaled

(a) Handshake join with two processing units (or cores)

(b) Handshake join with three processing units (or cores)

Stream R

Stream S
Core 1 Core 2

Stream R

Stream S
Core 1 Core 2 Core 3

Fig. 2. The parallelization of the handshake join calculation. Each of the
cores evaluates its own segment of the both windows.

core 1 core 2 core n

merger

merger

R

S
· · ·

re
su
lt

m
er
gi
n
g
lo
gi
c

Figure 17: FPGA Implementation of Handshake
Join for Tuple-based Windows.

intensive (including single-precision floating-point operations)
and amenable to SIMD optimizations. On such workloads,
Cell should benefit more from its higher clock speed (3.2GHz
vs. 2.2GHz) than the Opteron can take advantage from its
super-scalar design. Yet, our system outperforms CellJoin
by quite a margin.

6. HANDSHAKE JOIN ON FPGAS
48 CPU cores clearly do not mark the end of the multi-

core race. To see how handshake join would scale to very
large core numbers, we used field-programmable gate arrays
(FPGAs) as a simulation platform, where the only limit to
parallelism is the available chip space. FPGAs themselves
are an interesting technology for database acceleration [23,
24, 29], but our main focus here is to demonstrate scalability
to many cores (in particular, we favor simplicity over per-
formance if that helps us instantiate more processing cores
on the chip).

6.1 FPGA Basics
In essence, an FPGA is a programmable logic chip which

provides a pool of digital logic elements that can be config-
ured and connected in arbitrary ways. Most importantly the
FPGA provides configurable logic in terms of lookup tables
(LUTs) and flip-flop registers that each represent a single
bit of fast distributed storage. Finally, a configurable inter-
connect network can be used to combine lookup tables and
flip-flop registers into complex logic circuits.

Current FPGA chips provide chip space to instantiate up
to a few hundred simple join cores. The cores contain local
storage for the respective window segments of R and S and
implement the join logic. In this paper we implement simple
nested loops-style processing. To keep join cores as simple
as possible, we only look at tuple-based windows that fit into
on-chip memory (flip-flop registers).

6.2 Implementation Overview
Figure 17 illustrates the high-level view of our handshake

join implementation on an FPGA. The windows of the R
and S streams are partitioned among n cores. The cores
are driven by a common clock signal that is distributed over
the entire chip. The clock signal allows us to realize lock-step
forwarding at negligible cost, which avoids the need for FIFO

0 20 40 60 80 100 120 140 160 180 200 220

number of join cores n

50

100

150

200

250

cl
o
ck

fr
eq
u
en

cy
(M

H
z)

Figure 18: Scalability of FPGA Handshake join with
a constant segment size of 8 tuples per window and
core.

queues and reduces the complexity of the implementation.
E↵ectively, the windows represent large shift registers with
direct support by the underlying hardware.
Following the basic handshake join algorithm (Figure 9)

for each core we need to provide a hardware implementation
of the segment for the R and S windows, a digital circuit for
the join predicate, and scheduling logic for the tuples and the
window partitions. The figure shows the two shift registers
(labeled ‘R window’ and ‘S window’, respectively) that hold
the tuple data. When a new tuple is received from either
stream, the tuple is inserted in the respective shift register
and the key is compared against all keys in the opposite
window (using a standard nested-loops implementation).

Result Collection. As illustrated in the top half of Fig-
ure 17, each join core will send its share of the join result
into a FIFO queue (indicated as). A merging network
will merge all sub-results into the final join output at the
top of Figure 17.

6.3 Experimental Setup
We stick to a simple stream format where join keys and

payload are all 32-bit integers. We assume an equi-join and
return 96 bit-wide result tuples (32-bit key plus 2⇥ 32 bits
of payload).
Again our main interest is in measuring the scalability of

handshake join. To this end, we instantiate up to 200 join
cores on a Virtex-6 XC6VLX760T FPGA chip. Each of the
join cores can hold eight tuples per input stream (i.e., with
n = 100 cores the overall window size will be 100⇥ 8 = 800
tuples per stream). For each configuration we determine the
maximum clock frequency at which the resulting circuit can
be operated.
In hardware design, clock frequency is an excellent in-

dicator for scalability. In many circuit designs, the clock
frequency has to be reduced according to a n�k law as the
circuit size is increased (larger circuit areas generally lead
to longer signal paths). Only highly scalable designs allow
a constant clock frequency over a large range of circuit sizes
(k ⇡ 0).

6.4 Scalability and Performance
As shown in Figure 18, clock frequencies for our design

remain largely una↵ected by the core count (the absolute
value of 150 ⇠ 170MHz is not relevant for this assessment).

Fig. 3. Overview of the handshake join with tuple-based windows for FPGA
implementation (figure adopted from [2]).

up in order to support large window sizes, achieve high
throughput rates, and/or handle compute intensive functions
of the join conditions.

B. Implementation Issues of Handshake Join

Fig. 3 (adopted from [2]) illustrates the general overview
of the handshake join with tuple-based window for FPGA
implementation. As shown in Fig. 3, join cores, which evaluate
the join condition over tuples r and s in their respective
windows and perform window join calculation simultaneously,
are aligned side by side so that the tuples of the stream R and
S flow in opposite direction. Furthermore, it can be easily
noticed that the windows of the two input streams, R and S,
divided into n sub-windows respectively over n join cores.

Based on the Fig. 3, there might be several issues that should
be considered and resolved so as to implement the handshake
join hardware on FPGAs. However, three significant and
fundamental problems have to be dealt with in order to realize
the handshake join hardware.

First of all, result collection is one of the most important
issues when realizing handshake join on the FPGA platforms.
As illustrated in Fig. 3, result merging logic is placed on top
of the join cores. Nonetheless, the architecture of the result
merging logic is not clear enough thought it is stated in [2] that
a merging network merges all sub-results that are generated
by each join core into the final join output.

Secondly, another significant issue is the capacity of the
output channel. It is a fact that the output generation rate,
which is a measurement of how frequent the output tuples
are generated by join cores, may exceed the input rate due
to the nature of the parallelized execution of the handshake
join operation. Moreover, the output rate may even surpass the
capacity of the output channel and in this case, the capacity
of the output channel is not enough to transfer all generated
result tuples.

Thirdly and finally, the limitation of the internal buffer sizes
is considered as another critical problem. Provided that the
number of result output tuples is more than the amount of
input tuples, some of the output tuples overflow out of the
internal buffers and thus, correct results are permanently lost
especially when a large number of output tuples are produced
in each join core at the same time (or within a short interval
of time).

In this work, we will present the possible solutions of
the above issues and show how our proposed architecture
overcomes above-mentioned problems.

C. Implementation Strategy of Handshake Join

As previously mentioned, three issues which are result
collection, capacity of the output channel, and limitation of
the internal buffer sizes should be resolved. Unless these issues
are handled properly, the implementation of the handshake join
operator could not be completed.

Because it is necessary to take into account the above
issues, the following components and the mechanism will be
introduced in our proposed architecture in order to complete
the implementation of the handshake join operator:

1) join core,
2) merger,
3) merging network,
4) and admission control.
Join core and merger components are shown in Fig. 3. These

are fundamental components for applying join operation to
tuples of the input streams and generating a single output
stream.

Merging network is a result merging logic that determines
how merger circuits and join cores should be connected each
other. The merging network should be scalable so that it is
able to collect result tuples generated by join cores when the
number of join cores is increased.

Admission control mechanism enables us to transfer all
generated result tuples to output port without any loss of
results. Moreover, this mechanism interrupts tuples of the input
streams when handshake join operator is unable to handle the

new input tuples owing to the relatively high input rate of the
input streams.

We have given an overview of the general concept of
the proposed architecture so far. In the following section,
we will describe the details of the each component and the
mechanism.

IV. ARCHITECTURE OF HANDSHAKE JOIN

The architecture of handshake join that will be presented
is based on Fig. 3. As stated in previous sub-section, two
windows of the input streams R and S are divided into n pieces
respectively. Accordingly, each join core is assigned two sub-
windows that one comes from stream R and the other comes
from stream S. Additionally, all of the join cores are connected
in way that the tuples of the each input stream flow in opposite
direction.

Even though it seems that only join cores are driven by a
common clock signal in Fig. 3, in our proposed architecture,
merger circuits that compose the result-merging network are
also driven by a common clock signal as well as the join
cores. Hence, both of the join cores and merger circuits operate
synchronously with the same clock signal.

The common clock signal, which is distributed over the
whole chip, enables us to design the windows of the each
input streams as large shift registers benefitting from the direct
support of the FPGA. Consequently, whenever a new tuple
arrives, all of the join cores are able to send their oldest tuple
to the respective next neighbor simultaneously and thus; an ar-
riving tuple shifts all tuples of the same stream synchronously
through the respective window. Actually, because of the data
flow model described above, handshake join can accomplish
high degree of parallelism without a dedicated centralized
coordinator.

As shown in Fig. 3, a hardware implementation of join cores
and merger circuits is need to be provided in order to complete
the implementation of the handshake join operation. Moreover,
although the connection of the join cores is implicitly defined
in the handshake join semantic, the architecture of the merging
network, which would be composed of merger circuits and
their connections, is neither described in the definition of the
handshake join algorithm nor illustrated explicitly in the Fig.
3. However, how result merging logic should be designed is
crucial point for handshake join hardware so as to construct
the final output stream by merging all sub-results into a single
stream.

So far we have outlined the architecture of handshake join,
which is illustrated in Fig. 3, and given the general ideas of
the handshake join. Now, let us describe how these circuits are
implemented in our proposed architecture in further detail.

A. Join core

The most fundamental circuit in our architecture is, of
course, join processor or core that evaluates the join condition
over the tuples in the windows of the input streams and
generates output tuples that compose an output stream. As
mentioned before, segments of the windows of the input

streams R and S are implemented as large shift registers that
hold tuple data of the each stream.

In addition to holding the tuple data, there are one-bit “valid
flag” fields for each tuple in the windows indicating whether
the respective tuple field is valid or not. That is to say, if a
valid flag is set to logic 1, then it means there is a valid tuple
data in respective tuple field, whereas if a valid flag is set to
logic 0, it means the respective tuple field is empty i.e. no
valid data.

Besides the large shift registers, which represent the seg-
ment of the windows for each input stream R and S, there need
to be an output buffer that keeps the output tuples generated
in the respective join core. For this purpose, a circular FIFO
queue is implemented in each join core as an output buffer.

Two types of different embedded memories are available
in the Xilinx FPGAs, which are a dedicated Block RAM
(BRAM) primitive and a LUT configured as distributed RAM.
Our implementation of the FIFO buffer is based on the
dedicated BRAM primitive, which is configured as dual-ported
RAM, that directly supported by the FPGAs. There might be
different use cases of FPGA-embedded memories; however, it
is a fact that distributed RAM consumes regular logic cells and
hence, it competes for resources with the other circuits, on the
other hand, BRAM uses its dedicated resources. Accordingly,
we can effectively use our hardware resources available in
FPGA devices by utilizing the dedicated BRAM primitives as
embedded memory units. It should be also mentioned that we
could read from and write to BRAMs one tuple per cycle and
in our case, this is suitable for the FIFO buffer implementation.

Furthermore, there are two address registers, which are
read-address register and write-address register, inside the
FIFO buffer circuit. In addition, two state flags are included
in the FIFO buffer, namely empty and full. Although, the
registers and the state flags mentioned above may seem self-
explanatory, one point should be noticed that full flag is set
to logic 1 whenever the FIFO buffer is full or almost full i.e.
there are only few locations left.

The state transition diagram of a join core circuit is illus-
trated in Fig. 4. The STATE0 performs a hardware initializa-
tion of the join core circuit. The following state, STATE1,
indicates that a join core is ready for accepting new tuples of
the both of the two input streams R and S at the same time.
The details of the operations that are carried out in other states
illustrated in Fig. 4 are described below.

First, let us look into the two consecutive states that are
STATE2 and STATE3. When a new tuple is received from
either or both of the input streams, a join core reads its own
input ports of the two input streams as well as the respective
valid signals that indicate whether the data on the input ports
of the tuple field is valid or not. After that, the data read
form the each input port is written to input buffer registers
respectively with valid flags. At this point, if one of the input
tuples has not arrived yet, then respective valid flag will be
set to logic 0 so as to notice that a tuple data written into
the corresponding input buffer register is invalid. Otherwise,
the valid flags of the input tuples will be set to logic 1.

STATE0:
Reset

STATE2:
Read

input ports

STATE1:
Ready

STATE4:
Check

new tuple
from R

valid_S = False

valid_R = False

valid_R = True

valid_S = True

complete_S = True

complete_R = True

complete_S = False

complete_R = False

STATE6:
Check

new tuple
from S

STATE5:
Compare with

tuples in S

STATE7:
Compare with

tuples in R

STATE3:
Update
buffer

registers

Fig. 4. State transition diagram of the join core circuits.

Consequently, input buffer registers and corresponding valid
flags have been updated accurately and these buffers are ready
to be processed at the beginning of the next state i.e. STATE4.

Secondly, after loading the new input tuples in the previous
state, that is STATE3, there are two possible candidates, which
are STATE5 and STATE6, for the next state of the STATE4
as shown in the Fig. 4. The next state will be determined as
follows in STATE4. If “valid R”, which represents the valid
flag for the most newly arrived input tuple from the input
stream R, is “False”, then it means that the valid flag has
been set to logic 0 and there is no valid data in the input
buffer register of stream R. Therefore, the segment of the
window for stream R will not be shifted. In this case, i.e.
when “valid R” is “False”, we will skip STATE5 and the next
state of the STATE4 is determined to be STATE6. Contrarily,
when “valid R” is “True” that is the valid flag has been set
to logic 1, this indicates that there is valid tuple data in in the
input buffer register of stream R. This time, since a new tuple
has come from the input stream R, the newly arrived tuple
will be inserted in the current window for stream R, and thus
each segment of the window for stream R has to be shifted
one-step to the side. Accordingly, in this case, the next state
of the STATE4 is determined to be STATE5.

Thirdly, after a newly received tuple data from the input
stream R is loaded into the input buffer register in the previous
state, the next step is to insert the received tuple in the current
window for the stream R, which is implemented as a large shift
register. Consequently, in the STATE5, each join core should
shift its own segment of the window for stream R one-step
to the side. At this point, in addition to shifting the window,
the key value of the received tuple should be compared with
each key value of the tuples in the segment of the window
for stream S (an equi-join is assumed for simplicity as in [2]).
After all, for accurate execution of the window join operation,
it has to be guaranteed that the newly received tuple from
stream R is to be compared with all of the tuples that are in the

Fig. 5. Immediate scan strategy. When a tuple from input stream R (a) or
S (b) enters to the join core k, the immediate comparison will be triggered
respectively in the same join core (figure adopted from [2]).

current window for stream S. In order to meet this requirement,
we have adopted the immediate scan strategy, which will be
described below, that is introduced by Teubner and Mueller in
[2]. Hence, we have accomplished whole window semantics
correctly by utilizing the immediate scan strategy.

The immediate scan strategy is a local processing strategy
that meets the requirement mentioned above, and thus it will
guarantee the correct window semantics. In our proposed
architecture, we have used immediate scan strategy with a
nested loop join implementation as in [7].

The immediate scan strategy is a specific strategy that is
used by each join core so as to execute window join operation
on its own segments of the windows for the input streams
R and S. The illustration of the immediate scan strategy for
the segment k is given in Fig. 5 (adopted from [[2]]). In this
particular illustration, the number of tuples, which are in the
corresponding segments of the windows in the join core k,
differs from each other. As a matter of a fact, the immediate
scan strategy can be used in spite of the different window sizes
and it works accurately even if the relative window sizes are
different from each other.

The immediate scan strategy would work as follows: when
a tuple from input stream R or S enters to the join core k,
the immediate comparison will be triggered respectively on
the corresponding segments of the windows in the join core
k (see Fig. 5). Accordingly, as shown in the illustration given
in Fig. 5 (a), after entering the segment k of the window for
stream R, a newly entered tuple is compared at once with the
all tuples of stream S that are already in the same segment of
the window. Fig. 5 (a) shows all necessary pairs that have to
be compared after the tuple r is inserted into the join core k.
Similarly, when a new tuple from stream S is inserted into the
segment k, the most recently entered tuple is compared with

the all tuples of stream R that are already in the same segment
of the window as shown in Fig. 5(b).

Let us come back to the STATE5 in Fig. 4. As mentioned
before, we have adopted the immediate scan strategy with
nested loop join in the implementation of our proposed ar-
chitecture. That is, all of the necessary comparison mentioned
in the description of the strategy is carried out by using the ap-
proach of nested loop join. Thus, based on the immediate scan
strategy with nested loop join, after inserting the new tuple of
stream R into the corresponding window, all comparisons are
sequentially made with the tuples that are in the window of
stream S in STATE5. Accordingly, during the nested loop join
execution, a transition to the next state should not be allowed
and the state has to remain at the same state i.e. STATE5.
In Fig. 4, “complete R” represents whether the execution of
the nested loop join is completed or not. If “complete R”
is “False”, then it means that the nested loop join is being
executed, and therefore the state remains STATE5. On the
other hand, if “complete R” is “True”, then the transition to
the STATE6 is allowed as the nested loop join has already
been completed.

Finally, the tasks that should be performed in the remaining
states, which are STATE6 and STATE7, are similar to what
has been performed in STATE4 and STATE5 respectively. The
main difference is that STATE4 and STATE5 states focus on
a new tuple that comes from stream R, whereas STATE6 and
STATE7 states deal with a newly arrived tuple from stream
S.

B. Merger

In our proposed architecture, we have tried to keep the
merger circuits as simple as possible. Accordingly, we have
designed two-in one-out merger that can be considered as
the simplest case, which is slightly different from what is
illustrated in the top half of Fig. 3. That is, the only task
is to merge two input streams of data into one.

The components included in a merger circuit are very
simple: a circular FIFO queue, two input buffer registers and
corresponding flags that indicate whether the data contained
in each buffer register is valid or not. In addition, it should
be also mentioned that the circular FIFO queue is used as an
output buffer that keeps the output tuples generated by join
cores.

The state transition diagram of a merger circuit is illustrated
in Fig. 6. STATE0 represents the reset state where necessary
hardware initialization operations take place. The details of
the other states illustrated in Fig. 6 are described below.

First, the result tuples, which are generated by join cores,
are read form the two input ports and written to the input
buffer registers in STATE1. At this point, if there is no valid
data on one or both of the input ports, then respective valid
flag will be set to logic 0 so as to notice that the data written
into the corresponding buffer register is invalid. Otherwise, the
valid flags of the data on the input ports will be set to logic
1. Consequently, buffer registers and corresponding valid flags

STATE1:
Read

input ports

STATE2:
Check for

input1

STATE3:
Check for

input2

STATE0:
Reset

Fig. 6. State transition diagram of the merger.

have been updated correctly and these buffers are ready to be
used for the next state i.e. STATE2.

Secondly, in STATE2, after loading the data from the input
ports, let us say port1 and port2, if the valid flag of input port1
is logic 1, then a result tuple that is stored in the buffer register
is transferred to the output buffer i.e. the circular FIFO queue.
On the other hand, if the valid flag of input port1 is logic 0,
there is nothing to be done but transit to the next state.

Finally, the task that should be performed in STATE3 is
very similar to what has been done in the previous state. That
is, the only difference is that STATE2 focuses on the data
comes from input port1, while STATE3 deals with the data
comes from input port2. It should be also noted that the next
state of STATE3 is STATE1, and therefore a merger circuit
would repeats states from STATE1 to STATE3 for ever and
ever.

C. Merging Network

As mentioned before, the connection of each join core,
which is implicitly defined in the handshake join semantic,
is obvious. That is to say, all of the join cores have to be
connected in way that the tuples of the input streams R and S
flow in opposite direction. However, as shown in Fig. 3, the
architecture of the result merging logic is not given in detail.
Furthermore, there is no description about the architecture of
the merging network in the definition of the handshake join
algorithm.

It is a fact that a result-merging network is needed in order
to merge all partial results produced by a number of join cores
into a single stream as the final join output. In our proposed
architecture, we suggest a perfect binary tree-like connection
for the architecture of result merging network that consists of
several merger circuits and their respective connections.

An example of a result-merging network for 16 join cores is
illustrated in Fig. 7. As described before, we have implemented
two-in one-out merger circuit in order to merge two input
streams of result tuples generated by join cores into a single
output stream. Accordingly, we can use our merger circuits so
as to make perfect binary tree-like connections as illustrated in
Fig. 7. As shown at the top of the Fig. 7, we can obtain the final
result of the window join operation as a single output stream

merger
1

merger
2

merger
4

merger
5

merger
6

merger
7

merger
8

merger
9

merger
10

merger
11

merger
12

merger
13

merger
14

merger
15

merger
3

Final join output as a single stream

Fig. 7. Perfect binary tree-like connection. An example of a result-merging
network for 16 join cores.

R

S

core 1 core 2 core 4

merger 2

merger 1

core 3

merger 3

Fig. 8. Connection between join cores and result-merging network.

from output port of the root node i.e. merger 1. Moreover, it
should be also indicated that, there are 16 open input ports
of which mergers that are numbered from 8 to 15 at the
bottom of the Fig. 7. Output ports of 16 join core circuits can
be connected to these input ports so that the result-merging
network can merge 16 streams of result tuples into a single
output stream.

For the purpose of clarification, Fig. 8 demonstrates how to
connect join cores with corresponding result-merging network.
For simplicity, there are only four join cores in Fig. 8; however,
the number of join cores and the size of the result-merging
network will not affect the approach adopted in Fig. 8.

D. Admission Control

It is a fact that if output rate is above more than the capacity
of the output channel, the channel capacity is not enough to
transfer all result tuples. In addition, when a large number
of result tuples are generated by join cores within a short
interval of time, some of the result tuples may be lost due to
congestion (buffer overflow) losses. Consequently, the result
will be incorrect in either of the cases above mentioned.

In order to avoid the problems with regard to the capacity
of the output channel and the limitation of the internal buffer
sizes, we have adopted the admission control strategy in our
proposed architecture. That is, all of the generated result tuples
are transferred to the output channel without any loss by
discarding newly arrived tuples to the system when the output
rate exceeds the capacity of the channel and/or an internal

TABLE I
SPECIFICATIONS OF XC6VLX240T-1

#. of Slice Registers 301,440
#. of Slice LUTs 150,720
#. of Slices 37,680
#. of BRAM (32KB) 416
#. of DSP48 768

buffer, which is a circular FIFO queue of a join core or a
merger circuit, is close to overflow.

As explained previously, each of the FIFO buffer circuits
that is used in our implementation has two state flags one of
which is full flag that is set to logic 1 when the corresponding
buffer is almost full (or completely full). Thus, we can easily
grasp the current states of the buffers by observing these flags.
Accordingly, the admission control mechanism adopted in our
implementation is summarized as follows:

1) If at least one of the full flags of join cores or merger
circuits has been set to logic 1, then discard the newly
arrived tuples to the system from both of the input
streams R and S. Moreover, all of the join cores are
suspended until all of the full flags are set to logic 0
in order to refrain from generating new result tuples so
that buffer overflow can be avoided.

2) In addition to 1), if any of the full flags of merger circuits
has been set to logic 1, then disable the input ports of
the corresponding merger circuit until its own full flag
is set to logic 0 again.

It should be also indicated that the problem regarding the
capacity of the output channel could be resolved by the
admission control mechanism described above. For example,
in Fig. 8, join cores numbered from 1 to 4 may produce a
large number of result tuples within a very short period of
time, depending on the characteristics of the input streams. In
this case, the output rate will be close to exceed the capacity
of the channel; however, it is obvious that when the capacity
of the output channel is not enough to transfer all of the result
tuples, the FIFO buffer of the “merger1” becomes full, and
thus the corresponding full flag is set to logic 1. Consequently,
the admission control mechanism will take effect in order to
prevent the loss of result tuple.

V. EVALUATION

Our proposed handshake join architecture is implemented
as dedicated handshake join hardware on top of a Xilinx
FPGA board that is the Virtex-6 FPGA ML605 Evaluation Kit
including a Xilinx FPGA XC6VLX240T-1 chip. The specifica-
tions of the FPGA, which is used in our implementation, are
shown in Table I. During our implementation of handshake
join hardware, Xilinx ISE 13.1 Logic Edition is used as an
FPGA development environment, as well as XST compiler as
a logic synthesis tool.

A. Evaluation Method
Our proposed architecture is implemented as a dedicated

hardware for handshake join operation and evaluated as shown

I
n
p
u
t

B
u
f
f
e
r

O
u
t
p
u
t

B
u
f
f
e
r

Output Stream

Stream R

Stream S

Handshake Join

J
o
i
n

C
o
r
e
s

M
e
r
g
e
r

N
e
t
w
o
r
k

Fig. 9. Evaluation of the implemented hardware for handshake join operation

in Fig. 9. In addition to handshake join hardware, we have
instantiated two buffers, one of which is called “input buffer”
while the other is called “output buffer”, for the purpose of
evaluating the implemented handshake join hardware. Both of
these buffer components are instantiated by using the dedicated
Block RAM (BRAM) primitives that are available in the
Xilinx FPGAs.

Before applying the join operation, a number of input tuples
of the stream R and S are generated according to a match rate
and stored in the input buffer respectively. It should be also
noted that these input tuples are placed in a random order.

After preparing the input data, input tuples of the stream
R and S are transferred to the handshake join operator and
join operation is applied to the input tuples that are accepted
by the operator. While processing input tuples, the handshake
join operator generates result tuples when join condition is
met. Accordingly, the generated result tuples are stored to the
output buffer so that all of the result tuples can be transferred
as a single output stream without any loss of generated tuples.

B. Resource Usage and Signal Delay

For the purpose of evaluation of our proposed handshake
join architecture in this work, we have instantiated different
numbers of join cores from 2 up to 64. During the instantiation
process, we use the same parameters as in [2] for the tuple
structures and size of the windows of each join core. That is,
each tuple from both of the input streams R and S consists of
64-bit of data half of which is join key and the remainder
is allocated for payload field. Furthermore, each join core
produces 96 bit-wide result tuples that are composed of 32-bit
join keys and two payload fields, each of which is 32 bit-wide
payload. Additionally, we set the window size of each join
core to be 8 for each input stream, that is to say each join
core keeps up to 8 tuples for each of the input streams R and
S.

In Fig. 10, the maximum frequencies of the implemented
circuit on a Virtex-6 XC6VLX240T-1 chip are demonstrated
for each of the six different configurations. As shown in
Fig. 10, all of the maximum operating frequencies are nearly
150MHz, which is the time constraint of 6.67ns (clock period)
can be met. At this point, it should be noted that the maximum
clock rate at which the implemented circuit can be driven is
not declined significantly compared with the original design
in FPGAs implementation [2] even though we have added the
admission controller and perfect binary tree-like result collec-
tion logic in our implementation of proposed architecture.

 0

 50

 100

 150

 200

 0 2 4 8 16 32 64

M
ax

im
um

 c
lo

ck
 fr

eq
ue

nc
y

(M
H

z)

#. of join cores

Frequency (MHz)

Fig. 10. Maximum frequency of the implemented circuit on a Virtex-6
XC6VLX240T-1 for each of the six different configurations.

 0

 20

 40

 60

 80

 100

 0 2 4 8 16 32 64

O
cc

up
ie

d
S

lic
es

 (
%

)

#. of join cores

Occupied Slices (%)

Fig. 11. Overall slice usage of the implemented circuit on a Virtex-6
XC6VLX240T-1for each of the six different configurations.

Likewise, overall slice usage of the implemented circuit is
shown in Fig. 11 for each of the six different configurations.
The vertical axis of the graph in Fig. 11 represents overall
slice usage, that is to say the percentage of the number of
occupied slices in our design. As demonstrated in Fig. 11,
the overall slice usage is nearly 80% with 64 join cores, and
therefore it should be mentioned that 128 join cores could
not be instantiated due to shortage of resources on a Virtex-6
XC6VLX240T-1 chip.

C. Performance Evalutaion

The performance of the implemented handshake join ar-
chitecture is evaluated. In this performance evaluation, the
implemented architecture consists of 64 join cores, and it runs
at 100MHz. Since our architecture is based on [2], we have
adopted the same parameters as in [2] so far. However, the
buffer sizes of each join core and merger circuits are not
mentioned in [2]. Therefore, we have set the buffer size of
each join core and each merger as 8 and 4 tuples, respectively.

In fact, input data for handshake join operator should be
streams of tuples generated by real data sources. However, it
is difficult to evaluate the performance of the implemented
hardware for actual input data because of the variability of
the data generated by real data sources. Moreover, buffering
of the input streams and transferring input tuples from some
different interfaces to the implemented hardware cause addi-
tional difficulty in our evaluation. Hence, the performance is

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

O
ut

pu
t T

hr
ou

pu
t [

M
 tu

pl
es

/s
]

match rate (%)

input buffer = 512
input buffer = 1024

Fig. 12. Output tuples throughput.

evaluated by applying join operation to the data stored into
the input buffer of the implemented hardware as illustrated
in Fig.9. In this paper, the evaluation is conducted with two
different input buffer sizes one of which is 512 tuples (= 1
window size) and the other is 1024 tuples (= 2 window size).

The results of the evaluation of throughput performances
are shown in Fig.12 and Fig.13. In Fig.12, the X-axis rep-
resents match-rate of input data, and the Y-axis stands for
the output throughput of the handshake join hardware when
join operation is applied to all of the tuples stored in the
input buffer. As shown in Fig.12, the rate of increase in
output throughput is lessened while the match-rate of the input
tuples is increased. This is because join operation generates a
large number of result tuples when the match-rate is raised.
Consequently, internal buffers, which are included in join
cores and merger circuits, are frequently congested and the
implemented admission control mechanism interrupts the input
tuples in order to avoid buffer overflow problems. As a result,
the time required to apply the join operation to all of the
tuples stored in the input buffer increases due to the frequent
interruption of the operation.

The input throughput performance is shown in Fig.13. The
input throughput is defined as the number of input tuples that
can be handled by the join operator without dropping any
tuples per a second. In this graph, X-axis is match-rate of input
data, and Y-axis is input tuples throughput (M tuples/s). The
line labeled “nested-loop join” is the performance estimation
of nested-loop join implemented in Terada et al.[7]. The input
buffer size of the nested-loop join is also 512 tuples and it also
runs at 100MHz for regulating the condition. As illustrated in
Fig. 13, owing to the frequent interruption by the admission
control mechanism, the input throughput of the handshake
join operator becomes lower than nested-loop implementation
if the match-rate of the input tuples is increased enough.
This result also shows that the implemented join handles
higher input throughput than nested-loop join when match-
rate is low. Both of the implemented join and nested-loop join
interrupts data injection from input buffer when the buffer
for the output port is full. However, the admission control
mechanism interrupts the entire join cores in the handshake

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

In
pu

t T
hr

ou
pu

t [
M

 tu
pl

es
/s

]

match rate (%)

input buffer = 512
input buffer = 1024

nested loop join

Fig. 13. Input tuples throughput.

join architecture regardless of necessity because their design
is based on [2] and they have to operate in a synchronous
manner. This causes drawbacks of input throughput of the
implemented architecture.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an architecture of handshake join
for FPGA based on Teubner and Mueller[2]. In handshake
join, it is necessary to take into account the problems with
regard to the capacity of the output channel and the limitation
of the internal buffer sizes, in order to apply join operation
to input tuples efficiently in a correct manner. To solve the
issues, the merging network and the admission controller
are proposed. The proposed additional mechanism contributes
correct join operation without any loss.

The proposed architecture is evaluated in terms of the
hardware resource usage, the maximum clock frequency,
and the operation throughput. The result of maximum clock
frequency evaluation shows that the proposed architecture
achieves scalability up to 64 cores as mentioned in [2],
even though it includes the admission controller and result
collection logic. The performance evaluation results show that
the proposed architecture handles considerably high rate input
stream compared to nested-loop join (implemented in [7])
when match-rate is low.

Future work is as follows. First, to actual applications, there
are a lot of cases where the much larger size of windows for
join operation are required than the available size of windows
in our proposed architecture. In the proposed architecture,
since join cores are based on [2], segments of the windows,
which are included in join cores, for the input stream are
implemented as shift registers by using slices. Therefore, the
hardware resource of FPGA limits strictly the available size of
window, because of the limitation of the number of slices in a
FPGA. In order to increase the window size, some alternative
implementation technique to using shift register should be
considered.

Secondly, as mentioned in Sec. V-C, the admission con-
troller in the proposed architecture interrupts all of the
cores together, synchronously. This causes drawbacks of in-

put throughput of the architecture. For higher performance,
we should consider more efficient implementation to exploit
asynchronous behavior of the cores.

Finally, we plan to evaluate the proposed architecture for
practical application data and determine the suitable size of
buffers in mergers and join cores for it.

ACKNOWLEDGEMENT

This work is partially supported by “KAKENHI
(#22700090)”, “KAKENHI (#23700054)”, and “Early-
concept Grants for Exploratory Research on New-generation
Network”.

REFERENCES

[1] J. Kang, J.F. Naughton, and S.D. Viglas. Evaluating window joins
over unbounded streams. In Data Engineering, 2003. Proceedings. 19th
International Conference on, pages 341 – 352, march 2003.

[2] Jens Teubner and Rene Mueller. How soccer players would do stream
joins. In Proceedings of the 2011 international conference on Manage-
ment of data, SIGMOD ’11, pages 625–636, New York, NY, USA, 2011.
ACM.

[3] Buğra Gedik, Rajesh R. Bordawekar, and Philip S. Yu. Celljoin: a parallel
stream join operator for the cell processor. The VLDB Journal, 18:501–
519, April 2009.

[4] J. Teubner, R. Mueller, and G. Alonso. Fpga acceleration for the
frequent item problem. In Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, pages 669 –680, march 2010.

[5] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on wires: a
query compiler for FPGAs. Proc. VLDB Endow., 2(1):229–240, 2009.

[6] Takefumi Miyoshi, Hideyuki Kawashima, Yuta Terada, and Tsutomu
Yoshinaga. A Coarse Grain Reconfigurable Processor Architecture for
Stream Processing Engine. In 21st International Conference on Field
Programmable Logic and Applications, 2011. FPL 2011., Sep. 2011.

[7] Yuta Terada, Takefumi Miyoshi, Hideyuki Kawashima, and Tsutomu
Yoshinaga. A Consideration of Window Join Operator over Data Streams
by using FPGA (in Japanese). In IEICE Tech. Rep., volume 110, pages
181–186, 2011.

