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Abstract—A novel merging network architecture is proposed
for a handshake join operator in order to achieve much higher
data throughput than ever before. Handshake join is a highly
parallelized algorithm for window-based stream joins. Result
collection performed by a merging network is a significant
design issue for the handshake join operator because the merg-
ing network becomes an overwhelming bottleneck for scalable
performance. To address the issue, an adaptive merging network
is proposed for hardware implementation of the algorithm. The
proposed architecture is implemented on an FPGA and it is
evaluated in terms of the hardware resource usage, the maximum
clock frequency, and the performance. Experimental results
demonstrate up to 16.3 times higher throughput than nested
loops-style join implementation without dropping any tuples.
To the best of our knowledge, this is the best performance for
handshake join operator implemented on an FPGA.

I. INTRODUCTION

Nowadays, stream data processing systems demand more
functionality. Many data processing tasks, such as financial
analysis, traffic monitoring and data processing in sensor
networks, are required to handle a huge volume of data with
certain time restrictions for each specific application. Low-
latency and high-throughput processing are key requirements
of systems that process unbounded, continuous input streams
rather than fixed-size stored data sets.

Most of today’s modern relational database management
systems (DBMSs) offer powerful and sophisticated features.
All of them should provide basic set operations including
union, intersection, difference and Cartesian product. More-
over, they support other operations such as join, selection,
projection and division. Likewise, stream databases or data
stream management systems (DSMSs) also support a similar
operation set. One of these basic operations is called stream
join or window join [1] that introduces window semantics
besides value-based join predicates.

Stream databases deal with unbounded streams of data that
have to be processed immediately for real-time applications.
Infinite inputs cause a practical problem when a join operation
is applied to unbounded input streams. It is stated in [1]

that processing a join over unbounded input streams requires
unbounded memory since every tuple in one infinite stream
must be compared with every tuple in the other. To solve
the problem, the window semantic is introduced for practical
applications. That is to say, a finite subset of the unbounded
input data is defined as a window for each input stream, and
join operation is evaluated over the windows.

The dominant strategy for executing window-based stream
join operation is mostly sequential even though stream joins
are fundamental and costly operations in stream databases.
The parallelization of stream join operation is quite important
to increase the performance. Teubner and Mueller have pro-
vided new insight into stream join algorithm, and proposed
a new approach, namely handshake join. It is a stream join
algorithm that can support very high degrees of parallelism
and achieve higher throughput rates [2]. They demonstrate a
software implementation using a modern multi-core CPU. It
considerably outperforms CellJoin [3], which is another well-
known implementation of stream join for the Cell processor.

It is mentioned in [2] that the new approach brought by
handshake join can naturally take advantage of hardware par-
allelism. A complete hardware design and an implementation
of handshake join are presented in our previous work [4]. The
experimental results in [4], however, indicate that the hand-
shake join operator can achieve high throughput performance
compared with a conventional approach, proposed by Terada
et al. [5], only at low match rates. Consequently, a significant
problem regarding the throughput performance has yet to be
solved for hardware implementation of handshake join.

A stream join operator can generate a large number of
results, depending on the dynamic characteristics of input
streams. Moreover, the concurrent execution of multiple join
processing units (cores) results in a higher output rate than that
of a sequential execution because the same number of results
is produced in a shorter time. This causes severe degradation
of the throughput performance of the handshake join operator
implemented in [4], especially at high match rates.

Result collection performed by a merging network is a
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significant issue for a handshake join operator. Results from
our preliminary evaluation show that the merging network
has a potential to be an overwhelming bottleneck for overall
performance. It is a crucial limiting factor for the design of
handshake join hardware because the throughput performance
mainly depends on it. The problem is, therefore, how to
design and implement an efficient merging network in order
to overcome the degradation of the performance.

The objective of this paper is to address the above problem
by proposing an adaptive merging network. An appropriate
network model and a careful implementation are extremely im-
portant to improve the performance. Accordingly, a markedly
different network structure is proposed, overcoming a critical
disadvantage of the merging network adopted in [4].

The hardware resource usage and the signal delays are
significant factors for the overall design. This paper also
intends to clarify these issues. For this purpose, the proposed
architecture is implemented as a complete handshake join
operator on an FPGA and evaluated as a case study. As a
result, the paper presents the maximum clock frequency and
the logic size of the implemented handshake join hardware.

In our view, the main contribution of the paper is to
propose, design, and implement an adaptive merging network
for the handshake join. The handshake join operator with
the adaptive merging network substantially outperforms both
methods proposed in [4] and [5] under all conditions. The
paper presents evaluation results of the throughput comparison
with the two implementations of window join operators. To
the best of our knowledge, this is the best performance for
handshake join operator implemented on an FPGA.

The rest of the paper is organized as follows: Section 2 gives
a background and briefly reviews the previous work. Section 3
introduces handshake join and the design issues on an FPGA.
Section 4 proposes the details of handshake join architecture.
Then, Section 5 evaluates the proposed architecture. Finally,
Section 6 gives our conclusions and identifies future work.

II. BACKGROUND AND RELATED WORK

Due to increasing demand for processing data streams,
DBMS researchers have expanded the data processing
paradigm from the traditional store and then process model
towards the stream-oriented processing model. An extensive
range of research is conducted for new problems owing to the
nature of streams.

It is shown in [6] that FPGAs are a viable solution for
data processing tasks. For example, Sadoghi et al. present
an efficient event processing platform called fpga-ToPSS,
which is built over FPGAs to achieve line-rate processing [7].
They demonstrate high-frequency and low-latency algorithmic
trading solutions based on the event processing platform [8].
It is stated in [8] that the FPGA-based solution provides a
superior end-to-end system performance by eliminating the
operating system. They also focus on a multi-query stream
processing to accelerate the execution of SPJ (Select-Project-
Join) queries [9]. There are other works where FPGAs are
used for building application-specific hardware [10]–[12].

How to implement window joins is a challenging task
because of the tight response-time restriction and heavy com-
putational cost. Efficient implementation method of window
joins is required for stream databases in order to meet the
time requirement and overcome the heavy computational cost.
Consequently, acceleration of the window-based stream join
is a significant research issue regarding stream databases.

It is mentioned in [2] that the M3Join proposed by Qian et
al. [13] implements the join step as a single parallel lookup;
however, this approach causes the significant performance
drop for larger join windows. Terada et al. [5] suggest an
implementation of window join on an FPGA. Nevertheless,
only two join processes are concurrently executed since the
approach adopted in [5] is based on sequential execution. On
the other hand, the pipelining approach and the data flow
model of handshake join do not suffer from these limitations.

A hardware implementation of handshake join is proposed
in [4] to increase the throughput performance by taking
advantage of concurrent execution of join units (cores). The
handshake join operator implemented in [4] can achieve high
throughput rate compared to [5] when the match rate is low.
However, the merging network suffers from congestion and it
becomes a critical bottleneck for the performance if the match
rate is increased. Consequently, the performance is severely
degraded when the match rate is high. Details of the handshake
join are discussed in the following section.

III. HANDSHAKE JOIN AND ITS RESEARCH ISSUES

A. Handshake Join

The basic idea of the handshake join [2] is to consider
two input streams allowed to flow in opposite direction.
With this approach, we obtain significant advantages regarding
parallelization and scalability. It is stated in [2] that the parallel
evaluation of the matching processes become possible because
the approach adopted in handshake join converts the original
control flow problem (or its procedural three-step description
given below) into a data flow representation. It is also stated
that there is no hot spot that could become a bottleneck if
handshake join is scaled up [2].

Assuming two input streams (stream R and S) and a newly
arrived tuple r from stream R, each step of the three-step
procedure [1] is described as follows:

1) Scan the window for S to find tuples matching r.
2) Insert the new tuple r into the window for R.
3) Invalidate all expired tuples in the window for R.

It should be noted that a new tuple arriving from stream S is
handled symmetrically.

It is mentioned in [2] that, in general, the three-step pro-
cedure corresponds to a nested loops-style join evaluation.
This makes it difficult to scale up to a large numbers of
processing units. In fact, this is the main reason why only
two join processes are executed in [5]. To solve the problem,
the data flow-style processing model without a centralized
coordinator is proposed with the handshake join approach. It is
indicated in [2] that handshake join produces the same outputs



(a) Handshake join with two processing units (cores)

(b) Handshake join with three processing units (cores)
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Fig. 1. The parallelization of handshake join.

as classical window join procedure, and it can be regarded as
a safe substitute for traditional window join implementations.

The parallelization of handshake join is illustrated in Fig. 1
(adopted from [4]). Each rectangular box represents a tuple
from two input streams. As shown in Fig. 1, the degree of
parallelism can be easily increased by adding more processing
units. All tuple comparisons and evaluation of the join condi-
tion are carried out locally and independently since each core
is responsible for only its own segment of the two windows.
Theoretically, it can be readily scaled up in order to support
large window sizes, achieve high throughput rates, and/or
handle compute intensive functions of the join conditions.

It should be also noted that each join core only requires
local core-to-core communication for transferring tuples of the
streams to its adjacent cores. In addition, each core performs
the same operation as the other cores in a synchronous manner.
From this point of view, join cores and their connections can
be regarded as a one-dimensional linear systolic array.

Kung and Leiserson [14] proposed the idea of systolic array
that is a structure composed of an array of processors for VLSI
implementation. It is stated in [14] that processing units of a
systolic array rhythmically compute and pass data through the
system. The data processing and communication model of join
cores are consistent with the properties of systolic arrays. In
fact, the data flow model of the handshake join is very similar
to the join arrays [15] proposed for relational databases.

B. Design Issues of Handshake Join

Fig. 2 illustrates the overview of the hardware model of
handshake join with 4 join cores, which is the implemented
system in [4]. As shown in Fig. 2, join cores are aligned side
by side so that the tuples of the stream R and S flow in opposite
direction. It can be easily noticed that the windows of the two
input streams are divided into 4 sub-windows over 4 join cores
respectively.
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Fig. 2. Binary tree merging network with 4 join cores.

It is obvious that efficient utilization of the massive hard-
ware parallelism is necessary to improve the overall perfor-
mance of a handshake join operator as a stream join accel-
erator. Nevertheless, efficient usage of hardware parallelism
involves non-trivial aspects. In fact, two main issues have to
be considered besides the join cores when it comes to design
and implementation of the handshake join hardware:

1) a scalable mechanism that collects result tuples and
combines them to form a single output stream,

2) a lossless flow control mechanism that transfers all
results to the output port,

Once these issues are properly addressed, handshake join can
become a promising algorithm for stream join accelerators.

First, result collection is an important issue to be solved.
For this purpose, a simple binary tree network is proposed as
a merging network in [4]. A result merging network is needed
to merge all results into a single stream as the final join output.
Merging network is a result merging logic that consists of a
number of merger units. It should be scalable so as to merge
result tuples even if the number of join cores is increased. As
illustrated in Fig. 2, a binary tree network is placed on top of
the join cores. As shown at the top of Fig. 2, results of the
join operation are obtained as a single output stream from the
output port of the root node, i.e. merger1.

Secondly, the limitation of the internal buffer sizes is
considered as a critical problem. As shown in Fig. 2, each
join core and merger include FIFO buffers (indicated as in
Fig. 2). Some of the result tuples overflow the buffers when the
output rate surpasses the bandwidth of the merging network
and/or the output channel (bandwidth refers to the amount of
data transferred per unit time). For example, the bandwidth of
the channel is not enough to transfer all of the result tuples
if a large number of results are produced by join cores at the
same time. In this case, some of the result tuples overflow the
buffers and correct results are permanently lost.

To address the issue, an admission control mechanism is
proposed in [4]. The mechanism interrupts tuples of the input
streams when handshake join operator is unable to handle new
input tuples owing to the relatively high input rate of the input



streams. All of the result tuples are transferred to the output
channel by rejecting newly arrived tuples to the system when
the output rate exceeds the bandwidth of the channel, and/or
an internal FIFO buffer of a join core or a merger is close
to overflow. In other words, the admission control provides a
lossless flow control mechanism between all join cores and
the output port.

IV. DESIGN OF THE PROPOSED ARCHITECTURE

It is indicated in [4] that the handshake join operator can
transfer all results without loss of output tuples by implement-
ing the binary tree network and the admission control mecha-
nism. However, there is a structural disadvantage concerning
efficient use of buffers. There is only one path from each join
core to the output port because join cores are located at leaf
nodes of the binary tree network and all of the result tuples are
forwarded towards the root node of the tree. This can cause a
problem if the output rate of a join core, which is a measure
of how frequently result tuples are generated by a join core,
significantly differs from those of others.

In handshake join, each join core evaluates the join condi-
tion over the tuples in its sub-windows of input streams. At
the same time, result tuples are generated by each join core
only if the join condition is satisfied. Whether a join core
generates a result tuple or not completely depends on nature of
the input tuples being evaluated. Accordingly, the output rate
of each join core can be time-variant depending on dynamic
characteristics of the input streams.

The variation in output rates has to be taken into account
when designing architecture of merging network for handshake
join hardware even though it is ignored in [4]. For simplicity,
let us think about the case that only one join core generates
output tuples continuously within a certain period of time.
For example, let’s say that core2 in Fig. 2 is the join core that
generates outputs. In this case, result tuples are first stored in
the buffer of core2. After that, they are forwarded to merger2
and stored in its buffer. Finally, merger2 transfers result tuples
to merger1, and they are stored in the buffer of merger1.

Although the total number of available FIFO buffers in
Fig. 2 is 7, only 3 of them can be used for buffering results
generated by core2. This means that more than half of buffers
are unusable when the number of join cores is 4. Furthermore,
the buffer utilization is significantly decreased if the number
of join cores is increased. Still, there is no problem provided
that the output rate of core2 remains below the bandwidth of
the merging network and the output channel.

However, the admission control mechanism suspends opera-
tions of the join cores if the bandwidth is not enough to trans-
fer all of the results. In this case, new tuples of input streams
are rejected and join operations are suspended even though
there are unused buffers in overall system. Consequently, the
merging network proposed in [4] has the potential to be a
critical bottleneck for the throughput performance.

It can be understood from the fact that the throughput
performance of the handshake join operator is strictly limited
by the merging network even though it is stated in [2]
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Fig. 3. Adaptive merging network with 4 bufferless join cores.

that handshake join supports high degrees of parallelism and
ensures the scalability. The output rate can easily exceed the
bandwidth of the merging network since parallelized execution
of join operations results in higher output generation rates.

In order to address the problem, an adaptive merging
network is proposed as indicated in Fig. 3. The FIFO buffers
are omitted from both join cores and mergers. In addition, a
new layer of nodes and the FIFO buffers are located between
join cores and mergers.

As shown in Fig. 3, there are bidirectional links between
each adjacent node. It should be noted that node1 and node4
are also connected by a wraparound link (shown as a broken
line in Fig. 3), and therefore, these nodes can be regarded as a
ring structure. These links enable two-way data transmission
between neighboring nodes in the ring structure. As a result,
contrary to the merging network proposed in [4], each result
tuple can take different paths through the merging network to
reach the output port of the root node (merger1 in Fig. 3).

The problem regarding the hardware architecture of hand-
shake join [4] is discussed and an overview of the architecture
of the adaptive merging network is given so far. In the
following subsection, the design and implementation of the
proposed architecture are described in more detail, especially
the difference between the proposed handshake join with the
adaptive merging network and one proposed in [4].

A. Join Core

Join cores evaluate the join condition over the tuples in
the windows and generate output tuples. Each segment of the
windows is implemented as a shift register. The common clock
signal, which is distributed over the whole chip, enables us to
design the windows of the each input streams as large shift
registers benefiting from the underlying FPGA hardware. In
addition, there are one-bit “valid flag” fields for each tuple in
the windows indicating whether or not the corresponding tuple
field is valid.



Whenever a new tuple arrives, all of the join cores send their
oldest tuple to the respective adjacent cores simultaneously.
Therefore, a newly arrived tuple can shift all tuples of the
same stream throughout the window. After that, each join core
compares the key value of the received tuple with the key
values of all tuples in another segment of the window (an equi-
join is considered as in [4]). Because of the data-flow model
described above, join cores require no centralized coordinator
that manages overall data-flow among them.

The implementation of a join core is based on [4]. The main
difference, however, is the existence of the FIFO buffer that
stores output tuples generated by the join core. In the proposed
design, the join cores forward the result tuples directly to the
merging network as shown in Fig. 3 instead of storing them
in the buffers.

B. Adaptive Merging Network

The adaptive merging network is the most important and
notably different part of the handshake join architecture pro-
posed in this paper compared to one proposed in [4]. The
simple binary tree network only composed of the mergers is
proposed in [4] as the merging network for the handshake
join operator. By contrast, a totally different network model is
adopted in the present work. The adaptive merging network is
composed of the binary tree network (without buffers), a layer
of FIFO buffers and the ring structure directly connected to
the join cores. With the proposed adaptive merging network,
the handshake join operator can accomplish much higher data
throughput than ever achieved before (see Sec. V-B for more
details).

1) Binary tree network: The binary tree network proposed
in [4] (Fig. 2) includes the FIFO buffers and it is responsible
for two main tasks:

1) to buffer result tuples coming from each join core,
2) and to generate a single output stream by combining

streams of sub-results produced by multiple join cores.
In contrast to the previous merging network, the binary tree
network included in the proposed merging network (Fig. 3) has
no FIFO buffers and it is no longer responsible for buffering
results.

Each merger circuit has two input and one output ports for
data transfers. That is, the one and only task is to merge two
streams of data into one. The mergers share a common clock
signal with join cores. The components included in a merger
circuit are very simple: two input buffer registers and an output
buffer register with “valid flags” indicating whether or not the
data stored in each register is valid.

The difference between the proposed merger and the one
proposed in [4] is the existence of the FIFO buffer that stores
result tuples. As shown in Fig. 3, each merger forwards the
result tuples from its input ports directly to the output port
instead of storing them in buffers.

2) Ring structure and FIFO buffers: The connections of
the ring structure in the proposed merging network is shown
in Fig. 4. In proposed design, the bidirectional links are
considered as two directed links between each pair of nodes.

kbuffer kbuffer +1kbuffer -1

knode

kcore kcore +1

knode +1knode -1

kcore -1

N_out

S_in

W_out E_out

W_in E_in

Fig. 4. The connections of the ring structure in the merging network.

Each node requires two input and two output ports to connect
to adjacent nodes. Moreover, additional input and output ports
are required to connect to a join core and a FIFO buffer,
respectively. Therefore, a total of six ports are available for
each node of the ring structure for data transfers. As shown
in Fig. 4, node k has three input ports (S in, E in and W in)
as well as three output ports (N out, E out and W out).

Each node of the ring structure shares a common clock
signal with join cores and mergers. It contains a buffer register
for each of the output ports, which are N out, E out and
W out. These buffer registers are used to transfer the result
tuples coming from a join core connected to S in, and adjacent
nodes connected to E in and W in. It should be noted that each
buffer register can store only one tuple at a time, and there is
no FIFO buffer in node k.

The proposed design adopts the idea of “bufferless routing”
for the ring structure. The basic idea is to always route a
packet to an output port regardless of whether or not that
output port results in the lowest distance to the destination of
the packet [16]. In our case, “a packet” means a result tuple
generated by a join core, and the destination of the packet is
always N out port.

The routing algorithm adopted for the ring structure is based
on the FLIT-BLESS (or simply BLESS) proposed in [16]. The
proposed ring structure satisfies the following two constraints
required for BLESS: Every node has 1) the same number
of output ports as the number of its input ports, and 2) is
reachable from every other nodes.

An arbitration policy is needed to determine to which output
port an incoming tuple should be forwarded. It is stated
in [16] that the arbitration policy of BLESS is governed by
two components: a “ranking component” and “port-selection
component”. The simple oldest-first policy is adopted as a
ranking policy, and for this purpose, a hop counter is added
for each tuple. In every cycle, each node ranks all incoming
tuples comparing hop counts of the tuples.

On the other hand, the port selection is based on the
number of tuples in the FIFO buffers. Each buffer includes
a counter that counts the number of stored tuples. In addition,



these counters are connected to the ring structure. The buffer
counters of buffer k-1, buffer k and buffer k+1 are connected
to the node k. In every cycle, the node k compares the counters
and determines the priority of output ports according to the
result of the comparison. For example, the priority of the
output ports, in descending order, should be E out, W out
and N out if counter k+1 < counter k-1 < counter k.

After determining the ranks of the incoming tuples and the
priority of the output ports, the node k considers the tuples
one by one in the order of their rank (highest rank first) and
assigns to the output port with highest priority that has not
yet been assigned to any higher-ranked tuples. It should be
emphasized that all of the operations described above can be
completed in one cycle and all of the nodes in the ring structure
concurrently perform the same operation on each cycle in a
synchronous manner.

C. Admission Control

The bandwidth of the output channel is not enough to
transfer all result tuples when output rate is above more than
the bandwidth of the channel. In addition, some of the result
tuples may be lost due to congestion (buffer overflow) losses
when a large number of result tuples are generated within a
short interval of time.

In order to avoid the problems with regard to the bandwidth
of the output channel and the limitation of the internal buffer
sizes, an admission control strategy is adopted in the proposed
architecture based on [4]. That is, all of the generated result
tuples are transferred to the output channel by rejecting newly
arrived tuples to the system when the output rate exceeds the
bandwidth of the channel, and/or an internal FIFO buffer in
the merging network is close to overflow. In other words, the
admission control provides a lossless flow control mechanism
between all join cores and the output port.

Each of the FIFO buffers implemented in the merging
network has two state flags one of which is “full flag”. It
is asserted (set to logic 1) when the corresponding buffer is
almost (or completely) full. We can easily grasp the current
states of the buffers by observing these flags. The admission
control mechanism implemented in the handshake join opera-
tor is summarized as follows: If any of the full flags has been
asserted, then

1) the newly arrived tuples are rejected,
2) and all of the join cores are suspended until all of the

full flags are de-asserted (set to logic 0).
The above rule guarantees that all of the result tuples generated
by join cores will reach the output port of the root node
(merger1 in Fig. 3) in the binary tree network.

V. EVALUATION

The proposed architecture is implemented on a Virtex-6
FPGA ML605 Evaluation Kit including a XC6VLX240T-1
chip. The specification of the FPGA used in the design is
given in Table I. Xilinx ISE 13.1 Logic Edition is used as an
FPGA development environment.

TABLE I
SPECIFICATIONS OF XC6VLX240T-1

#. of Slice Registers 301,440
#. of Slice LUTs 150,720
#. of Slices 37,680
#. of BRAM (36Kbit) 416
#. of DSP48 768
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Fig. 5. Maximum clock frequency of the implemented circuit.

A. Resource Usage and Clock Frequency

The hardware resource usage and the clock frequency are
evaluated for five different configurations. The different num-
bers of join cores (2i where i = 1, . . . , 5) and corresponding
merging networks are instantiated on the FPGA. The same
parameters as [4] is used during the instantiation process. The
window size of each join core is set to 8 tuples. The size of
each FIFO buffer in the proposed merging network is set to 8
tuples. Each input tuple consists of 64-bit data half of which
is join key and the remainder is allocated for payload field. A
result tuple is composed of 32-bit join key and two payload
fields, a total of 96-bit data.

The maximum clock frequency of the prototype system
is shown in Fig. 5. The x-axis and the y-axis represent the
number of join cores and the clock frequency, respectively.
As shown in Fig. 5, the graph is almost constant at 150MHz
and the clock frequency is not declined with increased number
of join cores.

The hardware resource usage is given in Table II. In
addition, the percentage of the overall resource consumption
is shown in Fig. 6. The y-axis of Fig. 6 represents the
percentage of the used resources. As shown in Fig. 6, all of the
three graphs are almost linearly increased with the increasing
number of join cores. It should be also mentioned that up to
32 join cores and the corresponding merging network (with
admission control) can be instantiated on the FPGA.

Fig. 7 shows the result of the comparison of BRAM
utilization between the baseline implementation [4] and the
proposed implementation. The y-axis of Fig. 7 represents
the total number of BRAMs included in each handshake
join operator. As shown in Fig. 7, both of the lines labeled
“baseline” and “proposed” linearly increase with the increas-
ing number of join cores. It should be emphasized that the



TABLE II
HARDWARE RESOURCE USAGE

Join cores Slice Registers Slice LUTs Occupied Slices

2 4,371 4,594 1,277
4 8,358 8,784 3,394
8 16,347 17,130 6,436
16 32,323 35,051 14,095
32 64,526 68,216 24,717
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Fig. 6. Overall resource consumption of the implemented circuit.
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proposed implementation requires fewer BRAMs than the
baseline implementation does.

The results of Fig. 5, Fig. 6, and Fig. 7 lead us to the
conclusion that the proposed design is scalable in terms of the
resource usage and the signal delay.

B. Performance Evaluation

In the performance evaluation, the same evaluation model
as [4] is adopted as shown in Fig. 8. Before starting the join
operation, a number of input tuples are generated according
to different match rates which indicate the ratio of the tuples
satisfying the join condition. After that, input tuples are
transferred to the handshake join operator and join operation
is applied to the input tuples in a continuous manner.

The join operator generates result tuples if the join condition
is satisfied while processing the input tuples. The result tuples
are transferred to the output port as a single stream by the
merging network and they are stored to the output buffer.
It should be noted that all of the result tuples generated by
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Fig. 8. Evaluation of the handshake join hardware.
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join cores are transferred to the output buffer owing to the
admission control mechanism. This is confirmed by counting
the number of results stored in the output buffer.

Fig. 9 shows the number of result tuples, and the total
number of cycles required to complete the join operation. In
this evaluation, the handshake join operator consists of 16 join
cores, and the size of the input buffer is set to 128 tuples
per input stream. The input tuples generated according to the
match rate are located in the input buffer in random order.

The x-axis represents the match rate from 10% to 100%.
The y-axes in left and right represent the number of total cycles
and the number of result tuples, respectively. The line labeled
“baseline” is the performance estimation of the handshake
join implemented in [4]. The same number of result tuples
is generated by both of the join operators, and it is indicates
as a bar chart in Fig. 9.

The proposed model is evaluated by both a cycle-accurate
simulator and the FPGA platform that is used to implement
the architecture. Precisely the same results, which are labeled
“simulation” and “actual”, are obtained as shown in Fig. 9.
Results indicate that the baseline increases sharply if the
match rate is increased. By contrast, the total number of
cycles required for the proposed architecture only increases
in accordance with the number of result tuples.

The input throughput performance is shown in Fig. 10. This
is the maximum throughput data rate that can be handled
by each join operator. In this evaluation, the handshake join
operator consists of 64 join cores, and the size of the input
buffer is set to 512 tuples per input stream. The lines labeled
“baseline” and “nested-loop join” represent the handshake
join [4] and the nested-loop join [5], respectively. It should
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be noted that the size of the input buffer for the nested-loop
join is also set to 512 tuples for regulating the condition.

The proposed model is evaluated by a cycle-accurate sim-
ulator with input streams of two different characteristics. The
input tuples generated according to the match rate are located
in the input buffer as follows:

1) in random order,
2) and as burst input (consecutive tuples that satisfy the

join condition).
The results are labeled “proposed model (random input)” and
“proposed model (burst input)” in Fig. 10.

As shown in the graph, the baseline can achieve higher
throughput rate than nested-loop join when the match rate
is lower than 40%. On the other hand, the proposed model
can achieve far higher throughput rate than nested-loop join
even if the match rate is increased. Furthermore, the proposed
architecture can handle high input rates compared to others
despite burst inputs which can be considered as the worst
case. These data lead us to the conclusion that the proposed
architecture can considerably outperform both the handshake
join [4] and the nested-loop join [5].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an adaptive merging network for
handshake join by examining the weakness of the architecture
proposed in [4], and presented an implementation of the
handshake join operator with the proposed merging network
on an FPGA. Result collection is a crucial issue for the
handshake join operator especially at high output rates since
the merging network becomes an overwhelming bottleneck for
overall performance. The suitable network architecture and the
careful design are key requirements to alleviate the bottleneck
and achieve higher throughput performance.

The performance evaluation results show that the proposed
architecture handles considerably high input rate compared
with the handshake join [4] and the nested-loop join [5].
In particular, the proposed implementation achieves more
than 5.2 times higher throughput compared to the baseline
implementation [4] at the highest match rate (i.e., 100%).
Furthermore, it also outperforms [5], demonstrating up to
16.3 times higher throughput without dropping any tuples. To

the best of our knowledge, this is the best performance for
handshake join operator implemented on an FPGA.

The proposed architecture is also evaluated in terms of the
hardware resource usage and the maximum clock frequency.
The results of evaluation show that the proposed architecture
achieves scalability up to 32 join cores as mentioned in [2],
even though it includes the adaptive merging network with the
admission control logic.

Future work is as follows. First, the size of windows
should be increased for practical applications. In the proposed
implementation, each window of input streams is implemented
as a large shift register since the design of join cores are based
on [4]. In order to increase the window size, an alternative
implementation technique should be considered. Secondly,
we plan to evaluate the proposed architecture for practical
application and determine the suitable size of buffers in the
merging network.
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