
STRAIGHT: Realizing a Lightweight Large
Instruction Window by using Eventually Consistent

Distributed Registers
Hidetsugu IRIE∗, Daisuke FUJIWARA∗, Kazuki MAJIMA∗, Tsutomu YOSHINAGA∗

∗The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

E-mail: irie@is.uec.ac.jp, Dz-Fujiwara@comp.is.uec.ac.jp, majima@comp.is.uec.ac.jp, yosinaga@is.uec.ac.jp

Abstract—As the number of cores as well as the network size
in a processor chip increases, the performance of each core is
more critical for the improvement of the total chip performance.
However, to improve the total chip performance, the performance
per power or per unit area must be improved, making it difficult
to adopt a conventional approach of superscalar extension. In
this paper, we explore a new core structure that is suitable for
manycore processors. We revisit prior studies of new instruction-
level (ILP) and thread-level parallelism (TLP) architectures
and propose our novel STRAIGHT processor architecture. By
introducing the scheme of distributed key-value-store to the
register file of clustered microarchitectures, STRAIGHT directly
executes the operation with large logical registers, which are
written only once. By discussing the processor structure, microar-
chitecture, and code model, we show that STRAIGHT realizes
both large instruction window and lightweight rapid execution,
while suppressing the hardware and energy cost. Preliminary
estimation results are promising, and show that STRAIGHT
improves the single thread performance by about 30%, which
is the geometric mean of the SPEC CPU 2006 benchmark suite,
without significantly increasing the power and area budget.

I. INTRODUCTION

With the greater use of multicore/manycore structures, the
total chip performance is determined by the balance of the core
count and performance of each core [1]. Consequently, it is
more effective to reduce the power or transistors per instruction
operation than to enhance a core by using aggressive specula-
tion or sophisticated scheduling. Conventional approaches that
enhance the single thread performance by exploiting increased
transistor count (which is enabled by Moore’s law) are no
longer attractive.

Conversely, the single thread performance per watt or per
unit area becomes more significant. As the core count in-
creases, the latency of the single thread part severely affects the
entire performance. Moreover, the improvement of the core ar-
chitecture results in an improvement of all cores in a processor,
which operates a scale-out application in parallel. These effects
are not easily realized by improving the multicore structure or
interconnection networks.

This paper introduces the STRAIGHT core architecture that
effectively improves the single thread performance with a
lightweight mechanism. It is inspired by a distributed key-
value store scheme that is used in the areas of scale-out
cloud computing. STRAIGHT is provided with a distributed
register file structure that is free from centralized management,
including structures for allocation and invalidation. Register
renaming is eliminated and reordering is performed in an
eventually consistent manner, which significantly reduces the
control hardware. This feature enables a scalable extension
of the instruction window and subsequently, the exploitation
of instruction level parallelism (ILP) from larger sections of
the running program. Alternatively, schedulers and data paths
are kept small to increase the speed and efficiency of the
implementation, which still has sufficient bandwidth to execute
ILP programs or non-scale-out thread level parallelism (TLP)

programs. For scale-out applications, we assume the manycore
processor structure, which consists of a number of STRAIGHT
architecture cores (SAC) that are loosely connected each other.

Being the first report on this novel processor architecture, in
this paper, we discuss the concept behind STRAIGHT, propose
basic principles, and estimate the performance and budget
expectation. The rest of the paper consists of following sec-
tions. Section II revisits studies of new architectures that were
designed to improve the ILP/TLP performance of superscalar
processors, and discusses the dilemma of both scalability
approach and quick worker approach. In section III, we discuss
the key idea of STRAIGHT that allows the resolution of
this dilemma by introducing a distributed key-value store
to the processor architecture. Software and hardware outline
models of STRAIGHT are described in section IV. Section V
estimates the performance of STRAIGHT by using a cycle-
accurate superscalar simulator and possible parameters, as
well as hardware budgets. Finally, we summarize the paper
in section VI.

II. PREVIOUS STUDIES BASED ON NEW ILP/TLP
ARCHITECTURES

A. Pursuit of Scalability
Generally, programs are known to contain a large amount of

instruction-level parallelism that is yet to be exploited [2]. To
exploit this parallelism, a large-scale single thread core that is
provided with large instruction window and large issue width
is required, along with optimized memory disambiguation.
In such an approach where the issue width is extended, the
centralized structure of the “critical loop” in the superscalar
architecture becomes a major bottleneck [3]. To execute depen-
dent instructions in the consecutive cycles, the circuit delay of
select-to-wakeup loop in the scheduler and result forwarding
loop in data path must be in a cycle period. However ,
the complexity of those loops exponentially increases when
the issue width is increased in the superscalar architecture
because the entire instruction window entries or functional
units are completely connected. To address this problem,
several studies were performed that prunes this connection
by adopting clustered structures that partition and distribute
processor components, such as multiscalar processors [4],
PEWs [5], multicluster [6], complexity-effective superscalar
[3], cost-effective clustered architecture [7], and ILDP [8].
DEC Alpha 21264 also adopted a two-node clustered structure
for the datapath [9]. Additional communication latency is
required when inter-node communication occurs in these clus-
tered microarchitectures. Thus, the use of sophisticated control
algorithms that localize a major portion of communications
into intra node is a key technique. In particular, steering
algorithms that assign nodes to each instruction in order to
optimize load balance and localization [10]–[15] are important.

To achieve further scalability against wire delays, tiled
architectures, which map many smaller nodes to physically

2012 Third International Conference on Networking and Computing

978-0-7695-4893-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICNC.2012.66

336

compatible networks such as 2D-mesh [16], [17], are intro-
duced. Small nodes are operated with rapid clock frequencies
and cooperate with each other. The dataflow of the program
portion is directly mapped to tiled execution units and the
portion is executed by the entire chip. To also consider
networks for caches, NUCA is proposed, which has a variable
hit latency that is determined by the physical location of the
core and cache [18].

B. Utilization of Redundant Pipelines
The issue width extension has been enabled by such clus-

tered structures. However, they need sufficient instructions
to be executed in parallel. It is relatively hard to make the
instruction window scalable, even in a clustered structure,
because it requires coherent register management. Thus, it is
usually difficult for large-scale clustered microarchitectures to
maintain pipeline usage because they have to exploit ILP from
relatively small instruction windows. SMT is a technique that
can be used to fill the pipeline by executing instructions of
other threads with redundant resources [19], and is therefore
effective for scalable architectures [20]. Speculative multi-
threading approaches, which exploit the multi-thread mech-
anism to increase single thread performance, are also suitable
for scalable architectures as well as chip-multi-processors.
In speculative multithreading, single threads are speculatively
divided into multiple threads and are executed in parallel [21],
[22]. In particular, the slipstream processor creates helper
threads from a single thread program and simultaneously
runs both helper and main thread [23]. The program code
of the helper threads is pruned; hence, its execution may be
incorrect and the results are discarded. However, the helper
thread can precede the main thread and its execution has the
effect of preparing predictors and caches. However, for today’s
multicore processors, these approaches that operate specula-
tive workloads by using redundant resources are required to
achieve a sufficient improvement in performance to match their
additional power consumption.

C. Quick Worker Approach
The other approach that is used to improve the single

thread performance is reducing the latency of each instruction.
Instead of operating many pipelines with complex control
algorithms, this approach operates lightweight hardware that
improves the number of instructions per cycle (IPC) by re-
ducing the turnaround time for branch decisions, as well as
the clock frequency. By eliminating complex resource controls
and redundant pipelines, this approach is also desirable for
power saving and available core counts. Examples of this
approach are RTC [24] and Twin Tail [25]. For most cases,
they achieve shorter pipeline; the former uses a trace cache to
omit the rename stage, whereas the latter uses ALU networks
to omit the issue stage. Thus, they achieve quicker instruction
execution than conventional small superscalar.

D. Lessons from Recent Architectures
As previously discussed, to improve the core performance,

there are two approaches that exploiting ILP on scalable struc-
tures, and lightweight pipelines with smart omitting. However,
as a core element of future manycore processors, both of
them suffer from a shortcoming. Although clustered or tiled
architectures achieve a wide and flexible issue width that can
operate at an efficient size for the running programs, paral-
lelism in single thread programs or non-scale-out multi-thread
programs is not sufficient to fill up the provided pipelines
and interconnects. This tendency is triggered by the difficulty
associated with achieving scalable instruction window. Several
techniques were proposed that fill up pipelines with speculative
execution; however, they are not attractive for current mul-
ticore processors because the performance efficiency of the

entire chip may be reduced. Inherently distributed structures
worsen the turnaround time of instruction execution because
they have to manage instruction-node mapping and transfer
register inquiries between nodes. The controls and data have
to travel across wide areas of the chip for an instruction
to be executed; however, in simple architecture, this can be
completed in a compact area.

In contrast, the ability to realize performance improvement
by using the lightweight approach is limited. The significant
factor is the critical loop where clustered approaches also
achieve higher clock latency. In addition, a reduction in other
pipeline stages is not as significant. Although it still has
the advantage of reducing the branch misprediction penalty.
Moreover, the inevitable memory latency severely degrades the
performance of this approach. In addition, smart omitting is
achieved using a sophisticated centralized algorithm; hence it
lacks the flexibility or scalability that are desirable for flexible
manycore usage.

Consequently, improving the single thread performance
suffers from the dilemma that it fails to match the power
and hardware cost unless it exploits additional ILP; however,
the use of a scalable structure for a large instruction win-
dow worsens the cost efficiency of an instruction execution
because it requires additional control. Thus, studies of current
multicore processors generally focus on the network or system
structure design, as opposed to improving the core itself [1].
However, the significance of the performance per power or per
unit area of the core increases as the core count increases with
the processing rules. We believe that there is a different core
design that is more suitable for the manycore era.

III. CONCEPT OF STRAIGHT ARCHITECTURE

For each processor core that constitutes a manycore chip, an
important feature is the performance or efficiency with which
it executes a single thread or non-scale-out multi-thread pro-
gram. It is not necessary to provide scalable wide pipelines for
a core because the required maximum issue width is not very
large for such applications. Although scalable wide pipeline
structures were pursued in conventional clustered microarchi-
tectures, presently, as a processing element of manycore pro-
cessors, an adequate number of efficient pipelines is sufficient
for a core. On the other hand, it is important to provide a larger
instruction window for aggressive ILP execution. The effect
of a large instruction window increases nowadays because
prefetching has been improved, and the memory bandwidth is
also improved by on-chip memory controllers and 3D stacking.
Therefore, if a larger instruction window is realized, (the
adequate number of) pipelines are filled by ILP execution
without aggressive speculation. However, it is difficult to
provide a large instruction window in conventional clustered
microarchitectures because register management becomes a
complex bottleneck.

Here we consider introducing a distributed key-value store
scheme to a clustered microarchitecture, which can lead to
agreement of the register file distribution between independent
nodes without centralized mapping tables or broadcasting
inquiries. For example, the node that holds the value of a
certain register can be determined by hashing the register
number into an m-bit modulo space, which is associated
with n nodes such as Chord [26](Figure1). In this manner,
neither the centralized register management nor broadcast
for the register look-up that discourages the scalability of
conventional clustered microarchitecture is eliminated. Thus
enable us to create a number of instructions in-flight with a
distributed scalable register file. Each node is responsible for
an assigned register and the values are held in a cache-like
associative table. The access latency of the distributed register
file will increase; however, the reduced performance caused by
this latency is known to small if the result bypass is adequately
operated [27].

337

#REG

n bit

hash

Sign.

m bit

0

4

26

7

5 3

1

upper 3bit

node 0

node 1

(invalid)

node 2

node 4

node 5

node 6

node 7

Fig. 1. Determination of the Responsible Node that Holds the Value of a
Register

To completely eliminate the centralized management of the
register file, we have to solve register renaming and free
list management as well as look-up. Here we introduce a
supporting compiler that generates the code by using a huge
logical space of write-once registers. For such a code, the
processor enables to straightly hash the register number, deter-
mines the node, and performs the execution with distributed
management. For example in Figure 2, the corresponding
node of source and destination registers are directly deter-
mined from the instruction code by hashing each register
field independently. Then, to execute the code, the register
read requests are sent to the nodes that hold source L and
R value respectively, and the value is attained by accessing
the key-value table of that node locally. Similarly, the register
allocation request is sent to the node that is responsible for the
destination register, and an entry is allocated in the table. The
execution is free from false dependency (Write-After-Write
and Write-After-Read) because all of the registers are written
once; therefore, the instruction can be executed as soon as
both source register values are ready, in out-of-order manner.
The allocated registers are implicitly freed when a certain
number of subsequent instructions are fetched, which also
enables us to achieve distributed management. This scheme
is feasible because thousands of registers are available when
such distributed management is available (a detailed feasibility
study of code generation and hardware costs are described
in Section IV). The assigned register entry is eventually
invalidated after the last use and a new register is allocated to
the entry. This approach will surpass conventional superscalar
architecture by ILP execution from a large instruction window,
reducing the spill memory access by large logical register files.
Moreover, it does not require the cost for register renaming,
and requires simpler branch managements, as described in
Section IV.

Figure 3 shows the outline diagram of our STRAIGHT
architecture. Although the register file is distributed, execution
pipelines are centralized. The critical loop of issues and
bypasses are centralized and the movement of critical data
is kept within a small area (Figure 4). STRAIGHT exploits
ILP from a larger instruction window that is enabled by the
large distributed register file, directly executes the code that
has a large logical register space, and has an efficient cen-
tralized conventional scale of execution pipelines. Using this
STRAIGHT architecture core (SAC) as a basic component, the

OPCODE #SRC-L #SRC-R#DST

hash

#node

datatag

DST

allocate

datatag

hash

#node

hash

#node

SRC-L

datatag

SRC-R

request request

Fig. 2. Straight Execution on Distributed Register File

SAC

L2

SAC

SACSAC

SAC

L2

SAC

SACSAC

SAC

L2

SAC

SACSAC

SAC

L2

SAC

SACSAC

SAC

L2

SAC

SACSAC

SAC

L2

SAC

SACSAC

I$

D$

Fetcher
Decoder

REG4

b
y

p
a

ss

REG2

sched0

REG0

REG6

REG5

REG3

REG1

REG7

PC SP RP

sched1
sched2 sched3
sched4 sched5
sched6 sched7

Issue

n
o

d
e

0
n

o
d

e
2

n
o

d
e

4
n

o
d

e
6

n
o

d
e

1
n

o
d

e
3

n
o

d
e

5
n

o
d

e
7 STRAIGHT Processor

STRAIGHT Architecture Core

Fig. 3. Block Diagram of STRAIGHT architecture

STRAIGHT processor consists of many SACs that are sparsely
connected to each other. Many scale-out applications such as
“map” and “reduce” can be executed in massively parallel by
cooperation of many SACs in the STRAIGHT processor. In
the next section, we describe the outline model of STRAIGHT
from the software and hardware perspective including the
instruction format, control model, and microarchitecture.

IV. OUTLINE MODEL OF STRAIGHT

A. Instruction Format
STRAIGHT has thousands of logical registers that can be

used as general purpose registers; however they are written
only once for lifetime. Program counters (PC), stack pointers
(SP), and register pointers (RP, described later) are also
provided as architectural registers, and they are rewritable.
Instruction opcodes are similar to RISC architectures; however

338

bypass bypass

reg

reg

bypass

a) Tile Architecture

b) STRAIGHT Architecture

reg

reg reg

reg

reg

reg

s
c
h

e
d

s
c
h

e
d

s
c
h

e
d

s
c
h

e
d

s
c
h

e
d

s
c
h

e
d

s
c
h

e
d

s
c
h

e
d

s
c
h

e
d

Fig. 4. Tile vs. STRAIGHT

s = a + b + c + d;

LD sp(0) #ld a

LD sp(8) #ld b

LD sp(16) #ld c

LD sp(24) #ld d

ADD [-4] [-3] # s = a + b

ADD [-1] [-3] # s = s + c

ADD [-1] [-3] # s = s + d

ST [-1] sp(32) #st s

Fig. 5. Source Registers in STRAIGHT

their operand manner is different. The value of RP at the
decode time is used to indicate the destination register number
(Figure 6). The RP value is incremented for every instruc-
tion decode operation. As a result, consecutive instructions
have consecutive destination register numbers. The number of
source registers is indicated in the source field L and R of the
instruction format, which is given as the displacement from
RP (Figure 5). The number of source registers is obtained
by subtracting the displacement from RP of the decode time.
The displacement has an upper bound; as a result, the register
number, which is more distant from RP than the upper bound,
is no longer accessed and can therefore be invalidated. RP is
increased in a sufficiently larger modulo space than the upper
bound of the displacement. The register number is reused
after a sufficiently long invalidation period. If the value must
be maintained beyond the upper bound, a “register move” or
“store” instruction is inserted into the code.

Such an indication method is known to require an adjust-
ment for the case of control flow join. In the STRAIGHT

OPCODE SRC-L-DISP SRC-R-DISP

(ex. 11bit) (ex. 11bit)

RP

- -
+1

#SRC-L #SRC-R #DST

hash hash hash

Fig. 6. Determining the Corresponding Nodes

compiler that generates the code, both paths of the joining
control flow move the corresponding registers in the same
order. In addition, a special instruction that adds an arbitrary
number to RP is used to absorb the difference in the path
length, so that instructions after control flow join can access
the registers that were written before the branch, regardless
of the path that is taken. For procedure calls, arguments and
results are similarly set by the “register move” instruction.
Because the logical register has enough space, most arguments
can be passed using the register instead of stack access.
STRAIGHT is provided with a rewritable SP so that any
existing program can be transported to STRAIGHT by at least
using SP and memory access.

B. Execution Model
Several instructions are fetched at once using branch pre-

diction, which is similar to superscalar architectures. Subse-
quently, corresponding nodes of sources and destinations are
revealed by hashing each register number (Figure 6). The
width of the frontend pipeline is more easily increased because
the rename stage is removed. The scheduler entry is assigned
from the corresponding node of the source register L at the
dispatch stage. An inquiry for a ready signal is sent to the
scheduler of the corresponding node of the source register
R. Each scheduler maintains and updates the ready flag of
source L and R from the destination register number of issued
instructions, and informs the issue candidates of this cycle
to the select logic. The select logic is centralized, enabling
efficient use of the compact datapath.

Each node is provided with an associative table for the
distributed register file and its manager unit. Each register
value is maintained using the register number as the key. While
each table has number of entries, their access frequency is not
high because most of the register access is absorbed in the
bypass network. Fewer port numbers are therefore sufficient
for the table.

The request for register allocation is sent to the corre-
sponding node at the dispatch stage. As in the case of the
cache algorithm, the node searches for invalid entry from the
set and allocates the incoming register number. The distance
between the stored register number and incoming register
number determines whether or not the entry is invalid. Unlike
the cache, the valid line cannot be evicted. When such conflicts
occur, the next node handles the incoming register with a
certain overhead. The manager unit periodically checks the
tag array and searches invalid lines. Consequently, register
allocation and free are performed as a localized operation
at each node. The corresponding node of a register can be
attained by hashing its register number so that broadcast and
centralized mapping management are not required. For the
hash function, simple XOR logic is sufficient as well as SHA-
1.

STRAIGHT may have a longer register stage because it
involves inter-node requests to the distributed register file and

339

the access of the associative table. However, the execution
throughput is mainly determined by critical loops such as
scheduler and result bypass [3], [27]. The size of the critical
loop of STRAIGHT is sufficiently adequate to realize a high
throughput that is comparable to conventional cores.

In STRAIGHT, the recovery from branch misprediction
is relatively simple. First, the corresponding entries of the
scheduler and long execution pipeline such as floating point
arithmetics or load-store-unit are invalidated. Entries that cor-
respond to a destination register number that is larger than
the branch instruction are invalidated. Then, RP is rewound to
the next destination register number of the branch instruction.
The corresponding register values are not invalidated; however,
they are eventually overwritten by the value of the correct path.
For context switching, all entries of the distributed register
file must be saved, in addition to PC, SP, and RP. Although
the number is large, the transfer can be done gradually in
background.

C. Further Optimization
The scope of this paper is to develop the first outline of

the STRAIGHT architecture. However, its implementation of
following optimization enhances the architecture feature. The
associative table in each node can also be used to maintain
the scheduler entry or cache line. By saving the scheduler
entry in which the parent instruction does not appear to be
quickly issued to the table, instruction window can proceed to
the succeeding instructions while keeping the scheduler small.
Also, register cache techniques are effective to mitigate the
distributed register latency.

D. Features Enabled by STRAIGHT
To summarize the outline model, the following are the

features that are enabled by the STRAIGHT architecture. First,
note that each stage has the same or less complexity compared
with conventional superscalar processors, enabling the clock
frequency to be maintained. Moreover, because the rename
stage is eliminated, the frontend latency is reduced. In addition,
the frontend width can be easily extended.

STRAIGHT enables a large amount of logical registers.
The compiler can exploit these registers to realize various
optimization techniques. Spill access can be significantly
reduced so that the inherent parallelism in the programs is
easily exploited. STRAIGHT has wider instruction window
to exploit the ILP, which is enabled by using decentralized
register file and manager. Although the basic scheduler size is
relatively small, the effective scheduler entry size is extended
by exploiting the table of each node, as described above. The
execution pipeline is sufficiently compact to ensure the speedy
and efficient execution of the filled instructions.

STRAIGHT removes complex controlling and directly per-
forms the execution with logical registers. This scheme
achieves greater power efficiency because it can reduce the
power required for control. For example, the hot spots of
RMT and free list are removed. Instead, STRAIGHT requires
larger tables for the register, however, they are not accessed
as frequently as RMT. This scheme will be more effective
when the devices have a feature whereby the active power
significantly exceeds the static power, which is indicated by
several device techniques [28].

V. PRELIMINARY EVALUATION

A. Performance Estimation
We conducted performance estimation of STRAIGHT by

using a cycle accurate superscalar simulator. Onikiri2 rev.5321
is used as a baseline simulator, which faithfully implements
the state-of-the-art superscalar pipeline structures [29]. The
expected parameters of instruction window size, frontend
latency, and register latency are used to approximate the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
a

v
e

s

4
1

6
.g

a
m

e
ss

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

G
E

O
M

E
A

N

superscalar(frontend width 8)

STRAIGHT(frontend width 4)

STRAIGHT(frontend width 8)

relative IPC

Fig. 7. Performance Improvement

performance. As the simulation is performed by superscalar
model, this first evaluation does not include advantages and
overheads which are derived by ISA features of STRAIGHT,
still it approaxiates the effect of ILP exploitation by using huge
instruction window which is enabled by our architecture.

The performance of real STRAIGHT will be increased by
exploiting large amount of logical registers, which enables to
eliminate spill registers and also allocate large data structures
to the registers. On the other hand, the performance will be
decreased by the code restriction of STRAIGHT, such as the
overhead of write-onece policies, extra meory accesses which
are caused by the shortage of the concurrent registers, and the
overhead of register refreshing to avoid the register lifetime.

Table I shows the parameters of the baseline and
STRAIGHT core. A 2k logical register and 512entries for
each node (the node count is 8, thus in total 4k register
entry; however, we conservatively estimated that only 2k are
available because of the overhead of implicit free manage-
ment) are assumed, because this is the first estimation, these
parameters are yet to be optimized. Note that the sizes of
the backend of the baseline and SRAIGHT are set to be the
same. The memory subsystems are also the same, and we
assumed the main memory latency to be a bit optimistic value
of 50 cycles because of the incoming 3D memory stacking
technology [30]. We evaluated all benchmark programs of
SPEC CPU 2006. Each program was compiled using gcc
version 4.2.2 with the -O3 option. A cycle accurate execution
of 256 million instructions was simulated after skipping 10
billion instructions from the program head.

Figure 7 shows the scale merit of STRAIGHT, which
estimates the effect of wide frontend and large instruction
window. The x-axis shows the benchmarks and the y-axis
shows the relative IPC compared with the baseline superscalar.
The models of i) the superscalar with a wide frontend,
ii)STRAIGHT (with the same frontend width as the baseline),
and iii) STRAIGHT (with the frontend width of 8) are plotted.
The results show that STRAIGHT can exploit more ILP, and
has a 30% better IPC, which is in the geometric mean of all the
SPEC2006 benchmark suite programs with the same backend
size. The comparison also reveals that the improvement is
achieved mainly by extending the register file and instruction
window; however, the large frontend width is also effective
for several benchmarks such as 447.dealII and 473.astar. In
contrast, by increasing the frontend width the performance in
a conventional superscalar is worsened.

Figures 8, 9, and 10 show the usage of functional units with
the same settings as in Figure 7. The usage value shows “1”
when all of the corresponding functional units were busy every
cycle. As shown by the graph, the usage of functional units in
superscalar processors is generally low. However, STRAIGHT

340

TABLE I
MICRO-ARCHITECTURAL PARAMETERS

Baseline Superscalar STRAIGHT
Instruction Set Architecture Alpha AXP
Front-end 4 way, 7 cycle 8 way, 5 cycle
Instruction Window int 64, fp 32 int 512, fp256
Register int 128, fp 128 int 2k, fp 2k
Functional Units 2 iALU, 1 iMUL/DIV, 2 LD/ST, 1 fpADD, 1 fpMUL/DIV/SQRT
L1 I-Cache 32 KB, LRU, 8 way, 64 B line, 1 cycle latency
L1 D-Cache 32 KB, LRU, 8 way, 64 B line, 1 cycle latency
L2 I/D-Cache 4MB, LRU, 8 way, 64 B line, 12 cycle latency, with stream prefetcher
memory access 50 cycle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
a

v
e

s

4
1

6
.g

a
m

e
ss

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

baseline

superscalar(frontend width 8)

STRAIGHT(frontend width 4)

STRAIGHT(frontend width 8)

Fig. 8. Comparison of Functional Unit Usage (iALU)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
a

v
e

s

4
1

6
.g

a
m

e
ss

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

baseline

superscalar(frontend width 8)

STRAIGHT(frontend width 4)

STRAIGHT(frontend width 8)

Fig. 9. Comparison of Functional Unit Usage (fp adder)

shows significantly higher usage, and thus effectively operates
the execution units. In particular, the usage of the floating point
units is significantly improved. These result reveal that the
pipelines in a conventional architecture are not fully exploited;
therefore, large instruction window of STRAIGHT improves
the perfoemance without extending the piplines.

Next, Figure 11 shows the effect of the register latency in
STRAIGHT. The y-axis indicates the relative IPC to baseline
superscalar processor. The bars show the register latency from
4 to 8 cycles. In geometric mean, the performance is degraded
about 2% for an additional cycle, still shows significant
performance improvement even with 8 cycle latency. However,
performance of several benchmarks is below the baseline at
higher register latency. Mechanisms to mitigate latency are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
a

v
e

s

4
1

6
.g

a
m

e
ss

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

1
.w

rf

4
8

2
.s

p
h

in
x
3

4
8

3
.x

a
la

n
cb

m
k

baseline

superscalar(frontend width 8)

STRAIGHT(frontend width 4)

STRAIGHT(frontend width 8)

Fig. 10. Comparison of Functional Unit Usage (fp multiplier)

0

0.5

1

1.5

2

2.5

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
a

v
e

s

4
1

6
.g

a
m

e
ss

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
5

9
.G

e
m

sF
D

T
D

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

1
.w

rf

4
8

2
.s

p
h

in
x
3

4
8

3
.x

a
la

n
cb

m
k

G
E

O
M

E
A

N

latency 4

latency 5

latency 6

latency 7

latency 8

relative IPC

Fig. 11. Effect of Register Latency in STRAIGHT

required for these programs. The performance of 470.lbm
is increased at latency 8 because of side-effect of latency
predictors and prefetcher.

B. Hardware Budgets
Figure 12 shows the estimation of hardware budgets for

the total capacity of the memory resources. The hardware
parameters of Table I are used. Assuming that a 4MB L2 is
shared by 4 cores, 1 MB is declared as the capacity of L2 in
each core. For RMT, we assumed 8 check points. Figure 12
shows that for STRAIGHT the total capacity increases with
the size of the register file, instead of RMT. For the bit count,
the difference is as large as the cache size of D1. However,
the port count of RMT is several times larger than that of
the distributed register file of STRAIGHT. The port count
increases the resource cost by a factor of 2, so the actual
difference of the area or transistor count is reduced. When the
capacity of L2 is included, the difference is negligible.

VI. CONCLUSION

This paper reveals a novel STRAIGHT architecture that
efficiently improves the core performance for manycore
processors. Inspired from the distributed key-value store
scheme, STRAIGHT realizes a scalable distributed register
file, which enables straight execution of the large logical
register code. Each register is written once and is eventually
invalidated, significantly reducing the cost of register man-
agement. As opposed to conventional clustered microarchitec-
tures, STRAIGHT is not provided with a scalable execution
pipeline; however, it has an efficient scale of the execution
pipeline. By revisiting previous architectures, we observed
that the usage of functional units is low, and distribution
is therefore needed for the instruction window, instead of
execution pipelines.

Being the first report on our new approach, this paper
describes an outline of the software and hardware model. We
also conducted a preliminary performance evaluation and cost
estimation. It is expected that STRAIGHT will improve the
ILP performance by 30% relative to that of a conventional

341

0

20

40

60

80

100

120

baseline

superscalar

STRAIGHT

D1 cache

Register

Scheduler

RMT&FreeList

I1cache

0

200

400

600

800

1000

1200

1400

baseline

superscalar

STRAIGHT

L2 cache

D1 cache

Register

Scheduler

RMT&FreeList

I1cache

(KB)

(KB)

a) without L2 cache

a) with L2 cache (1MB/core)

Fig. 12. Budgets Estimation

superscalar processor, while it does not require a significant
additional cost overhead. Moreover, a reduction in register
management can lead to efficient power reduction. We are
now in the process of developing STRAIGHT compilers and
an RTL specification for the core to verify in more detail
performance parameters.

REFERENCES

[1] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
Out Processors,” Int. Symp. on Computer Architecture, 2012.

[2] A. Nicolau and J. A. Fisher, “Measuring the parallelism available for
very long instruction word architectures,” IEEE Trans. Comput., vol. 33,
no. 11, pp. 968 – 976, 1984.

[3] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-Effective
Superscalar Processors,” 24th Int. Symp. on Computer Architecture, pp.
1–13, 1997.

[4] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,” Int.
Symp. on Computer Architecture, pp. 414 – 425, 1995.

[5] G. A. .Kemp and M. Franklin, “PEWs: A decentralized dynamic
scheduler for ILP processing,” Int.Conf.on Parallel Processing, pp. 239–
246, 1996.

[6] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “The Multicluster
Architecture: Reducing Processor Cycle Time Through Partitioning,”
30th Int. Symp. on Microarchitecture, pp. 149–159, 1997.

[7] R. Canal, J. M. Parcerisa, and A. Gonzalez, “A Cost-Effective Clus-
tered Architecture,” Int.Conf.on Parallel Architectures and Compilation
Techniques, pp. 160–168, 1999.

[8] J. E. Smith, “Instruction-Level Distributed Processing,” IEEE Computer,
vol. 34, no. 4, pp. 59–65, 2001.

[9] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24–36, 1999.

[10] A. Baniasadi and A. Moshovos, “Instruction Distribution Heuristics
for Quad-Cluster Dynamically-Scheduled, Superscalar Processors,” 33rd
Int. Symp. on Microarchitecture, pp. 337–347, 2000.

[11] R. Canal, J. M. Parcerisa, and A. Gonzalez, “Dynamic Cluster As-
signment Mechanisms,” 6th Int. Symp. on High-Performance Computer
Architecture, pp. 132–140, 2000.

[12] J. M. Parcerisa and A. Gonzalez, “Reducing Wire Delay Penalty through
Value Prediction,” 33rd Int. Symp. on Microarchitecture, pp. 317–326,
2000.

[13] B. Fields, S. Rubin, and R. Bodik, “Forcusing Processor Policies via
Critical-Path Prediction,” 28th Int. Symp. on Computer Architecture, pp.
74–85, 2001.

[14] N. Hattori, M. Takada, J. Okabe, H. Irie, S. Sakai, and H. Tanaka,
“Instruction Steering Algorithms Based on Issue Delay,” IPSJ Trans. on
Advanced Computing Systems, vol. 45, no. 11, pp. 80 – 93, 2004.

[15] H. Irie, N. Hattori, M. Takada, S. Sakai, and H. Tanaka, “Distributed
Speculative Memory Forwarding for Clustered Superscalar Processors,”
IPSJ Trans. on Advanced Computing Systems, vol. 45, no. 11, pp. 94 –
104, 2004.

[16] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler, “A design
space evaluation of grid processor architectures,” Int. Symp. on Microar-
chitecture, pp. 40 – 51, 2001.

[17] M. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, and J. Kim, “Evaluation of
the raw microprocessor: an exposed-wire-delay architecture for ilp and
streams,” Int. Symp. on Computer Architecture, pp. 2 – 13, 2004.

[18] C. Kim, D. Burger, and S. Keckler, “Nonuniform cache architectures for
wire-delay dominated on-chip caches,” IEEE Micro, vol. 23, no. 6, pp.
99 – 107, 2003.

[19] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” 22nd Int. Symp. on
Computer Architecture, pp. 392–403, 1995.

[20] J. D. Collins and D. M. Tullsen, “Clustered Multithreaded Architectures
- Pursuing Both IPC and Cycle Time,” 18th Int.Parallel and Distributed
Processing Symp., pp. 76–85, 2004.

[21] V. Krishnan and J. Torrellas, “A chip-multiprocessor architecture with
speculative multithreading,” Trans. on Computers, vol. 48, no. 9, pp.
866 – 880, 1999.

[22] A. Roth and G. Sohi, “Speculative data-driven multithreading,” Int.
Symp. on High-Performance Computer Architecture, pp. 37 – 48, 2001.

[23] Z. Purser, K. Sundaramoorhy, and E. Rotenberg, “A Study of Slipstream
Processors,” 33rd Int. Symp. on Microarchitecture, pp. 269 – 280, 2000.

[24] M. Date, N. Kurata, R. Shioya, M. Goshima, and S. Sakai, “Processor
Architecture that Minimizes Register Renaming and Dispatch Network,”
Symp. on Advanced Computing Systems and Infrastructures, pp. 280 –
288, 2012.

[25] K. Horio, H. Hirai, M. Goshima, and S. Sakai, “Twintail Architecture,”
Symp. on Advanced Computing Systems and Infrastructures, pp. 303 –
311, 2007.

[26] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” ACM SIGCOMM, vol. 31, no. 4, pp. 149–160, 2001.

[27] R. Shioya, K. Horio, M. Goshima, and S. Sakai, “Register Cache System
not for Latency Reduction Purpose,” Int. Symp. on Microarchitecture,
pp. 301 – 302, 2010.

[28] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leak-
age current mechanisms and leakage reduction techniques in deep-
submicrometer cmos circuits,” Proceedings of the IEEE, vol. 91, no. 2,
pp. 305 – 327, 2003.

[29] R. Shioya, M. Goshima, and S. Sakai, “The Design and Implementation
of Processor Simulator”Onikiri2”,” the Annual Symposium on Advanced
Computing Systems and Infrastructures, poster, 2009.

[30] C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-
memory performance gap with 3D IC technology,” Design Test of
Computers, IEEE, vol. 22, no. 6, pp. 556 – 564, 2005.

342

