
A Coarse Grain Reconfigurable Processor Architecture for
Stream Processing Engine

Takefumi Miyoshi∗, Hideyuki Kawashima†, Yuta Terada∗, Tsutomu Yoshinaga∗
∗The University of Electro-Communications, Japan

1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
E-mail: miyoshi@comp.is.uec.ac.jp, terada@comp.is.uec.ac.jp, yosinaga@is.uec.ac.jp

†University of Tsukuba, Japan
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

E-mail: kawasima@cs.tsukuba.ac.jp

Abstract—This paper proposes a processor architecture for DR-SPE,
a dynamic reconfigurable stream processing engine. DR-SPE is special-
purpose hardware for stream data processing, which achieves high
processing performance by exploiting parallelism in the target query.
It also handles query registration and execution order of operations
at runtime. Available operations in DR-SPE are the same as those in
Streams on Wires. In this paper, DR-SPE is implemented on a FPGA
XC6VLX240T-1, and its performance is evaluated. The results of the
evaluation show that DR-SPE achieves register modification within 506
µsec when the configuration path is driven at 1 Mbps, which is not
achieved by Streams on Wires. DR-SPE also achieves flexibility and can
support complicated queries by providing 10×10 operation units tiled
onto an FPGA. DR-SPE achieves comparable operation throughput with
Streams on Wires at the expense of requiring more LUTs.

I. INTRODUCTION

Presently, active information sources that continually generate
stream data often include real-world information, for example, Twit-
ter, Ustream, real-time stock market information, GPS data obtained
by mobile equipment, surveillance cameras, and so on. Applications
for anomaly detection or behavior monitoring have been developed
using stream data obtained from active information sources. To ease
development, the stream processing engine (SPE) technology [1] has
been studied. An SPE is middleware for stream data management that
vitalizes stream data as a relational stream based on the relational
data model. An SPE provides relational and arithmetic operators for
stream data processing. With an SPE, users are able to code desired
queries over the stream data.

An SPE continually processes queries registered by users with the
arrival of a stream data object. It should be noted that the generation
of stream data is often very frequent. For example, the Tokyo stock
exchange generates stock prices every 2 ms; the performance of a
high performance IP router is 300 Tbps[2]; and industrial robots
generate data for motor control every 1 ms. Obviously, it is difficult to
process this type of high-rate data in real-time. Therefore, improved
performance is a crucial research issue for SPE.

To improve performance, a promising approach is to exploit
advanced hardware. This approach includes an implementation with
network processors[3], exploitation of GPGPU or GPUTeraSort[4],
improved performance of join with Cell/B.E.[5], and the implemen-
tation of special purpose hardware for stream data operations with
FPGA[6][7][8][9].

Another important approach is dynamic query optimization[1][10].
Dynamic query optimization is a scheme to improve performance
by dynamically changing the execution order of relational opera-
tors, such as selection, join, projection, and so on. Appropriately
re-ordering operators with a quick estimation of selectivity along
with data arrival improves performance significantly. To achieve the
scheme, executions must be re-ordered quickly, in less than 1 ms.

This is necessary because the stream data arrival rate is usually only
a few milliseconds.

A novel hardware-based approach to accelerate stream processing
is Streams on Wires(SoW)[6], which supports most relational and
arithmetic operators. Although SoW demonstrates excellent perfor-
mance on stream data processing, it is difficult to integrate with
dynamic query optimization, another promising technique. The dif-
ficulty arises because of runtime cost. SoW defines primitives for
executing stream data operators as libraries written in hardware de-
scription language (HDL), which Glacier[11] composes and generates
for specific hardware for the target query. It is required to synthesize
and place & route (P&R) in order to generate circuit information for
FPGA from HDL. Before using FPGA as the specifically designed
hardware, generated circuit information for FPGA is transferred to
FPGA to configure the FPGA using the information. Synthesis and
P&R is a heavy task and the transference of information to FPGA
takes a long time. For this reason, the SoW scheme, which uses the
FPGA configuration mechanism directly, cannot achieve frequent new
query registration and dynamic query optimization, which needs to
be shorter than 1 ms.

This paper proposes a dynamic reconfigurable processor architec-
ture for SPE (DR-SPE), which supports fast query re-ordering for
dynamic query optimization and immediate query registrations. The
proposed processor architecture consists of building blocks to realize
queries in a similar manner to those with SoW. To reduce redundant
hardware resources, common basic building blocks are extracted for
stream data processing operators. This paper presents the design
and implementation of the DR-SPE and evaluates hardware resource
usage and signal delay for the dynamic configuration mechanism.

The rest of this paper is organized as follows: Section II describes
the motivation for the research. Section III presents the processor
architecture for DR-SPE. Section IV shows the implementation and
evaluation, and Section V concludes the paper.

II. MOTIVATION FOR DR-SPE

A. Streams on Wires

Performance can be improved by implementing stream data op-
erators as specific hardware. This is made possible through cycle-
level instruction execution and using inherent parallelism. SoW[6]
proposes a scheme to perform stream data operators with FPGA.
FPGA is a configurable hardware device with functions modified in
the device using configuration data before execution.

SoW defines primitive operators or algebras as building blocks to
construct SPE on an FPGA as shown in Table I. Each algebra is
defined as a circuit unit with a unified interface as shown in the
table. It is possible to combine freely when the required algebras

Takefumi MIYOSHI
© 2012 IEEE. Reprinted, with permission, from T. Miyoshi et al., A Coarse Grain Reconfigurable Processor Architecture for Stream Processing Engine, 2011 21st International Conference on Field Programmable Logic and Applications, Sep. 2011.

Takefumi MIYOSHI


Takefumi MIYOSHI




TABLE I
ALGEBRA DEFINED AS OPERATION ELEMENTS IN STREAMS ON WIRES[6]

πa1 , ..., an(q) projection
σa(q) select tuples where field a contains true
★©a:(b1,b2)(q) arithmetic/Boolean operation a = b1 # b2
q1 ∪ q2 union
aggb:a(q) aggregate agg using input field a,

agg ∈ {avg, count,max,min, sum}
q1 grpx|c q2(x) group output of q1 by field c, then

invoke q2 with x substituted by the group
q1 !t

x|k,l
q2(x) sliding window with size k, advance by l;

apply q2 with x substituted on each wind.;
t ∈ {time, tuple}: time-, or tuple-based

q1 ◦◦ q2 concatenation; position-based field join

Query
plan

Compiler
HDL
code

Synthesis
&

Place/Route

Config
data

Download

FPGA

Fig. 1. Flow of generating SPE in SoW[6]

is constructed. The circuit constructed on an FPGA achieves high
performance thanks to pipeline parallelism.

Figure 1 shows the flow for constructing a stream processing
engine on FPGA using the scheme proposed in SoW. In SoW, a
compiler referred to as a Glacier compiles a query to the HDL code
that includes the instantiation of required algebras and a definition of
the connection between them. The generated HDL code is compiled
to the configuration data for a target FPGA with existing FPGA
development tools, which provides synthesis and P&R for the HDL
code. In this way, FPGA development tools are required when the
new query is registered, so a long time is consumed for synthesis and
P&R. On the other hand, new query registration and the dynamic
query optimization that re-orders operators in a query along with
arrived data must execute on the order of milliseconds. This makes
it difficult to perform new query registration and dynamic query
optimization in SoW.

B. Dynamic Reconfigurable Stream Processing Engine

To solve this problem, this paper proposes a dynamic reconfig-
urable stream processing engine (DR-SPE). DR-SPE supports query
modification, addition, and optimization without synthesis and P&R
from HDL. Figure 2 shows the flow for executing a query on
DR-SPE. Unlike SoW, a query is not implemented on FPGA in
DR-SPE. Each query is implemented by modifying the values of
registers in DR-SPE using a “dynamic configuration” path. With
the flow shown in Figure 2, the HDL of DR-SPE is generated,
which customizes the tuple width and operator unit bit width for
the target application. Applying synthesis and P&R to the generated
HDL code then generates the corresponding hardware circuit. At this
time, DR-SPE cannot achieve a query. A dedicated compiler is used to
compile the query for configuration data for DR-SPE. The compiled
configuration data are transferred through a “dynamic configuration”
at runtime.

The novel features of DR-SPE are the following:
• Perform the stream data operator,
• Achieve high computation performance by exploiting cycle-level

instruction execution and inherent parallelism,

Query
plan

Code
generator

HDL
code

Synthesis
&

Place/Route
DR-SPE

Tuple width
Op. width

static info.

Compiler

Dynamic
configuration

Config
data

HDL
template

Implementation

Fig. 2. Flow of generating dynamic reconfigurable stream processing
engine(DR-SPE) and configuration of a query plan for it

• Modify internal module operator at runtime,
• Partially modify query and parameter configuration at runtime.

With these features, DR-SPE achieves much higher computational
performance than a software implementation executable on a general
purpose processor. Furthermore, these features provide the flexibility
needed to enable dynamic modification of queries.

DR-SPE consists of the common execution elements needed to
construct a query. A query compiler generates configuration data for
implementation of the query by combining the elements.

To implement a desired operator, a logic circuit must be generated
for the operator. The circuit must be mapped onto look-up tables
(LUTs) and registers in the FPGA. On the other hand, DR-SPE
elements are defined at the functional level. Therefore, the grain
is larger than with an LUT in the FPGA. This means that the
computational cost to generate configuration data and the size of
configuration data are reduced significantly. Furthermore, all FPGA
data are usually re-written when modifying the circuit implemented
on the FPGA. Only required elements are updated when a query is
configured in DR-SPE. For these reasons, DR-SPE makes dynamic
reconfiguration possible.

C. Design Issues of DR-SPE
This section describes two important design issues.
1) Reduction of Additional Hardware Resources: To make the DR-

SPE possible to execute complicated instructions such as multiplica-
tion, division, and so on, huge hardware resources are needed to
execute simple instructions such as the comparison operators like
== and >. Further, if the execution cycles for each element differ
in DR-SPE, a cycle delay operator must be inserted. The amount of
hardware resources and inserted delay operators is significant.

2) Reduction of Signal Delay: This issue is the flexibility of
wiring. In the approach to generate HDL code from a query like
SoW, wiring for the desired circuits is connected and incremen-
tation/decrementation of the number of wires is modified without
additional hardware cost on FPGA. On the other hand, wiring in
the actual hardware (after implementing it on FPGA) is determined
statically. Therefore, it is usually impossible to freely determine the
connection and modify the bandwidth of the data path. To increase
the options of selectable connection dynamically, a multitude of
multiplexers is required, resulting in long signal delay. DR-SPE must
design a processor architecture that supports sufficient connectivity
without wasted hardware resources and signal delay.

III. PROCESSOR ARCHITECTURE OF DR-SPE
To solve the issues described in Section II-C, the design of the DR-

SPE processor architecture is determined by imposing the following
limitations:



operation unit

s
t
r
e
a
m
 
I
/
O
 
c
o
n
t
r
o
l
l
e
r operation unit block

Fig. 3. Overview of DR-SPE architecture

• Constraining the execution cycles of all primitive elements to a
cycle,

• Determining the bandwidth of the data path statically, and
• Reducing the configuration parameters to decrease the number

of configuration registers.
In order to support equivalent functions provided by SoW, the

followings are required: computation units providing algebra/logical
operations and aggregations, and communication path supporting data
transference between the computation units. Furthermore, in order to
support Union, Grouping, and Windowing, control mechanisms for
input/output data with multiple elements are required. The mecha-
nism enables/disables the data with defined conditions. Therefore, to
perform a desired query, these functions and paths must be defined
as building blocks, and a mechanism to configure the building blocks
must be provided in the processor architecture of DR-SPE.

Figure 3 is an overview of the DR-SPE processor architecture. DR-
SPE consists of operation units, which are allocated in a tiled manner.
The operation units are connected by a switch-box, which determines
the connections between the neighboring units. Multiple operation
units are combined to an operation unit block. A stream input/output
controller exists for each operation unit block. In the operation unit
block, stream input/output is controlled comprehensively. Therefore,
inputs to some operation units can be defined as enabled, and other
operation units in the same operation unit block can be defined as
disabled.

These operation units, switch-box, and stream input/output unit
have configuration registers to determine what is to be performed.
DR-SPE has a mechanism to update values in these registers through
“dynamic configuration” (Figure 2). With this mechanism, DR-SPE
provides a dynamic configuration property.

Several research projects have studied dynamic reconfigurable
processors, which achieve the desired operation using composed
building blocks, such as ADRES[12] and PipeRench[13]. Since the
major application of these processors is signal processing, their data
path control mechanism to achieve data flow is relatively simple.

On the other hand, stream data operations require complicated data
path control, such as the selection of specific data from multiple
sources, enabling data under some conditions to support Union, Win-
dowing, and Grouping. Therefore, to perform stream data operations
efficiently, a stream input/output control mechanism is needed. DR-
SPE has a specially designed switch-box and stream input/output
controller.

A. Operation Unit
Figure 4 shows the processor architecture of the operation unit.

Input/output data for each operation unit consists of the operation

tuple

selector

&

ALU

config

tuple result en

variable

&

&
clear

‘0’ result en eoseis

Fig. 4. Block diagram of the operation unit architecture

TABLE II
AVAILABLE OPERATIONS FOR EACH OPERATION UNIT

type operations
arithmetic add，sub，+1，-1
shift 1bit left shift (with/without rotate),

1bit right shift (with/without rotate)
Boolean and，or，xor，not
compare ==，>，>=, ! =

target data (tuple), a field to save the computational result (result),
and a flag to indicate whether the data is valid or invalid (en).
The bit-width of result is a fixed size determined when this unit
is synthesized. The tuple is determined along with the target input
data. Therefore, the data bandwidth of the operation unit input/output
is fixed statically.

Each operation unit has an ALU that supports basic instructions.
Available instructions of the ALU are listed in Table II. The signal
delay for these instructions is sufficiently short. Hence, the execution
of all operation units is performed in a cycle.

Input data for the ALU are selected by a selector from the tuple, re-
sult, en, and variable as internal values. Output data from the ALU are
also selectable from the tuple, result, en, and variable. Input/output
data from the tuple are separated according to the operation bit-width,
and each separated portion of the tuple is independently selectable.

The operation unit also has eis (enable input stream) and eos
(enable output stream), which forcibly sets the input and output values
as valid/invalid. When the eis/eos is ‘0’, en of input/output is set to
‘0’, which means the data are invalid.

B. Switch-box
The switch-box manages connections between the operation units

described in Section III-A. An input to the operation unit can receive
output data from connected operation units through the switch-box.
As shown in Figure 5, the switch-box connects an operation unit with
seven surrounding operation units. The number of selectable input
options is an important design issue. In this paper, the number of
connection directions is arbitrarily set to seven. With the switch-box
in DR-SPE, the direction of receiving input data is determined in two
ways: 1) fixing a direction statically, and 2) switching two directions
periodically. In case 2, the selected input is switched periodically at
a time defined by the counter in the switch-box.

Figure 6 is a block diagram of the switch-box. The values of
valueA, valueB, selA, and selB are configurable at runtime. The values
of selA and selB correspond to the input port for the output target. The



Operation
Unit

Operation
Unit

Operation
Unit

Operation
Unit

Operation
Unit

Operation
Unit

Operation
Unit

Operation
Unit

Operation
Unit

Fig. 5. Connection between operation units by switch-box

t
u
p
l
e
A

t
u
p
l
e
B

t
u
p
l
e
C

t
u
p
l
e
D

t
u
p
l
e
E

r
e
s
u
l
t
A

r
e
s
u
l
t
B

r
e
s
u
l
t
C

r
e
s
u
l
t
D

r
e
s
u
l
t
E

e
n
A

e
n
B

e
n
C

e
n
D

e
n
E

enresulttuple

config

s
e
l
B

s
e
l
A

=

v
a
l
u
e
B

v
a
l
u
e
A

counter

clear

t
u
p
l
e
F

t
u
p
l
e
G

r
e
s
u
l
t
F

r
e
s
u
l
t
G

e
n
F

e
n
G

Fig. 6. Block diagram of switch-box architecture

values of valueA and valueB define the period to enable configured
port selA and selB. When the counter equals valueA, the selected
output port is switched from configured selA to configured selB.

C. Stream Input/Output Controller

An operation unit performs desired operations on data, whereas a
switch-box determines the connection between operation units. These
two building blocks make available computations that describe simple
data flow. On the other hand, summation must be performed until
the timing specified for Aggregation, one of the Algebras defined in
SoW. To make this possible, the output data of the operation unit
that executes summation should be controlled by another operation
unit, which performs the computation to determine the summation
period. Furthermore, to implement Windowing and Grouping, not
only each output must be controlled, but also combined input and
output operation units must be controlled.

Limitation of input/output is forcibly set by eis/eos of each
operation unit. Therefore, a mechanism to control eis/eos is needed. In
DR-SPE, both stream input/output controller provide the mechanism.
Figures 7 and 8 show the stream input controller and stream output
controller. These controllers set appropriate values of eis/eos to
operation units included in an operation unit block. Operation units
in an operation unit block are indicated by indices.

In the stream input controller, output data for eis are selected from
four candidates: demultiplexed counter value, demultiplexed value
of content-addressable memory(CAM), result of input data, and ‘1’.
Note that eis for the operation units that have equal or larger index
values than the counter value must be set to ‘1’. Therefore, when the
counter value is zero, valid/invalid flag of input data is always equal
to the value of en of the input data. It is also possible to invert the
output eis value. It is possible to implement CAM that is readable in
a cycle by LUTs and registers in FPGA, however, the implementation
cost is large. Therefore, the number of CAMs is limited when tiling
many operation units in an FPGA.

In the stream output controller, output data for eos are selected
from three candidates: demultiplexed counter value, result of input

counter

clear

max

=
CAM

not not not

tuple
result en

selector

eis eis eis0 1 n

init

clk

eos0

config

‘1’

Fig. 7. Block diagram of stream input controller

counter

clear

max

=

clk

not not not

‘1’

tuple result en

selector

eos eos eos0 1 n

& & &

config init

Fig. 8. Block diagram of stream output controller

data, and ‘1’. Just as with the control of eis, eos in the operation
units that have equal or larger index values than the counter value
must be set to ‘1’. It is also possible to invert the output eos value.

IV. IMPLEMENTATION AND EVALUATION

This section evaluates the proposed DR-SPE. First, the implemen-
tation of the proposed DR-SPE is shown in Section IV-A. Second,
the evaluation results for the DR-SPE are shown in Section IV-B.
The evaluation includes configuration time, throughput, scalability,
and additional hardware resources.

A. Implementation of the DR-SPE
The proposed DR-SPE was implemented on a Xilinx FPGA

XC6VLX240T-1. The Virtex R©-6 FPGA ML605 Evaluation Kit is
used. The specifications of the FPGA are shown in Table III. Xilinx
ISE 12.1 Logic Edition is used as an FPGA development tool, and
XST compiler is used for synthesis.

In this paper, the proposed DR-SPE is evaluated by comparison
of the implementation results for queries Q1-Q4 shown in SoW[6]
(Figure 9) with DR-SPE and SoW. It should be noted that Q5 is
out of the scope of this paper, so that it is not implemented or
compared. Since the purpose of this section is to evaluate hardware



UBSTrades

�Price,Volume

⇥a

=○a:(Symbol,"UBSN")

Trades

(a) Query Q1

LargeUBSTrades

�Price,Volume

⇥c

⌅○c:(a,b)

>○b:(Volume,100000)

=○a:(Symbol,"UBSN")

Trades

(b) Query Q2

NumUBSTrades

�time
x|600,60

Trades countNumber

⇥a

=○a:(Symbol,"UBSN")

x

(c) Query Q3

WeightedUBSTrades

�tuple
x|4,1

⇥a

=○a:(Symbol,"UBSN")

Trades

wsumWPrice:(Price,[··· ])

x

(d) Query Q4

PriceAverages

�time
x|600,60

Trades grpy|Symbol

x avgAvgPrice:Price

y

(e) Query Q5

Figure 1: Algebraic query plans for the five example queries Q1 to Q5.

6-to-1 lookup tables 69,120
flip-flops (1-bit registers) 69,120
block RAM 296�18 kbit
25�18-bit multipliers 64
typical clock rate 100 MHz

Table 2: Xilinx XC5VLX110T characteristics.

they arrive. The operator is necessary, for instance, to evalu-
ate and return di�erent aggregation functions over the same
input stream.

3. FPGAS FOR STREAM PROCESSING
At its very heart, every FPGA chip consists of three main

types of components. A large number of lookup tables (LUTs)
provides a programmable type of logic gates. Each lookup
table can implement an arbitrary 6 bit ⇤⇥ 1 bit function.
Lookup tables are wired through an interconnect network
that can route signals across the chip. Finally, flip-flops
(also called registers) provide 1-bit storage units that can
directly be wired into the remaining logic.

The behavior of lookup tables, the wiring of the intercon-
nect, and the initial state of the flip-flops can all be con-
figured by software. The actual configuration is typically
described using a hardware description language (such as
VHDL or Verilog) and loaded into the FPGA.

Most FPGA chips have additional functionality available
as hard-wired silicon components. Examples of this include
low-latency on-chip memory (block RAM or BRAM ), hard-
ware multipliers, floating-point units, or even full-fledged
CPU cores. The hardware we used to evaluate our work,
e.g., includes 666 kByte block RAM. Table 2 shows the char-
acteristics of the FPGA we use in this paper. Configurable
I/O pins let the FPGA chip communicate with peripheral
hardware, such as external RAM, network, or storage bus
interfaces.

3.1 Content-Addressable Memory
The main advantage of using FPGAs for data process-

ing is their intrinsic parallelism. Among others, this en-
ables us to escape from the von Neumann bottleneck (also
called the memory wall) that classical computing architec-
tures struggle with. In the common von Neumann model,
memory is physically separated from the processing CPU.
Data is acquired from memory by sending the location of

a piece of data, its address, to the RAM chip, then receiv-
ing the data back. In FPGAs, flip-flop registers and block
RAM are distributed over the chip and tightly wired to the
programmable logic. In addition, lookup tables can be re-
programmed at runtime and thus be used as additional dis-
tributed memory. As such, the on-chip storage resources of
the FPGA can be accessed in a truly parallel fashion.

A particular use of this potential is the implementation
of content-addressable memory (CAM). Other than tradi-
tional memory, content-addressable memory can be accessed
by data values, rather than by explicit memory addresses.
Typically, CAMs are used to resolve a given data item to
the address it has been stored at. More generally, the func-
tionality can implement an arbitrary key-value store with
constant (typically single-cycle) lookup time.

We refer to the work of Guccione et al. [12] or documenta-
tion provided by Xilinx [18] for details on FPGA-based CAM
implementations. In Section 4.7, we use content-addressable
memory to implement lookups during ‘group by’ execution.
The access pattern in this context, frequent lookups with
rare updates, suggests the use of a CAM implementation
that is based on lookup tables. It excels with very high
lookup speeds (a fraction of a clock cycle), but has a 16-cycle
latency for updates. As an alternative, a block RAM-based
implementation would require a full cycle for lookups and
two cycles for updates.

3.2 System Setup
FPGAs can mimic arbitrary logic functionality by mere

reconfiguration. In contrast to existing special-purpose hard-
ware (such as graphics or floating-point processors), this
makes the role of an FPGA inside the overall system not
predetermined. By implementing the respective bus proto-
cols, e.g., FPGAs can be connected to memory or peripheral
buses, communicate with external devices, or any combina-
tion thereof.

Figure 2 shows the two possible configurations that are
most relevant to the goals of this paper. In the top part
of this figure (method (a)), the FPGA is directly connected
to the physical network interface, with parts of the network
controller implemented inside the FPGA fabric. After re-
ception, data from the network is directly fed into the hard-
ware implementation of a database query plan. The host
CPU only becomes involved once result items have been
produced for the user query. Using DMA, the Glacier li-
brary writes the result tuples from the FPGA into the sys-

Fig. 9. Sample queries listed in SoW as example (Cited from [6])

TABLE III
SPECIFICATIONS OF XC6VLX240T-1

#. of Slice Registers 301,440
#. of Slice LUTs 150,720
#. of Slices 37,680
#. of BRAM (32KB) 416
#. of DSP48 768

TABLE IV
PARAMETERS OF A DR-SPE IMPLEMENTED FOR THE EVALUATION

Tuple bit width 96-bit
Operator bit width 32-bit
#. of units in a block 8
Available ways for union 8
#. of configuration registers in a block 506-bit

resource usage and signal delay to implement a DR-SPE that includes
additional hardware resources over a simple static stream processing
engine. Q5 cannot be implemented because it requires hardware
resource usage and signal delay for implementing CAM that depends
strongly on the address width and data width. The additional hardware
resources and signal delays are relatively large when a small CAM is
implemented, or the additional hardware resources and signal delays
are relatively small when a large CAM is implemented. Therefore,
for the evaluation to be under fair conditions, Q5 is omitted from this
evaluation.

The evaluation target assumes a DR-SPE with the parameter set
shown in Table IV. The parameter set is assigned to perform queries
described in SoW. In the SoW, the input stream is a type of market
and the tuple consists of symbol, time, and price. When the symbol
is a 4-byte (= 32-bit) string such as “UBSN”, and each of time and
price are presented in 32-bit, the tuple bit width is 96-bit. Operator
bit-width of the ALU in the operation unit is 32-bit, which enables
instructions to execute naturally. To perform Q4 (in Figure 9), a 5-
way union is required. For a 5-way union using stream input/output
controller, the number of units in a block is set to 8. This setting
allows for an 8-way union, and so Q4 is satisfied. Due to these
parameters, the number of configuration registers in a block becomes
506-bit.

Hardware resource usage for the designed operation unit, switch-
box and stream input/output controller are shown in Table V.
The maximum executable frequency of each unit is 232.8MHz,
430.3MHz, and 440.3MHz, respectively. Note that the stream input
controller does not include CAM.

TABLE V
RESULT OF RESOURCE USAGE FOR AN OPERATION UNIT, A SWITCH-BOX,

AND AN INPUT/OUTPUT CONTROLLER

module #. of Slice Registers #. of Slice LUTs
An operation unit 181 483
A switch-box 22 285
An input/output controller 24 74

TABLE VI
RESULT OF RESOURCE USAGE FOR DR-SPE INCLUDING 10×10

OPERATION UNITS

resource usages ratio
#. of Slice Registers 20038 6 %
#. of Slice LUTs 88421 56 %

B. Evaluation of DR-SPE

This section evaluates the proposed DR-SPE in terms of the
configuration time, the flexibility, the operation throughput, and the
additional hardware resource usages for the reconfiguration mecha-
nism.

1) Configuration time: For the parameters shown in Table IV, the
configuration registers for a block become 506-bit. It should be noted
that even if the implementation of the “dynamic configuration” path
(Figure 2) is driven at 1 Mbps, the proposed architecture modifies
the registers within 506 µsec. This implies that a re-ordering of the
stream relation operators is achieved within 506 µsec.

In the case of SoW, reconfiguration of the entire FPGA is required
for re-ordering the stream relational operators, which takes about
20.5-21.7 seconds in the given environment1. Therefore, our pro-
posed architecture supports quick configuration for dynamic query
optimization, which is not achieved by SoW.

2) Flexibility: The flexibility of DR-SPE is an important feature
to realize user-desired queries quickly. Even though DR-SPE requires
additional hardware resources to provide a reconfigurable mechanism
over an implementation of a simple stream processing engine, it is
possible to tile many operation units in an FPGA. Table VI shows
hardware resource usage of a DR-SPE tiled with 10×10 operation
units. The maximum executable frequency of 10×10 DR-SPE is
172.1 MHz. This result shows that a query, which consists of up to
100 primitive operations, can be processed on the proposed DR-SPE
implemented on XC6VLX240-T. Therefore, it is obvious that DR-

1CPU: Core2Quad 2.66GHz, Memory: 4GB, OS: Windows XP(32-bit)



TABLE VII
RESULT OF RESOURCE USAGE FOR STATIC QUERIES USING ALGEBRA

Query #. of Slice Registers #.of LUTs
Q1 202 8
Q2 270 10
Q3 585 272
Q4 698 283

TABLE VIII
NUMBER OF REQUIRED OPERATION UNITS FOR EACH QUERY

Query #. of units #. of Slice Registers #.of LUTs
Q1 2 362 966
Q2 4 724 1032
Q3 11 1991 5313
Q4 15 2715 7254

SPE can process each of Q1-Q4 which consist of operations lower
than 100.

3) Throughput: This section compares the throughput for query
operations of SoW and DR-SPE. In the implementation of Q1-Q4 by
XC6VLX240T-1 with SoW, the maximum executable frequency for
all queries is about 200MHz. The maximum executable frequency
for DR-SPE is about 172.1MHz, so that the frequency is less than
with SoW. The operation throughput of both SoW and DR-SPE
is up to 1 tuple/cycle. Therefore, when a tuple bit-width is 96
bits, the maximum operation throughput of SoW and DR-SPE is
about 19,200 Mbps and 16,521 Mbps, respectively. Both maximum
operation throughputs are over a data arrival rate of 1,000,400
packets/s (available at the laboratory[6]). Therefore, the operation
performance of the proposed DR-SPE and SoW can be regarded as
comparable at the viewpoint of practical system operation.

It should be noted that the maximum executable frequency depends
on the signal delay of the critical path in the circuits. It is possible
to change hardware circuits when SoW is used. However, doing
so may decrease the maximum executable frequency. On the other
hand, in DR-SPE, the hardware circuit is not changed to implement
queries, and so performance degradation of the maximum executable
frequency and the maximum operation throughput does not occur.
This contributes to the novel flexibility of DR-SPE, because imple-
mentation of desired queries is easily achieved without increasing
signal delays.

4) Additional resource usage: Required hardware resources are
shown in Table VII for Q1-Q4 shown in Figure 9 with SoW.
When the same Q1-Q4 are implemented with DR-SPE, required
hardware resources are shown in Table VIII. As shown in Table
VII and Table VIII, register usage of DR-SPE is about 1.8-3.9 times
larger than with SoW, and LUT usage of DR-SPE is about 19.5-
120.8 times larger than with SoW. To implement multiplexers for a
dynamic reconfiguration mechanism of DR-SPE, many more LUTs
are required. On the other hand, the number of increased registers is
much less than the number of increased LUTs. This is because wasted
registers for a stored temporal result bit and for stored configuration
data increase register usage of DR-SPE.

V. CONCLUSIONS

This paper proposed a DR-SPE. It provides both high com-
putation performance for stream data operations and a dynamic
reconfiguration mechanism to sufficiently support dynamic query
optimization. DR-SPE consists of operator units, switch-box and

stream input/output controllers, which support operators equivalent
to Streams on Wires(SoW)[6].

The proposed DR-SPE was implemented on XC6VLX240T-1
and evaluated in terms of configuration time, flexibility, operation
throughput, and additional hardware resource usage for reconfigura-
tion mechanism. As for reconfiguration performance, the architecture
achieved register modification within 506 µsec when the configura-
tion path was driven at 1 Mbps, which was not achieved by SoW. The
proposed DR-SPE also achieves flexibility to support complicated
queries by providing 10×10 operation units tiled onto an FPGA.
The signal delay is slightly larger with DR-SPE than with SoW.

In future work, we will focus on optimizing the processor architec-
ture of DR-SPE and implement a query compiler for it. Furthermore,
we will implement dynamic query optimization algorithms on it. Then
we plan to apply DR-SPE to actual packet streaming applications.

ACKNOWLEDGMENT

This work is partially supported by “KAKENHI (#22700090)”,
“KAKENHI (#23700054)”, and “Early-concept Grants for Ex-
ploratory Research on New-generation Network”.

REFERENCES

[1] Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive
query processing. SIGMOD Rec., 29:261–272, May 2000.

[2] Cisco Carrier Routing System. http://www.cisco.com/en/US/products/
ps5763/index.html.

[3] Brian Gold, Anastassia Ailamaki, Larry Huston, and Babak Falsafi.
Accelerating database operators using a network processor. In Proceed-
ings of the 1st international workshop on Data management on new
hardware, DaMoN ’05, New York, NY, USA, 2005. ACM.

[4] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha.
GPUTeraSort: high performance graphics co-processor sorting for large
database management. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, SIGMOD ’06, pages
325–336, New York, NY, USA, 2006. ACM.

[5] Buǧra Gedik, Philip S. Yu, and Rajesh R. Bordawekar. Executing stream
joins on the cell processor. In Proceedings of the 33rd international
conference on Very large data bases, VLDB ’07, pages 363–374. VLDB
Endowment, 2007.

[6] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on wires: a
query compiler for FPGAs. Proc. VLDB Endow., 2(1):229–240, 2009.

[7] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data processing on
FPGAs. Proc. VLDB Endow., 2:910–921, August 2009.

[8] Louis Woods, Jens Teubner, and Gustavo Alonso. Complex Event
Detection at Wire Speed with FPGAs. PVLDB, 3(1):660–669, 2010.

[9] Jens Teubner and Rene Mueller. How soccer players would do stream
joins. In Proceedings of the 2011 international conference on Manage-
ment of data, SIGMOD ’11, pages 625–636, New York, NY, USA, 2011.
ACM.

[10] Kwanchai Eurviriyanukul, Norman W. Paton, Alvaro A. A. Fernandes,
and Steven J. Lynden. Adaptive join processing in pipelined plans.
In Proceedings of the 13th International Conference on Extending
Database Technology, EDBT ’10, pages 183–194, New York, NY, USA,
2010. ACM.

[11] Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: a query-
to-hardware compiler. In SIGMOD ’10: Proceedings of the 2010
international conference on Management of data, pages 1159–1162,
New York, NY, USA, 2010. ACM.

[12] Bingfeng Mei, Serge Vernalde, Diederik Verkest, and Rudy Lauwereins.
Design Methodology for a Tightly Coupled VLIW/Reconfigurable Ma-
trix Architecture: A Case Study. In Proceedings of the conference on
Design, automation and test in Europe - Volume 2, DATE ’04, pages
21224–, Washington, DC, USA, 2004. IEEE Computer Society.

[13] Yuan Chou, Pazhani Pillai, Herman Schmit, and John Paul Shen.
Piperench implementation of the instruction path coprocessor. In
Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, MICRO 33, pages 147–158, New York, NY, USA,
2000. ACM.




