
CCCPO: Robust Prefetcher Optimization Technique
Based on Cache Convection

Hidetsugu IRIE∗, Takefumi MIYOSHI∗, Goki HONJO†, Kei HIRAKI†, Tsutomu YOSHINAGA∗
∗The University of Electro-Communications, Japan

1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
E-mail: irie@is.uec.ac.jp, miyoshi@is.uec.ac.jp, yosinaga@is.uec.ac.jp

†The University of Tokyo, Japan
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

E-mail: honjo@is.s.u-tokyo.ac.jp, hiraki@is.s.u-tokyo.ac.jp

Abstract—One of the significant issues of processor architec-
ture is to overcome memory latency. Prefetching can greatly
improve cache performance, however, it has the drawback of
cache pollution unless its aggressiveness is properly set. Although
several techniques for prefetcher throttling have been proposed
which use accuracy as a metric, their robustness were not
sufficient due to the variations between program working set
sizes and cache capacities.

In this paper, we revisit cache behavior with the viwepoint
of data lifetime in a cache with prefetching. Based on this
observation Cache-Convection-Control-based Prefetch Optimiza-
tion (CCCPO) is proposed, which exploits the characteristics
of cache line reuse and controls the prefetcher aggressiveness.
Evaluation results showed that this novel approach achieved
4.6% improvement against the most recent prefetcher throttling
algorithms in the geometric mean of SPEC CPU 2006 benchmark
suite with 256KB LLC.1

I. INTRODUCTION

An important issue for micro-architecture is to conceal
memory latency and to make the functional units busy [1].
Currently, off-chip memory latencies have been increased to
several hundred cycles, which is hard to absorb by out-of-order
execution that re-orders at most a few tens of instructions.
Data parallel architectures [2] that exploit data- or thread-
level parallelism, and overlap many memory accesses, are
effective in concealing memory latency, their applications are
limited since their effectiveness depends on a balance between
computation time and data transfer time. On the other hand,
prefetching, though it is speculative, has been proposed to hide
memory latency and requires only simple address predictors.

Consequently, hardware prefetching [3], [4] has become
an important solution for memory latency of general purpose
processors. Recently, various prefetching techniques have been
adopted by commercially-produced processors [5], and more
advanced prefetching techniques have been proposed [6]–[9].

However, the proper amount of prefetching depends on
the application and the cache capacity. Although aggressive
prefetching may work effectively for certain types of appli-
cations, it can pollute the cache and degrade performance for
other applications. It can also increase unnecessary memory
transfers when the accuracy of address prediction is low. If
prefetching is as aggressive as in the most recently proposed
prefetching algorithms, the side effects can be serious. Thus,
the most recent prefetching algorithms generally involve mech-
anisms that dynamically optimize the amount of prefetching.
In most cases, the accuracy of address prediction is used as
a metric for prefetch usefulness since the current data in the
cache should be valuable [10]–[12]. In this case, the prefetched
lines are traced to check if they are actually accessed later
and, thus, estimate the prefetch accuracy. Prefetch access is

1 c©2011 IEEE. Reprinted, with permission, from Hidetsugu IRIE, Takefumi
MIYOSHI, Goki HONJO and Tsutomu YOSHINAGA: CCCPO: Robust
Prefetcher Optimization Technique Based on Cache Convection, Int. Conf.
on Networking and Computing, Dec. 2011.

suppressed when the accuracy falls below a predetermined
threshold.

However, the latest study has shown that the newest
prefetcher algorithm that spreads access to many possible
address is effective for a large last level cache (LLC). Thus,
it is not necessarily the case that prediction accuracy directly
corresponds to performance [9]. On the other hand, even high
accuracy prefetching can cause cache pollution when working
set size is greater than the cache size. Deciding whether to
throttle or to accelerate for optimal prefetching by accuracy
statistics is difficult because of such variations.

This paper proposes a new prefetcher throttling technique
called Cache-Convection-Control-based Prefetch-Optimization
(CCCPO), which achieves stable prefetcher throttling for
different programs. It focuses on the balance between the
“convection” intracaches and the speed of data streaming,
which have been ignored in previous work.

The paper is organized as follows. Section II discusses the
control techniques for prefetcher aggressiveness, while Section
III provides observations about data convection in a cache
and shows that this behavior can guide the optimal control
of prefetcher aggressiveness. Section IV describes the new
technique. Section V presents the evaluation environment,
while Section VI gives the results. Section VII introduces
related work, and Section VIII concludes the paper.

II. PREFETCHER THROTTLING

A. Controlling Prefetch Amount
Existing control techniques can roughly be divided into two

approaches. The first group estimates the accuracy of address
prediction at each prediction time [10]. A table entry that
contains whether the past prefetched line was actually accessed
is used to predict the usefulness of that prefetch, using the load
instruction’s PC or predicted address as a key. Prefetch access
is canceled when it is predicted as useless. This approach has
similar effects as confident counters for address prediction,
but it allows the address predictor and accuracy predictor to
be configured more flexibly. This approach requires additional
tables to maintain the past prefetch histories.

The other group of algorithms calculates statistically
whether prefetches are performing well at a given period,
and uses this as feedback to adjust the aggressiveness of the
prefetcher in the next period [11]–[13]. The aggressiveness is
controlled not by cancelling a certain prefetch but by changing
the parameters of prefetching, which determines how far ahead
of the predicted address stream the prefetcher sends requests,
such as prefetch distance, degree, or depth. This control is
generally called “prefetcher throttling” and is suitable for
controlling the aggressiveness of prefetchers that can generate
many requests at once.

Both approaches generally focus on prefetch accuracy,
which indicates how many prefetched lines were actually
accessed later on. However, Ebrahimi et al. [13] showed

that introducing a coverage metric that indicates how many
cache misses were covered by the prefetcher to the feedback
mechanism improves the performance of prefetchers.

B. Issues with Prefetcher Throttling
Previous throttling techniques increase the aggressiveness

of prefetcher when the accuracy or coverage are greater than
the fixed threshold and decrease when they are below the
threshold. Thus, the higher threshold value implies better brak-
ing, while a lower threshold value implies larger acceleration.
However, it is hard to control various applications using a fixed
uniform threshold value, especially for the following cases: i)
though the prefetch accuracy is high, useful lines are pushed
out from the cache when the cache has no vacancies; ii) though
the prefetch accuracy is low, aggressive prefetching improves
performance when the cache has vacancies; iii) though both
accuracy and coverage are low, prefetching is still effective
due to the poor locality of the application access pattern.

III. CACHE CONVECTION

A. The Target of Prefetcher Throttling
Prefetcher throttling varies the timing and amount of data

transfer to the cache. When a certain cache line is transferred
to the cache earlier by prefetching, the swapped line is evicted
earlier from the cache. Also, if several lines are transferred to
the cache at once by prefetching, several lines are evicted at the
same time. The gain in prefetching is the difference between
the value of the prefetched and evicted lines. However, previ-
ous techniques generally assume that the evicted lines have a
fixed value, while they deliberately estimate the value of the
prefetched line, for example, using accuracy statistics. This
naive assumption decreases the robustness of the prefetcher
throttling for reasons i) to iii). For this problem, Srinath et al.
tried to predict the usefulness of the evicted lines by storing
the eviction history in a bloom filter [12]. However the filter
costs several thousand bits of table, thus is not desirable.

Prefetching has a significant effect by accelerating the
replacement of cache contents when executing an application
where the working set of the application is replaced so rapidly
that the cache algorithm cannot work well. To accelerate
replacement, deep and net-spreading prefetching should be
effective. On the other hand, too much acceleration makes the
cache contents too advanced of the execution, thus causing
cache pollution. This observation indicates that the optimal
prefetcher throttling algorithm is to perform the most possible
aggressive prefetching within which a given line is not evicted
before it is used.

B. Cache Convection and Prefetcher Throttling
After transferred to the cache line, data are accessed at cer-

tain times that are inherent by the application program. Then,
the data is moved to the LRU side of the set as new lines enter
and finally be evicted from the cache. Although it is generally
hard for each cache line to judge whether it will be used
in the future, a characteristic value can be determined using
the statistics of the access behavior. Hereafter we propose the
estimation technique, and show that it can use as the metric
for prefetcher throttling.

Consider a cache that has N cache lines. Focusing on a
cache line l, which has not yet finished its last use, to remain
in the cache; this line has to be accessed before at most N
lines are pushed out. 2 Once the line is accessed, it returns to
the MRU side. Here, if there are h cache hits while N lines
are pushed out, the number of accesses to the focused line is
statistically estimated as follows.

h

N × µ
(1)

2From a statistical perspective, each set is assumed to be accessed equally.

max

CC

cache

memory

new line

num_evictions
CC

previous

CC
?>

prefetcher

throttling

access

num_evictions

_accessed

num_hits

evicted

line
counters

prefetch request

aggressiveness

Fig. 1. Outline of the Proposed Technique

where µ is ratio of lines in the cache that have not finished
their last use. Notice that the cache hits are at such lines, not
all lines in the cache.

This value represents relatively how many times each cache
line is used again. For example, the value becomes low when
the access pattern shows little locality as streaming access
patterns, and becomes high when access concentrates to small
working sets. Also, for LLC, the value becomes low if higher
level caches have enough size to store the temporal working
sets. We define this value “Cache Convection” or CC as the
image of the cache line convection between the MRU side and
the LRU side.

The relationship between Cache Convection and the amount
of prefetch can be determined as follows. As the amount of
prefetch increases, initially, CC increases because the com-
pulsory misses are reduced and h in Equation 1 is increased
for the same line swapping period. Then CC saturates at a
certain value that is inherent to the program code and begins
to decrease significantly when cache pollution occurs due to
too aggressive prefetching as the number of line swapping
increases for the same program portion and h in Equation 1
decreases. Consequently, CC shows the highest value when the
prefetcher aggressiveness is optimal for that program phase.

Focusing on this characteristic, a new prefetcher throttling
technique, the Cache Convection Control-based Prefetch Op-
timization (CCCPO) is proposed. CCCPO calculates CC from
the number of cache hits when a certain number of cache
swaps has occurred. Then, CCCPO maintains the optimal
prefetch amount by decreasing or increasing prefetcher ag-
gressiveness for the next period according to whether the
calculated CC was decreased or increased.

IV. IMPLEMENTATION OF CCCPO
A. Hardware Outline

Figure 1 shows the outline of the CCCPO. Program exe-
cution is separated dynamically at the enough long period to
calculate the statistics, for example, every 2 thousand cache
swapping. CC is calculated for every period, and the prefetcher
aggressiveness for the next period is determined based on
whether CC was increased or decreased. The proposed tech-
nique only requires several registers to be implemented, and
it does not need any history tables for feedback.

For counting the number of cache hits and other events, the
following three counters are added:

• num evictions, which counts the number of cache evic-
tions and thus can trigger the process for starting a new
period;

• num hits, which counts the number of hits in a given
period; and

• num evictions accessed, which counts the number of
lines that have been pushed out from the cache after
having been accessed at least once and is used to estimate
µ in Equation 1.

These counters are reset to zero after each period and
incremented at each cache access or line swap. As well, the
following three registers are added to store the control values:

• reg aggressiveness, which indicates the current aggres-
siveness of the prefetcher. The prefetcher varies the num-
ber of prefetching requests or the prediction algorithms
based on this value;

• reg previousCC, which stores the last CC so that it can
be compared when the next CC is calculated at the end
of the current period; and

• reg maxCC, which stores the maximum CC of the last
several periods, so that phase transition can be detected.

In addition to these unique counters and registers, the
proposed technique requires 1-bit “access bit” on each line
of the cache tag table. The “access bit” is initialized to zero
when new data is transferred to the correspond cache line
and is set to one when any accesses are performed to that
line. Prefetching or cache replacement techniques often require
such bits, and in those cases, a new budget for the “access
bit” is not required. As well, a divider is used to calculate
CC, but this division is not critical for latency, accuracy, or
conflicts, so many approaches, such as exploiting the divider in
the functional units or approximating with multiple saturation
counters, are available for reducing the divider’s budget. In
this paper, an additional divider is used for the performance
evaluation, but the performance difference is negligible.

B. Estimation of CC
µ in Equation 1, which represents the fraction of the cache

line that has not been finished the last use can be roughly
approximated with the fraction of evicted cache lines that has
been accessed at least once. This approximation is not very
accurate, but it works well because most cache lines in today’s
LLC are accessed less than twice due to the large size of higher
level caches. Cache lines can be approximately split into two
groups (those that are transferred to the cache and accessed
and those that are transferred to the cache and not accessed) to
estimate the ratio. The lines that are evicted while not having
been accessed and, thus, are evicted with an access bit of ‘0’,
can be classified into the following groups: i) requested by a
demand miss (cache miss), which is actually the last use so
that the line is not used later; and ii) requested by prefetch,
but the prediction was a miss.

Thus, CC can be estimated for this period using the values
of the counters at the end of the period:

rawCC =
num hits

num evictions accessed
(2)

The value of Equation 2 could be affected by sampling
noises because the period are separated regardless of the
program code. To make the feedback robust, the CC are
accumulated, and, then the current value is estimated using

CC =
rawCC + reg previousCC

2
(3)

C. Feedback Algorithm
As mentioned in Section III, the optimal control is achieved

when CC shows the maximum value for that program phase.
Whenever num evictions reaches a certain value, the following
feedback control is performed. First, the new CC that is
calculated using Equation 3 is compared to the previous
CC, which is stored in the register previous CC. Prefetcher

TABLE I
MICRO-ARCHITECTURAL PARAMETERS FOR BASELINE PROCESSOR

Instruction Set Architecture Alpha AXP
Front-end 4 way, 7 cycle
Instruction Window i64 entry, f32 entry
LSQ 32 entry
Functional Units 2 iALU, 1 iMUL/DIV, 2 LD/ST, 1

fpADD, 1 fpMUL/DIV/SQRT
L1 I-Cache 32 KB, LRU, 8 way, 64 B line, 1 cycle

latency
L1 D-Cache 32 KB, LRU, 8 way, 64 B line, 1 cycle

latency
L2 I/D-Cache 256 KB, LRU, 16 way, 64 B line, 20

cycle latency
memory access 200 cycle + arbitration latency

aggressiveness is decreased if the new CC is smaller than
the previous value and vice versa for increasing the aggres-
siveness. CC gradually approaches the maximum value after
several periods, and thus the prefetcher goes to optimal. In the
case of decrease, hysteresis is applied to make the feedback
robust to the sampling noise, as well as accumulation of CC. It
requires greater difference than the threshold. After updating
the aggressiveness, all counters are reset to zero, and a new
period is started.

The maximum value of CC will change as the program
phase changes. For example, consider the case when a phase
which accesses the same cache lines repeatedly is shifted to
different phase which scans a large address space and does
not reuse the lines. In this case, CC rapidly decreases from
a high value to a low value at the point of phase change.
Though throttling should accelerate aggressiveness for the
stream access after the phase change, throttling may decrease
the aggressiveness because CC decreases gradually from the
high value of the previous phase to the low value of the current
phase due to accumulation in equation 3. Generally, programs
often contain many such phase changes.

Thus, the proposed algorithm detects phase changes using
reg maxCC. Reg maxCC stores the maximum value of CC
for recent past values so that it maintains the maximum value
of that phase, and this value can be considered as unique
to the phase. Phase change is detected when the new CC is
significantly below reg maxCC. In this case, the accumulation
of CC and reg maxCC is reset, and prefetcher aggressiveness
can be incremented rapidly to the optimal level.

V. EVALUATION METHOD

A. Baseline Processor
Performance evaluation is done thorough the cycle accurate

simulator, which models out-of-order super scalar in detail, in-
cluding the prefetcher and the proposed throttling techniques.
The instruction set architecture and microprocessor parameters
are shown in Table I. In the evaluation, a single thread is
executed in a single core. Prefetch is applied to LLC, that is L2
cache in this model, because the prefetcher abilities for hiding
the large memory access latency are focused on. Memory
latency is modeled as the sum of 200 CPU cycles of access
latency and queuing latency for the memory bus confliction.
Memory bandwidth is set to at most one line transfer per ten
CPU cycles, which is similar to the regulation of DPC-13.

B. Prefetcher
The proposed throttling was applied to the sequen-

tial prefetcher (stream-based prefetcher) [4] for evaluation.
Prefetch is performed to the sequential addresses of the missed
address on a cache miss. Aggressiveness was set to 7 levels
(Table II), which included adding two more aggressive levels
“level5” and “level6” to the 5-level setting that Ebrahimi et
al. used [13].

3http://www.jilp.org/dpc/

TABLE II
SETTINGS OF PREFETCHER AGGRESSIVENESS

level 0 none
level 1 sequential depth 4
level 2 sequential depth 8
level 3 sequential depth 16
level 4 sequential depth 32
level 5 sequential depth 64
level 6 sequential depth 128

C. Throttling Parameters
In the evaluation, CCCPO was configured as follows. Feed-

back is performed for every 2-K line evictions, aggressiveness
is decremented when CC is reduced by 25% from the previous
CC, and a phase change is detected when CC falls below
5% of reg maxCC. These values were determined based on a
preliminary evaluation.

D. Benchmarks for the Evaluation
For the evaluation of section VI-A, eighteen programs from

the SPEC CPU 2006 benchmark suite were selected where
LLC misses and prefetcher aggressiveness affect performance
significantly, more than 20%, around the LLC capacity of
256KB. For the evaluation of section VI-B, we evaluated all
the benchmark programs of SPEC CPU 2006. Each program
was compiled by gcc version 4. 2. 2 with the -O3 option. Cycle
accurate execution of 100 million instructions after skipping
10 billion instructions from the program head was considered.

VI. EVALUATION

A. The Performance of CCCPO
Figure 2 shows the execution performance for the 18

benchmark programs. The y-axis shows the relative IPC that is
normalized by the performance with no prefetching. The per-
formance with fixed prefetcher aggressiveness (no feedback)
is shown in the bar “fix 1” to “fix 6”, from the leftmost to
the right, each of which represents the fixed aggressiveness of
“level 1” to “level 6” in the tableII.

Focusing on the relationship between aggressiveness and
IPC, it is shown that each program has proper aggressiveness
for which the performance impact is significant. For example,
433.milc is significantly accelerated with aggressive prefetch-
ing; on the other hand, 458.sjeng decreases its performance
with aggressive prefetching. The performance change ranges
from a low of -30% to a high of +250%. The proposed
technique shows optimal performances for all the benchmarks
except 483.xalancbmk. This suggests that proper dynamic
throttling was achieved. Using the geometric mean of the
18 programs, the performance is increased by 53% from the
baseline and 3.7% from “fix 5”, which showed the highest
performance in fixed aggressiveness in this processor model.

A detailed figure of throttling is shown in Figure 3. The
y-axis shows the miss ratio (notice that it is the ratio of
L2 misses to L1 misses) and CC in the bottom graph, and
the aggressiveness in the top graph. The graph plots these
values of each throttling period in the execution of 458.sjeng.
The x-axis represents the retired instructions (execution point),
and thus the density of the graph represents the frequency of
cache line swapping because throttling is performed for each
2 thousand line swapping. This graph is expanded for certain
execution parts so that the variation in each period can be seen
clearly. It can be seen that CC decreases when the aggressive-
ness increased from 0 to 1, and then the aggressiveness of
the next period is decreased to 0 based on CC, so that the
aggressiveness remains around the proper level. It can be seen
that this throttling actually prevented cache pollution, which
is seen in Figure 2. For the other example, Figure 4 shows a
similar plot but for execution of 450.soplex. This graph plots
all periods of thorough 100 million instruction execution. The
graph is so dense that the relationship between each period is

 0

 0.25

 0.5

 0

 3

 6

M
is

sR
at

io
/C

C

A
gg

re
ss

iv
en

es
s

time (clock count)

MissRatio CC Aggressiveness

Fig. 3. Throttling Timeline (458.sjeng)

 0

 0.25

 0.5

 0.75

 1 0

 3

 6

M
is

sR
at

io
/C

C

A
gg

re
ss

iv
en

es
s

time (clock count)

MissRatio CC Aggressiveness

Fig. 4. Throttling Timeline (450.soplex)

hard to see. However, we can see that the characteristic phases
are repeated during execution. Prefetcher aggressiveness shows
different values depending on the phase of the program.

B. Comparing Throttling Techniques
For further evaluation, here we examine the robustness of

CCCPO. Also, the comparison to other prefetcher throttling
techniques is performed. For the caches on nowadays pro-
cessors that is shared by multiple cores or has the function
of power-gating, prefetcher is desirable to be robust for the
dynamic change of cache capacity. Our CCCPO is expected
to achieve such robustness since it estimates the line-reuse
frequency dynamically and thus can adapt to various programs
and phases. In contrast, previous techniques which is guided
by prefetch accuracy or coverage may not always work well
for various programs or cache capacities.

To evaluate this robustness, we measured the IPC of each
throttling techniques for the execution of all of the each
benchmarks in SPEC CPU 2006 by varying the cache capacity
from 64KB to 8MB. The parameters except LLC capacity are
set to the same value of the previous evaluation (Table I).
Notice that the parameters for throttling mechanism is constant
while the cache capacity varies. Compared techniques are as
follows;

0

0.5

1

1.5

2

2.5

3

4
0
0
.p
er
lb
en
ch

4
0
1
.b
zi
p
2

4
1
0
.b
w
a
v
es

4
2
9
.m
cf

4
3
3
.m
il
c

4
3
4
.z
eu
sm
p

4
3
6
.c
a
ct
u
sA
D
M

4
3
7
.l
es
li
e3
d

4
5
0
.s
o
p
le
x

4
5
8
.s
je
n
g

4
5
9
.G
em
sF
D
T
D

4
6
2
.l
ib
q
u
an
tu
m

4
6
4
.h
2
6
4
re
f

4
7
0
.l
b
m

4
7
1
.o
m
n
et
p
p

4
7
3
.a
st
a
r

4
8
2
.s
p
h
in
x
3

4
8
3
.x
al
a
n
cb
m
k

g
m
ea
n

R
el

a
ti

v
e

IP
C

 (
v

s.
 n

o
-p

re
fe

tc
h

in
g

)

fix 1 fix 2

fix 3 fix 4

fix 5 fix 6

CCCPO

Fig. 2. Performance Comparison between Fixed Aggressiveness and CCCPO (IPC)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

a
ti

v
e

IP
C

 (
 v

s.
 p

er
fe

ct
 L

L
C

)

LLC cache size (per thread)

noprefetech

weak

aggressive

Acc

Acc+Cov

CCCPO

Fig. 5. Performance Comparison of Prefetch Throttling Algorithms (403.gcc)

• Acc : Guided by prefetcher accuracy.
• Acc+Cov : Guided by both accuracy and coverage, as the

technique of Ebrahimi [13].
• CCCPO : Guided by CC.

Acc increments the aggressiveness for the next period when
the prefetch accuracy of a period is greater than the threshold,
decrements otherwise. Acc+Cov increments the aggressiveness
when either accuracy or coverage is greater than its thresh-
old, decrements otherwise. We set the threshold to 60% for
accuracy, 20% for coverage, which is the best configuration
according to preliminary evaluation when LLC is 256KB.

Here we show the result for execution of 403.gcc in figure5.
The x-axis indicates the LLC capacity, y-axis indicates the
relative IPC compared to the IPC with perfect LLC (always
hits). Besides the three lines which show each throttling, no-
prefetch, fixed to weak aggressiveness and fixed to strong
aggressiveness are shown for reference. This graph shows
aggressive prefetching causes cache pollution when LLC ca-
pacity is less than 512KB. Acc succeeds to brake the prefetcher

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

a
ti

v
e

IP
C

 (
 v

s.
 p

er
fe

ct
 L

L
C

)

LLC cache size (per thread)

noprefetech

weak

aggressive

Acc

Acc+Cov

CCCPO

Fig. 6. Performance Comparison of Prefetch Throttling Algorithms
(433.milc)

while Acc+Cov cause pollution by accelerating the prefetcher.
CCCPO avoids the pollution as well as Acc. In the large LLC
area, the effect of pollution decreases and all techniques show
similar performance.

On the other hand figure6 shows the result of 433.milc.
433.milc is known as a program which the aggressive prefetch-
ing achieves significant performance improvement. However
the graph shows the Acc fails to promote the prefetching.
As in this case, Acc is not effective for programs which
inaccurate but high coverage prefetcher has significant effects.
Acc+Cov and CCCPO (except the case for 64KB) succeed to
acceleration. This graph also shows that the performance of
no-prefetch hardly changes with cache capacity. For the access
pattern of this program, prefetching is much effective than the
larger cache capacity.

Another example is shown in figure7, the result of
482.sphinx. For this program CCCPO shows the best ac-
celeration at 256KB LLC. This shows that there are cases

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

a
ti

v
e

IP
C

 (
 v

s.
 p

er
fe

ct
 L

L
C

)

LLC cache size (per thread)

noprefetech

weak

aggressive

Acc

Acc+Cov

CCCPO

Fig. 7. Performance Comparison of Prefetch Throttling Algorithms
(482.sphinx)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

a
ti

v
e

IP
C

 (
 v

s.
 p

er
fe

ct
 L

L
C

)

LLC cache size (per thread)

noprefetech

weak

aggressive

Acc

Acc+Cov

CCCPO

Fig. 8. Performance Comparison of Prefetch Throttling Algorithms (ge-
omean)

when inaccurate and low coverage prefetcher still improves the
performance. Our technique can promote such cases properly.

As seen above, CCCPO achieved robust throttling for var-
ious programs and cache capacities. CCCPO properly accel-
erate even inaccurate prefetcher while properly avoids cache
pollution. On the other hand, existing throttling sometimes
fails to control. The geometric means of all benchmarks are
shown in figure8. Acc works effectively at low capacities,
but remains low improvement at large capacities. Acc+Cov
works effectively at large capacities. CCCPO shows stable
performance for all capacities. Especially, it shows the best
performance at 256KB to 512KB, which is hard to determine
whether increments or decrements the aggressiveness. Figure 9
shows the worst distance from the optimal throttling (the best
of three) through all the programs. It shows CCCPO hardly
miss-throttles the prefetcher. These results show that CCCPO
is effective, though it is simple, for the caches of nowadays
multicore processors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
a

x
im

u
m

 D
is

ta
n

ce
 f

ro
m

 t
h

e
O

p
ti

m
a

l

LLC cache size (per thread)

Acc

Acc+Cov

CCCPO

Fig. 9. Worst Distance from the Optimal Throttling

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

D
is

ta
n

ce
 f

ro
m

 t
h

e
o

p
ti

m
a

l

Acc

Acc+Cov

CCCPO

Fig. 11. Distance from the Optimal Throttling

C. Applying to other Prefetcher Algorithms
Application of CCCPO is flexible and is not limited to

sequential prefetchers. For example, figure10 shows the result
, in the similar manner to figure2, when throttling are applied
to the stride prefetcher. The parameters of processor and
prefetcher throttling are same as the parameters shown in Table
1 and 2, respectively. The introduced stride predictor is C-Zone
based [14], implemented in GHB [7], and its depth is varied
according to the aggressiveness as in the tableII.

The results of the geometric mean show that the settings
of “fix3” or “fix4” were the best for this environment, but
generally it is not known in advance, also, it varies from
environment to environment. Prefetcher throttling techniques
achieve the similar performance to the second best settings as
“fix2” or fix“5” by feedback controlling. Among the feedback
techniques CCCPO achieves higher performance than Acc and
Acc+Cov for most of the benchmarks. While geomean of Acc
and Acc+Cov respectively are 1.23 and 1.21, geomean of CC-
CPO is 1.25. Thus CCCPO achieves 4 % better performance
than the latest technique and even 2% better than Acc that is
suitable for this capacity. Figure 11 shows the distance from
the optimal (the best performance of three). CCCPO shows
the robust performance for various programs, capacities and
predictors than other techniques.

VII. RELATED WORK

Hur et al. [11] proposed an adaptive stream prefetching that
statistically estimates the most frequent stream length, and

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
el

a
ti

v
e

IP
C

 (
v

s.
 n

o
-p

re
fe

tc
h

in
g

)

fix1 fix2 fix3 fix4 fix5 fix6 Acc Acc+Cov CCCPO

Fig. 10. Performance of Stride Prefetcher

cancels prefetch access that exceeds this length. This technique
improves the prefetch efficiency, especially in programs that
have many short streams by canceling the prefetch overruns
that occur at the end of each stream. Srinath et al. [12]
proposed feedback directed prefetching that uses prefetch
accuracy, lateness, and pollution during a given period to
determine the prefetcher aggressiveness of the next period.
Besides accuracy, this feedback approach introduces lateness,
which represents the hit in the access pending list, and
pollution, which detects access to evicted lines. However, it
requires thousands bits history table (implemented in a bloom
filter) for detection of pollution. Ebrahimi et al. [13] proposed
the technique for throttling multiple prefetchers by improving
the feedback-directed prefetching, by using the accuracy and
coverage for feedback. Furthermore, Ebrahimi et al. proposed
a technique for using accuracy-based throttling on multicore
processors [15]. Ramos et al. proposed a throttling technique
that uses cache hit counts [16]. Comparing the total cache hits
of a period to that of the previous period, aggressiveness is
increased or decreased. This technique does not require tracing
the prefetch result, like the proposed CCCPO, and can be
implemented with simple hardware. However, unlike CCCPO,
the technique can be affected by phase changes, because cache
hit counts may change drastically between the phases.

VIII. CONCLUSION

Hardware prefetching can efficiently hide the long memory
latency, but it requires proper aggressiveness tuning. This pa-
per proposed new prefetcher throttling technique that focuses
on the cache line re-use, instead of using prefetch accuracy
or coverage-based approaches. Based on the observation that
the number of cache line re-uses is statistically a unique
value for each program phase, the metric “cache convection”
is introduced. “CC” indicates the maximum value when the
speed of the program advance and cache data swapping are
balanced, which implies that proper prefetcher aggressiveness
is achieved.

The proposed prefetcher throttling technique CCCPO was
evaluated. The evaluation results showed that CCCPO is able
to throttle the prefetcher properly for various programs and
cache capacities. It showed better performance than other
throttling approaches, by 4.6% on the geometric means of
SPEC CPU 2006 with 256KB LLC. Besides, it showed the

best performance for the most cases in spite of that existing
techniques have each sweet spots of cache capacity. As well,
compared to existing techniques, it does not require sensitive
threshold values.

REFERENCES

[1] D. Patterson, “Latency Lags Bandwidth,” Commun. ACM, vol. 47,
no. 10, pp. 71–75, 2004.

[2] J. Gebis and D. Patterson, “Embracing and Extending 20th-Century
Instruction Set Architecture,” IEEE Computer, vol. 40, no. 4, pp. 68–75,
2007.

[3] A. Smith, “Sequential Program Prefetching in Memory Hierarchies,”
IEEE Computer, vol. 11, no. 12, pp. 7–21, 1978.

[4] N. Jouppi, “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers,” Int. Symp. on
Computer Architecture, pp. 364–373, 1990.

[5] J. Tendler, J. Dodson, J. J.S. Fields, H.Lee, and B. Sinharoy, “Power4
system microarhitecture,” IBM Journal of Research and Development,
vol. 46, no. 1, pp. 5–26, 2002.

[6] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-directed
data prefetching mechanism,” Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 279–290, 2002.

[7] K. Nesbit and J. Smith, “Data cache prefetching using a global history
buffer,” Int. Symp. on High Performance Computer Architecture, pp.
96–105, 2004.

[8] S. Somogyi, T. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-Temporal
Memory Streaming,” Int. Symp. on Computer Architecture, pp. 69–80,
2009.

[9] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for data
cache prefetch,” Int. Conf. on Supercomputing , pp. 499–500, 2009.

[10] X. Zhuang and H. Lee, “A Hardware-based Cache Pollustion Filtering
Mechanism for Aggressive Prefetches,” Int. Conf. on Parallel Process-
ing, pp. 286–293, 2003.

[11] I. Hur and C. Lin, “Memory Prefetching Using Adaptive Stream
Detection,” Int. Symp. on Microarchitecture, pp. 397–408, 2006.

[12] S. Srinath, O. Mutlu, H. Kim, and Y. Patt, “Feedback Directed Prefetch-
ing: Improving the Performance and Bandwidth-Efficiency of Hardware
Prefetchers,” Int. Symp. on Highi-Performance Computer Architecture,
pp. 63–74, 2007.

[13] E. Ebrahimi, O. Mutlu, and Y. Patt, “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching Systems,”
Int. Symp. on Highi-Performance Computer Architecture, pp. 7–17,
2009.

[14] S. Palacharla and R. Kessler, “Evaluating stream buffers as a secondary
cache replacement,” Int. Symp. on Computer Architecture, pp. 24–33,
1994.

[15] E. Ebrahimi, O. Mutlu, C. Lee, and Y. Patt, “Coordinated Control of
Multiple Prefetchers in Multi-Core Systems,” Int. Symp. on Microarchi-
tecture, pp. 316–326, 2009.

[16] L. Ramos, J. Briz, P. Ibanez, and V. Vinals, “Multi-level Adaptive
Prefetching based on Performance Gradient Tracking,” Workshop on
JILP Data Prefetching Championship, 2009.

