
Multi-GPU Acceleration of Optical Flow
Computation in Visual Functional Simulation

Junichi Ohmura, Akira Egashira, Shunji Satoh, Takefumi Miyoshi, Hidetsugu Irie and Tsutomu Yoshinaga
Graduate School of Information Systems, University of Electro-Communications,

1-5-1 Chofugaoka, Chofu-shi 182-8585, Tokyo, Japan
Email: {ohmura, egashira}@comp.is.uec.ac.jp, {shun, miyoshi, irie, yosinaga}@is.uec.ac.jp

Abstract—Numerical simulation for visual processing of the
human brain is one of time-consuming applications. This paper
shows acceleration techniques for a simulation program of the
visual processing. We parallelize convolution calculations, which
are core operations, which the simulation program requests, on a
GPU-accelerated PC cluster. Our implementation includes three
improvement points. Firstly, we consider efficient data mapping
onto global and shared memories1 of the GPU. Secondly, multiple
convolutions for the same input data are computed by each
node’s GPU, referred to as package execution. Finally, an input
2-dimensional image is divided into regions and convolutions for
these regions are executed in parallel utilizing MPI (Message
Passing Interface). Our experimental results show a linear
speedup up to 12 nodes in the PC cluster for the convolution
program. We also show the effects of the package execution
and reduced communication on NVIDIA tesla C1060 and C2070,
respectively.2

I. INTRODUCTION

Human visual system has high competence for visual pro-
cessing. The flexibility of the visual system sometimes exceeds
an engineering pattern recognition algorithm. Understanding
mechanism detail of the visual system enables to apply that
to various beneficial application, such as avoiding accidents in
robot visions. Whereas neurons of the visual system also have
an instability property. One typical example is optical illusion.
A lot of efforts have been done to analyze visual processing
of humans.

Blue Brain Project[2] focuses on detailed neural system
simulation. To describe neurons mathematically, this project
adopts a compartment model. The model enables fine-grained
simulation of visual neurons. However, it does not suit for
macroscopic analysis of human visual system. Instead of the
model, a linear model is suitable for the purpose to understand
the visual system. The linear model is more coarse-grained and
focuses on only input and output for the neurons. Actually
various visual simulations apply the linear model[3]–[5].

Although the linear model is simple, it requires long
simulation time in order to treat a large number of these
models. In fact, a lot of human visual system researchers
simplify these models and confine these models functions for

1Shared memory is a fast memory region on GPU. A location of the shared
memory is significantly close to GPU’s processing unit, like cache. This is a
key of efficient data communication[1].

2 c©2011 IEEE. Reprinted, with permission, from Junichi Ohmura, Akira
Egashira, Takefumi MIYOSHI, Hidetsugu IRIE and Tsutomu YOSHINAGA:
Multi-GPU Acceleration of Optical Flow Computation in Visual Functional
Simulation, Int. Workshop on Parallel and Distributed Algorithms and Appli-
cations, Dec. 2011.

saving the simulation time. We believe that parallel processing
solves the problem. Therefore, our primary task is accelerating
convolution, which is a fundamental calculation in the visual
simulation, Our implementation accelerate convolution by
utilizes parallel processing.

One of the typical accelerating techniques for the convo-
lution is FFT(Fast Fourier Transform). FFT is applicable for
a convolution between a target (input) and a kernel (fourier
basis) under a condition that the kernel is unique temporally
and spatially. However, the convolution kernels are different
for each neuron in the linear model simulation, hence FFT
is not applicable. To solve the problem, we parallelized the
convolutions by utilizing MPI (Message Passing Interface) on
a GPU-accelerated PC cluster in a previous studies[6].

This paper reports the implementation and improvements
of high speed convolutions for movie data inputs. Our experi-
mental results show good speedups for a program to calculate
optical flow up to 16 nodes in the GPU-accelerated PC cluster.
Our acceleration techniques have three folds. Firstly, in order
to access large amount of data efficiently, we utilize shared
memories to read target data which are more often used during
the calculations compared with kernel data. Because of the
low reuse ratio of the kernel data, we read them directly
from a global memory and utilize a mean for storing multiple
kernel data which enable an efficient use of wide memory
bandwidth of GPUs. Secondly, multiple convolutions for the
same input data are performed in a single device code (CUDA
kernel program[1]) to minimize overheads for global memory
accesses3. A reduction operation for the multiple convolutions
is also performed in the device code to reduce communication
between GPU and host CPU. Finally, an input 2-dimensional
image is divided into regions and convolutions for the regions
are executed in parallel by utilizing MPI (Message Passing
Interface).

The rest of the paper is organized as this follows; Section II
explains a basic mathematical model for the visual simulation.
Section III describes our parallel implementation. Section
IV and V show evaluation environments and the results,
respectively. And section VI concludes this paper.

II. BASIC MATHEMATICAL MODEL

For a linear model simulation of human visual functions,
we adopt a mathematical model for the visual function. The

3Global memory is a memory region on GPU. This data transfer speed
is slower than shared memory. Meanwhile, this data capacity is much larger
than that of the shared memory.

Fig. 1. A basic model of visual functions in the linear model.

mathematical model works the visual function as a neuron
on human visual system. Fig. 1 shows a basic mathematical
model for the linear model. Each model’s function is realized
by enormous mathematical models. Generally, each model
receives input signals from preceding models, and transmits
output signals to succeeding models.

As in Fig. 1, each model receives n+1 inputs, oi : −n/2 ≤
i ≤ n/2. The input signals are weighted by synapse load value
(henceforth kernel). The output u from the model is calculated
by the convolution with oi (input) and wi (kernel).

n: A range of signal that each model can be received.
w: Weight coefficient of synapse load value(kernel).
o: Input to succeeding models(Output from the preced-

ing models).
u: Output to the succeeding models.

These linear model in Fig. 1 are based on equation (1).

u(x) =

n
2∑

i=−n
2

wx(i)o(x − i) (1)

When we extend the relation between w and o to calculate u
in 2D space with taking account of temporal variation, u can
be represented in equation (2).

u(x, y, t) =

n
2∑

ξ=−n
2

m
2∑

η=−m
2

l∑
τ=0

wx,y(ξ, η, τ)o(x − ξ, y − η, t − τ)

(2)

n, m, l: spatio temporal range(Kernel size)
In engineering image processing such as an edge detection,
small kernel size, less than ten in each dimension, is usually
enough to perform applications. On the other side, in the
visual neuron simulation, each dimension size of a 3D kernel
w is typically larger than ten. In addition, each neuron,
whether relates to the same visual function or not, has different
properties. In other words, kernel values for models differ

TABLE I
TOTAL SIZE OF ALL KERNEL DATA FOR VARYING FRAME SIZE AND

KERNEL SIZE (NON-SEPARABLE KERNEL).
15 × 15 × 15 20 × 20 × 20 25 × 25 × 25

320 × 240 0.97GB 2.29GB 4.47GB
512 × 384 2.47GB 5.86GB 11.44GB
640 × 480 3.86GB 9.16GB 17.88GB

TABLE II
TOTAL SIZE OF ALL KERNEL DATA FOR VARYING SPACE SIZE AND KERNEL

SIZE (SEPARABLE KERNEL).
15 × 15 × 15 20 × 20 × 20 25 × 25 × 25

320 × 240 13.2MB 17.6MB 22.0MB
512 × 384 33.8MB 45.0MB 56.3MB
640 × 480 52.7MB 70.3MB 87.9MB

from position to position, hence spatially different kernel wx,y

is needed. Moreover, the kernel could be varied temporally,
resulting the 3D kernel.

The visual system simulation is expressed by multi-stage
convolutions that require large-scale calculations. Additionally,
the mathematical model needs an arithmetic operation per each
spatio temporal coordinate in order to adjust and reduct these
convolution outputs. This model calculates convolutions with
different kernels for an input, and then summarizes the outputs
from models in the kernel size into one.

Although such a summation is a simple operation, that
often requires communication tasks and affects the system
performance. Therefore, we also need to tune the system from
the aspect of communication timing and data volume.

A. Mathematical model for Optical flow
Optical flow is the apparent motion vector of objects in a

visual scene. A motion, relates between an eye and a visual
scene, causes the motion vector. Human visual simulation of-
ten uses the motion vector. Similarly, our numerical simulation
uses the motion vector.

Optical flow is represented by the motion vector which is
calculated by Lucas-Kanade method. This numerical simu-
lation uses input data, called I(x, y, t). That is a brightness
datum for the coordinate x, y and a time in a frame t. This
simulation calculates three differentials of I(x, y, t); ∂I

∂x , ∂I
∂y

and ∂I
∂t . Using these differentials, calculates the optical flow

with the follow equation (3) in the Lucas-Kanade method.[u
v

]
=

[
P

i
wiIx(qi)

2 P

i
wiIx(qi)Iy(qi)

P

i
wiIx(qi)Iy(qi)

P

i
wiIy(qi)

2

]−1 [
−

P

i wiIx(qi)It(qi)

−
P

i wiIy(qi)It(qi)

]
(3)

qi: pixcel values in the movie data
Here, wi is a weighting factor, which is calculated by the
distance from the central pixel of a frame[7]. This weighting
factor contributes more satisfactory simulation results.

On this study, we adopt the following TABLE I and II as
our simulation subjects.

III. PARALLEL IMPLEMENTATION

A. Supporting multiple kernels
In our simulation, a communication between CPU and GPU

happens per frame, followed by the optical flow computation
on a GPU. This procedure is similar to an ordinary graphics
processing on GPU. Input data are accessed via a shared
memory, which are frequently used in the calculation with

Fig. 2. Multiple separable kernel for each convolution.

Fig. 3. A method to store and access to multiple kernels (separable).

spatially different coordinates. While, kernel data are read
directly from a global memory because of their low reuse
ratios. Nevertheless, our implementation can not efficiently use
wide memory bandwidth of GPUs, so we utilize special means
for storing kernel data.

As mentioned above, our target convolutions require 3D
kernels, which are different spatially and temporally, hence
these kernel data size becomes huge. Fortunately, we can
reduce the data size by utilizing a separable kernel, which can
be calculated with x, y and t coordinates. Fig. 2 illustrates
how a 3D kernel is divided into three single dimensional
arrays and kernel data for 3D coordinates are calculated by
multiplications with three values of the 1D arrays. And Table
I and II show the sizes of non-separable and separable kernels
correspond to each image(frames) resolution. The size of each
dimension varies from 15 to 25, respectively. As shown in
Fig. 2 and Table I and II, the separable kernel requires only
15+15+20 memory spaces, which is much smaller than the
non-separable kernel. In spite of additional calculations for
the separable kernel, the reduction effect of these data size
is more efficient than that. A device code on a GPU access
kernel data and flame coordinates. The kernel data specifies
an index of the separable kernel x, y or t. Such a data method

Fig. 4. A package execution of three convolutions.

Fig. 5. Multiple kernel data access for a package execution of multiple
convolutions.

is shown in Fig.3.

B. Supporting package execution for multiple convolutions

This package execution reduces the number of data accesses
to the target (input data). As shown in Fig. 4, we pack multiple
convolutions for the same input in a program on a single
node. To confirm a relationship between the number of packed
convolutions and the execution time, we conduct a experience.
This experience executes convolutions on two GPU, which
differ from each other in the number of these convolutions,
and measures each execution time. Section V details this
experience results.

Additionally, we use a data type of float2 which is defined
in the NVIDIA CUDA Toolkit, as shown in Fig. 5. This data
type enables to access two float values at a time.

Actually, float3 and float4 have been also defined by
NVIDIA CUDA Toolkit. Unfortunately, the use of float3
degrades the calculation performance substantially. Also float4
can not shorten the execution time on C1060. float2 enables
to shorten the execution time on C1060. Consequently our im-
plementation executes a float2 data access two times instead of
executing a float4 data access one time. All of our experiences
results are results by a float2 data access.

C. Reducing communication volume

One of the main problem of our implementation is a
communication task. Our implementation has a number of
communication tasks, this degrades our system performance.
To recover the disadvantage, we improve the communication
part in our implementation. Targets of our improvement are
a reduction operation, which our simulation system requires
frequently, and inter node data exchanges.

Before an output operation, our simulation system executes
a reduction operation. The reduction operation reduces three

Fig. 6. Reducing communication volume in the optical flow computation.

output data to two output data per spatio temporal coordinate.
The operation reduces communication data size on output
and can be expected to reduce the communication time. The
right side of Fig. 6, called matrix calculation, illustrates the
reduction operation of the optical flow computation.

The another improvement to reduce communication data
size is changing the timing of a data exchange, which normally
required just before convolutions in our simulation system.
These convolutions require values; I2

x, I2
y , IxIy , IxIt and IyIt.

Because each nodes is assigned to a divided 2D image(flame)
region, the calculation for boundary region requires data
exchange these values with neighboring nodes. Our improve-
ment moves the data exchange timing to immediately after
differentials on each node. The variable of the data exchange
are Ix, Iy and It. Our improvement reduces the amount of the
data exchange to 3

5 , Fig. 6 illustrates our improvement.

D. Parallel computing on a GPU-accelerated PC cluster
For parallel computation on a GPU-accelerated PC cluster,

we divide each frame into regions between the cluster’s
nodes, as shown in Fig. 7. This spatial data division reduces
the kernel and target size per node, hence we can increase
applicable target size. Since this spatial data division does not
have temporal dependency in the target(input), our simulation
system can support stream inputs.

The input and output data are assigned and reducted by a
special node, called root node. It is high load for root node
to assign and reduct these data all alone. In order to reduce
root node load, as the below list shows, our implementation
divides this assignment and reduction into 2 stage.

• The assignment part
1) Root node assigns divided data to four nodes.
2) These four nodes assigns each three node, which

these four nodes are in charge of they.
• The reduction part

1) These four nodes are received output data from
these three nodes, and integrate the output data.

2) The output data from these four nodes is integrated
by root node.

Because dividing to four nodes is more effective for a
concentration of communication tasks compared to dividing to
16 nodes at a time. Similarly, a whole procedure from inputs
till output computational results is as follows;

Fig. 7. Distributed processing on the multiple nodes.

Fig. 8. An image of pipeline execution

Step 1 Root node reads input frames.
Step 2 Root node divides the frame data into regions and

distribute them by inter-node communication.
Step 3 All nodes calculate on GPU.
Step 4 All nodes exchange intermediate data between GPU

among neighboring nodes.
Step 5 All nodes compute remaining task on GPU.
Step 6 All nodes reduct results from each nodes.
Step 7 Root node outputs the results.
We execute one process per node, and the process invokes

three threads. The first thread executes Step 1, and the second
one executes from steps 2 to 6 in a pipeline fashion. Finally,
the third one executes step 7. We explain the detailed pipeline
process in the next section.

E. Pipeline processing

Input frames are processed by the five-stage tasks, from 2
to 6 stage, one by one in a pipeline fashion, as mentioned in
the previous section.

Fig. 8 illustrates the pipeline processing behavior. Only one
thread per process (or node) is responsible to this pipeline.
These five-stage tasks for different frames are conducted
in a certain iteration, simultaneously. Each communication
stage tasks (2, 4 and 6 stage) perform MPI asynchronous
communication (MPI Isend, MPI Irecv and MPI Wait) and
each computation stage tasks (3 and 5 stage) are performed
by GPU asynchronously. Therefore, this pipeline process can
cover data transfer latency by the communication task if the
computation task is large enough.

Kernel data are not changed during the process, hence they

Fig. 9. An image of pipeline execution (with divided communication tasks).

are allocated in the global memory of GPU by an initialization
task.

The communication data size is proportional to the input
data size. Similarly, the calculation time is proportional to the
input data size and the calculation time per one spatio temporal
coordinate. The kernel size is 15×15×20 in this study, and two
operations (multiplication and addition) are required per spatio
temporal coordinate. The total number of floating point oper-
ations are more than 40,000 per spatio temporal coordinate.
More detailed consideration in these operations is mentioned
in next page, Section IV. We estimate the computation and
communication times per frame. The computation time is
about 10−8 seconds with a 1 TFlops GPU, and that about
the communication time is 4×10−9 seconds with double links
of gigabit Ethernet. By this estimation, we can see that the
computation time is shorter than the communication time.
However, it does not consider any overheads. The computation
performance may be also degraded by memory latency, and the
communication time may incur messaging software overhead.
Actually, our preliminary experiment showed communication
latency was longer than the computation time, so we adjusted
the pipeline process.

To prevent the communication overheads affect the overall
performance, we divide each communication task into two
smaller ones, one of them is for launching and the other for
waiting a completion of a certain communication task. This is
depicted in Fig 9.

IV. EVALUATION

TABLE III and IV show hardware and software specification
of nodes in our experiments. The first experiment considers
effect of the package execution of multiple convolutions.
This experiment is done on a single node PC in order to
eliminate effect of inter-node communication. We use one of
two kinds of GPU architectures, NVIDIA C1060 or C2070.
This experience result is mentioned in Section V-A.

The second experiment executes parallel execution of the

TABLE III
THE HARDWARE AND SOFTWARE SPECIFICATION ABOUT THE PC

EQUIPPED WITH NVIDIA C1060.
CPU Intel Xeon Quad-Core CPU W3520
Clock speed 2.67 GHz
memory 6 GB
GPU NVIDIA C1060 (GT200 architecture)
Clock speed 1.296 GHz
Number of Streaming Processor 240
Peak performance 933 GFLOPS
Memory 4 GB
Memory bandwidth 102 GB/sec
Graphics bus PCI Express x16 Generation 2.0
OS CentOS 5.3
C Compiler Intel C compiler 11.1
CUDA CUDA Toolkit 3.2

TABLE IV
THE HARDWARE AND SOFTWARE SPECIFICATION ABOUT THE PC

EQUIPPED WITH NVIDIA C2070.
CPU Intel Xeon Quad-Core CPU W5667 x 2
Clock speed 3.07 GHz
Memory 24 GB
GPU NVIDIA C2070 (Fermi architecture)
Number of CUDA Core 448
Clock speed 1.15 GHz
Peak performance 1.03 TFLOPS
Memory 6 GB
Memory bandwidth 144 GB/sec
Graphics bus PCI Express x16 Generation 2.0
OS Fedora 11
C Compiler Intel C compiler 11.1
CUDA CUDA Toolkit 4.0

optical flow computation on a 16-node PC cluster. The node
shown in TABLE III is used, and 16 nodes are connected
with two Gigabit Ethernet links. Although this experiment
adopts relatively slow interconnects, as above-mentioned, we
carefully adjusted the pipeline process including computation
and communication as we described in section III, so we
can expect speedup by multiple node computation. Obtained
speedups are discussed in the next section. For the inter-node
communication, we use OpenMPI 1.4.1. This experience result
is mentioned in Section V-B.

The third experiment confirms performance of our simu-
lation system. The experiment measures throughput for three
size of input frames; 320×240, 512×384 and 640×480. This
experience result is mentioned in Section V-C.

The last experiment confirms effect of dividing communi-
cation tasks. The experiment measures throughput for three
size of input frames like the third experiment. However that
case except dividing communication task, which is mentioned
Section III-E, in order to confirm effect dividing communica-
tion task. This experience result is mentioned in Section V-D.

And for all experiments, the kernel size is 15×15×20 as a
moderate size for our linear model simulation of visual neu-
rons. There are 41,400 of floating point operations per spatio
temporal coordinate. The operation includes multiplication and
addition with the kernel and target data. The amount of the
operations are calculated by the equation (4).

{(15 × 15 × 20)︸ ︷︷ ︸
convolutions

per each dimension

+ (15 × 20) + (15 × 15 × 20)︸ ︷︷ ︸
calculations for kernel

} × 3︸︷︷︸
dimension

=41, 400 (4)

We use single precision operations in our simulation, since

they guarantee enough accuracy and ten times faster than
double precision operations.

All of our experiment uses movie data as input data, which
are popular in Internet. The frame size of these movie data are
320×240, 512×384, and 640×480. The vertical and horizontal
size of those are multiples of 16, that are also popular for the
movie data.

V. RESULTS

A. Effect of the package executions for multiple convolutions
We conduct a experiment that executes package execution

for multiple convolutions. Expected and measured execution
times for the package execution are depicted in Fig. 10.
expected time in this graph is a estimation based on the
execution time when calculating only one convolution. Ex-
pected time of more than two convolutions is estimated from
the product of the number of convolutions and the execution
time when calculating only one convolution.

In Fig. 10, we can notice that these execution times are
always shorter than expected time. Although the peak perfor-
mance of C2070 is higher than that of C1060, C1060 exceeds
C2070 on the package execution of one or two convolutions.
convolutions is one or two. It is inferred that data access
overheads of C2070 are more than those of C1060, hence
those of C2070 seem to lead these results.

To the contrary, C2070 exceeds C1060 on the package
execution of three or four convolutions. It is might be said
that this execution increases the amount of calculations and
memory access, except for these memory access overheads,
and weakens the influence of these overheads. In addition,
C2070 shows the higher computational power and memory
bandwidth. These reasons cause C2070 to exceed C1060 on
that of three or four convolutions.

B. Effect of reducing communication volume
This section examines effect of reducing output data vol-

ume. In our simulation, outputs from convolutions are written
into off-chip memory of the GPU. Then, they are transferred
to main memory of the host via the PCI Express x16 bus. We
can expect shortening the data transfer time by reducing the
output data size.

We compare two cases on two GPU architectures; C1060
and C2070. The first one computes three convolutions then

Fig. 10. Performance of the package execution (C1060 and C2070).

Fig. 11. Effect of reducing communication volume(1 node).

Fig. 12. A performance comparison of calculation for optical flow and 3
convolutions.

outputs three results. The second one computes three con-
volutions followed by 12 floating point operations per spatio
temporal coordinate to reduce the output data size into 2

3 . Fig.
11 shows the results. Here, the first one is denoted as 3con.
And the second one is denoted as 3con.+calc.

The execution time on both C2070 and C1060 is shortened
by reducing the output data size, but the reduced time is
limited considerably. Because the output data size is relatively
small compared to the input sizes of the kernel and target. On
the other hand, in a case of multi-node parallel computing, we
recognize a performance improvement by effects of reducing
communication volume. Fig. 12 shows a performance compar-
ison of multi-node calculations between the optical flow and
3 convolutions.

From these results, we have recognized that reducting
communication volume is profitable. This is happened because
inter node communication as well as data reallocation is
required for execution on multiple nodes. Hence, reducing
the time of communication tasks is important. However, this
execution is not overlapped with other computation nor com-
munication tasks. This may degrade the overall performance,
so overlapped execution is one of our future work.

C. Experimental results on the GPU-accelerated PC cluster
Fig. 13 shows the speedups of the optical flow computa-

tion when we increase the number of nodes in the GPU-
accelerated PC cluster. Three frame sizes, 320×240, 512×384,
and 640×480, are used.

For the smallest frame size(320×240), the throughput
reaches 140 FPS. We obtained almost linear speedup up
to 16 nodes for the smallest frame size. For other flame
sizes, the throughput reaches 40 FPS when the flame size is

Fig. 13. Throughput for three size of input frames.

Fig. 14. Throughput for three size of input frames without dividing
communication tasks.

512×384, and reaches 20 FPS when that is 640×480. But,
throughputs for larger frame sizes are saturated at 12 nodes
for the larger sizes (512×384, 640×480). In cases on 16 nodes,
communication sometimes can not catch up with calculations
on GPU because of messaging overhead in MPI. Even so, in
the case of 512×384, 40 FPS, which is enough to simulate
using an movie file with ordinary frame rate, is achieved. We
also attained 20FPS performance for a movie with 640×480
frame sizes. An idea for further improvement is tuning task
timing among multiple nodes utilizing OpenMP.

The reason of the saturation is that the communication
task can not be covered with the calculate task. The amount
of the communication task is much larger than that of the
calculation task when the flame size is 512×318 or 640×480.
And dividing an input data between each node reduces the
calculation task mainly. Because the data dividing can not
reduce overheads by the communication task. These two
reason prevent from covering the communication task with
the calculation task.

D. Effect of dividing communication tasks
As we described in Section III-E, firstly we designed the

five-stage pipeline process, then redesigned it in seven-stage
pipeline by dividing communication tasks into smaller ones.
Figure 14 shows the results of original five-stage pipeline for

the same experiments with figure 13. It is clear that new seven-
stage pipeline shows good scalability, thanks for reducing
communication overhead.

VI. CONCLUSION

This paper reports implementation of a program for visual
neuron simulation using a GPU-accelerated PC cluster. For
the optical flow computation using the linear model of visual
neurons, we have confirmed speedups up to 12 nodes for
all three sizes of input frames we have examined. Especially
for the smallest frame size (320×240), we obtained almost
linear speedup up to 16 nodes, and over 140FPS. These
results are derived not only from efficient data allocation in
GPUs, but also designing pipeline process for input frames
with taking account of valance between the computation and
communication.

In this study, we used separable kernel to reduce data size
required to store on the GPU. Supporting visual functions
which need to deal with the non-separable kernels is our
future work. Further improvements include timing tuning
among thread on a node and latency hiding for the inter-node
communication.

Finally, we also plan to simulate larger and more complex
neural networks to help investigating realistic visual functions
of humans.

ACKNOWLEDGMENTS

This research is supported in part by JSPS Grants-in-Aid
for Scientific Research (C) No.22500042.

REFERENCES

[1] NVIDIA, “Cuda toolkit,”
http://developer.nvidia.com/cuda-toolkit-sdk.

[2] H. Markram, “The blue brain project,” Neuroscience, vol. 7, pp. 153–160,
2006.

[3] Z. Li, “A neural model of contour integration in the primary visual
cortex,” Neural Computation, vol. 10, pp. 903–940, 1998.

[4] I. Motoyoshi and F. A. A. Kingdom, “Differential roles of contrast
polarity reveal two streams of second-order visual processing,” Vision
Research, vol. 47, pp. 2047–2054, 2007.

[5] S. Satoh and S. Usui, “Computational theory and applications of a filling-
in process at the blind spot,” Neural Networks, vol. 21, pp. 1261–1271,
2008.

[6] T. Saitou, S. Satoh, J. Ohmura, T. Miyoshi, H. Irie, and T. Yoshinaga,
“Parallel numerical simulation for the linear model of visual neurons with
mpi,” Information Processing Society of Japan (IPSJ), vol. 2011-HPC-
129, no. 4, pp. 1–8, mar 2011, (in Japanese).

[7] L. B.D and K. T, “An iterative image registration technique with an
application to stereo vision,” Proceedings of the Seventh International
Joint Conference on Artificial Intelligence(IJCAI-81), pp. 674–679, 1981.

