A Simple Algorithm for

Finding =a Mascimum Cligue:*

Etsuji Tomita Yasuhiro Kohata Haruhisa Takahashi

1. Imtroduction.

We present a very simple branch and bound recurs:;we algorithm for
finding a maximum clique in a given graph G=(V,E) with vertex set V and
edge set E. The approach that we describe in this paper uses a prunning
method based on "NUMBERING" in which the upper bound of a maximal clique
under expansion is evaluated. Efficiency of the algorithm is
experimentally evaluated for several graphs with up to 560 vertices.
Earlier works on finding a maximum independent set o;' a maximum clique
include. Tarjan and Trojanowski [TT], and Balas and Yu [BY]. We
implemented and tested both of them.

The readers are advised to refer to [TTT, Section 2] for our
definitions and notation. In addition, we denote by w (G) the number of

vertices of a maximum clique in graph G.

2. An algorithm.

The basic framework of our algorithm is as in [TTT, Section 3]. In
addition to a global variable Q of a set of vertices which constit.uté a
complete subgraph as in [TTT], we introduce another global variable Qmax
which is a maximum clique having been found.

We begin the algorithm MCLIQ by letting Q:=¢ ; Qmax:=¢ , and extend
Q step by step by applying a recursive procedure EXTEND to V and its
succeeding induced subgraphs searching for larger and larger complete
subgraphs until they reach maximals.

let Q={p1, p2, -+, pa)} be found to be a complete subgraph at some
stage, and consider a subgraph G(SUBG) which is induced by a set of
vertices

SUBG=VNT (p1) N T (pz) N+ NT (pa)

" where SUBG=V wher_x Q=¢ at the initial stage. Then apply the procedure
EXTEND to SUBG searching for larger complete subgraphs. If SUBG=¢ then Q
is clearly a maximal complete subgraph, i.e., a clique. éo if
| Quax | <| Q| then we let Qmax:=Q. If SUBG# ¢ , QU {q} becomes a larger
complete subgraph for every q& SUBG. 'i‘hen consider smaller subgraphs
G(SUBGq) which are induced by new sets of vertices

SUBGq = SUBGN T (q).
for all g€ SUBG, and apply recursively the same procedure EXTEND to SUBGq
to find larger complete subgraphs containing QU {q}.

In principle, we can obtain a maximum clique Qmax of the given graph
G=(V,E) after completing all the searchings stated above. Now the problem
of efficiency consideration is how to prune unnecessary searchings that
cannot lead to a maximum clique.

Note here for Q={pi, pz, *+, pa} and for SUBG=VAT (P1)N T (Pz)Nee
N T (Pa) given above, that |

w (QUSUBG)= | Q| +w (SUBG).
In addition, note that if we can confirm in advance that | Q| +w (SUBG)S
| max | holds for SUBG# ¢ , then it is no longer necessary to continue
searching for any q& SUBG.

Then in order to know an upper bound of w (SUBG), we give in advance
for each pE€ SUBG a positive integer "Number" No[p] with the following
property : |

(i) If ' (p)> r then No[pl#No[r]; and

(ii) Nolpl=1l or else if No[pl=k>1l, then there must exist vertices

Pi€ L (p), P2€ T (p), *+, Px-1€ ' (p) with No[pi1l=1, Nolp2]=2,
we, No[pk-1]1zk-1. |
(Such "Numbers" as above were first applied to the maximum clique finding

problem in [TY].)

Consequently, we know that
w (SUBG) < Max (No[p] | pe SUBGY,
and hence if | Q| +Max{No[pl | p€ SUBG}S | Qmax | holds then we can
disregard such SUBG.

The above mentioned No[p] for every.pEESUBG can be easily given step
by step by a so-called following greedy coloring algorithm: Assume the
vertices of SUBG={pi, pz2, **, pn} are arranged in this order. First let
No[pi1]=1. Subsequently, let No[p:]1=2 if p:€ I" [p1] else No[p2]=1, «. and
so on. After Numbers are given to all vertices of SUBG, we arrange these
vertices in the nondecreasing order with respect to their just given
Numbers. We call such a numbering procedure as NUMBERING(SUBG, No). This
algorithm can be implemented to work in O (| SUBG| 2) time.

Notice that Max{No[p] | p€ SUBG} is not unique and deppends on the
order of verteces in SUBG. It is important especially at the initial
stage in which SUBG=V to select the order of vertices in SUBG so as to
make Max{No[p] | pE V] as small as possible. Then prior to applying
NUMBERING(V, No), we arrange vertices of V in the noninbreasing order with
respect to their degrees. J

The above numbering method is used in our algorithm as follows :
When SUBG has been numbered by NUMBERING(SUBG, No), the vertices of
SUBG¢=SUBGN T (q){(C SUBG) are arranged in the same order as in SUBG. Then
new "Numbers" are given to SUBGq(# ¢) by NUMBERING(SUBGq, NewNo)

according to this ordering.

Now the whole algorithm is described as follows.

procedure MCLIQ(G)
{Graph G=(V,E)}
begin
Q:=¢ {global variable Q is to constitute a complete subgraph}
Quax:=¢ {global variable Qmax is a maximum clique having been found)
arrange the vertices of V in nonincreasing order
with respect to their degrees
NUMBERING(V,No)
EXTEND(V, No)

procedure EXTEND(SUBG, No)

begin
while SUBG# ¢
do q:=vertex in SUBG such that No(q) is the greatest
if | Q| +No(a)s | Quax |
then {w (QUSUBG)S | Qmax | } exit fi
Q:=QU {q}
SUBG4:=SUBGN T (q)
if SUBGq. =g
then {Q is a clique}
if |Qmax| < | Q] then Qmax:=Q fi

else NUMBERING(SUBGq, NewNo)
EXTEND(SUBGq, NewNo)
fi
SUBG: =SUBG-{q}
Q:=Q-{q}
od
end {of EXTEND}

end {of MCLIQ}

3. Experimental evaluation.

The algorithm has been implemented in Pascal and run on SONY NEWS-
830 (68020 ,16MHz). For purposes of comparison, we have also implemented
the elaborate algorithm of Balas and Yu '[BY] (TC4) which is shown to be
very efficient. The computational results listed below consist of two
parts. First, the CPU-times are tested on randomly generated graphs
with densities & (i.e. probability of presence of a given edge) 0.15,
0.25, 0.50, and 0.75 with the number of verteces ranging from 40 to 560.
The results are shown in Fig.l. Next, the CPU-times are tested also on
randomly generated graphs with 120 and 240 verteces, of density ranging
from 0.10 to 0.90 and 0.1 to 0.75, respectively. The results are shown in
Fig.2.

The experimental results show that our much simpler algorithm is
comparalbe to or more efficient than Balas and Yu [BY], especially for
graphs with smaller density. The experiments (Fig.2) show that the smaller
density, the better efficiency in CPU times. We also tentatively compa.i‘ed
our algorithm with that of Tarjan and Trojanowski [TT] coded in Pascal on
a large computer HITAC M-260D and confirmed the better efficiency of our

algorithm for graphs in our experiments.

4. A concluding remark.
This simple algorithm MCLIQ can be made more efficient by
appropriately controlling the application of NUMBERING. A part of results

in this direction appears in [NTTT].

Acknowledgements. The authors wish to express their gratitude to
Mikio Shindo, Masaya Nagai, and Suguru Tabuchi for their contributions in
an early stage of this work. They also would like to acknowledge useful

discussions with Prof. Takao Nishizaki of Tohoku University.

REFERENCES

[BY] E.BALAS AND C.S.YU, "Finding a maximum clique in an arbitrary
graph", SIAM J.Comput.,15(1986),pp.1054-1068.

[NTTT]M.NAGAI,T.TABUCHI,E.TOMITA AND H.TAKAHASHI, "An experimental
evaluation of some algorithms for finding a maximum clique",Nat.
Conv. Rec. IEICE Japan D-348(1988) (in Japanese)

[TT] R.E.TARJAN AND A.E.TROJANOWSKI, "Finding a maximum independent set",
SIAM J.COMPUT., 6(1977), pp.537-546.

[TTT] E.TOMITA, A.TANAKA AND H.TAKAHASHI, "The worst-case time complexity
for finding all the cliques", Technical Report,UEC-TR-C5,1988.

[TY] E.TOMITA AND M.YAMADA, "An algorithm for finding a maximum complete

subgraph”, Nat. Conv. Rec, IECE Japan 8 (1978) (in Japanese)

[ms]

.'Average CPU'Time'

107

uf}
10%
e—— o BALAS-YU
B — — - — -8 MCLIQ
10%
0 80 160 240 320 400 480 560

Number of Vertices

Fig.1(A) Random Graphs of Density ¢ = 0.15

i [ms]

Average CPU Time

107

105
" 6—————0 BALAS-YU
& — — — — -8 MCLIQ
10%
0 80 160 240 320 200 280 560

Number of Vertices
Fig.1(B) Random Graphs of Density ¢ = 0.25

"Average CPU Time'

107

10%

10%

10¢

o e © BALAS-YU

& -~ - - -8 MCLIQ
10"

0 80 160 240 320 '460 280
Number of Vertices
Fig.1(C) Random Graphs of Density ¢ = 0.50

560

[ms]

Average CPU Tfhé'

107

100+
10°%
104
103+
10%+
o © BALAS-YU
& - - —— -8 MCLIQ
101..
0 80 160 240 320 400 280
Number of Vertices
Fig.1(D) Random Graphs of Density & = 0.75

560

ms]

'AVEPage'CPU Time

107-
108
10%
10%
10%
10%
o o BALAS-YU
& - - — — -8 MCLIQ
101-
0 0.0 020 0.30 0.40 .o.'so 0.60 0.70 0.80 0.90
Density (§)
Fig.2(A) Random Graphs of Vertices = 120

1.00

[ms]

Average CPU Time

L

107

10%

10%

107

G © BALAS-YU
& -----8aMCLIQ

0 0.10

Fig.2 (B)

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Density (4)
Random Graphs of Vertices = 240

1.00

	2014年10月12日15時22分21秒
	2014年10月12日15時29分04秒

