The Worst—Case Time
Complexity fox

Finding All the Cligues?*

Etsuji Tomita Akira Tanaka Haruhisa Takahashi

Abstract. We present an algorithm for finding all the cliques of
an undirected graph, which is based upon Bron and Kerbosch’s
algorithm. Then we prove that its worst-case time complexity is O (
3 #/3)=0 (2 #/1.8%..) for an n-vertex graph. This is the optimal result
in a sense that there exist up to 3 #3 cliques in an n-vertex graph.
Bron and Kerbosch's algorithm or its variant has been known to be
very efficient by extensive experiments, while the theoretical analysis of
its run;ling time was long left to be unknown. The preaent paper gives

a definite conclusion to this problem.

1. Imtroduction.

A maximal complete subgraph of an undirected graph G is called a
clique. A clique of the complementary graph of G is a maximal
indepéndent set. Finding all the cliques or all the maximal independent
sets of a given graph is a fundamental problem in the theory of graphs
and has many diverse applications. Then a number of algorithms have
been presented and evaluated experimentally or theoretically, see, e.g.,
[2]), [4]-19], [11]}-[13], and [15]. Among them, Tsukiyama et al.[15]
presented an algorithm for generating all the maximal independent sets
in a graph G in O (nm) time per maximal independent set, where n aqd
m are the numbers of vertices and edges of G, respectively.
Furthermore, Chiba and Nishizeki[5] improved it much to have a more
efficient algorithm for listing all the cliques of G in O (a(G)m) time per
clique, where a(G) is the arboricity of G with a(G)S O (mi/2) for a
connected graph G. Few other theoretical time complexity analyses have
been found for these problems except for a special work of Tarjan and
Trojanowski[14], in which they presented an algorithm for finding only

one maximum independent set in an n-vertex graph in O (2 ¥3) time.

We present here an algorithm for finding all the cliques of an
undirected graph which is essentially based upon Bron and Kerbosch[4].
Then we prove that its worst-case running time complexity is O (3 #3)
for a graph with n vertices. This is the theoretical limit with respect
to n, since there exist up to 3 #/3=3 k cliques in a graph with n=3k
vertices as shown by Moon and Moser[10]. It has already been shown
thus fa'r that Bron and Kerbosch's algorithm is very efficient in reality
by extensive experiments in [4], [8], [6], and Reingold et al.[13, p.390],
cf.[3]. Our present paper is the first to give theoretical evidence for

these results.

2. Preliminaries.

[1] Throughout this paper, we consider a simple undirected graph
G=(V,E) with a finite set V of vertices and a finite set E of unordered
pairs (v,w) of distinct vertices, called edges. A pair of vertices v and
w are said to be adjacent if (v,w)EE. We call G=(V,E) with E ={(v,w)
E€VxV] v#w, and (v,w)&&E} a complementary graph of G.

[2] For a vertex vEV, let ' (v) be the set of all vertices which are
adjacent to v in G=(V,E), i.e.,

T (v)={wveV]| (v,w)EE} (BV).
[3] For a subset WC V of vertices, G(W)=(W,E(W)) with E(W)={(v,w)EWX W]
(v,w)€E} is called a subgraph of G=(V,E) induced by W. For a set W
of vertices, | W| denotes the number of elements in W.
(4] Given a subset QCV of vertices, the induced subgraph G(Q) is said
to be complete if (v,w)€EE for all v,w&Q with v#w. If this is the
case, we may simply say that Q is a complete subgraph. In particular,
if a complete subgraph is maximal, then it is called a clique. A subsetA

WCV of vertices is said to be independent if (v,w)&E for all v,wEW.

Here, QC V is a clique of G if and only if Q is a maximal independent

set of the complementary graph G.

3. The algoxrithm.

We present a backtrack searching algorithm CLIQUES for finding
all the cliques of a given graph G=(V,E) (V# ¢) that is essentially based
upon Bron and Kerbosch[4].

Here we introduce a global variable Q of a set of vertices which
constitute a complete subgraph being found up to this time. Then we
begin the algorithm CLIQUES by letting Q:=¢ , and extend it step by
step by applying a recursive procedure EXTEND to V and its succeeding
induced subgraphs searching for larger and larger complete subgraphs
until they reach maximals.

Let Q={p1, p2zy -, pa} be found to be a complete subgraph at some
stage, and consider a subgraph G(SUBG) which is induced by a set of
vertices

SUBG=VN T (p1)N I (p2)N+-N T (pa)
where SUBG=V when Q=¢ at the initial stage. Then apply the procedure
EXTEND to SUBG searching for larger complete subgraphs. If SUBG=¢
then Q is clearly a maximal complete subgraph, i.e., a clique. Otherwise,
QU {q} is a larger complete subgraph for every q€ SUBG. Then consider
smaller subgraphs G(SUBGg4) which are induced by new sets of vertices
SUBGq = SUBGN T (q)
for all q€SUBG, and apply recursively the same procedure EXTEND to
SUBGq to find larger complete subgraphs containing QU {q}. See FIG.1

for an illustration.

Q={p,,***,py }: complete subgraph being found
up to this time
SUBG=VN T (py) NN T (py)=FINIUCAND

SUBG :
FINI CAND

AA.«-AE..A Aq".

7
>to be extended

QU (q):larger
SUBG q complste
FINIg CANDgq subgraph
TRV NI

> to be extended
SUBGq=SUBG N I"' (q)=FINIq UCANDg

FINIq=FINI N T (q)
CAND q=CAND N T (g)

FIG.1. An illustration for the procedure EXTEND

]

Thus far we have shown only the basic framework of the algorithm
for finding all the cliques (with possible duplications). This process can
be represented by the following search forest, or the collection of
search trees: The set of roots of the search forest is exactly the same
as V of the graph G=(V,E). For each q& SUBG, all vertices in
SUBG¢=SUBGN I"' (q) are sons of q. Thus, a set of vertices along a path
from a root to any vertex of the search forest constitutes a complete
subgraph. For the terminology concerned with a tree and a forest, see,
e.g., Aho et al.[l, pp.52-53]. We shall show an example of a searc-h
forest (with unnecessary subtrees deleted) later in FIG.2(b).

Now we proceed to describe two methods to prune unnecessary
parts of the search forest.

First, for the previously described set SUBG(# ¢), let

SUBG=FINIU CAND (FININ CAND=¢).
Here suppose that we have already finished extending search subtrees
from every vertex @ E&FINIC SUBG to find all the cliques containing QU
{9}, and that only the remaining vertex q& CANDC SUBG is a candidate
for further extension of the present complete subgraph Q to find new
cliques. Consider the subgraph G(SUBGg) with SUBG4=SUBGN I (q), and let

SUBG4=FINIqU CANDq (FINIqN CANDg=¢),
where

FINI¢=FININ I" (q), and CAND¢=CANDN I (q).
Then only the vertices in the subgraph G(CANDq) can be candidates for
extending the complete subgraph QU {q} to find new larger cliques, since
all the cliques containing (QU {q})U {r} with r&FINIqC FINI have already
been finished to be found previously for any r by application of the
procedui'e EXTEND to FINI as stated before. Thus further extension is

to be considered only for vertices in G(CAND4) excluding ones in

FINIq=SUBGq-CANDq.

Secondly, given a certain vertex uE SUBG, let v&SUBGN I (u).
Then the set of all cliques properly containing QU {u} in the subgraph
G(QU SUBG) is exactly the same as that properly containing QU {v} in
G(QU SUBG), since QU {u}u {v} is a complete subgraph in G(QuU SUBG).
Therefore, if we~extend a search subtree from u, then we need not
extend any search subtree from vE SUBGN I (u). Taking the previous
pruning method into consideration, too, the only search subtrees to be
extended are from vertices in (SUBG-SUBGN I" (u))-FINI = CAND-T (u) (Du).
Here, in order to minimize | CAND-I" (u)|, we choose such a vertex ue
SUBG to be the one which maximizes | CANDN T (u)| . In this way, the
problem of finding all the cliques of G(CAND) can be decomposed into k=
| CAND-T (u) | such subproblems, see LEMMA (i) below.

With these two pruning methods, we have the following algorithm

CLIQUES for finding all the cliques without duplications.

procedure CLIQUES(G)
{Graph G=(V,E)}
begin
0: Q=¢
{global variable Q is to constitute a complete subgraph}
1: MD(V,V)

procedure EXTEND(SUBG, CAND)

begin
2 if SUBG=¢
3: then print ("clique,")
{(to represent that Q is a clique}
4 else u:=vertex in SUBG, which maximizes | CANDN I" (u) |
{let EXTu=CAND-T (u)}
5: while CAND-T" (u)# ¢
6 : do qg:=vertex in (CAND-T (u))
(. ‘ print (q, ",")
{to represent the next statement}
(g Q:=QuU {q}
8 : SUBGq:=SUBGN I" (q); CANDq:=CANDN T" (q)
9 : EXTEND(SUBGgq, CANDq)
10 : CAND:=CAND-{q} ({FINI:=FINIU {q}}
11 : print ("back,")
{to represent the next statement}
11 : Q:=Q-{q}
od
fi

end {of EXTEND}

end {of CLIQUES}

Note here that our sets Q, FINI, and CAND of vertices correspond
to those of compsub, not, and candidates of Bron and Kerbosch[4]. See
also Johnston[8] and Reingold et al.[13, pp.353-359, and pp.389-390] for
reference. However, every time Q is found to be a clique at statement
2, we only print out a string of characters 'clique," instead of Q itself
in stat;zment 3. This is because, otherwise, it is impossible to achieve
the worst-case running time of O (3 #/3) for an n-vertex graph, since
printing out of Q requires time proportional to the size of Q which is a
global variable. Instead, in addition to statement 3, not only we print
out q followed by a comma at statement 7 every time q is picked out as
a new element of a complete subgraph, but also we print out a string of
characters "back," at statement 11 after q is moved from CAND to FINI
at statement 10. We can easily obtain a tree representation of all the
cliques from the resultant sequence printed by statements 3, 7, and 11,
as will be seen afterwards. Here, primed statements 0, 7, and 11" are

only for the sake of explanation, and should be deleted finally.

Example. Let us apply the above algorithm CLIQUES to a graph .in
F1G.2(a). Then the whole process is represented by a search forest in
FIG.2(b), and we have the resultant printed sequence in FIG.3(a). In
FIG.2(b), each set of vertices surrounded by a flat circle represents
SUBG at that stage, in which vertex with A mark is in FINIC SUBG at
the beginning. Vertex u chosen in statement 4 is marked by or
depending on whether it is in CAND or FINI, respectively. Other
vertices in CAND-TI" (u) are marked by ©, while vertices in CANDN T (u)
are marked by . Thus, all the cliques of G are {4,6,7,8}, {(4,6,5},

{4,3,8}, {1,2,9}, and {2,3,9).

’

clique
{4,6,7,8)

clique clique clique
(4,3,8) (1,2,9) (2,3,9)
FINI |
SUBG

CAND {

(b) A search forest for G

FIG.2. An example

O : u chosen at 4:

Fay

O €CAND—T (u)

@® cCANDN T (u)

4,6,7,8,clique,back,back,
5,clique,back,back,3,8,clique,
back,back,back,1,2,9,clique,
back,back,back,2,3,9,clique,
back,back,back,9,back,

(a) A resultant printed sequence

4 1 2 9
6 3 2 3
? S 8 9 9
/, cl. cl. cl. cl.
8 "cl."” is an abbreviation
cl. for clique.

(b) A tree representation of cliques found.

FIG.3. A result of the example

Now given only the resultant printed sequence in FIG.3(a), we can
obtain the same result as above by reconstructing from it a tree as in
FIG.3(b) which represents a principal part of the previous search forest
in FIG.2(b). Here, a dot ". " (&€V) is introduced as a virtual root of
the tree at thé beginning. Then every time "q," is encountered in the
sequence, we extend a downward edge whose end point is labeled by q.
If "q," is followed by 'clique,", the set of all the vertices along the
path from the root to the vertex q excluding the root represents a
clique. Every time "back," is encountered in the sequence, we go up
the tree backward by one edge to find other alternatives. It is clear
that this transformation can be done in time proportional to the length

of the resultant sequence.

4. The worst—case time complexity.
We evaluate the worst-case running time of the previous algorithm
CLIQUES(G) with the primed statements 0°, 7, and 11° having been
| deleted. So, this is equivalent to evaluating that of EXTEND(V, V). Now
we begin by giving a few definitions.
[1] Let T(n,m) be an upper bound on the worst-case running time of
EXTEND(SUBG, CAND) when | SUBG| =n and | CAND| =m (nZ mz 0).
[2] Let Tw(n,m) be an upper bound on the worst-case running time of
EXTEND(SUBG, CAND) when | SUBG| =n, | CAND| =m, and | EXTu| =] CAND
=T (u) | =k at the first entrance to statement 5.
(3] Let us consider a nonrecursive procedure EXTENDo(SUBG, CAND)
which is obtained from EXTEND(SUBG, CAND) by deleting a recursive call
9: EXTEND(SUBGgq, CANDg). The running time of EXTENDo(SUBG, CAND.)
when | SUBG| =n and | CAND| =m can be made to be O (n2?), then let this

running time be less than or equal to the following quadratic equation

P(n)=p1m+p.nt+ps, where p1>0, p:2 0, psx 0. o
From the above definitions, we have that

(1) T(n,m)=oéb’l:}3.cxs m{Tk(n,m)} b 1§M%x§ m {Tx(n,m)},

since To(n,m) S Tx(n,m) for any k, 18 kS m.

The following lemma is a key for evaluating T(m,m).

LEMMA. Consider EXTEND(SUBG, CAND) when | SUBG| =n, | CAND]
=m, | EXTu| =] CAND-T (u)| =k# 0, and | CANDN I (u)| =90 at the first
entrance to statement 5. In what follows, CAND stands only for this
initial value, though it is decreased one by one at statement 10 in the
while loop. Let CAND-T (u)={vi, vz, ++, vig} and the vertex at statement
6 be chosen in this order. Let

SUBG; =SUBGN T" (vi), and
CAND; =(CAND-{vi, vz, *+, vi-1})N T (vs).

Then

M=

(i) Twx(] SUBG| , | CAND|)éi 1(-’l'(l SUBG;| , | CAND;|)+F(n),

(ii) a) | CAND;] S 2, and

b) | SUBG:| £ n—kS n-1.

Proof. (i) It is obvious from procedure EBXTEND(SUBG, CAND) and
the definition of P(n).
(ii) a) | CAND;| S | CANDN T (vi)| S | CANDN T (u) | =¢ .

b) | SUBG;| = | SUBGN T (vi) |

= | FININT (vi)| + | CANDN T (vi) | ,

with | FININT (vi)] £ | FINI| =n-mand | CANDN T (vi)] £ ¢ . Here, (nm)+

0 =n-(m-¢)=n-kS n-1, since kZ 1. Q.E.D.

m- @ $k—- 0 >
Vi Vko ® .)
CAND-T (u) |CANDN T (u)

N

CAND; T\

. O 0 @6 @
)

=9 .

FIG.4. An illustration for LEMMA

THEOREM. The upper bound 7T(n,m) on the worst-case running
time of EXTEND(SUBG, CAND) with | SUBG| =n and | CAND| =m is expressed
as follows for all nZ mZ 0:

(2) T(n,m)S C3 /2 - Q(n)=R(n),
where

Q(n)=qin* + qn + gy,
with

Q1=p1/2>0, @=(9p1+p2)/2>0, q:=27 p1/2+9p2/4+ pa/2>0,
and

C=Max{C, C, Cs})
with C1=3 g2/1n3 , C:=ps+qgs, and C; being the maximum value of 3 (1 -2
«+ 3 -2/3)-1. {n-3)/3 n/3, (Note that @n-3)/3 #/3 is finite for 1S n
< oo and it approaches 0 as n tends to infinity. Hence, C; is a finite
constant.)

Here, R(n)= C3 #/3- @(n) is monotone increasing with R(n)g ps for
all integers ng 0.

Proof. First, by considering a continuous function R(x) with x
being a real number and CZ Ci, we can easily prove that R(n) is
- monotone increasing for all integers nZ 0. Furthermore, R(0)=C-@Q(0)2
(patq3)-@Q(0)=p3, since CZ C:=pst+qs. So R(n)Z ps for all integers ng 0.

Now we prove that Eq.(2) holds by induction on n.

Basis. n(=m)=0. We have T(0,0)S P(0)=p3 by the definition of P(n).
So, Eq.(2) holds for n=m=0, since R(0)Z ps.

Induction step. We assume that Eq.(2) holds for all integers n,m,
0S m$ nS N, and prove that it also holds for 05 mS n=M+1. Consider
EXTEND(SUBG, CAND) when | SUBG| =r=Mt1, | CAND| =m (15 mg n= M+1),
| EXTu| =] CAND-T (u) | =‘k¢ 0 with CAND-T (u)={vi, va, -, vk} at the

first entrance to statement 5. Then just as in LEMMA (i), we have

Tx(n,m)= Tx(| SUBG| , | CAND])

X .
él.g 1(T(I SUBG:| , | CAND;|)+P(n).

where | SUBG;|] S n-1=N by LEMMA (ii) b). Then the induction hypothesis

applies to have

s

k
;2 (TC1 SUBGs] , | CAND,])s .

R(| SUBG;]|).
1 i=1

Since R(n) is monotone increasing and | SUBG;| § n-k, we have

ey

i 1171’(| SUBG:|)S kR(n-k).

Combining these inequalities gives
(3) Tx(n,m) S kR(n-k)+P(n)
= kC3 (8-K)/3 — kQ(n-k)+ P(n)
= k3 -%/3. C3 #/3 — (kQ(n-k)— P(n)}.
In case k=3, we have
T3(n,m)S C3 #/3— {3 &n-3)— P(n)}.
Now consider the other cases where k¥ 3 (with k2 1), and we shall show
that
(4) k3 -k/3. C3 a/3 — {k@(n-k)— P(n)}
SC3 7/3 -~ {3 Qn-3)—- FAn)}
for all integers nZ 1, provided Cg ;. Modifying Eq.(4) gives

3 &n-3) - kQ(n-k)
(5) (1 =13 -#7%). 3 o7 S C, where k# 3.

Here, kQ(n-Ik)2 0 for 15 kS m$ n, and we can easily show that k3 -&/3 g
2 «3-2/3 £ 1 for all positive integers k#¥ 3. So, for the left hand
side of Eq.(5), we have

3 (-3)— kQ(n-k) < 3 &Xn-3) < ¢
(1 - k3 -4k/3) . 3 a/3 (1-2 - 3 -2/3). 3 a/3 3

Now we are in the case where Cg C;, then Eq.(4) holds for all integers

nZ 1 and 15 kS mS n. (Equality holds when 4k£=3.) Combining Eqs.(3) and
(4) gives
Te(nym) § C3 2/3 -~ {3 An-3)— P(n)}
= (C3 #/3 —@n) (from the definition of Q(n)).
Substituting this inequality into Eq.(l) gives
T(n,m) § C3 */3 — Qn).
Thus, Eq.(2) also holds for n=M12 m2 0. Therefore, Eq.(2) has been

induced to hold for all integers nZz mz 0. Hence the result. Q.E.D.

In particular,

T(n,n)< C3 2/3 — Q(n).

Therefore, we conclude that the worst-case running time of the
algorithm CLIQUES(G) is O (3 #/3) for an n-vertex graph G=(V,E). Note
here that the original Bron and Kerbosch’s algorithm outputs the entire
clique itself in O (n) time every time it i8 found. Thus their algorithm

takes O (n3 #/3) time as a whole.

Acknowledgment. The authors wish to express their
gratitude to Mikio Shindo, presently with NEC Corporation, for his
contribution in an early stage of this work. They also would like to
acknowledge useful discussions with Prof. Takao Nisizeki of Tohoku

University.

REFERENCES
[1] A.V.AHO, J.E.HOPCROFT, AND J.D.ULLMAN, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
[2] E.A.AKKOYUNLU, The enumeration of maximal cliques of large

(3]

(4]

(5]

(6]

(71

(81

(9]

[10]

[(11]

[12]

[13]

(14]

[15]

E.BALAS AND C.S.YU, Finding a maximum clique in an arbitrary
graph, SIAM J.Comput.,15(1986),pp.1054-1068. ‘

C.BRON AND J.KERBOSCH, Algorithm 457: Finding all cliques of an
undirected graph, Comm.ACM,16(1973),pp.575-5717.

N.CHIBA AﬁD T.NISHIZEKI, Arboricity and subgraph listing
algorithms, SIAM J.Comput.,14(1985),pp.210-223. .
L.GERHARDS AND W.,LINDENBERG, Clique detection for nondirected
graphs: Two new algorithms, Computing, 21(1979),pp.295-322.
D.S.JOHNSON, M.YANNAKAKIS AND C.H.PAPADIMITRIOU, On generating
all maximal independent sets, Inform.Process.Lett.,27(1988),pp.119-123.
H.C.JOHNSTON, Cliques of a graph— Variations on the Bron-Kerbosch
algorithm, Int.J.Comput. and Inform.Sci., 5(1976),pp.209-238.
E.L.LAWLER, J.K.LENSTRA AND A.H.G.RINNOOY KAN, Generating all
maximal independent sets: NP-hardness and polynomial-time
algorithms, SIAM J.Comput.,9(1980),pp.558-565.

J.W.MOON AND L.MOSER, On cliques in graphs, Israel J.Math.,
3(1965)pp.23-28.

G.D.MULLIGAN AND D.G.CORNEIL, Corrections to Bierstone’s algorithm
for generating cliques, J.ACM,19(1972),pp.244-247.

R.E.OSTEEN, Clique detection algorithms based on line addition and
line removal, SIAM J.Appl.Math.,26(1974),pp.126-135.

E.M.REINGOLD, J.NIEVERGELT, AND N.DEO, Combinatorial Algorithms:
Theory and Practice, Prentice-Hall, Englewood Cliffs,NJ, 1977.
R.E.TARJAN AND A.E.TROJANOWSKI, Finding a maximum independent
set, SIAM J.Comput.,6(1977), pp.537-546.

S.TSUKIYAMA, M.IDE, H.ARIYOSHI, AND I.SHIRAKAWA, A new algorithm
for generating all the maximal independent sets, SIAM

J.Comput.,6(1977), pp.505-517.

Appendizx.
LEMMA A.1. (For the first part of Proof on page 15) Consider the
following continuous function R(x) with x being a real number:
R(x)=C3 */3 - Q(x),
where
A x)= q1x%2+ q2x+ g3, with qi, @, and g3 being just as in THEOREM.
If CZ Ci= 3 q2/1n3 , then R(x) is monotone increasing fpr xz 0.
Proof. Differentiating the function R(x) gives
dR(x)/dx = 1In3 . C3 */3-1 — 2q1x — Q2.
In addition,
d?R(x)/dx? = (In3)2. C3 */3-2 — 2qu
2 (In3)2. (13 *x/3-2 — 2q;
=(In3 /6)+ (9p1+ p2)3 */3 — p1>0, for x20,
since p1> 0, p22 0. Hence, dR(x)/dx is monotone increasing for xgz 0.
Thus, for x2 0,
dR(x)/dx 2 [dR(x)/dx]zx=0
= In3 - 0/3-q22 In3 + C1/3 - q2=0.

Therefore, R(x) is monotone increasing for x2 0. Q.E.D.

LEMMA A.2. (For the denominator of Eq.(5) on page 16) Consider

the following continuous function f(x) with x being a real number:
flx)= x3 - /3,

Then f(x) is monotone increaseing for x< 3 /1n3 = 2.7307«., f(x) is
monotone decreasing for x> 3 /In3, and f(x)€ f(3 /1In3) for all x. In
addition, f(2)= 0.9614..., and f(4)= 0.9244...,

Proof. df(x)/dx= 3 -*/3(3 /1In3 - x). Then df(x)/dx>0 for x<
3/1In3, df(x)/dx<0 for x> 3 /1n3, and [df(x)/dx]lx=3/1n3= 0. The

latters are trivial. Q.E.D.

	2014年10月12日22時02分19秒
	2014年10月12日22時06分32秒

