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動的な接尾辞木を用いた反辞書データ圧縮

太田　隆博

概　要

データ圧縮は，ディジタル機器における記憶容量・通信コストの削減，伝送

速度の高速化を実現する手法として，情報システムの基幹技術の一つである．

圧縮手法には，大きく分けて，データを読み込みながら逐次的に圧縮を

行う動的手法と，データ全体を読み込んでから圧縮を行う静的手法の二つが

ある．とくに，動的手法には，静的手法のようにデータを二度読みせずにす

む点や符号器で用いる符号テーブルを復号器に送らなくてすむなど，実用的

に優れた特色を持つ．

これまでの動的データ圧縮手法の多くでは，入力系列を効率よく圧縮す

るために，辞書と呼ばれる，入力系列に現れる部分系列の集まりを表す接尾

辞木というデータ構造が用いられてきた．また，接尾辞木を構築するために

は高速な動的構築手法が知られている．一方，2000年に，辞書と逆の概念で

ある反辞書と呼ばれる入力 2値系列に出現しない極小禁止語の集まりを利用

したデータ圧縮手法 (反辞書法)が，Crochemoreらにより提案された．

従来研究の結果から，辞書および反辞書は，それぞれデータ圧縮に有効

なデータ構造であり，これらを組み合わせた手法は，さらによい圧縮率を与

えることが期待される．本論文の主要な目的は，

• 接尾辞木による高速かつメモリ使用量を抑えた反辞書構築手法の実現

• 接尾辞木を用いた高速な動的反辞書法の実現

• 反辞書を利用した高速かつ逐次的な無ひずみ心電図データ圧縮法の実現



の 3点である．

接尾辞木を用いて反辞書を構築する方法は従来より知られていたが，入

力系列長の 2乗に比例した計算量がかかる問題点があった．そこで，本論文

では，この計算量を削減するために，接尾辞木に新しいポインタ構造を導入

することによって，入力系列長に比例する計算量による反辞書構築手法を実

現した．また，計算機実験により，少ないメモリ使用量で高速に反辞書構築

が行えることを示した．

しかしながら，この構築法を用いて，入力系列を 1記号読み込むたびに

反辞書の更新と符号化を同時に行う動的反辞書法を実現するためには，入力

系列長の 2乗に比例した計算時間がかかる問題点があった．この計算時間を

削減するために，本論文では，反辞書の構築を行わずに，接尾辞木だけを用

いて反辞書による符号化が行える条件を明らかにした．さらに，この条件を

用いることによって，計算時間を線形量に削減した非常に高速な動的反辞書

法を実現し，さらに算術符号と組み合わせることによって圧縮効果の向上を

図っている．

これまでに，2値系列に対する算術符号の静的確率モデルとして，あらか

じめ入力系列から構築した反辞書を用いる静的なデータ圧縮法 (OHY法)が

提案されているが，反辞書構築の高速化については考えられていない．また，

OHY法は，2値系列に対しては辞書を用いた高性能な圧縮手法 (LZ法)に匹

敵する性能を持つことが示されているが，そのまま多値系列に対して適用す

ると復号器に送る反辞書のコストが大きくなるため，圧縮性能が悪化する問

題点がある．

一方，本論文で提案している算術符号を用いた動的反辞書法は，実用的

に有用な動的手法で多値系列を高速に処理できる特長を持つ．データ圧縮手

法の性能比較によく用いられるデータベース (Calgary Corpus)に対して，実



験による性能評価を行った結果，本論文で提案している動的反辞書法は，従

来の動的反辞書法に比べて，ほぼすべてのファイルに対して圧縮率が向上し

た．また，平均圧縮率による比較では，従来の動的反辞書法に比べて 3%向

上し，ファイルを 2値系列に変換して，ファイルごとに 2つのパラメータ (分

割ブロックサイズ，極小禁止語の最大長)を変化させて計算機実験で得られ

たOHY法の最良の報告結果と比較しても 1%向上した．

最後に，本論文では，心電図データの無ひずみ圧縮への動的反辞書法の

適用を考察している．心電図データの圧縮に関しては，測定と符号化を同時

に行う動的手法で長時間のデータを少ないメモリ使用量で処理できる性能が

求められる．さきに提案した動的反辞書法を心電図データ圧縮に適用すると，

メモリ使用量が測定時間に比例する問題点がある．しかしながら，心電図デー

タの大半は概周期的な波形なので，心電図全体を用いなくても，その一部分

だけを用いて反辞書を構築することによって，メモリ使用量の削減と符号化

処理の高速化が図れる．そこで，心電図全体に対する反辞書とほぼ同等な圧

縮性能をもつためにどれくらいの長さの部分系列から反辞書を構築すればよ

いかについての計算式を，クーポンコレクターズ問題の適用により導出した．

心電図データ圧縮の性能比較によく用いられるデータベース (MIT-BIH

Arrhythmia Database)に対して，実験による性能評価を行ったところ，提案

手法は，リアルタイム伝送が可能な処理速度で，LZ法と比較して圧縮率が

15%向上した．医学的には望まれていたが，高能率な無ひずみ圧縮が困難で

あった心電図データに対して，高性能でかつリアルタイム処理可能な無ひず

み圧縮手法を示した．これにより，他の生体情報などの高能率圧縮手法への

応用が期待できる．



Antidictionary Data Compression

Using Dynamic Suffix Trees

Takahiro Ota

Abstract

Data compression is particularly useful in systems where resources are

scarce, e.g., limited bandwidth in communication systems and the capacity

of storage systems. A wide variety of data compression algorithms have been

proposed for inherently digital data such as text and digitized audio, image

and video.

To compress an input string efficiently, data compression algorithms typ-

ically use a dictionary to construct statistical models and replace substrings

with indices in the dictionary. The dictionary is the set of all substrings of

an input string, and it is represented by a tree representation such as a suffix

tree in many applications.

In 2000, Crochemore et al. [CMRS00] proposed an off-line lossless data

compression algorithm using an antidictionary of an input binary string.

The antidictionary is the set of all minimal strings that never appear in

the string. They showed that their method, called Data Compression us-

ing Antidictionaries (DCA), achieves compression ratios that are as good

as the Lempel-Ziv (LZ) algorithms [ZL77, ZL78]. In 2005, to improve the

compression ratios, Ohkawa, Harada and Yamamoto [OHY05] applied an

arithmetic coding to an off-line DCA method for binary strings. In other



words, the authors used antidictionaries as statistical models for an arith-

metic coding. It was shown by simulation that their method, called Ohkawa-

Harada-Yamamoto (OHY) method, achieves better compression ratios than

the DCA method.

Both a dictionary and an antidictionary are useful for data compression.

The combination of the antidictionary and the dictionary are expected to

provide efficient statistical models for arithmetic coding.

The main goal of this thesis is to achieve:

• Construction of an antidictionary using a suffix tree in linear time and

space.

• An on-line DCA method using dynamic suffix trees in linear time and

space.

• An on-line arithmetic coding based on antidictionaries using dynamic

suffix trees in linear time and space.

• One-pass lossless data compression for ElectroCardioGrams (ECGs)

using antidictionaries.

Traditional construction algorithm of an antidictionary using suffix trees

requires quadratic computational time with respect to a given string length.

To reduce this computational time, we introduce a new kind of pointer called

an MF-link in the suffix tree. By using MF-links, the proposed construction

algorithm operates in linear time and space. We prove that the proposed al-

gorithm works in linear time and space with respect to the string length, and



experimental results show that the proposed algorithm is fast and memory-

efficient.

On-line DCA methods can achieve better compression ratios than off-line

DCA methods. However, on-line traditional DCA methods need quadratic

computational time with respect to the string length, since the method re-

quires updating the antidictionary and its encoder when a new symbol is

read. To reduce this computational time, we show useful conditions to im-

plement the on-line DCA using only suffix trees without constructing the an-

tidictionary. By using these conditions, we propose an on-line DCA method

using dynamic suffix trees without updating antidictionaries. Moreover, we

apply arithmetic coding to the proposed algorithm. We prove that the pro-

posed algorithms work in linear time and space with respect to the string

length. Experimental results show that the proposed method applied with an

arithmetic coding achieves better compression ratios than traditional on-line

DCA for almost all files on Calgary Corpus [Cal], and this approach gives

a 3% decrease in compressed file size relative the on-line DCA method and

a 1% decrease in the size relative to the OHY by simulation results for the

Calgary Corpus.

Finally, we propose a one-pass ECG lossless compression method using

antidictionaries. The proposed algorithm constructs an encoder of the DCA

from the substring of ECG, called the learning string, by means of the prop-

erty that each ECG signal is an almost periodic waveform. We show that

the length of learning string needed to construct the antidictionary whose

size is almost the same as that of the entire string of ECG using the results

of coupon collector’s problem. Experimental results show that the proposed



algorithm gives 15% decrease in compressed file size relative to the LZ algo-

rithms for ECG files of the MIT-BIH Arrhythmia Database [MIT]. Moreover,

it is shown that the proposed algorithm can implement to compress the ECG

files for real-time by simulation results.
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Chapter 1

Introduction

Data compression is a useful technique to conserve resources, e.g., bandwidth

in communication systems or space in storage systems. Various data com-

pression methods have been proposed for the transmission and storage of

digital data such as text, audio, image and video.

Data compression methods can be categorized into two classes: lossless

and lossy methods. Lossless data compression allows the original data to

be reconstructed exactly from the compressed data. This is appropriate

for applications that require the decompressed data to be identical to the

original data such as a text, executable files and images. On the other hand,

lossy data compression methods reconstruct approximate the original data

from the compressed data. Such methods are commonly used to compress

multimedia data such as audio, image and video.

Lossless data compression method can be classified into two classes, one

for statistical methods and dictionary methods. A statistical compression

method assigns a symbol to a code by means of a statistical model and an

1



encoder
input 

symbols
codes

symbol 
probabilities

statistical 
model

Figure 1.1: A general statistical data compression scheme.

encoder. The code for a symbol depends on the probability that the symbol

occurs in an input string. Figure 1.1 shows a general statistical data com-

pression scheme. A statistical model provides the probability distribution for

each symbol. Practical statistical compression methods generate a statistical

model and use entropy coding such as Huffman coding [Huf52] or arithmetic

coding [Ris76, Pas76, WC87] to assign a symbol or a word to the code.

An off-line, that is static, compression scheme constructs the statistical

model from an input string in the first pass, and encodes the input string by

using the statistical model in the second pass. Off-line compression schemes

require at least two passes of an input string, and they need to send the

fixed model to the decoder. On the other hand, an on-line scheme requires

only a single pass over an input string and sends no model to the decoder.

An on-line scheme is also called a dynamic, adaptive or universal scheme.

The encoder needs a modification of the model whenever a new symbol is

read, and in the decoding process, the identical modification is carried out

in order for the decoder to reproduce the identical model. The practical

2



methods of constructing statistical models such as tree structures have been

proposed [Ris83, CW84, Mof90, CTW95, WST95].

The dictionary is defined as the set of all substrings occurring in an input

string. Dictionary compression methods use the dictionary to compress an

input string. This method generates the dictionary for an input string, and

compression is achieved by searching the dictionary for fragments of the input

string and replacing them with an index into the dictionary. The practical

two methods proposed by Lempel and Ziv called LZ77 and LZ78 [ZL77, ZL78]

and their variants [SS82, Wel84, FG89, MK92] are well-known as dictionary

data compression methods.

Dictionaries are not only useful for dictionary compression methods, but

also for statistical compression methods. A tree model such as a suffix trie

or a suffix tree is used to represent the dictionary for a given string. A suffix

tree is a compacted representation of a suffix trie. The tree models store all

substrings occurring in a given string, and linear algorithms to construct the

suffix tree for a given string are proposed [Wei73, McC76, Ukk95, Far97].

Larsson proposed a statistical compression method using suffix trees [Lar96].

A directed acyclic word graph (dawg) is also used to represent the dictio-

nary. The minimized representation of the suffix trie is known as the suffix

dawg [BBHECS85, Cro86].

Traditional applications of data compression have gathered elements of

an input string such as the dictionary and used them to compress an input

string.

In 2000, Crochemore et al. proposed an off-line lossless data compression

method by means of an antidictionary in an input binary string [CMRS00].
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The antidictionary is the set of all minimal strings, called Minimal Forbidden

Words (MFWs), that never appear in an input string. Their method, called

Data Compression using Antidictionaries (DCA), was applied to files of an

well-known database for data compression called the Calgary Corpus [Cal]

and it was shown that the DCA method achieves almost the same com-

pression ratios as the Lempel-Ziv algorithm. They proved that the DCA

method attains the entropy for balanced binary sources which are unifilar

Markov sources [Ash90] with two output symbols of equal probabilities or

of probability one and zero. Since the DCA method works with an off-line

manner, it must send an antidictionary to its decoder. Morita and the au-

thor proved the size of the antidictionary of a binary sting is smaller than or

equal to that of its dictionary [MO05]. They also proposed an algorithm to

reconstruct its dictionary from a given antidictionary. Furthermore, it was

shown that the upper bound on the size of an antidictionary is given by lin-

ear order [CEGM04, MO05]. Fayolle showed, in his doctoral thesis [Fay06],

for a binary string of length n generated by a memoryless binary source,

the average number of elements of the antidictionary. Its size is asymptoti-

cally Kn/h + o(n) where h is the entropy of the model and K is a constant

explicitly computed.

Figure 1.2 shows schemes of the DCA. In the DCA method, an antidic-

tionary is represented by a tree structure called AD-trie to reduce memory

space. The AD-trie is constructed by using a suffix dawg in linear time, while

the construction algorithms of the AD-trie using a suffix tree or a suffix trie

requires a quadratic computational time. The DCA method uses a deter-

ministic finite automaton called AD-automaton as its encoder. By using the
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Figure 1.2: Schemes of the DCA.

AD-automaton, the DCA method can encode a given string in linear time.

In 2005, to improve the compression ratios of the DCA method, Ohkawa

et al. used the AD-automaton of the antidictionary of a binary string as a

statistical model for an arithmetic coding [OHY05]. It was shown that their

method, called Ohkawa-Harada-Yamamoto (OHY) method, achieved better

compression ratios for files of the Calgary Corpus than the DCA methods by

computer simulation results.

1.1 Objectives

Both a dictionary and an antidictionary are useful for constructing a statisti-

cal model, and a tree representation of the dictionary such as a suffix trie or

a suffix tree is also useful for a statistical model. In this thesis, we propose a
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tree model based on a dictionary and an antidictionary and apply the model

to an arithmetic coding.

The main goal of this thesis is to achieve:

• construction of the antidictionary using a suffix tree in linear time and

space.

• an on-line DCA method using the tree model in linear time and space.

• an on-line statistical data compression using the tree model based on

a dictionary and an antidictionary in linear time and space.

As shown in Figure 1.2, the construction algorithm of an antidictionary using

a tree structure requires quadratic computational time with respect to a

string length. To construct the antidictionary using the suffix tree in linear

time, we will introduce a new kind of pointers, called MF-links, to efficiently

traverse through the suffix tree. The MF-links are as essential as the suffix

links for the construction of an antidictionary in linear time.

Then, we propose a new tree structure, called AD-tree, which is the sub-

tree of the suffix tree with reverse MF-links. The DCA algorithm using an

AD-tree can obtain the same output as that of the DCA using the AD-

automaton in linear time and space with an off-line manner. The properties

of the AD-tree are useful for producing an on-line linear DCA algorithm.

By using those properties, we propose an on-line DCA using dynamic suffix

trees. Our algorithm works in linear time, while the traditional on-line DCA

algorithms require quadratic computational time.

Figure 1.3 shows our methods for the DCA. In Figure 1.3, the solid lines

represent our methods in this thesis.
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Figure 1.3: Our methods for the DCA.

1.2 Organization of the Thesis

This thesis is organized as follows.

Chapter 2 details the basic definitions, representations of a dictionary

such as a suffix trie, a suffix tree and a suffix dawg, and tree representations

of an antidictionary such as an extended trie and an AD-trie. The review of

construction of AD-tries is also detailed. Then, we prove the upper bound

on the number of nodes of an AD-trie. Furthermore, we generalize the con-

struction algorithm of an antidictionary for binary strings using a suffix trie

to any string over finite alphabet.

Chapter 3 details the review of schemes of the DCA, and an adaptive

arithmetic coding based on the antidictionary of a binary string using the

AD-automaton, that is the OHY algorithm. Then, we generalize the OHY
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algorithm to any string over finite alphabet.

Chapter 4 gives a construction algorithm of an antidictionary using a suf-

fix tree, and proves that computational complexity of the proposed algorithm

is linear time and space. We show that its effectiveness by simulation results.

Then, we propose a linear construction algorithm of an AD-trie using a suffix

tree.

Chapter 5 gives two new schemes of the DCA method by means of tree

structures such as an AD-tree and a suffix tree. The DCA method using the

AD-tree works with an off-line in linear time and space, and the properties

of the AD-tree are useful for producing an on-line DCA method with linear

complexity. By using those properties, we propose an on-line DCA method

using dynamic suffix trees, and prove that the proposed algorithm works with

linear complexity. Moreover, we propose an on-line arithmetic coding based

on antidictionaries using dynamic suffix trees. Experimental results show its

effectiveness.

Chapter 6 gives a new on-line DCA method for Electrocardiogram (ECG).

The proposed algorithm constructs an AD-automaton from the substring

of an input string, and we study on the length of the substring needed to

construct the antidictionary whose size is almost same as that of the entire

string of ECG using the results of coupon collector’s problems. We show its

effectiveness by simulation results.

Chapter 7 summarizes this thesis.
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Chapter 2

Basic Definitions and Data

Structures

2.1 Alphabet and Strings

Let X be a finite source alphabet {1, 2, . . . , m}. A string is a sequence of

symbols that are taken from the alphabet X . The length of a string x is

denoted by |x|. Let X ∗ be the set of all finite strings over X , including the

null string of length zero, denoted by λ. Let X+ be the set X ∗\{λ}.

If string x = yz, then y is a prefix of x and z is a suffix of x where

x, y, z ∈ X ∗. String x is not only a prefix of x but also a suffix of x. Let

xk be the prefix of length k of x, and we define that x0 = λ. A prefix y or

suffix z of x is called proper if x = ywz where w ∈ X+. A substring of x is

a prefix of a suffix of x.

For a string x = x1x2 . . . xn ∈ X ∗ of length n, let P(x) be the set of all
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prefixes of x, that is,

P(x) = {x1 . . . xi|1 ≤ i ≤ n} ∪ {λ}, (2.1)

and we define that P(λ) = {λ}.

Similarly, let S(x) be the set of all suffixes of x, that is,

S(x) = {xi . . . xn|1 ≤ i ≤ n} ∪ {λ}, (2.2)

and we define that S(λ) = {λ}.

2.2 Dictionaries and Antidictionaries

The dictionary D(x) is defined as the set of all substrings of x, that is,

D(x) = {xixi+1 . . . xj|1 ≤ i ≤ j ≤ n} ∪ {λ}. (2.3)

A string v = v1v2 . . . vk of length k ≥ 2 with the properties

i) v ∈ X ∗\D(x) (2.4)

ii) v1v2 . . . vk−1 ∈ D(x) (2.5)

iii) v2v3 . . . vk ∈ D(x) (2.6)

is called a Minimal Forbidden Word (MFW) of x. The antidictionary of x,

denoted by A(x), is defined as the set of all MFWs of x. For example, the
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dictionary D(x) and the antidictionary A(x) for x = 1221231 are

{λ, 1, 2, 3, 12, 21, 22, 23, 31, 122, 123, 212, 221, 231, 1221, 1231, 2123, 2212,

12212, 21231, 22123, 122123, 221231, 1221231} (2.7)

and

{11, 13, 32, 33, 121, 222, 223, 312, 2122}, (2.8)

respectively. It can be verified that the string 121 is an MFW, because it is

not included in D(x) and it fulfills (2.4), (2.5) and (2.6).

We use the function | · | to represent not only the length of a string x but

also the cardinality or size of a set B. The difference between |x| and |B| is

clear from a context. The empty set is denoted by φ. Let |B| be zero in case

of B = φ. For example, |A(x)| for x = 1221231 in (2.8) is 9.

2.3 Tree and Automaton Representations of

the Dictionary

2.3.1 Suffix Tries

We first introduce basic tree terminology. A tree is a structure defined recur-

sively to be either a single external node or an internal node that is connected

to at least one tree. The nodes directly below a node are called its children;

nodes farther down are called descendants; the node directly above a node
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is called its parent; nodes farther up are called ancestors. Each node has

exactly one parent node, except the node at the top of a tree called the root

denoted by ρ. The root ρ has no parent. External nodes, called leaves, have

no child. An edge is defined as a link between a node and its child. A path

in the tree is defined by a sequence of connected nodes.

The suffix trie T (x) is a tree structure that stores each suffix of x as a

path from ρ to a node in T (x). Every edge in T (x) is labeled with a symbol

in X , and every path from ρ to a leaf corresponds to a suffix of x. Any string

in D(x) can be represented as a path from ρ to a node in T (x).

The string associated with the path from ρ to a node p is called the

path-string and is denoted by w(p). Let w(ρ) be the null string λ.

On the other hand, the node such that v = w(p) is called the locus of v

and the node p is denoted by l(v). If a string v ∈ D(x), then there exists

the node p of T (x) such that p = l(v).

For any node p in T (x), let L(p) be the set of all symbols that are

associated with all edges sprouting from p in T (x), that is,

L(p) = {a|w(p)a ∈ D(x), a ∈ X}. (2.9)

The set L(ρ) denotes the set of all symbols occurring in x.

An internal node p 6= ρ in T (x) that has a single child is called implicit,

while an internal node with at least two children, a leaf and ρ are called

explicit.

Figure 2.1 shows T (x) for x = 1221231. It consists of eighteen internal

nodes (ρ, p1, ..., p17), six leaves (q1, q2, q3, q4, q5, q6), and twenty-three edges.
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Figure 2.1: Suffix trie T (x) for x = 1221231.

In Figure 2.1, for example, the set L(ρ) = {1, 2, 3}, L(p4) = {2, 3} and

L(p6) = {1}.

The trie T (xi) denotes the suffix trie of xi. We use the simple notation

such as T i instead of T (xi). Note that T n is T (x) of the string x of length

n. For any node p in T i, we define Li(p) as the following Eq. (2.10). It is
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similar to L(p) in (2.9).

Li(p) = {a|w(p)a ∈ D(xi), a ∈ X}. (2.10)

The set Li(ρ) denotes the set of all symbols occurring in xi. Let Li be the

size |Li(ρ)|. Therefore, Ln is the size of the set of all symbols occurring in x

of length n. These notations are useful to represent suffix tries constructed

with an on-line manner.

The number of nodes in T (x) corresponds to the size of dictionary |D(x)|.
Janson et al. [JLS04] investigated the average size of D(x) of a random

string x of length n that was generated by a mixing model. It was shown

that, asymptotically, its size is equal to n2/2. This implies that the average

number of nodes of T (x) is of order O(n2). It takes O(n2) time to construct

T (x) for the string x of length n since all nodes of T (x) are created by a

construction algorithm.

2.3.2 Suffix Trees

The suffix tree T(x) is a compacted representation of T (x). The tree T(x) is

obtained by reducing the number of nodes in T (x). The number of nodes in

T (x) can be reduced by directly connecting the explicit nodes and relabeling

the edges, thus eliminating all implicit nodes. The resulting tree T(x) has the

same topology as the trie T (x). Every edge of T(x) from an (explicit) node p

to an (explicit) node r is labeled with a label string w(p, r) that corresponds

to the string associated with the path from p to r in the corresponding T (x).

It follows that w(r) = w(p)w(p, r). Since w(p, r) is a substring of x, that is,
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Figure 2.2: Suffix tree T(x) for x = 1221231.

w(p, r) = xixi+1 . . . xj, the label string can be represented by the pair [i, j].

Figure 2.2 shows T(x) for x = 1221231. It consists of three internal nodes

(ρ, p1, p2), six leaves (q1, q2, q3, q4, q5, q6), and eight edges. For example, the

path-strings w(q6) = 1221231 and w(q3) = 1231 share the common prefix

w(p2) = 12, and the label string w(p2, q6) = 21231 corresponds to a suffix of

w(q6) = 1221231. Using the aforementioned shorthand notation, the label

string 21231 is represented by [3, 7].

To make implicit nodes more easily understandable in these figures, we

use another representation of T(x) as shown in Figure 2.3 where all the

implicit nodes are virtually indicated by small circles. In this figure, small

circles, large circles and squares represent implicit nodes, explicit nodes and

leaves, respectively. In T(x), an implicit node q is represented by (p, [i, j])

where p is an explicit node that is the nearest ancestor of q and [i, j] is the

shorthand notation of the label string w(p, q). For example, implicit node
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Figure 2.3: Suffix tree T(x) with implicit nodes for x = 1221231.

p13 of T (x) in Figure 2.1 is represented by (p1, [4, 6]) in Figure 2.3, where

[4, 6] is label string 123.

For any internal node p 6= ρ in T(x) or T (x), we can write w(p) = av,

where a ∈ X and v ∈ X ∗. Let q be a node such that w(q) = v, and we

establish a pointer from p to q, called a suffix link, and denoted by σ(p). Suffix

links play a key roll in linear complexity algorithms for the construction of
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Figure 2.4: Suffix tree T(x) with suffix links for x = 1221231.

suffix trees [Gus97]. Figure 2.4 shows T(x) with suffix links. A curved line

denotes a suffix link for x = 1221231. As shown in Figure 2.4, the suffix link

σ(p2) and σ(p1) are p1 and ρ, respectively.

If a node p in T (x) has a child q and the edge from p to q is labeled by

symbol a, then q is alternatively represented by (p, a). The same notation is

useful to represent a child in T(x). For an internal node p of T(x), there is

a child q of p in T(x), and q is also written as (p, a) if w(q) = w(p)av for

v ∈ X ∗ since, in T(x), w(p, q) can be identified by only its first symbol. In

Figure 2.1 and Figure 2.2, for example, the node (p4, 2) in T (x) is p8 and

(p2, 2) in T(x) is q6.

The tree T(xi) denotes the suffix tree of xi. Similarly the trie T i, we use

the simple notation such as Ti instead of T(xi).

The number of nodes in T(x) is linear order with respect to the string

length n, while the number of nodes in T (x) is quadratic order. McCreight
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showed T(x) has at most 2n nodes [McC76].

The straightforward algorithm to construct T(x) requires quadratic time

in the worst case as well as T (x) for a string x of length n. Apostolico et

al. [AS92] showed that its time complexity is O(n log n) in the expected case.

Four construction algorithms for suffix trees with linear time are well

known [Wei73, McC76, Ukk95, Far97]. In 1973, the first algorithm was pro-

posed by Weiner [Wei73]. Although it is a new and innovative algorithm, it is

not common use in practice because the others are more efficient with respect

to space. The second algorithm was presented by McCreight in 1976 [McC76].

It has a space saving improvement over Weiner’s algorithm. While the above

two algorithms work with an off-line manner, the third algorithm proposed

by Ukkonen [Ukk95] in 1995 has important property such as an on-line man-

ner. It is useful for applications in sequential data processing such as the

string matching problem, data compression and so on. In 1997, the fourth

algorithm proposed by Farach [Far97] works in a linear time (independent of

the alphabet size) for integer alphabets.

2.3.3 Suffix Dawgs

A suffix directed acyclic word graph (suffix dawg) G (x) is a data structure

that stores all suffixes of a string x [BBHECS85]. It is represented as a finite

deterministic automaton of which every vertex is called the state of the dawg

and every edge labeled with a symbol in X is the possible transition into a

next state. The dawg G (x) is similar to T (x) and G (x) is more memory-

efficient than T (x). To reduce memory space, G (x) eliminates a prefix and a
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suffix redundancy by sharing common prefixes and suffixes among substrings,

while T (x) reduces a prefix redundancy by sharing common prefixes. In

Theorem 6.1 [CR02], it is proved that G (x) has less than 2n states with

respect to a string length n.

Figure 2.5 depicts G (x) for x = 1221231, where ρ is the initial state, and

the end-state q1 is represented by a square.
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Figure 2.5: Suffix dawg G (x) for x = 1221231.

If a state p in G (x) has a next state q and the edge from p to q is labeled

by symbol a, then q is alternatively represented by (p, a). We use the same

notation for T (x) and T(x). Linear algorithms to construct a suffix dawg

with an off-line and an on-line manner are proposed [BBHECS85, Cro86](cf.

[CR02]).
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2.4 Tree Representations of the Antidictionary

2.4.1 Extended Tries

The extended trie Tex(x) is constructed by adding new nodes to any node q

of T (x) as follows: If c ∈ L(ρ) and c /∈ L(q) are satisfied, then a new node r

is connected to q and w(q, r) is labeled by c. Every internal node of Tex(x)

has Ln children. In other words, Tex(x) is Ln-ary tree [Gus97]. Figure 2.6

depicts Tex(x) for x = 1221231, where the newly created nodes and edges

are represented by triangles and dashed lines, respectively. A triangle node

is a leaf of Tex(x).

Morita et al. [MO05] proved the following Theorem with respect to a

necessary and sufficient condition on MFWs.

Theorem 1 (Morita and Ota, 2005). For a leaf p in Tex(x), the path-

string w(p) is an MFW of x if and only if σ(p) is an internal node in Tex(x).

Proof. This proof is omitted here. (see [MO05])

Straightforward algorithms for the construction of A(x) need to examine

each path-string of all leaves of Tex(x) whether Eq. (2.6) is satisfied. It

follows that the computational time for the straightforward construction of

A(x) is of order O(n2).

2.4.2 AD-Tries

The AD-trie TA(x) of a string x is a tree structure that stores each MFW

of A(x) as a path from ρ to a leaf in TA(x). Every edge in TA(x) is labeled
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Figure 2.6: Extended trie Tex(x) for x = 1221231.

with a symbol in X , and every path from ρ to a leaf corresponds to an MFW

of A(x). The trie TA(x) is a subtree of Tex(x). The leaf of TA(x) is called

AD-node. Figure 2.7 shows TA(x) for x = 1221231, where A(x) = {11, 13,

32, 33, 121, 222, 223, 312, 2122}. In Figure 2.7, each triangle represents an

AD-node.
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Morita et al. [MO05] proved the following Theorem 2 with respect to an

AD-trie.

Theorem 2 (Morita and Ota, 2005). Let q be a leaf in T (x), and let

p be a child of q in Tex(x). Then, the path-string w(p) is an MFW if and

only if the path from the root to q is the shortest one among all the leaves in

T (x).

Proof. This proof is omitted here. (see [MO05])

From Theorem 1 and Theorem 2, we can classify A(x) into two classes.

Elements of the first class are represented by w(q)a, where a ∈ X and q is

the leaf with the shortest path length among all the leaves of T (x). The set

of the first class is denoted by AL(x), and the AD-trie of AL(x) is denoted

by TAL
(x).

On the other hand, an element of the second class can be represented by

w(p)b, where p is an internal node of T (x) and b ∈ X . The set of the second
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class is denoted by AI(x), and the AD-trie of AI(x) is denoted by TAI
(x).

For example, AL(x) and AI(x) for x = 1221231 is given by

{312} (2.11)

and

{11, 13, 32, 33, 121, 222, 223, 2122}, (2.12)

respectively. Mignosi et al. [MRS02] and Morita et al. [MO05] has been

investigated the upper bound on the size of A(x), independently. Table 2.1

shows the relationship between types of nodes in T (x) and classes of the

antidictionary A(x).

Table 2.1: Classes of the antidictionary A(x).

node type of T (x) path-string class upper bound

internal w(p)a AI(x) (Ln − 1)(n− 1)

leaf w(q)b AL(x) Ln

all w(p)a, w(q)b A(x) (Ln − 1)(n− 1) + Ln

From Theorem 1 and Theorem 2 and computational complexity of the

algorithm MF-Trie [CMR98] (the detail is described in Section 2.5.1 in this

thesis.) to produce TA(x) from G (x), we obtain the next theorem.

Theorem 3. An AD-trie TA(x) has at most (Ln + 1)n nodes, where Ln is

the number of all symbols occurring in the string x of length n.

Proof. Let S1 be the total number of states in G (x), and let S2 be the total

number of nodes that are created by the MF-Trie algorithm [CMR98]. The
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total number of nodes of TA(x), denoted by T (n), can be expressed by

T (n) = S1 + S2. (2.13)

From Theorem 6.1 [CR02], S1 is less than 2n. Therefore, we obtain

S1 ≤ 2n− 1. (2.14)

Since new nodes created by the MF-Trie algorithm are equal to the total

number of elements of A(x), from Table 2.1, we obtain

S2 ≤ (Ln − 1)(n− 1) + Ln. (2.15)

Therefore, from (2.13), (2.14) and (2.15), we obtain

T (n) ≤ S1 + S2 (2.16)

≤ 2n− 1 + (Ln − 1)(n− 1) + Ln

= (Ln + 1)n.

2.5 Traditional Construction of an AD-Trie

There are two well-known construction algorithms for an AD-trie, and both

of them were proposed by Crochemore et al. The first one is the algorithm

MF-Trie using a suffix dawg, and it can construct the AD-trie of the anti-
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dictionary of a give string over any finite alphabet with O(n) computational

time with respect to the string length n [CMR98].

The second one is the algorithm S2ADB using a suffix trie. It can construct

the AD-trie of the antidictionary of a given binary string, but requires O(n2)

time and space [CMRS00]. The suffix trie makes the algorithm more easily

understandable than the suffix dawg. Besides, it has the practical advantage

in constructing a restricted antidictionary that is a subset of MFWs whose

length are less than or equal to a given constant k. An implementation of

this algorithm is given in [CMRS00] and it runs in O(kn) time and space

complexity while the algorithm needs an excessive amount of time and space

as k grows. In Section 2.6, we generalize the S2ADB to any string over finite

alphabet called the S2AD.

2.5.1 Suffix Dawgs

Crochemore et al. proposed the MF-Trie algorithm to convert G (x) into

TA(x) [CMR98]. The MF-Trie algorithm works in linear time and space with

respect to the string length n. The outline of the MF-Trie is as follows.

Algorithm MF-Trie

input : a suffix dawg G (x)

output : the AD-trie TA(x)

begin 1

T ← G (x); 2

for (each state p of T in breadth-first order) do begin 3

for (each symbol a in X ) do begin 4
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if ((p, a) undefined in G (x) and (σ(p), a) defined in G (x)) 5

q ← new AD-node; (p, a) ← q in T ; 6

else if((p, a) = r and r already traversed in G (x)) then 7

remove an edge from p to r in T ; 8

end for; 9

end for; 10

return T (= TA(x)); 11

end. 12

2.5.2 Suffix Tries of Binary Strings

Crochemore et al. also proposed the construction algorithm of TA(x) for

a given binary string x using T (x). The algorithm called S2ADB produces

TA(x) from T (x) of a binary string x via the intermediate trie TI (x). The

trie TI (x) stores all elements of both D(x) and A(x) of a binary string x. In

other words, both T (x) and TA(x) are subtrees of TI (x). Moreover, TI (x)

is a subtree of Tex(x). The trie TI (x) for x = 12122 is shown in Figure 2.8,

where A(x) = {11, 221, 222, 2121}.
The outline of the S2ADB is as follows.

Algorithm S2ADB

input : the suffix trie T (x) of a binary string x

output : the AD-trie TA(x)

begin 1

T ← T (x); Q ← φ; 2
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Figure 2.8: Intermediate trie TI (x) for x = 12122.

/∗Step 1: construct the intermediate trie TI (x) ∗/ 3

for (each node p in T in breadth-first order) do begin 4

for (each symbol a in {1, 2}) do begin 5

if (a /∈ L(p) and a ∈ L(σ(p))) 6

q ← new leaf; Q ← Q∪ {q}; 7

(p, a) ← q; 8

end if ; 9

end for; 10

end for; 11

/∗Step 2: remove edges of the trie TI(x) ∗/ 12

for (each node p in T in depth-first order) do 13
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remove node of T from which no path leads to Q; 14

return T (= TA(x)); 15

end. 16

Since T (x) has O(n2) nodes with respect to a string length n, the S2ADB

algorithm needs quadratic computational time and space.

To reduce computational time and space, Crochemore et al. also proposed

the algorithm, called Build-Fact [CMRS00], to construct the restricted suffix

trie that stores substrings of x whose length are less than or equal to a given

constant k. By using the restricted suffix trie instead of T (x), the S2ADB

works with O(kn) time and space.

2.6 Construction of an AD-trie Using a Suffix

Trie for Finite Alphabet

The S2ADB algorithm can construct only the AD-trie for only a binary string.

In this section, we generalize the S2ADB to any string over finite alphabet. By

applying Theorem 1, we can obtain a new algorithm S2AD to construct the

AD-trie for a given string over finite alphabet based on the S2ADB. In other

words, we can obtain the S2AD algorithm by exchanging binary alphabet

{1, 2} with finite alphabet X in the S2ADB.

The S2AD algorithm also produces TA(x) from T (x) via TI (x). The trie

TI (x) for x = 1221231 is shown in Figure 2.9.

The outline of the S2AD is as follows.
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Figure 2.9: The intermediate trie TI (x) for x = 1221231.

Algorithm S2AD

input : a suffix trie T (x)

output : the AD-trie TA(x)

begin 1

T ← T (x); Q ← φ; 2

/∗construct the intermediate trie TI (x) ∗/ 3

for (each node p in T in breadth-first order) do begin 4

for (each symbol a in X ) do begin 5
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if (a /∈ L(p) and a ∈ L(σ(p))) 6

q ← new leaf; Q ← Q∪ {q}; 7

(p, a) ← q; 8

end if ; 9

end for; 10

end for; 11

/∗remove edges of TI (x) ∗/ 12

for (each node p in T in depth-first order) do 13

remove node of T from which no path leads to Q; 14

return T (= TA(x)); 15

end. 16
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Chapter 3

Review of Data Compression

Using Antidictionaries (DCA)

3.1 Introduction

The application of antidictionary of a binary string to lossless off-line data

compression was first introduced by Crochemore et al. [CMRS00]. Their

method, called Data Compression using Antidictionaries (DCA), was ap-

plied to the Calgary Corpus [Cal] that is commonly used for comparing data

compression algorithms and it was shown that the DCA works as well as

dictionary compression methods such as the Lempel-Ziv algorithm. They

also proved that the DCA method achieves a compression rate that is equal

to the entropy rate of a balanced binary source which is a unifilar Markov

source with two output symbols of equal probabilities. A Markov source is

called unifilar if for each state s, the labeled symbols of the transition from s

to s1, . . . , sk are distinct, where s1, . . . , sk are the states that can be reached
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in one step from s [Ash90].

In 2004, we proposed an on-line source coding scheme using an anti-

dictionary for lossless compression of electrocardiograms (ECGs) [OM04].

Experimental results showed that the proposed algorithm achieved a com-

pression ratio that was about 10% better than the compression ratio achieved

by the LZ algorithms. The details of the proposed algorithm for ECG

will be described in Chapter 6. In the last two or three years, exten-

sions of the DCA algorithm to any string over finite alphabet were pro-

posed [CEGM04, OM06c]. The DCA algorithm and their extensions need

an antidictionary of a given string and those encoders to compress a given

string. The construction algorithms of an antidictionary in linear time and

space were proposed [CMR98, OM06b, OM06c, OM07b]. The details are

described in Chapter 4.

In this Chapter 3, we introduce the basic and practical schemes of the

DCA. We present an arithmetic coding based on the DCA for binary strings

proposed by Ohkawa et al. [OHY05], and we generalize the OHY to any

string over finite alphabet.

3.2 Encoding

The set Vi(x) is defined as the subset of AI(x), that is,

Vi(x) = {v|v = ua ∈ AI(x), u ∈ S(xi), a ∈ X}. (3.1)
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For an arbitrary i, if |Vi(x)| = Ln − 1, then a symbol xi+1 is eliminated in

the DCA algorithm. In Eq. (3.1), we use AI(x) instead of A(x) because

elements of AL(x) are useless for eliminating symbols. No symbol follows

the string u such that ua ∈ AL(x) since u is a suffix of x.

In other words, suppose to have just read proper prefix xi of x. If the

string ua ∈ AI(x), such that u is a suffix of xi and a ∈ L(ρ), then symbol

xi+1 is not the symbol a. Hence, if there exists a string ua ∈ AI(x) such that

u ∈ S(xi) for every symbol a ∈ L(ρ)\{b}, then the symbol xi+1 is surely the

symbol b because xi+1 is not the symbol a ∈ L(ρ)\{b}. We know in advance

the next symbol xi+1 that turns out to be redundant or predictable.

Next, we present the encoding algorithm DCA Encoder of the DCA algo-

rithm. For a given string x of length n, let γ be the encoded string of x.

The encoding algorithm DCA Encoder is as follows. Note that we use AI(x)

instead of A(x) in the following algorithms since AL(x) is useless for elim-

inating symbols. In other words, the DCA algorithm using AI(x) outputs

the same γ as that of the DCA algorithm using A(x).

Algorithm DCA Encoder

input : a 2-tuples (an input string x, AI(x))

output : the 3-tuples (the encoded string γ, n, AI(x))

begin 1

γ ← λ; 2

for i := 1 to n do begin 3

if (|Vi(x)| < Ln − 1) then 4

γ ← γ.xi; 5
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end for; 6

return (γ, |x|, AI(x)); 7

end. 8

For example, Table 3.1 shows the relationship between output symbols of

the DCA Encoder and |Vi(x)|, where for x = 1221231, AI(x) = {11, 13, 32, 33,

121, 222, 223, 2122}, and L(ρ) = {1, 2, 3}. As shown in Table 3.1, a symbol

can be eliminated if |Vi(x)| = 2 since L6 = 3. As a result, the algorithm

DCA Encoder obtains the 3-tuples (12, 7, AI(x)) as its codeword.

Table 3.1: An example of encoding of the DCA algorithm, where x = 122132,
AI(x) = {11, 23, 31, 33, 121, 212, 222, 2122}, and L6 = 3.

input string output string |Vi(x)| MFWs
x0 = λ λ
x1 = 1 1 0
x2 = 12 1 2 11, 13
x3 = 122 12 1 121
x4 = 1221 12 2 222, 223
x5 = 12212 12 2 11, 13
x6 = 122123 12 2 121, 2122
x7 = 1221231(= x) 12(= γ) 2 32, 33

3.3 Decoding

Suppose that the string v(= xi) is already decoded string in the decoding

algorithm. Let γ be the encoded string of x by the DCA Encoder. The

decoding process is as follows. Let b be the symbol following the string v. If

|Vi(v)| = Ln−1, then the symbol b is surely the uniquely symbol a such that
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a ∈ L(ρ) and ua /∈ AI(x) for every u ∈ S(v). Otherwise, |Vi(v)| < Ln − 1,

then the symbol b is read from the encoded string γ.

The decoding algorithm DCA Decoder is as follows.

Algorithm DCA Decoder

input : a 3-tuples (an encoded string γ, n, AI(x))

output : the string y(= x) of length n

begin 1

y1 ← γ1; j ← 2; 2

for i := 2 to n do begin 3

if (|Vi−1(y)| = Ln − 1)) 4

a ← the symbol b such that b ∈ L(ρ) and ub /∈ AI(x) 5

for every u ∈ S(yi−1))

yi ← a; 6

else /∗|Vi−1(y)| < Ln − 1 ∗/ 7

yi ← γj; j ← j + 1; 8

end for; 9

return y; 10

end. 11

To examine effectively whether or not the string ua is a element of AI(x),

a finite deterministic automaton, called AD-automaton, is used. By using

the AD-automaton of the string x, the DCA Encoder and DCA Decoder can be

implemented to run in O(n) time with respect to the string length n. Next

Section details an AD-automaton.
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3.4 AD-automatons

The DCA algorithm requires |Vi(x)| for every xi in its encoding and decoding

process. To obtain |Vi(x)| efficiently, an AD-automaton is used in the DCA

algorithm [CMRS00]. The AD-automaton is produced from an AD-trie. Let

GA(x) be the AD-automaton of A(x) and GAI
(x) be the AD-automaton of

AI(x). For example, Figure 3.1 and Figure 3.2 shows the AD-trie TAI
(x) and

the AD-automaton GAI
(x) of AI(x) = {11, 13, 32, 33, 121, 222, 223, 2122} for

x = 1221231, respectively.
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Figure 3.1: AD-trie TAI
(x) for AI(x) = {11, 13, 32, 33, 121, 222, 223, 2122}

for x = 1221231.

In Figure 3.2, a solid line and a dashed line represents possible-transition

and impossible-transition, respectively. A circle and a triangle represents ter-

minal state and non-terminal state called AD-state, respectively. A terminal

state corresponds to an internal node in TAI
(x), and an AD-state corre-
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Figure 3.2: AD-automaton GAI
(x) for AI(x) = {11, 13, 32, 33, 121, 222, 223,

2122} for x = 1221231.

sponds to a leaf, that is an AD-node, in TAI
(x). In Figure 3.2, GAI

(x) has

eight terminal states (ρ, p1, ..., p7) and eight AD-states. The initial state of

GAI
(x) that corresponds to ρ of TAI

(x) is also denoted by ρ. An impossible-

transition is a transition toward an AD-state. Any impossible-transition

corresponds to an MFW occurring in x. Hence, the DCA algorithm allows

possible-transitions.

Let Wi(x) be the set of common substrings between proper prefixes of

MFWs in AI(x) and suffixes of xi, that is,

Wi(x) = {w|wv ∈ AI(x), w ∈ S(xi), v ∈ X+} ∪ {λ}. (3.2)
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Let ξ be the function to obtain the longest string in a given set of strings.

The string wi is written as a function ξ such that

wi = ξ(Wi(x)). (3.3)

By using GAI
(x), we can obtain |Vi(x)| in linear time using locus πi of wi in

TAI
(x) such that

πi = l(wi). (3.4)

If πi has Ln−1 impossible-transitions, then |Vi(x)| = Ln−1. As an example,

for x = 1221231, the longest string s4 in W4(x) is 21, and the locus πi is q5

in Figure 2.7, where x4 = 1221.

For example, we show encoding process for x = 1221231 using GAI
(x)

in Figure 3.2. Starting from ρ of GAI
(x), transitions of GAI

(x) with x =

1221231 will be given as follows;

ρ
1−−−→ p1

2−−−→ p4
2−−−→ p6

1−−−→ p5
2−−−→ p7

3−−−→ p3
1−−−→ p1.

(3.5)

As shown in Figure 3.2, in (3.5), outputs occur at state ρ and p4 since these

states have less than Ln−1 impossible-transition. Outputs never occur at any

node except ρ and p4 since each state has Ln− 1 impossible-transitions. Ta-

ble 3.2 shows the relationship between the number of impossible-transitions

at each state and |Vi(x)| in encoding process.

Crochemore et al. proposed the algorithm L-Automaton to convert TA(x)

into GA(x) [CMRS00]. This algorithm works in linear time from Theorem 3

with respect to the string length.
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Table 3.2: The relationship between the number of impossible-transitions
and |Vi(x)|, where x = 122132, AI(x) = {11, 23, 31, 33, 121, 212, 222}, and
L6 = 3.

input string output string states impossible- |Vi(x)| MFWs
transitions

x0 = λ λ 0
x1 = 1 1 ρ 0 0
x2 = 12 1 p1 2 2 11, 13
x3 = 122 12 p4 1 1 121
x4 = 1221 12 p6 2 2 222, 223
x5 = 12212 12 p5 2 2 11, 13
x6 = 122123 12 p7 2 2 121, 2122
x7 = 1221231(= x) 12(= γ) p3 2 2 32, 33

By using an AD-automaton, the DCA Encoder and DCA Decoder can be

implemented to run in O(n) time with respect to the string length n. If the

state p for xi has just Ln − 1 impossible-transitions, then |Vi(x
i)| = Ln − 1.

We show the encoding and decoding algorithm using GAI
(x), respectively.

The notation (p, a) denotes the transition from a state p with a symbol

a. The outline of the DCA Encoder-AU and DCA Decoder-AU are as follows,

respectively.

Algorithm DCA Encoder-AU

input : a 2-tuples (a string x of length n, AI(x))

output : the 3-tuples (the encoded string γ, n, AI(x))

begin 1

/∗Step 1:Construct GAI
(x) from TAI

(x) ∗/ 2

GAI
(x) ← L-Automaton(TAI

(x)); 3

/∗Step 2:Encode ∗/ 4
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p ← ρ of GAI
(x); 5

for i := 1 to n do begin 6

if (p has less than Ln − 1 impossible-transitions) then 7

γ ← γ.xi; 8

p ← (p, xi); 9

end for; 10

return (γ, n, AI(x)); 11

end. 12

Algorithm DCA Decoder-AU

input : a 3-tuples (an encoded string γ, n, AI(x))

output : the string y(= x) of length n

begin 1

/∗Step 1:Reconstruct GAI
(x) from TAI

(x) ∗/ 2

GAI
(x) ← L-Automaton(TAI

(x)); 3

/∗Step 2:Decode ∗/ 4

p ← ρ of GAI
(x); y ← λ; 5

for i := 1 to n do begin 6

if (p has less than Ln − 1 impossible-transitions) then begin 7

yi ← γj; j ← j + 1; 8

else 9

yi ← a ∈ L(p); 10

end if ; 11

p ← (p, yi); 12
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end for; 13

return y(= x); 14

end. 15

3.5 Practical Techniques

In this section, we introduce some techniques to improve compression ratio

of the DCA algorithm [CMRS00].

3.5.1 Recursive Tree Representation

An encoder of the DCA algorithm needs to send an antidictionary to its

decoder. We need a compact representation of the antidictionary.

Figure 3.3 shows TA(x) of A(x) = {11, 221, 222, 2121}. As shown in

Figure 3.3, the MFWs 222 and 221 share the common prefix 22. To use

the common prefix among MFWs efficiently, we apply a recursive tree rep-

resentation to TA(x). Assuming that TA(x) is a binary tree. The node in

a binary tree has two subtrees, only the right subtree, only the left subtree

or no subtree. The node can be represented by the string 11, 10, 01, 00,

respectively. The whole tree can be encoded by traversing the depth-first

order. A given binary tree that has n nodes can be represented by 2n bits

since the cost of one node is just 2 bits. For example, TA(x) in Figure 3.3 is

represented by the string 11100011011000110000, that is 20 bits, since TA(x)

has 10 nodes. Usually, we use recursive tree representation of the AD-trie to

store an antidictionary as a codeword of the DCA algorithm.
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Figure 3.3: AD-trie TA(x) of A(x) = {11, 221, 222, 2121}.

3.5.2 Pruning an Antidictionary

From Theorem 3, since TA(x) for a binary string x of length n has at most

3n nodes, the cost of A(x) requires 6n bits in worst case. The cost of A(x)

is larger than that of x. To improve the size of the codeword, it needs to

reduce the cost of A(x).

Let p, q be a node of TA(x) such that w(p) ∈ A(x) and the parent node p,

respectively. Let w(q, p) be a symbol a. If w(q) appears k times in x, then

the MFW w(p) contributes elimination of k symbols in x. On the other

hand, the cost of w(p) in the codeword is 2|w(p)| bits by using recursive

tree representation. If k < 2|w(p)|, then the cost is larger than the gain in

compression. Otherwise, the gain is larger than the cost.

Let c(p) be the number of occurrence of w(q) in x. The function c(·) is

called cost function. The MFW w(p) contributes elimination of c(p) symbols
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in encoding process. Crochemore et al. proposed the algorithm to obtain c(p)

for each leaf p in TA(x) using GA(x) [CMRS00]. The size of c(p) corresponds

to the number of times that p is traversed in GA(x) while reading the string

x.

Crochemore et al. proposed the criteria function called gain function to

select MFWs from A(x) [CMRS00]. The gain function g(S) to obtain the

gain of a subtree S of TA(x) is defined by

g(S) =





0 if S is empty

c(p)− 2 if S is a leaf p

g(S1)− 2 if S has one subtree S1

M − 2 if S has two subtrees S1 and S2,

(3.6)

where M is the maximum integer of three values g(S1), g(S2) and (g(S1) +

g(S2)).

Crochemore et al. proposed the algorithm called Simple Pruning to prune

A(x). We will use the cost function c(p) and the gain function g(S) in the

Simple Pruning. Let initial value of c(p) be zero for all nodes of TA(x). The

outline of the Simple Pruning is as follows.

Algorithm Simple Pruning

input : a 2-tuples (an AD-trie TA(x), the function cost c)

output : the pruned AD-trie TAp(x)

begin 1

/∗Step 1: compute g(S) for each subtree S of TA(x) ∗/ 2

for (each node p in TA(x) in depth-first order) do 3
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compute g(S); /∗p is the root of subtree S ∗/ 4

/∗Step 2: eliminate subtree S of TA(x) for g(S) ≤ 0 ∗/ 5

for (each node p in TA(x) in depth-first order) do 6

if (g(S) ≤ 0) then /∗p is the root of subtree S ∗/ 7

eliminate subtree S; 8

return TAp 9

end. 10

3.5.3 Self-Compression

Crochemore et al. proposed the lossless compression algorithm for an antidic-

tionary of a binary string [CMRS00]. This algorithm is called Self-Compress.

The Self-Compress produces the compressed AD-trie from TA(x). They also

proposed the algorithm to construct GA(x) from the compressed AD-trie.

In 2004, the extension of Self-Compress to any string over finite alphabet

was proposed [CEGM04].

3.6 Elementary of an Arithmetic Coding Based

on the DCA

In 2005, Ohkawa et al. [OHY05] proposed the off-line compression algorithm

for binary strings that uses an AD-automaton as a statistical model for an

arithmetic coding. Simulation results showed that the AD-automaton for a

binary string provides an efficient statistical model. Their method, called
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Ohkawa-Harada-Yamamoto (OHY) method, constructs a statistical model

such that a conditional probability for each state in the AD-automaton by

means of the transition times of each state with a give binary string. The

OHY algorithm combines eliminating symbols of a given string using an AD-

automaton and encoding the remained symbols by means of an arithmetic

coding for a binary string.

We now show the encoding algorithm OHY Encoder of the OHY method.

Let N(c, p) be the number of times that transitions from a state p with

symbol c ∈ {1, 2} occurring in the encoding process.

The initial value of N(c, p) is one for c ∈ {1, 2}. Let N(p) be the number

of the total transition times from p, that is N(p) is equal to
∑

c∈{1,2} N(c, p).

The algorithm uses the procedure AC-E (c, p, s) to encode the symbol c by

means of cumulative probabilities for an element of L(p) by an adaptive

arithmetic coding, where the string s denotes a codeword. The outline of

the OHY Encoder is as follows.

Algorithm OHY Encoder

input : a 2-tuples (a binary string x of length n, AI(x))

output : the 3-tuples (an encoded string γ, n, AI(x))

begin 1

/∗Step 1:Construct GAI
(x) from TAI

(x) ∗/ 2

GAI
(x) ← L-Automaton(TA(x)); 3

/∗Step 2:Encode ∗/ 4

p ← ρ of GAI
(x); γ ← λ; 5

for i := 1 to n do begin 6
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if (p has no impossible-transition) then begin 7

γ ← AC-E (xi, p, γ); /∗an adaptive arithmetic coding ∗/ 8

N(c, p) ← N(c, p) + 1; 9

end if ; 10

p ← (p, xi); 11

end for; 12

return (γ, n, AI(x)); 13

end. 14

Next, we show the OHY Decoder algorithm. The algorithm uses the proce-

dure AC-D (s, p) to decode the symbol c by means of cumulative probabilities

of {1, 2} and the codeword s by an adaptive arithmetic coding. The outline

of the OHY Decoder is as follows.

Algorithm OHY Decoder

input : a 3-tuples (an encoded string γ, n, TAI
(x))

output : the string y(= x) of length n

begin 1

/∗Step 1:Reconstruct GAI
(x) ∗/ 2

GAI
(x) ← L-Automaton(TAI

(x)); 3

/∗Step 2:Decode ∗/ 4

p ← ρ of GAI
(x); y ← λ; 5

for i := 1 to n do begin 6

if (p has no impossible-transition) then begin 7

c ← AC-D (γ, p); /∗an adaptive arithmetic coding ∗/ 8
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y ← y.c; N(c, p) ← N(c, p) + 1; 9

end if ; 10

else 11

c ← b ∈ L(p); y ← y.c; 12

p ← (p, c); 13

end for; 14

return y(= x); 15

end. 16

3.7 An Arithmetic Coding Using an AD-

automaton for Finite Alphabet

The OHY algorithm can compress only a given binary string. In this section,

we generalize the OHY algorithm to any string over finite alphabet. The

proposed algorithm ACDCA is obtained by combining the DCA algorithm for

finite alphabet with an adaptive arithmetic coding.

First, we show the encoding algorithm of the ACDCA. The initial value of

N(c, p) is one for c ∈ L(p). Let N(p) be the number of the total transition

times from p. The size N(p) is equivalent to
∑

c∈L(p) N(c, p). The algorithm

uses the procedure AC-E (c, p, s) to encode the symbol c by means of cumu-

lative probabilities for an element of L(p) by an adaptive arithmetic coding,

where the string s denotes a codeword.

The outline of the ACDCA-E is as follows.
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Algorithm ACDCA-E

input : a 2-tuples (a string x of length n, AI(x))

output : the 3-tuples (the encoded string γ, n, AI(x))

begin 1

/∗Step 1:Construct GAI
(x) from TAI

(x) ∗/ 2

GAI
(x) ← L-Automaton(TAI

(x)); 3

/∗Step 2:Encode ∗/ 4

p ← ρ of GAI
(x); γ ← λ; 5

for i := 1 to n do begin 6

if (p has less than Ln − 1 impossible-transitions) then begin 7

γ ← AC-E (xi, p, γ); /∗an adaptive arithmetic coding ∗/ 8

N(c, p) ← N(c, p) + 1; 9

end if ; 10

p ← (p, xi); 11

end for; 12

return (γ, n, TAI
(x)); 13

end. 14

Next, we show the decoder of the ACDCA algorithm. The algorithm uses

the procedure AC-D (s, p) to decode the symbol c by means of cumulative

probabilities of L(p) and the codeword s by an arithmetic coding. The

outline of the ACDCA-D is as follows.

Algorithm ACDCA-D
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input : a 3-tuples (an encoded string γ, n, AI(x))

output : the string y(= x) of length n

begin 1

/∗Step 1:Reconstruct GAI
(x) ∗/ 2

GAI
(x) ← L-Automaton(TAI

(x)); 3

/∗Step 2:Decode ∗/ 4

p ← ρ of GAI
(x); y ← λ; 5

for i := 1 to n do begin 6

if (p has less than Ln − 1 impossible-transitions) then begin 7

c ← AC-D (γ, p); /∗an adaptive arithmetic coding ∗/ 8

y ← y.c; 9

N(c, p) ← N(c, p) + 1; 10

end if ; 11

else 12

c ← b ∈ L(p); y ← y.c; 13

p ← (p, c); 14

end for; 15

return y(= x); 16

end. 17
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Chapter 4

Construction of an

Antidictionary with Linear

Computational Complexity

4.1 Introduction

The antidictionary for a given string is the set of all minimal strings that

never appear in the string. The antidictionary is useful for data compression

and fragment assembly problem [CMRS00, OM04, FMRS06]. Morita et al.

proposed an algorithm to reconstruct the suffix trie from an AD-trie [MO05].

In 2006, Sun et al. proposed an application of the antidictionary of a binary

string to synchronization markers in video stream [SMN06].

There are two well-known construction algorithms for an antidictionary [CMR98,

CMRS00]. The first one is the algorithm using a suffix dawg, and it can con-

struct the antidictionary of a given string over any finite alphabet with O(n)
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computational time with respect to the string length n [CMR98].

The second one is the algorithm using a suffix trie. It can construct the

antidictionary of a given binary string and requires O(n2) time and space

with respect to the string length n [CMRS00]. The suffix trie makes the

algorithm more easily understandable than the suffix dawg. Besides, it has

a practical advantage in constructing a restricted antidictionary that is a

subset of MFWs whose length is less than or equal to a given constant k. An

implementation of this algorithm is given in [CMRS00] and it runs in O(kn)

time and space complexity, while the algorithm needs an excessive amount

of time and space as k grows.

To reduce the computational complexity for construction of the antidic-

tionary using a suffix trie, we can use a suffix tree. However, even if we apply

a suffix tree, the time complexity of direct construction algorithms for the

antidictionary remains O(n2), because there are O(n2) path-strings for all

leaves in the extended trie for which one needs to examine whether or not

they are MFWs.

The main result of this chapter is the linear algorithm to construct an

antidictionary of a string over finite alphabet using a suffix tree [OM05a,

OM05b, OM06b, OM06c, OM07b]. We introduce a new concept that uses

a new kind of pointers, called MF-links, to efficiently traverse through the

suffix tree. The MF-links are as essential as the suffix links for construction

of an antidictionary in linear computational time. We prove that the total

construction computational complexity can be reduced to O(n) with respect

to the string length n.

Moreover, we propose an algorithm to construct an AD-trie for a given
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string using a suffix tree, since the antidictionary is represented by recursive

tree representation of an AD-trie in the DCA algorithm. It is proved that

the construction algorithm of an AD-trie also works in linear time.

This chapter is organized as follows. In Section 4.2, we introduce the new

concept of MF-links and derive a proposition that we will use to construct an

antidictionary efficiently. Then, this section details the proposed algorithm

for construction of the antidictionary using a suffix tree, and it is proved that

the proposed algorithm has a linear time complexity. Finally, its effective-

ness is demonstrated by simulation results. In Section 4.3, we propose an

algorithm to construct the AD-trie for a given string using a suffix tree in

linear time. Section 4.4 summarizes our results.

4.2 Construction of an Antidictionary Using

a Suffix Tree in linear time

4.2.1 MF-links

We introduce the following Corollary 1 proved by Morita et al. [MO05].

Corollary 1 (Morita and Ota, 2005). Suppose that p is a leaf in Tex(x)

and its parent node q is an internal node in T (x). Then, w(p) is an MFW

of x if and only if node σ(q) has two children in T (x).

Proof. This proof is omitted here (see [MO05]).

Corollary 1 is derived from Theorem 1 in Section 2.4.1 of this thesis

and Corollary 1 can be only applied to a binary string x. We generalize
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Corollary 1 to any string over finite alphabet as the following Corollary 2.

Corollary 2. Suppose that p is a leaf in Tex(x), its parent node q is an

internal node except the root in T (x) and w(q, p) is a symbol b. Then, w(p)

is an MFW of x if and only if node σ(q) has at least two children in T (x)

and b ∈ L(σ(q)).

Proof. Assume that w(p) is an MFW of x. The node q has at least one

child since q is an internal node, while b /∈ L(q) holds because w(p) is an

MFW. Therefore, σ(q) has at least two children because σ(p) ∈ D(x) is

satisfied from (2.6). Moreover, w(σ(q), σ(p)) is the symbol b since w(q, p) is

the symbol b. Hence, σ(q) has at least two children and b ∈ L(σ(q)) holds.

Conversely, assume that σ(q) has at least two children and b ∈ L(σ(q)).

Since b ∈ L(σ(q)) and w(q, p) is the symbol b, w(σ(p)) ∈ D(x) holds. From

(2.4), (2.5) and (2.6), w(p) is an MFW of x because w(p) /∈ D(x), w(q) ∈
D(x) and w(σ(p)) ∈ D(x) hold.

Corollary 2 shows that string w(p) = aw(σ(q))b is an element of AI(x)

if and only if σ(q) has at least two children in T (x) and b ∈ L(σ(q)), where

a ∈ X . The node σ(q) is an internal node in T(x) since σ(q) has at least two

children in T (x).

For example, Table 4.1 shows the relationship between all MFWs of A(x)

for x = 122123 and T(x) in Figure 2.2. As shown in (2.8), A(x) for x =

1221231 is given by {11, 13, 32, 33, 121, 222, 223, 312, 2122}. The node ρ, p1

and p2 are internal nodes in T(x). The node q1 is the shortest leaf qs of

T(x). Table 4.1 shows each element of AI(x) shown in (2.12) is represented

by aw(p)b, where p is an internal node in T(x). On the other hand, an
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Table 4.1: List of all MFWs of A(x), where x = 1221231.

path-string MFWs

node representation value representation value

ρ w(ρ) λ 1w(ρ)1, 1w(ρ)3, 3w(ρ)2, 3w(ρ)3 11, 13, 32, 33

p1 w(p1) 2 2w(p1)1, 2w(p1)2, 2w(p1)3 121, 222, 223

p2 w(p2) 12 1w(p2)2 2122

q1 w(q1) 3 w(q1)2 32

element of AL(x) shown in (2.11) is also be represented by aw(p)b, while the

node p can be an implicit node or an internal node in T(x).

Table 4.1 suggests that it may be sufficient to access all internal nodes

and the shortest leaf of T(x) to determine all elements of A(x). Then, the

total number of nodes associated with MFWs is at most n.

For an internal node p of T(x), to determine whether a string aw(p)b is

an MFW of AI(x), from (2.4) and (2.6), we need to check if the following

two equations (4.1) and (4.2) are satisfied:

b ∈ L(p) (4.1)

b /∈ L(q), (4.2)

where q satisfies w(q) = aw(p) and a ∈ X . If (4.1) and (4.2) are satisfied

and q 6= qs, then aw(p)b is an MFW of AI(x).

Note that q given above can be not only an internal node but also either

an implicit node or the leaf qs of T(x) if q in T(x). Moreover, if q = qs, then

w(qs)b belongs to AL(x).

For each internal node p of T(x), to access to q from p and utilize L(q)
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efficiently, we introduce a new pointer called MF-link in T(x).

Definition 1 (MF-link). An MF-link is a pointer from an internal node p

in T(x) to a node q such that w(q) = aw(p) for a ∈ X .

The node q in Definition 1 can be written as a function of p and a ∈ X
such that

q = γa(p).

If q is an internal node of T(x), this function γa is the reversed suffix link of

Weiner’s algorithm [Wei73], called the link vector [Gus97]. Any link vector

points to only an internal node, while any MF-link points to an internal node,

an implicit node or the leaf qs of T(x). In other words, the set of link vectors

is a subset of MF-links.

Since q may be an implicit node, to determine whether aw(p)c(= w(q)c)

is an MFW of AI(x), it is necessary to access to an implicit node from an

internal node. It means that link vectors may fail to point some of MFWs

of AI(x) while MF-links can do all of them. Therefore, we use MF-links to

obtain all MFWs of AI(x).

Note that any internal node p of T(x) has at least one MF-link since w(p)

appears at least twice in x. Figure 4.1 shows MF-links for x = 1221231. In

Figure 4.1, curved lines represent MF-links in T(x) for x = 1221231.

The root ρ has three MF-links and p2 has one MF-link. MF-links do

not necessarily point to internal nodes of T(x). They may point to implicit

nodes of T (x). Hence, γa(p) is represented by (q, w) where q is an internal

node of T(x) that is the nearest ancestor node of γa(p) in T(x) and w is the

string such that w(γa(p)) = w(q)w. Since w is a substring of x, say x[i, j],
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Figure 4.1: Graphical representation of MF-links in T(x), where x =
1221231.
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the node (q, w) can be written as (q, [i, j]). Of course, it may happen that

q = γa(p) and w = λ. For example, γ1(ρ) = (ρ, [1, 1]), γ2(ρ) = (p1, λ) and

γ2(p2) = (p1, [4, 5]) in Figure 4.1, where [1, 1] and [4, 5] are label string 1 and

12, respectively.

To find an MFW of an internal node p, a direct method using a symbol-

by-symbol search for γa(p) travels through |w(γa(p))|(= |aw(p)|) nodes of

T (x). Since this number is proportional to the length of the longest common

prefix and it is known that the average length is O(log n) [DSR92], we can

construct all MF-links in O(n log n) average time.

In the rest of this section, we give a proposition to guarantee that MF-

links associated with internal nodes of T(x) can be found in O(n) time. The

idea is to do a node-by-node search for aw(p) in T(x) instead of in T (x) to

reduce the computational time.

Proposition 1. Suppose the following conditions hold for an internal node

p except the root on T(x) and its parent node π(p);

(1) For the first symbol b of w(π(p), p), node q = (γa(π(p)), b) exists on

T(x), and

(2) |w(γa(π(p)), q)| ≥ |w(π(p), p)|.

Then w(π(p), p) is a prefix of w(γa(π(p)), q), that is, there exists z ∈ X ∗

such that

w(γa(π(p)), q) = w(π(p), p)z.

Proof. Suppose that γa(π(p)) exists and that there are b ∈ X , q satisfying

(1) to (2) of Proposition 1. Let v be the label string w(π(p), p). We have to
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prove that there exists t and z such that w(γa(π(p)), q) = tz and t = v.

Let w be the longest common prefix between v and t. If |w| < |v|,
w(π(p))wc and w(π(p))wd are in D(x) where c, d ∈ X . Thus, there exists

an internal node r on T(x) such that w = w(π(p), r). However, it contradicts

to the construction of v. Therefore, |w| = |v|. Then it follows that t = v.

By applying Proposition 1, we can find the MF-links of p node-by-node,

since aw(π(p))w(π(p), p) = w(γa(p)), that is, γa(p) = (γa(π(p)), w(π(p), p)).

To find the MF-links of all internal nodes on T(x), we check if γa(ρ) exists,

and then we examine the internal nodes p in T(x) node-by-node in breadth-

first order to determine whether or not a node r with the property w(r) =

aw(p) = w(γa(π(p)))w(π(p), p) is in T (x). The details of this method will

be described next.

4.2.2 Construction Algorithm

First we give a sketch of the algorithm for finding efficiently MF-links on

T(x) by using Proposition 1.

Let p be an internal node of T(x) and π(p) be the parent of p. Also let v

be the label string w(π(p), p). Suppose that we are now on node µ of T (x)

such that w(µ) = aw(π(p)), that is, µ = γa(π(p)). Then we start finding

the next node q such that w(q) = w(µ)v in other words q = γa(p).

The search process depends on whether µ is an explicit or implicit node.

In the case of an explicit node, we select the child r of µ such that the

edge from µ to r is labeled by the string l starting with the first symbol of v.

From Proposition 1, it follows that l = vz without checking the remaining
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symbols of v. We identify the |v|th position on l as γa(p).

In case of an implicit node, we use the MF-link (r, w) of the previous node

π(p) connected to µ. Let s be the child of µ on T(x). If the first symbol of

string t = w(µ, s) is the same as the first one of v, then we can identify the

|v|th position of t as γa(p), that is, (r, wv).

Hence, in both cases, the MF-links of π(p) to p can be located node-by-

node. The conditions put forward in Proposition 1 are not satisfied, if node

µ has no edge labeled by the string starting with the first symbol of v or if it

has an edge with a label that is shorter than |v|. In this case it follows that

there is no node q in T (x) such that w(q) = w(µ)v.

We now present the algorithm to construct the antidictionary A(x) of x

in linear time. We will use a queue Q to store the 3-tuples (p, l, q), where

l is the label string w(p, (p, a)) and a ∈ X , and (p, a) is a child of p in

T(x). Moreover, we will use the functions Q.push (·, ·, ·) and Q.pop() to store

and retrieve elements from the queue, and Q.is empty() to check whether the

queue is empty. The algorithm uses the procedure construct suffix tree(x) to

build the suffix tree T(x) using the algorithm presented in [Ukk95]. This

procedure also provides the leaf with the shortest path as a byproduct.

The set A(x) is initially empty. The function add (w) adds the MFW w

to A(x). The outline of the algorithm is as follows.

Algorithm ST2AD

input : a string x of length n

output : the antidictionary A(x)

begin 1
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/∗Step 1: build T(x) and find shortest leaf, qs ∗/ 2

(T(x), qs) ← construct suffix tree(x); 3

/∗Step 2: add all MFWs of the first class given qs ∗/ 4

for (each symbol b ∈ L(ρ)) do 5

if ((σ(qs), b) exists in T (x)) then add (w(qs)b) 6

/∗Step 3: add all MFWs of the second class ∗/ 7

if (is implicit (ρ)) then return; 8

for (each symbol a ∈ L(ρ)) do begin 9

/∗initialize ∗/ 10

γa(ρ) ← ρ; v ← a; Q.push (ρ, v, γa(ρ))); 11

while (not(Q.is empty())) do begin 12

/∗visit internal nodes in breadth-first order ∗/ 13

(p, v, q) ← Q.pop(); 14

if ((q, v) exists in T (x) and (q, v) 6= qs) then begin 15

/∗construct an MF-link ∗/ 16

γa(p) ← (q, v) 17

for (each symbol c ∈ L(p)) do begin 18

if ((γa(p), c) not exist in T (x)) then 19

add (aw(p)c); 20

if ((p, c) is an internal node of T(x)) then 21

Q.push ((p, c), w(p, (p, c)), γa(p))); 22

end for; 23

end if ; 24

end while; 25

end for; 26
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return A(x); 27

end; 28

We first evaluate the time complexity of this algorithm.

Theorem 4. Given a string x of length n, the ST2AD(x) algorithm can be

implemented to run in time O(n).

Proof. Let the execution time of Step 1, Step 2 and Step 3 of the ST2AD

algorithm be S1, S2, S3, respectively. The time complexity T (n) of the

proposed algorithm can thus be expressed by T (n) = S1 + S2 + S3.

From [Ukk95], we have,

S1 = O(n). (4.3)

The parent node π of the shortest leaf qs of T(x) is created in the last step

of the Ukkonen algorithm, and therefore it is ready to use π and w(π, qs) in

Step 2.

The cost of one suffix link operation and one traversing node operation

is a positive constant, denoted by c1. The function add (w(qs)b) in line 6 is

performed in constant time also, since the output is represented by a 2-tuple

(b, d), where d is the depth of qs. Therefore, suppose that the number of

leaves in T(x) is l, and we have

S2 ≤ c1 · |w(s)|

= c1(n− l + 1). (4.4)

The time complexity of Step 3 is proportional to the time needed to
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perform the pattern search operations in line 15 and the cost of a for-loop

from line 18 to line 23. It follows from Proposition 1 that the cost of a

single search operation is constant, since it is performed node-by-node. With

respect to a for-loop, the repetition |L(p)| ≤ m and the alphabet size m is

constant, and the function add (aw(p)c) in line 20 takes a constant time also,

since the output is represented by a 4-tuple (a, c, k, d), where k is the start

of the substring w(p) in x and d is the depth of p. Therefore, the maximum

cost of a while-loop iteration c2 is a positive constant.

Since the size of the alphabet X is m, we have

S3 ≤ m · c2ξ(T(x)) (4.5)

where ξ(T(x)) denotes the number of nodes of T(x). Since T(x) has l leaves,

from [SF96], with respect to ξ(T(x)) we have,

l − 1

m− 1
≤ ξ(T(x)) ≤ l − 1

2− 1
= (l − 1). (4.6)

Hence, we obtain

S3 ≤ m · c2(l − 1). (4.7)

On the other hand, since aw(p) is a prefix of suffixes of x and the number

of suffixes of x is n, we have

S3 ≤ c2φ(T(x)) (4.8)

where φ(T(x)) denotes the number of edges of T(x).
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From (4.6) and [SF96], for fixed l and m > 1, we obtain

m · l − 1

m− 1
≤ φ(T(x)) ≤ 2 · l − 1

2− 1
= 2(l − 1) (4.9)

where the left side and the right side denotes in case of all internal nodes

have just m edges and two edges, respectively.

Hence (4.7), (4.8) and (4.9), for m > 1, we obtain

S3 ≤ 2c2(l − 1) ≤ m · c2(l − 1). (4.10)

Notice that in case of m = 1, since ρ is an implicit node, hence S3 = 0.

Let c be the maximum of the two positive constant values c1 and c2. From

(4.3), (4.4) and (4.10), we have

T (n) ≤ O(n) + c(n− l + 1) + 2c(l − 1)

= O(n) + c(n + l − 1)

(4.11)

Since 1 ≤ l ≤ n, it follows that

T (n) ≤ O(n) + c(2n− 1) (4.12)

= O(n). (4.13)

To be precise with respect to the time complexity T (n), the cost of a
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for-loop from line 18 to line 23 is proportional to the size of L(p). Since L(p)

is a subset of X , the maximum cost of a for-loop iteration is given by km,

where m is the size of X and k is a positive constant. Therefore, the constant

cost of c2 in the proof of Theorem 1 is proportional to m. Hence, since c

is O(m) in (4.12), the ST2AD algorithm can be implemented to run in time

O(mn).

The following corollary is directly obtained from the proof of Theorem 4.

Corollary 3. The upper bound on the number of nodes that have to be tra-

versed in the suffix tree T(x) of the string x of length n to obtain all elements

of the antidictionary A(x) is given by 2n − 1. It is independent of the size

of the alphabet X .

Proof. From (4.12), the upper bound on the number of traversed nodes of

T(x) in Step 2 and Step 3 is given by 2n− 1.

On the other hand, the MF-Trie to construct an antidictionary using a

suffix dawg traverses at most 2n − 1 states since the upper bound on the

number of states in a suffix-dawg is 2n− 1. Therefore, the upper bound on

the number of traversed nodes using the proposed algorithm is the same as

that of the MF-Trie.

The space complexity is determined as follows. In Step 1, the function

construct suffix tree(x) requires O(n) space [Ukk95], and the shortest leaf in

Step 2 needs a constant space. The number of internal nodes stored in

the queue of Step 3 is at most n − 1. Moreover, we can record MFWs

with constant memory by means of the method described in the proof of

Theorem 4. Hence, the proposed algorithm constructs the antidictionary
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A(x) for a string x of length n in O(n) space. As shown in Table 2.1, the

upper bound on the size of an antidictionary of a string is O(n) size.

4.2.3 Experimental Results

To evaluate the performance of the proposed ST2AD algorithm, it was imple-

mented and used to create the antidictionaries for sample strings taken from

a memoryless binary information source X with distribution p = Pr [X = 0].

Table 4.2 shows the number of nodes that were traversed to obtain the

antidictionary of a sample string of length up to 5000 with p = 0.5 by using

the proposed algorithm and the DCA algorithm. Accordingly, we estimate

that the proposed algorithm traverses 1.75n nodes while the conventional

algorithm traverses 0.5n2 nodes. The latter estimation coincides with the

results reported in [JLS04].

Table 4.2: Number of traversed nodes (p = 0.5).

string length proposed algorithm S2AD

1000 1747 491454

2000 3498 1981385

3000 5261 4470215

4000 7012 7958209

5000 8775 12446527

We performed more simulations for sample strings taken from a mem-

oryless binary information source with distribution p = 0.1 and p = 0.5.

Figure 4.2 shows the observed relation between the number of nodes that

were traversed and the string length and the impact of the distribution p.
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Figure 4.2: Relationship between the string length and the number of tra-
versed nodes (p = 0.1 and 0.5) for binary strings.

The number of traversed nodes decreases as p falls since it is proportional to

the size of the dictionary.

Then, we used to create the antidictionaries for sample strings taken from

a memoryless information source in which every symbol of a finite alphabet X
is generated independently of the other symbols with the same probabilities

of symbol generations. We performed simulations for sample strings with the

alphabet size 2, 16 and 64, respectively.

Figure 4.3 shows the observed relationship between the number of tra-

versed nodes and the string length for the alphabet size 2, 16 and 64. Ac-

cordingly, we estimate that the proposed algorithm traverses 1.75n, 1.30n

and 1.26n nodes with respect to alphabet size 2, 16 and 64, respectively.

The results satisfy the upper bound derived from Corollary 3. Notice that

from (4.9), the upper bound on the number of traversed nodes is obtained in
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case of the alphabet being binary. In Figure 4.3, it is shown that the number

of traversed nodes decreases, as the alphabet size m grows. The number of

traversed nodes depends on the number of edges of T(x), and from (4.8) and

from (4.9), the number of edges tends to decrease as m grows.

The computation time needed to complete the ST2AD algorithm on a

3.2GHz Pentium 4 computer with 2GB memory is shown in Figure 4.4.

For example, it takes about 13 seconds to construct an antidictionary of a

random string of length n = 5 · 105 symbols with the alphabet size 64. This

illustrates that the proposed algorithm runs in linear computational time.

The computation time is proportional to the alphabet size because the cost

of outputting all MFWs in Step 3 is proportional to the alphabet size from

Table 2.1.

Figure 4.5 shows the relationship between alphabet size and slopes in

computation time graphs with respect to alphabet size 2, 4, 8, 16, 32 and 64.

This figure shows the computation time of the ST2AD algorithm is propor-

tional to the alphabet size m for fixed string length. The ST2AD algorithm

works in O(mn) time.

4.3 Construction of an AD-trie in linear time

Figure 4.6 shows a scheme of producing TA(x) from T(x) with MF-links. To

obtain TA(x), we need to implement the following steps.

Step A : store all elements (MFWs) of A(x) in T(x).

Step B : sort MFWs in each edge of T(x) based on the depth.
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Figure 4.3: Relationship between the string length and the number of tra-
versed nodes (m = 2, 16 and 64).
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Step C : distinguish each edge whether it leads to an AD-node or not.

Step D : copy an edge that leads to an AD-node.
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In Step A, all elements of AI(x) are stored in internal nodes, and all

elements of AL(x) are stored in the shortest leaf node. MFWs exist in the

same edge and they are stored in the same internal node. To obtain TA(x) by

copying edges of T(x) symbol-by-symbol, they need to be sorted based on the

depth. Step B sorts MFWs in the same edge based on the depth. Figure 4.7

shows the tree obtained by Step A and B from T(x) with MF-links.

Step C distinguishes each edge whether it leads to an AD-node or not

to copy an edge symbol-by-symbol in Step D. Figure 4.8 shows the tree

obtained by Step A, B and C. An edge in a solid line is the edge that leads

to an AD-node.

Step D copies an edge that leads to an AD-node symbol-by-symbol. Fig-

ure 4.9 shows the tree obtained by Step A, B, C and D. The AD-trie TA(x)

can be obtained by Step A, B, C and D from T(x) with MF-links.

In Step A, we need to store A(x) in T(x) with MF-links.
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Suffix tree with MF-links AD-Trie

Figure 4.6: A scheme of producing TA(x) from T(x) with MF-links.

Suffix tree with MF-links The tree obtained by Step A and B 

Step A, Step B

Figure 4.7: The tree obtained by Step A and B.
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The tree obtained by Step A and Step B 

Step C

The tree obtained by Step A, B and C

Figure 4.8: The tree obtained by Step A, B and C.

Step D

The tree obtained by Step A, B and C AD-Trie

Figure 4.9: The tree obtained by Step A, B, C and D.
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First, we consider an element w(p)c of AI(x). A node p(= γa(q)) is

represented by (r, w), where r is an internal node of T(x) that the nearest

ancestor node of p in T(x) and a string w. If w 6= λ, then w can be

represented by a pair of indices [i, j] of string x. If the node p is an implicit

node of T(x), we can use (r, [i, j]) instead of p. Hence, we store a 3-tuples

(i, j, c) in node r instead of storing the symbol c in p. If the node p is an

internal node of T(x), we store a 3-tuples (0, 0, c) in p.

Next, we consider an element of AL(x). An element w of AL(x) is

represented by w(qs)d where qs is the shortest leaf in T(x) and d ∈ X . To

store an MFW w in T(x), we can use every symbol d such as w(qs)d ∈ AL(x)

in the shortest leaf qs.

Table 4.3 shows representation of an MFW of AI(x) and of AL(x) for

T(x) with MF-links. For example, Table 4.4 shows the relationship between

Table 4.3: Representation of an MFW of AI(x) and of AL(x) for T(x) with
MF-links.

class path-string representation of MFWs

AI(x) w(γa(q))c (i, j, c) in node r γa(q) is implicit node (r, [i, j])

AI(x) w(γa(q))c (0, 0, c) in node p γa(q) is internal node p

AL(x) w(qs)d d in node qs the shortest leaf qs.

representation of all MFWs for x = 1221231 and T(x) in Figure 4.1.

In Step B, we sort MFWs in the same edge of T(x) based on the depth.

The MFWs can be distinguished whether they exists in the same edge or

not by an index i stored in an internal node p. To sort them in linear

computational time with respect to the string length, we use radix sort or

bin sort algorithm [Sed90, AHU83]. The sorting algorithm uses the array A
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Table 4.4: Representations of all MFWs in T(x) with MF-links.

MFW representation of MFWs values of MFWs

11 w((ρ, [1, 1]))1 (1, 1, 1) in ρ

13 w((ρ, [1, 1]))3 (1, 1, 3) in ρ

32 w((ρ, [6, 7]))2 (6, 7, 2) in ρ

33 w((ρ, [6, 7]))3 (6, 7, 3) in ρ

222 w((p1, [3, 3]))2 (3, 3, 2) in p1

223 w((p1, [3, 3]))3 (3, 3, 3) in p1

2122 w((p1, [4, 5]))2 (4, 5, 2) in p1

121 w(p2)1 (0, 0, 1) in p2

312 w(q1)2 2 in q1

for an edge T(x) whose size m is equal to the depth of the deepest MFW

in the edge. For an representation of an MFW (i, j, c) in the node r, this

algorithm distributes the symbol c to A[j − i + 1] in the array A of the edge

between node r to node (r, xi) in T(x). The deepest MFW of each edge

of T(x) is obtained in Step A. If multiple symbols are mapped to identical

indices of A, then they are chaining by building a linked list [AHU83] of

symbols for each array index.

For example, in Figure 4.1, array A1 of the edge from p1 to q4(= (p1, 1))

stores a symbol 2 at A1[2] instead of an MFW (4, 5, 2) = 2122 in Table 4.4.

Array A2 of the edge from ρ to p2 = (ρ, 1) stores both a symbol 1 and 3 at

A2[1] by using a linked list instead of an MFW (1, 1, 1) = 11 and an MFW

(1, 1, 3) = 13. The size of array A1 and A2 is 2 and 1, respectively.

From Theorem 3, the total size of arrays used in the sorting algorithm

needs linear size with respect to the string length since TA(x) has at most

(Ln + 1)n nodes, and the sorting algorithm can work in linear time since an
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MFW (i, j, c) can be distributed to A[j − i + 1] in the array a single pass.

In Step C, we distinguish each edge whether it leads to an AD-node or

not. The edge from p to q can be distinguished whether it leads to an AD-

node or not by traversing depth-first order in the tree once, because if the

subtree, whose q is the root, has the AD-node or the edge has a parent node

of the AD-node, then the edge leads to the AD-node.

In Step D, we copy an edge that leads to an AD-node symbol-by-symbol

by traversing the tree depth-first order. From Theorem 3, the number of

copied nodes in Step D is linear size with respect to the string length.

We now present the algorithm ST2ADT to construct TA(x) in linear time

and space. We will use the same notation used for the ST2AD algorithm. We

use the function getIndex (γa(p)) to obtain a 3-tuples (r, i, j) such as (r, [i, j]) =

γa(p) if an MF-link γa(p) is an implicit node. Moreover, we use the function

store AI (r, (i, j, c)) to store a 3-tuples (i, j, c) in an internal node r, where each

value is the representation of MFW of AI(x) in Table 4.3 and the function

store AL (p, d) to store the symbol d ∈ X in the shortest leaf p. We use the

function set deepest MFW (r, i, j) to store the depth of the deepest MFW in

the edge between node r and node (r, xi) in r.

The algorithm uses the procedure set ADtrie Edge (p, (p, a)) to distinguish

edge E between node p to (p, a) whether it is an edge of TA(x) or not.

The procedure set ADtrie Edge determines that edge E is an edge of TA(x)

if the subtree whose (p, a) is the root has an AD-node or the edge E has a

parent node of an AD-node by traversing the tree in depth-first order. The

algorithm uses also the procedure sort MFWs (p, (p, a)) to sort MFWs on an

edge E between node p and (p, a) by using radix sort algorithm based on
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the depth. For an MFW w(r, [i, j])b ∈ AI(x), this procedure distributes a

symbol b based on the depth of its MFW to A[j− i+1] in the array A[1..D],

where D is the depth of the deepest MFW in edge E.

The outline of the algorithm ST2ADT is as follows.

Algorithm ST2ADT

input : a string x of length n

output : the AD-trie TA(x)

begin 1

/∗Step 1: build T(x) and find shortest leaf qs ∗/ 2

(T(x), qs) ← construct suffix tree(x); 3

/∗Step A: build T(x) with A(x) ∗/ 4

/∗store all MFWs of AL(x) in qs ∗/ 5

for (each symbol d ∈ L(ρ)) do 6

if ((σ(qs), d) exists in T (x)) then store AL (qs, d) 7

if (is implicit (ρ)) then return; 8

/∗store all MFWs of AI(x) in internal nodes ∗/ 9

for (each symbol a ∈ L(ρ)) do begin 10

/∗initialize ∗/ 11

γa(ρ) ← ρ; v ← a; Q.push (ρ, v, γa(ρ))); 12

while (not(Q.is empty())) do begin 13

/∗visit internal nodes in breadth-first order ∗/ 14

(p, v, q) ← Q.pop(); 15

if ((q, v) exists in T (x) and (q, v) 6= qs) then begin 16

γa(p) ← (q, v) 17
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for (each symbol c ∈ L(p)) do begin 18

/∗store an MFW of AI(x) in an internal node ∗/ 19

if ((γa(p), c) not exist in T (x)) then begin 20

if (γa(p) is an implicit node) then begin 21

(r, i, j) ← getIndex (γa(p)); 22

store AI (r, (i, j, c)) /∗store an MFW ∗/; 23

set deepest MFW (r, i, j); /∗the edge from r to (r, xi) ∗/ 24

end if ; 25

else begin /∗an internal node ∗/ 26

r ← γa(p); 27

store AI (r, (0, 0, c)); /∗store an MFW ∗/ 28

end else; 29

end if ; 30

if ((p, c) exists in T(x) is an internal node) then 31

Q.push ((p, c), w(p, (p, c)), γa(p))); 32

end for; 33

end if ; 34

end while; 35

end for; 36

/∗Step BC: sort MFWs in each edge and set an edge of TA(x) ∗/ 37

for (each node p in T(x) in depth-first order) do begin 38

for (each symbol c ∈ L(p)) do begin 39

if (an MFW exists in the edge between p and (p, c)) then 40

sort MFWs (p, (p, c)); /∗sort MFWs in the edge ∗/ 41

set ADtrie Edge (p, (p, c)); /∗set an edge of TA(x) ∗/ 42
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end for; 43

/∗Step D: build TA(x) ∗/ 44

for (each node p in T(x) in depth-first order) do 45

copy an edge of TA(x) symbol-by-symbol; 46

return TA(x); 47

end; 48

We evaluate the time complexity of this algorithm.

Theorem 5. Given a string x of length n, the ST2ADT algorithm can be

implemented to run in time O(n).

Proof. Let the execution time of Step 1, Step A, Step B, Step C and Step

D of the ST2ADT algorithm be S1, SA, SB, SC , SD, respectively. The time

complexity T (n) of the proposed algorithm can thus be expressed by T (n) =

S1 + SA + SB + SC + SD.

From (4.3), we have

S1 = O(n). (4.14)

In Step A, the cost of one operation of getIndex (γa(p)) in line 22 is a

positive constant since γa(p) is represented by (r, [i, j]). The cost of one

operation of store AI (r, (i, j, c)) in line 23 is a positive constant. Moreover,

the cost of one operation of set deepest MFW (r, i, j) in line 24 is a positive

constant since the depth can be obtained by j−i+1. Hence, from Theorem 4,

since the cost of the for-loop from line 10 to line 36 is O(n) with respect to
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the string length n, then we obtain

SA = O(n). (4.15)

In Step B and Step C, total computational time of procedure sort MFWs

in line 41 is proportional to total length of arrays allocated for all edges. The

total length of arrays is less than or equal to number of nodes of TA(x). From

Theorem 3, the number of nodes of TA(x) is less than or equal (Ln + 1)n

nodes. Since total length of arrays is given by O(n) size with respect to the

string length n, total computational time of procedure sort MFWs is given by

O(n).

On the other hand, total computational time of procedure set ADtrie Edge

is proportional to number of nodes of T(x). Since the number of nodes of

T(x) is at most 2n with respect to the string length n, total computational

time of procedure set ADtrie Edge is given by O(n). Hence, we obtain

SB + SC = O(n). (4.16)

From Theorem 3, number of copied nodes in Step D is less than or equal

(Ln + 1)n nodes. Hence, we obtain

SD = O(n). (4.17)

From (4.14), (4.15), (4.16) and (4.17) it follows that

T (n) = O(n). (4.18)
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4.4 Conclusion

We proposed an algorithm for construction of an antidictionary of a given

string using a suffix tree, and we proved that the time and space compu-

tational complexity is linear with the string length. It is shown that the

number of traversed nodes to construct an antidictionary is independent of

the alphabet size by means of the proposed algorithm, and the upper bound

is the same as that of the dawg-based algorithm. Experiments confirm that

the proposed algorithm is fast and memory-efficient.

Moreover, we proposed an algorithm to construct the AD-trie for a given

string using a suffix tree. We proved that the proposed construction algo-

rithm of the AD-trie works in linear time.
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Chapter 5

An On-line DCA with Linear

Computational Complexity

5.1 Introduction

The DCA algorithm and its extensions usually work in an off-line manner. On

the other hand, an on-line DCA algorithm has the advantage of compression

ratios and reading a given string only once. It is reported in [CMRS00] that

the on-line DCA algorithm obtained almost the same compression ratios as

that of the LZ algorithms for files on Calgary Corpus [Cal], while no further

details of their implementations are provided in [CMRS00] or elsewhere in the

literature. The straightforward implementation of the on-line DCA algorithm

requires the worst case O(n2) time with respect to the string length n because

it needs to update an antidictionary and its encoders whenever a new symbol

is read.

In 2006, we proposed a new tree structure called AD-tree as an encoder
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of the DCA algorithm and also proposed the DCA algorithm using an AD-

tree instead of an AD-automaton [OM06a]. The proposed algorithm works

in linear time with an off-line manner. The AD-tree is a tree structure that

stores all proper prefixes of any element of AI(x) and has reverse MF-links.

The AD-tree has properties of both the AD-automaton and the suffix tree.

Figure 5.1 shows the relationship among the AD-automaton, the AD-tree

and the suffix tree.

AD-automaton AD-Tree Suffix tree

expansion expansion

minimization compaction

Figure 5.1: The relationship among the AD-automaton, the AD-tree and the
suffix tree.

Then, we showed that a suffix tree can be used for the DCA algorithm

instead of an AD-tree, and we proposed the DCA algorithm using a suffix

tree [OM06d, OM07a]. The proposed algorithm works in linear time with

an on-line manner [OM06d, OM07a], and it works by using only the suf-

fix tree without constructing the antidictionary and modifying its encoder.
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Moreover, we applied a tree model constructed by the proposed algorithm

to a statistical model for an adaptive arithmetic coding, and we also pro-

posed an on-line arithmetic coding using a suffix tree based on antidictionar-

ies [OM06d, OM07a]. We proved that the time complexity of the proposed

algorithm is linear with respect to the string length, and we showed that

the proposed algorithm achieves better compression ratios for almost all files

on Calgary Corpus than those the on-line DCA algorithm [CMRS00]. The

average compression ratios of the proposed algorithm were better than that

of the on-line DCA and the OHY [OHY05].

This Chapter is organized as follows. Section 5.2 gives the definition

of an AD-tree and details the relations between the AD-tree and the AD-

automaton. Then, we propose construction algorithm of an AD-tree and the

DCA algorithm using the AD-tree. Section 5.3 gives the relations between

the AD-tree and the suffix tree. We propose an on-line DCA algorithm

using a suffix tree in linear time without constructing an antidictionary and

modifying its encoder. Section 5.4 details an on-line arithmetic coding using

a suffix tree based on antidictionaries with an on-line manner in linear time.

Then, its effectiveness is demonstrated by simulation results. Section 5.5

summarizes our results.

5.2 The DCA algorithm Using an AD-tree

Crochemore et al. used an AD-automaton GA(x) to obtain |Vi(x)| and the

locus πi in (3.4). To reduce the computational time for constructing the AD-

automaton, we use a subtree of T(x) with reverse MF-links to obtain |Vi(x)|
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and πi. In this section, we introduce T(x) with reverse MF-links and show

the relationship between T(x) with reverse MF-links and GA(x). Then, we

propose the subtree of T(x) with reverse MF-links called AD-tree and the

DCA algorithm using the AD-tree.

5.2.1 The Relationship between AD-trees and AD-

automatons

Let TM(x) be T(x) with all reverse MF-links for x. Figure 5.2 shows TM(x)

for x = 1221231. To obtain both |Vi(x)| and πi by using TM(x), we need

answers to two queries:

(a) how to obtain |Vi(x)| for a given πi using only TM(x).

(b) how to find the position of πi in TM(x).

First, we give an answer to the first query by using the following Lemma 1

and Proposition 2. For any node in T n, the following Lemma 1 holds.

Lemma 1. For any node p in T n, if a /∈ Ln(p) and a ∈ Ln(ρ), then there

exists the string v such that v ∈ S(w(p)a) and v ∈ A(x).

Proof. By applying a suffix link σ(·) to p for |w(p)| times, we can attain to

ρ from p in T n. Since a ∈ Ln(ρ) holds, there exists a node q in T n such that

a /∈ Ln(q) and a ∈ Ln(σ(q)) on the path of suffix links from p to ρ. Thus,

from Theorem 1, w(q)a ∈ A(x) holds. Moreover, we have w(q)a ∈ S(w(p)a)

since w(q) ∈ S(w(p)). Hence, letting the string v be w(q)a completes the

proof of Lemma 1.
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Figure 5.2: Suffix tree with reverse MF-links TM(x) for x = 1221231.
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For example, in Figure 2.2, we have Ln(p5) = {2} and Ln(ρ) = {1, 2, 3}.
From Lemma 1, there exists the string v such that v ∈ S(w(p5)3) and v ∈
A(x). It can be verified that the string 13 is the string v because 13 ∈ S(213)

and 13 ∈ A(x) from (2.8). Then, in Figure 2.2, we have Ln(p9) = {1}. From

Lemma 1, there exists the string v such that v ∈ S(w(p9)2) and v ∈ A(x).

It can be verified that the string 32 is the string v because 32 ∈ S(1232) and

32 ∈ A(x) from (2.8).

Then, for any internal node in T n, the following Proposition 2 holds.

Proposition 2. For any internal node p in T n, if a /∈ Ln(p) and a ∈ Ln(ρ),

then there exists the string v such that v ∈ S(w(p)a) and v ∈ AI(x).

Proof. From Lemma 1, there exists the string v such that v ∈ S(w(p)a)

and v ∈ A(x). Suppose that v ∈ AL(x) holds. Let qs be the leaf with the

shortest path length among all leaves of T n. Since p is an internal node,

we have w(qs) /∈ S(w(p)). Thus we obtain w(qs)a /∈ S(w(p)a). However,

it contradicts to the assumption that v ∈ AL(x). Hence, we obtain v ∈
AI(x).

By using Proposition 2, for a given locus πi, we obtain the equation such

that

|Vi(x)| = Ln − |Ln(πi)|. (5.1)

From (5.1), we can obtain |Vi(x)| by using the number of children of πi in

T n. This is an answer to the first query.

For example, we consider the encoding process for x = 1221231. As

shown in Table 3.1, for x5 = 12212, then π5 is given by l(212) of TM(x)
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in Figure 5.2 since w5 = 212 in (3.3). Since Ln(π5) = {3} in TM(x) in

Figure 5.2, then we have |V5(x)| = 2 from (5.1). It can be verified that

|V5(x)| = 2 since both the string 2122 and 121 are MFWs.

Next, we give an answer to the second query. From (3.2), (3.3) and (3.4),

πi exists on a node of TAI
(x) except any AD-node. Let π0 be ρ of TAI

(x).

If πi−1 exists on a node of TAI
(x), then from (3.2), (3.3) and (3.4), we have

w(πi) ∈ {w|wv ∈ AI(x), w ∈ S(w(πi−1)xi), v ∈ X+} ∪ {λ}. (5.2)

Let W be the set of the right-side of (5.2). From (3.3) and (3.4), πi is the

locus of the longest string of W . Therefore, πi can be obtained by using πi−1

and xi the following scheme.

(i) If l(w(πi−1)xi) exists in TAI
(x), then πi is a πi−1’s child such as (πi−1, xi)

of TAI
(x).

(ii) If l(w(πi−1)xi) does not exist in TAI
(x), then πi is l(t) such that t

is the longest string of U = {u|u ∈ S(w(πi−1)xi), l(u) is a node of

TAI
(x)} ∪ {λ}

From Proposition 2 and (5.1), the latter condition (ii) occurs in case of

the following two cases; πi−1 is an internal node p such as |L(p)| > 1; πi−1 is

an implicit node such that it is a destination of an MF-link. Since the string

t is an element of S(w(πi−1)xi) and the longest string of U in (ii), πi can

be obtained by traversing reverse MF-links in TM(x) starting from πi−1 to ρ

until l(t) is found. This is an answer to the second query.

From the answer of the first query, for a node p in TM(x), we need Ln(p)

to obtain |Vi(x)|. From the answer of the second query, we need a subtree of
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TM(x) that stores all proper prefixes of any element of AI(x) to obtain πi.

Therefore, to obtain |Vi(x)| and πi, we need the subtree of TM(x) that stores

all proper prefixes of any element of AI(x) and Ln(p) for any node p of that

subtree. The resulting subtree is called AD-tree and denoted by TAI
(x).

Figure 5.3 shows TAI
(x) for x = 1221231. Since TAI

(x) is the subtree

q
4

q
5

p
1

ρ

p
2

1

1

2

2 2

2

3

q
1 q

2

q
3

2 3

3

1

13

Figure 5.3: AD-tree TAI
(x) for x = 1221231.

of TM(x) and Ln(p) is defined in T (x), a node exist in TM(x) but does

not exist in TAI
(x). In Figure 5.3, an edge labeled symbol a in a solid line

connecting from node p to no child is the edge exists in T (x) but the edge

does not exist in TAI
(x). In Figure 5.3, a curved line represents a reverse

MF-link.

By using two answers to the queries (a) and (b), we can use TAI
(x)

instead of GAI
(x). For example, we show an encoding process of the DCA
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algorithm using TAI
(x) for x = 1221231 in Figure 5.3. Starting from ρ,

transitions of TAI
(x) with x = 1221231 will be given as follows:

ρ
1−−−→
1

q1
2−−−→
-

p2(
γ(·)−−−→ p1)

2−−−→
2

q4(
γ(·)−−−→ p1)

1−−−→
-

q3
2−−−→
-

q5(
γ(·)−−−→ p2

γ(·)−−−→ p1
γ(·)−−−→ ρ)

3−−−→
-

q2(
γ(·)−−−→ ρ)

1−−−→
-

q1.

(5.3)

In Eq. (5.3), a symbol of the above of an arrow is an input symbol, while

a symbol of lower-side of an arrow is an output symbol. A transition in

a bracket denotes the transition by means of a reverse MF-link γ(·). No

symbol is output in the transition of the reverse MF-link since it corresponds

to searching πi in TAI
(x). From Eq. (5.1), since a symbol is outputted when

a transition from a node such as |Ln(p)| > 1 occurs, the output occur at

internal node ρ and p2. Therefore, we can obtain the string 12 as a codeword.

It is equal to the codeword obtained by using GA(x) in Table 3.2.

Note that we can pass through internal implicit nodes such as q1 and q3

since no symbol is outputted. Because an internal implicit node q has only

one child, that is, |Ln(q)| = 1.

5.2.2 Construction Algorithm of an AD-tree

An AD-tree can be obtained by using two construction schemes. The first

scheme produces the AD-tree from a suffix tree via a suffix tree with reverse

MF-links. Figure 5.4 shows the first scheme. This scheme works in linear

time with respect to the string length.

The second scheme produces the AD-tree from an AD-trie. Figure 5.5
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AD-TreeSuffix tree with reverse MF-linksSuffix tree

Figure 5.4: A scheme of constructing an AD-tree from a suffix tree.

AD-TreeAD-Trie

Figure 5.5: A scheme of constructing an AD-tree from an AD-trie.

shows the second scheme. This scheme works in sub-linear computational

time. In this section, we propose these two schemes. First, we show the

algorithm to construct TAI
(x) from T(x) via TM(x). Since both TAI

(x)

and TM(x) have reverse MF-links, we show a representation of a reverse

MF-link in these trees. Table 5.1 shows the relationship between the source

of a reverse MF-link and the destination of the reverse MF-link in TM(x).

Note that the source represents the starting node of the reverse MF-link
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Table 5.1: Relationship between an source of a reverse MF-link and a desti-
nation of the reverse MF-link for AI(x) in the tree TM(x).

source of reverse MF-link destination of reverse MF-link

implicit node internal node

internal node internal node

Table 5.2: Representation of a reverse MF-link from q to p.

source destination reverse MF-link notes

implicit internal (i, j, p) in node r q is implicit node (r, [i, j])

internal internal p in node q use a suffix link of q

and the destination represents the end node of the link. All destinations of

reverse MF-links are internal nodes of TM(x). Let p be a source of a reverse

MF-link and let q be a destination of the reverse MF-link. If the node p is

an internal node of TM(x), then we use a suffix link such as q = σ(p) instead

of the reverse MF-link. If the node p is an implicit node such as (r, [i, j]),

as shown in Table 4.3, of TM(x), then we store a pair of indices (i, j) and

node q in the node r. To store the reverse MF-link from q to p in TM(x),

we use the similar representation of MFWs in Table 4.3. Table 5.2 shows

representation of the reverse MF-link from q to p in TM(x).

For example, Table 5.3 shows the representation of reverse MF-links of

TAI
(x) for x = 1221231. For example, the reverse MF-link from q1 to ρ

is stored by (1, 1, ρ) in ρ since q1 = (ρ, [1, 1]) is an implicit node, while the

reverse MF-link from p1 to ρ is stored by using suffix link σ(p1) since p1 is

an internal node and TM(x) stores all suffix links.

Next, we present the Construct AD-Tree algorithm to construct TAI
(x)
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Table 5.3: An example of reverse MF-links of TAI
(x) for x = 1221231.

reverse MF-link value notes

q1 → ρ (1, 1, ρ) in node ρ q1 = (ρ, [1, 1])

p1 → ρ σ(p1) suffix link of p1

q2 → ρ (6, 6, ρ) in node ρ q2 = (ρ, [6, 6])

p2 → p1 σ(p2) suffix link of p2

q4 → p1 (3, 3, p1) in node p1 q4 = (p1, [3, 3])

q5 → p2 (4, 5, p2) in node p1 q5 = (p1, [4, 5])

from a given string x. The Construct AD-Tree algorithm is similar to the

ST2ADT algorithm. The Construct AD-Tree algorithm stores all reverse MF-

links in T(x), while the ST2ADT algorithm stores all MFWs in T(x).

We will use the same notation for the ST2ADT algorithm. For a given MF-

link γa(p), we use the function getIndex (γa(p)) to obtain the 3-tuples (r, i, j)

such as (r, [i, j]) = γa(p). We use the function store RevMFlink (r, (i, j, p)) to

store (i, j, p) in an internal node r, where the node (r, [i, j]) is an source of a

reverse MF-link and the node p is a destination of the reverse MF-link. We

also use the function set deepest RevMFlink (r, i, j) to store the deepest source

of reverse MF-link (r, [i, j]) on the edge from r to (r, xi) in internal node r.

We can determine whether or not it is the deepest by using value j − i + 1.

The function get deepest RevMFlink (r, a) to obtain the deepest source of re-

verse MF-link (r, [i, j]) on the edge from r to (r, a). If no source of reverse MF-

link exists on the edge from r to (r, a), then the function get deepest RevMFlink

returns the internal node r.

Let pd be the deepest source of reverse MF-link on the edge from an

internal node p to leaf (p, a) of TM(x). If no source of reverse MF-link exists
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on the edge from p to (p, a), then let node pd be the internal node p. To

obtain TM(x), we use the procedure eliminate edge (pd, (p, a)) to eliminate an

edge from the node pd to leaf (p, a).

If the edge from pd to (p, a) is eliminated, then an element of L(pd) is

lost. From (5.1), since we need L(pd) to obtain |Vi(x)|, we use the function

store (b, pd) to store the first symbol b of w(pd, (p, a)) in pd. If pd is an internal

node in T(x), then we store the symbol b in pd. If pd = (r, [i, j]) is an implicit

node in T(x), then we store a 2-tuples (i, b) , where the symbol b is given

by xj+1. For example, in Figure 5.3, L(p2) = {2, 3} in internal node p2 are

stored in p2, and L(q5) = {3} in implicit node q5 = (p1, [4, 5]) is stored by

(4, 3) in p1.

The outline of the algorithm Construct AD-Tree is as follows.

Algorithm Construct AD-Tree

input : a string x of length n

output : the AD-tree TAI
(x)

begin 1

/∗Step 1: build T(x) ∗/ 2

(T, qs) ← construct suffix tree(x); 3

if (is implicit (ρ)) then return; 4

/∗Step 2: build TM(x)(x) ∗/ 5

for (each symbol a ∈ L(ρ)) do begin 6

/∗initialize ∗/ 7

γa(ρ) ← ρ; v ← a; Q.push (ρ, v, γa(ρ))); 8

while (not(Q.is empty())) do begin 9
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/∗visit internal nodes in breadth-first order ∗/ 10

(p, v, q) ← Q.pop(); 11

if ((q, v) exists in T (x)) then begin 12

γa(p) ← (q, v) 13

/∗register a reverse MF-link ∗/ 14

if (γa(p) points an implicit node) then begin 15

(r, i, j) ← getIndex (γa(p)); 16

store RevMFlink (r, (i, j, p)); /∗store a reverse MF-link ∗/ 17

set deepest RevMFlink (r, i, j); 18

end if ; 19

for (each symbol c ∈ L(p)) do begin 20

if ((p, c) is an internal node of T(x)) then 21

Q.push ((p, c), w(p, (p, c)), γa(p))); 22

end for; 23

end if ; 24

end while; 25

end for; 26

/∗Step 3: produce TAI
(x) by eliminating edges of TM(x)(x) ∗/ 27

for (each internal node p of T in depth-first order) do 28

for (each symbol a ∈ L(p)) do 29

if ((p, a) is a leaf node) then begin 30

pd ← get deepest RevMFlink (p, a); 31

eliminate edge (pd, (p, a)); /∗eliminate an edge w(pd, (p, a)) ∗/ 32

if (pd is an internal node) then begin 33

store (a, pd); /∗store the first symbol of w(pd, (p, a)) ∗/ 34
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else begin /∗an implicit node ∗/ 35

(r, i, j) ← getIndex (pd); 36

store ((i, xj+1), r); /∗store the first symbol of w(pd, (p, a)) ∗/ 37

end else; 38

end if ; 39

end for; 40

end for; 41

return T(= TAI
(x)); 42

end; 43

We evaluate the time complexity of this algorithm.

Theorem 6. Given a string x of length n, the Construct AD-Tree algorithm

can be implemented to run in time O(n).

Proof. Let the execution time of Step 1, Step 2, Step 3 of the Construct AD-Tree

algorithm be S1, S2, S3, respectively. The time complexity T (n) of the pro-

posed algorithm can thus be expressed by T (n) = S1 + S2 + S3.

From (4.3), we have

S1 = O(n). (5.4)

In Step 2, the function getIndex (γa(p)) in line 16 takes a constant time

since γa(p) is represented by (r, [i, j]). The function store RevMFlink (r, (i, j, p))

in line 17 also takes a constant time since this function stores only a 3-tuples

(i, j, p) in internal node r. Moreover, the function set deepest RevMFlink (r, i, j)

in line 18 takes a constant time since the depth can be obtained by j− i+1.

Hence, from Theorem 4, since the cost of the for-loop from line 6 to line 26
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is O(n) with respect to the string length n, then we obtain

S2 = O(n). (5.5)

In Step 3, the cost of one get deepest RevMFlink operation is a positive

constant since node pd is stored in internal node p and the alphabet size

is a constant. The cost of one eliminate edge operation is a positive constant

since the edge from node pd to leaf node (p, a) can be represented by a pair of

indices of x. The cost of one store (b, p) or store ((i, b), p) operation is a positive

constant since the alphabet size is a constant and the edge represented by a

pair of indices of x. Moreover, the cost of a for-loop from line 28 to line 41

is O(n) with respect to the string length n since Step 3 traverses the tree

in depth-first order and the number of nodes in a suffix tree is at most 2n.

Hence, we obtain

S3 = O(n). (5.6)

From (5.4), (5.5) and (5.6), it follows that

T (n) = O(n). (5.7)

We can use the Construct AD-Tree algorithm in the encoding process of the

DCA algorithm using an AD-tree, while we cannot use the Construct AD-Tree

algorithm in the decoding process because this algorithm uses the suffix tree

of a given string x to construct the AD-tree. As described in Chapter 3,

an encoder of the DCA algorithm needs to send the AD-trie to its decoder.
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Therefore, the decoder needs to retrieve an AD-tree from an AD-trie. Then,

we propose the algorithm to retrieve the AD-tree from the AD-trie.

In 2005, Morita et al. proposed the algorithm, called AD2D, to reproduce

T (x) with suffix links from TA(x) [MO05]. By using the AD2D algorithm,

we can retrieve the AD-tree from a given AD-trie.

We propose the AD2ADT algorithm based on the AD2D algorithm to re-

trieve the AD-tree from a given AD-trie. As described in [MO05], the nodes

created by the AD2D algorithm are denoted by neutral nodes (see [MO05]).

The AD2D algorithm can also retrieve all suffix links of nodes including im-

plicit nodes, therefore we can use a suffix link instead of a reverse MF-

link. The AD2D algorithm retrieves redundant nodes for an AD-tree because

it reproduces a suffix trie by traversing the AD-trie in breadth-first order.

Therefore, we distinguish a reverse MF-link from a suffix link in the AD2ADT

algorithm to remove redundant nodes constructed by the AD2D algorithm.

We use the function retrieve RevMFlink (p, q) to retrieve the reverse MF-link

from p to q.

The outline of the AD2ADT algorithm is as follows.

Algorithm AD2ADT

input : an AD-trie TAI
(x)

output : the AD-tree TAI
(x)

begin 1

/∗Step 1:reconstruct a subtree of TI (x) with reverse MF-links ∗/ 2

T← TAI
(x); σ(ρ) ← ρ; 3

for each neutral node p in T in the breadth-first order do begin 4
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/∗Retrieve nodes of the AD-tree and L(p) of T(x) ∗/ 5

create new nodes connecting to p so that L(p) = L(σ(p)); 6

/∗Retrieve reverse MF-links ∗/ 7

if (p has an AD-node) then begin 8

q ← p; 9

while (the reverse MF-link from q to σ(q) is not retrieved) do 10

begin 11

retrieve RevMFlink (q, σ(q)); 12

q ← σ(q); 13

end while; 14

if (all parent nodes of AD-nodes are already traversed in T) then 15

break; 16

end if ; 17

end for; 18

/∗Step 2: eliminate redundant nodes of T ∗/ 19

for (each node p in T in depth-first order) do 20

eliminate a node from which no path leads to an AD-node or a 21

destination of reverse MF-link;

return T(= TAI
(x)); 22

end. 23

In Step 1, by using the AD2D, a subtree of TI (x) with reverse MF-links is

retrieved. The AD-tree is a subtree of the retrieved tree. Redundant nodes

are retrieved in the Step 1 since the AD2D algorithm traverses the tree in

breadth-first order until all parent nodes of AD-nodes are traversed. Step 2
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eliminates all retrieved redundant nodes to obtain the AD-tree. The AD-

tree obtained by the AD2ADT is a trie such that every edge is labelled with

a symbol in X .

The AD2ADT algorithm works in a sub-linear computational time because

redundant nodes are retrieved in Step 1 and the AD-tree has more than or

equal number of nodes of the AD-trie. For example, Figure 5.6 and Figure 5.7

shows TAI
(x) and TAI

(x) forAI(x) = {11, 2121} for x = 12122, respectively.

In Figure 5.6, node p5 exists in TA(x), while node p5 does not exist in TA(x).
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Figure 5.6: AD-tree TAI
(x) for AI(x) = {11, 2121}.

On the other hand, the AD2ADT has the practical advantage of recon-

structing the AD-tree from an AD-trie of a pruned antidictionary. The

AD2ADT can construct the AD-tree from an AD-trie of a given set of MFWs.
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Figure 5.7: AD-trie TAI
(x) for AI(x) = {11, 2121}.

5.2.3 Encoding and Decoding

In this section, we propose the DCA algorithm using an AD-tree. If the AD-

tree is constructed by using the Construct AD-Tree, then the DCA algorithm

using the AD-tree can traverse nodes with node-by-node, since an edge of

the AD-tree is represented by a pair of indices of the string x. The algorithm

can pass through internal implicit nodes of the AD-tree. On the other hand,

if the AD-tree is constructed by using the AD2ADT, then the DCA algorithm

traverses nodes with symbol-by-symbol since the AD-tree is a trie such that

every edge is labeled with a symbol in X .

In this section, we show that the DCA algorithm using an AD-tree works

with symbol-by-symbol. The outline of encoding algorithm DCA Encoder-AT

is as follows.

Algorithm DCA Encoder-AT
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input : a string x of length n

output : the 3-tuples (the encoded string γ, n, TAI
(x))

begin 1

/∗Step 1: construct an AD-tree ∗/ 2

TAI
(x) ← Construct AD-Tree(x); TAI

(x) ← ST2ADT(x); 3

/∗Step 2: Encode ∗/ 4

p ← ρ of TAI
(x); i ← 1; γ ← λ; 5

for i := 1 to n do begin 6

/∗Output a symbol ∗/ 7

if (|Ln(p)| > 1) then 8

γ ← γ.xi; 9

/∗traverse reverse MF-links ∗/ 10

while ((p, xi) not exists in TAI
(x) or p 6= ρ) do 11

p ← σ(p); /∗using a reverse MF-link ∗/ 12

/∗traverse an edge ∗/ 13

if ((p, xi) exists in TAI
(x)) then 14

p ← (p, xi); 15

else 16

p ← ρ; 17

end for; 18

return (γ, n, TAI
(x)); 19

end; 20

We evaluate the time complexity of this algorithm.
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Theorem 7. Given a string x of length n, the DCA Encoder-AT algorithm

can be implemented to run in time O(n).

Proof. Let the execution time of Step 1, Step 2 of the DCA Encoder-AT algo-

rithm be S1 and S2, respectively. The time complexity T (n) of the algorithm

can thus be expressed by T (n) = S1 + S2.

From Theorem 4 and Theorem 6, we have

S1 = O(n). (5.8)

In Step 2, let di be the depth of node p in line 10 of phase i of for-loop.

The one transition of an edge in line 15 increases the depth by one, while the

one transition of a reverse MF-link in line 12 decreases the depth by one. Let

ci be the number of transition of reverse MF-link in phase i, then we have

di+1 = di − ci + 1. (5.9)

Hence, the total number of transition of reverse MF-link is given by

n∑
i=1

ci =
n∑

i=1

(di − di+1 + 1)

= d1 − dn+1 + n. (5.10)

Since the depth dn+1 is equal to the depth of p in line 18 of phase n, we have

0 ≤ dn+1 ≤ n. Moreover, since d1 is the depth of ρ, d1 = 0. Hence, from

(5.10), we obtain
n∑

i=1

ci ≤ n. (5.11)
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On the other hand, the number of transition of an edge in line 15 or line 17

of phase i is given by one. Therefore, the total number of down transition of

edges ce is give by

ce = n. (5.12)

From (5.11) and (5.12), the total number of transition of nodes in Step 2 is

at most 2n. Therefore, let c be a positive constant, we have

S2 ≤ 2cn (5.13)

= O(n) (5.14)

From (5.8) and (5.14), it follows that

T (n) = O(n). (5.15)

From (5.13), the DCA Encoder-AT algorithm traverses at most 2n nodes

in encoding process, while the DCA Encoder-AU traverses surely n states for

an arbitrary string. If an AD-tree is constructed by the Construct AD-Tree

algorithm, then an edge can be represented by a pair of indices of the string

x. We can pass through internal implicit nodes of the AD-tree in line 13 of

Step 2 of the DCA Encoder-AT.

Next, we show a decoding algorithm of the DCA using the AD-tree. The

outline of the decoding algorithm DCA Decoder-AT is as follows.

Algorithm DCA Decoder-AT
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input : a 3-tuples (an encoded string γ, n, TAI
(x))

output : the string y(= x) of length n

begin 1

/∗Step 1: reconstruct an AD-tree ∗/ 2

TAI
(x) ← AD2ADT(TAI

(x)); 3

/∗Step 2: Decode ∗/ 4

p ← ρ of TAI
(x); y ← λ; i ← 1; j ← 1; 5

for i := 1 to n do begin 6

if (|Ln(p)| > 1) then 7

a ← γj; j ← j + 1; 8

else 9

a ← b ∈ Ln(p); 10

/∗traverse reverse MF-links ∗/ 11

while ((p, a) not exists in TAI
(x) or p 6= ρ) do 12

p ← σ(p); 13

/∗traverse an edge ∗/ 14

if ((p, a) exists in TAI
(x)) then 15

p ← (p, a); 16

else 17

p ← ρ; 18

end for; 19

return y(= x); 20

end; 21
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From Theorem 7, Step 2 takes an linear time with respect to the string

length, while Step 1 takes a sub-linear computational time. Therefore, the

decoding algorithm of the DCA using an AD-tree works in sub-linear com-

putational time.

5.2.4 Pruning an Antidictionary for an AD-Tree

In this section, we propose a pruning algorithm for an AD-tree without con-

structing an AD-automaton. The Simple Pruning algorithm uses a value of

cost function c(p) such as w(p) = w(q)a ∈ A(x) to determine whether or

not w(p) is eliminated, where p, q is a node of TA(x) and a ∈ X . To ob-

tain all values of c(p), the Simple Pruning algorithm requires to construct the

AD-automaton and counts frequencies of w(q) in x using the AD-automaton.

On the other hand, we can know the number of w(q) using the sub-

tree of T(x) whose q is the root without the AD-automaton. The number

corresponds to the number of leaves of the subtree. The Construct AD-Tree

algorithm builds a suffix tree with MF-links in constructing process of an

AD-tree, and q is obtained by using MF-links. Hence, we can obtain a value

of cost function c(p) by using the suffix tree with MF-links without the AD-

automaton. Note that it needs trivial implementation to obtain all value of

c(p) since a suffix whose length is less than the path-string of the shortest leaf

node of the suffix tree. The pruned AD-trie is obtained by using obtained

cost function c and the Simple Pruning algorithm.
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5.3 An On-line DCA Using Dynamic Suffix

Trees

The off-line DCA algorithms based on an AD-automaton or an AD-tree work

with linear time with respect to string length. On the other hand, on-line

DCA algorithms based on the AD-automaton or the AD-tree require worst

case O(n2) time with respect to the string of length n because it needs to

update an antidictionary and its encoder whenever a new symbol is read.

In Section 5.2, we showed the DCA algorithm using the AD-tree with-

out the AD-automaton. The AD-tree obtained by removing AD-nodes is a

subtree of the suffix tree. On the other hand, it is well-known an on-line

construction algorithm for suffix trees [Ukk95]. In this section, we show a

suffix tree can be used for the encoding of the DCA algorithm instead of the

AD-tree, and we propose an on-line DCA algorithm using the dynamic suffix

trees without constructing antidictionaries and the encoders.

The implementations of an on-line DCA algorithm require |Vi(x
i)| to

determine whether a symbol xi+1 can be eliminated or not. If |Vi(x
i)| =

Li − 1, then xi+1 is eliminated.

Let ti be the longest string in Wi(x
i), that is,

ti = ξ(Wi(x
i)). (5.16)

Let τi be the locus of the longest string ti in (5.16), that is,

τi = l(ti). (5.17)
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A direct method obtains |Vi(x
i)| by using τi in GAI

(xi) or TAI
(xi). It requires

worst case O(n2) time to obtain τi since it needs to update AI(x
i) and

GAI
(xi) or TAI

(xi) whenever a new symbol is read.

To reduce the computational time for updating those data structures,

we use only Ti to obtain |Vi(x
i)|. To obtain |Vi(x

i)| by using Ti, we need

answers to the following two queries:

(a) the condition to eliminate xi+1 using τi of Ti, and

(b) how to find the position of τi in Ti with an on-line manner in linear

time.

We obtain an answer to the first query by using Proposition 2.

If i > 0, then τi is an internal node in T i from (5.17). Thus by using

Proposition 2, we obtain

|Vi(x
i)| = Li − |Li(τi)|. (5.18)

From (5.18), the condition to eliminate the symbol xi+1 is given by |Li(τi)| =
1. This is an answer to the first query.

Next, we give an answer to the second query. Eq. (5.18) suggests that we

need not τi but |Li(τi)| to eliminate xi+1.

In the Ukkonen algorithm, the locus called active point plays a key roll

in linear complexity algorithm for the on-line construction of suffix trees.

Let αi be the locus called active point in Ti. The locus αi is defined as the

following.
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Definition 2 (active point). An active point αi in Ti is the locus of string

v such that the longest string in (S(xi) ∩ D(xi−1)).

From the definition 2, note that if i > 0, then αi is an internal node in

T i. For the active point αi, the following Theorem 8 holds.

Theorem 8. For the active point αi and the locus τi in T i, if i > 0, then

Li(αi) = Li(τi)

holds.

Proof. From the definition 2, w(αi) is the longest string such that w(αi) ∈
(S(xi) ∩ D(xi−1)).

Since i > 0, τi is an internal node in T i from (5.17). Thus we have

w(τi) ∈ D(xi−1). From (5.17), we have w(τi) ∈ S(xi). Hence, we obtain

w(τi) ∈ (S(xi) ∩ D(xi−1)). Clearly |w(τi)| ≤ |w(αi)| holds, thus we obtain

Li(αi) ⊆ Li(τi).

Suppose that Li(αi) ⊂ Li(τi) holds. A symbol c exists such that c /∈
Li(αi) and c ∈ Li(τi). Since w(τi) ∈ S(w(αi)) holds, the locus τi exists on

the path of suffix links from αi to ρ in T i. Hence, the node µ exists such that

c /∈ Li(µ) and c ∈ Li(σ(µ)) on the path of suffix links from αi to τi. The node

µ is an internal node in T i since αi is an internal node. Hence, the string

w(µ)c satisfies both (2.4) and (2.6), thus we have w(µ)c ∈ AI(x
i). Moreover,

|w(τi)| < |w(µ)| holds. However, it contradicts to the construction of τi since

w(τi) is the longest string in Wi(x
i). Hence, the symbol never exists such as

c. Thus Li(αi) = Li(τi) holds.
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By using Theorem 8 and from (5.18), we obtain

|Vi(x
i)| = Li − |Li(αi)|. (5.19)

From (5.19), the condition to eliminate xi+1 is given by |Li(αi)| = 1. In other

word, αi has just one edge in Ti. By using (5.19), we can use αi instead of

τi to obtain |Vi(x
i)|. Moreover, by using the Ukkonen algorithm, we can

obtain αi in Ti with an on-line manner in linear time. This is an answer to

the second query.

We present the algorithm to compress a given string based on antidic-

tionaries with an on-line manner in linear time. The algorithm uses the

procedure update suffix tree(·, ·). This procedure constructs Tk by using the

symbol c and the previous tree Tk−1. The procedure also provides αk as a

byproducts. Let T0 be the suffix tree of the null string. The tree T0 has an

only ρ. The outline of the encoding algorithm is as follows.

Algorithm On-line DCA Encoder

input : a string x of length n

output : the 4-tuples (u, v, w, n)

begin 1

/∗Step 1: initialize ∗/ 2

u ← λ; v ← x1; w ← λ; intv ← 0; 3

(α1,T1) ← update suffix tree(x1,T0); 4

for i := 2 to n do begin 5

/∗Step 2: encode ∗/ 6
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if (xi /∈ Li−1(αi−1)) 7

v ← v.xi; w ← w.intv; intv ← 0; 8

else 9

intv ← intv + 1; 10

if (|Li−1(αi−1)| > 1) 11

u ← u.xi; 12

/∗Step 3: update a suffix tree ∗/ 13

(αi,Ti) ← update suffix tree(xi,Ti−1); 14

end for; 15

return (u, v, w, n); 16

end; 17

A symbol xi is eliminated if and only if |Li−1(αi−1)| = 1 and xi ∈
Li−1(αi−1) hold. The condition xi /∈ Li−1(αi−1) occurs when a new con-

text appeared in the currently suffix tree. Hence, the algorithm also outputs

the interval of the condition xi /∈ Li−1(αi−1) and the symbol xi as the string

w and v, respectively. In the experiments, we can apply binary representa-

tions of integer (cf. [El75]) to the element of w. In case of |X | = 2, it is not

necessary to output the string v since the symbol of v is predictable. Note

that the DCA algorithms can eliminate a symbol if Li ≥ 2 holds, while this

algorithm can do if Li ≥ 1 holds.

Next, the outline of the decoding algorithm is as follows.

Algorithm On-line DCA Decoder

input : a 4-tuple(u, v, w, n)
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output : the string y(= x) of length n

begin 1

/∗Step 1: initialize ∗/ 2

y ← v1; intv ← 0; j ← 2; k ← 1; 3

(α1,T1) ← update suffix tree(u1,T0); 4

for i := 2 to n do begin 5

/∗Step 2: decode ∗/ 6

if (intv = wk) /∗a new context appeared ∗/ 7

d ← vk; intv ← 0; k ← k + 1; 8

else 9

intv ← intv + 1; 10

if (|Li−1(αi−1)| = 1) 11

d ← c ∈ Li−1(αi−1); 12

else /∗|Li−1(αi−1)| > 1 ∗/ 13

d ← uj; j ← j + 1; 14

y ← y.d; 15

/∗Step 3: update a suffix tree ∗/ 16

(αi,Ti) ← update suffix tree(d,Ti−1); 17

end for; 18

return y; 19

end; 20

We can know that a symbol d such that d /∈ Li−1(αi−1) will appear if intv

= wk holds. In this case, the symbol d is read from the string v. Otherwise,

the next symbol is an element of Li−1(αi−1). If |Li−1(αi−1)| > 1, then we
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obtain the next symbol from the string u.

We evaluate the time complexity of this algorithm.

Theorem 9. Given a string x of length n, the On-line DCA Encoder and the

On-line DCA Decoder can be implemented to run in time O(n).

Proof.

Let the execution time of Step 1, Step 2 and Step 3 of the On-line DCA Encoder

and the On-line DCA Decoder be S1, S2, S3, respectively. The time complexity

T (n) of the proposed algorithm can thus be expressed by T (n) = S1 + (n−
1)(S2 + S3).

The cost of operation in line 3 in Step 1 is a positive constant. Hence,

from [Ukk95], we have

S1 + (n− 1)S3 = O(n). (5.20)

The locus αi−1 is created in Step 1 or Step 3, and therefore it is ready to use

αi−1 in Step 2.

The cost of Step 2 is proportional to |Li−1(αi−1)|. Since Li−1(αi−1) is a

subset of X , we have

S2 ≤ k|X |, (5.21)

where k is a positive constant. From (5.20) and (5.21), we obtain

T (n) ≤ O(n) + (n− 1) · k|X |.
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Since X is finite, the cost k|X | is a positive constant. Thus, it follows that

T (n) = O(n).

5.4 An On-line Arithmetic Coding Using Dy-

namic Suffix Trees Based on Antidictionar-

ies

The On-line DCA Encoder constructs a tree structure based on antidictionar-

ies as its encoder. We apply this tree structure to a statistical model for

an adaptive arithmetic code. For a internal node p, let N(c, p) be the num-

ber of times of a transition from p with symbol c. Each initial value of

N(c, p) is assigned by 1 for c ∈ Li−1(p). Let p(d, p) be the probability such

that N(d, p)/
∑

c∈Li−1(p) N(c, p), where the symbol d ∈ Li−1(p). We use

p(d, αi−1) to encode the symbol d by means of an adaptive arithmetic coding

in line 12 of the On-line DCA Encoder. No need to store N(c, p) for an implicit

node p because if |Li−1(αi−1)| = 1 and xi ∈ Li−1(αi−1) hold, then we have

p(xi, αi−1) = 1. In this case, the encoder outputs no symbol.

The algorithm uses the procedure AC-E (c, p, s) to encode the symbol c by

means of cumulative probabilities for an element of Li−1(p) by an adaptive

arithmetic coding order-0, where the string s is a codeword. The algorithm

also uses the procedure AC-E (·). This procedure encodes a given string by
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using an adaptive arithmetic coding order-0.

The outline of the On-line ACDCA Encoder is as follows.

Algorithm On-line ACDCA Encoder

input : a string x of length n

output : the 4-tuples (γ, κ, µ, n)

begin 1

/∗Step 1: initialize ∗/ 2

γ ← λ; v ← x1; u ← λ; intv ← 0; 3

(α1,T1) ← update suffix tree(x1,T0); 4

for i := 2 to n do begin 5

/∗Step 2: encode using tree models ∗/ 6

if (xi /∈ Li−1(αi−1)) 7

v ← v.xi; w ← w.intv; intv ← 0; 8

else 9

intv ← intv + 1; 10

if (|Li−1(αi−1)| > 1) 11

γ ← AC-E (xi, αi−1, γ); N(xi, αi−1) ← N(xi, αi−1) + 1; 12

/∗Step 3: update a suffix tree ∗/ 13

(αi,Ti) ← update suffix tree(xi,Ti−1); 14

end for; 15

κ ← AC-E (v); µ ← AC-E (w); 16

return (γ, κ, µ, n); 17

end; 18
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To improve compression ratios, the string v and w are also encoded

by an adaptive arithmetic coding in line 16. The string κ and µ is the

encoded string v and the encoded w by an adaptive arithmetic coding order-

0, respectively.

We consider the computational complexity of the On-line ACDCA Encoder.

In line 12, the cost of one operation of AC-E (xi, αi−1, γ) is a positive constant

since it is proportional to |Li−1(αi−1)| and |Li−1(αi−1)| is a subset of X .

Hence, the cost of one operation in line 12 is a positive constant. Then, the

cost of one operation in line 16 is a linear with respect to the string length n

since the length of v and u is proportional to n. Therefore, from Theorem 9,

we have the following Corollary 4.

Corollary 4. Given a string x of length n, the On-line ACDCA Encoder can

be implemented to run in time O(n).

Next, we show the On-line ACDCA Decoder. The algorithm uses the proce-

dure AC-D (s, p) to decode the symbol c by means of cumulative probabilities

of L(p) and the codeword s by an adaptive arithmetic coding order-0. The

algorithm also uses the procedure AC-D (·). This procedure decodes a given

string by using an adaptive arithmetic coding order-0. The outline of the

ACDCA-D is as follows.

Algorithm On-line ACDCA Decoder

input : a 4-tuple(γ, κ, µ, n)

output : the string y(= x) of length n

begin 1

/∗Step 1: initialize ∗/ 2
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v ← AC-D (κ); w ← AC-D (µ); 3

y ← v1; intv ← 0; k ← 1; 4

(α1,T1) ← update suffix tree(u1,T0); 5

for i := 2 to n do begin 6

/∗Step 2: decode ∗/ 7

if (intv = wk) /∗a new context appeared ∗/ 8

d ← vk; intv ← 0; k ← k + 1; 9

else 10

intv ← intv + 1; 11

if (|Li−1(αi−1)| = 1) 12

d ← c ∈ Li−1(αi−1); 13

else /∗|Li−1(αi−1)| > 1 ∗/ 14

d ← AC-D (γ, αi−1); N(d, αi−1) ← N(d, αi−1) + 1; 15

y ← y.d; 16

/∗Step 3: update a suffix tree ∗/ 17

(αi,Ti) ← update suffix tree(d,Ti−1); 18

end for; 19

return y; 20

end; 21

From the argument of the computational time of On-line ACDCA Encoder,

the cost of one operation in line 3 is a positive constant, and the cost of one

operation in line 15 is a positive constant. Therefore, from Theorem 9, we

have the following Corollary 5.

Corollary 5. Given a string x of length n, the On-line ACDCA Decoder can
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be implemented to run in time O(n).

5.4.1 Experimental Results

Table 5.4 shows the compression results on Calgary Corpus [Cal] by using

the proposed algorithm applied an adaptive arithmetic coding, the on-line

DCA algorithm [CMRS00] (DCA), the off-line DCA algorithms applied an

adaptive arithmetic coding by Ohkawa et al. [OHY05] (OHY), AC using

order-2 model [MS98], and gzip [JL02]. Note that Ohkawa et al. applied

the OHY method to a block of file and determined two parameters such as a

block size, a maximum length of MFWs to obtain better compression ratio

by preliminary computer simulation for each file.

Table 5.4: Compression results on the Calgary Corpus.

file proposed DCA [CMRS00] OHY AC order-2 gzip
bib 0.32 0.32 0.30 0.34 0.32

book1 0.41 0.38 0.31 0.37 0.41
book2 0.34 0.35 0.29 0.36 0.34
geo 0.77 0.78 0.68 0.61 0.67

news 0.38 0.43 0.39 0.41 0.38
obj1 0.58 0.61 0.64 0.53 0.48
obj2 0.37 0.45 0.45 0.38 0.33

paper1 0.37 0.40 0.39 0.37 0.35
paper2 0.38 0.39 0.35 0.36 0.36

pic 0.14 0.14 0.10 0.11 0.11
progc 0.37 0.40 0.42 0.37 0.34
progl 0.25 0.28 0.29 0.30 0.23
progp 0.25 0.28 0.31 0.29 0.23
trans 0.21 0.24 0.29 0.30 0.20

Average 0.36 0.39 0.37 0.37 0.34

Table 5.4 shows the proposed algorithm achieved better compression ra-
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tios than the DCA for almost all files on Calgary Corpus. The average results

give 3% decrease in compressed file size relative to the DCA and 1% decrease

in one relative to both the OHY and AC using order-2 model. The proposed

algorithm obtained the same compression ratios for four files as gzip and

almost the same compression ratios for other files.

5.5 Conclusion

We proposed new data compression algorithms using AD-trees and dynamic

suffix trees based on antidictionaries. It is shown that both of them work in

linear time with respect to string length. Moreover, the proposed algorithm

using the dynamic suffix trees works with linear time in an on-line manner,

while the traditional DCA algorithms with an on-line manner require worst

case O(n2) time.

Moreover, we proposed a new on-line arithmetic coding based on antidic-

tionaries using dynamic suffix trees. The proposed algorithm works in linear

time, and it was shown that the tree model constructed by the proposed

algorithm provides an efficient statistical model for an adaptive arithmetic

coding by simulation results.
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Chapter 6

An Application of an On-line

DCA to Electrocardiogram

(ECG)

6.1 Introduction

In recent years, information technology has been used in the biomedical field.

This field of research, called biomedical informatics, deals with the resources,

devices and methods to optimize acquisition, storage, retrieval and use of

biomedical information. In the medical field, it becomes more important to

use electronic biomedical data in digital format. Data compression meth-

ods are useful for improving the consumption of storage and the amount of

transmitting of biomedical information.

The electrocardiogram (ECG) is one of biomedical data. Figure 6.1 shows

a schematic representation of normal ECG. As shown in Figure 6.1, a normal
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Figure 6.1: A schematic representation of normal ECG.

ECG wave consists of five waves, that is, P, Q, R, S, T and U-wave.

The ECG signal compression is required for two main reasons, effective

and economic data storage and on-line transmission of the ECG signals.

From the point of view of biomedical data, we need a lossless compression

not to lose any significant features of the ECG signals. Moreover, it requires

the feasibility of transmitting real-time ECG’s over the computer network.

Each ECG signal is an almost periodic waveform and a wave of the ECG

differs from other waves with respect to the period and the amplitude. More-

over, a little arrhythmia occurs in the ECG waves. Figure 6.2 shows an ex-

ample of ECG waves [MIT]. In Figure 6.2, there are seven ECG waves and

the third wave from the left is arrhythmia.

These properties of the ECG make it difficult to compress ECG signals by

means of lossless data compression, so that numerous lossy data compression
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Figure 6.2: An example of ECG waves.

methods for the ECG signals have been proposed [JHSC90, MK93].

To compress the ECG signals with an on-line lossless manner, we can

use the On-line DCA Encoder and On-line ACDCA Encoder algorithm, while it is

difficult to use these algorithm with respect to memory space since size of

long-term monitoring of the ECG signals become extremely large.

In this Chapter, we propose a new on-line lossless data compression for

the ECG data using an antidictionary [OM04]. The proposed algorithm con-

structs the antidictionary by means of the substring of the ECG signals since

most of the ECG waves take the similar form of one another. We compress

the entire ECG signals by using an AD-automaton of an antidictionary of

that substring. Moreover, we study on the length of substring needed to con-

struct the antidictionary whose size is almost same as that of the entire string

of ECG using the results of coupon collector’s problems [GKP89, Dur99].

Experimental results show that the proposed algorithm gives 10% de-

crease in compressed file size relative to the LZ algorithm [JL02]. It is shown

that the algorithm combined the proposed algorithm with the ACDCA-E gives

15% decrease in compression size relative to the LZ algorithm [JL02]. More-
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over, we show the proposed algorithm is available for transmitting real-time

by computer simulation.

6.2 An On-line ECG Lossless Compression

We construct an antidictionary by means of the substring of a given binary

ECG signals called learning string to use the DCA Encoder-AU for binary ECG

signals with an on-line manner.

We now show the encoding algorithm ECG-DCA Encoder. The outline of

the ECG-DCA Encoder is as follows.

Algorithm ECG-DCA Encoder

input : a 2-tuples (learning string l, ECG signals x of length n)

output : the 4-tuples (γ, κ, n, TAI
(l))

begin 1

/∗Step 1:Construct an AD-automaton ∗/ 2

TAI
(l) ← ST2ADT(l); 3

GAI
(l) ← L-Automaton(TAI

(l)); intv ← 0; 4

/∗Step 2:Encode ∗/ 5

p ← ρ of GAI
(l); 6

for i := 1 to n do begin 7

if ((p, xi) is an AD-node) then /∗an MFW appears ∗/ 8

κ ← κ.intv; intv ← 0; p ← ρ; 9

else begin 10

if (p has no impossible-transition) then 11
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γ ← γ.xi; 12

p ← (p, xi); intv ← intv + 1; 13

end else; 14

end for; 15

return (γ, κ, n, TAI
(l)); 16

end. 17

The string κ stores intervals of the occurrence of transition to an AD-

node. In the experiments, we applied the binary representation of inte-

ger [El75] to an interval. It can occur since we use the AD-automaton of

an antidictionary of a learning string such that it is substring of entire ECG

signals. If a transition to an AD-node occurs in encoding process, then we

reuse the AD-automaton by resetting node p to ρ in line 9.

Then, the outline of the ECG-DCA Decoder is as follows.

Algorithm ECG-DCA Decoder

input : a 4-tuples (γ, κ, n, TAI
(l))

output : the string z(= x) of length n

begin 1

/∗Step 1:Reconstruct an AD-automaton ∗/ 2

GAI
(l) ← L-Automaton(TAI

(l)); 3

/∗Step 2:Decode ∗/ 4

p ← ρ of GAI
(l); z ← λ; j ← 1; k ← 1; intv ← 0; 5

for i := 1 to n do begin 6

if (intv = κk) then /∗an MFW appears ∗/ 7
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zi ← a /∈ L(p); p ← ρ; k ← k + 1; 8

else begin 9

if (p has no impossible-transition) then begin 10

zi ← γj; j ← j + 1; 11

else 12

zi ← a ∈ L(p); 13

p ← (p, zi); intv ← intv + 1; 14

end else; 15

end for; 16

return z(= x); 17

end. 18

We consider the computational complexity of the ECG-DCA Encoder and

the ECG-DCA Decoder. From Theorem 3 and Theorem 4, the cost of Step 1

of the ECG-DCA Encoder and the ECG-DCA Decoder are linear with respect

to the string length. The cost of Step 2 of the ECG-DCA Encoder and the

ECG-DCA Decoder is linear since the total number of traversed nodes is n.

Therefore, both the ECG-DCA Encoder and the ECG-DCA Decoder can work in

linear time and space.

Next, we show the algorithm combined the proposed algorithm with an

adaptive arithmetic coding. We will use the same notation of the ACDCA

algorithm. The outline of the ECG-ACDCA Encoder is as follows.

Algorithm ECG-ACDCA Encoder

input : a 2-tuples (learning string l, ECG signals x of length n)
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output : the 4-tuples (γ, κ, n, TAI
(l))

begin 1

/∗Step 1:Construct the AD-automaton ∗/ 2

TAI
(l) ← ST2ADT(l); 3

GAI
(l) ← L-Automaton(TAI

(l)); intv ← 0; γ ← λ; 4

/∗Step 2:Encode ∗/ 5

p ← ρ of GAI
(l); 6

for i := 1 to n do begin 7

if ((p, xi) is an AD-node) then /∗an MFW appears ∗/ 8

κ ← κ.intv; intv ← 0; p ← ρ; 9

else begin 10

if (p has no impossible-transition) then begin 11

γ ← AC-E (xi, p, γ); /∗an adaptive arithmetic coding ∗/ 12

N(xi, p) ← N(xi, p) + 1; 13

end if ; 14

p ← (p, xi); intv ← intv + 1; 15

end else; 16

end for; 17

return (γ, κ, n, TAI
(l)); 18

end. 19

Next, the outline of the ECG-ACDCA Decoder is as follows. We will use the

same notation of the ACDCA algorithm.

Algorithm ECG-ACDCA Decoder
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input : a 4-tuples (γ, κ, n, TAI
(l))

output : the string z(= x) of length n

begin 1

/∗Step 1:Reconstruct the AD-automaton ∗/ 2

GAI
(l) ← L-Automaton(TAI

(l)); 3

/∗Step 2:Decode ∗/ 4

p ← ρ of GAI
(l); z ← λ; j ← 1; k ← 1; intv ← 0; 5

for i := 1 to n do begin 6

if (intv = κk) then /∗an MFW appears ∗/ 7

zi ← a /∈ L(p); p ← ρ; k ← k + 1; 8

else begin 9

if (p has no impossible-transition) then begin 10

zi ← AC-D (γ, p); 11

N(zi, p) ← N(zi, p) + 1; 12

end if ; 13

else 14

zi ← a ∈ L(p); 15

p ← (p, zi); intv ← intv + 1; 16

end else; 17

end for; 18

return z(= x); 19

end. 20

From the computational complexity of the ECG-DCA Encoder and the

ECG-DCA Decoder, both the ECG-ACDCA Encoder and the ECG-ACDCA Decoder
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can also work in linear time and space with respect to the string length.

6.3 Estimation of the Length of Learning

String

An antidictionary for the ECG-DCA Encoder is produced from a suffix tree

of a given learning string. From Remark 2 [CMR98], there is a one-to-one

correspondence between the dictionary and the antidictionary. Hence, it

needs the expected length of the learning string E[L] whose dictionary of the

learning string stores an element of all normal ECG signals of a whole ECG

data.

We subdivide ECG data into peak-to-peak intervals by using a peak of the

R-wave, and each interval is normalized to the fixed N symbols. Figure 6.3

shows the normalized ECG wave.

Let tk[i] be the amplitude of i-th symbol of k-th intervals, where 1 ≤
i ≤ N . Let T [i] be the set of {tk[i] | 1 ≤ k ≤ I}, where I is the number

of intervals. Since an ECG wave differs from other waves with respect to

the amplitude, for a fixed i, there exists a range such as min(T [i]) ≤ tk[i] ≤
max(T [i]). We use the function min(·) and max(·) to obtain the minimum and

the maximum value for a given set of values, respectively. In the observation

of ECG signals, for a fixed i and for an arbitrary k, the behavior of value

tk[i] looks like a random variable in the range [min(T [i]), max(T [i])].

Therefore, we assume that the set of values min(T [i]), ..., max(T [i]) has

a discrete uniform distribution. If the values are distributed uniformly,
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N symbols

Figure 6.3: The normalized ECG wave.

then we can obtain the expected waiting symbols to appear all values of

[min(T [i]), ..., max(T [i])] by applying Coupon Collector’s Problem [GKP89,

Dur99]. In the coupon collector’s problem, if each box at a product contains

on of a set of M coupons, how many boxes do you need to buy before getting

all the coupons? If the coupons are distributed uniformly, then the expected

number of boxes to be bought is given by

MHM , (6.1)

where HM is the M -th harmonic number such that HM = 1 + 1
2

+ ... + 1
M

.

Let d be the value such as (max(T [i]) − min(T [i]) + 1). The expected
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waiting symbols to appear all values of [min(T [i]), ..., max(T [i])] is given by

NdHd, (6.2)

where N is the period of interval as shown in Figure 6.3. From [GKP89], the

approximation of Eq. (6.1) is given by

M loge M, (6.3)

where the constant value e denotes the base of natural logarithm.

From (6.3) and (6.2), the approximation of Eq. (6.2) is given by

Nd loge d. (6.4)

We investigated the dynamic range of normal ECG wave by means of

ECG data of MIT-BIH Arrhythmia Database [MIT]. The ECG data is dig-

itized at 360 samples per second per channel with 11-bit resolution. We

subdivide the entire ECG into peak-to-peak intervals by using a peak of the

R-wave, and each interval is normalized to the fixed N symbols. In our pre-

liminary experiments, N was fixed to 288. Then, in our experiments for 385

normalized intervals (I = 385), we obtained the dynamic range d as follows.

20 ≤ d ≤ 55. (6.5)

Hence, from (6.4), (6.5) and N = 288, the expected length of leaning
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string is given by

17256 ≤ E[L] ≤ 63476. (6.6)

6.4 Experimental Results

To evaluate the performance of the proposed ECG-DCA and ECG-ACDCA al-

gorithm, both of them were implemented to compress twenty-three ECG

files [MIT]. The ECG signals used in the experiment have been sampled at

a rate of 360 samples/s. Each sample is represented as an 16-bit code by

padded five zero of one sample with 11-bit resolution. The size of each ECG

file has 650,000 samples (about 30 min.). From Eq. (6.6), we used 50,000

samples taken from the prefix of each ECG files as the length of a learning

string for the ECG-DCA and the ECG-ACDCA algorithm. The maximum re-

stricted length of an MFW of an antidictionary is denoted by R. We used 2

symbols (32-bit) as the length R.

Table 6.1 shows the compression results on the ECG files by using gzip

[JL02], the DCA algorithm, the proposed the ECG-DCA and the ECG-ACDCA

algorithm. The DCA algorithm works with an off-line manner, while gzip and

the proposed algorithms work with an on-line manner. Experimental results

show the average result of the ECG-DCA and the ECG-ACDCA give 10% and

15% decrease in compressed file size relative to gzip, respectively. The average

result of the DCA algorithm and the ECG-DCA for the restricted length of an

MFW to 32-bit shows the proposed ECG-DCA achieved 1% better compression

ratio than the DCA algorithm. In our experiment on a 3.2 GHz Pentium 4

with 2 GB memory, it took about 7 second (1.5Mbit/s) to finish encoding one
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ECG file in the ECG-DCA and it took about 822 second (13kbit/s) to finish

encoding one ECG file in the ECG-ACDCA algorithm. Hence, both of the

proposed algorithm can implement to compress the ECG files for real-time

since the sampling bit-rate of ECG is 5.7kbit/s.

We performed more simulations for the learning string taken from the

ECG file of length up to a whole size (10.4Mbit). Figure 6.4 shows the

relationship between length of learning string and compression ratios. In

Figure 6.4, the value d = 20 and d = 50 denotes the lower length and upper

length of the value d in Eq. (6.6) for three ECG files. Experimental results

show that the length of the learning strings to obtain better compression

ratio exists in the range of our estimation of Eq. (6.6).

6.5 Conclusion

We proposed a new on-line lossless data compression for the ECG data using

antidictionaries. The proposed algorithm constructs an antidictionary by

means of the substring of the ECG signals using the properties such that

most of the ECG waves take the similar form of one another.

Experimental results showed the proposed algorithm gives 15% decrease

in compressed file size relative to the popular compress algorithms such as the

LZ algorithm. We showed the proposed algorithm is available of transmitting

real-time by computer simulation.

Moreover, we studied on the length of substring needed to construct an

antidictionary whose size is almost the same as that of the entire string of

ECG using the results of coupon collector’s problems. Experimental results
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Table 6.1: Compression results for the ECG files.

ECG gzip DCA ECG-DCA ECG-DCA ECG-ACDCA
R=32-bit R=32-bit

100 0.386 0.391 0.332 0.313 0.255
101 0.415 0.367 0.360 0.347 0.269
102 0.413 0.344 0.334 0.319 0.262
103 0.430 0.375 0.352 0.339 0.285
104 0.447 0.394 0.379 0.365 0.292
105 0.474 0.381 0.381 0.372 0.335
106 0.482 0.403 0.382 0.376 0.324
107 0.588 0.415 0.441 0.438 0.400
200 0.492 0.413 0.392 0.383 0.329
201 0.373 0.343 0.337 0.318 0.259
202 0.432 0.348 0.336 0.333 0.298
203 0.537 0.421 0.432 0.429 0.385
205 0.368 0.376 0.347 0.321 0.256
207 0.467 0.366 0.357 0.353 0.308
208 0.509 0.398 0.387 0.384 0.345
209 0.472 0.394 0.384 0.379 0.329
210 0.430 0.369 0.331 0.325 0.277
212 0.505 0.404 0.397 0.394 0.354
213 0.554 0.411 0.449 0.446 0.399
214 0.489 0.371 0.370 0.366 0.318
215 0.489 0.413 0.395 0.386 0.331
217 0.545 0.394 0.406 0.412 0.360
219 0.476 0.366 0.406 0.401 0.345
Average 0.469 0.386 0.378 0.369 0.318
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show its validity of estimation.
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Chapter 7

Conclusion

We have focused on the construction algorithms of an antidictionary using a

tree structure in linear time and an on-line lossless statistical data compres-

sion by means of a tree model based on a dictionary and an antidictionary

in linear time.

In Chapter 2 and Chapter 3, we generalized the traditional algorithms

for only binary strings to any string over finite alphabet. In Chapter 2,

we proposed the construction algorithm of an antidictionary of any string

over finite alphabet using a suffix trie. In Chapter 3, we proposed the DCA

algorithm using an AD-automaton with an adaptive arithmetic coding for

any string over finite alphabet.

In Chapter 4, we proposed the construction algorithm of an antidictionary

using a suffix tree. We proved that the time and space complexity is linear

with the string length. It was shown that the number of traversed nodes

to construct an antidictionary is independent of the alphabet size by means

of the proposed algorithm. It is the same upper bound, that is 2n − 1
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nodes, as that of the traditional construction algorithm using a suffix dawg.

Moreover, experimental results confirmed that the proposed algorithm is fast

and memory-efficient.

In Chapter 5, we proposed two new data compression algorithms using

an AD-tree and a suffix tree based on antidictionaries. It is proved that both

of them work in linear time with respect to string length. The proposed al-

gorithm based on the suffix tree works in linear time with an on-line manner,

while the traditional DCA algorithms with an on-line manner require worst

case quadratic computational time with respect to the string length. More-

over, we proposed an on-line arithmetic coding using dynamic suffix trees

based on antidictionaries. We showed that the time complexity of our algo-

rithm is linear with the string length. It was shown that a tree model based

on antidictionaries using dynamic suffix trees provides an efficient statistical

model for an adaptive arithmetic coding by simulation results. Experimental

results show that the proposed algorithm achieved better compression ratios

than the traditional on-line DCA for almost all files on Calgary Corpus, and

this approach gives a 3% decrease in compressed file size relative the tradi-

tional on-line DCA and a 1% decrease in the size relative to the OHY.

In Chapter 6, we proposed a new on-line lossless data compression for

the ECG data using an antidictionary. The proposed algorithm constructs

the antidictionary by means of the substring of the ECG signals using the

properties such that most of the ECG waves take the similar form of one

another. Experimental results showed the proposed algorithm gives 15%

decrease in compressed file size relative to the popular compress algorithms

such as the LZ algorithm. We showed the proposed algorithm is available
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for transmitting real-time by computer simulation. Moreover, we studied on

the length of substring needed to construct an antidictionary whose size is

almost same as that of the entire string of ECG using the results of coupon

collector’s problems. Experimental results show its validity of estimation.
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