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ABSTRACT A sensor device can be used to detect target events at low cost. Moreover, there is a significant
risk of sensor nodes being compromised or captured within large wireless sensor networks (WSNs). The
transmission of valid event messages to users by a WSN can be hindered by network congestion due
to false event messages in a compromised node. Several methods are available for detecting false event
messages. However, they rely on long bits of authentication codes and hence do not provide a fundamental
solution to prevent network congestion. In the proposed method, various hashing vectors, which are space-
efficient data structures that can determine whether the given data are an element of a set, are created
based on the correct combination of authentication codes and placed in each node in advance. An event
message contains an XOR of the authentication codes, and each node verifies it based on its hashing
vector. If a node is acquired illegally, the information of the hashing vector and the XOR information
of the authentication codes assigned to the correct event message is compromised, so we propose an
algorithm to update the information securely. Compared to existing research, the number of hops required
to detect a false event message increases by only about one hop, but the amount of traffic that a malicious
node can generate can be reduced by about 60% or more. In other words, the proposed method effectively
reduces the amount of traffic an attacker can generate with false event messages, which also reduces the
overall network congestion.

INDEX TERMS Energy-efficient protocol, false event detection, security, wireless sensor networks.

I. INTRODUCTION

AS A CORE functionality, sensor devices identify and
report events, e.g., trespassing or forest fires, and

a wireless sensor network (WSN) is formed by connecting
such sensor devices in a wireless network [1], [2], [3], [4].
Multihop wireless paths serve as the medium for the mes-
sage in a WSN to reach its last recipient, the sink, following
the detection of events of interest and transmission of the
message by the sensor nodes (Fig. 1). Nonetheless, when
sensor nodes are used in hostile environments, they become
susceptible to attacks. An attacker can compromise and cap-
ture multiple sensors. Network congestion can occur, as such
compromised nodes can generate numerous false event mes-
sages (hereinafter, false messages) following the obtention of
the secret keys stored in these nodes (Fig. 2). This network

congestion can prevent the transmission of a valid message
to the sink, thereby obscuring the hacker’s crime.
The rapid identification of false messages in-network is

a concept explored in related studies. Network congestion
can be partially addressed via the detection at an early stage.
Many works tackle this challenging issue [5], [6], [7], [8].
Permitting each node to possess symmetric keys encapsu-
lates the fundamental idea. Multiple message authentication
codes (MACs) are contained in a report collectively pro-
duced by T proximal sensor nodes upon an event occurring.
A node’s agreement with the report is reflected by a MAC
that is produced by a node using one of its symmet-
ric keys. Further authentication information is incorporated
into every message using multiple methods. The probabilis-
tic validation of MACs contained in the report is enabled
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FIGURE 1. An example of detecting an event in a WSN.

by every forwarding node within the process of a report
being forwarded to the sink over several hops. Delivery
does not occur when insufficient MACs are contained in
a given report. As every message comprises significant quan-
tities of authentication information, the quantity of traffic in
every message is substantial despite their ability to iden-
tify false messages in-network. Therefore, the production
of multiple false messages caused by a compromised node
causes network congestion. Further, a significant proportion
of the battery of sensor nodes is consumed due to legitimate
messages. Consequently, the lifespan of a WSN diminishes
as the sensor nodes function with a restricted battery. In
addition, when more than T nodes are compromised, certain
methods cause a total breakdown of security.
When more than T nodes are compromised, a stream-

lined method proposed in this study demonstrates a high
likelihood of success in the detection of false messages in-
network. Although this method significantly decreases the
probability of network congestion, as the message length
can be substantially reduced, this contemporary, cutting-edge
method generates almost the same total message hops before
detecting a false message.
Before the deployment, the sensor nodes are preloaded

with developed information regarding an exclusive OR
code (EOC), which enhances false event detection in typical
cases and cases in which the sensor nodes leak more than
T nodes. The proposed method’s ability to reduce the total
traffic when compromised nodes generate numerous false
messages is evidenced by our mathematical analysis.
The main contributions of the paper are as follows.

1) First, we propose an algorithm to detect false event
messages in WSNs with high probability. In our
algorithm, each message contains event information
and a one-time authentication code (EOC; exclusive
OR code). The bit length of the proposed one-time
authentication code is shorter than the authentication
information used in existing studies. Thus, the required
amount of traffic required for event messages can be
reduced compared to existing methods. As a result, the
proposed algorithm can prevent network congestion
caused by malicious nodes. As mentioned previously,
the goal of this study is to reduce traffic volume and
network congestion in WSNs.

FIGURE 2. An example of false message attacks.

2) Second, each forwarding node can determine whether
the one-time authentication code in the forwarding
message is legitimate based on its hashing vector.
A hash vector is a data structure that can determine
whether the given data is an element of a set, thereby
allowing a few false positives and achieving high spa-
tial efficiency. The network manager can control the
detection ability of hashing vectors. Here, when the
target detection probability is set to 0.5, a false event
message can be detected in two hops on average.

3) Third, an update mechanism of the one-time authenti-
cation code is also proposed. This update mechanism
disables one-time authentication codes that the attacker
may have obtained and updates them to new codes that
cannot be predicted by the attacker. The update mecha-
nism is a novel feature required only for the proposed
method, and the ability of the proposed method to
detect false messages using one-time authentication
codes is almost even with existing methods. Note that
the update mechanism does not require much traffic,
and the overall traffic volume of the proposed method,
including the update mechanism, is very low compared
to existing methods.

4) Fourth, we conducted experiments and compared the
proposed algorithm with four existing algorithms. The
experimental results demonstrate that the proposed
method can reduce the maximum amount of traffic
an attacker can produce.

We present the subsequent sections of this study in the
following manner: we portray a model of sensor networks
and false events in Section II, explore related methods and
their issues in Section III, illustrate the design of our method
in Section IV, explore the efficacy of our method alongside
the parameter settings in Section V (the findings from the
previous section serve as the basis for assessments), and
summarize this study in Section VII. The proposed method
reduces the amount of traffic required to detect false event
messages compared to existing studies while maintaining the
ability to detect false event messages.

II. RELATED WORK
Secured data aggregation in WSNs has been a subject of
inquiry in various studies [9], [10]. Although in-network
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false events cannot be detected via the methodology in these
studies, false events at the sink can be detected. Therefore,
a WSN cannot detect trespassing or other such events due
to network congestion compromised nodes cause.
The distribution of secret keys to sensors is enabled

via a method proposed in studies focusing on in-network
false event detection. Each node possessing symmetric keys
encapsulates this method’s fundamental concept. Each node’s
location serves as the basis for producing keys following
deployment, or each node is preloaded with the keys. In
addition, certain nodes share the same key. The MACs, key
IDs, and IDs of sensors proximal to an event are carried in
a report these sensors collectively produce. A node’s agree-
ment with the report is reflected by a MAC that a node
produces using one of its symmetric keys. The probabilistic
validation of the MACs carried in the report is enabled by
every forwarding node within the process of a report being
forwarded to the sink over several hops. Delivery does not
occur when reports contain false MACs. The related literature
endeavors to enhance the likelihood that a forwarding node
possesses a key used to generate MACs in the event message.
Keys are randomly distributed to sensor nodes within false

message detection methods with randomized key distribution
mechanisms [5], [11]. A legitimate event can only be gen-
erated when the sensor nodes collect more than T discrete
MACs. This mechanism can be used in a scenario in which
the sink moves. Nonetheless, threshold behavior is displayed
by the mentioned randomized key distribution mechanism.
When the hacker or attacker has more than T keys, the
detection of false events cannot occur.
Each sensor node’s location serves as the basis for

distributing keys to every node within false message
detection methods using a location-based key distribution
mechanism [6], [7], [8], [12]. The locations of the sink and
nodes enable the static forwarding node identification for
every source node. A burst of large quantities of false mes-
sages is generated by the above-mentioned methods despite
their ability to detect false messages in-network, attributed
to the long messages that compromised nodes can generate
in such contexts. The default of T = 5 has been established
in various existing studies. In WSNs, 8 bytes is typically
thought to be the length of a MAC [13].
By contrast, 40 bytes is considered the standard packet

size without security mechanisms in WSNs in some
studies [14], [15]. Therefore, compromised nodes can gener-
ate a size that doubles the original packet in a false message,
reaching up to 80 bytes in length. A method for detecting
false messages effectively handles scenarios that involve the
location of the sink altering and the presence of multiple
compromised nodes in a certain study [7]. Nevertheless, as
the method uses T MACs, attacks in the form of bursts
of large quantities of false messages occur, similar to other
relevant studies.
Babu et al. proposed Secure Data Aggregation

based on the Principle Component Analysis (SDA-PCA)
algorithm [9]. A cluster head is selected in their algorithm

among neighboring sensor nodes according to node quality
and energy level. The cluster head gathers sensing
information of the surrounding sensor nodes, compresses the
information, and then sends a message to the sink. Sensor
nodes with high mobility are considered malicious nodes in
SDA-PCA. Such nodes are not allowed to become cluster
heads. This mechanism prevents false event messages from
reaching the sink. Since the criteria for determining whether
a node is malicious are clear, it is easy to place a malicious
node so that it does not meet these criteria. Therefore, a mali-
cious node may become a cluster head. It is also possible
for a cluster head to provide much incorrect information.
Since the algorithm assumes that the messages generated by
the cluster head are correct, it cannot detect when a cluster
head creates a false event message.
Wang et al. proposed a secure aggregation protocol in

WSNs [10]. The protocol selects a cluster head among neigh-
boring nodes based on link quality and remaining energy.
Data confidentiality is protected because communications
between nodes and cluster heads and between cluster heads
and sinks are encrypted. Moreover, each node and each clus-
ter head have a unique key, preventing spoofing. However,
since only the sink can detect this spoofing, the spoofing can-
not be detected while transferring the message to the sink.
Therefore, if an attacker compromises even one node, he
can generate many false event messages that the in-network
cannot detect.
Furthermore, Pedroso and Santos [16] suggested a clus-

tering algorithm (CONsensus Based Data FIlteriNg for IIoT;
CONFINIT) that prevents false message attacks. In that algo-
rithm, each node compares its sensing values with those of
other nodes. If a node’s sensing values differ significantly
from those of other nodes, the node is likely malicious. In
this case, other honest nodes ignore the potentially malicious
node. As a result, CONFINIT tries to prevent malicious
nodes from generating false event messages. However, if
a malicious node succeeds in generating a false event mes-
sage, it is not detected as a false event message because
there is no mechanism to detect false event messages at the
forwarding node or sink.
The methods introduced so far can prevent the generation

of false event messages to some extent or detect them in
the sink. However, they cannot detect false event messages
in-network, i.e., at the forwarding node, which is the goal
of this paper.
Ye et al. proposed a Statistical En-route Filtering (SEF)

mechanism [5]. They proposed an algorithm that pioneered
detecting false event messages in the network. Sensor nodes
that detect the target event generate MACs based on the
event content and node ID, and the cluster head, at min-
imum, collects T MACs. Keys for MAC generation are
randomly deployed to each node and information about
which node holds which key is not maintained. Thus, the
problem is that with only T keys compromised, an attacker
can generate any number of false event messages from any
location.
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By distributing “legitimate key ID combinations” to each
node in advance, an in-network detection method was
proposed for messages generated with illegitimate keys [7].
In their approach named MobiSink, when a message is for-
warded to the sink, each forwarding node checks to see if
the message has at least T MACs with the correct key IDs
appended. The detection rate of false messages is high, but
the disadvantage is that the message length becomes very
long because T MACs and T key IDs must be appended to
every message.
A combinatorial design-based partial en-route filtering

scheme (CD-PEFS) was proposed by Kumar et al. [8]. In
CD-PEFS, three cluster heads are selected in each cluster. One
cluster head gathers sensing information from the surrounding
sensor nodes and generates a message with T secret shares, T
node IDs, and (k′+1) MACs where k′ represents the number
of keys stored in cluster heads. The value of k′ is 10 on
average when the number of clusters is 150. As the number
of clusters increases, the value of k′ also increases. Although
the detection rate of false event messages of CD-PEFS is
very high, there is a great deal of data added to the message.
Yi proposed an en-route message authentication

scheme (EMAS) [12]. In EMAS, each sensing node sends
the information with event data, key ID, location ID, and
MAC to a cluster head. The cluster head maps T MACs
into a compressed filter using hash functions. The clus-
ter head generates a message with the compressed filter,
T node IDs, T location IDs, and T key IDs. Each for-
warding node can detect false event messages based on
the compressed filter, node IDs, location IDs, and key IDs.
Although EMAS compresses T MACs into one filter, the
amount of messages is still significant because T node
IDs, T location IDs, and T key IDs are necessary for the
authentication.
As mentioned above, all existing research aimed at detect-

ing false event messages in-network adds many data to
the event messages for authentication. False event mes-
sages generated by compromised nodes are detected in the
in-network early. However, the amount of data in each
message is so large that the composed nodes can eas-
ily cause network congestion. These four algorithms [5],
[7], [8], [12] are compared with the proposed algorithm in
Section V.
The suggested method uses one-time authentication codes

instead of a large amount of authentication, such as T key
IDs and T MACs, which significantly reduces the amount
of data for authentication added to messages. This one-time
authentication is a novel idea not found in existing research.
Of course, since one-time authentication is used, an update
mechanism is required. We propose an algorithm to perform
this mechanism efficiently and securely.

III. SYSTEM MODEL
We outline the model of false event attacks and the sensor
network model used in this section.

A. SENSOR NETWORK MODEL
Multiple small sensor nodes deployed at high density
comprise the sensor network examined in this study.
Adaptation to node failures and enhanced detection accu-
racy are enabled using multiple nodes to detect an event.
A node is selected to be the center-of-stimulus node (CoS)
while all detecting nodes report the signals they detect. The
CoS collects and summates all received detection findings.
A multihop path is used by the event message, which is
a term used to describe the message the CoS delivers to the
sink. All nodes use a localization scheme to identify their
geographic location once they are deployed [17].
Given that the sensor nodes’ design followed cost-

effectiveness principles, we presume that they do not possess
tamper-resistant hardware. Following deployment, we also
presume that no movement occurs in the nodes. The literature
reflects these suppositions [18], [19], [20], [21].
Symmetric-key cryptography serves as the basis for

most WSNs due to the computationally expensive
nature of cryptographic asymmetry based on public-key
schemes [22].
In addition, we presume that every node can validate the

sink’s message, and the sink can validate its messages to
the sensor nodes via a secure mechanism, such as μTESLA,
thereby ensuring that the sink cannot be compromised [23].
We assume that the number of legitimate events is rel-

atively small, e.g., a few times per month. The target
events are assumed to include forest fires and intrusions
by attackers, and such events do not occur frequently.
Possible applications for the proposed method include

intruders, arson, theft, and other application scenarios that
detect human crime. These applications are one of the exam-
ple scenarios in WSNs. In addition, human crime is not
expected to occur frequently. Thus, the proposed method
works effectively for such applications. In other words, the
amount of traffic required by the proposed method required
is very low compared to existing methods. If the frequency of
events is high, the number of updates of the one-time authen-
tication code increases, and the amount of traffic required by
the proposed method increases. This reduces the advantage
of the proposed method in that it requires less traffic than
the existing methods.

B. ATTACK MODEL
A network can have several sensor nodes compromised by
a hacker within it. An attacker can load secret keys attained
from distinct nodes onto a compromised node following the
exposure of all codes, data, and secret keys resulting from
a sensor node being compromised. Compromised nodes can
seemingly detect a proximal event when no such event exists.
These false reports, which can cause a user to make harm-
ful decisions, can induce network congestion. We assume
that WSNs are equipped with replicated node detection
methods [24]. In other words, if an attacker takes more than
one node, he/she has complete control over that node but
cannot replicate many malicious nodes.
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TABLE 1. Notations.

An attacker can generate arbitrary event messages.
However, the forwarding node may detect an attacker-
generated event message as illegitimate since each forward-
ing node checks whether the event message is legitimate. The
attacker is free to use the information from the compromised
node to mislead the forwarding node into assuming that the
attacker-generated event message is legitimate. Although an
attacker can compromise multiple nodes, we assume that the
number of compromised nodes does not exceed 100 since
it is difficult to realistically expect an attacker to compro-
mise more than 100 nodes without the system administrator
being aware. An attacker can also intercept communications
between normal nodes.

IV. METHOD
A. SUMMARY OF THE PROPOSED METHOD
Table 1 lists the notations used in this study. We used a reg-
ular geographic grid to separate the terrain. T nodes in the
same grid can generate an event message.
The variable i represents the ni‘s node ID, and ni repre-

sents the sensor node. The sink generates code ri available
only once for each node ni in advance. When creating
an event message, nodes cooperate to create exclusive OR
code (EOC) R from T codes in the same grid. Please note
that the sink can know all possible legitimate combinations
of T codes in advance. In other words, the sink knows all
possible legitimate EOCs in advance. Even if an attacker
compromises T nodes, the attacker cannot create a legit-
imate EOC when all compromised nodes are not on the
same grid because a legitimate EOC needs to be created
from T nodes in the same grid.

Each node is preloaded with a hashing vector created from
all legitimate EOCs. Since the hashing vector can check
whether an element is included in the set from which the
hashing vector was generated, each forwarding node can
detect a false event message (i.e., an event message with
nonlegitimate EOC) with a certain probability.

FIGURE 3. Overall process of the proposed algorithm at the sink in advance.

FIGURE 4. Overall process of the proposed algorithm in each node.

TABLE 2. Example of table of codes and EOCs (RT).

Here, there are two main challenges. First, if all nodes have
the same hashing vectors, the detecting ability is the same
among all hashing vectors. Hence, if a false event message
is not detected at the first hop, it is not detected until the
end. The second challenge is that the EOC information of
a legitimate event message could be leaked to the attacker.
Therefore, the update mechanism is necessary.
This process and the relationship between the process,

table of codes and EOCs (RT), and table of hashing vec-
tors (VT) are shown in Figs. 4 and 5, respectively. RT and
VT are used to generate hashing vectors in advance and
update hashing vectors, respectively.
Examples of RT and VT are shown in Tables 2 and 3. The

following section describes the detailed process of the
proposed algorithm. It also describes an approach to solving
two issues.
The number of codes assigned to nodes in a grid is

represented by q(q ≥ T), and g represents the number
of grids. A node is given to each of the prepared qg
codes—r1, r2, . . . , rqg. The variable b represents the codes’
bit length. Methods involving local leader election [25], such
as an event’s occurrence, identify the leader node, nw, within
the nodes in a grid, Gw. The leader node, nw, receives
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TABLE 3. Example of table of hashing vectors (VT).

FIGURE 5. A hashing vector’s execution process.

a report from its subordinate nodes when they detect an
event. By adopting the XOR operation of the T codes
selected randomly from the received keys, the leader node
generates EOCs.
Determining whether an EOC is valid is facilitated by the

information each node receives. In the scenario in which
an attacker compromises more than T nodes, the false
event in-network can be detected. Nonetheless, as aforemen-
tioned, the method proposed in this study and all existing
related studies cannot detect false messages when a hacker
compromises a T node in a grid. Nonetheless, location-
based key distribution or the mechanisms used in this study
prevent the establishment in other grids of the message’s
occurrence point.
The codes are used to generate an EOC. In other words,

the EOC is generated by the XOR operation of T codes
assigned to T nodes. The same code cannot be used again, as
the forwarding of the message containing the EOC could be
a compromised node. Therefore, the codes used to generate
the EOC must be updated via a suitable method.

B. PROCESSES
First, each node creates its code (Section IV-B1). This code
is used to generate a one-time authentication code (EOC)
when nodes detect events. Each node stores a hashing vec-
tor (Section IV-B2) created from legitimate set of EOCs in
advance at the sink node. Here, when an event is detected,
several nodes collaboratively generate an event message con-
taining an EOC (Section IV-B3). A forwarding node then
determines whether the event message is legitimate using the
hashing vector stored in the node and the EOC attached to the
event message (Section IV-B4). Finally, the sink determines
if the received message is correct (Section IV-B5). The
details of this process are described in the following.

1) CREATION OF CODES

The variable Gw represents a grid with an ID of w. Each
node ni has a symmetric key ki, which is shared with the
sink. After deployment, node ni generates cord ri based on
the ID of the grid where node ni exists. The variable g
represents the number of grids. Each grid has q codes. One
of these codes is given to each node in the grid.
The grid that nodes are in determines the codes the nodes

can create based on the proposed method. C and (X0,Y0)

denote the grid size and grid’s reference point, respectively.
A reference point can encapsulate an arbitrary point. Grid
Gi can be expressed as follows when (Xxi ,Yyi) is its central
point:

Xxi = X0 + xi · C
Yyi = Y0 + yi · C
(i, j = 0,±1, · · · .). (1)

The nodes are preloaded with the reference point (X0,Y0),
a hash function, h, a shared master secret key, κ , and grid
size, C. A method also used in related studies allows the loca-
tion of each node to be identified following deployment [26].
A noncomplex calculation allows each node to identify its
grid’s central point (Xxi ,Yyi).
The equation below enables the calculation of the code ri

of node ni:

ri = h
(
κ||Xxi ||Yyi ||�(i) mod q

)
. (2)

The rank of ID i among all node IDs in ascending order
in the same grid is conveyed via the variable �(i), and
concatenation is represented by ||.
The node ID is broadcasted by each node ni to one another

in the grid Gw following deployment. The rank of the node
ni’s ID i is ascertained by node ni, which assembles IDs in
ascending order.
Every pair of neighboring nodes shares a unique pairwise

key. The variable ki,j represents the pairwise key of nodes
nj and ni.

2) HASHING VECTOR

Every node uses a hashing vector to generate information
about the EOCs. A Bloom filter is an equivalent concept to
that of a hashing vector [27]. H[A] denotes the denomination
used to represent the hashing vector generated from set A.
Using α and H[A], where the former represents an element,
α is a member of set A that can be ascertained. Nonetheless,
false positives can occur, as α is not a member of A, yet
H[A] states that α is a member of A.

Fig. 5 portrays a hashing vector’s execution process. The
hash function h with a range of 1, . . . ,m is selected following
the assignment of a vector, V, of m bits, all initially set to 0.

The bit at position h(a) in V is set to 1 for every element
a ∈ A where a bit could be set to 1 many times. The bit
position h(α) is checked when a query for α is made. It
is determined that α is not in set A when the value is 0.
Although the following inference could be incorrect, when
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the value is not 0, α is considered to be in the set. If incorrect,
the result is a false positive. An acceptable probability of
producing a false positive can be facilitated by selecting
a suitable parameter, m.
After hashing all n elements of a ∈ A into a hashing

vector, the probability that a particular bit is still 0 is
(1 − 1/m)n. Based on the definition of the natural log-
arithm, we have limm→∞(1 + 1/m)m = e. That is, for
large m, we have (1 + 1/m)m ≈ e. Therefore, (1 − 1/m)n =
((1 + 1/(−m))−m)

−n/m ≈ e−n/m. That is, the follow-
ing equation demonstrates a hashing vector’s false-positive
rate (FPR):

R(n,m) ≈ e−n/m. (3)

The length of the hashing vector’s bits and the number
of elements in a target set are represented by m and n,
respectively. The target FPR is set to FPRt. By solving the
equation of FPRt = e−n/m with regard to m, we have

m =
⌊
− n

ln(FPRt)

⌋
. (4)

Before deployment, hashing vectors are created at the sink
from all possible EOCs that may be generated in the
WSN. The specific EOC preparation is described in the
next subsection. Provide each hashing vector to each node
before deployment. The collective filtering power across
the forwarding can be substantial, even if the number of
false positives is significant. However, indeed, it does not
make sense to have the same hash vector at all nodes.
Therefore, each hashing vector vi at node ni is generated
by a unique seed, si. Further, the hashing vector, vi, is
generated and checked using h(si||α) instead of h(α) as
a hash value of α. EOCs are equivalent to elements in the
proposed method. Pseudorandom number generators are used
to generate si [28].

3) REPORT GENERATION

When an event occurs in grid Gw, {ri,E} embodies the form
an event report takes after every node ni that identifies the
signal and prepares such a report. The description of the
event is denominated by the variable E. A node ni creates
a message described as follows:

Mi = Enc
(
ki,u, ri

)||E. (5)

The encryption of the message, ri, using key ki,u is repre-
sented by the variable Enc(ki,u, ri). The ID of the leader node
of grid Gw and the stream concatenation are represented by u
and ||, respectively. Subsequently, node ni delivers Mi to nu,
the leader node. The leader node extracts and gathers all
Enc(ki,u, ri)||E located in the detecting nodes. T reports are
selected randomly when the leader node collects more than
T reports. The term Mi1 , . . . ,MiT is representative of the T
reports. In addition, the term ri1, . . . , riT is attained after the
reports are decrypted by node nu, which then creates the
following:

Rw = ri1 ⊕ ri2 . . . ⊕ riT . (6)

The XOR operation is denoted by ⊕. The resulting Rw is
the grid’s EOC.
The leader node’s neighbor is denoted by node nv in the

final report to the sink, represented by M = E||Enc(Ku,v,Rw)

and delivered by the leader node.

4) EN-ROUTE FILTERING

When node nj sends the event message M = E||Enc(Ki,j,Rw)

to node ni, the decryption of Enc(Ki,j,Rw) enables node nito
attain Rw. Subsequently, the node uses the hashing vector
to determine whether the EOC Rw is valid. The message is
dropped if the node deems the EOC Rw false. The message
is delivered to the next node, ns, when the node determines
that the EOC Rw might be legitimate.

5) SINK VERIFICATION

Given that all information about EOCs is contained in the
event message delivered to the sink, the sink can validate
the EOCs. A message is considered generated by a hacker
when it fails this validity assessment.

C. CODE UPDATE
The codes used to generate an EOC in a message must be
updated if a legitimate message is delivered to the sink. This
must occur, as there is a chance that the EOC was learned
by a compromised node among one of the forwarding nodes
of the message. Given that false messages can solely be
generated from the grid in which an event occurs by an
attacker cognizant of the EOC, a slight delay in updating
the keys is not considered a significant issue.
To update EOCs’ codes, the sink regulates multiple types

of data.

1) DATA REGULATED AT THE SINK

The sink regulates the two tables presented below.
RT (Table of codes and EOCs): Let RS be the set of all

EOCs that can be generated in the WSN. The variable Ri
represents an element of RS. The codes ri1 , . . . , riT generate
Ri. The ID of the grid apportioned Ri and Ri is linked to
the above-mentioned T codes via RT .
VT (Table of hashing vectors): Before deployment, every

node ni has a hashing vector, vi, assigned to it, where the
sink generates the latter. A random seed, si, is created and
used upon the sink generating the hashing vector, vi. Node
ni is linked to each seed si and hashing vector vi via VT .

2) UPDATING HASHING VECTORS AND CODE
PROCEDURE

When grid Gw delivers a legitimate message to the sink with
the Rw EOC, the sink generates the ID w of the grid appor-
tioned Rw and Rw as the sink learns the T codes (ri1, . . . , riT )
via RT .

The sink generates novel EOC R′
w = r′i1 ⊕ r′i2 ⊕ ...r′iT

and T codes via the use of pseudorandom number generators.
Messages Mj = Enc(kj, r′ij)(j = 1, . . . ,T) are delivered to
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the nodes of grid Gw from the sink. Then, the sink sets R′
w

and r′ij while removing Rw and rij to update RT .
The old hashing vector v should be replaced with a new

hashing vector v′. However, if the sink sends v′ as is,
even if it is encrypted, compromised nodes may decrypt
the information and obtain v′. Therefore, in the proposed
algorithm, only different bits of v and v′ are sent from the
sink. Subsequently, the sink delivers vi ⊕ v′i, comprising dis-
tinct bits of v′ and v to each node. For example, assume that
v = 0100100 and v′ = 0100001. In this case, the data {4, 6}
is sent from the sink to the corresponding node. Equation (7)
represents this process. The subscript “(2)” denotes the value
shown in a binary number, and m signifies the bit length of
a hashing vector.
{
d ∈ [0,m− 1]|((vi ⊕ v′i

) 	 d
)
10...0(2) = 10...0(2)

}
. (7)

The symbol & represents a bitwise AND, and 	 repre-
sents a left arithmetic shift.
Each node that receives the message reverses the specified

bits from 1 to 0 or from 0 to 1.

V. ANALYSIS
A. NUMBER OF HOPS UNTIL THE NODES DETECT
A FALSE MESSAGE
When detecting a false message, the required mean hop
count was evaluated. For example, if the hop count is three,
the third forwarding node has detected the false message.
The probability, p1, of identifying a false message in a node
comprises the first step in the calculation. When no node is
compromised, (1 − FPRt) represents the target probability
of detecting a false message in a node. By suitably altering
a hashing vector’s bit length, an arbitrary value of FPRt can
be attained.
An attacker can acquire the Nc hashing vectors when the

Nc nodes are compromised. Resultantly, elements of RS can
be searched. The variable ml represents the number of ele-
ments in RS. Since q codes are assigned to each grid and T
codes are selected from the q codes for generating an event
message, the number of possible combinations of T codes
per grid is qCT . Moreover, because there are g grids, the
number of possible combinations of T codes of all grids is
represented by

ml = g·qCT . (8)

The bit length of a code or an EOC is b. The number of
possible representations of b bits is 2b. Since the number of
legitimate EOCs is ml (Equation (8)), the number of false
EOCs is 2b −ml. When an attacker compromises Nc nodes,
the attacker can have Nc hashing vectors. The probability that
Nc hashing vectors cannot detect each false EOC as false
is (FPRt)Nc because the false positive rate of each hashing
vector is set to (FPRt). Let mf characterize the number of
false EOCs that the attacker thinks may be legitimate. The
value is represented by

mf = FPRNct
(

2b − ml
)
. (9)

Since there are ml legitimate EOCs and mf false EOCs
that the attacker considers possibly legitimate, the probabil-
ity that the attacker generates a false EOC is represented
by mf/(ml + mf ). Each forwarding node can detect a false
EOC with probability (1−FPRt) if the node receives a false
EOC. Therefore, the expected probability that each forward-
ing node can judge the received EOC is generated by the
attacker is represented by

p1 = mf
ml + mf

× (1 − FPRt). (10)

Let ph′ signify the expected number of hops until the
forwarding nodes identify a false event message and let H
represent the maximum number of hops to the sink. The
probability that the ith node can identify a false event mes-
sage is denoted by (1 − p1)

i−1 · p1 because (i − 1) nodes
do not identify it with probability (1 − p1)

i−1 and the ith
node detects it with probability p1. Therefore, the expected
number of hops is given by

ph
′(H) =

H∑

i=1

i · (1 − p1)
i−1 · p1 = 1 − (1 − p1)

H

p1
. (11)

The variable H represents the maximum number of hops
to the sink.

B. THE MAXIMUM QUANTITY OF TRAFFIC AN
ATTACKER CAN CREATE PER GRID
The variable D represents an upper limit of the occurrence
frequency of events within the same grid. The bit length
of the event information is |E| and the bit length of EOC
is b. When there are D event messages, the amount of the
messages is represented by

Q = (|E| + b) · D. (12)

C. THE QUANTITY OF COMMUNICATION TRAFFIC
RESULTING FROM LEGITIMATE EVENT MESSAGES
A message related to updating codes from the sink must
also be delivered by the nodes to the sink alongside an
event message based on the proposed method. When nodes
in a grid detect an event, up to q nodes send the event
information E and its code to the leader node. Then the
leader node generates an event message, which is forwarded
to the sink. When the number of hops is h, the total amount
for generating and forwarding the event message to the sink
is given by

LT = (|E| + b)(q+ h). (13)

The variable � represents the expected number of bits in
a hashing vector that must be altered upon the sink altering
one element of RS. The variables m and n denote the hashing
vectors’ bit length and the number of elements, respectively.
Let S signify a set with (n−1) elements, let Sα characterize

S∪{α}, let Sβ represent S∪{β}, and let Sαβ denote S∪{α, β}.
Here, α /∈ S and β /∈ S. Let H[S] symbolize a hashing vector
generated from set S.
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Assume that α represents the deleting element, and β

embodies the new element. We should consider the following
five cases.
1. H[S] = H[Sα] = H[Sβ ]
2. H[S] = H[Sα] and H[S] �= H[Sβ ]
3. H[S] �= H[Sα] and H[S] = H[Sβ ]
4. H[S] �= H[Sα], H[S] �= H[Sβ ], and H[Sα] = H[Sβ ]
5. H[S] �= H[Sα], H[S] �= H[Sβ ], and H[Sα] �= H[Sβ ]
The number of bits in the hashing vector that must be

changed when the sink changes one element of the RS is
different in each case. The number of bits that must be
changed is 0 in case 1 because deleting α and adding β do
not affect the hashing vector. Similarly, the number of bits
that must be varied is 1, 1, 0, and 2, in the cases 2, 3, 4,
and 5, respectively.
Please recall thatR(n,m) signifies the false positive rate of

a hashing vector with a bit length m and number of elements
n (Equation (3)). Hence, the probability that H[S] = H[Sα] is
represented by R(n− 1,m) because this situation character-
izes the false positive of H[S] against α /∈ S. Consequently,
the probability of each case occurring is expressed as follows.
1. R(n− 1,m) R(n− 1,m)

2. R(n− 1,m) (1 − R(n− 1,m))

3. (1 − R(n− 1,m)) R(n− 1,m)

4. (1 − R(n− 1,m)) (1/m)

5. (1 − R(n− 1,m)) (1 − R(n− 1,m) − 1
m )

The item (1/m) in case 4 represents that the probability
of h(α) = h(β). Recall that the bit length of the output of
the hash function h is m.

Consequently, the following expression arises:

�(n,m) = R(n− 1,m) (1 − R(n− 1,m))

+ (1 − R(n− 1,m))

(
R(n− 1,m)

+ 2 ∗
(

1 − R(n− 1,m) − 1

m

))

= e
1−n
m

(
1 − e

1−n
m

)
+
e

1−2n
m

(
e
n
m (−2 + m) + e

1
mm

)

m

= 2 e
1−n
m (m− 1)

m
. (14)

The variable H represents the mean number of hops a node
makes to the sink. Equation (4) is used to calculate a hashing
vector’s bit length, m. The term log2m signifies the number
of bits required to embody an arbitrary bit position of the
hashing vector. The terms N and log2N represent the num-
bers of sensor nodes and bits required to embody a node,
respectively. Consequently, the following expression demon-
strates communication traffic quantity for updating hashing
vectors and codes:

ET = (
N · �(ml,m)log2 m + bT

) · (log2 N) · H. (15)

D. AMOUNT OF CONSUMED ENERGY
During the reception, transmission, and power down, the
leaked current was 16, 18, and 0.01 mA, respectively,

when we used mica2 Berkeley motes as sensor nodes [29].
Although these sensor nodes are not the newest ones, they
are still the subject of research [30], [31], [32] because of
their superior performance. We presume a voltage of 3 V
and a bit rate of 19.2 Kbps are standard figures for the two
units of measurement.
LT + ET represents the number of bits for sending an

event message and updating EOCs. Since the bit rate is
19.2 kbps, the required time of treating (LT + ET) bits is
(LT + ET)/(19.2 · 1000).

Additionally, because sending and receiving a message
requires (16+18) mA and the voltage is 3V, the required
energy for sending an event message and updating EOCs
is given by 3(LT + ET)/(19.2 · 1000). When there are v
event messages, the consumed energy is denoted by 3(LT+
ET)/(19.2 · 1000)v.

Each sensor node consumes energy even if there are no
events. There are N sensor nodes and each sensor node
requires 0.01 mA. Therefore, the consumed energy in the
WSN per month is represented by N · 3 · 0.01 · 3600 · 24 · 30,
where 3600·24·30 signifies the number of seconds per month.
In total, the following expression describes the monthly

energy consumption of all sensor nodes when there are N
sensor nodes and events occur v times per month:

EI(v) = 3(LT + ET)(18 + 16)

19.2 · 1000
v

+ N · 3 · 0.01 · 3600 · 24 · 30 [mJ].

VI. EVALUATION
A. PARAMETER SELECTION
In our experiments, the default parameter values were set
as follows: D = 1, H = 50, T = 5, |E| = 64, g = 1, 000,
q = 10, and N = 10, 000. These parameter settings were
determined as follows.
We assume that the target events do not occur frequently;

thus, the default value for the number of events per month
was D = 1, and the value of D varied from 1 to 10 in our
experiments.
Here, H is the average number of hops from a node to

the sink. This value varies depending on the configuration of
the WSN. In the literature [5], the maximum and minimum
numbers of hops were set to 100 and 10, respectively, i.e.,
the average number of hops was set to approximately 50.
In addition, the number of hops was set to 50 in a previous
study [7]. Thus, in reference to these studies, H was set to
50 in our experiments. The number of hops to the sink does
not have strong effect on the evaluation because all methods
(other than SEF), including the proposed method, detect the
false message within one or two hops.
In this context, T or more nodes must detect the same

phenomenon. Thus, if the value of T is too large, the ability
to detect legitimate events is reduced. In contrast, if the
value of T is too small, the success rate of attacks will
increase. This tradeoff must be considered. Many previous
papers [5], [7], [12] assumed a default value of T = 5,
and we followed this parameter setting in reference to these
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FIGURE 6. Detection rate per node of the proposed method with varying Nc and
FPRt .

previous studies. Note that the value of T varied from 1–10 in
our experiments.
The number of bits required to represent the contents of

an event is highly dependent on the application. In a WSN
without security mechanisms, approximately 40 bytes are
required to represent a detected event [14], [15]. Based on
this value and assuming that additional information, e.g.,
detailed sensing data, may be added, the value of |E| was
set to 64 bytes in our experiments.
The number of grids g can be determined by the system

administrator to control the detection rate of false messages
and the amount of traffic. We performed preliminary exper-
iments and set g to values that indicate good performance
(e.g., g = 1,000). In our experiments, the value of g was
varied from 10–1,000. Note that the value of q varies
automatically with the value of g (q = N/g).

Here, N is the number of nodes in a WSN. In the
literature [7], the default N value was set to 10,000. We fol-
lowed this setting and set N=10,000 as the default value, and
the value of N varied from 1,000–10,000 in our experiments.

B. EVALUATION RESULTS
Initially, the FPRt and the number of compromised nodes,
Nc, determine how we perform the experiments on the
detection rate per node. Fig. 6 illustrates the findings. We
chose compromised nodes randomly from the entire network.
This evaluation setting is common for evaluating detection
methods’ performance [5], [7], [8], [12].
The detection rate is almost the same as the FPRt value.

However, when Nc is around 100 and FPRt is set to 0.5,
the detection rate is slightly lower than the FPRt value.
However, because it is difficult to imagine a situation in
which more than 100 nodes are compromised without the
WSN administrator being aware of it, FPRt can be set to 0.5.

The detection rate is lower around Nc = 100 and
FRPt = 0.5 because the attacker can estimate legitimate
EOCs by compromising many sensor nodes. Consequently,
the attacker can check the obtained hashing vectors whether
or not randomly generated codes are legitimate. When Nc
is large, the attacker can check a greater number of hashing

FIGURE 7. Detection rate per node of the proposed method with varying T and g.

FIGURE 8. Number of hops until false messages are detected by the nodes with
varying FPRt .

vectors. When FRPt is small, the ability to judge each hash-
ing vector is large. Therefore, when Nc is large and FRPt is
small, the probability that an attacker can generate legitimate
EOCs becomes large.
Fig. 7 shows the detection rate per node when changing

the values of T and g. We set N = 10, 000. The detection
rate is very low when g and T are around 10. The symbol g
represents the number of grids, so each grid has 1,000 nodes
in this case. If each grid has many sensor nodes and T is
large, the number of elements in RS is huge according to
Equation (8). As a result, the detection rate becomes low,
according to Equation (10). Therefore, this parameter setting
should not be recommended. We recommend that the number
of sensor nodes of each grid is from 10 to 20. That is, if N
is 10, 000, g is recommended to be from 500 to 1,000.
Fig. 8 demonstrates the projected number of hops until

the detection of a false message. The higher the value of
FPRt, the higher the detection rate and smaller the number
of hops required before detection; when FPRt is 0.5, the
average number of hops is 2, indicating that a sufficiently
high detection rate is achieved.
We compared SEF [5], MobiSink [7], CD-PEFS [8], and

EMAS [12] to the proposed method. Fig. 9 shows the
results. When Nc > T , we found the security mech-
anism of SEF was inoperative, as the number of hops
was 50. Conversely, owing to the considerable authentication
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FIGURE 9. Number of hops until false messages are detected by the nodes with
varying Nc.

information provided to each message, CD-PEFS and EMAS
needed a maximum of one hop to detect false messages. The
number of hops until nodes can detect false messages of SEF
is high because the security mechanism of SEF breaks down
when more than T nodes are compromised. In contrast, other
methods, including the proposed method, can detect false
messages even when more than T nodes are compromised.

Since the security mechanism of CD-PEFS, EMAS, and
MobiSink are robust, the number of hops until nodes can
detect false messages is only one hop. Furthermore, because
the detection rate of the proposed rate is 0.5 (this value is
equal to 1-FPRt), the number of hops of the proposed method
is two on average. Although the proposed method increases
the number of hops required to detect a false message by
one hop, the experiments described later show that it reduces
the amount of traffic an attacker can generate.
Then, when no node is compromised, we calculated the

mean energy consumption per node. Fig. 10 illustrates the
findings. The methods used in related studies demonstrate
that the proposed method requires more energy. Nonetheless,
even when 10 events occurred monthly, we only found
a marginal difference in the increase rate, from 77.8 to 78.3.
In this experiment, we assume there are no compromises.
The result represents the amount of traffic required to run
the WSN during normal operation. Although the amount of
traffic per event message is the smallest in the proposed
method, the proposed method requires additional traffic for
updating EOCs and hashing vectors. Despite these differ-
ences in the proposed methods, there is little difference in
the amount of energy consumed by the WSN as a whole
for all methods due to the relatively large amount of energy
consumed by the nodes during normal operation.
Finally, we analyzed the proposed method, CD-PEFS, and

SEF to ascertain the maximum traffic quantity a hacker could
create per grid. Fig. 11 presents the findings. Given that T
MACS can be appended to the message in CD-PEFS and
SEF, an attacker could generate long messages, producing
substantially more traffic than with the proposed method. By
contrast, a lightweight authentication mechanism was per-
formed via the proposed method, yielding minimal traffic

FIGURE 10. Energy consumption when no node is compromised.

FIGURE 11. Maximum quantity of traffic an attacker can produce per second within
a grid (varying D).

production by compromised nodes. In existing studies, each
event message requires T MACs or T key IDs for the mes-
sage authentication; hence, the amount of traffic becomes
very large. On the other hand, our method requires only one
EOC for authentication. This mechanism can greatly reduce
false message traffic. As a result, the maximum amount of
traffic an attacker receives for the proposed method is the
lowest compared to the existing methods.
Fig. 9 reflects the detection rate, which suggests

the performance of CD-PEFS is superior. Conversely,
Fig. 11 reflects the amount of traffic; thus, CD-PEFS
performs poorly.
We have additional experiments with varying T and N.

The results are shown in Figs. 12 and 13, respectively. In
all existing methods, the traffic increases as T increases.
Conversely, the proposed method’s traffic is not affected by
its value because T codes are mapped to a single EOC. The
bit length of this EOC is not affected by the value of T . On
the other hand, the value of N has no significant effect on any
of the methods. Some methods require node ID information,
but the bit length of the node ID only increases on a log
scale compared to an increase in the number of nodes.
From these results, in all parameter settings, the amount

of traffic an attacker can generate of the proposed method
is the lowest compared to other methods.

VII. DISCUSSION
A symmetric key encryption scheme encrypts all messages.
This encryption process is common in all existing studies.
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FIGURE 12. Maximum quantity of traffic an attacker can produce per second within
a grid (varying T ).

FIGURE 13. Maximum quantity of traffic an attacker can produce per second within
a grid (varying N).

The computation cost of a symmetric key encryption scheme
is much lower than a public key cryptography scheme [33].
Further, the calculation of a hash value can be performed
with much less computation than that required for encryption
using a symmetric key encryption scheme [34]. Regarding
the operation of XOR and checking a specified bit of a hash-
ing vector, the computation cost can be negligible because
these operations are simple bit operations. Therefore, the
proposed method’s computation cost is minimal for each
sensor node.
The sink needs to generate a seed and its code for each

sensor node. Then, it generates EOCs by an XOR operation.
Moreover, it needs to generate a hashing vector for each
sensor node. The number of EOCs is g qCT ; therefore, if
the values of g or q are large, the sink needs to generate
a lot of EOCs. However, because the generation of EOC
requires only a simple XOR operation, this process does not
take a long time.
The amount of traffic is evaluated in Figs. 10 and 11,

where there are no malicious nodes and a malicious node
generates a lot of false messages, respectively. From these
figures, the proposed method is robust against false message
attacks by malicious nodes, although the amount of traffic
during no malicious nodes is almost identical to that of the
existing method.

The proposed method assumes that the occurrence
frequency of legitimate events is not high. The communica-
tion overhead becomes non-negligible if many legitimate
events occur because the codes of several sensor nodes
should be updated each time a legitimate message is for-
warded to the sink. Notably, an attacker wants to generate
network congestion to prevent a legitimate event message
from reaching the sink. If there are many legitimate events,
it is challenging for an attacker to attack all legitimate events
in the first place. The assumption that the situation in which
such an attack might occur is one in which the number of
correct event messages is small is realistic.
The maximum number of messages an attacker can pro-

duce equals the maximum number of messages a legitimate
node receives. Additionally, the maximum number of mes-
sages a node can produce can be determined by the WSN
manager according to the application of the WSN. For exam-
ple, if the application is crime detection, an event does not
occur so frequently. Therefore, even if there is an upper limit
to the number of messages that can be generated, normal
node operation is not restricted.

VIII. CONCLUSION
In this paper, we proposed an algorithm that can detect
false messages in a large WSN with a small number
of hops. Unlike existing studies, only a single, one-time
authentication code is assigned to each event message for
authentication in the proposed method, significantly reducing
the amount of message traffic compared to existing meth-
ods. Since existing research requires T MACs, T key IDs,
or other information for authentication, an attacker can gen-
erate much traffic just by generating one false message. On
the other hand, the existing methods can detect a false mes-
sage in one hop, but it takes two hops to detect a false
message with the default setting of the proposed method.
However, the proposed method can prevent network conges-
tion attacks by significantly reducing the amount of traffic.
Experiments have shown that the proposed method can
reduce traffic volume by more than 60%. In a future study,
we will deploy several hundred sensor nodes and perform
demonstration tests.
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