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ABSTRACT With the development of IoT technology, personal data are being collected in many places.
These data can be used to create new services, but consideration must be given to the individual’s privacy.
We can safely collect personal data while adding noise by applying differential privacy. However, because
such data are very noisy, the accuracy of machine learning trained by the data greatly decreased. In this
study, our objective is to build a highly accurate machine learning model using these data. We focus on
the decision tree machine learning algorithm, and, instead of applying it as is, we use a preprocessing
technique wherein pseudodata are generated using a copula while removing the effect of noise added by
differential privacy. In detail, the proposed novel protocol consists of three steps: generating a covariance
matrix from the differentially private numerical data, generating a discrete cumulative distribution function
from differentially private numerical data, and generating copula-based numerical samples. Simulation
results using synthetic and real datasets verify the utility of the proposed method not only for the decision
tree algorithm but also for other machine learning algorithms such as deep neural networks. This method
will help create machine learning models, such as recommendation systems, using differential privacy data.
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INDEX TERMS Copula, data mining, decision trees, local differential privacy, machine learning, privacy-
preserving data collection.

I. INTRODUCTION16

Personal data can be collected to create machine learning17

models that can be employed by law enforcement agencies to18

profile suspects, by companies to predict performance once19

a job seeker is hired, and so on [1], [2]. However, we need20

to consider privacy and fairness when creating such machine21

learning models [3], [4].22

In this study, we assume a scenario wherein a relatively23

small amount of data (e.g., data of less than 10,000 peo-24

ple) that has been collected under the application of local25

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei-Yen Hsu .

differential privacy [5], the de facto standard privacy 26

metric [6], [7] (Fig. 1), already exists. In Fig.1, each person 27

sends their personal attribute data, such as age, location, 28

and medical data, to a model generator’s server. All data is 29

protected using local differential privacy techniques. There- 30

fore, the model generator cannot know the true value of each 31

data attribute. From the stored differentially private data, the 32

model generator trains a machine learning model. 33

Local differential privacy is a specialized concept of dif- 34

ferential privacy, especially for data collection from each 35

person. Many companies, such as Apple and Google, have 36

used local differential privacy, which can provide a strict pri- 37

vacy guarantee against adversaries with arbitrary background 38
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knowledge [8]. Laplace noise is added to numerical data [9]39

as a general method to realize local differential privacy. The40

amount of noise is controlled by the privacy budget ε. In the41

model of local differential privacy, each person sends their42

obfuscated data to the data collector. The data collector can43

only see the obfuscated data and cannot know the true value44

for each individual. Laplace noise is added to numerical45

data [9] as a general method for realizing local differential46

privacy.47

We focus on creating a decision tree, which is awell-known48

machine learning algorithm. Although we are in the era49

of deep learning, decision trees are still widely used and50

studied [10], [11], [12], [13], [14]. In terms of accuracy,51

decision trees achieve inferior results compared to those of52

deep learning; however, there are many advantages to using53

decision trees, including high human interpretability and non-54

parametric design [15], [16], [17].55

Recently, differentially private decision tree generation56

algorithms have been widely proposed [17], [18], [19], [20].57

Existing studies target differentially private decision tree58

generation from original (non-privatized) data. In this study,59

we aim to generate decision trees not from the original data60

but from locally stored differentially private data.61

FIGURE 1. Scenario of this study: A model generator, which stores
differentially private data, generates a high-quality machine learning
model using the data.

In this study, we use a copula employed in economic and62

financial applications [21]. However, general copula algo-63

rithms do not consider differentially private data. Although64

differential privacy can protect each person’s privacy, it adds65

extensive noise to the data. Therefore, the accuracy of the66

general copula model created from differentially private data67

becomes low, as the experimental results of Copula+DT in68

Section VI show. We propose a novel preprocessing tech-69

nique wherein a synthetic dataset is generated using a copula70

while removing the effect of noise added by differential71

privacy. In detail, the proposed novel protocol consists of72

three steps: generating a covariance matrix from the dif-73

ferentially private numerical data, generating a cumulative74

distribution function of a discrete probability distribution75

from differentially private numerical data, and generating76

copula-based numerical samples from the covariance matrix77

and the discrete cumulative distribution function. The gen-78

erated dataset is used to train machine-learning models.79

The results of experiments conducted on synthetic and real80

datasets demonstrate that our method significantly increases81

model accuracy. We focus on the decision tree algorithm82

in this study; however, we also conducted simulations for 83

deep neural network (DNN), k-nearest neighbors (kNN), and 84

support vector machine (SVM) using our proposed method. 85

The results indicate that it increases the model accuracy of 86

DNN and kNN with relatively few attributes but does not do 87

so for SVM. 88

Table 1 presents the main notations used in this paper. 89

TABLE 1. Notations.

Our contributions in this paper are summarized as follows. 90

First, we introduced the relationship between the variance and 91

the covariance of differentially private numerical data and 92

those of original data. Second, we developed an algorithm 93

to generate a copula model based on the estimated variance 94

and covariance. Third, we developed an algorithm to convert 95

the discrete cumulative distribution function into a contin- 96

uous cumulative distribution function in the copula space 97

to generate a high-quality machine learning model. Finally, 98

we evaluated the performance of the proposed method using 99

synthetic and real datasets. 100

The remainder of this paper is organized as follows. The 101

assumptions of this study are described in Section II. Dif- 102

ferential privacy, decision trees, and related research are 103

discussed in Section III. Section IV analyzes the effect of 104

differential privacy on decision trees. The proposed solu- 105

tion is introduced in Section V. The evaluation conducted 106

is presented in Section VI, and the evaluation results are 107

discussed in Section VII. Finally, we conclude this paper 108

in Section VIII. 109

II. ASSUMPTION 110

A. TARGET SCENARIO 111

We call the organization generating the machine learn- 112

ing model the model generator. Many techniques can be 113

employed for differentially private machine learning model 114

generation. These techniques can be divided into three cate- 115

gories. In the first category, the model generator is assumed 116

to store the original (i.e., non-privatized) personal data. The 117

model generator is a trusted entity, and the generated models 118

are shared with untrusted third parties. Many studies on dif- 119

ferentially private decision trees fall into this category [17], 120

[18], [19], [20]. We assume that the model generator is a 121

semi-honest entity in this study; therefore, it cannot have 122

direct access to the original personal data. The second and 123

third categories also make this assumption. The difference 124

between the second and third categories hinges on whether 125
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or not the model generator has indirect access to the original126

personal data when generating machine learning models.127

The second category is technology that does not access the128

original personal data, but instead uses the stored differential129

private data. Our study takes this assumption as its basis.130

There are several possible reasons why the model generator131

would store such data.132

• The organization stores the data now for future use: Sev-133

eral organizations collect and store data while protecting134

the privacy for future use [22], [23], [24]. When they135

decide to generate machine learning models, they use136

the stored data.137

• The organization stores the data for efficient machine138

learningmodel generation: Training data are very impor-139

tant for model debugging and analyzing the performance140

of trained model [25], [26]. Even if hyperparameters141

and a model structure are determined, training data are142

necessary to ensure efficient model generation.143

• The organization stores the data for fairness auditing:144

The problem of the biased output of machine learning145

models for sensitive personal attributes such as race and146

gender has been widely recognized as a fairness problem147

in machine learning. An analysis of training data is148

required [27], [28], [29] to audit fairness or generate fair149

machine learning models. Moreover, what constitutes a150

bias depends on the attitudes of people and, therefore,151

it may change in the future. Therefore, it is necessary to152

store training data to cope with future changes.153

In the third category, it is assumed that original personal154

data can be accessed indirectly when machine learning mod-155

els are generated. In this category, the model generator trains156

machine learning models by collaborating with many per-157

sonal data holders. Each personal data holder sends the infor-158

mation to train the machine learning models while protecting159

the privacy of their personal data. This approach has sev-160

eral merits; however, the model generator needs to obtain161

the information necessary to update the parameters of the162

machine learning model from other organizations that store163

personal data when the model generator trains machine learn-164

ing models; it cannot ensure future access to data. Federated165

learning techniques fall into this category; there are many166

federated learning techniques for deep neural networks, and167

there are few techniques for decision trees. Although such168

techniques have been studied widely, we focus on the second169

category in this research for the reasons described above.170

B. TARGET MACHINE LEARNING MODEL171

In the past decade, deep neural networks have been exten-172

sively studied. However, it is difficult to understand the rea-173

son for the output of deep neural networks. Although there are174

several techniques for understanding the black box of deep175

neural networks, many issues still need to be resolved [30].176

In contrast, the decision tree algorithm, which is one of the177

most popular machine learning algorithms, has high human178

interpretability. The main drawbacks of this algorithm are its179

tendency to overfit the data and its instability when small180

changes occur in the data; however, they can be minimized by 181

limiting the depth of the tree, pruning unreliable leaf nodes, 182

building ensembles instead of a single tree, etc. [17]. 183

Although our proposed method can be applied to any 184

machine learning algorithm, it is most effective for the deci- 185

sion tree algorithm. This is because all differential privacy 186

data have a large noise, and decision trees overfit such noises. 187

However, we show the results of applying the proposed 188

method toDNN, kNN, and SVM in SectionVI to demonstrate 189

the adaptability of the proposed method to other machine 190

learning algorithms. 191

C. TARGET DATA TYPE 192

We focus on numerical data in this paper because numerical 193

data can be easily converted into categorical data; that is, 194

numerical data are more useful than categorical data. For 195

time series data, the proposed method can be implemented 196

at each point in time. We can treat image data by applying 197

the proposed method to each pixel of each image. However, 198

in that case, its utility would significantly decrease because 199

one image is composed of numerous pixels. Applying and 200

evaluating other data types is a future task. 201

III. RELATED WORK 202

A. DIFFERENTIAL PRIVACY 203

Differential privacy is considered the most important pri- 204

vacy metric [31]. In machine learning algorithms such as 205

deep neural networks and decision trees, differential privacy 206

has been studied extensively in the past decade [9], [17]. 207

Differential privacy is used for the central model, i.e., the 208

anonymizer holds all original data (the first category was 209

introduced in Section II). In contrast, local differential privacy 210

assumes a local model, i.e., each person privatizes their values 211

locally. In this paper, ‘‘differential privacy’’ refers to ‘‘local 212

differential privacy.’’ 213

Let X , Y , and M represent a domain of personal data, set 214

of privatized data, and a privacy mechanism that takes x ∈ X 215

and outputs y ∈ Y , respectively. 216

Definition 1 (ε-Local Differential Privacy): Let ε > 0.M 217

satisfies ε-local differential privacy if, for every x, x ′ ∈ X and 218

y ∈ Y , 219

Pr(M (x) = y) ≤ eεPr(M (x ′) = y). (1) 220

Many differential privacy methods use the Laplace mech- 221

anism for numerical attributes [9]. Here, X represents numer- 222

ical values. Let 1 represent the difference between the max- 223

imum and minimum values of X . The Laplace mechanism 224

adds noise drawn from the Laplace distribution with a mean 225

of zero and scale 1/ε. 226

Much of thework on local differential privacy, such as [32], 227

[33], [34], is primarily aimed at generating histograms of 228

attribute values. If the generated histogram can achieve a 229

sufficiently high accuracy, then it can predict the output value 230

from the input value as well as the machine learning model. 231

In Section VI, we compare the proposed method with the 232

state-of-the-art methods [32]. 233
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B. GENERATING DIFFERENTIALLY PRIVATE MACHINE234

LEARNING MODELS FROM ORIGINAL DATA235

Many researchers assume that the model generator has orig-236

inal (non-privatized) data, and they propose algorithms that237

generate differentially private machine learning models using238

these original data [35], [36], [37], [38], [39], [40], [41].239

In this study, we assume that the model generator is not an240

honest entity, and that other methods are required.241

C. GENERATING MACHINE LEARNING MODELS AFTER242

COLLECTION OF LOCAL DIFFERENTIALLY PRIVATE DATA243

The proposed method is categorized into this approach. The244

generation of a machine learning model after collecting local245

differentially private data is considered a baseline approach in246

existing studies [42]. This is because it is difficult to increase247

model accuracy after the collection of local differentially248

private data. They generate deep neural networkmodels using249

a set of local differentially private data; that is, they do not250

attempt to propose better algorithms. There are scenarios251

wherein the model generator has a set of local differentially252

private data but cannot access the original data directly or253

indirectly. Therefore, it is important to propose an algorithm254

that generates a high-accuracy machine learning model using255

a set of locally differentially private data that are already256

stored.257

D. GENERATING MACHINE LEARNING MODELS WITH258

INDIRECT ACCESS TO ORIGINAL DATA259

In this decade, federated learning techniques have been260

widely studied [43], [44], [45], especially for deep neural261

networks. Distributed data owners exist in federated learning,262

and the model generator generates a machine learning model263

without direct access to the data. The privacy of all data264

can be protected to some extent because the model gener-265

ator does not directly access the personal data. Each data266

owner does not send the original data but sends the model267

gradient information or some other information to the model268

generator. However, recent studies have argued that there is269

a risk of privacy leakage in the gradient information of the270

model [46]. Hence, differentially private federated learning271

algorithms have been proposed [47], [48], [49], [50], [51],272

[52], [53]. These techniques can achieve high utility and273

privacy simultaneously.274

In recent years, the shuffle model for differential privacy275

has attracted considerable attention [54]. The shuffle model276

can reduce noise added by local differential privacy; we277

should assume that a perfectly secure primitive exists [55].278

Moreover, the model generator cannot store local differen-279

tially private data.280

E. DIFFERENTIALLY PRIVATE SYNTHETIC DATA281

GENERATION282

There are many methods for generating a differentially pri-283

vate dataset from original (non-privatized) data samples [56],284

[57], [58], [59]. These methods assume that the server has285

original data samples, and the goal is to generate and share a 286

synthetic dataset that is similar to the data samples. In con- 287

trast, we assume that the server does not have original data 288

samples, and we aim to generate a machine learning model 289

from differentially private data samples. 290

We summarize the various perspectives of each type of 291

generated machine-learning model with differential privacy 292

and differentially private synthetic data generation in Table 2. 293

Our target is the second category, where the model generator 294

does not have original data but owns differentially private 295

data. 296

F. COPULA 297

A covariance matrix 6 of all attributes and a cumulative dis- 298

tribution function Fj of each attribute Qj are used to generate 299

a copula model. 300

Samples based on a normal distribution with covariance 301

matrix 6 are generated to generate random samples from 302

the copula model. Let si,j represent the jth attribute value of 303

person i, and let the set of samples be {s1, . . . , sn}, where 304

si = {si,1, . . . , si,g}, n represents the number of data samples 305

and g represents the number of attributes. 306

Then, we divide each value si,j of the samples by the 307

standard deviation of each attribute σj. That is, for all i, j, 308

si,j← si,j/σj. (2) 309

The values of the cumulative distribution function of a 310

standard normal distribution for each value of the samples 311

were calculated; 312

ti,j =
1
2

[
1+ erf

(
si,j
√
2

)]
. (3) 313

Then, we obtain the corresponding value of each attribute 314

from ti,j. More specifically, for all i, j, we calculate 315

ui,j = F−1j (ti,j) (4) 316

where F−1j is an inverse function of Fj. 317

The resulting ui = {ui,1, . . . , ui,g} is a generated sample. 318

Rocher et al. [60] proposed amethod to predict the number 319

of people with a certain combination of attribute values in 320

a population from a small sample using copula. They use 321

mutual information to compute the copula; however, they do 322

not use differential privacy or other privacy measures, i.e., 323

they assume that they have original (non-privatized) data. 324

Moreover, they did not predict the value of an attribute. 325

Copula-based data synthesis has been studied to generate 326

perturbed data while preserving the surrounding distribution 327

of the data, which can be used to train machine learning 328

models [61], [62], [63]. However, they do not consider differ- 329

entially private data. Recent studies generate Copula models 330

based on differentially private data [64], [65]. However, they 331

do not target numerical data. Moreover, their aims are not to 332

train machine learning models, but to re-identify individuals 333

from incomplete datasets and generate histograms. 334
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TABLE 2. Various perspectives of related work.

IV. ANALYSIS OF DECISION TREE WITH LOCAL335

DIFFERENTIALLY PRIVATE DATA336

A decision tree is a method for analyzing data using a337

tree structure. Each internal node represents a rule for data338

splitting.339

There are several algorithms for generating decision trees,340

such as classification and regression trees (CART) [66], iter-341

ative dichotomiser 3 (ID3) [67], and C4.5 [68].342

For regression decision tree algorithms, the mean squared343

error (MSE) is used to find the optimal splitting point of each344

attribute. The goal is to find the attribute and its splitting point345

that reduces the weighted average of the MSE of the child346

nodes to its lowest value. The MSE of node Xi is calculated347

as348

MSEi =
∑
j

(Xi,j − Xi)2

ki
(5)349

where Xi,j represents the jth value at Xi, Xi represents the350

mean value of node Xi, and ki represents the number of values351

of node Xi. The weighted average of the MSE of two child352

nodes Xi and Xi′ is calculated as353

Weighted average of MSE =
kiMSEi
ki + ki′

+
ki′MSEi′

ki + ki′
. (6)354

It is difficult for the decision tree algorithm to split the tree355

properly when Laplace noise is added to each data sample356

because the MSE cannot be calculated correctly because357

of the noise. Figs. 2a–2c show an example where the split358

does not work. Here, a Boston dataset [69], [70] was used.359

This dataset comprises 13 feature attributes, e.g., per capita360

crime rate by town, and an objective attribute (median value361

of owner-occupied homes). Fig. 2a depicts the relationship362

between the split point of the per capita crime rate by town363

and the corresponding weighted average of the MSE. It is364

in the shape of a convex downward, and the weighted aver-365

age of the MSE is minimized when the split point is set366

to seven. Figs. 2b and 2c depict cases where each data367

sample is collected under differential privacy. We set ε to368

five. In Fig. 2b, the weighted average of the MSE is mini-369

mized when the split point is set to 37, and in Fig. 2c, the370

weighted average of the MSE is minimized when the split371

point is set to 59. Each run yields completely different results372

because the amount of noise is stochastic under differential373

privacy, as shown in these figures. Further, regardless of374

the split point, the overall value of the weighted average375

of the MSE is considerably larger than that of the original 376

value in Fig. 2a. Thus, it becomes very difficult to determine 377

the correct split point when the noise of differential privacy 378

is added to all data samples. This leads to difficulties in 379

generating an accurate decision tree model under differential 380

privacy. 381

On the other hand, Figs. 2d and 2e shows the results for 382

the pseudo data generated by the proposed method. Because 383

our proposed method generates pseudo data that preserve the 384

statistical trend of each attribute, the shapes in Figs. 2d and 2e 385

are similar to the original shape in Fig. 2a. The splitting 386

points are eight and three, respectively, which are close to the 387

optimal splitting point of five. 388

Moreover, the correlation information of attributes is 389

destroyed in the differentially private data. Therefore, when 390

creating a decision tree from differentially private data, 391

the deeper the node is, the more significant the effect 392

of the error becomes. In contrast, the pseudo dataset based on 393

the proposed method reconstructs the correlation information 394

of attributes. Therefore, even when the nodes are deeper, 395

the deterioration of the accuracy of the decision tree can be 396

suppressed. 397

V. PROPOSED METHOD 398

Let L(x;µ, s) represent the Laplace probability density func- 399

tion withmeanµ, scale s, and a random variable x ∈ X .When 400

the mean µ is zero, we use L(x; s). 401

A. OUTLINE 402

Copula-based data synthesis has been researched to produce 403

perturbed data and incorporate rich statistical information in 404

the perturbed data. The proposed protocol is developed in 405

three steps: 1) generate a covariance matrix from the differ- 406

entially private data (Section V-B), 2) generate a cumulative 407

distribution function (Section V-C), and 3) generate copula 408

samples (Section V-D). The generated copula samples are 409

used to train the machine learning model. The algorithms 410

used in all the steps were developed in this study. Overview 411

of the proposed method is shown in Fig. 3. 412

In the first step, we introduce the relationship between the 413

variance and the covariance of differentially private data and 414

those of original data. The model generator cannot access 415

the original data; however, the proposed method can estimate 416

the variance and the covariance of the original data from the 417

differentially private data. 418
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FIGURE 2. Relationship between split point and the weighted average of the mean squared error (MSE) when generating decision trees.

FIGURE 3. Overview of the proposed method.

In the second step, the cumulative distribution function is419

estimated. There aremanymethods for estimating cumulative420

distribution functions from categorical differentially private421

data (e.g., [8], [32], [71], [72]). In general, to treat continuous422

values, they first discretize each value into categories [33].423

Therefore, some of the continuous value information is lost424

from the beginning. Our proposed method treats continuous425

values as is and derives the cumulative distribution func-426

tion based precisely on the probability distribution of the427

Laplace distribution owing to differential privacy. Naturally,428

the random variable of the estimated cumulative distribution429

function is defined as a discrete random variable. However,430

the accuracy of the estimated cumulative distribution function431

is better when treating the data as discrete values from the432

beginning.433

In the final step, copula samples are generated using the434

results of the first and second steps. To obtain precise sam-435

ples, our proposed method converts the discrete cumulative436

distribution function into a continuous cumulative distribu-437

tion function in the copula space.438

B. GENERATION OF NOISE-MITIGATED COVARIANCE439

MATRIX FROM DIFFERENTIALLY PRIVATE DATA440

From the observation of differentially private values, the441

variance and covariance of the original values need to442

be calculated. Without loss of generality, the ranges of all 443

attribute values are considered to be [0, 1]. In this case, the 444

Laplace noise is drawn from L(x; 1/ε) if each attribute needs 445

to be protected with ε-differential privacy. 446

Let Xi denote the random variable of the ith attribute of 447

personal data, Zi denote the random variable with a Laplace 448

distribution L(x; 1/εi), and X̂i denote the summation of Xi 449

and Zi, i.e., 450

X̂i = Xi + Zi. (7) 451

Let E[·] denote the expected value of a random variable ·. 452

From the property of the linearity of expectation, 453

E[X̂i] = E[Xi + Zi] = E[Xi]+ E[Zi] = E[Xi] (8) 454

because the mean of Z is zero. 455

Let σ 2
Xi represent the variance of Xi. The value of σ

2
X̂i

can 456

be calculated by 457

σ 2
X̂i
= E[(X̂i − E[X̂i])2] = E[(Xi + Zi − E[Xi])2] 458

= E[(Xi − E[Xi])2]+ 2E[XiZi]− 2E[Xi]E[Zi]+ E[Z2
i ] 459

= σ 2
Xi + 2E[XiZi]− 2E[Xi]E[Zi]+ E[Z2

i ]. (9) 460

We have E[XiZi] = E[Zi] = 0 and 461

E[Z2
i ] =

∫
∞

x=−∞
x2L(x; 1/εi)dx =

2

ε2i
. (10) 462

Thus, 463

σ 2
Xi = max

(
σ 2
X̂i
−

2

ε2i
, 0

)
(11) 464

where we ensure the variance is greater than or equal to zero. 465

Let σXi,Xj represent the covariance of Xi and Xj. The covari- 466

ance of σX̂i,X̂j is represented by 467

σX̂i,X̂j = E[(X̂i − E[X̂i])(X̂j − E[X̂j])], 468

= E[(Xi + Zi − E[Xi])(Xj + Zj − E[Xj])] 469

= E[(Xi − E[Xi])(Xj − E[Xj])]+ E[ZiZj] 470

+E[(Xj − E[Xj])Zi]+ E[(Xi − E[Xi])Zj]. (12) 471

The following equation is obtained because Zi and Zj 472

are independent of other random variables and E[Zi] = 473

E[Zj] = 0. 474

σXi,Xj = σX̂i,X̂j . (13) 475
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Let 6 be a covariance matrix calculated based on476

Equations 11 and 13. It may be invalid for a normal distri-477

bution because the generated covariance matrix may contain478

some errors; that is, it may not be a positive definite matrix.479

We use the eigenvalue decomposition technique to create a480

positive definite matrix.481

Let qi and λi be the ith eigenvalues and ith eigenvectors of482

matrix 6. Sort qi for all i in order of magnitude and create a483

diagonal matrix D that makes them diagonal values. Further,484

the corresponding λi are arranged in the same order to form485

matrix 3.486

The eigenvalue decomposition of a matrix can be per-487

formed as488

6 = D3D−1. (14)489

The fact that a matrix is positive definite is equivalent to490

the fact that all eigenvalues of the matrix are positive [73].491

Hence, we obtain the positive definite matrix version of6 by492

replacing the negative values of 3 with small positive values493

to obtain the matrix 3′ and using the equation494

6′ = D3′D−1. (15)495

C. GENERATION OF NOISE-MITIGATED CUMULATIVE496

DISTRIBUTION FUNCTION FROM DIFFERENTIALLY497

PRIVATE DATA498

We assume that the model generator already has differentially499

private data privatized by the Laplace mechanism because500

it is the most fundamental mechanism. Let ṽi represent the501

privatized value of the true value vi of person i; that is,502

ṽi is drawn from L(x; vi, s), where s = 1/ε. We use two503

hyperparameters: b, which represents the number of bins of504

an input domain for calculating a cumulative distribution505

function, and r , which determines the output domain. These506

hyperparameters do not affect privacy; however, they affect507

the accuracy of machine learning models. The output domain508

can be [−∞,∞] in theory because we assume a Laplace509

mechanism for realizing differential privacy. However, the510

accuracy decreases when we set the output domain too wide.511

If the true value takes a minimum or maximum value, the512

hyperparameter r specifies the ratio of the time it will fall513

within that range of the output domain. Let min and max rep-514

resent the minimum and maximum true values and let minpri515

and maxpri represent the minimum and maximum values of516

the output domain. The minimum value of an output domain517

is calculated by solving the equation with regard to minpri.518 ∫ minpri

x=−∞
L(x; (max − min)/ε))dx = 1− r . (16)519

By solving this equation,520

minpri = min+
(max − min) log 2(1− r)

ε
. (17)521

In the same way,522

maxpri = max +
(max − min) log 2r

ε
. (18)523

Let w represent the width of each bin, i.e., 524

w =
max − min

b
. (19) 525

Let bpri represent the number of bins in the output domain. 526

This value is calculated as 527

bpri =
maxpri − minpri

w
. (20) 528

Let L (x;µ, s) represent the cumulative distribution func- 529

tion of the Laplace distribution with mean µ and scale s. The 530

probability that a true value is categorized in bi, and it is 531

privatized to another bin bprij is calculated by 532

Pi,j =


S|i−j|+1 (j 6= 1, j 6= bpri)
R0 + S1 (i = 1, j = 1)
R0 −

∑i
k=2 Pi,k (i 6= 1, j = 1)

1−
∑bpri−1

k=1 Pi,k (j = bpri)

(21) 533

where for arbitrary m, 534

R0 =
∫ m+w

t=m

L (m; t, s)dt
w

=
s− e−w/ss

2w
(22) 535

and for arbitrary m and i ∈ {1, . . . , bpri} 536

Si =
∫ m+i∗w

t=m

L (m; t, s)dt
w

−

∫ m+(i−1)∗w

t=m

L (m; t, s)dt
w

537

=


e−i∗w/s

(
−1+ ew/s

)2 s
2w

(i ≥ 2)

1+
−1+ e−w/ss

w
(i = 1.)

(23) 538

From Pi,j for all i, j and differentially private data samples, 539

a cumulative distribution function of the true values can 540

be estimated. We can use expectation–maximization based 541

algorithms such as [8]. 542

D. GENERATION OF COPULA SAMPLES FROM 543

NOISE-MITIGATED STATISTICS 544

A copula model is created from the noise-mitigated covari- 545

ance matrix 6 (Section V-B) and the noise-mitigated cumu- 546

lative distribution function Fj (j = 1, . . . , g) (Section V-C). 547

Then, copula samples can be generated using the cop- 548

ula model based on Section III-F. However, Section III-F 549

assumes that the random variable of a cumulative distribution 550

function is continuous whereas the random variable of the 551

cumulative distribution function obtained in Section V-C is 552

discrete. 553

Let Fj(k) represent the probability that the random variable 554

of the jth attribute is less than or equal to k , where k = 555

{0, . . . , b − 1}. The values of ti,j are obtained by Equation 3 556

for all i and j. Let mink represent the minimum value of k in 557

{0, . . . , b− 1} that satisfies Fj(k) ≥ ti,j. Then, we calculate 558
u′i,j =

ti,j
Fj(0)× b

(mink = 0)

u′i,j =
mink + ti,j − Fj(mink − 1)

(Fj(mink )− Fj(mink − 1))× b
(otherwise.)

(24) 559
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FIGURE 4. An example of calculating u′

i,j from ti,j in Equation (24) where
b = 4.

An example of calculating Equation 24 is illustrated in560

Figure 4. The figure represents the case where b = 4. The561

resulting u′i = {u
′

i,1, . . . , u
′
i,g} is a generated sample of the562

proposed method.563

The overall procedure of the proposed method is shown in564

Algorithm 1.565

VI. EVALUATION566

We evaluated the effectiveness of our proposed method using567

both artificially created and real datasets. We compared the568

case where decision trees are created as is with the case569

where decision trees are created using training data generated570

by our proposed method because this research targets the571

decision tree algorithm as a machine learning model. Fur-572

ther, we compared the method of creating a decision tree by573

generating training data using a normal copula [60]. In addi-574

tion, we compared our method with the data augmentation575

method, which is widely used to increase the training data576

samples.577

There are several methods for generating histograms from578

local differentially private data. Although such methods579

primarily aim to generate a histogram of attribute values580

and do not target the prediction of an attribute value from581

other attribute values, we show the results of state-of-the art582

methods [32] for the comparison. Gu et al. [32] proposed583

IDUE based on Google’s RAPPOR [71] and IDUE based584

on OUE [72] for generating a histogram of attribute values.585

The value with the highest frequency among all the his-586

togram’s bins that match the attribute values to be predicted587

can be considered to be the predicted value. Because these588

methods assume that the data samples are categorized, the589

input data samples are divided into predefined categories.590

Here, we consider that the number of categories for the entire591

attribute is 107. Henceforth, IDUE based on RAPPOR is592

denoted as IDUE(R) and IDUE based on OUE is denoted593

as IDUE(O).594

The privacy budget ε was varied over the range 0.01–10 for595

each attribute. The hyperparameters of eachmachine learning596

algorithm are common among the methods being compared.597

All results are the average of 10 simulations of 5-fold cross598

validation repeated with the same settings. We used the MSE599

between the true and predicted values.600

The model hyperparameters of the proposed method601

are b, r , and the target number of samples. We set 100, 0.05,602

and 100,000, respectively, in the experiments.603

Algorithm 1 Overall Procedure of the Proposed Method
Input: Differentially private data vi,j (i = 1, . . . , n; j =

1, . . . , g), privacy parameter εi (i = 1, . . . , g), hyper-
parameters b, r , and the target number of samples

Output: Machine learning model
1: for i = 1, . . . , g do
2: Qi← {vj,i|j = 1, . . . , n}
3: σX̂i ← standard deviation of Qi

4: σ 2
Xi ← max

(
σ 2
X̂i
−

2
ε2i
, 0
)

5: for j = 1, . . . , g do
6: σXi,Xj ← covariance of Qi and Qj
7: end for
8: end for
9: Generate covariance matrix 6 from σ 2

Xi and σXi,Xj (i, j =
1, . . . , g)

10: for i = 1, . . . , g do
11: qi← ith eigenvalue of 6
12: λi← ith eigenvector of 6
13: end for
14: Generate matrix D from qi (i = 1, . . . , g)
15: Generate matrix 3 from ri (i = 1, . . . , g)
16: 3′← 3 with replacement of negative values with small

positive values
17: 6′← D3′D−1

18: bpri ← Equation (20) based on Equations (17)-(19), b
and r

19: for i = 1, . . . , bpri do
20: for j = 1, . . . , bpri do

Pi,j← Equation (21) based on Equation (22)-(23)
21: end for
22: end for
23: for j = 1, . . . , g do
24: Fj ← estimation results of expectation-maximization

using Pk,l (k, l = 1, . . . , bpri) and Qj
25: end for
26: num← the target number of samples
27: S ← samples generated based on g-dimensional multi-

variate normal distribution with 6′

28: for i = 1, . . . , num do
29: for j = 1, . . . , g do
30: ti,j← Equation (3) using si,j in S
31: u′i,j← Equation (24) using Fj
32: end for
33: u′i← t ′i,j(j = 1, . . . , g)
34: end for
35: Generate a machine learning model using u′i (i =

1, . . . , num)

A. EXPERIMENT WITH SYNTHETIC DATASETS 604

We used three probability distributions to generate synthetic 605

datasets: multivariate normal distribution, multivariate t dis- 606

tribution, and negative multinomial distribution. We used two 607
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parameters for generating the datasets: number of attributes608

(g) and number of people (n).609

For the multivariate normal distribution, all values of the610

mean vector were set to zero, and the covariance matrix611

was randomly generated such that it was a symmetric pos-612

itive definite matrix of real numbers. For the multivariate613

t-distribution, the scale matrix was randomly generated such614

that it was a symmetric positive definite matrix of real num-615

bers, and the degrees of freedom parameter was randomly616

generated such that it was a positive real number. For a617

negativemultinomial distribution, the number of failures until618

the experiment was stopped was set to the number of sam-619

ples, and the success probability was randomly generated in620

(0, 1/g). Each dataset contained g attributes. One attribute621

was randomly selected and set to the desired output value.622

This study focuses on relatively low-dimensional data623

(e.g., fewer than 30 attributes) based on the fact that many624

studies on differentially private decision tree generation tar-625

get personal data with fewer than 30 attributes. For exam-626

ple, Zhao et al. used three real datasets and the numbers627

of attributes were 11, 15, and 19, respectively [18]. The628

number of attributes of the dataset used in [19] was 20.629

Wang et al. [20] used the real census dataset with 10 attributes630

and synthetic datasets with 20 attributes. Moreover, many631

other machine learning models have been proposed that use632

personal data with fewer than 30 attributes, such as [74],633

[75]. Of course, there are also many machine learning models634

that use a larger number of attributes; however, because most635

research on differentially private decision trees is conducted636

on datasets with relatively small dimensions, we conducted637

our experiments on datasets with fewer than 30 attributes.638

Fig. 5 shows the simulation results, where n is fixed at639

1000 and ε is varied from 0.01 to 10 for each attribute.640

The number of attributes (g) was set to 30. The trend of the641

results obtained is similar for all probability distributions.642

The smaller the value of ε, the larger the MSE is, and,643

even in scenarios where the value of ε is sufficiently large,644

the MSE does not go to zero because of the performance645

limitations of the machine learning model. There is almost646

no difference in the results between the data augmentation647

method (Aug.+DT) and the method using the decision tree648

as is (DT). The method using a copula [60] (Copula+DT)649

produced similar accuracy. This means that simply applying650

the copula model to differential privacy data does not lead to651

improved accuracy.652

Our proposed method (Proposal+DT) achieved a higher653

accuracy (note that a low MSE indicates high accuracy). The654

estimation accuracy of IDUE(R) and IDUE(O) is relatively655

low. Note that these methods can construct a histogram of656

all combinations of attribute values, that is, predicting one657

attribute value is not the main objective of these methods.658

Next, the value of ε was fixed at 1.0, and the experi-659

ment was conducted by varying n from 1,000 to 10,000.660

Fig. 6 depicts the results. The accuracy of the proposed661

method improves as the value of n increases. This is662

because the larger the value of n is, the better the prediction663

accuracy of the covariance matrix and the reconstruc- 664

tion accuracy of the cumulative distribution function are. 665

The accuracy of IDUE(R) and IDUE(O) also improves as 666

the value of n increases. In general, methods that generate 667

histograms from differentially private data require a large 668

amount of data. It is expected that the accuracy of these meth- 669

ods will be much better when large datasets are available. 670

In contrast, the accuracy of the other methods did not improve 671

as the value of n increased. The accuracy of the machine 672

learningmodel is not expected to improve because of the large 673

influence of noise in differential privacy, even if there is a 674

large amount of data with large errors. 675

To evaluate the variability of the MSE of the proposed 676

method, the results are shown in Fig. 7, where the standard 677

deviation is represented as an error bar. When the size of a 678

dataset is small, the value of the standard deviation is rela- 679

tively large, but the value of the standard deviation decreases 680

as the size of the dataset increases. Overall, it can also be seen 681

that the standard deviation is not very large compared to the 682

value of MSE. In addition, all of the training accuracies (and 683

their standard deviations) were almost 0.0. 684

B. EXPERIMENT WITH REAL DATASETS 685

We used four real datasets for the evaluation. A description 686

of each dataset is provided below. 687

In the real datasets of Boston, !Kung, Diabetes, and Adult, 688

the number of attributes is 14, 4, 11, and 7, respectively. These 689

datasets are accessible to all. Moreover, our research targets 690

the area of the convergence of privacy and machine learning 691

technologies; therefore, we selected famous datasets for the 692

privacy and machine learning areas, respectively. The most 693

important reason for using the Adult dataset is that it is often 694

used as a benchmark in the field of privacy protection data 695

analysis. The !Kung dataset is also often used to evaluate 696

differential privacy techniques. Boston and Diabetes datasets 697

are famous for machine learning because they are included 698

in the scikit-learn framework, which is the foremost machine 699

learning framework. Each dataset is detailed below. 700

• Boston dataset 701

The Boston dataset is considered the baseline dataset 702

for machine learning algorithms [69], [70]. A famous 703

scikit-learn framework1 contains these data. The Boston 704

dataset comprises data on housing in Boston in the 705

late 1970s. It contains 506 sets of data with attributes 706

such as the crime rate of each city and the percentage 707

of the low-income population. Further, this dataset has 708

been used in many studies on privacy-preserving data 709

mining [76], [77]. 710

• !Kung dataset 711

The !Kung dataset [78], [79] is a small census dataset 712

that is widely used for experiments on data mining for 713

differential privacy, such as in [37] and [80]. The !Kung 714

dataset contains 287 records. Following [37], we set 715

1https://scikit-learn.org/
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FIGURE 5. MSE results of synthetic datasets (g = 30, n = 1000.)

FIGURE 6. MSE results of synthetic datasets (g = 30, ε = 1.0.)

FIGURE 7. MSE results with error bars of the proposed method with
changes in the size of dataset.

a task for predicting the height from other attributes716

(weight, age, and sex).717

• Diabetes dataset718

The diabetes dataset [81] is contained in scikit-learn.719

This dataset was designed to predict the progression of720

the disease after one year based on the test results of dia-721

betic patients. It contains 442 records with 11 attributes.722

Many studies have used this dataset to evaluate data723

mining techniques [82], [83].724

• Adult dataset725

The Adult dataset [84] has been used in many studies726

on privacy-preserving data mining, such as [85], [86].727

This dataset is the census data from the USA and has728

30,162 records. It contains a flag indicating whether the729

salary of each person is greater than 50,000 dollars, six730

numerical attributes such as age, and eight categorical731

attributes such as race. We used the salary attribute and 732

six numerical attributes. 733

Fig. 8 shows the experimental results. The accuracy of the 734

proposed method is the best in the experimental results on 735

the real dataset. For the Adult dataset, the accuracy of the 736

proposed method (Proposal+DT), IDUE(R), and IDUE(O) 737

are similar. The adult dataset has more than 30,000 records, 738

which is a relatively large dataset for personal data containing 739

privacy information. Although there is an error of differential 740

privacy, if the value of ε is large and sufficient data are col- 741

lected, IDUE(R) and IDUE(O) can achieve high accuracy as 742

well as the proposed method. However, the proposed method 743

achieved the best accuracy for most settings, especially when 744

ε is in [0.01, 8.0] for all datasets. 745

Finally, we conducted experiments on DNN, SVM, and 746

kNN to determine if the proposed method can be applied 747

to other machine learning algorithms besides decision trees. 748

The results are depicted in Fig. 9, which shows the increase 749

ratio of the MSE of each machine learning algorithm. For a 750

decision tree, let α be the MSE of Proposal+DT, and let β be 751

the MSE of DT. In this case, the increase ratio is calculated 752

by (α−β)/β. Therefore, the increase ratio becomes negative 753

if the MSE of Proposal+DT is less than that of DT. Thus, 754

we calculated the increase ratio for the other algorithms 755

as well. For kNN and DT, the proposed method is clearly 756

effective; for DNN, the proposed method can improve the 757

accuracy of the Boston, !Kung, and Diabetes datasets, except 758

for the Adult dataset, which has a large amount of data. For 759

the Adult dataset, the proposed method does not deteriorate 760

the accuracy, and the accuracy is almost the same as that 761

of the DNN. However, the proposed method is not effective 762

for SVM. 763
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FIGURE 8. MSE results of real datasets.

FIGURE 9. Increased ratio of the MSE of the real datasets of various machine learning
models. Negative values indicate that our method decreased the MSEs.

In this experiment, we have measured not only MSE but764

also mean absolute error (MAE) to further analyze the per-765

formance of the proposed method. The results are shown766

in Fig. 10.767

Because the MSE is calculated as the square of the differ-768

ence between the true value and the predicted value, the MSE769

will increase significantly if there is a value that is signifi-770

cantly mis-predicted. Therefore, it is suitable for evaluating771

models that require robustness. On the other hand, because772

MAE calculates absolute value errors, it measures average773

ability without considering robustness. The results of Fig. 10774

are similar to those of Fig. 9; therefore, for both MSE and775

MAE indicators, the proposed method is more useful than776

existing methods for kNN, DT, and DNN.777

VII. DISCUSSION 778

A. ADVANTAGES AND DRAWBACKS 779

In the previous section, we compared the proposed method 780

with the copula method, histogram generation meth- 781

ods (IDUE(R) and IDUE(O)), and data augmentation. 782

Experimental results show that the proposed method has 783

the highest accuracy. On the other hand, the computa- 784

tion complexity of the proposed method is higher than 785

the copula method because the proposed method uses an 786

expectation–maximization-based algorithm and a copula 787

algorithm. On the contrary, data augmentation has a very 788

small computational cost but also poor accuracy. 789

If histogram analysis rather than machine learning model 790

generation is the goal, then histogram generation methods 791
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FIGURE 10. Increased ratio of the MAE of the real datasets of various machine learning
models. Negative values indicate that our method decreased the MAEs.

TABLE 3. Comparison of methods for machine learning model generation
from local differentially private data.

have very good accuracy. The objective of this study, how-792

ever, was machine learning model generation, and histogram793

generation methods did not work well for this purpose.794

Table 3 summarizes the accuracy of the machine learning795

models generated and the complexity of the methods.796

B. VALUE OF EPSILON797

We found that the proposed method is especially effective798

when ε is in the range 0.01–8. Here, we analyze the amount799

of noise imparted to confirm that it is within a range that can800

be applied in many practical scenarios. The noise added by801

differential privacy is generated from L(x;1/ε). Therefore,802

the expected absolute value is calculated as803

E[noise] =
∫
∞

x=−∞
abs(x)L(x;1/ε)dx = 1/ε. (25)804

The expected absolute value of the Laplace noise is 1/ε when805

the range of the value of a true personal attribute value is806

[0, 1). The expected absolute value of the noise is in the807

range [0.125, 100] when ε is in the range [0.01, 8.0]; i.e., the808

amount of noise relative to the range of the possible values of809

the true value ranges from 12.5% to 10000%.810

To determine the influence of ε on the effectiveness811

of the reconstruction copula model from differentially pri-812

vate data, we conducted an additional experiment using the813

Boston dataset. In Fig. 11, Original represents the correlation814

value (-0.388) between per capita crime rate by town and an815

FIGURE 11. Calculated correlation value vs. ε.

objective attribute (median value of owner-occupied homes). 816

Fig. 11 also shows the correlation values of differentially 817

private data and data generated by the proposed method. 818

When the value of ε is small, the correlation values of dif- 819

ferentially private data and data generated by the proposed 820

method approach zero. Because each data sample has a large 821

noise, the information about correlationwill be lost. However, 822

for all values of ε, it can be seen that the proposed method 823

works well and the correlation values are closer to the true 824

values than the differentially private data. 825

C. APPLICATION TO CATEGORICAL DATA 826

We have primarily focused on numerical data in this paper. 827

However, application to categorical data is not difficult; it is, 828

in fact, straightforward. Mutual information is used for the 829

characteristics of each attribute pair. The cumulative distribu- 830

tion function of each pair of attributes was estimated to reduce 831

the impact of perturbation. Then, the mutual information of 832

each pair of attributes was calculated. 833

If personal data have both numerical and categorical val- 834

ues, privatized numerical values are digitized into several 835

categories when generating a copula model. Specifically, 836
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assume that the first h attributes are numerical and the next837

(g − h) attributes are categorical without loss of generality,838

i.e., Q1, . . . ,Qh are numerical attributes and Qh+1, . . . ,Qg839

are categorical attributes. When generating a cumulative dis-840

tribution function for each attribute, the method described841

in Section V-C is used for Qi (i ≤ h), and the method842

described above is used for Qi (i > h). In our pro-843

posed method, covariance is necessary for each pair of844

numerical attributes, and mutual information is necessary845

for each pair of categorical attributes. Assume that the pair846

of attributes are Qi and Qj. The covariance is calculated if847

i ≤ h and j ≤ h. The mutual information is calculated848

if i > h and j > h. Special processing is required if849

i ≤ h and j > h or if i > h and l ≤ h. In this case,850

the privatized numerical values are digitized into several851

categories, and the mutual information of the two attributes852

is then calculated.853

As has been mentioned, this paper is concerned with854

regression tasks. When applying our method to the clas-855

sification task, it is a requirement to deal with class856

imbalance.857

D. COMPARISON BETWEEN SEVERAL MACHINE858

LEARNING ALGORITHMS859

The reason why the proposed method works well is as860

described in Section IV for decision trees. Because differen-861

tially private data have a large amount of noise, the accuracy862

of machine learning models trained on such data decreases.863

However, several machine learning algorithms are robust to864

such noise data.865

In DNN, parameters are updated using stochastic gradi-866

ent descent or its variants. If too much noise is added to867

this process, it will often be trained in the wrong direc-868

tion. However, by increasing the batch size, the robustness869

to noisy data is increased. This is because, within a single870

batch, gradient updates from randomly sampled noisy data871

are nearly canceled out [87]. Nevertheless, there is a limit to872

the ability to cancel out noise. The experimental results show873

that the accuracy of DNN is better when using the proposed874

method.875

The SVM for regression is also called support vector876

regression (SVR). SVR employs an e-insensitive loss func-877

tion that penalizes predictions that are farther from the878

desired output than e. The e-insensitive region is less sensi-879

tive to noisy inputs and thus increases the robustness of the880

model [88]. This property of SVMmay have worked well for881

noisy, differentially private data. More detailed validation for882

SVM is a future issue.883

On the other hand, KNN is known to be very sensitive to884

noisy data [89]. Therefore, the proposed method works well885

also for KNN, as shown by the experimental results.886

E. TREATING HIGH-DIMENSIONAL DATA887

Because a copula model is suitable for low-dimensional data,888

handling high-dimensional data as it is with our method889

is difficult. To treat high-dimensional data, techniques of 890

dimension reduction, such as principal component analysis 891

(PCA), can be used. Several studies have shown that reducing 892

the dimensions improved machine learning models’ accu- 893

racy [90], [91]. To perform PCA with differentially private 894

data, the algorithm Wang and Xu proposed [92] can be 895

used. 896

For DNN, many models use high-dimensional data. How- 897

ever, several studies have generated highly accurate DNN 898

models, using PCA or other dimension reduction techniques, 899

such as [93]. This study is concerned with data with relatively 900

few attributes. Therefore, for high-dimensional data, it has 901

not been verified that the proposed method works effectively 902

without dimensionality reduction. Verification of how the 903

proposed method works with and without dimensionality 904

reduction is a future issue. 905

One reason to focus on decision trees in this paper is 906

high human interpretability. On the other hand, in many 907

studies, resarchers have aimed to interpret DNNs’ behavior. 908

For example, Nascita et al. proposed an algorithm that pro- 909

vides global interpretation for DNNs [94]. Interpretation of 910

model behavior when DNN models are constructed using 911

our proposed method is also an issue to be addressed in the 912

future. 913

F. PREPROCESSING TECHNIQUES 914

General preprocessing techniques include data cleaning, 915

dimension reduction, and so on [95]. They do not consider 916

differentially private numerical data, which are very noisy 917

but for which the probability distribution of the noise is 918

the Laplace distribution. Our proposed method generates a 919

copula-based synthetic dataset that reduces the noise due 920

to differential privacy. Therefore, the techniques (e.g., data 921

cleaning and dimension reduction) could be applied to the 922

copula-based synthetic dataset generated by the proposed 923

method. Data augmentation is another preprocessing tech- 924

nique used for increasing training data. In addition, this tech- 925

nique does not consider differentially private data; therefore, 926

it makes little contribution to improving the accuracy of 927

machine learning. In the experiment section, we showed that 928

our method outperforms other techniques, including a data 929

augmentation technique. 930

VIII. CONCLUSION 931

Personal data with noise caused by differential privacy is 932

widely collected to protect privacy. In this paper, we pro- 933

posed a method for generating highly accurate machine 934

learning models, especially decision tree models, based on 935

datasets with differential privacy noise. Experimental results 936

show that the proposed method improves the accuracy of 937

machine learning models, not only for the decision tree 938

algorithm but also for kNN and DNN with relatively few 939

attributes, for a range of practical ε values compared with 940

the conventional copula method and state-of-the-art IDUE(R) 941

and IDUE(O). 942
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In future work, we plan to extend the proposed method to943

other types of datasets where differential privacy is applica-944

ble, such as time-series data, image data, and data with graph945

structures.946
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