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ABSTRACT With the development of IoT technology, personal data are being collected in many places.
These data can be used to create new services, but consideration must be given to the individual’s privacy.
We can safely collect personal data while adding noise by applying differential privacy. However, because
such data are very noisy, the accuracy of machine learning trained by the data greatly decreased. In this
study, our objective is to build a highly accurate machine learning model using these data. We focus on
the decision tree machine learning algorithm, and, instead of applying it as is, we use a preprocessing
technique wherein pseudodata are generated using a copula while removing the effect of noise added by
differential privacy. In detail, the proposed novel protocol consists of three steps: generating a covariance
matrix from the differentially private numerical data, generating a discrete cumulative distribution function
from differentially private numerical data, and generating copula-based numerical samples. Simulation
results using synthetic and real datasets verify the utility of the proposed method not only for the decision
tree algorithm but also for other machine learning algorithms such as deep neural networks. This method
will help create machine learning models, such as recommendation systems, using differential privacy data.

INDEX TERMS Copula, data mining, decision trees, local differential privacy, machine learning, privacy-
preserving data collection.

I. INTRODUCTION differential privacy [5], the de facto standard privacy

Personal data can be collected to create machine learning
models that can be employed by law enforcement agencies to
profile suspects, by companies to predict performance once
a job seeker is hired, and so on [1], [2]. However, we need
to consider privacy and fairness when creating such machine
learning models [3], [4].

In this study, we assume a scenario wherein a relatively
small amount of data (e.g., data of less than 10,000 peo-
ple) that has been collected under the application of local
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metric [6], [7] (Fig. 1), already exists. In Fig.1, each person
sends their personal attribute data, such as age, location,
and medical data, to a model generator’s server. All data is
protected using local differential privacy techniques. There-
fore, the model generator cannot know the true value of each
data attribute. From the stored differentially private data, the
model generator trains a machine learning model.

Local differential privacy is a specialized concept of dif-
ferential privacy, especially for data collection from each
person. Many companies, such as Apple and Google, have
used local differential privacy, which can provide a strict pri-
vacy guarantee against adversaries with arbitrary background
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knowledge [8]. Laplace noise is added to numerical data [9]
as a general method to realize local differential privacy. The
amount of noise is controlled by the privacy budget €. In the
model of local differential privacy, each person sends their
obfuscated data to the data collector. The data collector can
only see the obfuscated data and cannot know the true value
for each individual. Laplace noise is added to numerical
data [9] as a general method for realizing local differential
privacy.

We focus on creating a decision tree, which is a well-known
machine learning algorithm. Although we are in the era
of deep learning, decision trees are still widely used and
studied [10], [11], [12], [13], [14]. In terms of accuracy,
decision trees achieve inferior results compared to those of
deep learning; however, there are many advantages to using
decision trees, including high human interpretability and non-
parametric design [15], [16], [17].

Recently, differentially private decision tree generation
algorithms have been widely proposed [17], [18], [19], [20].
Existing studies target differentially private decision tree
generation from original (non-privatized) data. In this study,
we aim to generate decision trees not from the original data
but from locally stored differentially private data.

Differentially private data
collection in the past.

Machine learning model (such as a decision tree)
generation using the stored differentially private data.

B — |
[= | Stored differentially
e & [ private data ”
/
0 g o
e i

A model generator

e.g., Laplace noise is added to
the original values.

FIGURE 1. Scenario of this study: A model generator, which stores
differentially private data, generates a high-quality machine learning
model using the data.

In this study, we use a copula employed in economic and
financial applications [21]. However, general copula algo-
rithms do not consider differentially private data. Although
differential privacy can protect each person’s privacy, it adds
extensive noise to the data. Therefore, the accuracy of the
general copula model created from differentially private data
becomes low, as the experimental results of Copula+DT in
Section VI show. We propose a novel preprocessing tech-
nique wherein a synthetic dataset is generated using a copula
while removing the effect of noise added by differential
privacy. In detail, the proposed novel protocol consists of
three steps: generating a covariance matrix from the dif-
ferentially private numerical data, generating a cumulative
distribution function of a discrete probability distribution
from differentially private numerical data, and generating
copula-based numerical samples from the covariance matrix
and the discrete cumulative distribution function. The gen-
erated dataset is used to train machine-learning models.
The results of experiments conducted on synthetic and real
datasets demonstrate that our method significantly increases
model accuracy. We focus on the decision tree algorithm
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in this study; however, we also conducted simulations for
deep neural network (DNN), k-nearest neighbors (kNN), and
support vector machine (SVM) using our proposed method.
The results indicate that it increases the model accuracy of
DNN and kNN with relatively few attributes but does not do
so for SVM.

Table 1 presents the main notations used in this paper.

TABLE 1. Notations.

Number of data samples

ith attribute of data

Random variable representing Q;

Number of attributes

Difference between the maximum and minimum values of Q;
Privacy budget for differential privacy for Q;

Number of bins of an input domain for calculating a cumulative
distribution function

Base for natural logarithm.

bS ko=

-

S,

o

Our contributions in this paper are summarized as follows.
First, we introduced the relationship between the variance and
the covariance of differentially private numerical data and
those of original data. Second, we developed an algorithm
to generate a copula model based on the estimated variance
and covariance. Third, we developed an algorithm to convert
the discrete cumulative distribution function into a contin-
uous cumulative distribution function in the copula space
to generate a high-quality machine learning model. Finally,
we evaluated the performance of the proposed method using
synthetic and real datasets.

The remainder of this paper is organized as follows. The
assumptions of this study are described in Section II. Dif-
ferential privacy, decision trees, and related research are
discussed in Section III. Section IV analyzes the effect of
differential privacy on decision trees. The proposed solu-
tion is introduced in Section V. The evaluation conducted
is presented in Section VI, and the evaluation results are
discussed in Section VII. Finally, we conclude this paper
in Section VIII.

Il. ASSUMPTION

A. TARGET SCENARIO

We call the organization generating the machine learn-
ing model the model generator. Many techniques can be
employed for differentially private machine learning model
generation. These techniques can be divided into three cate-
gories. In the first category, the model generator is assumed
to store the original (i.e., non-privatized) personal data. The
model generator is a trusted entity, and the generated models
are shared with untrusted third parties. Many studies on dif-
ferentially private decision trees fall into this category [17],
[18], [19], [20]. We assume that the model generator is a
semi-honest entity in this study; therefore, it cannot have
direct access to the original personal data. The second and
third categories also make this assumption. The difference
between the second and third categories hinges on whether

101657



IEEE Access

Y. Sei et al.: Machine Learning Model Generation With Copula-Based Synthetic Dataset

or not the model generator has indirect access to the original
personal data when generating machine learning models.

The second category is technology that does not access the
original personal data, but instead uses the stored differential
private data. Our study takes this assumption as its basis.
There are several possible reasons why the model generator
would store such data.

o The organization stores the data now for future use: Sev-
eral organizations collect and store data while protecting
the privacy for future use [22], [23], [24]. When they
decide to generate machine learning models, they use
the stored data.

o The organization stores the data for efficient machine
learning model generation: Training data are very impor-
tant for model debugging and analyzing the performance
of trained model [25], [26]. Even if hyperparameters
and a model structure are determined, training data are
necessary to ensure efficient model generation.

o The organization stores the data for fairness auditing:
The problem of the biased output of machine learning
models for sensitive personal attributes such as race and
gender has been widely recognized as a fairness problem
in machine learning. An analysis of training data is
required [27], [28], [29] to audit fairness or generate fair
machine learning models. Moreover, what constitutes a
bias depends on the attitudes of people and, therefore,
it may change in the future. Therefore, it is necessary to
store training data to cope with future changes.

In the third category, it is assumed that original personal
data can be accessed indirectly when machine learning mod-
els are generated. In this category, the model generator trains
machine learning models by collaborating with many per-
sonal data holders. Each personal data holder sends the infor-
mation to train the machine learning models while protecting
the privacy of their personal data. This approach has sev-
eral merits; however, the model generator needs to obtain
the information necessary to update the parameters of the
machine learning model from other organizations that store
personal data when the model generator trains machine learn-
ing models; it cannot ensure future access to data. Federated
learning techniques fall into this category; there are many
federated learning techniques for deep neural networks, and
there are few techniques for decision trees. Although such
techniques have been studied widely, we focus on the second
category in this research for the reasons described above.

B. TARGET MACHINE LEARNING MODEL
In the past decade, deep neural networks have been exten-
sively studied. However, it is difficult to understand the rea-
son for the output of deep neural networks. Although there are
several techniques for understanding the black box of deep
neural networks, many issues still need to be resolved [30].
In contrast, the decision tree algorithm, which is one of the
most popular machine learning algorithms, has high human
interpretability. The main drawbacks of this algorithm are its
tendency to overfit the data and its instability when small
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changes occur in the data; however, they can be minimized by
limiting the depth of the tree, pruning unreliable leaf nodes,
building ensembles instead of a single tree, etc. [17].

Although our proposed method can be applied to any
machine learning algorithm, it is most effective for the deci-
sion tree algorithm. This is because all differential privacy
data have a large noise, and decision trees overfit such noises.
However, we show the results of applying the proposed
method to DNN, kNN, and SVM in Section VI to demonstrate
the adaptability of the proposed method to other machine
learning algorithms.

C. TARGET DATA TYPE

We focus on numerical data in this paper because numerical
data can be easily converted into categorical data; that is,
numerical data are more useful than categorical data. For
time series data, the proposed method can be implemented
at each point in time. We can treat image data by applying
the proposed method to each pixel of each image. However,
in that case, its utility would significantly decrease because
one image is composed of numerous pixels. Applying and
evaluating other data types is a future task.

Ill. RELATED WORK

A. DIFFERENTIAL PRIVACY

Differential privacy is considered the most important pri-
vacy metric [31]. In machine learning algorithms such as
deep neural networks and decision trees, differential privacy
has been studied extensively in the past decade [9], [17].
Differential privacy is used for the central model, i.e., the
anonymizer holds all original data (the first category was
introduced in Section II). In contrast, local differential privacy
assumes a local model, i.e., each person privatizes their values
locally. In this paper, “differential privacy” refers to “local
differential privacy.”

Let X, Y, and M represent a domain of personal data, set
of privatized data, and a privacy mechanism that takes x € X
and outputs y € Y, respectively.

Definition 1 (e-Local Differential Privacy): Lete > 0. M
satisfies e-local differential privacy if, for every x, x” € X and
yEY,

PriM(x) =y) < ePr(M(x") = y). (1

Many differential privacy methods use the Laplace mech-
anism for numerical attributes [9]. Here, X represents numer-
ical values. Let A represent the difference between the max-
imum and minimum values of X. The Laplace mechanism
adds noise drawn from the Laplace distribution with a mean
of zero and scale A /e.

Much of the work on local differential privacy, such as [32],
[33], [34], is primarily aimed at generating histograms of
attribute values. If the generated histogram can achieve a
sufficiently high accuracy, then it can predict the output value
from the input value as well as the machine learning model.
In Section VI, we compare the proposed method with the
state-of-the-art methods [32].
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B. GENERATING DIFFERENTIALLY PRIVATE MACHINE
LEARNING MODELS FROM ORIGINAL DATA

Many researchers assume that the model generator has orig-
inal (non-privatized) data, and they propose algorithms that
generate differentially private machine learning models using
these original data [35], [36], [37], [38], [39], [40], [41].
In this study, we assume that the model generator is not an
honest entity, and that other methods are required.

C. GENERATING MACHINE LEARNING MODELS AFTER
COLLECTION OF LOCAL DIFFERENTIALLY PRIVATE DATA
The proposed method is categorized into this approach. The
generation of a machine learning model after collecting local
differentially private data is considered a baseline approach in
existing studies [42]. This is because it is difficult to increase
model accuracy after the collection of local differentially
private data. They generate deep neural network models using
a set of local differentially private data; that is, they do not
attempt to propose better algorithms. There are scenarios
wherein the model generator has a set of local differentially
private data but cannot access the original data directly or
indirectly. Therefore, it is important to propose an algorithm
that generates a high-accuracy machine learning model using
a set of locally differentially private data that are already
stored.

D. GENERATING MACHINE LEARNING MODELS WITH
INDIRECT ACCESS TO ORIGINAL DATA

In this decade, federated learning techniques have been
widely studied [43], [44], [45], especially for deep neural
networks. Distributed data owners exist in federated learning,
and the model generator generates a machine learning model
without direct access to the data. The privacy of all data
can be protected to some extent because the model gener-
ator does not directly access the personal data. Each data
owner does not send the original data but sends the model
gradient information or some other information to the model
generator. However, recent studies have argued that there is
a risk of privacy leakage in the gradient information of the
model [46]. Hence, differentially private federated learning
algorithms have been proposed [47], [48], [49], [50], [51],
[52], [53]. These techniques can achieve high utility and
privacy simultaneously.

In recent years, the shuffle model for differential privacy
has attracted considerable attention [54]. The shuffle model
can reduce noise added by local differential privacy; we
should assume that a perfectly secure primitive exists [55].
Moreover, the model generator cannot store local differen-
tially private data.

E. DIFFERENTIALLY PRIVATE SYNTHETIC DATA
GENERATION

There are many methods for generating a differentially pri-
vate dataset from original (non-privatized) data samples [56],
[57], [58], [59]. These methods assume that the server has
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original data samples, and the goal is to generate and share a
synthetic dataset that is similar to the data samples. In con-
trast, we assume that the server does not have original data
samples, and we aim to generate a machine learning model
from differentially private data samples.

We summarize the various perspectives of each type of
generated machine-learning model with differential privacy
and differentially private synthetic data generation in Table 2.
Our target is the second category, where the model generator
does not have original data but owns differentially private
data.

F. COPULA

A covariance matrix X of all attributes and a cumulative dis-
tribution function Fj of each attribute Q; are used to generate
a copula model.

Samples based on a normal distribution with covariance
matrix X are generated to generate random samples from
the copula model. Let s; ; represent the jth attribute value of
person i, and let the set of samples be {si, ..., s,}, where
si = {si,1,..., Si g}, nrepresents the number of data samples
and g represents the number of attributes.

Then, we divide each value s;; of the samples by the
standard deviation of each attribute o;. That is, for all i, j,

Si,j < S,‘J/Gj. (2)

The values of the cumulative distribution function of a
standard normal distribution for each value of the samples
were calculated;

1 S,',j
lij= E |:1 + erf (ﬁ)} . (3)

Then, we obtain the corresponding value of each attribute
from ¢#; ;. More specifically, for all 7, j, we calculate

wij=F(t)) “)

where F;! is an inverse function of Fj.

The resulting u; = {u; 1, ..., u; g} is a generated sample.

Rocher et al. [60] proposed a method to predict the number
of people with a certain combination of attribute values in
a population from a small sample using copula. They use
mutual information to compute the copula; however, they do
not use differential privacy or other privacy measures, i.e.,
they assume that they have original (non-privatized) data.
Moreover, they did not predict the value of an attribute.
Copula-based data synthesis has been studied to generate
perturbed data while preserving the surrounding distribution
of the data, which can be used to train machine learning
models [61], [62], [63]. However, they do not consider differ-
entially private data. Recent studies generate Copula models
based on differentially private data [64], [65]. However, they
do not target numerical data. Moreover, their aims are not to
train machine learning models, but to re-identify individuals
from incomplete datasets and generate histograms.
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TABLE 2. Various perspectives of related work.

Category

| Available data

[ Owner of the available data

Generating differentially private machine learning
models from original data

Original data

Model generator

Generating machine learning models after collection
of local differentially private data

Differentially private data

Model generator

Generating machine learning models with indirect
access to original data

Differentially private information of original data

Other parties

Differentially private synthetic data generation

Original data

Model generator

IV. ANALYSIS OF DECISION TREE WITH LOCAL
DIFFERENTIALLY PRIVATE DATA

A decision tree is a method for analyzing data using a
tree structure. Each internal node represents a rule for data
splitting.

There are several algorithms for generating decision trees,
such as classification and regression trees (CART) [66], iter-
ative dichotomiser 3 (ID3) [67], and C4.5 [68].

For regression decision tree algorithms, the mean squared
error (MSE) is used to find the optimal splitting point of each
attribute. The goal is to find the attribute and its splitting point
that reduces the weighted average of the MSE of the child
nodes to its lowest value. The MSE of node X; is calculated
as

(X;; — X)?
MSE; = Z ]T 5)
J
where X;; represents the jth value at X;, X; represents the
mean value of node X;, and k; represents the number of values
of node X;. The weighted average of the MSE of two child
nodes X; and Xy is calculated as

kiMSE;
ki + ki

kyMSE;

Weighted average of MSE = .
ki + ky

(6)

It is difficult for the decision tree algorithm to split the tree
properly when Laplace noise is added to each data sample
because the MSE cannot be calculated correctly because
of the noise. Figs. 2a—2c show an example where the split
does not work. Here, a Boston dataset [69], [70] was used.
This dataset comprises 13 feature attributes, e.g., per capita
crime rate by town, and an objective attribute (median value
of owner-occupied homes). Fig. 2a depicts the relationship
between the split point of the per capita crime rate by town
and the corresponding weighted average of the MSE. It is
in the shape of a convex downward, and the weighted aver-
age of the MSE is minimized when the split point is set
to seven. Figs. 2b and 2c depict cases where each data
sample is collected under differential privacy. We set € to
five. In Fig. 2b, the weighted average of the MSE is mini-
mized when the split point is set to 37, and in Fig. 2c, the
weighted average of the MSE is minimized when the split
point is set to 59. Each run yields completely different results
because the amount of noise is stochastic under differential
privacy, as shown in these figures. Further, regardless of
the split point, the overall value of the weighted average
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of the MSE is considerably larger than that of the original
value in Fig. 2a. Thus, it becomes very difficult to determine
the correct split point when the noise of differential privacy
is added to all data samples. This leads to difficulties in
generating an accurate decision tree model under differential
privacy.

On the other hand, Figs. 2d and 2e shows the results for
the pseudo data generated by the proposed method. Because
our proposed method generates pseudo data that preserve the
statistical trend of each attribute, the shapes in Figs. 2d and 2e
are similar to the original shape in Fig. 2a. The splitting
points are eight and three, respectively, which are close to the
optimal splitting point of five.

Moreover, the correlation information of attributes is
destroyed in the differentially private data. Therefore, when
creating a decision tree from differentially private data,
the deeper the node is, the more significant the effect
of the error becomes. In contrast, the pseudo dataset based on
the proposed method reconstructs the correlation information
of attributes. Therefore, even when the nodes are deeper,
the deterioration of the accuracy of the decision tree can be
suppressed.

V. PROPOSED METHOD

Let L(x; u, s) represent the Laplace probability density func-
tion with mean p, scale s, and arandom variable x € X. When
the mean  is zero, we use L(x; s).

A. OUTLINE

Copula-based data synthesis has been researched to produce
perturbed data and incorporate rich statistical information in
the perturbed data. The proposed protocol is developed in
three steps: 1) generate a covariance matrix from the differ-
entially private data (Section V-B), 2) generate a cumulative
distribution function (Section V-C), and 3) generate copula
samples (Section V-D). The generated copula samples are
used to train the machine learning model. The algorithms
used in all the steps were developed in this study. Overview
of the proposed method is shown in Fig. 3.

In the first step, we introduce the relationship between the
variance and the covariance of differentially private data and
those of original data. The model generator cannot access
the original data; however, the proposed method can estimate
the variance and the covariance of the original data from the
differentially private data.
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FIGURE 2. Relationship between split point and the weighted average of the mean squared error (MISE) when generating decision trees.
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Noise-mitigated copula samples

Machine learning
generation

FIGURE 3. Overview of the proposed method.

In the second step, the cumulative distribution function is
estimated. There are many methods for estimating cumulative
distribution functions from categorical differentially private
data (e.g., [8], [32], [71], [72]). In general, to treat continuous
values, they first discretize each value into categories [33].
Therefore, some of the continuous value information is lost
from the beginning. Our proposed method treats continuous
values as is and derives the cumulative distribution func-
tion based precisely on the probability distribution of the
Laplace distribution owing to differential privacy. Naturally,
the random variable of the estimated cumulative distribution
function is defined as a discrete random variable. However,
the accuracy of the estimated cumulative distribution function
is better when treating the data as discrete values from the
beginning.

In the final step, copula samples are generated using the
results of the first and second steps. To obtain precise sam-
ples, our proposed method converts the discrete cumulative
distribution function into a continuous cumulative distribu-
tion function in the copula space.

B. GENERATION OF NOISE-MITIGATED COVARIANCE
MATRIX FROM DIFFERENTIALLY PRIVATE DATA

From the observation of differentially private values, the
variance and covariance of the original values need to
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be calculated. Without loss of generality, the ranges of all
attribute values are considered to be [0, 1]. In this case, the
Laplace noise is drawn from L(x; 1/¢) if each attribute needs
to be protected with e-differential privacy.

Let X; denote the random variable of the ith attribute of
personal data, Z; denote the random variable with a Laplace
distribution L(x; 1/¢;), and 5(\, denote the summation of X;
and Z;, i.e.,

Xi =Xi + 7. )

Let E[-] denote the expected value of a random variable -.
From the property of the linearity of expectation,

E[Xi] = E[X; + Z] = E[X,] +E[Z]=E[X;]]  (8)

because the mean of Z is zero.
Let o)%’_ represent the variance of X;. The value of a)% can
be calculated by 1

of = E[(X; — EIX})’] = E[(X; + Zi — E[Xi])"]

E[(X; — E[XiD*] + 2E[X,Z/] — 2E[X;E[Z;] + E[Z]
= 0} +2E[XiZi] — 2E[XE(Z] + E[Z2). ©)

We have E[X;Z;] = E[Z;] = 0 and

00 2
E[Z?] = f x2L(x; 1/€)dx = —- (10)
X=—00 Ei
Thus,

3 0 an
&

where we ensure the variance is greater than or equal to zero.
Letoy;, x; represent the covariance of X; and X;. The covari-
ance of o, % 18 represented by

2 _ 2
UXi = max (O'Xi

= E[(X; — EIXi)(X; — EIX;]],
= E[(X; + Z — EIX\DX; + Z; — E[X;])]
= E[(X; — EIXIDX; — EIX;D] + E[Z;Z]
+E[(X; — EIGNZ] + EIX; — EIXDZ]. (12)

%%,

The following equation is obtained because Z; and Z;
are independent of other random variables and E[Z;] =
E[Z;] = 0.

0X.X; = 0%, X" (13)
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Let ¥ be a covariance matrix calculated based on
Equations 11 and 13. It may be invalid for a normal distri-
bution because the generated covariance matrix may contain
some errors; that is, it may not be a positive definite matrix.
We use the eigenvalue decomposition technique to create a
positive definite matrix.

Let ¢; and X; be the ith eigenvalues and ith eigenvectors of
matrix X. Sort g; for all i in order of magnitude and create a
diagonal matrix D that makes them diagonal values. Further,
the corresponding X; are arranged in the same order to form
matrix A.

The eigenvalue decomposition of a matrix can be per-
formed as

¥ =DAD™ . (14)

The fact that a matrix is positive definite is equivalent to
the fact that all eigenvalues of the matrix are positive [73].
Hence, we obtain the positive definite matrix version of ¥ by
replacing the negative values of A with small positive values
to obtain the matrix A’ and using the equation

¥ =DA'D. (15)

C. GENERATION OF NOISE-MITIGATED CUMULATIVE
DISTRIBUTION FUNCTION FROM DIFFERENTIALLY
PRIVATE DATA

We assume that the model generator already has differentially
private data privatized by the Laplace mechanism because
it is the most fundamental mechanism. Let v; represent the
privatized value of the true value v; of person i; that is,
v; is drawn from L(x; v;, s), where s = A/e. We use two
hyperparameters: b, which represents the number of bins of
an input domain for calculating a cumulative distribution
function, and r, which determines the output domain. These
hyperparameters do not affect privacy; however, they affect
the accuracy of machine learning models. The output domain
can be [—o00, 00] in theory because we assume a Laplace
mechanism for realizing differential privacy. However, the
accuracy decreases when we set the output domain too wide.
If the true value takes a minimum or maximum value, the
hyperparameter r specifies the ratio of the time it will fall
within that range of the output domain. Let min and max rep-
resent the minimum and maximum true values and let min”"
and maxP" represent the minimum and maximum values of
the output domain. The minimum value of an output domain
is calculated by solving the equation with regard to min”"".

/ " L(x; (max — min)/€))dx =1 —r. (16)

=—00

By solving this equation,

n (max — min)log2(1 —r)

minP™ = min (17)
€
In the same way,
max? = max + (max — min)log 2r. (18)

€
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Let w represent the width of each bin, i.e.,

max — min
W= —". (19)
b
Let b”"" represent the number of bins in the output domain.

This value is calculated as

P — M (20)

w

Let Z(x; u, s) represent the cumulative distribution func-
tion of the Laplace distribution with mean p and scale s. The
probability that a true value is categorized in b;, and it is
privatized to another bin bf " is calculated by

S)i—jl+1 G#1, j#b")
Ro + S i=1,j=1
Pij= ; . . 2n
Ro— Y4 Pix (#1 j=1)
L= P (=0
where for arbitrary m,
m+w ¢ S, 8)dt _ ,—w/s
Ry = / (m;t,s) _s—e s 22)
t=m w 2w
and for arbitrary mand i € {1, ..., b}
o _ /‘eri*w L(m; 1, s)dt /m+(il)*w L(m; t, s)dt
l t=m w t=m w
e—i*w/s 14+ ew/s 2S
( ) (i=2)
= 2w ] (23)
—1 4 e W5 )
1+ — (i=1.)
w

From P; j for all i, j and differentially private data samples,
a cumulative distribution function of the true values can
be estimated. We can use expectation—maximization based
algorithms such as [8].

D. GENERATION OF COPULA SAMPLES FROM
NOISE-MITIGATED STATISTICS

A copula model is created from the noise-mitigated covari-
ance matrix X (Section V-B) and the noise-mitigated cumu-
lative distribution function F; (j = 1, ..., g) (Section V-C).
Then, copula samples can be generated using the cop-
ula model based on Section III-F. However, Section III-F
assumes that the random variable of a cumulative distribution
function is continuous whereas the random variable of the
cumulative distribution function obtained in Section V-C is
discrete.

Let Fj(k) represent the probability that the random variable
of the jth attribute is less than or equal to k, where k =
{0, ..., b — 1}. The values of #; ; are obtained by Equation 3
for all i and j. Let minj represent the minimum value of k in

{0, ..., b — 1} that satisfies Fj(k) > ¢; ;. Then, we calculate
tij .
U, = —— (ming = 0)
o Fi(0) x b

1 .. . . 24)
/ ming + t;j — Fi(ming — 1) ' (
P—— 2, th .
i (Fi(ming) — Fi(ming — 1)) x b (otherwise.)
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FIGURE 4. An example of calculating u} j from ¢; ; in Equation (24) where
b=a. |

An example of calculating Equation 24 is illustrated in
Figure 4. The figure represents the case where b = 4. The
resulting u; = {”;,1’ e u; g} is a generated sample of the
proposed method.

The overall procedure of the proposed method is shown in
Algorithm 1.

VI. EVALUATION

We evaluated the effectiveness of our proposed method using
both artificially created and real datasets. We compared the
case where decision trees are created as is with the case
where decision trees are created using training data generated
by our proposed method because this research targets the
decision tree algorithm as a machine learning model. Fur-
ther, we compared the method of creating a decision tree by
generating training data using a normal copula [60]. In addi-
tion, we compared our method with the data augmentation
method, which is widely used to increase the training data
samples.

There are several methods for generating histograms from
local differentially private data. Although such methods
primarily aim to generate a histogram of attribute values
and do not target the prediction of an attribute value from
other attribute values, we show the results of state-of-the art
methods [32] for the comparison. Gu et al. [32] proposed
IDUE based on Google’s RAPPOR [71] and IDUE based
on OUE [72] for generating a histogram of attribute values.
The value with the highest frequency among all the his-
togram’s bins that match the attribute values to be predicted
can be considered to be the predicted value. Because these
methods assume that the data samples are categorized, the
input data samples are divided into predefined categories.
Here, we consider that the number of categories for the entire
attribute is 107. Henceforth, IDUE based on RAPPOR is
denoted as IDUE(R) and IDUE based on OUE is denoted
as IDUE(O).

The privacy budget € was varied over the range 0.01-10 for
each attribute. The hyperparameters of each machine learning
algorithm are common among the methods being compared.
All results are the average of 10 simulations of 5-fold cross
validation repeated with the same settings. We used the MSE
between the true and predicted values.

The model hyperparameters of the proposed method
are b, r, and the target number of samples. We set 100, 0.05,
and 100,000, respectively, in the experiments.
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Algorithm 1 Overall Procedure of the Proposed Method
Input: Differentially private data v;; (. = 1,...,n; j =
1,...,8), privacy parameter €; (i = 1,...,g), hyper-
parameters b, r, and the target number of samples
Output: Machine learning model
1. fori=1,...,gdo
2: Qi<—{vj‘,,-[j=1,...,n}
3 og <« standard deviation of Q;

»

a)%i < max <6}% - E%, 0)
forj=1,...,gdo
ox,x; < covariance of Q; and Q;

end for
end for
Generate covariance matrix - from G)%,- and oy;, X; (i,j=
I,...,9
10: fori=1,...,gdo
11:  g; < ith eigenvalue of X
12:  A; < ith eigenvector of X

R A4

13: end for
14: Generate matrix D from¢; i=1,...,8)
15: Generate matrix A fromr; i =1,...,8)

16: A’ <— A with replacement of negative values with small
positive values

17: ' <~ DA'D™!

18: bP"" <« Equation (20) based on Equations (17)-(19), b
and r

19: fori=1,...,b"" do

20: forj=1,...,b0"" do

P;j < Equation (21) based on Equation (22)-(23)

21:  end for

22: end for

23: forj=1,...,gdo

24:  F; < estimation results of expectation-maximization

using Py (k,l=1,...,b"")and Q;

25: end for

26: num < the target number of samples

27: S <« samples generated based on g-dimensional multi-
variate normal distribution with X’

28: fori=1,..., numdo

29: forj=1,...,gdo

30: t;j < Equation (3) using s; ; in S

31 u; ; < Equation (24) using F;

32:  end for

3wt (G=1,....8)

34: end for

35: Generate a machine learning model using u; (i =
1,..., num)

A. EXPERIMENT WITH SYNTHETIC DATASETS

We used three probability distributions to generate synthetic
datasets: multivariate normal distribution, multivariate ¢ dis-
tribution, and negative multinomial distribution. We used two
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parameters for generating the datasets: number of attributes
(g) and number of people (n).

For the multivariate normal distribution, all values of the
mean vector were set to zero, and the covariance matrix
was randomly generated such that it was a symmetric pos-
itive definite matrix of real numbers. For the multivariate
t-distribution, the scale matrix was randomly generated such
that it was a symmetric positive definite matrix of real num-
bers, and the degrees of freedom parameter was randomly
generated such that it was a positive real number. For a
negative multinomial distribution, the number of failures until
the experiment was stopped was set to the number of sam-
ples, and the success probability was randomly generated in
(0, 1/g). Each dataset contained g attributes. One attribute
was randomly selected and set to the desired output value.

This study focuses on relatively low-dimensional data
(e.g., fewer than 30 attributes) based on the fact that many
studies on differentially private decision tree generation tar-
get personal data with fewer than 30 attributes. For exam-
ple, Zhao et al. used three real datasets and the numbers
of attributes were 11, 15, and 19, respectively [18]. The
number of attributes of the dataset used in [19] was 20.
Wang et al. [20] used the real census dataset with 10 attributes
and synthetic datasets with 20 attributes. Moreover, many
other machine learning models have been proposed that use
personal data with fewer than 30 attributes, such as [74],
[75]. Of course, there are also many machine learning models
that use a larger number of attributes; however, because most
research on differentially private decision trees is conducted
on datasets with relatively small dimensions, we conducted
our experiments on datasets with fewer than 30 attributes.

Fig. 5 shows the simulation results, where n is fixed at
1000 and € is varied from 0.01 to 10 for each attribute.
The number of attributes (g) was set to 30. The trend of the
results obtained is similar for all probability distributions.
The smaller the value of €, the larger the MSE is, and,
even in scenarios where the value of € is sufficiently large,
the MSE does not go to zero because of the performance
limitations of the machine learning model. There is almost
no difference in the results between the data augmentation
method (Aug.+DT) and the method using the decision tree
as is (DT). The method using a copula [60] (Copula+DT)
produced similar accuracy. This means that simply applying
the copula model to differential privacy data does not lead to
improved accuracy.

Our proposed method (Proposal+DT) achieved a higher
accuracy (note that a low MSE indicates high accuracy). The
estimation accuracy of IDUE(R) and IDUE(O) is relatively
low. Note that these methods can construct a histogram of
all combinations of attribute values, that is, predicting one
attribute value is not the main objective of these methods.

Next, the value of € was fixed at 1.0, and the experi-
ment was conducted by varying n from 1,000 to 10,000.
Fig. 6 depicts the results. The accuracy of the proposed
method improves as the value of n increases. This is
because the larger the value of # is, the better the prediction
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accuracy of the covariance matrix and the reconstruc-
tion accuracy of the cumulative distribution function are.
The accuracy of IDUE(R) and IDUE(O) also improves as
the value of n increases. In general, methods that generate
histograms from differentially private data require a large
amount of data. It is expected that the accuracy of these meth-
ods will be much better when large datasets are available.
In contrast, the accuracy of the other methods did not improve
as the value of n increased. The accuracy of the machine
learning model is not expected to improve because of the large
influence of noise in differential privacy, even if there is a
large amount of data with large errors.

To evaluate the variability of the MSE of the proposed
method, the results are shown in Fig. 7, where the standard
deviation is represented as an error bar. When the size of a
dataset is small, the value of the standard deviation is rela-
tively large, but the value of the standard deviation decreases
as the size of the dataset increases. Overall, it can also be seen
that the standard deviation is not very large compared to the
value of MSE. In addition, all of the training accuracies (and
their standard deviations) were almost 0.0.

B. EXPERIMENT WITH REAL DATASETS
We used four real datasets for the evaluation. A description
of each dataset is provided below.

In the real datasets of Boston, !Kung, Diabetes, and Adult,
the number of attributes is 14, 4, 11, and 7, respectively. These
datasets are accessible to all. Moreover, our research targets
the area of the convergence of privacy and machine learning
technologies; therefore, we selected famous datasets for the
privacy and machine learning areas, respectively. The most
important reason for using the Adult dataset is that it is often
used as a benchmark in the field of privacy protection data
analysis. The !Kung dataset is also often used to evaluate
differential privacy techniques. Boston and Diabetes datasets
are famous for machine learning because they are included
in the scikit-learn framework, which is the foremost machine
learning framework. Each dataset is detailed below.

o Boston dataset
The Boston dataset is considered the baseline dataset
for machine learning algorithms [69], [70]. A famous
scikit-learn framework! contains these data. The Boston
dataset comprises data on housing in Boston in the
late 1970s. It contains 506 sets of data with attributes
such as the crime rate of each city and the percentage
of the low-income population. Further, this dataset has
been used in many studies on privacy-preserving data
mining [76], [77].

o !Kung dataset
The !'Kung dataset [78], [79] is a small census dataset
that is widely used for experiments on data mining for
differential privacy, such as in [37] and [80]. The !Kung
dataset contains 287 records. Following [37], we set

1 https://scikit-learn.org/
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FIGURE 7. MSE results with error bars of the proposed method with
changes in the size of dataset.

a task for predicting the height from other attributes
(weight, age, and sex).

o Diabetes dataset
The diabetes dataset [81] is contained in scikit-learn.
This dataset was designed to predict the progression of
the disease after one year based on the test results of dia-
betic patients. It contains 442 records with 11 attributes.
Many studies have used this dataset to evaluate data
mining techniques [82], [83].

o Adult dataset
The Adult dataset [84] has been used in many studies
on privacy-preserving data mining, such as [85], [86].
This dataset is the census data from the USA and has
30,162 records. It contains a flag indicating whether the
salary of each person is greater than 50,000 dollars, six
numerical attributes such as age, and eight categorical
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(b) Multivariate ¢-distribution

(c) Negative multinomial distribution

attributes such as race. We used the salary attribute and
six numerical attributes.

Fig. 8 shows the experimental results. The accuracy of the
proposed method is the best in the experimental results on
the real dataset. For the Adult dataset, the accuracy of the
proposed method (Proposal+-DT), IDUE(R), and IDUE(O)
are similar. The adult dataset has more than 30,000 records,
which is a relatively large dataset for personal data containing
privacy information. Although there is an error of differential
privacy, if the value of € is large and sufficient data are col-
lected, IDUE(R) and IDUE(O) can achieve high accuracy as
well as the proposed method. However, the proposed method
achieved the best accuracy for most settings, especially when
€ isin [0.01, 8.0] for all datasets.

Finally, we conducted experiments on DNN, SVM, and
kNN to determine if the proposed method can be applied
to other machine learning algorithms besides decision trees.
The results are depicted in Fig. 9, which shows the increase
ratio of the MSE of each machine learning algorithm. For a
decision tree, let & be the MSE of Proposal+DT, and let 8 be
the MSE of DT. In this case, the increase ratio is calculated
by (a — B)/B. Therefore, the increase ratio becomes negative
if the MSE of Proposal+DT is less than that of DT. Thus,
we calculated the increase ratio for the other algorithms
as well. For kNN and DT, the proposed method is clearly
effective; for DNN, the proposed method can improve the
accuracy of the Boston, !Kung, and Diabetes datasets, except
for the Adult dataset, which has a large amount of data. For
the Adult dataset, the proposed method does not deteriorate
the accuracy, and the accuracy is almost the same as that
of the DNN. However, the proposed method is not effective
for SVM.
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FIGURE 9. Increased ratio of the MSE of the real datasets of various machine learning
models. Negative values indicate that our method decreased the MSEs.

In this experiment, we have measured not only MSE but
also mean absolute error (MAE) to further analyze the per-
formance of the proposed method. The results are shown
in Fig. 10.

Because the MSE is calculated as the square of the differ-
ence between the true value and the predicted value, the MSE
will increase significantly if there is a value that is signifi-
cantly mis-predicted. Therefore, it is suitable for evaluating
models that require robustness. On the other hand, because
MAE calculates absolute value errors, it measures average
ability without considering robustness. The results of Fig. 10
are similar to those of Fig. 9; therefore, for both MSE and
MAE indicators, the proposed method is more useful than
existing methods for kNN, DT, and DNN.
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VII. DISCUSSION
A. ADVANTAGES AND DRAWBACKS
In the previous section, we compared the proposed method
with the copula method, histogram generation meth-
ods (IDUE(R) and IDUE(O)), and data augmentation.
Experimental results show that the proposed method has
the highest accuracy. On the other hand, the computa-
tion complexity of the proposed method is higher than
the copula method because the proposed method uses an
expectation—maximization-based algorithm and a copula
algorithm. On the contrary, data augmentation has a very
small computational cost but also poor accuracy.

If histogram analysis rather than machine learning model
generation is the goal, then histogram generation methods
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TABLE 3. Comparison of methods for machine learning model generation
from local differentially private data.

Method [ Accuracy | Complexity
Proposed method High Middle
Copula method Middle Low-Middle
Histogram generation such as [32], [72] Low Middle
Data augmentation Low Low

have very good accuracy. The objective of this study, how-
ever, was machine learning model generation, and histogram
generation methods did not work well for this purpose.
Table 3 summarizes the accuracy of the machine learning
models generated and the complexity of the methods.

B. VALUE OF EPSILON

We found that the proposed method is especially effective
when € is in the range 0.01-8. Here, we analyze the amount
of noise imparted to confirm that it is within a range that can
be applied in many practical scenarios. The noise added by
differential privacy is generated from L(x; A /€). Therefore,
the expected absolute value is calculated as

Elnoise] = /

=—00

abs(x)L(x; AJe)dx = AJe. (25)

The expected absolute value of the Laplace noise is 1 /e when
the range of the value of a true personal attribute value is
[0, 1). The expected absolute value of the noise is in the
range [0.125, 100] when € is in the range [0.01, 8.0]; i.e., the
amount of noise relative to the range of the possible values of
the true value ranges from 12.5% to 10000%.

To determine the influence of € on the effectiveness
of the reconstruction copula model from differentially pri-
vate data, we conducted an additional experiment using the
Boston dataset. In Fig. 11, Original represents the correlation
value (-0.388) between per capita crime rate by town and an
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FIGURE 11. Calculated correlation value vs. e.

objective attribute (median value of owner-occupied homes).
Fig. 11 also shows the correlation values of differentially
private data and data generated by the proposed method.
When the value of € is small, the correlation values of dif-
ferentially private data and data generated by the proposed
method approach zero. Because each data sample has a large
noise, the information about correlation will be lost. However,
for all values of €, it can be seen that the proposed method
works well and the correlation values are closer to the true
values than the differentially private data.

C. APPLICATION TO CATEGORICAL DATA
We have primarily focused on numerical data in this paper.
However, application to categorical data is not difficult; it is,
in fact, straightforward. Mutual information is used for the
characteristics of each attribute pair. The cumulative distribu-
tion function of each pair of attributes was estimated to reduce
the impact of perturbation. Then, the mutual information of
each pair of attributes was calculated.

If personal data have both numerical and categorical val-
ues, privatized numerical values are digitized into several
categories when generating a copula model. Specifically,
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assume that the first % attributes are numerical and the next
(g — h) attributes are categorical without loss of generality,
ie., O1,..., Oy are numerical attributes and Qpy1, ..., Qg
are categorical attributes. When generating a cumulative dis-
tribution function for each attribute, the method described
in Section V-C is used for Q; (i < h), and the method
described above is used for Q; (i > h). In our pro-
posed method, covariance is necessary for each pair of
numerical attributes, and mutual information is necessary
for each pair of categorical attributes. Assume that the pair
of attributes are Q; and Qj. The covariance is calculated if
i < handj < h. The mutual information is calculated
if i > handj > h. Special processing is required if
i < handj > horifi > hand ! < h. In this case,
the privatized numerical values are digitized into several
categories, and the mutual information of the two attributes
is then calculated.

As has been mentioned, this paper is concerned with
regression tasks. When applying our method to the clas-
sification task, it is a requirement to deal with class
imbalance.

D. COMPARISON BETWEEN SEVERAL MACHINE
LEARNING ALGORITHMS

The reason why the proposed method works well is as
described in Section IV for decision trees. Because differen-
tially private data have a large amount of noise, the accuracy
of machine learning models trained on such data decreases.
However, several machine learning algorithms are robust to
such noise data.

In DNN, parameters are updated using stochastic gradi-
ent descent or its variants. If too much noise is added to
this process, it will often be trained in the wrong direc-
tion. However, by increasing the batch size, the robustness
to noisy data is increased. This is because, within a single
batch, gradient updates from randomly sampled noisy data
are nearly canceled out [87]. Nevertheless, there is a limit to
the ability to cancel out noise. The experimental results show
that the accuracy of DNN is better when using the proposed
method.

The SVM for regression is also called support vector
regression (SVR). SVR employs an e-insensitive loss func-
tion that penalizes predictions that are farther from the
desired output than e. The e-insensitive region is less sensi-
tive to noisy inputs and thus increases the robustness of the
model [88]. This property of SVM may have worked well for
noisy, differentially private data. More detailed validation for
SVM is a future issue.

On the other hand, KNN is known to be very sensitive to
noisy data [89]. Therefore, the proposed method works well
also for KNN, as shown by the experimental results.

E. TREATING HIGH-DIMENSIONAL DATA
Because a copula model is suitable for low-dimensional data,
handling high-dimensional data as it is with our method
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is difficult. To treat high-dimensional data, techniques of
dimension reduction, such as principal component analysis
(PCA), can be used. Several studies have shown that reducing
the dimensions improved machine learning models’ accu-
racy [90], [91]. To perform PCA with differentially private
data, the algorithm Wang and Xu proposed [92] can be
used.

For DNN, many models use high-dimensional data. How-
ever, several studies have generated highly accurate DNN
models, using PCA or other dimension reduction techniques,
such as [93]. This study is concerned with data with relatively
few attributes. Therefore, for high-dimensional data, it has
not been verified that the proposed method works effectively
without dimensionality reduction. Verification of how the
proposed method works with and without dimensionality
reduction is a future issue.

One reason to focus on decision trees in this paper is
high human interpretability. On the other hand, in many
studies, resarchers have aimed to interpret DNNs’ behavior.
For example, Nascita et al. proposed an algorithm that pro-
vides global interpretation for DNNs [94]. Interpretation of
model behavior when DNN models are constructed using
our proposed method is also an issue to be addressed in the
future.

F. PREPROCESSING TECHNIQUES

General preprocessing techniques include data cleaning,
dimension reduction, and so on [95]. They do not consider
differentially private numerical data, which are very noisy
but for which the probability distribution of the noise is
the Laplace distribution. Our proposed method generates a
copula-based synthetic dataset that reduces the noise due
to differential privacy. Therefore, the techniques (e.g., data
cleaning and dimension reduction) could be applied to the
copula-based synthetic dataset generated by the proposed
method. Data augmentation is another preprocessing tech-
nique used for increasing training data. In addition, this tech-
nique does not consider differentially private data; therefore,
it makes little contribution to improving the accuracy of
machine learning. In the experiment section, we showed that
our method outperforms other techniques, including a data
augmentation technique.

VIil. CONCLUSION

Personal data with noise caused by differential privacy is
widely collected to protect privacy. In this paper, we pro-
posed a method for generating highly accurate machine
learning models, especially decision tree models, based on
datasets with differential privacy noise. Experimental results
show that the proposed method improves the accuracy of
machine learning models, not only for the decision tree
algorithm but also for kNN and DNN with relatively few
attributes, for a range of practical € values compared with
the conventional copula method and state-of-the-art IDUE(R)
and IDUE(O).
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In future work, we plan to extend the proposed method to
other types of datasets where differential privacy is applica-

ble, such as time-series data, image data, and data with graph
structures.
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