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ABSTRACT

We developed an articulated mobile robot that can move on the magnetic curved
walls and traverse through obstacles for wall surface inspections of a large tank.
This robot is equipped with magnetic wheels and is able to stick to and move on
steel wall. We add passive roll joints and turn off the torque of the pitch joints to
ensure the wheels keep in contact with the curved surface. The developed robot is
tested through experiments in the laboratory and also in a field test at the World
Robot Summit 2020. The experiments are conducted to confirm the movements
of the robot on the curved wall surface and when the units are lifted for obstacle
traversal. As the results, the robot is not able to overcome an obstacle near the wall
such as a handrail but is able to move freely on the curved wall surface and traverse
some obstacles on the corner.

KEYWORDS
Snake robot; articulated mobile robot; wall climbing; magnet; World Robot
Summit 2020

1. Introduction

It is assumed that every few years, large-scale inspections are carried out to detect
deterioration of buildings, tanks, and ducts in a plant. During this inspection, plant
operations may be necessary to stop. Safety and efficiency are important for detecting
corrosion and gas leaks in structures with large surface areas such as tanks. It is
expected that the introduction of robots will shorten the operation stop time and
make it easier to inspect dangerous areas. For tank inspection on cracks and rust
surface, the robot needs to move on the tank wall surface in order to bring the sensors
close to the target area. However, it is difficult for the robot to reach the tank because
the plant is a complex environment with various structures such as pipes and stairs.

At present, various types of wall-climbing robots are being researched and developed
[1,2]. These robots are mainly classified into vacuum adsorption, magnetic adsorption,
rotary-wing adsorption, and bionics adsorption.

The vacuum adsorption type [3,4] can move on the wall surface by the adsorption
structure and wheels. However, it is difficult to overcome obstacles, and this is one
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of the problems to be solved in the future. The two-body negative pressure suction
wall-climbing robot [5] is being conducted. This robot uses a two-legged mechanism to
overcome obstacles. Also, most of the conventional negative pressure adsorption robots
require a cable to connect to an external power source to operate the adsorption device.
This greatly limits the range of movement.

Permanent magnet adsorption is very stable. In contrast, because the adsorption
is too strong, it also becomes a resistance to the movement of the robot. Magnetic
adsorption is limited to magnetic materials, but it has the clear advantage that its ad-
sorption capacity is more stable than other adsorption methods. At present, magnetic
adsorption is often used in existing wall-climbing robots [6-12].

Electromagnetic adsorption [13] generates magnetism when the electromagnet is
energized, can be adsorbed the robot to the wall, and desorbs when the power is
turned off. This solves the problem of obstructing operation by permanent magnets.
However, electromagnetic adsorption has drawbacks such as the need for continuous
power supply and the heavy electromagnet. At present, electromagnetic adsorption
has not been used compared to permanent magnets due to these problems.

Rotary-wing adsorption has the advantages of stable adsorption and less wall rough-
ness requirements. In contrast, this type of robot generally requires a cable to be con-
nected to an external power source. This greatly limits the range of movement. For
the above reasons, rotary-wing adsorption wall moving robots are not widely used.

Bionics adsorption [14,15] is a robot made by applying bionics and animals’ adsorp-
tion methods on walls to the wall-climbing robot. This type of robot has the advantages
of small size and wide adaptability. However, this type of robot is not widely used due
to its weak load capacity and difficulty in manufacturing adsorption structures.

As for the movement mechanism, the leg type robot has a high ability to traverse
obstacles, but the movement speed is low. In contrast, the wheel type and crawler type
have high moving speed, but their ability to traverse obstacles is low. It is difficult for
them to traverse obstacles located far away from walls. For example, a motorbike type
wall-climbing robot [16] can move on curved surfaces and traverse corners. However,
this robot needs to move its wheels along the environmental surface, making it difficult
to traverse obstacles located far from the wall surface. From the above, it is difficult for
conventional wall-climbing robots to achieve both moving speed and obstacle traversal
ability. Many of these robots are specialized in wall movement, but cannot move to
the wall from the floor or traverse obstacles by themselves.

However, there are various obstacles and narrow spaces in plant facilities. In order to
carry out inspection task efficiently, mobility and obstacle traversability are required.
Therefore, we focus on an articulated mobile robot that can enter narrow spaces, climb
over steps, and climb stairs [17]. In this research, we develop an articulated mobile
robot that consists of multiple units and moves on wheels to achieve both mobility and
obstacle traversal. There are various structures in the plant facility, and it is expected
that cables will hinder the movement of the robot. Many magnetic structures are used
in plant facilities such as tanks, walls and ducts. Based on the above, we have adopted
an adsorption method that uses permanent magnets that do not require a power source
for the adsorption device. In addition, in plant inspection, not only wall movement but
also other task such as inspection inside the duct is desired. Since this robot is similar
to a general articulated mobile robot, it can also traverse through various environment
other than the wall surface.



2. Requirements

Tank wall and in-duct inspections are among the most difficult areas for human inspec-
tion at plant facilities. World Robot Summit 2020 Plant Disaster Prevention Challenge,
which held in a test field that simulates a typical plant, has been set as the develop-
ment target. In this competition, there are inspection missions in ducts and on the
walls of large tanks. If the robot can adapt to an environment that simulates actual
plant inspections, it can contribute to the practical application of robot-assisted plant
inspections. In this competition,the total length of the duct is 17 [m], and the inter-
nal cross-sectional dimensions are 597 x 397 [mm)]. The inspection target is to locate
foreign matters and QR markers in the duct. The tank radius is 1.9 [m], height is 5
[m], and it is made of steel. A spiral staircase is installed around the tank. In order to
inspect the tank wall surface, it is necessary to move on the curved wall surface and
deal with complicated environments such as handrails and steps of the spiral staircase.
In particular, the robot must traverse the spiral staircase to reach target inspection
areas above the staircase. Therefore, the robot is designed to meet the following re-
quirements in order to realize the tank wall surface inspection.

Movement on curved wall surface

Attraction force that does not inhibit wheel lifting
Friction force to prevent slipping when traversing obstacles
Equipped with inspection device

In order to move on curved surface of a tank, the robot needs to adapt to the
curvature of the wall. However, it is difficult for articulated mobile robots composed
of yaw joints and pitch joints[18-23] to keep all wheels in contact with the curved
surface due to lack of degrees of freedom. In particular, the smaller the radius of the
surface, the more difficult it is to keep contact between the wheels and the curved
surface. The goal is to adapt to the tank(R = 1.8[m]) wall with the smallest radius
in the test field. Therefore, the robot in this research adapts to curved surfaces by
structure and motion control. The plant has many pipes, which create obstacles in the
transition between the wall and the floor and in moving along the wall surface. The
three obstacles shown in Figure 15 are difficult for a conventional wall-climbing robot
to overcome. In order to overcome these obstacles, it is necessary to lift the magnetic
wheels on the floor or the wall. However, if the attraction force of the magnetic wheel
is too large, the wheels cannot be lifted. If the friction force of the magnetic wheel
is insufficient, the number of contact points decreases when the wheels are lifted on
the wall surface, causing slippage. Therefore, these two conditions are expressed in a
mathematical formula, and the goal is to develop the magnetic wheel that satisfies the
conditions. In addition, the robot needs a manipulator to point sensors at the target
when inspecting. We develop simple inspection arms that can be mounted on a curved
wall for moving and entering a narrow space. The arm for the tank should be designed
to be light enough not to hinder the movement of the curved wall and the traversing
of obstacles. The arm for ducts should be small enough to enter into ducts.

3. Design

In this study, we develop an articulated mobile robot(Figure 1) that can move on the
curved wall and traverse obstacles to inspect the tank wall surface. Unlike previous
articulate mobile robots[18-23] , the developed robot is equipped with magnetic wheels



Table 1. Parameters of MagSnake-1.

Link length [mm] 90
Total size (LxWxH) [mm] 1380x148x120
Wheel radius [mm] 60
Total mass [kg] 8.1
Max moving speed [m/s] 0.20
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Figure 1. Structure of the robot.

and passive roll joints. The magnetic wheel is a mechanism for adsorbing to wall and
moving on the wall surface. The passive roll joint is a mechanism for keeping contact
between wheels and the curved surface. The developed robot is shown in Figure 1,
and the specifications are shown in Table 1. The structure of the robot is divided into
several units as shown in Figure 2. There are three types of units: body unit, head
unit, and tail unit. Body unit is a unit that constitutes the main body of the robot
and has active magnetic wheels. Head unit is a unit equipped with a fisheye camera,
a sensor arm for inspection, and a computer for sensor control. Tail unit is a unit
equipped with a fisheye camera, a computer for controlling motors, a battery, and an
emergency stop button. Head unit and tail unit are equipped non-magnetic dummy
wheel so that they can be steered easily. However, a few magnets are installed at the
bottom of the head unit so that attraction forces for maintaining the posture can be
obtained.

This section describes passive roll joints related to curved surface adaptation, mag-
netic wheels related to sticking to the wall and obstacle traversal, and arms related to
inspection functions.
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Figure 2. Model of the robot.



3.1. Passive roll joint

In order for the robot to move on the wall surface while generating sufficient attraction
force, it is desirable to move while keeping as many wheels in contact with the tank
wall surface as possible. When an articulated mobile robot travels on a plane, the
contacts between the wheels and the plane are maintained. However, when traveling
on a curved surface, the contacts between the wheels and the plane is not guaranteed.
Even if the wheels are made compliant, the multi-linkage type robot cannot keep
contact between all wheels due to accumulated errors.

In order to maintain the contacts between the curved surface and the wheels, passive
roll joints are added between the body unit of the robot. The pitch joints are also
passively rotated by turning off the torque. With the attraction force from the magnetic
wheels, the passive roll joints and pitch joints are passively orientated to cope with
the curved surface of the wall.

In addition, the rotational range of the passive roll joint is determined so that unit
lifting motion is not adversely affected. Here, the required range of motion of the roll
joints is obtained numerically with a model of two units (Figure 3). A model with the
yaw joint angle ¢ is placed with the rear wheels in contact with the curved surface at
the orientation of the unit . The combination of the pitch joint angle and roll joint
angle at which the front wheels almost contact the curved surface when 6 and ¢ are
changed is obtained from the geometric relationship. However, contact is assumed to
occur when the minimum distance between the wheel and the curved surface becomes
minute, and point contact between the wheel and the curved surface is a condition
for contact. The range of motion of the yaw joint is mechanically limited to +60[deg].
The results for yaw joint angles ¢ = 0,45, 60[deg] are shown in Figure 4. When the
orientation of the unit on the curved surface is § = +45, £135[deg] and the yaw joint
angle is ¢ = 0[deg|(Figure 3), the required roll joint angle is the largest. By referring
to the parameter of the tank to be inspected, the maximum required roll joint angle
is £2.6][deg]. Therefore, the rotational range of the developed robot is set to +3[deg]
with a margin. The structure of the passive roll joint on the developed robot is shown
in Figure 5. The passive roll joint is mainly composed of base frame, yaw frame and
stopper. The base frame is fixed to the motor of the pitch joint. The yaw frame is fixed
to the servo horn of the yaw joint. The base frame and yaw frame are connected by
a roll axis and rotate passively. The stopper is fixed to the base frame and limits the
rotational range of the passive roll joint. Furthermore, the stopper receives the load in
the thrust direction generated at the passive roll joint. The two body units connected
by the passive roll joint are in the state shown in Figure 6a when the passive roll joint
rotates. Figure 6b shows the robot that adapts to curved surface with the passive roll
joints. By rotating passively the pitch joints and roll joints, all magnetic wheels are in
contact with the curved surface (R = 1.8)[m] (Figure 6b).

3.2. Magnetic wheel

3.2.1. Structure

In previous researches, several wall climbing methods have been considered such as
adhesive[24], negative pressure[25,26] and magnetic[27]. In the adhesive method, the
adhesive strength will be reduced over time due to dust or deterioration of the material.
The method that uses negative pressure is not suitable for curved surfaces or obstacle
traversing because the suction unit must be in contact with the wall without any
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Figure 6. The movement of passive roll joint.

clearance. Since the target inspection tank is magnetic, a method using magnetic
force is adopted. Permanent magnets are used as the adsorption mechanism to reduce
the weight and simplify the system. Neodymium magnets are used because of their
light weight and strong attraction force.

The relationship between the magnitude of the magnetic force and the distance
between the magnetic poles is important for the position of the magnet. The magnetic
force, which is the force acting between the magnetic poles, is expressed by Coulomb’s
law of magnetic force as follows.

(1)

The magnitude of the magnetic force is proportional to product of the respective
magnetic quantities m1[Wb] and my[Wb], and inversely proportional to square of the
distance r[m] between the poles where, k,, is a proportionality constant. In order to
generate magnetic force effectively for wall climbing, it is preferable to place magnets
in contact with the wall. Therefore, magnetic wheels (Figure 7) with magnets placed
around the periphery of the wheels are developed. The wheel is formed with PLA
materials by using a 3D printer, and the tire is molded with silicone rubber KE-1310ST
(Shin-Etsu Chemical Co., Ltd.). A ring-shaped magnets are fixed to the wheel with
non-magnetic screws. A rubber O-ring is inserted between the ring-shaped magnet
and the wheel to adjust the fixed position of the magnet. In addition, the motor
is placed inside the wheel to reduce the width of the robot. The wheel diameter is
kept as small as possible within the range where the motor can be stored inside. The
number of magnets is the number of magnets lined up without interruption around
the circumference of the wheel.

The attraction force and the friction force of the magnetic wheel can be adjusted
by changing the distance § between the magnet and the tire surface. The friction and
attraction forces are measured when the distance § between the magnet and the tire
surface is changed using the created magnetic wheel. Attraction force is measured
by pulling upward a magnetic wheel adsorbed on a steel plate placed horizontally
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Figure 7. Magnetic wheel.

(Figure 8a). Friction force is measured by pulling two magnetic wheels adsorbed on
a steel plate placed horizontally sideways (Figure 8b). To prevent the wheels from
rolling, the two magnetic wheels are connected by a component and measured. The
measured value divided by two is the friction force per magnetic wheel. A digital
force gauge FGJN-5 (NIDEC-SHIMPO Co.) is used for the measurement. A steel
plate with a thickness of 6[mm] is used as the magnetic material. Ten measurements
are taken at each distance. The measured results of the attraction force and friction
force of the magnetic wheel according to the distance § are shown in Figure 9. The
standard deviations of the measured values for all wheels (6=1.5mm) are 0.73[N] for
the attraction force and 0.21[N] for the friction force. The attraction force decreases
as the distance § increased. The friction force has a quadratic relationship and has the
highest value around distance § =1-1.5[mm)]. By adjusting the distance ¢ based on the
measurement results, the attraction force and friction force can be adjusted depend
to the requirements.

3.2.2. Attraction force

When traversing obstacles or discontinuous surfaces, it is necessary to lift the unit
by stripping the magnetic wheel from the wall or floor surface. In particular, a large
pitch joint torque is required to lift the unit from a flat surface against the attraction
force. As shown in Figure 10a, the attraction force of two wheels 2F, is generated
at the contact point between magnetic wheels and surface, and the gravity M;g is
generated at the center of gravity of the lifting part. Let the mass to be lifted be
M, the acceleration of gravity be g, and the distance between the pitch joint and the
contact point be [, and the distance between the pitch joint and the center of gravity
be lepn. The moment around the pitch joint is 2F,l due to the attraction force and
M;gler, due to gravity. To lift the lifting part up, the required pitch joint torque must
exceed the moment caused by the gravitational and the attraction force of magnetic
wheels. Therefore, the condition of 7 is set as follows.

7> Miglem + 2F,1 (2)

From the equation above, the attraction force per magnetic wheel that can be lifted
is set as follows.

T —= Mlglcm

F, <
“ 21

(3)
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Figure 10. Attraction force acting on the robot.

The robot is more likely to peel off from the wall when it moves horizontally on the
wall because the distance between the vertical contact points is the smallest as shown
in Figure 10b. Let the mass of the robot be M, the height of the center of gravity
be hem, the distance between the magnetic wheels be w, the width of the tire be wy,
the number of body units be ny, and the acceleration of gravity be g. The attraction
force of wheels nyF, is generated at the contact point between magnetic wheels and
surface, and the gravity Mg is generated at the center of gravity. The moment around
the edge of the lower magnetic wheel is ny F, (w + %)due to the attraction force and
M ghe, due to gravity. Therefore, the condition that the robot does not peel off from
the wall is set as follows.

nyF, (w + %) > Mghem (4)

The attraction force per magnetic wheel F; can be obtained as

Mghem

F, _
o (wt )

()

However, this is a conditional expression that indicates the upper and lower limit of
the attraction force and is independent from the friction force. By substituting the
parameters in Table 2 into the above equation, the condition for the attraction force
is 7.4[N]< F, < 18.4|N].

3.2.8. Friction force

When the robot is climbing on a vertical surface, the friction force of the magnetic
wheel must exceed its own weight to prevent from sliding down. Since the friction
force is generated at the contact points between the magnetic wheel and wall, it varies
depending on the number of these contact points. In particular, when the robot is
traversing an obstacle on a wall(Figure 11), the number of contact points is greatly
reduced and the friction force is decreased. In this case, the robot must keep enough
contact points to generate sufficient friction force. Let the mass of the robot be M,
the friction force per magnetic wheel be Fr, the number of body units be ny, and the
acceleration of gravity be g. When the body unit mass is Mp, the head unit mass is
My, and the tail unit mass is M, the robot mass is M = Myny + My + M;. Since
there are two magnetic wheels in one body unit, the friction force generated per unit
is 2F. Let the number of body units to be lifted be n;, the friction force on the robot

10
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Figure 11. Friction force acting on the robot.

Table 2. Calculation parameters.

M, [kg] 0.278
M, [kg] 1.171
M;[kg] 0.794
M, [kg] My, + M,
ny 6
ny 2
[[mm] 180
w[mm)] 97
we [mm] 21
L [mm] 140
hem[mm] 60
himm)] 44
7[Nm] 8.6
g[m/s?] 9.81

is 2F¢(ny — ny). Therefore, when n; of body units are lifted, the condition to prevent
the robot from sliding is set as follow.

2Ff(ny — ) > (Myny + My, + My)g (6)
The friction force per magnetic wheel Iy can be obtained as

(Mbnb + My, + Mt)g

Fe>
d 2(np —mny)

(7)

This is a conditional expression that indicates the lower limit of frictional force. By
substituting the parameters in Table 2 into the above equation, the lower limit of
friction force is 9.93[N]. From the equation (3)(5)(7) and Figure 9, the distance § =
1.5[mm)] is determined to be the appropriate attraction and friction force.

11



Table 3. Parameters of the arm.
Arm for tank inspection  Arm for duct inspection
Length[mm] 380 227
Weight|kg] 0.200 0.327

Sensor

L

(a) Arm for tank inspection. (b) Arm for duct inspection.

Figure 12. Structure of the arm.

3.3. Arm

Two types of arms are designed for tank inspection and duct inspection respectively, as
shown in Figure 12 . The arm for inspecting the tank wall is designed to be lightweight
to reduce the risk of falling from the wall. The arm length is designed long enough to
keep the inspection target within the viewing angle of the sensor. From the equation
(3)(5)(7), the condition for the attraction force is 7.6[N]< F, < 17.6]N] and the lower
limit of the friction force is 10.2[N] when this arm is mounted. Figure 9 shows that the
weight of the arm satisfies the conditions at § = 1.5[mm)]. The arm for duct inspection
is designed small enough to be operated in a narrow space. The maximum height of
the robot equipped with this arm is 298[mm]|, which is large enough to enter the duct,
compared to the height of 397[mm] inside the duct. The specifications of each arm are
shown in Table 3. Both arm are equipped with an Intel D435i as a sensor for inspection.
Each joint is driven by a ROBOTIS servo motor. The links are made of aluminum and
PLA materials. The arm for the tank inspection has 1 degree of freedom, and the arm
for the duct inspection has 3 degrees of freedom.

4. Control
This robot changes its motion control according to its environment. It has two types of

control: 3-D steering control for moving on a plane or a curved surface, and Obstacle
traversal control for changing the moving surface and overcoming obstacles.

12



Figure 13. Definition of a continuous backbone curve.

4.1. 3-D steering control

This robot is operated by a shift control [28]. The continuous curve model in 3D space
is represented using the backbone coordinate system e;, ey, e, as shown in Figure 13.

o =edl)

= my(9)en(s) = rpls)ey (s -
= —R(er(s)

e&’és = Kp(s)er(s

T

where ¢ = [z(s),y(s), z(s)]" is a vector representing the coordinates of a continuous
curve, and s is the length variable along the curve. k,(s), ky(s) are the curvature
around the pitch and yaw axes. These parameters of curvature are determined by the
operator. i-th yaw joint angle ¢; and pitch joint angle i; are given by integrating
kp($), ky(s) in the vicinity of each joint.

sn—2(i—1)l
b = —/ Ky(s)ds

n—2il
sn—(2i—1)l

wo= - rpls)ds (9)

h—(2i+1)1

sp, 1s the leading position of the robot on the curve. By changing the value s, the range
of the robot body on the curve changes, and a Follow-the-Leader control is performed
along the continuous curve. However, this robot needs to adapt to the curved surface
by acting passively. Therefore, the torque of the pitch joints are turned off and only
the target angle of the yaw joints is used. By passively rotating the roll and pitch
joints, the robot can keep contact with the curved surface. Only the first pitch joint
is controlled to keep posture of the head unit. In addition, the rotating speed of the
wheels are controlled by considering the curvature of the continuous curve and the
offset position of the wheels[17].

The continuous curve for the developed robot is designed as shown in Figure 14.
The joint angles are calculated based on the Follow-the-Leader control. The torque of
the pitch joints are turned off and the robot can adapt to the curve surface of the tank
wall as shown in Figure 14c. In Figure 14b, the pitch joints colored in purple indicate
that they are controlled passively.

13



(a) Continuous target curve (b) Calculated robot posture (c) Robot posture on a carved wall

Figure 14. Continuous target curve and robot posture.
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Figure 15. Assumed obstacles and traversal routes. r = 0.13[m], a = 0.08[m], b = 0.05[m].

4.2. Obstacle traversal control

The pitch joints must be activated to lift the unit to traverse obstacles. However, if all
the pitch joints are activated, the robot cannot adapt to curved surface. Therefore, the
robot can traverse obstacles by controlling the pitch joints partially. Figure 15 shows
the path taken by the robot to reach the upper side of the tank wall. There 3 types of
obstacles on the route: a 270[deg] corner when moving from the pillar to the landing
of the staircase(A), a 90[deg] corner when moving from the landing of the staircase to
the wall(B), and a handrail near the wall(C). In this study, we propose an obstacle
traversal control by designing a moving route to traverse each of these obstacles, as
shown in Figure 15. Obstacle traversing routes are designed for each obstacle. Each
obstacle traversing route consists of of straight lines and circular arcs. Two body units
of this robot are lifted on the wall to traverse obstacle C. The arc length of the route
at obstacle C is designed so that the number of body units to be lifted is 2 or less. The
routes of obstacle A and B are shaped like connecting two vertical straight lines with
an arc in order to avoid a small pipe and cross the corner. In the route of obstacle A,
the center of the arc is shifted toward the wall so that the lifted unit is not too far
from the wall. The pitch joint angles are geometrically calculated so that the pitch
axis follows these routes. All yaw joints are set to be 0[deg] in this control. The wheel
velocity is calculated from the distance traveled by the pitch axis.

The range in which the pitch joints are activated is set according to each obstacle
traversal route. In the following, we explain the posture when the robot traversing
a handrail, which is particularly prone to peeling. As shown in Figure 16, on the
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Figure 16. Moment acting on the robot when traversing a handrail.

uppermost deactivated pitch joint, there is a moment M; in sticking direction by
the magnetic wheel and a moment M, in the peeling direction due to the weight
of the lifting part. It is the attractive force of the magnetic wheel coaxial with the
active pitch joint that affects the moment M;. We refer to the contact point where
this attraction force is generated as the effective attraction point. In order to prevent
the robot from falling, M7 > My is required. M; varies depending on the number
of effective attraction points determined by the range in which the pitch joints are
activated. Let the attraction force be 2Fy, the link length be [, and the number of
effective attraction points be n, then M; can be obtained as

My = 2F Jl+4F, 1+ ...+ 2nF,l
= 2F,0) k
k=1
= Fuln(n+1). (10)

M> varies depending on the posture of the lifting unit. The center of gravity of each
unit is assumed to be on the pitch axis. The moment My is expected to be the largest
value in the posture shown in Figure 16. Let the mass of the body unit be my, the
acceleration of gravity be g, and the lifting height be h, then M5 can be obtained as

My = 2mygh. (11)
The parameters (Table 2) are substituted into the equation (10)(11) to obtain %
When n =1, % = 6.21, and when n = 2, % = 18.6. However, n = 2 is set to allow

for the case where only one of the magnetic wheels is adsorbed. Similarly, n = 2 is
set at the obstacle A where the head of the robot is lifted by the wall surface. At
the obstacle B where the robot moves from the floor to the wall, where there is little
possibility of flaking from the wall, n = 1 was set.
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Figure 17. Result of the experiment of moving on a large tank at the World Robot Summit 2020.

5. Experiment

5.1. 3-D steering control

As an experiment of 3-D steering control, an experiment is conducted on a tank at
the Fukushima Robot Test Field. This tank is made of steel with a radius of 2.8[m]
and a height of 5[m]. A rope is attached to the robot to prevent it from falling to the
ground, but tension is not generated during the experiment. The experiment started
from the floor (Figure 17a). The movement from the floor to the wall (Figure 17b) is
achieved by using 3-D steering control by attaching the front wheels to the wall and
turning off the torque at the pitch joints. If the pitch joints are always activated, an
overload error occurs at the pitch joints due to joint angle error. By deactivating the
pitch joints, it is confirmed that the robot can adapt to curved surfaces. The robot is
able to turn (Figure 17c) and move diagonally (Figure 17d) on the tank wall, which
requires rotation in the roll direction. The robot is also able to move laterally on the
tank wall, which is prone to peeling. In addition, the robot is able to move on uneven
surface of the tank wall only by 3-D steering control. Therefore, it is confirmed that
the developed robot could move on a curved surface by 3-D steering control with
the deactivated pitch joint. Overloading of the wheel motor and yaw joint sometimes
occurs during the experiment. In order to prevent the overloading, it is necessary to
take into account that the magnetic wheel does not allow slippage.

For the experiment of duct inspection, the wheels are changed to non-magnetic
wheels, and lights are installed at the head and tail unit. Figure 18 shows the image of
the camera when the robot detects the target. The robot is able to reach the deepest
part of the L-shaped duct beyond the bend. The robot is also able to detect objects
and QR codes placed at various positions such as the sides and top of the duct. Even
if passive roll joints are added to an articulated mobile robot, it can move in the duct
without any problem. Therefore, it is confirmed that the robot has high mobility and
work performance in narrow spaces.

5.2. Obstacle traversal control

Three types of obstacle traversal control are tested in laboratory experiment. A curved
steel wall with a radius of 1.8 [m] and a height of 2 [m] is used for the experiment. The
robot is positioned along predetermined traversing route at the start of the experiment.

The robot is able to traverse obstacle A (Figure 19) and B (Figure 20) , but is
unable to traverse obstacle C (Figure 21). Figure 19, 20, 21 show the time variation
of the pitch joint angle and active joints when traversing obstacles. The pitch joints
are listed as pitch joint 1, 2 ,...,6 from the head of the robot. The graph background
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Figure 18. Result of the experiment of moving in a duct at the World Robot Summit 2020.

of the section with active joints is colored in yellow, and target values are given only
for this section. The graphs show that the robot performs a lifting motion with the
angle of the joints change from the leading side, and that n joints in front of the lifting
motion are active. For example, pitch joint 2 and 3 are active at ¢ = 10[s| in Figure
19 where pitch joint 1 starts the lifting motion at the obstacle. Therefore, the number
of effective attraction points n = 2 are kept at the obstacle A. From the above, it is
confirmed that the robot lifted its wheels and stepped over the obstacle A and B as
targeted.

In contrast, Figure 22 shows the detail when the robot fail when traversing obstacle
C. First, the head moves away from the wall (Figure 22a) due to the position error
of the head caused by rigidity of the robot. Next, the magnetic wheels on the second
unit is supposed to be lifted according to the route. However, the torque of the pitch
joint is insufficient to peel the wheels off. The head of the robot approaches the wall
because the pitch joint does not move as intended. At this point, the combined force in
sticking direction generated on the second unit decreases due to the attraction force of
the magnetic wheel and the torque of the pitch joint (Figure 22b). Then, the head of
the robot collides with the wall (Figure 22c). This impact causes the second magnetic
wheel to peel off abruptly, and a force is generated in the direction away from the wall
(Figure 22d). The attraction force at the head unit cannot withstand this force and
the robot peels off (Figure 22e). Therefore, the reasons of the robot fails to traverse
obstacle C can be concluded as the positional error of the head unit, the sudden peeling
of the magnetic wheels and the insufficient attraction force of the head unit. These
problem must be solved in order to realize the operation of traversing obstacle C.
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Figure 19. Result of the

experiment of traversing obstacle A.
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Figure 21. Result of the experiment of traversing obstacle C.
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Figure 22. Flow of the robot fall at obstacle C.
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6. Conclusion

In this study, we developed an articulated mobile robot that can move on the curved
wall and traverse obstacles for the purpose of tank wall inspection. The developed
robot is equipped with passive roll joints and magnetic wheels. The robot can adapt
to the curved surface by passively rotating its roll joints and pitch joints. The robot can
move on a curved wall by sticking on the wall with magnetic wheels. To ensure traverse
obstacle on the wall climbing, we adjust the attraction force and friction force of the
robot by designing the magnetic wheels appropriately according to the requirements
and the pitch joints are locally activated. Through the experiments on the curved wall
surface, we confirm that the robot can move on the tank wall and can traverse some
obstacles on the corner. However, the robot cannot traverse an obstacle near the wall
such as a handrail. Through the experiments in the duct, we also confirm that the
robot has high mobility and work performance in narrow spaces.

The future task is to improve the obstacle traversing motion. In the traversing
motion on the wall, the positional error of the head, the sudden peeling of the magnetic
wheel, and the insufficient attraction force of the head greatly affect the peeling. In
order to realize the obstacle traversing, we plan to improve the design of the robot
and the obstacle traversing motion.
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