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Chapter 1

Introduction

In machine learning, an artificial neural network (ANN) is a model which is enlightened
from the concept of neurons in the human brain. With long time of continuous development
and improvement, ANN has become an important part of machine learning and applied to

many fields such as computer vision, natural language processing, and image classification

I, 2.

The back propagation [3] is an important and widely used algorithm to update the pa-
rameters while we train the model through samples. The back propagation neural network

is widely used because of its excellent data fitting ability, however it is prone to over-fit.

As sensors of the internet of things (IoT) play an important role in data collection,
meanwhile due to the limitation of environmental conditions and other factors, noise is
inevitable in the process of data collection. In machine learning, the over-fitting is a
common problem that the model fails to fit or predict new data reliably but performs well

for the training data. The main reasons for the over-fitting problem are noise and using too
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much irrelevant features during the model training which results in the model being too
complex. We can avoid the over-fitting problem by reducing impact of noise and selecting

relevant features.

In the neural networks, several methods are used to avoid the over-fitting problem such
like the dropout [4], the early stopping, and the regularization. In order to simplify the
model, the dropout tries to shut-down some neurons during the training process. In detail,
the dropout closes a certain proportion of neurons randomly in each layer of the network.
The shortcoming of the dropout is the uncertainty that the cost function cannot be defined
explicitly. The early stopping tries to stop the training process when it is considered that
the data is over-fitted. The regularization prevents the over-fitting problem by adding a
regularization term to the optimization problem. In the neural network, a common practice
is using the regularization in all layers, and a most widely used method is using the /5 norm
regularization [5]. However, all the features are used to train the models which means that

the influence of irrelevant features are considered in the training process.

Feature selection aims to select relevant subset features from the original feature set [6].
Nowadays, feature selection is an indispensable part in obtaining robust model because it
can speed up the learning process, reduce the data storage cost, and relax noise influence
and the over-fitting problems [7]. Sparse feature selection aims to obtain a sparse matrix
or vector to select features by adding a sparsity regularization term to the loss function.
The sparsity regularization term forces the weight of some features to be very small or
zero, thus those corresponding features can be ignored and the rest of the features will be

selected. Due to the interpretability, convenience and the good performance, sparse feature



selection is widely used to select relevant features and build robust models [, [9].

The ¢5; norm of a matrix is equal to the sum of the ¢, norm of all row vectors in the
matrix, while the Frobenius (¢25) norm is the square root of the square sum of all elements.
In [I0], the ¢51_5 norm is proposed to select features and achieved a excellent classification
performance, and the ¢3;_5 norm is defined as the difference of the ¢,; norm and the
Frobenius norm. More important, comparing with the ¢5; norm, the ¢5;_» norm is more
likely to obtain sparser solution. The {3 ;_9 norm is non-convex but Lipschitz continuous
which makes it optimizing easily. Besides, Lipschitz continuous means that the gradient

of the ¢5;_5 norm is bounded.

In this paper, motivated by the sparsity of the ¢;;_» norm and the good performance
of using the {55 norm to select features, we apply it to the back propagation neural
network model to select relevant features and make the model more robust. In details,
considering about the sparsity of the ¢5;_5 norm, we propose the ¢3;_» norm in the input
layer. Meanwhile, in order to enhance the robustness of the model and reduce the impact
of noise further, we use the Frobenius norm regularization in the rest of the layers. As a
result, the proposed method is considered to exhibit better classification performance than

the Frobenius norm regularization.

The advantages of using the ¢5;_» norm are 1) sparser solution lead to better feature
selection effect; and 2) reducing the impact of noise. As we mentioned, the ¢5;_ 5 norm
regularization can obtain a sparser solution, it means that more irrelevant features are not
involved in the classification process. At the same time, a sparser solution also means a

better reduction in the intake of noise. We can consider both noise and feature selection



because we propose the f5;_5 norm only in the input layer. It can reduce the impact of

noise and select relevant features.

The thesis consists of five chapters and the rest parts are organized as follows. Chapter
2 introduces the method to prevent the over-fitting problem in the back propagation neural
network and some feature selection methods. Chapter 3 introduces the proposed method.
Chapter 4 presents the experimental results of the proposed method and compares with

the other methods. Chapter 5 concludes the thesis and discusses the future work.



Chapter 2

Related Work

In this chapter, we introduce some basic definitions and concepts, related research, and
some necessary knowledge. We use bold uppercase English letter to represent matrices,
bold lowercase English letter to represent vectors, and non-bold English letter to represent

scalars.

2.1 Feature selection with sparse learning

Let X = [x1,...,%,] € R™ be a data matrix with n samples of d features. Suppose
all the samples can be classified to either one of ¢ classes. Feature selection with sparse

learning aims to obtain a row sparse solution W. Mathematically, it is described as

min L(W) + aR(W), (2.1)



where L(W) is the loss function, R(W) is the regularization term with sparsity, and o > 0
is called the regularization parameter that controls the proportion of those two terms. The
effect of the regularization can be changed by adjusting a. The regularization parameter

a becomes lager, the regularization effect becomes stronger.

As shown in Figure [2.1 once we obtain the row sparse solution W, then features can
be selected by WTx. In detail, W is supposed to be row sparse that the i-th row of W is
all zero, then in W”x, the i-th feature in sample x is ignored (multiply by zero), the rest

of the features are selected.

WT X

S
1 column

Figure 2.1: Feature selected by sparse matrix

2.2 Matrix norm and its gradient

For a vector w = [wy, ..., w,], the f3 norm of w is defined as

(2.2)




The /5 ; norm and the Frobenius norm of matrix W € R¥¢ are defined as

Wi

(2.3)

2,1 =

and

IWl[r = (2.4)

From Eq. (2.3)), we know that the ¢5; norm of W is the sum of ¢, norm of all row vectors
in the matrix. As the difference of the ¢, ; norm and the Frobenius norm, the ¢5;_5 norm
of W is defined as

[Wll21-2 = [[Wll21 — [[W][£. (2.5)

As the ¢,_5 norm (difference of the ¢; norm and ¢, norm of the vector) is non-convex and

Lipschitz continuous, the f5;_5 norm is also non-convex and Lipschitz continuous.

Figure is the contour plot of the f5; norm, the Frobenius norm, and the £, -
norm. As shown in those figures, the ¢3;_5 norm is more likely to obtain a sparse solution

during the minimizing process.

(b) f2,2 (C) 52,1—2

Figure 2.2: Contour plot of three matrix norm

Figure from [10]
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For a given matrix W € R, the gradient of |W||r is

W_ W £ 0
o (IWr) = (26)

0, if W =0,

and the gradient of ||[W||o is

0

W(”W“ll) = [o(w)", o(wa)", ..., p(we)"]T, (2.7)

where

[lwill2?
¢(WZ) = (2.8)
0, if w; =0,

and w; is the i-th row vector of W. Thus, the gradient of ||[W/||2,1_2 is given by Egs. (2.6)

and (2.7)), it is

0 0 0

Fw [ Wl2i-2) = 5 (IWll21) — 5 (1Wllr)
[p(w1)T, (W), (we)T)" — o, i W A0 (2.9)
0, if W = 0.

2.3 Gradient descent

The gradient descent (GD) is one of the most widely used optimization algorithms. GD
finds a local extremum of a differentiable function. As the gradient represents the direction
in which the value of the function increases the fastest, the idea of GD is using the negative
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gradient to find the optimal solution. For a differentiable function F'(W) in W, the update
rule is

Wit = W' — BVF(W'), (2.10)

where ¢ is the number of iteration, VF(W") is the gradient of function F'(W) at W’ and
the parameter S > 0 is called the learning rate. For a given initial value, we keep updating
it by using Eq. (2.10)) until the stopping condition is satisfied, then we can get the optimal

solution W*.

2.4 Frobenius norm regularization

The Frobenius norm regularization is a widely used method to prevent the over-fitting
problem. Considering a differentiable loss function L(W) with the Frobenius norm regu-

larization, then we have

, a
II\l}%]IlL(W) + §||WH% (2.11)

If we use the gradient descent to solve this problem, then for an element I/ij in W', the

update is
Wit = wh = B(VLOVE) +aW)
(2.12)
— (1 - af) W}, — BYL(VS).
It is considered as the weight decay. We can control the effect of the regularization by
adjusting the regularization parameter . Without the Frobenius norm regularization, the
update is

1
Wi =WE — BV L(WE). (2.13)

12



Comparing Eqgs. (2.12)) and (2.13]) , the value of the weight will be smaller in the Frobenius
norm regularization, which can reduce the complexity of the model and make the model

more robust (theory of Ockham’s razor), and it is also proved in practice.

2.5 Back propagation neural network

Neural network is widely used in the information technology (IT) industry. It is one of
the most popular and widely used models in classification task such as image recognition.
In practical applications, most of the neural network models are multi nodes feed forward

structure.

2.5.1 Forward propagation

The input layer The hidden layer The output layer

Figure 2.3: A two layer neural network
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Let X = [x3,...,X,] represent the data matrix with n samples of d features, and the
label matrix Y € R"*¢ is represented by the one-hot coding. We use [ =0, ..., L to denote
the layer index of the network and N; denotes the number of neurons in the [-th layers.
According to the feature dimension and the number of classes, we know that the input of
the network is a d-dimensional vector and the output of the network is a c-dimensional
vector. Let VV]lk denotes the weight of the k-th neuron in the (I-1)-th layer to the j-th
neuron in the [-th layer, bé. denotes the bias of the j-th neuron in the [-th layer, zé be the
linear result of the j-th neuron in the [-th layer, and ag be the output of the j-th neuron in
the [-th layer. In the forward propagation, neurons deliver data from the former layer to

the next layer. Considering the j-th neuron in the [-th layer, we have
2= Whait + 1, (2.14)
k

and

d, = d'(2), (2.15)

where o!(+) is the element-wise activation function of the I-th layer. We convert it into a

matrix form, we have

2 =W'al"! 4 b, (2.16)

and

a' = o'(z)), (2.17)

L are the output vectors of the

where W' is the weight matrix of the I-th layer. a' and a'~
I-th layer and the (I-1)-th layer respectively, z' and b’ are the linear result vector and the
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bias vector of the I-th layer respectively. The output of the network is al € R°. Figure
shows a neural network with one hidden layer (a two layer neural network) and the detail

of a neuron in the network.

2.5.2 Loss function and activation function

A loss function is used to measure how well the model fits the training sample to its
label. In machine learning, the choice of the loss function should consider the type of the
optimization problem. There are three popular loss functions for classification tasks; the

multi-class hinge loss, the logistic loss, and the cross entropy loss.

3.0 A

2.5 A

2.0 A

1.5 4

1.0 A

0.5 A

0.0 A

Figure 2.4: ReLu

We consider a multi class classification task. As we mentioned before, in one-hot coding,
if a sample x belongs to the i-th class, then the i-th element of output a” should be one and
the rest of the elements are all zero. We choose the cross entropy loss as the loss function

15



and the softmax as the activation function of the output layer. As for reason, using the
cross entropy loss combined with the softmax can help to process data easily. Besides, we
use the rectified linear unit (ReLU) as the activation function in the rest of layers. The

rectified linear unit is defined as
o(z) = max(0, 2), (2.18)

and Figure is a graph of the rectified linear unit. The softmax is defined as

e

= = 2.19
yj 2521 €aj I ( )

where a; is the j-th element of al', y = [y1,...,y.]. As 2521 y; = 1, the value of y; is also
considered as the probability that the input sample belongs to the j-th class. If the j-th
element of y has the biggest probability, then for the input sample x;, it will be classified
to the j-th class. Asy is considered as the classification prediction of x;, and the true label

of x;is y, = [V, ..., Y], the cross entropy loss is

- Z Y;; log(y;)- (2.20)

2.5.3 Back propagation

The weight which minimizes the error of the network can be obtained by the back propa-

gation algorithm. In detail, suppose one sample input case, the loss function of a network

16



without regularization is L(W). For VV]lk in W' and bé» in b', from Eq. (2.14), we have

OL(W) _ OL(W) o7, _OL(W) = (2.21)
oW, 07, oWl o F '

J

and

OL(W)  OL(W)02;  OL(W)
oo, 94 oy, 94

J

(2.22)

From Egs. (2.21)) and (2.22)), we know that in the same layer, if we get 8%2?), then 6;%\;)

OL(W)
ol

OL(W)

and are given, thus the key is how to get =-—. With the chain rule, once we get

the relation between 85(:?7) and 8%(:;‘7), the problem is solved. With Eq. (2.16]), we have

7z = Wi (z!) + b (2.23)

For 2!, using the chain rule, we have

— . (2.24)
04 T 4 od o
For zi*! we have
N,
=D Willol () + o, (2.25)
i=1
and only ¢ = 7 is meaningful, thus
azl+1 .
al; =W o"(2). (2.26)
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With Eq. (2.26]), we can rewrite Eq. (2.24]) into

OL(W) OL(W) __, !
= Wit (4), (2.27)
azé zk: 8211:-1 kj J
consider a matrix form, then we have
OL(W OL(W ,
W owyr () 601, (229)

where the operation symbol ® represents the same position element multiplication between

two terms that have the same size.

As Eq. (2.28) is the relation between OLW) and BL(W), once we have the gradient of

Oz!+1 oz!

OL(W)
8ZL )

the last layer

we can get the gradient of weight matrix in all layers. ag(ZXV) is given

by

OL(W) _ 9L(W) _

o7 o 00 (). (2:29)

Since we have the relation between aaLz S‘ﬁ) and 8%(:7), we can get the derivative of any
weight and bias in any layer. For convenience, let 8 = 8%(;;‘/) and 6% = ag(z‘iv). As a
summary, for W]lk and bé-, we have
OL(W)
= otak ™t (2.30)
and
OL(W
(l ) _ &, (2.31)
ob;

where 5§ is the j-th element of §'. We calculate 8%, and get the gradient of the weight

18



matrix in the output layer. Then using the relation between 8 and &', from the output
layer to the input layer, all the gradient of the weight matrix can be obtained. Therefore,

it is called the back propagation process.
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Chapter 3

Proposed Method

3.1 Model structure of proposed method

As our purpose is selecting relevant features through a sparse learning method, we propose
a sparse regularization method to the neural network. We propose the ¢5;_5 norm as the

regularization term in the input layer of the network because we can get a sparser solution.

Besides, in order to deal with the over-fitting problem, we consider using a regularization
in the rest of the layers. As the Frobenius norm regularization is widely used to prevent the
over-fitting problem and exhibited good results, we use it in the rest of the layers. Thus,
the structure of our model is; the input layer with the f5;_» norm regularization and the

rest of layers with the Frobenius norm regularization.

20



3.2 Minimization problem

As a sparse feature selection, the model is Eq. (2.1). The optimization problem of the

proposed method is

L
_ 1
i LOW) + a{ [W a2+ 5 32 W5}

L
) 1
= g LOW) + o [W o = WL+ 5 3 IWIE

where L(W) represents the cross entropy loss, |[W*||2; —||W?|| is the £ _ norm regular-
ization of the input layer, and ZZLZQ |W'|% represents the Frobenius norm regularization

of the other layers.

3.3 Gradient descent for solving minimization prob-

lem

We use the gradient descent to update the weight of every layer. In the loss function part

of (8.1), the update rule of W} is the same as Eq. (2.30). It is

=dlai !, I=1,...,L. (3.2)
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In the regularization part of (3.1)), for lek of the input layer, with Eq. (2.9), we can easily

have

l l
W Wk
Wil Wl

5 [=1,, if Wh #0

oW,

(IWl21-2) = (3:3)

07 lf V[/T]lk — O,

where Wé- is the j-th row vector of the weight matrix W'. Besides, for W]lk of the others

layers, we have
(3 |IW'|%)
—2 =W, =2 ... L (3.4)
oW, "

Thus, for the optimization problem Eq. (3.1)), the update of the weight in the input layer

1s
Wittt = Wil — B0 + abh), 1=1, (3.5)
It It
where 6! represents 6§’ta2,_1’t and 0% represents l L{fH - ||Wl{f||F' For the others layers, the
W l2
update of the weight is
Wit = Wil — B0 +abh), 1=2,...L, (3.6)

where 6% represents lekt, t is the number of iteration. As for the update of bias bé of all

layers, the update rule is

Bt =8 — ot 1=1,..., L. (3.7)
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Chapter 4

Experiments and Results

In this chapter, we verified the effectiveness of the proposed method through conducting
experiments on image classification task, and all the results were base on five real word

datasets. Besides, we also compared the results with other methods.

4.1 Experiment

4.1.1 Implementation

All the programs of our experiments were implemented by Python 3.7, and the program

ran on PC with i5-7200U CPU, 8.00 GB memory.

We used two types of neural network models for the classification task. One is a three
hidden layer structure with 100, 50, and 50 units separately, another is one hidden layer

structure with 120 units. The number of the hidden layer and unit are decided by the
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samples of the dataset and the feature dimension of the sampleﬂ. Also, we trained the data

by mini-batchf?]

4.1.2 Dataset

We used five popular open datasets to conduct our experiments. Among those datasets,
including three small datasets and two large datasets. The information of the datasets we

used on experiments are shown in Table [4.1]

Table 4.1: Open dataset information

Dataset information
Dataset || Features || Samples || Classes
COIL20 1024 1440 20
Mnist 784 70000 10
ORL 1024 400 40
USPS 256 9298 10
Yale 1024 165 15

And all the open datasets were downloaded from the internet. Among five datasets
used in our experiment, Mnist’| and USPY are handwritten digits datasets, ORI] and

Yaleﬂ are face recognition datasets, and COILQ(ﬂ is a image recognition dataset.

!Mnist and USPS were trained by the three hidden layer network and the rest of the datasets were
trained by the one hidden layer network.

2For USPS, COIL20 and Yale, the batchsize is 32, for Mnist and ORL, the batch size is 64.

3From http://yann.lecun.com/exdb/mnist/

4From http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

SFrom http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

SFrom http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

"From https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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4.2 Details of the experiment

4.2.1 Parameters

In the experiment of the proposed method, we need to decide two parameters; the regu-

larization parameter o and the learning rate (.

We set the learning rate 3 into 0.1, and the regularization parameter « is tuned from
the range of {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. We fixed the learning rate S and
used all the regularization parameter candidates to run a five fold cross validation. Results
were base on six models corresponding to all the regularization parameter candidates, and
the best regularization parameter o was determined by the best model. Besides, We also

made minor adjustments’| to the above parameters to see if there were better results.

4.2.2 Cross validation and student’s t-test

We used classification accuracy to evaluate the performance of all methods. We used the
five fold cross validation to run the experiment because we considered that in a small
sample dataset, a large fold of the cross validation might lead to a large fluctuation in the

results. Figure 4.1 shows the partition of dataset with five fold cross validation.

As the proposed method is considered to exhibit better classification performance than
the Frobenius norm regularization, we also did the paired samples student’s t-test be-

tween the classification accuracy of the Frobenius norm regularization and that of the

8For example, in the experiment of dataset Mnist, if o = 0.0005 showed the best result from all
parameter candidates, then we plus and minus 0.00005 (10% of the best parameter) to get two new
parameter 0.00045 and 0.00055, and used two new parameters to run the program. Repeated it if there
were better result.
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Figure 4.1: Five fold cross validation

proposed method to verify the difference. We denoted the null hypothesis as Hy; the aver-
age classification accuracy of the Frobenius norm regularization is higher than the average
classification accuracy of the proposed method, and denoted the alternative hypothesis as
H;i; the average classification accuracy of the proposed method is higher than the average
classification accuracy of the Frobenius norm regularization. We used 0.05 as the statistical

significance, and the ¢ value is given by

t =

(4.1)

Vsi/n

where d is the mean of the difference of two groups, n is five, the number of folds in cross

validation, s? is the unbiased estimator of the population variance, it is given by




and d; is the difference of the i-th fold result.

4.3 Experimental results

Table 4.2|lists the average classification accuracy and the standard deviation of the five fold

cross validation of all datasets. There are four cases: 1)no regularization; 2)the Frobenius

norm; 3)¢; norm; and 4)the proposed method, the ¢5;_5 norm.

No regularization means that trained data and obtained model without using any regu-
larization term. The Frobenius norm means that using the Frobenius norm as the regular-
ization term in all the layers of the network. As the ¢;; norm regularization and the f5;_
norm regularization induce a sparse solution, they were used only in the input layer, and

the rest of the layers used the Frobenius norm regularization to enhance the robustness of

the model.
Table 4.2: Classification accuracy of four methods
Average classification accuracy [%]

Dataset || no regularization || the Frobenius norm || the ¢5; norm || the ¢5;_5 norm

COIL20 90.44+5.038 91.18+4.784 91.32+4.691 91.94+4.857
Mnist 96.82+0.185 97.06+0.314 97.59+0.145 97.96£0.110
ORL 93.75+4.031 94.25+3.921 95.00£3.536 95.25+3.391
USPS 95.83+1.554 96.14+1.810 96.66+1.925 96.81+1.547
Yale 80.13+0.976 81.21£1.024 81.79+1.067 84.56+£2.160

As the results shown in Table [£.2] no regularization case showed the lowest average
classification accuracy because it took no measure to deal with the over-fitting problem.
The Frobenius norm case showed higher classification accuracy because it can prevent the

over-fitting problem which might be caused by noise. As the ¢5; norm and the ¢3;_5 norm
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were used to select relevant features, these two cases showed higher classification accuracy
than the Frobenius norm case. The classification accuracy of the ¢5;_» norm was higher
than the f5; norm, and we consider the {5 ;_» norm is more effective in feature selection.

Figure [.2]is the comparison of all four methods.
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Figure 4.2: Results of five open datasets

We also verified the sparsity of the /5, norm and the the ¢5;_5 norm. As for detail,
we used the row sparse matrix solution to conducted the experiment, and also calculated
the sparse rate of both the ¢;; norm and the the f5;_5 norm. The results are shown in
Table @l and Table @ Figure @ is the comparison of sparse rate between the f5; norm
and the /5 ;_5 norm of all the datasets. Sparse rate is the ratio of zero row vectors and the
number of the row vector in the weight matrix. A higher sparse rate means less noise and

less features are selected, which can lead to a better regularization effect. From Figure 4.3,
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we know that the proposed method showed a higher sparser rate.
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Figure 4.3: Sparse rate between the 5 ; norm and the ¢;;_5 norm
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Table 4.3: Results of sparse rate

Average sparse rate [%)]
Dataset {51 norm {5 1_5 norm
COIL20 || 12.43+1.477 || 16.51£1.040

Mnist || 39.67£0.628 || 53.94+3.337
ORL 3.083+2.569 || 3.200£2.867
USPS 5.29242.867 || 6.1484+2.659
Yale 8.44940.864 || 9.1124+1.223

Yale

Table 4.4: Results of sparse classification accuracy

Average sparse classification accuracy [%]

Dataset {51 norm l1_5 norm

COIL20 || 90.63+5.272 91.39+5.040
Mnist 97.2440.142 97.7440.159
ORL 94.7543.687 94.7543.687
USPS 96.38+1.810 96.5241.962
Yale 81.35+4.876 84.19+4.693
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Table FlZIl is the sparse classification accuracy of the 5 ; norm and the the ¢5;_» norm.
Different from classification accuracy, sparse classification accuracy means that we used
the sparse solutiorﬂ to conduct experiments and obtain the corresponding classification

accuracy.
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Figure 4.4: Sparse classification accuracy between the ¢;; norm and the ¢5;_» norm

From Figure FIZI] the f51_5 norm case showed a higher sparse classification accuracy.
Comparing with the f5; norm regularization, the proposed method showed higher sparse
rate and higher sparse classification accuracy. It means that comparing with the £5; norm

regularization, the proposed method is a more effective feature selection method.

Table shows the results of the paired samples student’s t-test. In the student’s

t-test, we set 0.05 as the statistical significance. As a result, hypothesis Hy is rejected

9For the row vector w;,i = 1,...,d in the optimal solution W* & Rx¢, sparse solution was obtained
by setting w; into zero. For example, if ||w;||2/c is less than a very small value such like 0.0001, then w;
will be set to zero.

30



Table 4.5: Results of student’s t-test

Student’s t-test between the ¢5;_ norm and the Frobenius norm
Dataset || t-value || ty.05(4) measure conclusion
COIL20 5.412 2.132 5.412 > 2.132 H;

Mnist 14.563 2.132 14.563 > 2.132 H

ORL 1.372 2.132 1.372 < 2.132 H,

USPS 5.416 2.132 5.416 > 2.132 H;

Yale 3.225 2.132 3.225 > 2.132 H;

while hypothesis H; is adopted on most of the datasets. It means that we can consider the
{51_9 norm regularization is better than the Frobenius norm regularization in classification

accuracy.
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Chapter 5

Conclusion

5.1 Conclusion

5.1.1 Discussion

From Figure [4.2] the proposed method showed the highest classification accuracy among
all regularization methods. For the ¢5; norm regularization which also induces a sparse
solution, in addition to classification accuracy, we also compared the sparsity performance.
We used the sparse rate and the sparse classification accuracy to evaluate their performance.
Sparse classification accuracy is obtained by using the sparse solution, and the sparse rate
is the ratio of zero row vectors in the weight matrix (sparse solution). As shown in Figures
[4.3] and [£.4] the proposed method obtains a sparser solution and achieved a higher sparse
classification accuracy on all datasets. Besides, as we consider the ¢5;_» norm case was

higher classification accuracy than the Frobenius norm case, we did the student’s t-test
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with 0.05 as the statistical significance, and the result shows that the classification accuracy

of the proposed method is significantly higher.

5.1.2 Conclusion

In this paper, motivated by the advantage of the ¢5;_5 norm, we proposed it as the reg-
ularization term in neural network to select features and build a more robust model. We
compared the proposed method with the f5; norm regularization and the Frobenius norm
regularization. As the f; norm can also lead to a sparse solution, we evaluated their
performance by comparing sparse classification accuracy and sparse rate. As a result, the
proposed method can obtain a sparser solution and achieved higher sparse classification
accuracy. Besides, combining the result of classification accuracy and the result of the
student’s t-test between the the proposed method and the Frobenius norm regularization,
we can also draw a conclusion that the proposed method is higher classification accuracy

than the Frobenius norm regularization.

5.2 Future work

The dropout tries to shut-down some neurons randomly in each layer of the network during
the training process. Considering that the f5;_» norm leads to a sparser solution during
the optimization process, we apply the f3;_ norm to all the layers of the network to

"shut-down” some neurons discriminantly.
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