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 要  旨 

機械学習において、ニューラルネットワーク（neural network, NN）は優れたデータフィ

ッティング能力を持つため広く使われているが、過学習しやすい問題がある。過学習の二つの

主な原因は、ノイズ、と多くの無関係な特徴がモデル訓練に使われることである。センサーや

IoT（Internet of Things）技術がデータ収集に重要な役割を果たすようになった一方、環境条件

などの制約により、データ収集の過程にノイズの混入が不可避である。ニューラルネットワー

クモデルを訓練するとき、識別などの訓練目的と無関係な特徴が用いられる。 

特徴選択は、収集されたデータの特徴集合から有用な特徴を選択する。特徴選択は学習過

程を加速すること、データ記憶コストを減らすこととノイズや過学習の緩和などが可能であり、

頑健なモデルを構築するために不可欠なプロセスである。L2,1-2 ノルムのスパースを利用した

特徴選択が Miao らによって提案され、良いパフォーマンスを示した。 

本研究は、L2,1-2 ノルムを用いて、ニューラルネットワークに特徴選択を導入する手法を

提案する。スパース性を持つ L2,1 ノルムと比べて、L2,1-2 ノルムはよりスパースな解が得ら

れる。このため、L2,1-2 ノルムを用いるとき、より強い特徴選択効果とノイズの影響を減少す

ることができると考えられる。提案法は特徴選択が目的であるため、モデルの構造として、入

力層だけ L2,1-2 ノルムを加える。そして、より頑健なモデルを得るため、他の層に L2,2 ノル

ム（Frobenius norm）正則化項を加える。提案法は、L2,2 ノルム正則化より高い分類精度を得

られる方法と考えられる。 

五つのオープンデータセットを用いて実験を行った。正則化項なし、全部層が L2,2 ノルム

正則化、入力層 L2,1 ノルム正則化他の層が L2,2 ノルム正則化と提案法合わせて四組の実験を

行った。五分割交差検定の結果より、提案法が一番良い分類精度が得られた。L2,1 ノルムのス

パース特性に関する実験も行い、提案法がよりスパースな解とより高い分類精度が得られた。

提案法と L2,2 ノルム正則化についてｔ検定も行い、有意差が示された。結論として、提案法が

L2,2 ノルム正則化と比べて、分類精度がより高く、より頑健なモデルを構築することができた。 
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Chapter 1

Introduction

In machine learning, an artificial neural network (ANN) is a model which is enlightened

from the concept of neurons in the human brain. With long time of continuous development

and improvement, ANN has become an important part of machine learning and applied to

many fields such as computer vision, natural language processing, and image classification

[1, 2].

The back propagation [3] is an important and widely used algorithm to update the pa-

rameters while we train the model through samples. The back propagation neural network

is widely used because of its excellent data fitting ability, however it is prone to over-fit.

As sensors of the internet of things (IoT) play an important role in data collection,

meanwhile due to the limitation of environmental conditions and other factors, noise is

inevitable in the process of data collection. In machine learning, the over-fitting is a

common problem that the model fails to fit or predict new data reliably but performs well

for the training data. The main reasons for the over-fitting problem are noise and using too
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much irrelevant features during the model training which results in the model being too

complex. We can avoid the over-fitting problem by reducing impact of noise and selecting

relevant features.

In the neural networks, several methods are used to avoid the over-fitting problem such

like the dropout [4], the early stopping, and the regularization. In order to simplify the

model, the dropout tries to shut-down some neurons during the training process. In detail,

the dropout closes a certain proportion of neurons randomly in each layer of the network.

The shortcoming of the dropout is the uncertainty that the cost function cannot be defined

explicitly. The early stopping tries to stop the training process when it is considered that

the data is over-fitted. The regularization prevents the over-fitting problem by adding a

regularization term to the optimization problem. In the neural network, a common practice

is using the regularization in all layers, and a most widely used method is using the ℓ2 norm

regularization [5]. However, all the features are used to train the models which means that

the influence of irrelevant features are considered in the training process.

Feature selection aims to select relevant subset features from the original feature set [6].

Nowadays, feature selection is an indispensable part in obtaining robust model because it

can speed up the learning process, reduce the data storage cost, and relax noise influence

and the over-fitting problems [7]. Sparse feature selection aims to obtain a sparse matrix

or vector to select features by adding a sparsity regularization term to the loss function.

The sparsity regularization term forces the weight of some features to be very small or

zero, thus those corresponding features can be ignored and the rest of the features will be

selected. Due to the interpretability, convenience and the good performance, sparse feature
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selection is widely used to select relevant features and build robust models [8, 9].

The ℓ2,1 norm of a matrix is equal to the sum of the ℓ2 norm of all row vectors in the

matrix, while the Frobenius (ℓ2,2) norm is the square root of the square sum of all elements.

In [10], the ℓ2,1−2 norm is proposed to select features and achieved a excellent classification

performance, and the ℓ2,1−2 norm is defined as the difference of the ℓ2,1 norm and the

Frobenius norm. More important, comparing with the ℓ2,1 norm, the ℓ2,1−2 norm is more

likely to obtain sparser solution. The ℓ2,1−2 norm is non-convex but Lipschitz continuous

which makes it optimizing easily. Besides, Lipschitz continuous means that the gradient

of the ℓ2,1−2 norm is bounded.

In this paper, motivated by the sparsity of the ℓ2,1−2 norm and the good performance

of using the ℓ2,1−2 norm to select features, we apply it to the back propagation neural

network model to select relevant features and make the model more robust. In details,

considering about the sparsity of the ℓ2,1−2 norm, we propose the ℓ2,1−2 norm in the input

layer. Meanwhile, in order to enhance the robustness of the model and reduce the impact

of noise further, we use the Frobenius norm regularization in the rest of the layers. As a

result, the proposed method is considered to exhibit better classification performance than

the Frobenius norm regularization.

The advantages of using the ℓ2,1−2 norm are 1) sparser solution lead to better feature

selection effect; and 2) reducing the impact of noise. As we mentioned, the ℓ2,1−2 norm

regularization can obtain a sparser solution, it means that more irrelevant features are not

involved in the classification process. At the same time, a sparser solution also means a

better reduction in the intake of noise. We can consider both noise and feature selection
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because we propose the ℓ2,1−2 norm only in the input layer. It can reduce the impact of

noise and select relevant features.

The thesis consists of five chapters and the rest parts are organized as follows. Chapter

2 introduces the method to prevent the over-fitting problem in the back propagation neural

network and some feature selection methods. Chapter 3 introduces the proposed method.

Chapter 4 presents the experimental results of the proposed method and compares with

the other methods. Chapter 5 concludes the thesis and discusses the future work.
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Chapter 2

Related Work

In this chapter, we introduce some basic definitions and concepts, related research, and

some necessary knowledge. We use bold uppercase English letter to represent matrices,

bold lowercase English letter to represent vectors, and non-bold English letter to represent

scalars.

2.1 Feature selection with sparse learning

Let X = [x1, . . . ,xn] ∈ Rd×n be a data matrix with n samples of d features. Suppose

all the samples can be classified to either one of c classes. Feature selection with sparse

learning aims to obtain a row sparse solution W. Mathematically, it is described as

min
W

L(W) + αR(W), (2.1)
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where L(W) is the loss function, R(W) is the regularization term with sparsity, and α > 0

is called the regularization parameter that controls the proportion of those two terms. The

effect of the regularization can be changed by adjusting α. The regularization parameter

α becomes lager, the regularization effect becomes stronger.

As shown in Figure 2.1, once we obtain the row sparse solution W, then features can

be selected by WTx. In detail, W is supposed to be row sparse that the i-th row of W is

all zero, then in WTx, the i-th feature in sample x is ignored (multiply by zero), the rest

of the features are selected.

Figure 2.1: Feature selected by sparse matrix

2.2 Matrix norm and its gradient

For a vector w = [w1, . . . , wn], the ℓ2 norm of w is defined as

∥w∥2 =

√√√√ n∑
i=1

w2
i . (2.2)
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The ℓ2,1 norm and the Frobenius norm of matrix W ∈ Rd×c are defined as

∥W∥2,1 =
d∑

i=1

√√√√ c∑
j=1

W2
i,j , (2.3)

and

∥W∥F =

√√√√ d∑
i=1

c∑
j=1

W2
i,j . (2.4)

From Eq. (2.3), we know that the ℓ2,1 norm of W is the sum of ℓ2 norm of all row vectors

in the matrix. As the difference of the ℓ2,1 norm and the Frobenius norm, the ℓ2,1−2 norm

of W is defined as

∥W∥2,1−2 = ∥W∥2,1 − ∥W∥F . (2.5)

As the ℓ1−2 norm (difference of the ℓ1 norm and ℓ2 norm of the vector) is non-convex and

Lipschitz continuous, the ℓ2,1−2 norm is also non-convex and Lipschitz continuous.

Figure 2.21 is the contour plot of the ℓ2,1 norm, the Frobenius norm, and the ℓ2,1−2

norm. As shown in those figures, the ℓ2,1−2 norm is more likely to obtain a sparse solution

during the minimizing process.

(a) ℓ2,1 (b) ℓ2,2 (c) ℓ2,1−2

Figure 2.2: Contour plot of three matrix norm

1Figure from [10]
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For a given matrix W ∈ Rd×c, the gradient of ∥W∥F is

∂

∂W
(∥W∥F ) =


W

∥W∥F
, if W ̸= 0

0, if W = 0,

(2.6)

and the gradient of ∥W∥2,1 is

∂

∂W
(∥W∥2,1) = [ϕ(w1)

T , ϕ(w2)
T , . . . , ϕ(wc)

T ]T , (2.7)

where

ϕ(wi) =


wi

∥wi∥2 , if wi ̸= 0

0, if wi = 0,

(2.8)

and wi is the i-th row vector of W. Thus, the gradient of ∥W∥2,1−2 is given by Eqs. (2.6)

and (2.7), it is

∂

∂W
(∥W∥2,1−2) =

∂

∂W
(∥W∥2,1)−

∂

∂W
(∥W∥F )

=


[ϕ(w1)

T , ϕ(w2)
T , . . . , ϕ(wc)

T ]T − W
∥W∥F

, if W ̸= 0

0, if W = 0.

(2.9)

2.3 Gradient descent

The gradient descent (GD) is one of the most widely used optimization algorithms. GD

finds a local extremum of a differentiable function. As the gradient represents the direction

in which the value of the function increases the fastest, the idea of GD is using the negative
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gradient to find the optimal solution. For a differentiable function F (W) inWt, the update

rule is

Wt+1 = Wt − β∇F (Wt), (2.10)

where t is the number of iteration, ∇F (Wt) is the gradient of function F (W) at Wt, and

the parameter β > 0 is called the learning rate. For a given initial value, we keep updating

it by using Eq. (2.10) until the stopping condition is satisfied, then we can get the optimal

solution W∗.

2.4 Frobenius norm regularization

The Frobenius norm regularization is a widely used method to prevent the over-fitting

problem. Considering a differentiable loss function L(W) with the Frobenius norm regu-

larization, then we have

min
W

L(W) +
α

2
∥W∥2F . (2.11)

If we use the gradient descent to solve this problem, then for an element W t
ij in Wt, the

update is

W t+1
ij = W t

ij − β
(
∇L(W t

ij) + αW t
ij

)
=

(
1− αβ

)
W t

ij − β∇L(W t
ij).

(2.12)

It is considered as the weight decay. We can control the effect of the regularization by

adjusting the regularization parameter α. Without the Frobenius norm regularization, the

update is

W t+1
ij =W t

ij − β∇L(W t
ij). (2.13)
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Comparing Eqs. (2.12) and (2.13) , the value of the weight will be smaller in the Frobenius

norm regularization, which can reduce the complexity of the model and make the model

more robust (theory of Ockham’s razor), and it is also proved in practice.

2.5 Back propagation neural network

Neural network is widely used in the information technology (IT) industry. It is one of

the most popular and widely used models in classification task such as image recognition.

In practical applications, most of the neural network models are multi nodes feed forward

structure.

2.5.1 Forward propagation

.

.

.

.

.

.

.

.

.

.

.

.

The input layer

Ｗ1 Ｗ2

The hidden layer The output layer

a l
1

w  l+1
 k1

w  l+1
  k2

w  l+1
   kN

l

a l
2 z l+1

k a l+1
k

a l
 N

l

Figure 2.3: A two layer neural network
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Let X = [x1, . . . ,xn] represent the data matrix with n samples of d features, and the

label matrix Y ∈ Rn×c is represented by the one-hot coding. We use l = 0, . . . , L to denote

the layer index of the network and Nl denotes the number of neurons in the l-th layers.

According to the feature dimension and the number of classes, we know that the input of

the network is a d -dimensional vector and the output of the network is a c-dimensional

vector. Let W l
jk denotes the weight of the k-th neuron in the (l-1)-th layer to the j-th

neuron in the l-th layer, blj denotes the bias of the j-th neuron in the l-th layer, zlj be the

linear result of the j-th neuron in the l-th layer, and alj be the output of the j-th neuron in

the l-th layer. In the forward propagation, neurons deliver data from the former layer to

the next layer. Considering the j-th neuron in the l-th layer, we have

zlj =
∑
k

W l
jka

l−1
k + blj, (2.14)

and

alj = σl(zlj), (2.15)

where σl(·) is the element-wise activation function of the l-th layer. We convert it into a

matrix form, we have

zl =Wlal−1 + bl, (2.16)

and

al = σl(zl), (2.17)

where Wl is the weight matrix of the l-th layer. al and al−1 are the output vectors of the

l-th layer and the (l-1)-th layer respectively, zl and bl are the linear result vector and the
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bias vector of the l-th layer respectively. The output of the network is aL ∈ Rc. Figure 2.3

shows a neural network with one hidden layer (a two layer neural network) and the detail

of a neuron in the network.

2.5.2 Loss function and activation function

A loss function is used to measure how well the model fits the training sample to its

label. In machine learning, the choice of the loss function should consider the type of the

optimization problem. There are three popular loss functions for classification tasks; the

multi-class hinge loss, the logistic loss, and the cross entropy loss.

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.4: ReLu

We consider a multi class classification task. As we mentioned before, in one-hot coding,

if a sample x belongs to the i-th class, then the i-th element of output aL should be one and

the rest of the elements are all zero. We choose the cross entropy loss as the loss function
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and the softmax as the activation function of the output layer. As for reason, using the

cross entropy loss combined with the softmax can help to process data easily. Besides, we

use the rectified linear unit (ReLU) as the activation function in the rest of layers. The

rectified linear unit is defined as

σ(z) = max(0, z), (2.18)

and Figure 2.4 is a graph of the rectified linear unit. The softmax is defined as

yj =
eaj∑c
j=1 e

aj
, (2.19)

where aj is the j-th element of aL, y = [y1, . . . , yc]. As
∑c

j=1 yj = 1, the value of yj is also

considered as the probability that the input sample belongs to the j-th class. If the j-th

element of y has the biggest probability, then for the input sample xi, it will be classified

to the j-th class. As y is considered as the classification prediction of xi, and the true label

of xi is yi = [Yi1, . . . , Yic], the cross entropy loss is

−
c∑

j=1

Yij log(yj). (2.20)

2.5.3 Back propagation

The weight which minimizes the error of the network can be obtained by the back propa-

gation algorithm. In detail, suppose one sample input case, the loss function of a network
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without regularization is L(W). For W l
jk in Wl and blj in bl, from Eq. (2.14), we have

∂L(W)

∂W l
jk

=
∂L(W)

∂zlj

∂zlj
∂W l

jk

=
∂L(W)

∂zlj
al−1
k , (2.21)

and

∂L(W)

∂blj
=

∂L(W)

∂zlj

∂zlj

∂blj
=

∂L(W)

∂zlj
. (2.22)

From Eqs. (2.21) and (2.22), we know that in the same layer, if we get ∂L(W)

∂zlj
, then ∂L(W)

∂W l
jk

and ∂L(W)

∂blj
are given, thus the key is how to get ∂L(W)

∂zl
. With the chain rule, once we get

the relation between ∂L(W)
zl+1 and ∂L(W)

∂zl
, the problem is solved. With Eq. (2.16), we have

zl+1 = Wl+1σ(zl) + bl+1. (2.23)

For zlj, using the chain rule, we have

∂L(W)

∂zlj
=

∑
k

∂L(W)

∂zl+1
k

∂zl+1
k

∂zlj
. (2.24)

For zl+1
k we have

zl+1
k =

Nl∑
i=1

W l+1
ki σl(zli) + bl+1

k , (2.25)

and only i = j is meaningful, thus

∂zl+1
k

∂zlj
= W l+1

kj σ′l(zlj). (2.26)
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With Eq. (2.26), we can rewrite Eq. (2.24) into

∂L(W)

∂zlj
=

∑
k

∂L(W)

∂zl+1
k

W l+1
kj σ′l(zlj), (2.27)

consider a matrix form, then we have

∂L(W)

∂zl
= (Wl+1)T

(∂L(W)

∂zl+1

)
⊙ σ′l(zl), (2.28)

where the operation symbol ⊙ represents the same position element multiplication between

two terms that have the same size.

As Eq. (2.28) is the relation between ∂L(W)
∂zl+1 and ∂L(W)

∂zl
, once we have the gradient of

the last layer ∂L(W)
∂zL

, we can get the gradient of weight matrix in all layers. ∂L(W)
∂zL

is given

by

∂L(W)

∂zL
=

∂L(W)

∂aL
⊙ σ′L(zL). (2.29)

Since we have the relation between ∂L(W)
∂zl+1 and ∂L(W)

∂zl
, we can get the derivative of any

weight and bias in any layer. For convenience, let δl = ∂L(W)
∂zl

and δL = ∂L(W)
∂zL

. As a

summary, for W l
jk and blj, we have

∂L(W)

∂W l
jk

= δlja
l−1
k , (2.30)

and

∂L(W)

∂blj
= δlj, (2.31)

where δlj is the j-th element of δl. We calculate δL, and get the gradient of the weight
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matrix in the output layer. Then using the relation between δl+1 and δl, from the output

layer to the input layer, all the gradient of the weight matrix can be obtained. Therefore,

it is called the back propagation process.
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Chapter 3

Proposed Method

3.1 Model structure of proposed method

As our purpose is selecting relevant features through a sparse learning method, we propose

a sparse regularization method to the neural network. We propose the ℓ2,1−2 norm as the

regularization term in the input layer of the network because we can get a sparser solution.

Besides, in order to deal with the over-fitting problem, we consider using a regularization

in the rest of the layers. As the Frobenius norm regularization is widely used to prevent the

over-fitting problem and exhibited good results, we use it in the rest of the layers. Thus,

the structure of our model is; the input layer with the ℓ2,1−2 norm regularization and the

rest of layers with the Frobenius norm regularization.
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3.2 Minimization problem

As a sparse feature selection, the model is Eq. (2.1). The optimization problem of the

proposed method is

min
W

L(W) + α
{
∥W1∥2,1−2 +

1

2

L∑
l=2

∥Wl∥2F
}

= min
W

L(W) + α
{
∥W1∥2,1 − ∥W1∥F +

1

2

L∑
l=2

∥Wl∥2F
}
,

(3.1)

where L(W) represents the cross entropy loss, ∥W1∥2,1−∥W1∥F is the ℓ2,1−2 norm regular-

ization of the input layer, and
∑L

l=2 ∥W
l∥2F represents the Frobenius norm regularization

of the other layers.

3.3 Gradient descent for solving minimization prob-

lem

We use the gradient descent to update the weight of every layer. In the loss function part

of (3.1), the update rule of W l
jk is the same as Eq. (2.30). It is

∂L(W)

∂W l
jk

= δlja
l−1
k , l = 1, . . . , L. (3.2)
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In the regularization part of (3.1), for W l
jk of the input layer, with Eq. (2.9), we can easily

have

∂

∂W l
jk

(∥Wl∥2,1−2) =


W l

jk

∥wl
j∥2

− W l
jk

∥Wl∥F
, l = 1, , if W l

jk ̸= 0

0, if W l
jk = 0,

(3.3)

where wl
j is the j-th row vector of the weight matrix Wl. Besides, for W l

jk of the others

layers, we have

∂(1
2
∥Wl∥2F )
∂W l

jk

= W l
jk, l = 2, . . . , L. (3.4)

Thus, for the optimization problem Eq. (3.1), the update of the weight in the input layer

is

W l,t+1
jk = W l,t

jk − β(θt1 + αθt2), l = 1, (3.5)

where θt1 represents δl,tj al−1,t
k and θt2 represents

W l,t
jk

∥wl,t
j ∥2

− W l,t
jk

∥Wl,t∥F
. For the others layers, the

update of the weight is

W l,t+1
jk = W l,t

jk − β(θt1 + αθt3), l = 2, . . . , L, (3.6)

where θt3 represents W l,t
jk , t is the number of iteration. As for the update of bias blj of all

layers, the update rule is

bl,t+1
j = bl,tj − βδl,tj , l = 1, . . . , L. (3.7)
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Chapter 4

Experiments and Results

In this chapter, we verified the effectiveness of the proposed method through conducting

experiments on image classification task, and all the results were base on five real word

datasets. Besides, we also compared the results with other methods.

4.1 Experiment

4.1.1 Implementation

All the programs of our experiments were implemented by Python 3.7, and the program

ran on PC with i5-7200U CPU, 8.00 GB memory.

We used two types of neural network models for the classification task. One is a three

hidden layer structure with 100, 50, and 50 units separately, another is one hidden layer

structure with 120 units. The number of the hidden layer and unit are decided by the
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samples of the dataset and the feature dimension of the sample1. Also, we trained the data

by mini-batch2.

4.1.2 Dataset

We used five popular open datasets to conduct our experiments. Among those datasets,

including three small datasets and two large datasets. The information of the datasets we

used on experiments are shown in Table 4.1.

Table 4.1: Open dataset information
Dataset information

Dataset Features Samples Classes
COIL20 1024 1440 20
Mnist 784 70000 10
ORL 1024 400 40
USPS 256 9298 10
Yale 1024 165 15

And all the open datasets were downloaded from the internet. Among five datasets

used in our experiment, Mnist3 and USPS4 are handwritten digits datasets, ORL5 and

Yale6 are face recognition datasets, and COIL207 is a image recognition dataset.

1Mnist and USPS were trained by the three hidden layer network and the rest of the datasets were
trained by the one hidden layer network.

2For USPS, COIL20 and Yale, the batchsize is 32, for Mnist and ORL, the batch size is 64.
3From http://yann.lecun.com/exdb/mnist/
4From http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
5From http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
6From http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
7From https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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4.2 Details of the experiment

4.2.1 Parameters

In the experiment of the proposed method, we need to decide two parameters; the regu-

larization parameter α and the learning rate β.

We set the learning rate β into 0.1, and the regularization parameter α is tuned from

the range of {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. We fixed the learning rate β and

used all the regularization parameter candidates to run a five fold cross validation. Results

were base on six models corresponding to all the regularization parameter candidates, and

the best regularization parameter α was determined by the best model. Besides, We also

made minor adjustments8 to the above parameters to see if there were better results.

4.2.2 Cross validation and student’s t-test

We used classification accuracy to evaluate the performance of all methods. We used the

five fold cross validation to run the experiment because we considered that in a small

sample dataset, a large fold of the cross validation might lead to a large fluctuation in the

results. Figure 4.1 shows the partition of dataset with five fold cross validation.

As the proposed method is considered to exhibit better classification performance than

the Frobenius norm regularization, we also did the paired samples student’s t-test be-

tween the classification accuracy of the Frobenius norm regularization and that of the

8For example, in the experiment of dataset Mnist, if α = 0.0005 showed the best result from all
parameter candidates, then we plus and minus 0.00005 (10% of the best parameter) to get two new
parameter 0.00045 and 0.00055, and used two new parameters to run the program. Repeated it if there
were better result.
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Figure 4.1: Five fold cross validation

proposed method to verify the difference. We denoted the null hypothesis as H0; the aver-

age classification accuracy of the Frobenius norm regularization is higher than the average

classification accuracy of the proposed method, and denoted the alternative hypothesis as

H1; the average classification accuracy of the proposed method is higher than the average

classification accuracy of the Frobenius norm regularization. We used 0.05 as the statistical

significance, and the t value is given by

t =
d̄√
s2/n

,

(4.1)

where d̄ is the mean of the difference of two groups, n is five, the number of folds in cross

validation, s2 is the unbiased estimator of the population variance, it is given by

s2 =
1

n− 1

n∑
i=1

(di − d̄)2, (4.2)
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and di is the difference of the i-th fold result.

4.3 Experimental results

Table 4.2 lists the average classification accuracy and the standard deviation of the five fold

cross validation of all datasets. There are four cases: 1)no regularization; 2)the Frobenius

norm; 3)ℓ2,1 norm; and 4)the proposed method, the ℓ2,1−2 norm.

No regularization means that trained data and obtained model without using any regu-

larization term. The Frobenius norm means that using the Frobenius norm as the regular-

ization term in all the layers of the network. As the ℓ2,1 norm regularization and the ℓ2,1−2

norm regularization induce a sparse solution, they were used only in the input layer, and

the rest of the layers used the Frobenius norm regularization to enhance the robustness of

the model.

Table 4.2: Classification accuracy of four methods
Average classification accuracy [%]

Dataset no regularization the Frobenius norm the ℓ2,1 norm the ℓ2,1−2 norm
COIL20 90.44±5.038 91.18±4.784 91.32±4.691 91.94±4.857
Mnist 96.82±0.185 97.06±0.314 97.59±0.145 97.96±0.110
ORL 93.75±4.031 94.25±3.921 95.00±3.536 95.25±3.391
USPS 95.83±1.554 96.14±1.810 96.66±1.925 96.81±1.547
Yale 80.13±0.976 81.21±1.024 81.79±1.067 84.56±2.160

As the results shown in Table 4.2, no regularization case showed the lowest average

classification accuracy because it took no measure to deal with the over-fitting problem.

The Frobenius norm case showed higher classification accuracy because it can prevent the

over-fitting problem which might be caused by noise. As the ℓ2,1 norm and the ℓ2,1−2 norm
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were used to select relevant features, these two cases showed higher classification accuracy

than the Frobenius norm case. The classification accuracy of the ℓ2,1−2 norm was higher

than the ℓ2,1 norm, and we consider the ℓ2,1−2 norm is more effective in feature selection.

Figure 4.2 is the comparison of all four methods.
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Figure 4.2: Results of five open datasets

We also verified the sparsity of the ℓ2,1 norm and the the ℓ2,1−2 norm. As for detail,

we used the row sparse matrix solution to conducted the experiment, and also calculated

the sparse rate of both the ℓ2,1 norm and the the ℓ2,1−2 norm. The results are shown in

Table 4.3 and Table 4.4. Figure 4.3 is the comparison of sparse rate between the ℓ2,1 norm

and the ℓ2,1−2 norm of all the datasets. Sparse rate is the ratio of zero row vectors and the

number of the row vector in the weight matrix. A higher sparse rate means less noise and

less features are selected, which can lead to a better regularization effect. From Figure 4.3,
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we know that the proposed method showed a higher sparser rate.
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Figure 4.3: Sparse rate between the ℓ2,1 norm and the ℓ2,1−2 norm

Table 4.3: Results of sparse rate
Average sparse rate [%]

Dataset ℓ2,1 norm ℓ2,1−2 norm
COIL20 12.43±1.477 16.51±1.040
Mnist 39.67±0.628 53.94±3.337
ORL 3.083±2.569 3.200±2.867
USPS 5.292±2.867 6.148±2.659
Yale 8.449±0.864 9.112±1.223

Table 4.4: Results of sparse classification accuracy
Average sparse classification accuracy [%]
Dataset ℓ2,1 norm ℓ2,1−2 norm
COIL20 90.63±5.272 91.39±5.040
Mnist 97.24±0.142 97.74±0.159
ORL 94.75±3.687 94.75±3.687
USPS 96.38±1.810 96.52±1.962
Yale 81.35±4.876 84.19±4.693
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Table 4.4 is the sparse classification accuracy of the ℓ2,1 norm and the the ℓ2,1−2 norm.

Different from classification accuracy, sparse classification accuracy means that we used

the sparse solution9 to conduct experiments and obtain the corresponding classification

accuracy.
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Figure 4.4: Sparse classification accuracy between the ℓ2,1 norm and the ℓ2,1−2 norm

From Figure 4.4 the ℓ2,1−2 norm case showed a higher sparse classification accuracy.

Comparing with the ℓ2,1 norm regularization, the proposed method showed higher sparse

rate and higher sparse classification accuracy. It means that comparing with the ℓ2,1 norm

regularization, the proposed method is a more effective feature selection method.

Table 4.5 shows the results of the paired samples student’s t-test. In the student’s

t-test, we set 0.05 as the statistical significance. As a result, hypothesis H0 is rejected

9For the row vector wi, i = 1, . . . , d in the optimal solution W∗ ∈ Rd×c, sparse solution was obtained
by setting wi into zero. For example, if ∥wi∥2/c is less than a very small value such like 0.0001, then wi

will be set to zero.
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Table 4.5: Results of student’s t-test
Student’s t-test between the ℓ2,1−2 norm and the Frobenius norm
Dataset t-value t0.05(4) measure conclusion
COIL20 5.412 2.132 5.412 > 2.132 H1

Mnist 14.563 2.132 14.563 > 2.132 H1

ORL 1.372 2.132 1.372 < 2.132 H0

USPS 5.416 2.132 5.416 > 2.132 H1

Yale 3.225 2.132 3.225 > 2.132 H1

while hypothesis H1 is adopted on most of the datasets. It means that we can consider the

ℓ2,1−2 norm regularization is better than the Frobenius norm regularization in classification

accuracy.
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Chapter 5

Conclusion

5.1 Conclusion

5.1.1 Discussion

From Figure 4.2, the proposed method showed the highest classification accuracy among

all regularization methods. For the ℓ2,1 norm regularization which also induces a sparse

solution, in addition to classification accuracy, we also compared the sparsity performance.

We used the sparse rate and the sparse classification accuracy to evaluate their performance.

Sparse classification accuracy is obtained by using the sparse solution, and the sparse rate

is the ratio of zero row vectors in the weight matrix (sparse solution). As shown in Figures

4.3 and 4.4, the proposed method obtains a sparser solution and achieved a higher sparse

classification accuracy on all datasets. Besides, as we consider the ℓ2,1−2 norm case was

higher classification accuracy than the Frobenius norm case, we did the student’s t-test
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with 0.05 as the statistical significance, and the result shows that the classification accuracy

of the proposed method is significantly higher.

5.1.2 Conclusion

In this paper, motivated by the advantage of the ℓ2,1−2 norm, we proposed it as the reg-

ularization term in neural network to select features and build a more robust model. We

compared the proposed method with the ℓ2,1 norm regularization and the Frobenius norm

regularization. As the ℓ2,1 norm can also lead to a sparse solution, we evaluated their

performance by comparing sparse classification accuracy and sparse rate. As a result, the

proposed method can obtain a sparser solution and achieved higher sparse classification

accuracy. Besides, combining the result of classification accuracy and the result of the

student’s t-test between the the proposed method and the Frobenius norm regularization,

we can also draw a conclusion that the proposed method is higher classification accuracy

than the Frobenius norm regularization.

5.2 Future work

The dropout tries to shut-down some neurons randomly in each layer of the network during

the training process. Considering that the ℓ2,1−2 norm leads to a sparser solution during

the optimization process, we apply the ℓ2,1−2 norm to all the layers of the network to

”shut-down” some neurons discriminantly.
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