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概要
固体中の電気伝導は，フェルミエネルギー近傍の電子によって担われている．特に，電子

の有効質量は波数空間上におけるエネルギーの等値面（フェルミ面）の形状に依存してお
り，キャリア易動度の大きさや異方性を決定している．磁場が存在する場合，ボルツマン輸
送に基づく半古典論的な観点から，有効質量は磁気抵抗効果やホール効果などの電流磁気効
果における磁場依存性の係数として現れることが知られている．これにより，電流磁気効果
はキャリアの易動度の特定に用いられてきたが，近年では Dirac・Weyl電子系におけるトポ
ロジカルに非自明な性質を観測する手段として注目が集まっている．
Dirac・Weyl電子系は，波数空間に非自明な位相構造を持ち，Weyl半金属では強磁場領

域において特定のカイラリティを持つキャリアの励起（カイラル異常）が予言されている．
電場と平行な磁場により抵抗率が低下する「負の縦磁気抵抗」や，ホール抵抗率が面内磁場
の角度に依存する「プレーナーホール効果（PHE）」が，電子の非自明な性質を反映すると
考えられており，Dirac・Weyl型の分散が確かめられている複数の物質について，実際に観
測されている．これらの効果が特に注目されている背景には，簡素な有効質量を仮定した従
来の半古典論によって振る舞いを説明することが難しいという事実がある．
一方で，従来の半古典論では本来考慮されるべき物理的要請を反映していない場合があ

る．例えば，Dirac電子系は一般に小さい有効質量を持つことにより，低磁場でもランダウ
量子化を無視することはできない．また，近年フェルミ面の局所的構造が磁気抵抗の振る舞
いを大幅に変調することが明らかになっており，異方性かつ複雑なフェルミ面をもつWeyl

半金属においては，この効果を精緻に考慮する必要がある．本論文では，Dirac・Weyl電子
系に対し，ランダウ量子化またはフェルミ面の詳細構造を取り入れた半古典論により電流磁
気効果の計算を行った．
我々はまず，Dirac電子系半金属であるビスマスに注目した．ビスマス単結晶はこれまで

に，10 Tを超える磁場領域において「横磁気抵抗の異方性消失」や「PHEの周期性変化」
が観測されており，その起源の解明が待たれていた．これに対して，我々は磁気抵抗の計算
に際し，精緻に決定されたキャリアのランダウ準位からキャリア密度の磁場依存性を見積る
ことにより，定性的に実験と一致する結果をえた．さらに，Dirac電子を有する半金属にお
いて，量子極限における横磁気抵抗の異方性消失という一般的な性質を見出すことができ
た．また，量子極限におけるキャリア密度の磁場依存性は，イオン化不純物による電荷の不
均衡を緩和する役割を持つことが分かった．
次に，Weyl電子系においてフェルミ面の局所構造を取り入れた磁気抵抗の計算を行った．

Weyl電子系はバンド間効果によって本質的に異方性を有しており，フェルミ面の構造も極
めて異方的となる．今回，異方性のパラメータを変えながら磁気抵抗を計算したところ，リ
フシッツ転移後に磁気抵抗が負になるという振る舞いが見られた．Weyl電子系はWeyl点
と呼ばれるエネルギーの縮退点を持ち，これらが有効質量の特異点となる．伝導度を磁場の
2次まで展開（Jones-Zener展開）したところ，縦磁気抵抗が有効質量の非対角成分に起源
を持ち，この成分がWeyl点付近で大きな負の値を取ることによって抵抗率が負に転ずるこ
とがわかった．また，横磁気抵抗はフェルミ面上のガウス曲率に起因する成分とホール伝導
度に起因する成分に分けられ，後者が支配的となることで負の横磁気抵抗が発現することが
わかった．また，ＰＨＥの振幅の温度依存性を計算したところ，温度エネルギーがフェルミ
エネルギーと同程度となる領域で，谷やピークのような非単調性が現れることがわかった．
このことは，PHEの温度依存性がWeyl点のエネルギーを反映するという新しい視点を提
供するものである．



Abstract
Recently, the galvanomagnetic effect is used for exploring non-trivial

phenomena in topological materials including Weyl and Dirac electron
systems after the observability of chiral anomaly and nontrivial Berry
curvature was proposed. In these scenarios, the negative longitudinal
magnetoresistance (MR) and planar Hall effect (PHE) with the period
π arise from these anomalies. A mount of experiments followed these
theoretical suggestions, and some materials exhibited such exotic gal-
vanomagnetic phenomena. Although these quantum phenomena have
been intensively examined, some semiclassical aspects in these materials
are still to be discussed. First, Dirac and Weyl materials have generally
small effective mass and modulation in carrier concentration due to the
Landau quantization is not negligible even with a low field. Moreover,
the Fermi surfaces in real topological materials are difficult to approxi-
mate with simple spheres or ellipsoids because the effective mass on the
surface differs from point to point. In this thesis, we demonstrated the
galvanomagnetic effect in Dirac and Weyl electron system based on the
semiclassical theory with considering the Landau quantization and fine
structure of Fermi surface.

First, we demonstrated MR and PHE in a Dirac electron system: bis-
muth. We applied the accurately calculated Landau levels in the carrier
to the MR calculation. The cyclotron energy in bismuth becomes com-
parable with the Fermi energy even with a few Tesla of field. At such a
field range, we found that the observed transverse MR and PHE in bis-
muth can be explained by the field-dependent carrier density. We also
pointed a general characteristic in semimetals with Dirac electron: mono-
tonic increment in carrier concentration and consequential vanishing of
anisotropy in transverse MR.

We also discussed the case of Weyl electron by considering the fine
structure of the Fermi surface. From a semiclassical point of view, the
Weyl points in the Brillouin zone are regarded as singularities of effective
mass. We found that the negative longitudinal MR can arise from the
large and negative off-diagonal components of effective mass tensor near
the singularities. Our theory also pointed that the transverse MR is
contributed from two factors: Gaussian curvature on the Fermi surface
and Hall conductivity. The transverse MR can be negative when the Hall
conductivity dominates. We also found that the temperature dependence
of PHE amplitude reflects the energy of Weyl points.
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Chapter 1

Introduction

Galvanomagnetic effect in condensed matter has been studied from the oldest years

in solid-state physics. From the first discovery of the large magnetoresistance in pure

bismuth by Kapitza in 1928 [1], a large amount of experimental and theoretical effort

has been made for understanding the underlying mechanism in magneto-transport

phenomena in materials. While the condition is simple, i.e. the electric transport in

the presence of a magnetic field, the combination of electric and magnetic fields makes

the situation quite complex and yields unexpected physics. For a long time, the

magneto-transport phenomena have pioneered the frontier of solid-state physics. One

example is the discovery of oscillatory magnetoresistance called Shubnikov-de Haas

effect [2]. We can investigate the structure of the energy isosurface in the Brillouin

zone (Fermi surface) by observing the angular dependence of this oscillation [3–5].

Because the fundamental of semiclassical transport based on Boltzmann’s theory is

governed by the carriers near the Fermi energy, the information of the Fermi surface

is inevitably essential for comprehending the carrier transport in solids. Nowadays,

the study on the structure of the Fermi surface has been combined with the research

of topological [6–8], organic [3–5], or superconducting [9, 10] materials and created

one research field called Fermiology.

In the aspect of device applications, materials with a large magnetic response are

promising for sensitive detectors of the magnetic field [11, 12]. High mobility and

charge compensation in carriers are the general courses of large magnetoresistance
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(MR) [13]. Recently, semimetals with special types of carriers: Dirac and Weyl elec-

tron, are attracting interest because of the light effective mass and resulting in large

mobility [7, 14, 15]. These electrons are represented by the relativistic Hamiltonian

with massive or mass-less particles. They typically have linear energy dispersion and

some singularities called Dirac cone in the Brillouin zone.

Moreover, the expectations are running high for the topological aspects in Dirac

and Weyl materials. Special structure of adiabatic parameter space underlies the

physics of these materials [16]. Some quantum-mechanical origins of MR corre-

lated with the topology have been repeatedly reported [17–23] and the interest in

magneto-transport phenomena was renewed. Although phases in the wave function

are implicit in free particles, the non-trivial structure of the parametric space ac-

cumulates this phase like the external magnetic field. This virtual magnetic field

is called Berry curvature [24]. The Dirac cones have a side as the singularities of

this curvature. In the presence of this curvature, the external magnetic field yields

extraordinary magneto-transport phenomena. In Weyl electron systems with a twin

of Dirac cone, the magnetic field parallel to the electric field causes excitation of a

carrier with specific chirality (chiral anomaly) at high fields [17]. It is theoretically

expected that such an anomaly or the Berry curvature yields negative longitudinal

magnetoresistance [18–20,23] and angle-dependent planar Hall effect (PHE) [21,22].

Moreover, the Berry curvature is correlated with the electron scattering in crystals

and the non-trivial curvature suppresses the amplitude of backscattering, and the

lifetime of electron transport is elongated consequently [25]. A large number of ex-

periments in the real materials with Dirac- and Weyl-type carriers have followed the

theoretical suggestion [26–35]. Recently, these exotic galvanomagnetic effects are

widely regarded as unique characteristics of topological materials.

Through the recent evolution of MR studies, many kinds of origins have been

discovered both in the classical, semiclassical, and quantum framework. As the

consequence, conflicts sometimes occur between different origins. For example, the

semiclassical origin of PHE was experimentally implied in the Dirac electron systems

in recent years [36–39]. Although negative longitudinal MR is also thought to be ev-

idence of quantum anomaly, it is not a trivial question whether this phenomenon

cannot be explained in the semiclassical framework. Moreover, we have still several



Chapter 1. Introduction 5

critical mysteries in the magneto-transport phenomena. There are roughly two prob-

lems: quantitative and qualitative problems. First, there is a lot of materials that

exhibit sizable magnetoresistance [40–42] and other galvanomagnetic response [8,43]

which are remarkably larger than the theoretical estimations. Second, some materi-

als show exotic behavior in magnetoresistance which conventional theory cannot give

even a qualitative explanation. For example, bismuth, which is a typical Dirac elec-

tron system, exhibits changes in angular dependence of magnetoresistance [40,44–46]

even though this material does not have any spontaneous magnetic moment. Fur-

thermore, there are the most long-standing problems: Linear Magnetoresistance. Ac-

cording to conventional theories, the magnetoresistance in metals exhibits parabolic

or saturating behavior against the magnetic field. However, not a few materials

indicate non-saturating and linear dependence on the field [47–49]. Although sev-

eral phenomenological explanations or theoretical exposition in specific systems have

been made [18, 50–52], a comprehensive understanding of this phenomenon has not

been obtained yet.

Sometimes we face a fundamental question: how can we attribute the observed

phenomena to their right origin? Even when we do not have explanations in con-

ventional semiclassical theory, we cannot immediately affirm that observed MR has

a quantum origin. It is because we do not know the limit of the semiclassical the-

ory. We just know predictions from simplified models. In order to give a progress

in the understanding of the origins, we must move on to the intermediate region of

conventional semiclassical and quantum theories.

As mentioned above, there are several conflicts between observations and con-

ventional semiclassical theories based on the Boltzmann equation. The semiclassical

picture of a charged carrier accelerated by Lorentz force in solid is intuitive and indeed

useful for analyzing the magneto-transport in simple metals at low fields. Carrier

mobility and concentration have been obtained by analyzing magnetoresistance and

Hall resistance in this framework [53]. On the other hand, the simple semiclassical

theory fails to explain two typical cases: quantum mechanical phenomena and carrier

conduction with complex energy dispersion.

The cause of the first difficulty is apparent. Carriers in solids näıvely has discrete

energy levels due to the Landau quantization in the magnetic field. When the mag-
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Figure 1.1: (left) Mass properties in the magneto-transport in Dirac and Weyl

electron systems. (right) Quantum oscillation in the Nernst voltage in bismuth. [54]

netic field is such strong that the cyclotron energy is as large as the Fermi energy, the

effect of Landau quantization cannot be neglected. The linear dispersion in Dirac and

Weyl electrons generally makes the effective mass drastically small. Consequently,

the cyclotron energy becomes comparable to the Fermi energy with moderately low

fields (Fig. 1.1). Real Dirac or Weyl materials indicate clear quantum oscillation

and the crossover to the quantum limit at low fields [54, 55]. Quantum limit means

the state where the cyclotron energy exceeds the Fermi energy. The classical theory

cannot simulate the quantum oscillation therefore it is powerless to the phenomena

beyond the quantum limit.

In this thesis, we discuss the magnetoresistance in the Dirac electron system by

considering the Landau quantization. Dirac electron exhibits special field dependence

of Landau levels due to the strong band interaction through the strong spin-orbit

coupling. Especially, the non-trivial characteristic courses the degeneration of to-

tal angular momentum resulting in stable lowest Landau level [56, 57]. We found

that the stability causes a linear increment of carrier concentration in the quantum

limit region. For electrons with anisotropic mass, this carrier density also depends

on the direction of the field. We also found that this anisotropic carrier density

is negatively correlated with the carrier mobility in the magnetoresistance, and we

concluded that the semimetals with Dirac electrons generally exhibit the vanish-

ing of anisotropy in transverse magnetoresistance. These characteristics successfully

explain the angular dependence of transverse MR in bismuth around the quantum

limit. We also calculated the angular dependence of PHE in bismuth. Surprisingly,
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the observed angular dependence can be explained successfully by multiple carrier

transport without assuming topological effects such as the chiral anomaly and Berry

curvature. We pointed that the field-dependent carrier concentration in a specific

electron system can be a factor to change the characteristics of the galvanomagnetic

effect qualitatively.

The cause of another problem is not so fundamental but has been overlooked for

a long time. The point is that the fine structure of the Fermi surface determines the

qualitative and quantitative characteristics of magnetoresistance. In general metals,

semiconductors, and semimetals, the Fermi surface is not a single sphere. Good met-

als (with large Fermi surface) including Cu, Li and Ca have almost spherical Fermi

surface. However, some of the surfaces have several ”holes” at the zone boundary

due to the large Fermi energy. This little deviation from sphere is not negligible

in magneto-transport. Some electron trajectories on the Fermi surface cannot be

closed when the magnetic field is applied in specific directions, which leads to the

enhancement of magnetoresistance and yields large anisotropy (Fig. 1.2a,b) [13,58].

Fermi surfaces in some semiconductors are well approximated with multiple ellip-

soids [59, 60]. This anisotropic structure yields off-diagonal components of the ef-

fective mass tensors, which result in the coupling between electron current and the

magnetic field. Longitudinal magnetoresistance can arise from this coupling [61,62].

In some multiple ellipsoidal electron systems, the longitudinal magnetoresistance is

quite high and exceeds the transverse magnetoresistance [47, 62]. Furthermore, a

cubic description for the Fermi surface successfully explained the behavior of mag-

netoresistance in a semiconductor SrTiO3 with a dilute carrier [63, 64]. After all,

we cannot neglect the effect from the local structure on the Fermi surfaces, wave-

number-dependent effective mass in other words, in simulating magneto-transport

in solids (Fig. 1.2). Especially, the Weyl electron, which we are interested in, is

a typically anisotropic system with complex Fermi surface in low energy regions.

Moreover, the structure of the Fermi surface is variable depending on the carrier

concentration and intensity of band interaction. The surface becomes far from a

sphere in the strong-interaction region.

In this thesis, we report the extended semiclassical approach to the Weyl electron

systems based on the fine structure of the Fermi surface. From more than a half-
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Figure 1.2: Mass property of mass in general materials. (a) Fermi surface and (b)

calculated transverse MR in copper [58]

century ago, a method for calculating magnetoresistance in arbitrary Fermi surface

is known and widely used [41,58,65]. This method attributes the MR to the periodic

orbital motion on the wave space. Another method for calculating MR was built

recently [63]. This new method is also applicable to arbitrary dispersion. Moreover,

we can clearly find the origins of magnetoresistance in the terms of velocity and

effective mass on the Fermi surface. We calculated the MR and PHE in Weyl electron

without assuming Berry curvature or other topological effects. We find that the

longitudinal and transverse magnetoresistance can turn negative due to the negative

off-diagonal effective mass. The effective mass is singular at the Weyl point and the

semiclassical MR behavior also reflects the nature of the Weyl electron. We also

investigate the temperature dependence of PHE amplitude and show non-monotonic

characteristics. We point that the positions of dip and peak structures are correlated

with the energy of Weyl points measured from the Fermi energy. From this result,

we also show that one can experimentally determine the energy of Weyl points by

observing the temperature dependence of PHE amplitude.

This thesis consists of five chapters and an appendix. In Chapter.2, we intro-

duce the semiclassical method for simulating MR applicable to arbitrary dispersion.

We also show that the quantum magneto-transport theory can reproduce the field-

dependence in the semiclassical theory and simulate the quantum oscillation. In

Chapter.3, we show the Dirac and Weyl Hamiltonian in solid are derived from the

k · p theory. We also show that the k · p theory is a powerful tool for simulating the

energy levels in the magnetic field. In Chapter.4 and Chapter.5, we show the details

of our subjects, the condition of our calculation, the results, and discussions.
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Chapter 2

Magnetotransport of charged

carriers in solids

We introduce the semiclassical theory of magneto-transport phenomena of elec-

trons in solids. In this theory, the transport coefficients are given by solving the

Boltzmann equation with proper approximations. We review some useful exten-

sions for calculating magnetoresistance (MR) in real materials. We also derive the

magneto-conductivity tensor from the fully quantum theory: Kubo formula, and

show that the results agree with the semiclassical one at low fields. Moreover, the

quantum theory can simulate quantum oscillation at high fields.

2.1 Boltzmann equation

In the weak field region where the Landau quantization is not remarkable, the

Boltzmann equation gives a good description of the electron transport in solids (es-

pecially good metals). The equation in the magnetic field is written as follows:

∂f

∂t
− e

~
(E + v ×B) · ∇kf + v · ∇rf =

(
∂f

∂t

)
collision

, (2.1)

where f is the distribution function and the vector E, B, v are the electric field,

magnetic field, and the velocity of the electron (e > 0) respectively. Our purpose is

to obtain the conductivity σ, which is the correlation coefficient between the electric
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current density and electric field. When the magnetic field is applied, this coefficient

is represented with 3× 3 tensor σ̂. In solving the equation, we assume the so-called

relaxation time approximation written in the following condition:(
∂f

∂t

)
collision

=
f − f0

τ
. (2.2)

The constant τ is the relaxation time of the electron and f0 is the distribution

function in equilibrium. In the following, we assume the static condition: ∂f/∂t = 0

and uniformity of the system: ∇rf = 0.

2.1.1 Extended Mackey-Sybert model

Simplified semiclassical model which approximates the Fermi surface with sphere

or ellipsoids cannot be applied to the general material with complex Fermi surfaces.

However, these types of conventional models are often used in analyzing experimen-

tal MR. These models are quite simplified and exotic behavior originating from the

electron orbitals is often overlooked, or one may misunderstands the origin of ob-

served MR. The magneto-transport phenomena in Dirac and Weyl electron systems

are especially attracting interest from the quantum viewpoint. On the other hand,

these systems generally have complex Fermi surfaces and the band structures can-

not be described by parabolic curves. More precisely, the effective mass depends on

wave number in the Brillouin zone, which possibly yields non-trivial MR from the

viewpoint of semiclassical transport. In order to simulate the MR accurately in such

special systems, it is necessary to consider the fine structures of the Fermi surfaces.

From early years, a method by Shockley and Chambers for calculating MR in

arbitrary dispersion is known [65,66] and applied to various materials [41,58,67,68].

This method simulates MR by calculating the velocity correlation in the wave space.

Recently, a new method applicable to arbitrary energy dispersion was built. This

method considers the inverse effective mass on the Fermi surface given by the second

derivative of energy [63]. We can attribute the simulated MR to the local structure

with the aid of this method. Magnetoconductivity is calculated with the following
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formula:

σλ,µ = −e

〈
vλ

{
v ·
[

1

eτ
− B̂ · α̂k

]−1
}
µ

〉
, (2.3)

vk = ∇kε/~, (α̂k)λ,µ =
∂2ε

~2∂kλ∂kµ
,

where 〈...〉 =
∫
dk/4π3...df

dε
and f(ε) is the Fermi distribution function. k denotes

the wavenumber. α̂k is the local inverse mass tensor, and (B̂)ij = −εijkBk is the

magnetic field tensor introduced by Mackey and Sybert [69]. This formula was

derived by extending a formula by them. Here, we show the detail of derivation. We

start with the Boltzmann equation with the relaxation time approximation.

−e (E + v ×B) · ∇pf =
f − f0

τ
(2.4)

General treatment of this equation is putting [70]

f − f0 = −φ(k)
∂f0

∂ε
. (2.5)

Following Sondheimer and Willson [71], the factor φ is written as,

φ(k) = G · v. (2.6)

The derivative with the momentum is written as

∇pf = ∇p

(
f0 −G · v

∂f0

∂ε

)
= (∇pε)

∂f0

∂ε
−∇p

(
G · v∂f0

∂ε

)
= v

∂f0

∂ε
− ((∇pG) · v +G · (∇pv))

∂f0

∂ε
− (G · v)v

∂2f0

∂ε2
. (2.7)
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We can show that the vector (∇pG) · v is parallel with the velosity v as follows:

∇pG · v =


∇pxGx ∇pxGy ∇pxGz

∇pyGx ∇pyGy ∇pyGz

∇pzGx ∇pzGy ∇pzGz




vx

vy

vz



=


∇pxGxvx +∇pxGyvy +∇pxGzvz

∇pyGxvx +∇pyGyvy +∇pyGzvz

∇pzGxvx +∇pzGyvy +∇pzGzvz


= (divG)v + (v ×∇p)×G

= (divG)v +

(
v × v ∂

∂ε

)
×G = (divG)v

Substituting it into eq.(2.4) and applying (v×B) ·v = 0, the second term is written

as

e (E + v ×B) · ∇pf = eE · ∇pf − e(v ×B)(G · (∇pv))
∂f0

∂ε
. (2.8)

Moreover, φ(k) is proportional to the electric field [70], and we neglect the terms

higher order terms than E2 and get

eE · ∇pf ∼ ev ·E∂f0

∂ε
. (2.9)

Finally, Equation 2.4 in our case is given as follows:

−ev ·E∂f0

∂ε
+ e(v ×B)(G · (∇pv))

∂f0

∂ε
− 1

τ
(G · v)

∂f0

∂ε
= 0,

and by replacing v ×B and G · (∇pv with v · B̂ and α̂ ·G, we get

−ev ·E∂f0

∂ε
+ ev · B̂ · α̂ ·G∂f0

∂ε
− 1

τ
(G · v)

∂f0

∂ε
= 0. (2.10)

Eliminating ∂f0
∂ε

, we obtain

G =

[
B̂ · α̂− 1

eτ

]−1

E. (2.11)
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The electric conductivity is calculated as follows:

J = − 2e

(2π)3

∫
d3k v

(
−Gv∂f0

∂ε

)
=

2e

(2π)3

∫
d3k v

(
v ·
[
B̂ · α̂− 1

eτ

]−1
)
∂f0

∂ε
·E. (2.12)

Finally, a conductivity tensor is obtained.

σij =
2e

(2π)3

∫
d3k vi

(
v ·
[
B̂ · α̂− 1

eτ

]−1
)
j

∂f0

∂ε
(2.13)

The resistivity tensor ρ̂ is given by the inversion of the conductivity tensor.

ρ̂ = σ̂−1 (2.14)

2.1.2 Ellipsoidal approximation

In semiconductors or semimetals, the carriers in band edge are often approximated

with a free particle with anisotropic mass. In other words, the bands are approxi-

mated with parabolic dispersion and Fermi surfaces are identified with ellipsoids as

follows:

ε(p) =
1

2

∑
i

αiip
2
i =

p · α̂ · p
2

. (2.15)

α̂ is a constant diagonal tensor. After the momentum transformation: w = α̂1/2p,

the Fermi surface becomes spherical in w space. The derivative of p can be expressed

by the derivative of energy as follows:

dp = (detα̂)−1/2dw = (detα̂)−1/2dS(ε)dε/|∇wε|
= (detα̂)−1/2dS(ε)dε/w,
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where S(ε) is an element of the area on the spherical Fermi surface. The integration

in Eq. 2.13 can be done analytically as follows:

σ̂ =
2e(detα̂)−1/2

(2π~)3wF

∫
α̂1/2w Q̂ α̂−1/2w dS(EF ),

σij =
2e(detα̂)−1/2

(2π~)3wF

∑
l

αi
−1/2αl

−1/2Qjl

∫
wjwl dS(EF ),

Q̂ =
[
µ̂−1 − B̂

]−1

, µ̂ = eτα̂.

We assumed the low field limit and used a relation −∂f(ε)/∂ε = δ(ε − EF ). The

result of integration with S is given as∫
wjwl dS(EF ) =

4πw4
F

3
δjl, (2.16)

and the conductivity tensor is given as the following form:

σ̂ = en
(
µ̂−1 ± B̂

)−1

, (2.17)

n =
8πw3

F

3(2π~)3

√
(detα̂)−1, (2.18)

where n is the carrier concentration. The sign ± is corresponding to the charge

sign of the carrier. Conductivity of tilted ellipsoids can be calculated by rotating

the mobility tensor µ̂ as R̂−1(θ)µ̂R̂(θ), where R(θ) is a rotation matrix in three

dimensional space. In the systems which can be described by multiple ellipsoidal

Fermi surfaces, we can calculate the total conductivity tensor by summing up all the

conductivity tensors of each ellipsoid.

σ̂ =
∑
i

σ̂(i) (2.19)

i is the index of different ellipsoids. We note that this approximation is appropriate

only when the band structure can be approximated with parabolic curves. We will

point in Chap. 5 that some cases of the seemingly ellipsoidal Fermi surfaces cannot

be discussed in this framework.
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2.2 Quantum theory

The semiclassical theory does not consider the Landau quantization of carriers.

For example, we cannot simulate the quantum oscillation in the transport coefficient

in the semiclassical framework. Hence, we cannot describe the magneto-transport

phenomena in a quite high field near and beyond the quantum limit. Typical metals

have large Fermi energy and the cyclotron energy is relatively small, and we cannot

approach the quantum limit with an available magnetic field. In this case, it is

not necessary to care about the effect of Landau quantization and the semiclassical

theory is useful. In contrast, semimetals or dilute semiconductors own small Fermi

energy due to the small carrier concentration. Moreover, semimetals belonging to

Dirac and Weyl electron systems have quite small effective carrier mass resulting in

large cyclotron energy with moderately low magnetic field. In these materials, we

can approach the quantum limit with a moderately low field and cannot neglect the

effect of Landau quantization.

We will introduce an example of quantum treatment of magnetoresistance in

free electron in solids with isotropic and anisotropic mass. We will show that the

magneto-conductivity tensor has the same field-dependence as the semiclassical the-

ory except that the carrier density exhibits oscillation at high field due to the Landau

quantization. We calculate the components of the conductivity tensor by the Kubo

formula [72] as shown below:

σij = −1

i

∂Φij

∂ω

∣∣∣∣
ω=0

, (2.20)

Φij =
2e2

βV

∑
n,k

Tr [viGvjG] , (2.21)

where Φ is the current-correlation function, vi is the velocity operator, and G =

(iεn−H)−1 is the Green’s function. H is the Hamiltonian of free electron in magnetic

field. β = 1/kBT and n is the index of the Matsubara frequency. V is the volume

of the system. In the magnetic field, the velocity operator can be rewritten with

πi/m = (pi − eAi)/m. Taking the trace over the Landau indices l, l′, the correlation
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Figure 2.1: Pass integration of the correlation functions along the (a) imaginary

axis and (b) real axis.

function is written in the following form:

Φij(iω) =
2e2

V m2

∑
l,l′

〈l|πi|l′〉 〈l′|πj|l〉Fl′l(iω),

Fl′,l(iω) =
1

β

∑
n,k

gl′(k, iεn)gl(k, iεn − iω),

where gl = (iεn − El)−1 and El

(
= (l + 1

2
)~ωc + ~2k2z

2m

)
is the lth Landau level. ωc =

eB/m is cyclotron frequency, where B denotes the magnetic field. With the magnetic

field along the z axis, the π operators in the plane of x-y plane can be written with

ladder operators (πx =
√
~eB/2(a+ + a−), πy = i

√
~eB/2(−a+ + a−)). a+ and a−

are raising and lowering operators respectively. With the help of this treatment, we

can conduct the summation over l′ and get the following form:

Φxx(iω) =
e3~B
Vm2

∑
l

[lFl−1,l + (l + 1)Fl+1,l] , (2.22)

Φxy(iω) = −ie
3~B
Vm2

∑
l

[lFl−1,l − (l + 1)Fl+1,l] . (2.23)

Next, we conduct the summation of Matsubara frequency n. By multiplying the

Fermi distribution function, we can replace the summation with the pass integration

along the imaginary axis in the complex plane (C in Fig. 2.1a). Furthermore, the

pass of integral is transformed to four separated ones parallel to the real axis as
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shown in Fig. 2.1b in order to avoid crossing the singularities of Green’s functions

(iεn = 0, iεn = iω). After an analytic continuation: iω → ~ω + iΓ (Γ = ~/2τ), Fl′,l

can be written in the following form:

Fl′,l = − 1

2πi

∑
k

∫ ∞
−∞

dxnF (x)
[
GR
l′ (x+ ~ω)GR

l (x)−GR
l′ (x+ ~ω)GA

l (x)

+GR
l′ (x)GA

l (x− ~ω)−GA
l′ (x)GA

l (x− ~ω)
]
,

where nF , GA(GR), and τ are the Fermi distribution function, advanced (retarded)

Green’s function, and electron lifetime due to the impurity scattering. The second

and third terms including GAGR and GRGA are called the ”Fermi surface” terms and

refer to the contribution from the electrons at the Fermi energy. The other terms

correspond to the contributions from lower energies and called ”Fermi sea” terms.

We are interested in the conduction contributed from the Fermi surface, hence we

neglect the other terms in the correlation function and define the function F surf
l′,l as

shown below:

F surf
l′,l =

1

2πi

∑
k

∫ ∞
−∞

dxnF (x)
[
GR
l′ (x+ ~ω)GA

l (x)−GR
l′ (x)GA

l (x− ~ω)
]

=
−1

2πi

∑
k

∫ ∞
−∞

dx [nF (x+ ~ω)− nF (x)]GR
l′ (x+ ~ω)GA

l (x)

∼ ~ω
2πi

∑
k

∫ ∞
−∞

dx

(
−dnF (x)

dx

)
GR
l′ (x+ ~ω)GA

l (x)

=
~ω
2πi

∑
k

GR
l′ (µ+ ~ω)GA

l (µ),

where µ is the chemical potential. We discarded the higher expansion with ω because

it vanishes by taking ω → 0 later. Substituting to the Eq. 2.22 and 2.23, the

correlation functions are written in the following forms:

Φxx(ω) =
e3~2Bω

2πiV m2

∑
k,l

(l + 1)
[
GR
l+1(µ+ ~ω)GA

l (µ) +GR
l (µ+ ~ω)GA

l+1(µ)
]
,

Φxy(ω) = −e
3~2Bω

2πV m2

∑
k,l

(l + 1)
[
GR
l+1(µ+ ~ω)GA

l (µ)−GR
l (µ+ ~ω)GA

l+1(µ)
]
.
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According to the Eq. 2.20, each component of conductivity tensor is given in the

following form:

σxx =
e3~2BNL

(2π)2m2

∑
l

(l + 1)

∫ ∞
−∞

dkz

[
1

~ωc − 2iΓ

(
1

µ− El+1 + iΓ
− 1

µ− El − iΓ

)
+ c.c.

]
,

σxy = −ie
3~2BNL

(2π)2m2

∑
l

(l + 1)

∫ ∞
−∞

dkz

[
1

~ωc − 2iΓ

(
1

µ− El+1 + iΓ
− 1

µ− El − iΓ

)
− c.c.

]
.

We replaced the integration in kx, ky direction with the Landau degeneracy NL =

eB/2π~ [15]. The integration of GR,A(µ) with kz is calculated as∫ ∞
−∞

dkz
2π

1

µ− (l + 1/2)~ωc − ~2k2
z/2mz ± iΓ

= ∓i
√

2m

2~
√
µ− (l + 1/2)~ωc ± iΓ

.

Substituting this result, we get the final forms of σxx and σxy.

σxx =
e2τ

m

1

(ωcτ)2 + 1

(√
2mµ

~

)3
(γωcτ)2

2π2

∑
l

{−ωcτ Im[Kl] + (2l + 1)Re[Kl]}

σxy = −e
2τ

m

1

(ωcτ)2 + 1

(√
2mµ

~

)3
(γωcτ)2

2π2

∑
l

{(2l + 1)ωcτRe[Kl] + 2Im[Kl]}

Kl =
1√

1− (2l + 1)ωcτγ + iγ
, γ =

Γ

µ

When Γ� µ, they can be written as follows:

σxx = eµeN(B)
1

(ωcτ)2 + 1
, (2.24)

σxy = −eµeN(B)
ωcτ

(ωcτ)2 + 1
, (2.25)

µe =
eτ

m
,

N(B) =

(√
2mµ

~

)3 (γωcτ
π

)2∑
l

(
l +

1

2

)
Re[Kl].
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Figure 2.2: Field dependence of (a) σxx (red), σyx (blue), and (b) σzz (red) calculated

from Kubo formula (Γ/µ = 0.002). Black lines show the result from semiclassical

theory. σ0 = e2τne/m and ne = k3
F/3π

2

One can find that σyx is given by −σxy because Φyx = −Φxy due to the selection rule.

These results are corresponding to an expansion of the Drude model to high magnetic

field by considering the field-dependence carrier concentration. They are matched

to the zero-field conductivity at B → 0 limit and reproduce the field dependence

of Boltzmann theory as shown in Fig. 2.2a. They can also simulate the quantum

oscillation at high fields.

In three dimensional systems, the conductivity tensor has further five compo-

nents. In the direction along the magnetic field (z axis), the velocity operator does

not have transition components and the Fermi surface terms in correlation function

can be written as follows:

Φzz(iω) =
2e2

βV m2

∑
l,n,k

p2
zgl(k, iεn)gl(k, iεn − iω)

Fermi surface−−−−−−−→ e2~ω
πiV m2

∑
k,l

p2
zG

R
l (µ+ ~ω)GA

l (µ).
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Hence, the conductivity in z direction is obtained as follows:

σzz =
e2~
πV m2

∑
k,l

p2
z

(µ− El + iΓ)(µ− El − iΓ)

=
e2NL

2π2m2

∑
l

∫ ∞
∞

dpz
p2
z

(µ− El + iΓ)(µ− El − iΓ)

=
e2NL(

√
2m)3

2πm2Γ

∑
l

√
µ− (l + 1/2)~ωc + iΓ

= eµeN
′(B), (2.26)

N ′(B) =

(√
2mµ

~

)3
γωcτ

π2

∑
l

√
1− (2l + 1)ωcτγ + iγ.

This value agrees with semiclassical theory at low fields and exhibits oscillation at

high fields as shown in Fig. 2.2b. The other components (σxz and σyz) are zero

because πx and πy are off-diagonal and πz is diagonal. One can find the following

relation:

〈l|πx,y|l′〉 〈l′|πz|l〉 = (Cδl′−1,l + C ′δl′+1,l)δl′,l = 0. (2.27)

Finally, we obtain the total conductivity tensor.

σ̂ =


σxx σxy 0

σyx σyy 0

0 0 σzz

 = eµe



N(B)

(ωcτ)2 + 1
− N(B)ωcτ

(ωcτ)2 + 1
0

N(B)ωcτ

(ωcτ)2 + 1

N(B)

(ωcτ)2 + 1
0

0 0 N ′(B)

 (2.28)

σxx at high field limit and σzz take the same form as the results by Abrikosov [50].

Moreover, we can extend these results to the anisotropic electron by defining the effec-

tive mass in x, y, z direction independently in the framework of parabolic-dispersion

approximation. In this case, the Hamiltonian of the ground state is

H =
∑
i=x,y,z

π2
i

2mi

. (2.29)
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After the same calculations, we obtain the conductivity tensor as follows:

σ̂ = e



µxN(B)

µxµyB2 + 1
−µxµyBN(B)

µxµyB2 + 1
0

µxµyBN(B)

µxµyB2 + 1

µyN(B)

µxµyB2 + 1
0

0 0 µzN
′(B)

 , (2.30)

N(B) =
(
√

2µ)3√mxmymz

~3

(γωcτ
π

)2∑
l

(
l +

1

2

)
Re[Kl],

N ′(B) =
(
√

2µ)3√mxmymz

~3

γωcτ

π2

∑
l

√
1− (2l + 1)ωcτγ + iγ,

µx =
eτmc

m2
x

, µy =
eτmc

m2
y

, µz =
eτ

mz

, ωc =
eB

mc

, mc =
√
mxmy.

This result formally agrees with the semiclassical theory for anisotropic electron [45].

In summary, it is shown that the magneto-conductivity with Landau quantization

is given by replacing the constant carrier concentration in the semiclassical theory

with field-dependent (oscillating) carrier density N(B), N ′(B). For Dirac electron

systems, previous theoretical research also showed that the quantum theory agrees

with the semiclassical one at low fields and that the oscillation is superimposed at

high fields [73].
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Chapter 3

Dirac and Weyl electron in solids

Dirac electron in solids is characterized by the 4× 4 Dirac Hamiltonian, which is

known as the relativistic representation of Fermions in quantum physics [74]. Its lin-

ear dispersion yields a small effective mass [15,57] resulting in high mobility. Strong

spin-orbit coupling is the essential constitution of this system and consequential

strong band interaction changes the fundamental features of electromagnetic prop-

erties [75–77]. Moreover, in topological aspects, various exotic magneto-transport

characteristics are expected due to the non-trivial Berry curvature in the Dirac elec-

tron system [16]. It appears in solids such as an anomaly in quantum oscillation [78],

negative MR [20], or sizable planar Hall effect with period π [21].

Weyl electron is also a non-trivial electron in solids, which is described with a

mass-less Dirac Hamiltonian (Weyl Hamiltonian). Contrary to the Dirac electron,

the Weyl electron in solids naturally includes some broken symmetry [16] and the

system is categorized into some classes according to the symmetry. When there

are two degenerating points in the Brillouin zone, this is so-called Weyl-semimetal

[79]. When the degenerating point draws a continuous line, this class is nodal line

semimetal [16, 79]. The Weyl semimetals contain a twin of Dirac cones, which are a

divergence and conversion point of Berry curvature respectively [16].

Our purpose is to calculate the magneto-transport properties of these special

types of electron systems on the basis of semiclassical theory. Especially, we are

curious about the Landau quantization of the energy band and the fine structure of
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Fermi surfaces. k · p theory is a powerful tool for obtaining elaborate energy disper-

sions near the symmetry points and the quantized band structures in the magnetic

field. In this chapter, we introduce the concepts, various models, and beneficial

consequences of this theory.

3.1 k · p theory

k•p theory

Shockley (1950)

Luttinger-Kohn (1955) Dresselhaus-Kip-Kittel (1955)

Kane (1956)

Cohen-Blount (1960)

Wolff (1964)

Dirac model in Bismuth

Weyl model in Cd
3
As

2

Wang et al. (2013)

magnetic field degenerated atomic orbitals

conduction-valence  interaction

spin-orbit interaction

non-perturbative
magnetic band

Izaki and Fuseya (2019)

Invariant :

 band index symmetry of orbitals

Figure 3.1: History and correlation of k · p models.
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Electric carrier transport in semimetals and semiconductors are governed by

the edge of the energy band because the structure determines the sign and scale

of the effective mass of the carrier. Generally, the effective mass in crystal differs

from bare electron mass due to the finite band interaction. The k · p theory can

demonstrate the band interaction by selecting the Bloch wave function as a basis.

Although the main concept is simple, we can apply this theory to variable cases by

basis transformations.

The history and relations of several versions of theories are summarized in Fig.

3.1. The first insight was given by Shockley in 1950 [80]. The idea is to expand

the eigenfunctions of electrons with plane waves. He renormalized the inter-band

effect into the electron mass and successfully demonstrated the anisotropy of energy

bands in semiconductors. Years later, the theory was improved and written in more

general and useful forms by several researchers: Dresselhaus-Kip-Kittel (DKK) [81]

and Luttinger-Kohn (LK) [82]. The concept of DKK theory was exploring the k-

dependent band splitting in the valence band in semiconductors. They applied the

perturbation theory to degenerated p-orbitals and pointed that the band interaction

results in the band splitting. They also showed that the k-dependence is all quadratic

without spin-orbit coupling.

Kane extended the DKK theory by considering interactions between valence and

conduction bands, which make the band calculation available in narrow gap semicon-

ductors [83,84]. Now this theory is an essential tool for analyzing the band structure

in topological materials with the inversion of valence and conduction bands [85–87].

DKK and Kane suggested the spin-orbit coupling yields linear dispersion. Recently,

it was theoretically shown that the effective Hamiltonian at the Γ point of Cd3As2

can be described by the Weyl Hamiltonian due to the energy inversion of s- and

p-orbitals and strong band interaction with the help of Kane model [87].

Luttinger and Kohn developed a discussion of perturbation which breaks the

translational symmetry in systems including the magnetic field or impurity [82].

Especially, the gauge-invariant treatment of magnetic fields made an overwhelming

impact on the following studies. With the help of this theory, we can easily obtain

electron energy in the magnetic field. Following this, Cohen and Blount found that

the energy band in bismuth is described by an isolated 2-band model [56]. Wolff
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showed this 2-band system interacted by spin-orbit coupling can be written with

Dirac Hamiltonian [57]. He also gave the Landau levels of an electron in bismuth.

We want to note that DKK, Kane, and LK theory focus on the different types of

invariants in the system: symmetry of orbits and band index respectively.

Recently, a non-perturbative treatment of magnetic fields in solids was established

[88]. By substituting the non-commutative momentum operator in the magnetic

field with the creation and annihilation operator of the harmonic oscillator, we can

calculate the Landau levels of arbitrary tight-binding Hamiltonian with the help of

matrix mechanics. This model was applied to a real material with Dirac electron

and successfully simulate the field-dependence of effective g-factor.

3.1.1 The core concept of k · p theory

First, we introduce the general doctrine of k · p theory. The main purpose is

obtaining the representation of perturbed Hamiltonian on the basis of unperturbed

Bloch state. We begin with the Schrödinger equation and Bloch state shown as

follows.

Hψ =

[
p2

2me

+ V (r)

]
ψ = Eψ (3.1)

ψ = eik·run,k(r) (3.2)

V (r) is the potential of the crystal. Substituting the wave function, the equation can

be rewritten as[
p2

2m
+

~
m
k · p+

~2k2

2m
+ V (r)

]
unk(r) = Eunk(r). (3.3)

Using the Eq. 3.1, we obtain the following equation:[
H +

~
m
k · p+

~2k2

2m

]
unk(r) = Eunk(r). (3.4)

If we assume that k is in the vicinity of the origin of the coordinate, the second and

third terms of the left-hand side can be treated perturbatively. Now, we focus on

the n-th band and the energy eigenvalue is calculated as

εn(k) = εn(0) +
~2k2

2m
+

~2

m2

∑
j 6=n

|〈n|k · p|j〉|2

εn(0)− εj(0)
. (3.5)
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The inter-band effect is reflected through the transition amplitude of the p operator.

Defining the effective mass by the second derivative of energy with wave number, it

is written as
1

m∗
=

[
1

~2

d2εn(k)

dk2

]
=

1

m
+

2

m2

∑
j 6=n

|〈n|p|j〉|2

εn(0)− εj(0)
. (3.6)

We can see that the inter-band effect results in the modulation of inverse effective

mass. This is the reason this theory is often called effective mass approximation.

3.1.2 Dirac electron in solids

Dirac electron in three dimensional solid is characterized by the linear disper-

sion with crossing or anti-crossing point. It typically consists of 2-bands correlated

through spin-orbit coupling. The inter-band effect especially changes fundamental

physics, especially of the magnetic responses [75–77]. In the strong limit of the

interaction in a 2-band system, the k · p Hamiltonian is identical to the Dirac Hamil-

tonian. Here, we show the derivation of the Hamiltonian according to the application

to Bismuth electron [56, 57]. We begin with the electron in crystal with spin-orbit

interaction as shown below.

Ĥ =
p2

2m
+ V +

λ2

8
∇2V +

λ

2mc
p · (s×∇V ) (3.7)

The λ is the Compton wavelength, c is the speed of light, and V is the crystal

potential. We assume the two energy bands and the eigenfunctions are Bloch wave

functions with Kramers indices.

|φn,s(r)〉 = e−ikr |un,s(r)〉 n = 1, 2 s = 1, 2 (3.8)

According to the k · p method with two energy bands, we can obtain the components

of the Hamiltonian with the basis of |un,s〉 as shown below.

〈un,s|Ĥ|un′,s′〉 =

[
En,s +

~2k2

2m

]
δn,n′δs,s′ + ~k · 〈un,s|v|un′,s′〉+O(k2) (3.9)

v = ∇pĤ is the velocity operator. Since the Kramers pair is related with the time-

reversal operation Û = iσyC (σy is one of the Pauli matrices and C is the conjugation
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operator), we can obtain the relation between the k-linear components.

〈u1,1|v|u2,1〉 = 〈u2,2|v|u1,2〉 ≡ t (3.10)

〈u1,1|v|u2,2〉 = −〈u2,1|v|u1,2〉 ≡ u (3.11)

When we assumed that the velocity at the band edge to be zero (〈ui,j|v|ui,j〉 = 0),

The 4× 4 Hamiltonian is written as follows.

Hk·p =


∆ 0 ~k · t ~k · u
0 ∆ −~k · u∗ ~k · t∗

~k · t∗ −~k · u −∆ 0

~k · u∗ ~k · t 0 −∆

+
~2k2

2m
(3.12)

∆ is the half gap between two bands. We can reduce the real part of t by a unitary

transformation S written as

S =

(
S1 0

0 S+
1

)
, S1 =

[
1 + i

3∑
ı=1

(aiσi)

]
/D, D =

[
1 +

3∑
i=1

(ai)
2

]1/2

,

and choosing the coefficient ai to satisfy the following equation:[
1−

3∑
i=1

a2
i

](
Re[t] · k
D2

)
− 2

3∑
i=1

ai

(
Ki · k
D2

)
= 0,

where Ki = {i = 1 : Im[u], 2 : Re[u], 3 : Im[t]}. σi is the Pauli matrix and Ki

is corresponding to the intensity of band interaction including anisotropy. After this

transformation, we obtain the final representation of the Hamiltonian.

HWolff = SHS−1 = ∆β +
~2k2

2m
I + i~k ·

[
3∑
i=1

Kiβαi

]
(3.13)

αi =

(
0 σi

σi 0

)
β =

(
I 0

0 −I

)

This Hamiltonian is identical with a summation of free particle Hamiltonian and

the Dirac Hamiltonian whose mass gap is corresponding to the bandgap. When we
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consider the isotropic case, the intensity of band interaction is scaled by the following

value.

Γ = 〈u1,1|v|u2,2〉 (3.14)

The major origin of this inter-band effect is spin-orbit coupling. The energy eigen-

value is given as

E(k) =
~2k2

2m
±
√

∆2 + Γ2(~k)2. (3.15)

We can see the dispersion becomes non-parabolic (linear) when the inter-band com-

ponent is enough larger than the characteristic scale of energy ∆ as shown in Fig.

3.2.

q q q q

E
 /
 Δ

 m
e
 / m* = 0.05  m

e
 / m* = 5  m

e
 / m* = 25  m

e
 / m* = 100(a) (b) (c) (d)

Figure 3.2: Two energy band interacting through the spin-orbit coupling. The

energy and the wave number are normalized as E/∆ = q2 +
√

1 + 2(me/m∗)q2

and q2 = ~2k2/2me∆. The ratio of masses corresponds to the intensity of band

interaction.

3.2 Luttinger-Kohn theory

Luttinger and Kohn extended the k · p theory in 1955 and obtained a generalized

representation of the Wannier equation [82]. This theory improved the applicability

up to arbitrary symmetric points in the Brillouin zone and the cases with the external

magnetic field or impurities, which break the symmetry of the system. After an
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elegant transformation of the basis, we can easily simulate the energy bands in these

perturbations.

The core of this theory is renormalizing the k-dependence of the basis of Bloch

state un,k into the plane wave components and selecting new basis as the following

form:

χnk = eik·run0. (3.16)

This can be proved to be an orthonormal basis [82].

〈χnk|χn′k′〉 = δ (k′ − k) δnn′ (3.17)

This simple formulation makes this theory tremendously useful. In the following

sentences, we denote the wave function χnk with |nk〉.

3.2.1 k · p theory in the external magnetic field

We are especially interested in the band structure in the magnetic field. However,

the external field breaks the symmetry of the system and makes it difficult to näıvely

apply the Bloch theorem. The LK’s representation gives a key to solving the conflict

and shows the way to find the energy eigenvalues in the field by replacing the basis as

shown above. The final conclusion is that the characteristic equation in the field can

be re-written by replacing the momentum operator p with the magnetic momentum

π = p + eA. All we should do is to find the solution of the Wannier equation with

the π operator. We show the proof below [82,89].

We assume the following vector potential.

Ax = −By, Ay = 0, Az = 0, (3.18)

which is corresponding to the magnetic field along the z-axis. Expanding the kinetic

energy term, the Hamiltonian is written as

H = H0 +Hkp

= H0 +
s

m
ypx +

s2

2m
y2 (s = eB). (3.19)
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H0 is a non-perturbed Hamiltonian including kinetic energy, the periodic potential

of crystal, and spin-orbit coupling. The matrix elements of perturbed Hamiltonian

Hkp are calculated as follows:

〈nk |ypx|n′k′〉 =

∫
ei(k

′−k)·ru∗n0 y (~kx − i~∇x)un′0dr

= i
∂

∂ky

∫
ei(k

′−k)·ru∗n0 (~kx − i~∇x)un′0dr

= (~kxδnn′ + pxnn′)
1

i

∂δ (k− k′)

∂ky ′
, (3.20)

pαnn′ =
(2π)3

Ω

∫
cell

u∗n0 (−i~∇α)un′0dr, (3.21)

〈nk
∣∣y2
∣∣n′k′〉 =

∫
y2ei(k

′−k)·ru∗n0un′0dr

=

(
1

i

∂

∂k′y

)2 ∫
ei(k

′−k)·ru∗n0 un′0dr

= −δnn′
∂2δ (k− k′)

∂ky ′2
, (3.22)

where Ω is the volume of the unit cell. Therefore, components of the total Hamilto-

nian is written as

〈nk |H|n′k′〉 =

[(
εn(0) +

~2k2

2m

)
δ (k− k′) +

s~2kx
m

1

i

∂δ (k− k′)

∂ky ′
− s2~2

2m

∂2δ (k− k′)

∂k′2y

]
δnn′

+
1

m

[
~k · pnn′δ (k− k′) + is~pxnn′

∂δ (k− k′)

ky ′

]
. (3.23)

εn is the energy eigenvalue of the non-perturbed Hamiltonian. We can see the com-

ponents are separated into intra-band and inter-band terms. In order to delete the

inter-band terms, we conduct a unitary transformation noted with eS
′
. First, we
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expand the transformed Hamiltonian.

e−S
′
He+S′

= H + [H,S ′] +
1

2
[[H,S ′] , S ′] + · · ·

= H(0) +Ha +Hb +H ′

+
[
H(0), S ′

]
+ [Ha, S

′] + [H ′, S ′] +
1

2

[[
H(0), S ′

]
, S ′
]

+ · · ·

〈nk |Ha|n′k′〉 = −s~
2kx
m

1

i

∂δ (k− k′)

∂ky ′
δnn′ (3.24)

〈nk |Hb|n′k′〉 = −s
2~2

2m

∂2δ (k− k′)

∂ky ′2
δnn′ (3.25)

〈nk |H ′|n′k′〉 =
1

m

[
~k · pnn′δ (k− k′) + is~pxnn′

∂δ (k− k′)

∂ky ′

]
(3.26)

After an ingenious choice of S ′ as

H ′ +
[
H(0), S ′

]
= 0, (3.27)

the expanded Hamiltonian is written in a simple form as follows.

e−S
′
HeS

′ ≡ Hexp = H(0) +Ha +Hb + [Ha, S
′] +

1

2
[H ′, S ′] + · · · (3.28)

Moreover, from the relation in Eq. 3.27, we can calculate the matrix elements of S ′

as follows.

〈nk |S ′|n′k′〉 =

−〈nk |H ′|n′k′〉 /~ωn,n′ (n 6= n′)

0 (n = n′)
(3.29)

~ωn,n′ = En − En′

From this relation and Eq. 3.26, one can see the scale of S ′ is ∼ kpnn′/mωnn′ . The

order of physical quantities are typically ~k ∼
√
s, pnn′ ∼ ~/a, ωnn′ ∼ ~2/ma2,

where a is the lattice constant. Hence, the amplitude of S ′ is about (a/lm)2. The

lm is the magnetic length given by
√

~/eB and has a scale of µm in a typical field.

Then we can neglect the higher-order terms in Eq. 3.28. Since Ha is diagonal (Eq.

3.24) and S ′ is off-diagonal (Eq. 3.29) in the energy index, we get

〈nk |[Ha, S
′]|nk′〉 = 0. (3.30)
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Next, 〈nk |[H ′, S ′]|nk′〉 term is calculated as

1

2
〈nk |[H ′, S ′]|nk′〉 =

1

m2

∑
n′ 6=n

1

ωnn′

[
kαkβp

α
nn′p

β
n′nδ (k− k′)

+s (kα + k′α) pαnn′pxn′n

1

i

∂δ (k′ − k)

∂k′y
− s2pxnn′pxnn′

∂2δ(k− k′)

∂k′y
2

]
.

Applying the definition of effective mass shown in Eq. 3.6, the summation is renor-

malized in the mass and we get

1

2
〈nk |[H ′, S ′]|nk′〉 = − 1

2m

{
kαkβ

[
δαβ −m

(
∂2εn(k)

∂kα∂kβ

)
0

]
δ (k− k′)

+s

[
(kx + k′x)−m (kα + k′α)

(
∂2εn(k)

∂kα∂kx

)
0

]
1

i

∂δ (k′ − k)

∂k′y

−s2

[
1−m

(
∂2εn(k)

∂k2
x

)
0

]
∂2δ (k′ − k)

∂k′2y

}
.

(· · · )0 means (· · · )k=0. Using the following relation:

(kx − kx′) ∂δ (k− k′) /∂ky
′ = 0,

(ky − ky ′) ∂δ (k− k′) /∂ky
′ = δ (k− k′) ,

we obtained the components of the full Hamiltonian as follows.〈
nk|H̄|nk′

〉
= εn(k)δ (k− k′) + skα

(
∂2εn(k)

∂kα∂kx

)
0

1

i

∂δ (k− k′)

∂ky ′

+
is

2

(
∂2εn(k)

∂kx∂ky

)
0

δ (k− k′)− 1

2
s2

(
∂2εn(k)

∂k2
x

)
0

∂2δ (k− k′)

∂k′2y

The Schrödinger equation corresponding to this Hamiltonian is written in the fol-

lowing form:{
εn(k) + is

[
kα

(
∂2εn(k)

∂kα∂kx

)
0

∂

∂ky
+

1

2

(
∂2εn(k)

∂kx∂ky

)
0

]
− s2

2

(
∂2εn(k)

∂k2
x

)
0

∂2

∂k2
y

}
Bn(k) = εBn(k).

After the Fourier transformation, we obtain the final form of the equation as follows:[
εn

(
∇
i

)
+
s

2

(
∂2εn(k)

∂kα∂kx

)
0

(
y
∇α

i
+
∇α

i
y

)
+
s2

2

(
∂2εn(k)

∂k2
x

)
0

y2

]
Fn(r) = εFn(r),

(3.31)
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where Fn(r) =
∫
dkeik·rBn(k). Comparing with the Schrödinger equation without

the magnetic fields in the framework of k · p method given as[
En(0) +

kikj
2

(
∂2En(k)

∂ki∂kj

)
0

]
Fn(r) = εFn(r), (3.32)

the Hamiltonian in Eq. 3.31 can be obtained by replacing the momentum p with the

magnetic momentum π = p+ eA.

3.2.2 Dirac electron in the magnetic field

With the help of L-K theory, the Hamiltonian of Dirac electron in the magnetic

field can be written in the following form:

H =

(
∆ iΓπ · σ

−iΓπ · σ −∆

)
. (3.33)

The square of this Hamiltonian can be block-diagonalized as,

H2 =

(
∆2 + Γ2(π · σ)(π · σ) 0

0 ∆2 + Γ2(π · σ)(π · σ)

)
,

(π · σ)(π · σ) =

(
~2k2

z + 2π−π+ 0

0 ~2k2
z + 2π+π−

)
,

where π± are the ladder operators of Landau levels. The products of these operators

can be calculated as follows:

2π+π− = π2
x + π2

y + i(π × π)z

= (2l + 1)e~B + e~B,

2π−π+ = π2
x + π2

y − i(π × π)z

= (2l + 1)e~B − e~B.

(3.34)

l is the index of Landau levels. Finally, we get the quantized energy of the Dirac

electron in the magnetic field by solving the equation H2ψ = E2ψ.

El,s = ±

√
∆2 + 2Γ2

[(
l +

s

2
+

1

2

)
e~B +

~2k2
z

2

]
(3.35)
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We can see that the states with the same total angular momentum j = l+ s/2 + 1/2

degenerate. In a 2-band model with a strong interaction (∆ � EF ), the effective

mass is given as
1

m∗
∼ Γ2

∆
,

hence the Landau level is rewritten as the following form:

El,s = ±

√
∆2 + 2∆

[(
l +

s

2
+

1

2

)
~ωc +

~2k2
z

2mz

]
. (3.36)

3.2.3 Landé g-factor

We have reviewed a concept of k · p theory. The main feature is the modulation

of effective mass by the band interactions. When we take the spin-orbit interaction

and magnetic field into account, another respect of band interaction appears as the

modulation of Zeeman splitting. The g-factor of a bare electron is 2. On the other

hand, it largely deviates from this value for electrons in some materials [54, 90, 91].

Roth [92] first discussed this effect by perturbatively treating the magnetic field

(Lödin partitioning [93]). We can expand the additional Zeeman split of degenerated

bands ∆E with the commutators of wave vector as shown below.

∆E =
1

m2
0

∑
El 6=En

{[
〈n |px| l〉 〈l |py|n〉 − 〈n |py| l〉 〈l |px|n〉

En − El

]
[px, py]

+

[
〈n |pz| l〉 〈l |px|n〉 − 〈n |px| l〉 〈l |pz|n〉

En − El

]
[pz, px]

+

[
〈n |py| l〉 〈l |pz|n〉 − 〈n |pz| l〉 〈l |py|n〉

En − El

]
[py, pz]

} (3.37)

When the magnetic field is applied along with the z-direction, only one commutator

[πx, πy] remains and we obtain

∆E = −ie
~
m2

0

Bz

∑
El 6=En

〈n |πx| l〉 〈l |πy|n〉 − 〈n |πy| l〉 〈l |πx|n〉
En − El

≡ ∆gµBsBz

2
.

(3.38)
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The effective g-factor geff = g0 + ∆g is clearly modulated by the band interactions.

Carriers in bismuth crystals are the typical example. As mentioned before, the

electron in bismuth is well approximated with the Dirac electron [56,57]. Two energy

band is correlated with spin-orbit coupling so strongly that the Zeeman split has the

same value with the cyclotron energy, which corresponds to the energy degeneration

shown in the Eq. 3.36. It is experimentally confirmed that the enhancement of

effective g-factor in bismuth electron is isotropic [54]. On the other hand, the case of

the hole is different. The Zeeman split is almost twice as large as the cyclotron energy

in the trigonal axis [54, 94–97], while it is negligibly small in binary and bisectrix

directions. Recently, the origin of these mysterious characteristics was unveiled [98]

by explicitly calculating the inter-band effect from the tight-binding model. Although

the gap between the T45 (hole carrier) and Γ6 bands are nearly 1 eV, the spin-orbit

coupling in bismuth has a comparable scale (∼ 1.8 eV [90]) and make these bands

coupled.

3.2.4 Inter-band effect and adiabatic phase

The recent viewpoint of topological materials has renewed the interest in the band

interaction in the magnetic field. It was figured out that the Landau quantization

of the energy band reflects the information of the Berry phase [78]. Berry phase is

a phase in wave function in parametric space. While this phase is implicit in the

Schrödinger equation of free particle, it arises with non-trivial phenomena in some

multi-band systems. In the case of electrons in crystals, the adiabatic parameter is

the wave number k. The phase is stimulated to the electron wave when the electron

wave travels through the Brillouin zone, which is reminiscent of the Aharonov Bohm

effect in the external magnetic field. We can regard this phase in the wave space

as an effect of a virtual magnetic field. We call this intrinsic magnetic field Berry

curvature. Some types of crystals possess topologically protected Dirac cone, which

is the crossing point of linear bands in the Brillouin zone. This singularity in the

band structure can be a diverging point of Berry curvature, which is identical to

a magnetic monopole [16]. For example, insulators with non-trivial Z2 index is

called topological insulator and it has a conducting state with the Dirac cone on its
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surface [99]. Another example is the Weyl electron system. This system has some

types of breaking of spatial symmetry, which results in a twin of Dirac cones (Weyl

point) or line of degeneration (nodal line) in k-space [16].

We can extract the information of Berry phase out of the quantum oscillation.

Mikitik et al. proposed that phase of the oscillation includes the Berry phase directly

[78]. The cross-sectional area of l-th Landau tube in the Brillouin zone is given

by [100]

S(B) =
2πeB

~
(l + γ) (3.39)

in the framework of semiclassical electron trajectory in k-space. When this area

becomes maximized, the oscillation in electron-transport coefficients is observed.

The additional constant γ is corresponding to the phase shift of the oscillation and

is equal to 1/2 when there is no inter-band effect: free electron. They showed that

the phase in a n-th Bloch band can be written as [101]

γn =
1

2
− 1

2π

∮
Ωndk. (3.40)

Ωn(k) = i

∫
dru∗k,n∇kuk,n. (3.41)

Ωn(k) is the Berry phase in the k-space. When the contour of electron trajectory

includes the level-crossing point, which is corresponding to the Dirac cone mentioned

above, the Berry-phase term becomes non-zero. γ = 1 is realized in Dirac electrons.

The relation between the Berry phase and quantum oscillation can be translated

in terms of effective g-factor. In the case of free electrons with light mass in solids, the

levels of the Kramers pair are almost degenerated due to the relatively small Zeeman

splitting (Fig. 3.3a). On the other hand, in the strong limit of 2-band interaction:

Dirac electron, the degenerated energies are shifted due to strong spin-orbit coupling.

In the Dirac electron, the degenerated pair has the same total angular momentum

in the z direction (Fig. 3.3b). The peaks of quantum oscillation are corresponding

to the crossing point of the bottoms of Landau levels and Fermi energy. Hence, the

position of peak is given in the following relation:

(n+ 1/2)~ωc = EF , (Free electron) (3.42)√
∆2 + 2∆j~ωc = EF , (Dirac electron) (3.43)
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where j = l + s/2 + 1/2. When we plot the index corresponding to the peaks of

quantum oscillation as a function of inverse-field (1/B), the points are distributed in

a co-linear line. Moreover, the line has an intercept at 1/2 in the case of a free electron

and crosses the origin in Dirac electron (Fig. 3.3c). This map is called fan diagram,

and we can determine the additional phase of an electron from the intercept of

lines [6,54,102–105]. In more complicated multi-band systems (n > 3), the intercepts

deviate from integer or half-integer. The degree of shift is measured with the ratio

of the Zeeman split to the cyclotron energy called Zeeman cyclotron ratio (denoted

with M [77]). Recently, the k · p theory was extended beyond the framework of

Lödin partitioning and we can treat the magnetic field non-perturbatively in band

calculation with the help of matrix mechanics [88]. This method pointed out that

the ratio M in PbTe, which has been approximated with the Dirac electron system,

has field dependence due to additional inter-band effects from outside of 2-band.

ħω
 

E
z

E
F

1/B

n

1/2

0

(a) Free electron (b) Dirac electron (c) Fan diagram

Free electron

Dirac electron

Figure 3.3: Band edge of Landau levels in (a) Free electron and (b) Dirac electron.

(c) Fan diagram of free and Dirac electron.

We can also find the relationship between the effective g-factor from the inter-

band effect and the Berry curvature. The Berry curvature in the Brillouin zone is



Chapter 3. Dirac and Weyl electron in solids 39

given by [24,106]

Bn(k) = Im
∑

Em 6=En

〈n(k) |v|m(k)〉 × 〈m(k) |v|n(k)〉
(Em(k)− En(k))2 . (3.44)

This is clearly correlated with the effective g-factor in Eq. 3.38. We can say that the

band proximity enhances the local Berry curvature in the Brillouin zone. Moreover,

in the strongly correlated 2-band system, they are perfectly proportional to each

other.

3.3 Kane model

Kane extended the DKK model by considering the interaction between valence

and conduction band in narrow-gap semiconductor InSb [83]. The main concept is

selecting the basis of atomic orbitals at the symmetry points as DKK theory. This

method successfully explains the non-parabolic band structure in the narrow gap

materials [84] and topological materials [85–87]. By considering the inversion of s,p-

orbitals, and spin-orbit coupling, we can demonstrate the exotic band structures in

Weyl electron systems.

3.3.1 Weyl electron system

The energy dispersion of Weyl electron indicates the linear k-dependence in specific

directions and parabolic dependence in other directions [16, 107, 108]. Contrary to

the Dirac electron, Weyl semimetals own a twin of degenerated points called Weyl

points. This system fundamentally has broken symmetry in some direction. To take

the anisotropy into account, we have to begin with the Kane model, which is based

on the orbital symmetry of bands.

In the Kane model, the Hamiltonian up to the second order with k is given in

the following form [109]:

〈X|HKane|Y 〉 = EXδX,Y +
~
m
k · 〈X|P |Y 〉+

~2

m2

∑
x

〈X|k · P |x〉 〈x|k · P |Y 〉
EX − Ex

,(3.45)
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where X, Y are the indices of orbits (X, Y = s, p...). In isotropic case with basis (|s〉,
−i |Z〉, −i |Y 〉, −i |Z〉), the inter-band term (off-diagonal) is calculated as

~
m
〈s|k · P |pi〉 = −i ~

m
ki 〈s|Pi|i〉 ≡ Aki. (3.46)

Then, the Hamiltonian can be expressed as the following form:

HKane = ε0(k) +


M(k) Akx Aky Akz

A∗kx −M(k) 0 0

A∗ky 0 −M(k) 0

A∗kz 0 0 −M(k)

 , (3.47)

M(k) = ∆ +
~2

m2

∑
i=x,y,z

k2
i

| 〈s|P |pi〉 |2

Es − Ep
. (3.48)

∆ is the half band gap between the s- and p-bands. The eigenvalues are given as

E = ε0(k)±
√
M(k)2 + A2k2. (3.49)

ε0(k) is the parabolic dispersion of bare electron. Without the inter-band interaction,

the energy dispersions are just a pair of parallel parabolic curves as shown in Fig.

3.4a. With the second perturbation M(k), the curvature of the bands are modulated

and the p-band becomes hole-like (Fig. 3.4b). If the order of these bands is inverted

at k = 0 (∆ < 0), these arcs get over-wrapped as shown in Fig. 3.4c. The degeneracy

at E = 0 is broken as long as the inter-band interaction A is non-zero. In order to

obtain the Weyl-type dispersion with two degenerated points in a specific direction,

we have to consider the spin degrees of freedom and spatial asymmetry.

We demonstrate a derivation of Weyl Hamiltonian in accordance with the down-

folded 8×8 Hamiltonian for the Γ point of Cd3As2 by Wang et al. [87]. For simplicity,

we assume four s and p orbitals with spin (|s, ↑〉, |p, ↑〉, |s, ↓〉, |p, ↓〉). Especially,

|p, ↑↓〉 can be written as |px〉 ± i |py〉, and the s-p interaction is given by,

Hinter =
~
m
〈s ↑ |k · P |p ↑〉 =

~
m
〈s ↑|k · P {|px〉+ i |px〉} ≡ Ak+. (3.50)

k± = kx± iky
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The 4× 4 Hamiltonian is given as follows.

HΓ
Cd3As2

= ε0(k) +


M(k) Ak+ 0 0

Ak− −M(k) 0 0

0 0 M(k) −Ak−
0 0 −Ak+ −M(k)

 (3.51)

This Hamiltonian is block-diagonalized, and we can decouple the 2× 2 Hamiltonian

out of it. The decoupled part can be written as

H2×2 = M(k)σz + A(kxσx + kyσy), (3.52)

where σi is the Pauli matrix. The eigenvalues are,

E = ε0(k)±
√
M(k)2 + A2k+k−. (3.53)

In this case, the degeneracy in the kz direction cannot be broken with finite A (Fig.

3.4d), and the dispersion in other directions asymptotically becomes Dirac-like when

the band-interaction becomes larger (Fig. 3.4e,f).

To summarize, the Weyl dispersion is originated from the band inversion of s,p-

bands at a band edge, the symmetry breaking, and large band interaction.
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Chapter 4

Magnetoresistance in Bismuth
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Figure 4.1: (a) Unit cell of bismuth crystal. (b) The first Brillouin zone and carrier

pockets and (c) the view from T point.

Bismuth is one of the oldest materials in the history of solid-state physics. Novel

phenomena have been discovered through the exploration of the properties of this

material. The diamagnetism [110, 111], Nernst effect [112], huge magnetoresistance

[1], Shubnikov-de Haas effect [2], and de Haas-van Alphen effect [113] were observed

first in bismuth crystal. The tremendous contribution is not a coincidence. One

remarkable character of bismuth is a huge magnetic response due to the existence

of Dirac electrons [15, 75]. Moreover, the small carrier mass makes the quantum

oscillation observable in a moderately low field. In the magneto-transport aspect,
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bismuth is a semimetal with dilute electron- and hole-carriers compensating each

other resulting in huge magnetoresistance.

Recently, the experimental studies observed angular-dependent magnetic response

comprehensively and found new mysteries. Bismuth has binary (x), bisectrix (y), and

trigonal (z) axis. While the transverse magnetoresistance is expected to show six-fold

rotational symmetry with the rotating field in the x-y plane, the observations indi-

cated the suppression of the anisotropy [40,44,45] or symmetry breaking [44,45,114]

at the quantum limit (& 10 T). Moreover, an extremely large field exceeding 40 T

yields an unexpected drop in MR [40]. These characteristics cannot be explained by

conventional semiclassical transport theory. The point is that these anomalies arise

around the quantum limit. In this range, the effect of Landau quantization is not

negligible.

In calculating MR, we took the Landau quantization into account through the

field-dependent carrier concentrations. Bismuth is one of the most suitable systems

for our purpose because the anisotropic masses and effective g-factors of electron and

hole are precisely determined by previous researches [45,54,94] and we can calculate

the field dependence of Landau levels of carriers without ambiguity in all directions

of the magnetic field. Moreover, the Fermi surfaces in bismuth are all ellipsoidal and

we can apply the multiple anisotropic carrier model [44, 45, 115] (ellipsoidal model)

to describe the magnetoresistivity.

4.1 Magnetoconductivity

Bismuth single crystal contains three small electron pockets at L points and one

hole pocket at T point in the Brillouin zone (Fig. 4.1b,c). Approximating these car-

rier pockets with ellipsoids, we can calculate the magnetoconductivity tensor by the

method shown in the Sec. 2.1.2. Moreover, the magnetoconductivity with Landau

quantization can be given by replacing the constant carrier density with the sum-

mation of the density of state in all the Landau levels below the Fermi energy. The

magneto-conductivity tensor σ̂ in bismuth is calculated as follows:

σ̂ =
∑
i

eNei(B)
(
µ̂−1
ei − B̂

)−1

+ eNh(B)
(
µ̂−1
h + B̂

)−1

. (4.1)
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The indices of summation are the number of electron pockets. Due to the symmetry

around the trigonal axis, the mobility tensors of three electrons can be given by

rotating one of them by ±2π/3. The carrier density of electron Nei, hole Nh, and

the Fermi energy are determined by the charge neutrality condition of the carriers

in the magnetic field: ∑
i

Nei(B) = Nh(B). (4.2)

The carrier density in the field is calculated by summing up the density of states in

each Landau level. One Landau level has field-dependent degeneracy in x-y plane

(B//z), which is called Landau degeneracy NL = eB/2π~. The carrier density in

one carrier pocket at T = 0 K is calculated as follows:

N(B) =
∑
l

∫ ∞
−∞

dEfF (E)Dl(E − El,kz)

=
NL(B)

π

∑
l

∫ ∞
−∞

dEfF (E)

∫
B.Z.

dkzδ(E − El,kz)

=
eB

2π2~
∑
l

∫ EF

El(kz=0)

dE

∫
B.Z.

dkz
2δ(kz − kz,El

)∣∣∣∂El,kz

∂kz

∣∣∣
kz=kz,El

=
eB

π2~
∑
l

∫ EF

El(kz=0)

dE
1∣∣∣∂El,kz

∂kz

∣∣∣
kz=kz,El

=
eB

π2~
∑
l

∫ kF,l

0

dkz

=
eB

π2~
∑
l

kF,l(B), (4.3)

where Dl(E), fF (E),and kF are the density of states, Fermi distribution function,

and Fermi wave number respectively. It is shown that the carrier density in the field

is given by summing up the Fermi wave numbers in each Landau level.



46 4.2. Landau quantization in Bismuth carrier

4.2 Landau quantization in Bismuth carrier

The Landau quantization in the electrons and hole in bismuth strongly depends

on the orientation of the magnetic field due to the anisotropy of the effective mass

and the effective g-factor. Moreover, the cyclotron energy of the electrons exceeds

the Fermi energy (quantum limit) with a moderately low field (.10 T) because

the effective mass is as small as one-thousandth of the bare electron mass in some

directions. The effective Hamiltonian of the bismuth electron is equivalent to the

Dirac Hamiltonian. These features originate from the strong interaction of isolated

two-bands with spin-orbit coupling. The feature of the Dirac electron is the lowest

Landau level (LLL) stable against the field. On the other hand, the real LLL in

bismuth exhibits field dependence due to the finite inter-band effect [116], and recent

magneto-transport experiments in more than 50 T imply that carrier evaporation is

induced by this field dependence [40].

4.2.1 Dirac electron in bismuth

Small electron pockets located at the L points in the Brillouin zone (Fig. 4.1b,c).

The conduction band at these points is proximate to the valence band with a small

gap and isolated from the other bands (Fig. 4.2). The proximity yields a strong inter-

band effect and this 2-band system can be well described with Dirac Hamiltonian

[56,57] as shown below (Sec.3.1.2).

ĤWolff = ∆β + i~k ·

[∑
i

Wiβαi

]
(4.4)

αi =

(
0 σi

σi 0

)
β =

(
I 0

0 −I

)
∆ is a half gap and σi is the Pauli matrix. The constant vector Wi is corresponding

to the intensity of band interaction and determines the anisotropy of the masses of

electrons. We can easily obtain the quantized energy levels in the magnetic field by

substituting π = ~k + eA with the momentum ~k as shown in Sec.3.2.2 (A is the

vector potential). This operator satisfies a commutation relation (π × π = ieB). If
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Figure 4.2: (a)Band structure of bismuth crystal calculated by the tight binding

model [117]. (b)Energy dispersion round the T and L points in the vicinity of the

Fermi energy.

the magnetic field is applied along the z axis, the l-th Landau level of this electron

with spin (s = ±1) is given as

El,s(kz) =
√

∆2 + 2∆ [(l + s/2 + 1/2)~ωc + ~2k2
z/2mz]. (4.5)

The lowest Landau level (LLL) (l = 0, s = −1) is stable against the field since the

scale of Zeeman splitting is equivalent to the cyclotron energy ~ωc. The electrons in

bismuth have strong anisotropy in the effective mass. The cyclotron energy, cyclotron

mass, and mass along the field are defined as follows:

~ωc =
eB

mc

, mc =

√
detm̂

mz

, mz = b · m̂ · b. (4.6)

m̂ is 3× 3 effective mass tensor and b is the normalized magnetic field. The effective

mass tensors in two of the three electron pockets are given by ±2π/3 rotation of
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one tensor (m̂e2,3 = R−1(±2π/3) · m̂e1 · R(±2π/3)) as we conducted in the mobility

tensor.

4.2.2 Extended Dirac model

As shown above, Landau levels with the same total angular momentum j = l+s/2

degenerate, and the LLL in the Dirac electron is not shifted by the magnetic field

in the Dirac model. On the other hand, finite interaction between the Dirac 2-

band and outside bands causes splitting in the degenerated pair in real bismuth

crystal [116, 118]. This effect can be described by an additional g-factor denoted

with g′ [45, 54,88] and the Landau levels are given as follows:

El,s(kz) =
√

∆2 + 2∆ [(l + s/2 + 1/2)~ωc + ~2k2
z/2mz] +

sg′µBB

2
, (4.7)

where µB is the Bohr magneton. The field dependence of Landau levels is shown in

Fig. 4.3. The extension is corresponding to first order perturbation and the edge of

the LLL linearly depends on the field. The sign of g′ is positive with the field along

the bisectrix axis and negative in the binary and trigonal axis. This means the LLLs

of the conduction and valence bands cross at a high field in the binary and trigonal

axis.

Furthermore, Vecchi et al. suggested non-negligible B2 dependence in LLL [116].

This parabolic term originates from the interaction between LLLs of conduction and

valence bands and exhibits anti-crossing behavior when these levels approach each

other. Recently, the observation of extra Shubnikov-de Haas oscillation [40, 119]

suggested the evacuation of carrier pockets in bismuth. These results imply that

the parabolic field-dependence affects the electron transport at more than 40 T.

According to the previous research [40,45,116], the field dependence of LLL is given

in the following form:

E0,−1(kz) = ±

√(
~2k2

z

2mz

− g̃′µBB

2

)2

+ (2V µBB)2, (4.8)

where g̃′ is the modified g′ factor [g̃′ = g′(1 + 2V ′|g′|µBB/∆)] and V , V ′ are param-

eters related to the interactions between conduction and valence bands. With this
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model, the field dependence of the Landau levels and Fermi level are as shown in Fig.

4.4. After the anti-crossing, the LLL of the electron increases drastically and exceeds

the Fermi energy. Therefore, one (two) of the three electron pockets are perfectly

evacuated at 60 T (40 T) with the field along the binary (bisectrix) axis.
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Figure 4.3: Field dependence of the edge of Landau levels and the Fermi level with

the field along the (a) binary, (b) bisectrix, and (c) trigonal axis. Cyan and magenta

lines indicate the electron and hole levels respectively. Red line indicates the Fermi

energy.

4.2.3 Hole in bismuth

The hole pocket in bismuth locates at the T point (Fig. 4.1) and can be well

approximated with an anisotropic free particle [94]. The Landau levels of a hole are

given by,

E0 + ∆− En,σ(kz) =

(
n+

1

2

)
~Ω +G

σµBB

2
+

~2k2
z

2Mz

, (4.9)

where E0 is the hybridization energy of conduction band at the L and valence band

at T point (Fig. 4.2). Ω, G,MZ are the cyclotron frequency, the effective g-factor,

and the effective mass along the field, respectively. The field dependence is shown in

Fig. 4.3 The parameters we used for calculating the Landau levels in electron and

hole are shown in Table 4.1. One can see that the g-factor in hole carrier is extremely

enhanced in the trigonal axis. Recently, it was proved that the bands at the T point



50 4.3. Transverse magnetoresistance

Magnetic field (T) Magnetic field (T)

E
n

e
rg

y
 (

e
V

)
B//Bin B//Bis

LLL LLL

E
F

E
F

(a) (b)

0±

1±

2±

3±

4±

0±

1±

2±

3±
4±

e�,� e�

Figure 4.4: Field-dependent Landau levels and Fermi level up to 65 T considering

the second-order perturbation of LLL interaction [40, 45]. Cyan and magenta lines

indicate the electron and hole levels respectively. Red line indicates the Fermi energy.

are not well isolated from each other, and interaction from other bands far above the

Fermi energy remains large, which yields a large and anisotropic spin splitting [98].

4.3 Transverse magnetoresistance

We discuss the angular dependence of transverse magnetoresistance (TMR) in bis-

muth. TMR is induced by the field perpendicular to the current and the angular

dependence generally reflects the anisotropy of the carrier mobility. A recent ex-

periment on bismuth pointed out that the angular dependence shows the vanishing

of anisotropy or symmetry breaking at low temperature (Fig. 4.5b) [40, 44, 45, 114],

which cannot be explained by conventional semiclassical transport theory. These

phenomena arise around the quantum limit, which suggests a limitation of the con-

ventional theory and a necessity of the extension.

According to the experimental setup, we rotated the field in the binary(x)-
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Table 4.1: Parameters of effective model [40, 45]. The values of mass m,M are

normalized by the mass of bare electron.

electron

i xx yy zz yz

mi 0.00124 0.257 0.00585 -0.0277

g′i -3.63 45.6 -7.92 9.20

Vi 0.15 0.15 0.15 0.00

V ′i -0.0688 -0.0438 -0.0625 0.00

hole

i xx yy zz

Mi 0.0698 0.0698 0.743

Gi 0.791 0.791 62.6

band gap and hybridization energy

2∆ 15.3 meV

E0 38.5 meV

bisectrix(y) plane with the current along the trigonal(z) axis (Fig. 4.5a) and demon-

strated the angle-dependent TMR by calculating (z, z) component of the resistivity

tensor (ρ̂ = σ̂−1, where σ̂ is given by Eq. 4.1). We conducted the calculation at

0.5, 5, 10 T. The electron and hole mobility we used here are shown in Table 4.2.

Figure 4.6a-c shows the results of our calculation. Here we plotted the value of

magneto-conductance σzz = ρ−1
zz to compare with the experiments. We can see the

C6 symmetric star-shaped angular dependence at 0.5 T which reflects the anisotropy

of carrier mobility. On the other hand, the anisotropy is suppressed by increasing the

field and the angular dependence becomes almost isotropic at 10 T. This behavior

qualitatively agrees with the experiments (Fig. 4.5b), and especially, the field range

in which the anisotropy vanishes is consistent.

Moreover, the field-dependent evolution in TMR is corresponding to the field

dependence of the carrier density at a high field (Fig. 4.6d-f). The carrier densities
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(a) (b)

θ

Figure 4.5: (a) Schematic image of TMR in bismuth with rotating field. (b) TMR

observed in previous experiments [44,45].

Table 4.2: Mobility of electron and hole (106 cm2/Vs) in bismuth at 4.3 K [115]

i xx yy zz yz

µei 110 3 67 -7.1

µhi 22 22 3.5 0.0

of electron pockets are isotropic at 0.5 T. At the high fields, carrier densities of the

electrons grow in specific directions, which is corresponding to the lowest mobility.

The transverse component in the conductivity tensor σzz of electron pocket e1 is

given in the following form.

σzz =
eµzzNe1(B)

B2(µxxµzz cos2 θ + µyyµzz sin2 θ − µ2
yz cos2 θ)− 1

∼ eNe1(B)

B2(µxx cos2 θ + µyy sin2 θ)
(µB � 1, µdiag � µyz) (4.10)

One can see that the contribution from the carrier density and mobility are inversely

correlated and the denominator is corresponding to the mobility distant by π/2 from
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T.

the field. The carrier density grows in the bisectrix axis, which is corresponding to

minimum mobility. Hence their contributions cancel each other at high fields. When

B = 10 T, the anisotropy in the carrier density NBis/NBin ∼ 21 is comparable to that

of mobility µBin/µBis ∼ 37, which is the origin of isotropic TMR at this field range.

Next, we discuss the origin of the increment in the carrier density in the quantum

limit. Considering the charge neutrality, carrier density in semimetals can be mod-

ulated in the quantum limit [94]. The essence is the field dependence of the lowest

Landau level (LLL). Fig. 4.7a shows the field dependence of the Landau levels in free

electrons and Dirac electrons. The LLL in Dirac electron is stable against the field

because the spin splitting in the Dirac electron is the same as the cyclotron energy

as mentioned in the Sec. 4.2.1. After achieving the quantum limit, the Fermi wave
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number is invariant against the field and the density of state increase by the Landau

degeneracy NL = eB
~ (Length scale is normalized). According to the Eq. 4.3, the

carrier density linearly increases due to the Landau degeneracy.

We demonstrated the field-dependent carrier density in a simple semimetal whose

Landau levels are given in the following forms.

εn,s =

(
n+

1

2
+
s

2
M e

ZC

)
~ωC +

~2k2
z

2mz

(electron) (4.11)

En,s = EHyb −
(
n+

1

2
+
s

2
Mh

ZC

)
~ΩC −

~2k2
z

2mz

(hole) (4.12)

MZC called Zeeman-cyclotron ratio is the ratio of the Zeeman energy to the cyclotron
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energy [98], which takes 1 in the Dirac electron and 0 in the free electron. In the

calculation, this ratio is varied from 0.1 to 1 in electron and fixed to 10−4 in the

hole. The mass of the electron is set 1000 times smaller than the hole to realize

the quantum limit at lower fields. We calculated the carrier density by the charge

neutrality condition. In Fig. 4.7b, we can see drastic changes in carrier density after

the quantum limit. The field dependence is clearly correlated to MZC values and the

case M = 1 (Dirac electron) shows a linear dependence.

We also plotted the angular dependence of carrier density in anisotropic electrons.

We considered an isotropic free hole and ellipsoidal Dirac electron. The electron mass

along the y direction is fixed 1/10 times smaller than the x direction. The result

is shown in Fig. 4.7c. The angular dependence becomes anisotropic as the field is

increased and the direction of growth is perpendicular to the direction of the lightest

mass. From Eq. 4.10, we obtained an important suggestion that the anisotropy of

TMR in a semimetal with Dirac-type carriers is suppressed by the carrier density at

the quantum limit.

In conclusion, semimetals with Dirac-type carriers exhibit anisotropic growth

of carrier density in the direction of maximum cyclotron energy, resulting in the

suppression of the anisotropy of transverse magnetoresistance at the quantum limit.

Dilute Dirac electron systems, such as bismuth, generally have a small mass. In other

words, the cyclotron energy is enough large and the quantum limit can be achieved

with a moderately low field. Hence it is possible that the same phenomenon is

observed in other semimetals with anisotropic Dirac electrons.

4.4 Planar Hall effect

The second mystery in recent research in bismuth is the field dependence of the

planar Hall effect (PHE) and anisotropic MR (AMR). When we rotate the magnetic

field in the plane of the Hall bar, the angular dependence of longitudinal and Hall

resistivity is expected in some materials (Fig. 4.8). The oldest history of these

effects dates back to its discovery in 1954 by Goldberg [120]. In the semiclassical

viewpoint, this phenomenon arises from the anisotropy of the system. From an early

age, this phenomenon has been observed in many varieties of materials including
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Figure 4.8: Configuration of PHE and AMR measurement.

semiconductors with cubic symmetry [120–123] and ferromagnetic materials [124].

Recently, the quantum-mechanical origins of PHE were repeatedly reported in Dirac

and Weyl electron systems. When the magnetic field is applied parallel to the elec-

tric field, chiral symmetry in the system is broken resulting in the excitation of

electrons with specific chirality (Chiral anomaly) [17]. This anomaly increases the

chiral carrier concentration and modulates the resistivity. Some theories suggest

a negative magnetoresistance [18, 20] and PHE with period π [21, 22]. Hence, one

of the largest interests in MR study in materials today is the observation of chiral

anomaly [27–35, 125]. Indeed, these phenomena are observed in real materials and

regarded as evidence of non-trivial Berry curvature or chiral anomaly. On the other

hand, PHE is not a special phenomenon for general electron systems as referred to

the history of this effect. Very recent experiments suggested a possibility of the triv-

ial (orbital) origin of the PHE [36–39]. Trivial PHE is explained in the framework of

semiclassical transport theory. The problem today is how we distinguish the origin

of PHE, while it is not easy. One honest way to analyze the observed PHE is to

discuss whether the results can be explained by semiclassical models.

In bismuth, a recent experiment suggested some unexpected effect that causes

the field- and angle-dependence in PHE and AMR [35]. They carefully analyzed the

observation with multiple ellipsoidal models and this model successfully agreed with

the angle dependence at low field. However, the PHE and AMR at the high field



Chapter 4. Magnetoresistance in Bismuth 57

cannot have been explained. The angle-dependence at low field contains the main

sine and cosine curve with the period π and the second harmonic wave (Fig. 4.9b).

Increasing the field, the second harmonic component is suppressed and the amplitude

of the main curve is enhanced (Fig. 4.9c). This enhancement is consistent with the

expected from the chiral anomaly [21, 22], which is the reason they suggested some

strange effect in the PHE of bismuth.

(a) (b)

0 180 360 0 180 360

Angle (degree)

θ

Figure 4.9: (a) Configuration of PHE and AMR in bismuth. (b) Experimental results

for PHE and AMR [35]. Upper panels show the angular dependence of AMR and

lower panels are the PHE.

Figure 4.9a shows the configurations of our calculation for PHE and AMR in

bismuth, which is consistent with the experiment [35]. Rotating the magnetic field in

the plane of Hall bar, the PHE is calculated by the Hall resistivity ρxy and the AMR is

the longitudinal resistivity ρxx with the current along the x direction. In this section,

we first want to show that the PHE and AMR with the period π naturally arise in

general multiple carrier system. Bismuth is a typical multiple carrier system and the

angular dependence becomes more complicated due to its anisotropy. Moreover, the

thickness-dependent carrier mobility and field-dependent carrier concentration can

qualitatively modulate the PHE and AMR signals. In the case of bismuth thin film,

the charge neutrality in carriers is violated so remarkably that we cannot neglect it

in our calculation. Our results well agree with the experiments, and we found that
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the angular dependence can be changeable due to the value of mobility, the strength

of the field, and the compensation condition of the charge. Moreover, we found that

the carrier density in Dirac electrons increases after achieving the quantum limit

resulting in charge compensation of the carriers.

4.4.1 PHE and AMR in isotropic multi-carrier metals

In this section, we show that the PHE and AMR can be originated from multiple

carrier transport. First, we note that single carrier systems do not exhibit the angular

dependence in PHE and AMR in the semiclassical framework (ρPHE = 0, ρAMR =

ρ0). The situation critically changes just by adding another carrier with different

mobility. With the aid of the multiple carrier method in Eq. 2.19, we can easily

derive the angular dependence in isotropic 2-carrier systems. We rotated the field in

the x-y plane and this effect was demonstrated by calculating the (x, y) and (x, x)

components of resistivity tensor respectively. The result is shown below.

ρPHE = ρxy = −∆ρdiff sin θ cos θ, (4.13)

ρAMR = ρxx = ρ⊥ −∆ρdiff cos2 θ. (4.14)

∆ρdiff = ρ⊥ − ρ‖ =
1

en

(µ1 − µ2)2µ1µ2B
2

(µ1 + µ2)(4(µ1µ2B)2 + (µ1 + µ2)2))

θ is the angle of the magnetic field measured from the x axis and n is the carrier

density. ρ‖ = ρ11|θ=π/2 and ρ⊥ = ρ11|θ=0 are corresponding to the longitudinal MR

(LMR) and TMR respectively. The angular dependences are simple sine and cosine

curves with a period π. This functional form is the same as what is expected from

the chiral anomaly [21,22]. We can see three specific properties about the amplitude

∆ρdiff . First, it vanishes when these two carriers are equivalent µ1 = µ2. Second, it

saturates at a high field limit. Third, the value is greater with smaller mobility (Fig.

4.10a).

4.4.2 Isotropic semimetals

When the charge of carriers is compensated, the semimetals with an isotropic

electron and an isotropic hole give the PHE and AMR in the same form as Eq. 4.13,
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Figure 4.10: Field dependence of the PHE amplitude in (a)isotropic 2-carrier metals

and (b)compensated 2-carrier semimetals with isotropic electron and hole. One of

the mobility µ1 is varied in 1.0, 0.8, 0.6 T−1 and the ratio of two mobilities is fixed

to 0.5. The carrier density n is 1018 cm−3.

4.14. The amplitude of this angular dependence is given as follows:

∆ρdiff = ρ⊥ − ρ‖ =
1

en

µ1µ2B
2

µ1 + µ2

(4.15)

µ1, µ2 are the mobilities of the electron and hole respectively. The amplitude does not

be zero even when the two carriers have the same mobility. Moreover, the amplitude

increases with the B2 characteristic and does not saturate. This is the consequence

of charge neutrality because of the TMR in compensated semimetal parabolic and

non-saturating field dependence. The most contrasting feature is that the amplitude

of PHE increases with increasing mobility is as shown in Fig. 4.10b. When the

charge neutrality is violated, the amplitude is

∆ρdiff =
µ1 µ2 n1 n2 (µ1 + µ2)2B2

e (n1 µ1 + n2 µ2)
(
µ1

2µ2
2 (n1 − n2)2B2 + (n1 µ1 + n2 µ2)2) . (4.16)

n1, n2 are the carrier densities of electron and hole. In this case, this amplitude

saturates at a high field and becomes greater with lower mobility like the metals.

The detail of calculation in 2-carrier model is shown in Appendix A. We further
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showed that the angule-dependence in PHE and AMR holds in isotropic n-carrier

metals (n ≥ 2) and semimetals.

4.4.3 PHE in Bismuth: compensated

Here, we discuss the case of bismuth. This system is a multiple carrier system,

hence we can expect that both PHE and AMR have angular dependence. Due to

the anisotropy, its functional form becomes more complicated. According to the

setup in the experiment, the magnetic field was rotated in the x-y plane, and PHE

and AMR were calculated as the (x, y) and (x, x) components of resistivity tensor

respectively. The carrier concentration in the field was calculated by the charge

neutrality condition in Eq. 4.2.
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Figure 4.11: Thickness dependence of (a) electron and (b) hole mobility in bis-

muth [35, 115, 126, 127]. The data from Hartman and Yang et al. are the maximum

components in the mobility tensor. Broken lines indicate
√
t dependence.

We demonstrate the PHE and AMR in bismuth with bulk and film mobility. The

carrier mobility in bismuth strongly depends on the size of the crystals. We plotted

the thickness (t) dependence of the mobility of electron and hole in Fig. 4.11. We
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can see the mobility increase with the thickness, and the thickness dependence is

almost
√
t in the thicker range (t & 1µm). Since the mean free path in bismuth is

quite long (l ∼ 0.3mm) [15], the effective mean free path in the crystals is determined

by the size of the crystal when the size is smaller than the path. In this size range,

the carrier lifetime increases with increasing the film thickness and the thickness

dependence of mobility may come up.
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Figure 4.12: Field- and mobility-dependence of PHE and AMR in bismuth.

Our calculation was conducted with four different conditions: film in the low field,

film in the high field, bulk in the low field, and bulk in the high field. The mobility

in bulk and film were from the low-temperature experiments by R. Hartman [115]

and from S.-Y. Yang [35] respectively. Fig. 4.12 shows the results. The angular

dependence with a period shorter than π is present in the case with low field and low

mobility, and this component vanishes with high field or higher mobility. The angular

dependence is identical to the cases of isotropic metals and semimetals as shown in

Eq. 4.13 when µ or B is large. These values are always present in coupled in the

magnetoresistivity tensor, hence the behavior of PHE and AMR can be changed by
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the value of µB. We can say that general materials with a large mean free path and

large mobility can exhibit different angular periodicity depending on the thicknesses

or field.

4.4.4 PHE in Bismuth thin film: uncompensated
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Figure 4.13: PHE and AMR in bismuth thin film. (a) low field and high field with

(b) constant carrier density and (c) field-dependent density.

We also discuss the case that the charge neutrality is violated. In real bismuth

thin film (5.3 µm), the charge deviation between electron and hole is remarkably

large [35]. According to the experimental condition, the deviation of electron density

and hole density at zero fields are fixed to be 26.5 % of the electron density. If we do

not consider the field-dependent carrier density, the angular dependence of PHE and

AMR does not change qualitatively and the amplitude saturates at high field (Fig.

4.13b). Especially, the shorter-period component remains even at high fields. This

field-dependent characteristic does not agree with the experiment, which indicates the

vanishing of shorter components and perfect sine- and cosine-like angular dependence

at high field. If the charge of carrier is compensated, this qualitative shift at high
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field is natural as we have seen in Fig. 4.12. It is implied that the key to this change

is the degree of violation of charge neutrality.
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Figure 4.14: Field-dependence of electron and hole density with the field along with

Binary direction.

Next, we assume the field-dependent carrier densities with charge imbalance.

It is also assumed that the imbalance is originated from charged impurity and the

difference between two carrier densities is constant with any fields (Ne(B)−Nh(B) =

Ne(0)−Nh(0)). In this case, the periodic characteristics changes at a high field (Fig.

4.13c). Some electron pockets exceed the quantum limit at 14 T, hence the carrier

density is drastically modulated.

Figure 4.14 shows the field dependence of carrier density with the field along

the binary axis calculated with the constant charge difference. At the low field, the

charge difference is about 27% of the electron carrier. On the other hand, both

carriers increase after achieving the quantum limit. The ratio of impurity charge

decreases because of the enhancement of total carrier density and it is only 6% at 14

T.

In summary, the angular dependence of PHE and AMR in bismuth thin film

shows periodic characteristics with both π and shorter (π/2) period at low field and

they turn to be a simple sine and cosine curve with period π at high field. We
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pointed out that this qualitative change is a natural consequence when the carriers

are compensated. It was also found that the field-dependent carrier increment at the

quantum limit suppresses the degree of the charge imbalance in real bismuth thin

films.

4.5 TMR far beyond the quantum limit

The qualitative shift in angular-dependent TMR, PHE, and AMR across the quan-

tum limit was well explained by considering field dependence of carrier density. On

the other hand, the third mystery remains in the quantitative difference between the

theory and experiments far beyond the quantum limit (B & 10 T) [40]. The experi-

mental MR in this field range is relatively small than the theoretical expectation, and

it shows a sudden drop at 60 T (40 T ) in binary (bisectrix) direction. Figure 4.15a,b

show that the theoretical value is estimated more than 100 times the observed value

at 10 T both in the binary and bisectrix direction even with the field-dependent

carrier density. Moreover, our model cannot explain the non-monotonic behavior

at 60 T and 40 T . This implies something missed in our model. In compensated

semimetals, the TMR generally takes a larger value with higher mobility. Hence, one

possible origin of the extraordinary MR is that the mobility is suppressed at high

fields. We demonstrated TMR assuming several types of field dependence of the car-

rier mobilitiy in bismuth (electron: µ̂i = µ̂i0/(1+γei|B|p), hole: ν̂i = ν̂i0/(1+γh|B|p),
p = 1, 2, ...), where γei and γh are fitting parameters. Furthermore, we employed the

quadratic model of the lowest Landau level given in Eq. 4.8 and considered the

carrier evacuation at an extremely high field. Figure 4.15b,c and e,f show the re-

sults of fitting in the case p = 1, 2 respectively. We can see that p = 1 well fits

the experiments in both directions. Furthermore, the dip structure at 60 T (40 T)

in the binary (bisectrix) direction, which is corresponding to the carrier evacuation,

is well simulated. This implies that the scattering rate increases linearly with the

magnetic field. Moreover, we found a relationship between the mass of the electron

and the parameter γei in electron (γei ∝ 1/mezi). This result means that the mobility

of electron with smallest mz, heaviest cyclotron mass in other words, is suppressed

most drastically in three electron pockets.
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4.6 Field-dependent mobility

The B−1 field dependence of mobility is previously reported in dilute metal SrTiO3

[64]. In metals, this type of field dependence yields linear MR. According to the

result of fitting, the field dependence of mobility in bismuth appears at B < 10−1

T for electron and B < 1 T for the hole in both binary and bisectrix axis (Fig.

4.16). These ranges are lower than the quantum limit region. Theoretical studies

based on quantum mechanics showed that the linear MR are expected in the quantum

limit [50,51,128]. These theories are based on the scattering by an impurity described

with a delta function. Kahn pointed that the scattering rate with this type of

impurity becomes anisotropic in the quantum limit [128].

On the other hand, many real materials exhibiting linear MR have dilute carrier

concentration [44, 45, 47], small Fermi energy in other words. This implies that the

spatial dependence of impurity potential is not negligible due to imperfect Coulomb

screening of charged impurities. Mahan demonstrated the scattering by Gaussian

impurity potential [129]. Mahan also pointed that the scattering rate has field de-

pendence at lower fields than the quantum limit, which results in field-dependent

mobility. Moreover, the scattering rate becomes anisotropic and the difference be-

tween in-plane and out-of-plane scattering grows with the field increment. In the

result of bismuth, the field dependence of mobility also has strong anisotropy, and

the carrier concentration is quite small ∼ 10−17 cm−3. The origin of the field depen-

dence is still an open question, some anisotropic scattering by position-dependent

potential in the magnetic field is a possible candidate.
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Figure 4.15: Purple line: simulated TMR in bismuth with (a,b) p = 0, (c,d) p = 1,

and (e,f) p = 2. Left pannels show the results in the Binary direction and right

pannels are the results in the Bisectrix direction. Green lines shows the experimental

data.
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Figure 4.16: Field dependence of mobility in Bismuth carrier with field along (a)

Binary and (b) Bisectrix axis.
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Chapter 5

MR in Weyl electron systems

Figure 5.1: (a) Typical band structure in Weyl electron systems with degenerated

nodes (Weyl semimetals): an example of Γ point in Cd3As2 [130]. The schematic

images of (b) Chiral anomaly [28] and (c) Berry curvature [131] in Weyl semimetals.

Observed (d) negative LMR and (e) PHE in Na3Bi [28].
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Weyl electron systems in solids are characterized by the special band structure.

They have degenerated nodes (Fig. 5.1a) or nodal lines [132] in their Brillouin

zone, which yields non-trivial Berry curvature (Fig. 5.1c) [16, 131]. Electric current

and magnetic field can couple through this curvature resulting in the non-trivial

magneto-transport phenomena such as negative longitudinal MR (LMR) and PHE

with the period π (Fig. 5.1d,e) [18–22]. The core mechanism of them is the excitation

of the chiral carriers by the magnetic field (Fig. 5.1b) [17]. This is called chiral

anomaly. Experiments followed these predictions recently and observation of the

anomaly in materials has been one of the central issues in Weyl electron physics

[26–35]. Magneto-transport is regarded to be a promising method to identify the

anomaly.

However, PHE alone cannot prove the existence of the anomaly as we showed

in the former chapter. Some experiments suggested PHE from a trivial origin [37]

and necessity of negative LMR for proving the chiral anomaly [36–39]. Conventional

semiclassical theory without Berry curvature cannot give an explanation for the

negative MR so far. On the other hand, the fine structure of the Fermi surface has

been rarely considered. Fermi surfaces cannot be generally approximated by the

conventional multi-carrier model because the electron velocity and the effective mass

differ from point to point on the surfaces. The consequences of considering the local

structure are still to be explored. While the MR calculation method based on the

first principle has been presented and the fine orbital structure in the magnetic field

gets started to be discussed these days [58, 67, 68], the local effective mass has not

been discussed intensively.

The semiclassical theory extended to the arbitrary dispersion (Eq. 2.3) yields a

new point of view in the magnetoresistance by taking the local effective mass into

account. Especially, this suggests a new origin of negative magnetoresistance. In

this chapter, we demonstrate the magnetoresistance of the Weyl electron system and

show that the negative magnetoresistance can be observed due to the off-diagonal

components of the local effective mass tensor on the Fermi surface. We also found

that the PHE from orbital origin exhibits specific temperature dependence. A dip

structure in the temperature dependence of PHE amplitude is corresponding to the

Fermi energy measured from the Weyl point.
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5.1 Fermi surface in Weyl electron systems

Figure 5.2: (a) Energy dispersion of the Weyl electron model and Fermi surfaces

(b-d) before and (e,f) after the Lifshitz transition. M = 16 eVÅ
2
, kw = 0.01 Å

−1

We employ a minimal model for Weyl electron with the symmetry is broken in

z direction [107,131]. The Hamiltonian is given as

Ĥ = A(kxσx + kyσy) +M(k2
w − k2)σz. (5.1)

σi is the Pauli matrices. This model is corresponding to the Γ point of Cd3As2 [87]

and given by the k · p method (Kane model) in strongly interacted s and p orbital

bands with single spin (Sec. 3.3.1). The energy eigenvalues of this Hamiltonian are

E = ±
√
M(k2 − k2

w)2 + A(k2
x + k2

y). (5.2)

There is a pair of degenerated points in k = (0, 0,±kw) called Weyl points. The

parameter A corresponds to the intensity of band interaction, and this value deter-

mines the anisotropy in this system. When we fix the Fermi energy deviated from the

Weyl point, the Fermi surfaces appear, and its shape varies according to the value of

this parameter (Fig. 5.2). The Fermi surfaces consist of an isotropic electron surface
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covering an isotropic hole surface with enough small A. Increasing this parameter,

the electron surface shrinks along the equator. When the Lifshitz transition occurs

in the x, y direction, the surfaces are broken into two islands. With further large A,

the pair of surfaces is almost ellipsoidal.

5.2 Magnetoresistance

Magnetoresistance in the Weyl electron system is calculated with the semiclassical

method in Eq. 2.3. We set M = 16 eVÅ2, kw = 0.01 Å−1, τ = 1 ps, and T = 0.2 K in

the following calculation. We fixed the magnetic field along the x axis. The transverse

and longitudinal magnetoresistance are calculated as the diagonal components of

resistivity tensor ρyy, ρxx respectively. The field-dependence in TMR and LMR with

various A are shown in Fig. 5.3. When A is small enough, TMR and relatively small

LMR are estimated and their signs are both positive. On the other hand, we can see

that both MR turn to negative with large A. Although the MR behavior with small

A is expected by the conventional multi-carrier model, it is difficult to explain the

negative MR in the twin ellipsoidal Fermi surfaces with large A.

We note that the negative MR shown here definitely originates from semiclassical

orbitals on the Fermi surfaces because our calculation did not include any terms from

Berry curvature. Moreover, our result presents a negative TMR, which has never

been suggested in Berry-curvature-based physics. We can say that the semiclassical

theory can present negative MR regardless of longitudinal or transverse ones.

5.2.1 The origin of negative MR

Next, we search the origin of the negative MR. When we set the magnetic field

along the x axis, the longitudinal and transverse components of the magnetoresistiv-

ity tensor are written as follows.

ρLMR =
1

σxx
(5.3)

ρTMR =
σzz

σyyσzz − σyzσzy
(5.4)
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Figure 5.3: (a) TMR and (b) LMR in Weyl electron calculated from the dispersion

in Eq. 5.2.

We ignored terms that vanish through the integration due to the symmetry. Each

component of conductivity tensor σij calculated by Eq. 2.3 can be expanded up to

the second-order of the field as shown below [133].

σxx = σx0 − e4τ 3 〈((αxzαyy − αxyαyz)vz + (αxyαzz − αxzαzy)vy)vx〉B2 +O(B4)

(5.5)

σyy = σy0 − e4τ 3
〈
(αyyαzz − α2

yz)v
2
y

〉
B2 +O(B4) (5.6)

σzz = σz0 − e4τ 3
〈
(αyyαzz − α2

yz)v
2
z

〉
B2 +O(B4) (5.7)

σyz = −e3τ 2 〈αyzvzvy − αzzvy〉B +O(B3) (5.8)

σi0 = e2τ
〈
v2
i

〉
The operation 〈...〉 is the integration in the vicinity of Fermi surface shown in Eq.

2.3, and σzy is given by inverting the sign of σyz according to the Onsager’s relations.
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Furthermore, we can expand the resistivities in Eq. 5.3 and Eq. 5.4 up to second-

order after substituting the extended conductivities. The results are

ρLMR = ρx0 + ρ(2)B2 +O(B4), (5.9)

ρTMR = ρy0 + (ρGauss + ρHall)B
2 +O(B4), (5.10)

ρ(2) = ρ2
x0e

4τ 3 〈((αxzαyy − αxyαyz)vz + (αxyαzz − αxzαzy)vy)vx〉 , (5.11)

ρGauss = ρ2
y0e

4τ 3
〈
(αyyαzz − α2

yz)v
2
y

〉
, (5.12)

ρHall = −ρ2
y0ρz0e

6τ 4
〈
αyzvzvy − αzzv2

y

〉2
, (5.13)

ρi0 =
1

σi0
.

The coefficients ρ(2), ρGauss, ρHall determine the sign of magnetoresistance in weak

fields. αyyαzz−α2
yz is known as Gaussian curvature on manifolds (Fermi surface) and〈

αyzvzvy − αzzv2
y

〉
is proportional to the Hall conductivity σyz [134]. We examine the

relation between A and these coefficients. The results are shown in Fig. 5.4a-d. (a)

The LMR coefficient ρ(2) drastically changes after the Lifshitz transition and the sign

is inverted at a specific A. All the terms in ρ(2) include the off-diagonal components

of an inverse mass tensor. We found that the terms with a pair of diagonal and off-

diagonal components αiiαjk are numerically dominant with large A and determine

the sign of the coefficient (Fig. 5.4b). In the two TMR coefficients: ρGauss and ρHall,

the contribution from the Gaussian curvature is positive in all the range of A and

dominant before the Lifshitz transition. On the other hand, the Hall conductivity

negatively contributes to the coefficient and drastically increases after the transition.

The main term switches to the Hall conductivity after the transition resulting in the

sign inversion with large A (Fig. 5.4c,d).

5.2.2 Off-diagonal effective mass

According to the results in Fig. 5.4, the sign inversions in LMR and TMR happen

at near points (A ∼ 140 meVÅ). One can find that the LMR coefficient in Eq. 5.11

have two types of term: αiiαjkvjvk and αijαjkvivk (i 6= j, j 6= k). We mapped

these values in the plane of k-space in Fig. 5.5a-f. The αiiαjkvjvk value has singular

characteristics at the Weyl points. When A is large, this value becomes large and
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Lifshitz transition
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Figure 5.4: A-dependence of the second coefficients (a) ρ(2) (b) αiiαjk and αijαkl (c)

ρGauss and ρHall (d) ρGauss + ρHall

negative around the singularity, and the Fermi surface gets closer to the points.

Hence, the negative off-diagonal mass mainly contributes to the electron conduction

at low temperature resulting in the sign inversion in the LMR. On the other hand, the

αijαjkvivk component has a smaller value all around the space and the negative region

is well localized near the Weyl point even when A is large. This is the reason the

αiiαjkvjvk component determines the sign of LMR. We also mapped αjkvjvk/|vj||vk|
and αii in Fig. 5.6a-f. The off-diagonal term is singular and negative (Fig. 5.6c)

while the diagonal term is positive (Fig. 5.6f) with large A. Hence, we can attribute

the negative LMR to the negative off-diagonal component in inverse mass tensor.
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Figure 5.5: (a-c) Maps of αxzαyyvxvz in ky = 0 Å−1 plane and (d-f) maps of

αxyαyzvxvz in ky = 0.001 Å−1 plane.

The negative off-diagonal component and positive diagonal component maximally

enhances the Hall conductivity, which negatively contributes to the TMR (Eq. 5.13)

and determines the sign. On the other hand, the term from the Gaussian curvature

(Eq. 5.12) is positive because the curvature is dominantly positive in the vicinity of

the Fermi surface with any values of A (Fig. 5.7).

In summary, the negative MR can arise from the negative singularity of off-

diagonal effective mass in the Brillouin zone in the semiclassical viewpoint. When

the singularity is close to the Fermi surface, the anomalous behavior is enhanced and

observable at low temperatures. We want to note that the sign of LMR and TMR is

determined independently in principle. The model of Weyl semimetal we used this

time indicates negative and singular values of off-diagonal inverse mass and positive

diagonal mass, which yields the negative LMR and negative TMR simultaneously.
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Figure 5.6: Maps of off-diagonal (upper panel) and diagonal (lower panel) element

of inverse effective mass tensor in ky = 0 Å−1 plane. α̃xz = αxzvxvz/|vx||vz|

5.3 Planar Hall effect

We demonstrate the planar Hall effect (PHE) in the Weyl electron system. The

parameters and the condition of calculation are the same as the MR calculations.

The magnetic field was rotated in x-y plane (Bx, By, Bz) = (B cos θ, B sin θ, 0) and

PHE was calculated by ρxy = [σ̂−1]xy. The results with several A parameters are

shown in Fig. 5.8. The functional form is a sine curve with the period π. The sign

of PHE with small A is consistent with the expectation of conventional multi-carrier

models (Sec. 4.4.1). When the parameter is increased, the sign is inverted (Fig.

5.8, A = 240 meVÅ). This inversion cannot be explained by a simple model which

approximate the Fermi surface with multiple sphere or ellipsoids (Appendix A). We

further calculated A-dependence of the ∆ρdiff = ρxy|θ=3π/4 − ρxy|θ=π/4 (Fig. 5.9a).

The monotonic increment of the amplitude before the Lifshitz transition and drastic

drop after the point. We can also see that the amplitude monotonically increases
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Figure 5.7: Maps of the Gaussian curvature: Kyz = αyyαzz − α2
yz in ky = 0 Å−1

plane.

with increasing the field and the field value is rarely relevant to the sign of ∆ρdiff .

∆ρdiff is given by the difference of TMR and LMR due to the isotropy in the x-y

plane (Appendix B). Hence, the sign inversion is corresponding to the sign inversion

in the LMR and TMR. The drastic drop after the Lifshitz transition is due to the

large difference between TMR and LMR (Fig. 5.9b), and the sign of PHE is changed

depending on the order of TMR and LMR. Note that the sign of PHE is not always

corresponding to the sign of MR [63].

5.3.1 Temperature dependence of PHE

Finally, we demonstrate the temperature dependence of MR and PHE amplitude.

While the Fermi energy deviates from the Weyl point (E = 0), it is expected that

the thermal carrier can reflect the singular characteristics at the Weyl point. It

possibly appears in the temperature dependence of MR or PHE. The parameter set

is the same as the former MR calculation and the transport lifetime of electron τ is

assumed to be constant. The A parameter was varied from 60 meVÅto 140 meVÅ.

The temperature dependence of PHE amplitude is shown in Fig. 5.10a. The

amplitude was calculated by the difference of TMR and LMR as mentioned before.

It indicates anomalies in two specific temperatures: a dip or sign inversion around

kBT = EF/2 and a peak around kBT = EF . The positions of these structures

are irrelevant to the parameter A. The dip structure is especially correlated to the
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Figure 5.8: Angular dependence of PHE in Weyl electron with different A parame-

ters.

energy of the Weyl points. Considering the case A = 100 meVÅ, the off-diagonal

value of α̂ is relatively small on the Fermi surfaces while the singularity is located at

the Weyl points (Fig. 5.6b). When kBT = EF/2, the tail of the Fermi distribution

function reaches the Weyl points as shown in Fig. 5.11. At this temperature, the

carriers in the vicinity of the Weyl points contribute negatively to the TMR and

LMR. This is the mechanism that the dips in temperature dependence appear. On

the other hand, when A is such large that the effect of singular effective mass is

remarkable on the Fermi surface, the sign changes at low temperature. In this case,

the dip structure does not appear because the main contribution is from the vicinity

of Fermi energy, and carriers from upper energy have a positive contribution to MR at

high temperatures. The results imply that the dip or peak position gives information

about how the Fermi energy is distant from the singularities of the effective mass.

Except for the quantum effect including the Kondo effect [135] or electron localization

[136], the electron lifetime monotonically decreases as temperature grows. Hence,

we can expect the non-monotonic dependence even when the real materials with

temperature-dependent lifetime.
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Figure 5.9: A-dependence of (a) ∆ρdiff and (b) TMR, LMR. (a) also shows the field

dependence.

The results in LMR and TMR are shown in Fig. 5.10b,c. Due to the large

background, the effect of singular effective mass is not clear. There is a peak structure

in the curve with small A, which is not a characteristic originating from the Weyl

points because it appears when the system is equivalent to a normal semimetal.

In the vicinity of E = 0 with small A, the electron and hole carrier coexist, and

the carrier number varies with temperature. In semimetals, charge compensation in

carriers yields large MR. Hence, the peak structure would appear when the numbers

of each carrier are closest to the valance. With large A, the dependence is monotonic
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decay and we cannot find any anomaly in it.

All the cases of PHE, TMR, and LMR converge at high temperatures because the

electron and hole carriers in much higher and lower energy contribute to conduction.

The effect of Weyl points is hidden in these carriers and the system becomes identical

to an ordinal semimetal.

In conclusion, we can present an application of PHE. As we saw, PHE amplitude

reflects the singularity of effective mass more sensitively than MR and gives informa-

tion about the energy of the points measured from the Fermi energy. By subtracting

LMR from TMR, we can find the position of singularity through the non-monotonic

temperature dependence.
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Figure 5.10: Temperature dependence of (a) ∆ρdiff , (b) LMR, and (c) TMR.
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Figure 5.11: The energy dispersion and distribution function at T = EF/2.
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Chapter 6

Summary

We investigated the magneto-transport phenomena in Dirac and Weyl electron

systems based on the semiclassical theory. In semimetals with Dirac electron, we

found a monotonic increment of carrier concentration in the quantum limit. In the

anisotropic case, this increment generally progresses in the direction perpendicular

to the direction of the lowest mobility, which results in the suppression of anisotropy

in transverse magnetoresistance. We have successfully explained the angular depen-

dence of TMR in bismuth at high fields by combining the field-dependent carrier

density and semiclassical transport theory. We have further fit the TMR at high

fields exceeding 40 T by considering the carrier evacuation in electron pockets and

linear field-dependence of scattering rate. We found that this time of field-dependent

mobility is often observed in the materials which exhibit the linear MR. We also found

that the field-dependence of mobility has strong anisotropy. While the origin of this

field-dependence is still an open question, we guess that there would be a hint in the

scattering process of other linear-MR materials.

Next, we calculated the MR and PHE in the Weyl electron system. We found

a new mechanism of sign change in MR. The essence is the off-diagonal terms in

the inverse effective mass tensor. The Weyl points, which are the divergence and

convergence of Berry curvature, are also the singularities of effective mass. The

Fermi surface near the Weyl points possesses a large and negative off-diagonal mass.

By the Jones-Zener expansion of conductivity, we found the negative off-diagonal
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inverse-effective mass is the direct origin of negative LMR. We also found that it

enhances the Hall conductivity resulting in negative TMR.

We also discussed the PHE in multiple carrier, Dirac, and Weyl electron sys-

tems in the semiclassical framework. PHE naturally arises from the multiple carrier

conduction and the amplitude saturates at high fields in metals and uncompen-

sated semimetals. Furthermore, the saturated value is negatively correlated with

the mobility. PHE observed in bismuth, which is a typical Dirac electron system,

was successfully explained by considering the field-dependent carrier concentration.

We found that the increased carrier density in Dirac electron suppresses the viola-

tion from charge compensation and causes the qualitative shift in angular depen-

dence in real cases. We also found that the effect of mass-singularity in the Weyl

electron clearly appears in the temperature dependence of PHE amplitude. The

non-monotonic behaviors including dip and peak structures in the temperature de-

pendence was pointed to correspond to the Fermi temperature. The PHE amplitude

may be useful to identify the energy of the Weyl points measured from the Fermi

energy.
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Appendix A

PHE with spherical and ellipsoidal

Fermi surfaces

A.1 PHE in isotropic two-carrier metals

To evaluate the PHE in multiple carrier systems, we calculated the total conduc-

tivity tensor σ̂ by summing up all the conductivity tensors σ̂(i) of each carrier (Eq.

2.19). Each conductivity tensor in an isotropic carrier is given in the following form:

σ̂(i) = (µ−1
i 1̂± B̂)−1

=
enµi

(µiB)2 + 1


(µiBx)

2 + 1 µ2
iBxBy ∓µiBy

µ2
iBxBy (µiBy)

2 + 1 ±µiBx

±µiBy ∓µiBx 1

 , (A.1)

µi = eτi/m
∗
i .

The sign± is corresponding to the sign of carrier charge. m∗ and τ represent the mass

and lifetime of carriers respectively. The magnetic field is fixed in the x-y plane. The

magnetoresistivity tensor is calculated by summing up all the conductivity tensors

and taking inversion. In the isotropic 2-electron system with different mobilities (µ1,
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µ2) and the same density n, TMR and LMR are given as follows:

ρTMR =
1

en

(µ1 + µ2)(µ1µ2B
2 + 1)

4(µ1µ2B)2 + (µ1 + µ2)2

ρLMR =
1

en(µ1 + µ2)
.

The PHE amplitude is given by these difference (∆ρdiff = ρTMR − ρLMR) and it

saturates at high fields to be 1
en

(1−r)2
4µ2(1+r)

( r = µ2/µ1).

A.2 Multiple ellipsoidal Fermi surfaces

We consider the cases with anisotropic multiple carriers. The simplest case: two

anisotropic ellipsoidal Fermi surfaces whose axises are fixed to x, y, z direction, can be

realized by replacing the isotropic mobility tensor µi1̂ in the Eq. A.1 with anisotropic

ones: µ̂ = diag{µ1, µ2, µ3}, ν̂ = diag{ν1, ν2, ν3}. The amplitude of PHE with the field

rotating in the x-y plane is

∆ρdiff =

1

en

(µ1 − ν1)(µ2 − ν2)µ3ν3B
2

4µ3ν3((µ1 − ν1)µ2ν2 cos2 θ + (µ2 − ν2)µ1ν1 sin2 θ)B2 + (µ1 − ν1)(µ2 − ν2)(µ3 + ν3)
.

θ is the angle between the field and the x axis. This result indicates that the sign of

PHE is determined by the in-plane (x, y) components of the mobility tensors. The

sign is the same as isotropic metals and semimetals when all the components of one

mobility tensor are greater than those of another carrier (Fig. A.1a,d). On the other

hand, the sign is inverted in a moderately high field when the anisotropy of carriers

is enough high and the directions of highest mobility in two carriers are distant by 90

degrees in the x, y plane as shown in Fig. A.1b,e. In the Weyl electron model with

large A, the Fermi surfaces are seemingly twin ellipsoids (Fig. A.1c). Assuming a pair

of parallel ellipsoids, which corresponds to the condition (µ1, µ2, µ3) = (ν1, ν2, ν3), the

angular dependence of PHE does not emerge (∆ρdiff = 0). However, the finite value of

PHE is estimated in the Weyl electron by fully considering the energy dispersion and

local effective mass. This discrepancy implies that the ellipsoidal (parabolic) model
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is not always a good approximation even when the Fermi surfaces are apparently

ellipsoids.

Figure A.1: Schematic images of (a) isotropic and anisotropic multi-surfaces, one of

whose mobility is greater than the other, (b) anisotropic surfaces whose directions

of highest mobility is distant by 90 degree in the Hall bar, and (c) equivalent two

ellipsoids. (d-f) Angular dependence of PHE in (a-c) cases.

A.3 n-valley systems

In the case of isotropic n-carrier system, the conductivity rensor with rotating field

is given by summing n-conductivity tensors as σ̂ =
∑n

i=1(µi1̂− B̂)−1. The resistivity
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tensor is given by the inversion. The result is shown below.

ρ̂ =


(−S1 S3+S2

2)(cos(θ))2+S1 (S1+S3)

(S1
2+S2

2)(S1+S3)

(−S1 S3+S2
2) cos(θ) sin(θ)

(S1
2+S2

2)(S1+S3)
−S2 sin(θ)

S1
2+S2

2

(−S1 S3+S2
2) cos(θ) sin(θ)

(S1
2+S2

2)(S1+S3)

(S1 S3−S2
2)(cos(θ))2+S1

2+S2
2

(S1
2+S2

2)(S1+S3)

S2 cos(θ)

S1
2+S2

2

S2 sin(θ)

S1
2+S2

2 −S2 cos(θ)

S1
2+S2

2
S1

S1
2+S2

2

 ,

and PHE and AMR are given as follows:

ρPHE =
1

en

(
−S1 S3 + S2

2
)

cos θ sin θ(
S1

2 + S2
2
)

(S1 + S3)
, (A.2)

ρAMR =
1

en

(
−S1 S3 + S2

2
)

cos2 θ + S1 (S1 + S3)(
S1

2 + S2
2
)

(S1 + S3)
, (A.3)

S1 =
n∑
i=1

µi
(µiB)2 + 1

,

S2 =
n∑
i=1

µi
2B

(µiB)2 + 1
,

S3 =
n∑
i=1

µi
3B2

(µiB)2 + 1
.

This result shows the sin θ cos θ characteristic in PHE and cos2 θ in AMR hold in

the isotropic multi-carrier system regardless of the number of carriers. Moreover,

these characteristics remain unless the mobility in all the carriers are equal. This

statement is proved as follows:

S1 · S3 − S2
2 =

(
n∑
i=1

µi
(µiB)2 + 1

)
·

(
n∑
i=1

µi
3B2

(µiB)2 + 1

)
−

(
n∑
i=1

µi
2B

(µiB)2 + 1

)2

=
n∑
i 6=j

µiµ
3
jB

2

((µiB)2 + 1) ((µiB)2 + 1)
− 2

n∑
i>j

µ2
iµ

2
jB

2

((µiB)2 + 1) ((µjB)2 + 1)

=
n∑
i 6=j

µiµj(µi − µj)2B2

((µiB)2 + 1) ((µiB)2 + 1)
.

∴ S1 · S3 − S2
2 = 0� More than one electrons have different mobility.
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In isotropic 2n-valley semimetals with n-hole and n-electron system, PHE and

AMR are given by the same way, and the results are

ρPHE = − 1

en

(
(A3 +B3) (A1 +B1)− (A2 −B2)2) cos θ sin θ

(A1 + A3 +B1 +B3)
(
(A1 +B1)2 + (A2 −B2)2) , (A.4)

ρAMR =
1

en

− (A3 +B3) (A1 +B1) + (A2 −B2)2(
(A1 +B1)2 + (A2 −B2)2) (A1 + A3 +B1 +B3)

cos2 θ

+
1

en

A1 +B1

(A1 +B1)2 + (A2 −B2)2 , (A.5)

where

A1 =
n∑
i=1

µei
(µeiB)2 + 1

, B1 =
n∑
i=1

µhi
(µhiB)2 + 1

,

A2 =
n∑
i=1

µ2
eiB

(µeiB)2 + 1
, B2 =

n∑
i=1

µ2
hiB

(µhiB)2 + 1
,

A3 =
n∑
i=1

µ3
eiB

2

(µeiB)2 + 1
, B3 =

n∑
i=1

µ3
hiB

2

(µhiB)2 + 1
.

The amplitude does not vanish even when all the values of carrier mobility are equal.
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Appendix B

PHE in a system isotropic in x-y

plane

With the help of the Seitz equation [53, 137], we can see that the amplitude of

PHE and AMR are equivalent when the system is isotropic in the plane of rotating

magnetic field. The I−V relation in a weak magnetic field is written in the following

form:

E = ρ0j + ρ−1
0

[
αj ×B + βB2j + γ(B · j)B + δT̂j

]
, (B.1)

where α, β, γ are the model parameters. The tensor T̂ describes the anisotropy

of crystals. This time, we fixed the field in the x, y plane, where the Fermi sur-

faces are isotropic. This configuration can be written in the two conditions: B =

(B cosφ,B sinφ, 0) and T̂ = diag{0, 0, B2
z}. The straightforward calculation leads to

the angular dependence of PHE (ρxy = Ex/jy) and AMR (ρxx = Ex/jx) as shown

below.

ρPHE =
γB2

ρ0

sinφ cosφ (B.2)

ρAMR = ρ0 +
βB2

ρ0

+
γB2

ρ0

cos2 θ (B.3)

If we rewrite ρ‖ ≡ ρ0 + βB2

ρ0
+ γB2

ρ0
, ρ⊥ ≡ ρ0 + βB2

ρ0
, we obtain

ρPHE = −(ρ⊥ − ρ‖) sinφ cosφ, (B.4)

ρAMR = ρ⊥ − (ρ⊥ − ρ‖) cos2 θ. (B.5)
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Hence, we can say that the amplitudes of both PHE and AMR are equivalent to

the difference of transverse and longitudinal magnetoresistance when the system is

isotropic in the plane of the rotating field.
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