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Abstract

Recently, the galvanomagnetic effect is used for exploring non-trivial
phenomena in topological materials including Weyl and Dirac electron
systems after the observability of chiral anomaly and nontrivial Berry
curvature was proposed. In these scenarios, the negative longitudinal
magnetoresistance (MR) and planar Hall effect (PHE) with the period
7 arise from these anomalies. A mount of experiments followed these
theoretical suggestions, and some materials exhibited such exotic gal-
vanomagnetic phenomena. Although these quantum phenomena have
been intensively examined, some semiclassical aspects in these materials
are still to be discussed. First, Dirac and Weyl materials have generally
small effective mass and modulation in carrier concentration due to the
Landau quantization is not negligible even with a low field. Moreover,
the Fermi surfaces in real topological materials are difficult to approxi-
mate with simple spheres or ellipsoids because the effective mass on the
surface differs from point to point. In this thesis, we demonstrated the
galvanomagnetic effect in Dirac and Weyl electron system based on the
semiclassical theory with considering the Landau quantization and fine
structure of Fermi surface.

First, we demonstrated MR and PHE in a Dirac electron system: bis-
muth. We applied the accurately calculated Landau levels in the carrier
to the MR calculation. The cyclotron energy in bismuth becomes com-
parable with the Fermi energy even with a few Tesla of field. At such a
field range, we found that the observed transverse MR and PHE in bis-
muth can be explained by the field-dependent carrier density. We also
pointed a general characteristic in semimetals with Dirac electron: mono-
tonic increment in carrier concentration and consequential vanishing of
anisotropy in transverse MR.

We also discussed the case of Weyl electron by considering the fine
structure of the Fermi surface. From a semiclassical point of view, the
Weyl points in the Brillouin zone are regarded as singularities of effective
mass. We found that the negative longitudinal MR can arise from the
large and negative off-diagonal components of effective mass tensor near
the singularities. Our theory also pointed that the transverse MR is
contributed from two factors: Gaussian curvature on the Fermi surface
and Hall conductivity. The transverse MR can be negative when the Hall
conductivity dominates. We also found that the temperature dependence
of PHE amplitude reflects the energy of Weyl points.
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Chapter 1

Introduction

Galvanomagnetic effect in condensed matter has been studied from the oldest years
in solid-state physics. From the first discovery of the large magnetoresistance in pure
bismuth by Kapitza in 1928 [1], a large amount of experimental and theoretical effort
has been made for understanding the underlying mechanism in magneto-transport
phenomena in materials. While the condition is simple, i.e. the electric transport in
the presence of a magnetic field, the combination of electric and magnetic fields makes
the situation quite complex and yields unexpected physics. For a long time, the
magneto-transport phenomena have pioneered the frontier of solid-state physics. One
example is the discovery of oscillatory magnetoresistance called Shubnikov-de Haas
effect [2]. We can investigate the structure of the energy isosurface in the Brillouin
zone (Fermi surface) by observing the angular dependence of this oscillation [3-5].
Because the fundamental of semiclassical transport based on Boltzmann’s theory is
governed by the carriers near the Fermi energy, the information of the Fermi surface
is inevitably essential for comprehending the carrier transport in solids. Nowadays,
the study on the structure of the Fermi surface has been combined with the research
of topological [6-8], organic [3-5], or superconducting [9, 10] materials and created

one research field called Fermiology.

In the aspect of device applications, materials with a large magnetic response are
promising for sensitive detectors of the magnetic field [11,12]. High mobility and

charge compensation in carriers are the general courses of large magnetoresistance



(MR) [13]. Recently, semimetals with special types of carriers: Dirac and Weyl elec-
tron, are attracting interest because of the light effective mass and resulting in large
mobility [7,14,15]. These electrons are represented by the relativistic Hamiltonian
with massive or mass-less particles. They typically have linear energy dispersion and

some singularities called Dirac cone in the Brillouin zone.

Moreover, the expectations are running high for the topological aspects in Dirac
and Weyl materials. Special structure of adiabatic parameter space underlies the
physics of these materials [16]. Some quantum-mechanical origins of MR, corre-
lated with the topology have been repeatedly reported [17-23] and the interest in
magneto-transport phenomena was renewed. Although phases in the wave function
are implicit in free particles, the non-trivial structure of the parametric space ac-
cumulates this phase like the external magnetic field. This virtual magnetic field
is called Berry curvature [24]. The Dirac cones have a side as the singularities of
this curvature. In the presence of this curvature, the external magnetic field yields
extraordinary magneto-transport phenomena. In Weyl electron systems with a twin
of Dirac cone, the magnetic field parallel to the electric field causes excitation of a
carrier with specific chirality (chiral anomaly) at high fields [17]. It is theoretically
expected that such an anomaly or the Berry curvature yields negative longitudinal
magnetoresistance [18-20,23] and angle-dependent planar Hall effect (PHE) [21,22].
Moreover, the Berry curvature is correlated with the electron scattering in crystals
and the non-trivial curvature suppresses the amplitude of backscattering, and the
lifetime of electron transport is elongated consequently [25]. A large number of ex-
periments in the real materials with Dirac- and Weyl-type carriers have followed the
theoretical suggestion [26-35]. Recently, these exotic galvanomagnetic effects are

widely regarded as unique characteristics of topological materials.

Through the recent evolution of MR studies, many kinds of origins have been
discovered both in the classical, semiclassical, and quantum framework. As the
consequence, conflicts sometimes occur between different origins. For example, the
semiclassical origin of PHE was experimentally implied in the Dirac electron systems
in recent years [36-39]. Although negative longitudinal MR is also thought to be ev-
idence of quantum anomaly, it is not a trivial question whether this phenomenon

cannot be explained in the semiclassical framework. Moreover, we have still several
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critical mysteries in the magneto-transport phenomena. There are roughly two prob-
lems: quantitative and qualitative problems. First, there is a lot of materials that
exhibit sizable magnetoresistance [40-42] and other galvanomagnetic response [8,43]
which are remarkably larger than the theoretical estimations. Second, some materi-
als show exotic behavior in magnetoresistance which conventional theory cannot give
even a qualitative explanation. For example, bismuth, which is a typical Dirac elec-
tron system, exhibits changes in angular dependence of magnetoresistance [40,44-46]
even though this material does not have any spontaneous magnetic moment. Fur-
thermore, there are the most long-standing problems: Linear Magnetoresistance. Ac-
cording to conventional theories, the magnetoresistance in metals exhibits parabolic
or saturating behavior against the magnetic field. However, not a few materials
indicate non-saturating and linear dependence on the field [47-49]. Although sev-
eral phenomenological explanations or theoretical exposition in specific systems have
been made [18,50-52], a comprehensive understanding of this phenomenon has not

been obtained yet.

Sometimes we face a fundamental question: how can we attribute the observed
phenomena to their right origin? Even when we do not have explanations in con-
ventional semiclassical theory, we cannot immediately affirm that observed MR has
a quantum origin. It is because we do not know the limit of the semiclassical the-
ory. We just know predictions from simplified models. In order to give a progress
in the understanding of the origins, we must move on to the intermediate region of
conventional semiclassical and quantum theories.

As mentioned above, there are several conflicts between observations and con-
ventional semiclassical theories based on the Boltzmann equation. The semiclassical
picture of a charged carrier accelerated by Lorentz force in solid is intuitive and indeed
useful for analyzing the magneto-transport in simple metals at low fields. Carrier
mobility and concentration have been obtained by analyzing magnetoresistance and
Hall resistance in this framework [53]. On the other hand, the simple semiclassical
theory fails to explain two typical cases: quantum mechanical phenomena and carrier
conduction with complex energy dispersion.

The cause of the first difficulty is apparent. Carriers in solids naively has discrete

energy levels due to the Landau quantization in the magnetic field. When the mag-
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Figure 1.1: (left) Mass properties in the magneto-transport in Dirac and Weyl

electron systems. (right) Quantum oscillation in the Nernst voltage in bismuth. [54]

netic field is such strong that the cyclotron energy is as large as the Fermi energy, the
effect of Landau quantization cannot be neglected. The linear dispersion in Dirac and
Weyl electrons generally makes the effective mass drastically small. Consequently,
the cyclotron energy becomes comparable to the Fermi energy with moderately low
fields (Fig. 1.1). Real Dirac or Weyl materials indicate clear quantum oscillation
and the crossover to the quantum limit at low fields [54,55]. Quantum limit means
the state where the cyclotron energy exceeds the Fermi energy. The classical theory
cannot simulate the quantum oscillation therefore it is powerless to the phenomena
beyond the quantum limit.

In this thesis, we discuss the magnetoresistance in the Dirac electron system by
considering the Landau quantization. Dirac electron exhibits special field dependence
of Landau levels due to the strong band interaction through the strong spin-orbit
coupling. Especially, the non-trivial characteristic courses the degeneration of to-
tal angular momentum resulting in stable lowest Landau level [56,57]. We found
that the stability causes a linear increment of carrier concentration in the quantum
limit region. For electrons with anisotropic mass, this carrier density also depends
on the direction of the field. We also found that this anisotropic carrier density
is negatively correlated with the carrier mobility in the magnetoresistance, and we
concluded that the semimetals with Dirac electrons generally exhibit the vanish-
ing of anisotropy in transverse magnetoresistance. These characteristics successfully
explain the angular dependence of transverse MR in bismuth around the quantum

limit. We also calculated the angular dependence of PHE in bismuth. Surprisingly,
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the observed angular dependence can be explained successfully by multiple carrier
transport without assuming topological effects such as the chiral anomaly and Berry
curvature. We pointed that the field-dependent carrier concentration in a specific
electron system can be a factor to change the characteristics of the galvanomagnetic

effect qualitatively.

The cause of another problem is not so fundamental but has been overlooked for
a long time. The point is that the fine structure of the Fermi surface determines the
qualitative and quantitative characteristics of magnetoresistance. In general metals,
semiconductors, and semimetals, the Fermi surface is not a single sphere. Good met-
als (with large Fermi surface) including Cu, Li and Ca have almost spherical Fermi
surface. However, some of the surfaces have several "holes” at the zone boundary
due to the large Fermi energy. This little deviation from sphere is not negligible
in magneto-transport. Some electron trajectories on the Fermi surface cannot be
closed when the magnetic field is applied in specific directions, which leads to the
enhancement of magnetoresistance and yields large anisotropy (Fig. 1.2a,b) [13,58].
Fermi surfaces in some semiconductors are well approximated with multiple ellip-
soids [59,60]. This anisotropic structure yields off-diagonal components of the ef-
fective mass tensors, which result in the coupling between electron current and the
magnetic field. Longitudinal magnetoresistance can arise from this coupling [61,62].
In some multiple ellipsoidal electron systems, the longitudinal magnetoresistance is
quite high and exceeds the transverse magnetoresistance [47,62]. Furthermore, a
cubic description for the Fermi surface successfully explained the behavior of mag-
netoresistance in a semiconductor SrTiO3 with a dilute carrier [63,64]. After all,
we cannot neglect the effect from the local structure on the Fermi surfaces, wave-
number-dependent effective mass in other words, in simulating magneto-transport
in solids (Fig. 1.2). Especially, the Weyl electron, which we are interested in, is
a typically anisotropic system with complex Fermi surface in low energy regions.
Moreover, the structure of the Fermi surface is variable depending on the carrier
concentration and intensity of band interaction. The surface becomes far from a

sphere in the strong-interaction region.

In this thesis, we report the extended semiclassical approach to the Weyl electron

systems based on the fine structure of the Fermi surface. From more than a half-
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Figure 1.2: Mass property of mass in general materials. (a) Fermi surface and (b)

calculated transverse MR in copper [58]

century ago, a method for calculating magnetoresistance in arbitrary Fermi surface
is known and widely used [41,58,65]. This method attributes the MR to the periodic
orbital motion on the wave space. Another method for calculating MR was built
recently [63]. This new method is also applicable to arbitrary dispersion. Moreover,
we can clearly find the origins of magnetoresistance in the terms of velocity and
effective mass on the Fermi surface. We calculated the MR and PHE in Weyl electron
without assuming Berry curvature or other topological effects. We find that the
longitudinal and transverse magnetoresistance can turn negative due to the negative
off-diagonal effective mass. The effective mass is singular at the Weyl point and the
semiclassical MR behavior also reflects the nature of the Weyl electron. We also
investigate the temperature dependence of PHE amplitude and show non-monotonic
characteristics. We point that the positions of dip and peak structures are correlated
with the energy of Weyl points measured from the Fermi energy. From this result,
we also show that one can experimentally determine the energy of Weyl points by
observing the temperature dependence of PHE amplitude.

This thesis consists of five chapters and an appendix. In Chapter.2, we intro-
duce the semiclassical method for simulating MR applicable to arbitrary dispersion.
We also show that the quantum magneto-transport theory can reproduce the field-
dependence in the semiclassical theory and simulate the quantum oscillation. In
Chapter.3, we show the Dirac and Weyl Hamiltonian in solid are derived from the
k - p theory. We also show that the & - p theory is a powerful tool for simulating the
energy levels in the magnetic field. In Chapter.4 and Chapter.5, we show the details

of our subjects, the condition of our calculation, the results, and discussions.
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Chapter 2

Magnetotransport of charged

carriers 1n solids

We introduce the semiclassical theory of magneto-transport phenomena of elec-
trons in solids. In this theory, the transport coefficients are given by solving the
Boltzmann equation with proper approximations. We review some useful exten-
sions for calculating magnetoresistance (MR) in real materials. We also derive the
magneto-conductivity tensor from the fully quantum theory: Kubo formula, and
show that the results agree with the semiclassical one at low fields. Moreover, the

quantum theory can simulate quantum oscillation at high fields.

2.1 Boltzmann equation

In the weak field region where the Landau quantization is not remarkable, the
Boltzmann equation gives a good description of the electron transport in solids (es-

pecially good metals). The equation in the magnetic field is written as follows:

af e of

———(E+'v><B)-ka—|—’v-Vrf:(—) : (2.1)
ot h ot collision

where f is the distribution function and the vector E, B, v are the electric field,
magnetic field, and the velocity of the electron (e > 0) respectively. Our purpose is

to obtain the conductivity o, which is the correlation coefficient between the electric
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current density and electric field. When the magnetic field is applied, this coefficient
is represented with 3 x 3 tensor ¢. In solving the equation, we assume the so-called

relaxation time approximation written in the following condition:

af _ = Jo
(E> collision B T . (22)

The constant 7 is the relaxation time of the electron and fy is the distribution

function in equilibrium. In the following, we assume the static condition: df /0t = 0

and uniformity of the system: V., f = 0.

2.1.1 Extended Mackey-Sybert model

Simplified semiclassical model which approximates the Fermi surface with sphere
or ellipsoids cannot be applied to the general material with complex Fermi surfaces.
However, these types of conventional models are often used in analyzing experimen-
tal MR. These models are quite simplified and exotic behavior originating from the
electron orbitals is often overlooked, or one may misunderstands the origin of ob-
served MR. The magneto-transport phenomena in Dirac and Weyl electron systems
are especially attracting interest from the quantum viewpoint. On the other hand,
these systems generally have complex Fermi surfaces and the band structures can-
not be described by parabolic curves. More precisely, the effective mass depends on
wave number in the Brillouin zone, which possibly yields non-trivial MR from the
viewpoint of semiclassical transport. In order to simulate the MR accurately in such

special systems, it is necessary to consider the fine structures of the Fermi surfaces.

From early years, a method by Shockley and Chambers for calculating MR in
arbitrary dispersion is known [65,66] and applied to various materials [41,58,67,68].
This method simulates MR by calculating the velocity correlation in the wave space.
Recently, a new method applicable to arbitrary energy dispersion was built. This
method considers the inverse effective mass on the Fermi surface given by the second
derivative of energy [63]. We can attribute the simulated MR to the local structure
with the aid of this method. Magnetoconductivity is calculated with the following
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®#=:-%<W{U-E;—B-m11}>, (2.3)

R B 0%e
Ok = T2gmak,

formula:

Ve = Vk,E/h,

where (...) = [dk/47®..% and f(e) is the Fermi distribution function. k denotes

the wavenumber. @ is the local inverse mass tensor, and (B);; = —¢;x By is the

A

magnetic field tensor introduced by Mackey and Sybert [69]. This formula was
derived by extending a formula by them. Here, we show the detail of derivation. We

start with the Boltzmann equation with the relaxation time approximation.

—dE+vayVJ=f_ﬁ (2.4)

T

General treatment of this equation is putting [70]

9 fo

f = fo=—0k) 2.

Following Sondheimer and Willson [71], the factor ¢ is written as,
o(k) =G - v. (2.6)

The derivative with the momentum is written as

Vof = V, (fO—Gm%)

Oe
0 0
= (Vpe)g -V, (G’ : v%)
dfo

Y0e

9 fo
0e?

Ofo _
Oe

(VpG) - v+ G- (Vpv)) (G-v)v
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We can show that the vector (V,G) - v is parallel with the velosity v as follows:

V,.Go V,.G, V,.G.\ [ v
V,Gv = | V.G VG VoGe || v
vpz Gm sz Gy vpz GZ Uz

V. Govy +V, Gyvy +V, GLv,
= Vp, GaVz + VYV, Gy, +V,, Gv,
V. Gavr +V, Gyu, +V, Gv,

= (divG)v+ (v x V,) X G

= (div@)v + (’U X v?) x G = (divG@)v
€

Substituting it into eq.(2.4) and applying (v x B)-v = 0, the second term is written

o
Je
Moreover, ¢(k) is proportional to the electric field [70], and we neglect the terms

as

e(E+vxB)-Vyf=eE-V,f—e(vxB)(G-(Vpv)) (2.8)

higher order terms than E? and get
dfo

ek - fo ~ eV - Eg (29)
Finally, Equation 2.4 in our case is given as follows:
(9f0 afO 1 afO
—ev - EZ20 B . G ou)2E =
ev e +e(v x B)(G - (Vpv)) e T(G v) e 0,

and by replacing v x B and G - (Vv with v - Band - G, we get

8f0 ~ N afO 1 afO o
—ev~E(‘36 +ev-B-a- 66—7_(C1‘~v)(96 = 0. (2.10)

Eliminating %, we obtain

c_ls.a_ 1l & 2.11
[ } 2.11)
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The electric conductivity is calculated as follows:

2e dfo
J = _(27T)3 /dSk’U (—G’UE>
—1
- (227;3 /d3kv (’u- [é-d— é] ) %-E. (2.12)

Finally, a conductivity tensor is obtained.

2 ; - 177N af
Oi5 = (271‘)3/d kUz (’U |:BOJ—;:| )E (213)
J

The resistivity tensor p is given by the inversion of the conductivity tensor.

-1 (2.14)

>
I
Q>

2.1.2 Ellipsoidal approximation

In semiconductors or semimetals, the carriers in band edge are often approximated
with a free particle with anisotropic mass. In other words, the bands are approxi-
mated with parabolic dispersion and Fermi surfaces are identified with ellipsoids as

follows:

A~

1 o_pra-p
e(p):§Zai¢pi: - (2.15)

& is a constant diagonal tensor. After the momentum transformation: w = &'/?p,
the Fermi surface becomes spherical in w space. The derivative of p can be expressed

by the derivative of energy as follows:

dp = (detd) 2dw = (det@) 2dS(e)de/|V ve|
= (det@d) Y2dS(e)de/w,
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where S(e) is an element of the area on the spherical Fermi surface. The integration

in Eq. 2.13 can be done analytically as follows:

- 2] [ e Gt dser),

(2mh)3wp
Z a; oy 1/2le/ijl dS(EF),

2e(detd) /2
2’/Th 3wF
1
Q = [ﬂ_l—B} ,  fL=eTa.

We assumed the low field limit and used a relation —0f(¢)/0de = (e — Ep). The

result of integration with S is given as

47er§

/ijl dS(EF) — 91, (216)

and the conductivity tensor is given as the following form:

A\ —1
G = en ([fl j:B) , (2.17)
8rw?,
————+/(det&) ! 2.1

where n is the carrier concentration. The sign 4 is corresponding to the charge
sign of the carrier. Conductivity of tilted ellipsoids can be calculated by rotating
the mobility tensor ji as R~'(0)aR(H), where R(0) is a rotation matrix in three
dimensional space. In the systems which can be described by multiple ellipsoidal
Fermi surfaces, we can calculate the total conductivity tensor by summing up all the
conductivity tensors of each ellipsoid.

g=> &7 (2.19)

1 is the index of different ellipsoids. We note that this approximation is appropriate
only when the band structure can be approximated with parabolic curves. We will
point in Chap. 5 that some cases of the seemingly ellipsoidal Fermi surfaces cannot

be discussed in this framework.
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2.2 Quantum theory

The semiclassical theory does not consider the Landau quantization of carriers.
For example, we cannot simulate the quantum oscillation in the transport coefficient
in the semiclassical framework. Hence, we cannot describe the magneto-transport
phenomena in a quite high field near and beyond the quantum limit. Typical metals
have large Fermi energy and the cyclotron energy is relatively small, and we cannot
approach the quantum limit with an available magnetic field. In this case, it is
not necessary to care about the effect of Landau quantization and the semiclassical
theory is useful. In contrast, semimetals or dilute semiconductors own small Fermi
energy due to the small carrier concentration. Moreover, semimetals belonging to
Dirac and Weyl electron systems have quite small effective carrier mass resulting in
large cyclotron energy with moderately low magnetic field. In these materials, we
can approach the quantum limit with a moderately low field and cannot neglect the

effect of Landau quantization.

We will introduce an example of quantum treatment of magnetoresistance in
free electron in solids with isotropic and anisotropic mass. We will show that the
magneto-conductivity tensor has the same field-dependence as the semiclassical the-
ory except that the carrier density exhibits oscillation at high field due to the Landau
quantization. We calculate the components of the conductivity tensor by the Kubo

formula [72] as shown below:

1 8(I>”
o= =7 | (2.20)
2 2
(I)z'j = BLVZTI [Ul-gng], (221)
n,k

where ® is the current-correlation function, v; is the velocity operator, and G =
(i€, —H) ™! is the Green’s function. H is the Hamiltonian of free electron in magnetic
field. 8 = 1/kgT and n is the index of the Matsubara frequency. V is the volume
of the system. In the magnetic field, the velocity operator can be rewritten with

mi/m = (p; — eA;)/m. Taking the trace over the Landau indices [, ', the correlation
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A
Al C o . )
- i iw
= ¢
y Re < > }Re
- C

Figure 2.1: Pass integration of the correlation functions along the (a) imaginary
axis and (b) real axis.

function is written in the following form:

. 2¢2 .
Dyj(iw) = Vm22<l|7ﬂ'|l'> (U'lm;|1) Fr(iw),

ING

. 1 . . .
Frali) = 53 ok ie)alk.ie, — i),
n,k

where g; = (ie, — E;)"! and E; (z I+ %)hwc + h;jf) is the [th Landau level. w, =
eB/m is cyclotron frequency, where B denotes the magnetic field. With the magnetic
field along the z axis, the m operators in the plane of xz-y plane can be written with
ladder operators (7, = \/heB/2(a* + a~), m, = i\/heB/2(—a* +a7)). a* and a~
are raising and lowering operators respectively. With the help of this treatment, we

can conduct the summation over I’ and get the following form:

e*hB

Por(iw) = 5D [Fiaa+ 1+ 1)Fil, (2.22)
l
: e*hB
(Dmy(lw) = —1 Vm2 [lﬂ_u — (l + 1)E+1,l] . (223)

l

Next, we conduct the summation of Matsubara frequency n. By multiplying the
Fermi distribution function, we can replace the summation with the pass integration
along the imaginary axis in the complex plane (C in Fig. 2.1a). Furthermore, the

pass of integral is transformed to four separated ones parallel to the real axis as
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shown in Fig. 2.1b in order to avoid crossing the singularities of Green’s functions
(i€, = 0, i€, = iw). After an analytic continuation: iw — hw +i[' (I' = h/27), Fy

can be written in the following form:

Fpj— - Z/ dznp(x) [GRx + ho)GR(z) — GR(z + hwo)Gi(x)

21

+G1 ()G (x — hw) = G ()G (x — hw)]

where np, GA(GE), and 7 are the Fermi distribution function, advanced (retarded)
Green’s function, and electron lifetime due to the impurity scattering. The second
and third terms including GAG? and G®G4 are called the ” Fermi surface” terms and
refer to the contribution from the electrons at the Fermi energy. The other terms
correspond to the contributions from lower energies and called ”Fermi sea” terms.
We are interested in the conduction contributed from the Fermi surface, hence we
neglect the other terms in the correlation function and define the function Fﬁt}rf as

shown below:

Rt = mz / denp(z) G + hw) G (z) — GR@)Gi (x — hw)]
- 27”2/ dx [np(x + hw) — np(x )]Gl,(:v—i—hw)GA( )

~ ZWZZ / ( Qs ))Gﬁ<x+hw>af<x)

= ZG (14 hw)G (1),

where 1 is the chemical potential. We discarded the higher expansion with w because
it vanishes by taking w — 0 later. Substituting to the Eq. 2.22 and 2.23, the

correlation functions are written in the following forms:

e*h? Bw

bow) = OB S G (e RGP ) + G+ )G )]
k.l
B0) = ~ DS N11) [GF s+ B G ) — G+ B) G ().

k,l
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According to the Eq. 2.20, each component of conductivity tensor is given in the

following form:

SH2BN, 00 1 1 1
7 (27 )2m? Zl:(+ )/OO {ﬁwc—QzF(u—El+1+zF ,LL—EZ—ZF)—'—CC]

e3h*BN, > 1 1 1
wy = 5o o [+1 dk : — — — | —cc.|.
Tay Z(27r)2m2 Z( * >/ [hwc—%F (u—EHl—i-zF ,u—El—zF> cc]

l —00

We replaced the integration in kg, k, direction with the Landau degeneracy N =
eB/2rh [15]. The integration of G®4(u) with k, is calculated as

dk 1

/_oo%u—(z+1/2)hwc—h2kg/2mziir
V2m

2h\/,u (I +1/2)hw, £iT

Substituting this result, we get the final forms of 0,, and o,.

e? 1 2mu ’)/(,UCT
Oppe = % (w(:T)Z 1 ( 3 > Z{ wcTIm Kl] (2l + 1)R8[Kl]}
,oo_oer 1 2mp WCT Z{ (20 + Vw,rRe[ K] + 2Tm[K]}
W m (wer)?+1 h ¢ : :
1 r
Kl = —, =
V1= 20+ Vw, Ty + iy p

When I' <« p, they can be written as follows:

Opr = €M€N(B)m, (224)
WeT
Ogy — _e,ueN(B>()—_|_17 (225)
EeT

He =

N(B) = Z ) WJ) Zl:(ul)Re[Kl]
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(a) | | (b)
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Figure 2.2: Field dependence of (a) o, (red), oy, (blue), and (b) 0, (red) calculated
from Kubo formula (I'/p = 0.002). Black lines show the result from semiclassical

theory. o9 = e*rn./m and n, = k3 /37>

One can find that o, is given by —o,, because ®,, = —®,, due to the selection rule.
These results are corresponding to an expansion of the Drude model to high magnetic
field by considering the field-dependence carrier concentration. They are matched
to the zero-field conductivity at B — 0 limit and reproduce the field dependence
of Boltzmann theory as shown in Fig. 2.2a. They can also simulate the quantum
oscillation at high fields.

In three dimensional systems, the conductivity tensor has further five compo-
nents. In the direction along the magnetic field (z axis), the velocity operator does
not have transition components and the Fermi surface terms in correlation function

can be written as follows:

. 2¢? . S
D, (iw) = FVmk szgl(k, i€n) g1k, i€, —iw)
Ink

2
Fermi surface\ e“hw

w1V m?2

> PG+ hw)G ().
k,l

)
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Hence, the conductivity in z direction is obtained as follows:

e’h p?
O, = E . ;
TVm? 4= (p— B + i) (p — By —T)

_ €2NL Z/ pg
272m? “(u— B +il)(u — E; — i)
INL(
= 2;m2r Z\/ (I+ 1/2)hw, + il
= eu.N'(B), (2.26)

2
N'(B) = ( ;Ln,u> VWC Z\/l— (2l + 1w,y + 1.

This value agrees with semiclassical theory at low fields and exhibits oscillation at
high fields as shown in Fig. 2.2b. The other components (o,, and o,,) are zero
because 7, and 7, are off-diagonal and 7, is diagonal. Omne can find the following

relation:
(Umg gl (U7 |1) = (COp—1y 4 C"p414)001 = 0. (2.27)

Finally, we obtain the total conductivity tensor.

N(B) _ N(B)wer 0
Opz Ogy O (Wer)?24+ 1 (wer)?2+1
6= op oy 0 |=ep| NBwT N(B) 0 (2.28)
(Wer)? 4+ 1 (weT)?2+1
0 0 o0,
0 0 N'(B)

042 at high field limit and o, take the same form as the results by Abrikosov [50].
Moreover, we can extend these results to the anisotropic electron by defining the effec-
tive mass in x, ¥, z direction independently in the framework of parabolic-dispersion

approximation. In this case, the Hamiltonian of the ground state is

H = Z 2ml. (2.29)

T=T,Y,%
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After the same calculations, we obtain the conductivity tensor as follows:

peN(B)  papyBN(B) 0
Pty B+ 1 g, B* 41
6 = c| mmBNB)  pNB) . (2.30)
Pty B+ 1 pepy B* +1
0 0 pN'(B)
(V20) /MMy, ywer\ 2 1
N B = ( c ) l - K )
(B) h? T ; i 2 RelXi]
(V20)3 /Mgy, yw, T .
N/(B) — = Y — Z\/l— (2l+1)wCT7+Z’Y,
1
eTm, eTme er eB
Mg = mg ) /’Ly:m—ga Mz = mza WC:E’ Me = /MMy

This result formally agrees with the semiclassical theory for anisotropic electron [45].

In summary, it is shown that the magneto-conductivity with Landau quantization
is given by replacing the constant carrier concentration in the semiclassical theory
with field-dependent (oscillating) carrier density N(B), N’(B). For Dirac electron
systems, previous theoretical research also showed that the quantum theory agrees

with the semiclassical one at low fields and that the oscillation is superimposed at
high fields [73].
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2.2, Quantum theory
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Chapter 3

Dirac and Weyl electron in solids

Dirac electron in solids is characterized by the 4 x 4 Dirac Hamiltonian, which is
known as the relativistic representation of Fermions in quantum physics [74]. Its lin-
ear dispersion yields a small effective mass [15,57] resulting in high mobility. Strong
spin-orbit coupling is the essential constitution of this system and consequential
strong band interaction changes the fundamental features of electromagnetic prop-
erties [75-77]. Moreover, in topological aspects, various exotic magneto-transport
characteristics are expected due to the non-trivial Berry curvature in the Dirac elec-
tron system [16]. It appears in solids such as an anomaly in quantum oscillation [78],

negative MR [20], or sizable planar Hall effect with period 7 [21].

Weyl electron is also a non-trivial electron in solids, which is described with a
mass-less Dirac Hamiltonian (Weyl Hamiltonian). Contrary to the Dirac electron,
the Weyl electron in solids naturally includes some broken symmetry [16] and the
system is categorized into some classes according to the symmetry. When there
are two degenerating points in the Brillouin zone, this is so-called Weyl-semimetal
[79]. When the degenerating point draws a continuous line, this class is nodal line
semimetal [16,79]. The Weyl semimetals contain a twin of Dirac cones, which are a

divergence and conversion point of Berry curvature respectively [16].

Our purpose is to calculate the magneto-transport properties of these special
types of electron systems on the basis of semiclassical theory. Especially, we are

curious about the Landau quantization of the energy band and the fine structure of
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Fermi surfaces. k - p theory is a powerful tool for obtaining elaborate energy disper-
sions near the symmetry points and the quantized band structures in the magnetic
field. In this chapter, we introduce the concepts, various models, and beneficial

consequences of this theory.

3.1 Fk-p theory

kep theory

Invariant - (Shockley (1950)

band ind)ex/ wmetry of orbitals

Luttinger-Kohn (1955) Dresselhaus-Kip-Kittel (1955)
magnetic field degenerated atomic orbitals
spin-orbit interaction ‘

* Kane (1956)
Cohen-Blount (1960) [ conduction-valence interaction]
Wolff (1964) l

Dirac model in Bismuth [

l

|zaki and Fuseya (2019)

non-perturbative
magnetic band

Wang et al. (2013)
Weyl model in Cd.As,

Figure 3.1: History and correlation of & - p models.
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Electric carrier transport in semimetals and semiconductors are governed by
the edge of the energy band because the structure determines the sign and scale
of the effective mass of the carrier. Generally, the effective mass in crystal differs
from bare electron mass due to the finite band interaction. The k - p theory can
demonstrate the band interaction by selecting the Bloch wave function as a basis.
Although the main concept is simple, we can apply this theory to variable cases by

basis transformations.

The history and relations of several versions of theories are summarized in Fig.
3.1. The first insight was given by Shockley in 1950 [80]. The idea is to expand
the eigenfunctions of electrons with plane waves. He renormalized the inter-band
effect into the electron mass and successfully demonstrated the anisotropy of energy
bands in semiconductors. Years later, the theory was improved and written in more
general and useful forms by several researchers: Dresselhaus-Kip-Kittel (DKK) [81]
and Luttinger-Kohn (LK) [82]. The concept of DKK theory was exploring the k-
dependent band splitting in the valence band in semiconductors. They applied the
perturbation theory to degenerated p-orbitals and pointed that the band interaction
results in the band splitting. They also showed that the k-dependence is all quadratic
without spin-orbit coupling.

Kane extended the DKK theory by considering interactions between valence and
conduction bands, which make the band calculation available in narrow gap semicon-
ductors [83,84]. Now this theory is an essential tool for analyzing the band structure
in topological materials with the inversion of valence and conduction bands [85-87].
DKK and Kane suggested the spin-orbit coupling yields linear dispersion. Recently,
it was theoretically shown that the effective Hamiltonian at the I" point of CdzAss
can be described by the Weyl Hamiltonian due to the energy inversion of s- and
p-orbitals and strong band interaction with the help of Kane model [87].

Luttinger and Kohn developed a discussion of perturbation which breaks the
translational symmetry in systems including the magnetic field or impurity [82].
Especially, the gauge-invariant treatment of magnetic fields made an overwhelming
impact on the following studies. With the help of this theory, we can easily obtain
electron energy in the magnetic field. Following this, Cohen and Blount found that
the energy band in bismuth is described by an isolated 2-band model [56]. Wolff
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showed this 2-band system interacted by spin-orbit coupling can be written with
Dirac Hamiltonian [57]. He also gave the Landau levels of an electron in bismuth.
We want to note that DKK, Kane, and LK theory focus on the different types of
invariants in the system: symmetry of orbits and band index respectively.

Recently, a non-perturbative treatment of magnetic fields in solids was established
[88]. By substituting the non-commutative momentum operator in the magnetic
field with the creation and annihilation operator of the harmonic oscillator, we can
calculate the Landau levels of arbitrary tight-binding Hamiltonian with the help of
matrix mechanics. This model was applied to a real material with Dirac electron

and successfully simulate the field-dependence of effective g-factor.

3.1.1 The core concept of k- p theory

First, we introduce the general doctrine of k£ - p theory. The main purpose is
obtaining the representation of perturbed Hamiltonian on the basis of unperturbed
Bloch state. We begin with the Schrodinger equation and Bloch state shown as

follows.
2
Hy = [;:neJrV(r)]@Z):E@D (3.1)
o= €Ty g(r) (3.2)

V' (r) is the potential of the crystal. Substituting the wave function, the equation can

be rewritten as

2 21.2
P h hk B
[2m + mk D+ o + V(r)] Unk(T) = Fupg(r). (3.3)
Using the Eq. 3.1, we obtain the following equation:
h hk?

If we assume that k is in the vicinity of the origin of the coordinate, the second and
third terms of the left-hand side can be treated perturbatively. Now, we focus on
the n-th band and the energy eigenvalue is calculated as

PR B [(nfk - pls)

en(k) = €,(0) + om | m2 e m

(3.5)
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The inter-band effect is reflected through the transition amplitude of the p operator.

Defining the effective mass by the second derivative of energy with wave number, it

L 1 a®] 12 [lplil
2 dk2 T m m?2 o en(())—ej(())'

We can see that the inter-band effect results in the modulation of inverse effective

1s written as

(3.6)

m*
mass. This is the reason this theory is often called effective mass approximation.

3.1.2 Dirac electron in solids

Dirac electron in three dimensional solid is characterized by the linear disper-
sion with crossing or anti-crossing point. It typically consists of 2-bands correlated
through spin-orbit coupling. The inter-band effect especially changes fundamental
physics, especially of the magnetic responses [75-77]. In the strong limit of the
interaction in a 2-band system, the k- p Hamiltonian is identical to the Dirac Hamil-
tonian. Here, we show the derivation of the Hamiltonian according to the application
to Bismuth electron [56,57]. We begin with the electron in crystal with spin-orbit
interaction as shown below.

f{ p2 )\2 ) by
—%+V+§VV+2—WP-(SXVV) (3.7)

The A is the Compton wavelength, ¢ is the speed of light, and V is the crystal
potential. We assume the two energy bands and the eigenfunctions are Bloch wave

functions with Kramers indices.
|pns(1T)) = e ikr lups(r)) n=12 s=1,2 (3.8)

According to the k - p method with two energy bands, we can obtain the components
of the Hamiltonian with the basis of |u, ;) as shown below.
- 2k’
<un,S|H’un’,S’> = |:En,s + 2_:| 5n,n’6s,s’ + hk - <un,s’v|un’,s’> + O<k2> (39>
m

v = Vpﬁ is the velocity operator. Since the Kramers pair is related with the time-

reversal operation U = io,C (0, is one of the Pauli matrices and C' is the conjugation
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operator), we can obtain the relation between the k-linear components.

(upa|vlugy) = (ugalvluig) =1t (3.10)

<U,1,1|’U|UQ72> = — <U271|’U|U,172> =Uu (311)

When we assumed that the velocity at the band edge to be zero ((u; ;|v|u; ;) = 0),

The 4 x 4 Hamiltonian is written as follows.

A 0 hk-t  hk-u
0 A —hk -u* hk-t* h2k?
H,. = i 3.12
kP hk-t* —hk-u  —A 0 om (3.12)
hk-u* Bk -t 0 A

A is the half gap between two bands. We can reduce the real part of ¢ by a unitary

transformation S written as

Sy 0

S - ! s Sl =
0 St

and choosing the coefficient a; to satisfy the following equation:
’ Relt] - k i K k
) . . B
| (M) ey () o
i=1

i=1
where K; = {i =1:Im[u], 2:Relu|, 3:Im[t]}. o; is the Pauli matrix and K;

is corresponding to the intensity of band interaction including anisotropy. After this

3

L+i) (aiai)] /D, D=

1=1

3 1/2
1 + Z (ai)2] s

=1

transformation, we obtain the final representation of the Hamiltonian.
21.2

h°k
Hwolff - SHSilZAﬁ‘i‘ 2m

OO’Z‘ - IO
‘T (m o) ”8_<o —I>

This Hamiltonian is identical with a summation of free particle Hamiltonian and

I +hk -

i Klﬂai] (3.13)

i=1

the Dirac Hamiltonian whose mass gap is corresponding to the bandgap. When we
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consider the isotropic case, the intensity of band interaction is scaled by the following

value.
I'= <U171"U’U272> (314)

The major origin of this inter-band effect is spin-orbit coupling. The energy eigen-

value is given as
h2k?
2m

We can see the dispersion becomes non-parabolic (linear) when the inter-band com-

E(k) + /A2 + T2(hk)2. (3.15)

ponent is enough larger than the characteristic scale of energy A as shown in Fig.
3.2.

(@ m,/m*=0.05 (b)  m,/m*=5 (€ m/m*=25 (d)  m,/m*=100

2

Figure 3.2: Two energy band interacting through the spin-orbit coupling. The
energy and the wave number are normalized as E/A = ¢® + \/1+ 2(m./m*)q?
and ¢*> = h?k?/2m.A. The ratio of masses corresponds to the intensity of band

o o

4

E/A

[
P & A N o N

q q q q

interaction.

3.2 Luttinger-Kohn theory

Luttinger and Kohn extended the k - p theory in 1955 and obtained a generalized
representation of the Wannier equation [82]. This theory improved the applicability
up to arbitrary symmetric points in the Brillouin zone and the cases with the external

magnetic field or impurities, which break the symmetry of the system. After an
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elegant transformation of the basis, we can easily simulate the energy bands in these
perturbations.

The core of this theory is renormalizing the k-dependence of the basis of Bloch
state u,  into the plane wave components and selecting new basis as the following

form:
Xnk = €T ting. (3.16)

This can be proved to be an orthonormal basis [82].
<Xnk’Xn’k’> =9 (k/ - k) 5nn’ (317)

This simple formulation makes this theory tremendously useful. In the following

sentences, we denote the wave function y,; with |nk).

3.2.1 Fk-p theory in the external magnetic field

We are especially interested in the band structure in the magnetic field. However,
the external field breaks the symmetry of the system and makes it difficult to naively
apply the Bloch theorem. The LK’s representation gives a key to solving the conflict
and shows the way to find the energy eigenvalues in the field by replacing the basis as
shown above. The final conclusion is that the characteristic equation in the field can
be re-written by replacing the momentum operator p with the magnetic momentum
7w =p+ eA. All we should do is to find the solution of the Wannier equation with
the 7 operator. We show the proof below [82,89].

We assume the following vector potential.
A, =-By, A,=0, A, =0, (3.18)

which is corresponding to the magnetic field along the z-axis. Expanding the kinetic

energy term, the Hamiltonian is written as

H = Hy+ Hy,
2

S S
= Ho+ —yp, + —1> =eB). 3.19
0 —YPe T 5y (s =eB) (3.19)



Chapter 3. Dirac and Weyl electron in solids 31

Hy is a non-perturbed Hamiltonian including kinetic energy, the periodic potential
of crystal, and spin-orbit coupling. The matrix elements of perturbed Hamiltonian

Hy,, are calculated as follows:

(nk |yp|n'kK') = /Z(k —k)r urgy (hky — AV ;) Upodr

= ia% / K=k (Bky — BV ) Upodr
Yy
106 (k — K
_ (hkx5nn'+pfm/);—(ak, ) (3.20)
Y
2 3
Doy = %/u uro (—1hVy) upodr, (3.21)
<nk‘y2‘n/k/> _ /erz(k —k)- T oun’Odr
10 ,
_ - i(k'=k)r, * ind
(mz;;) / o tnr0CE
0% (k — K
= _(Snn,—ék > ), (3.22)
Y

where (2 is the volume of the unit cell. Therefore, components of the total Hamilto-

nian is written as

2R 2k, 106 (k—K) 272 0% (k — K)
k|H|n'k') k -k 22 — /
(nk |5 {( )+ 2m ) o )+ m i Ok, 2m Ok;? O
k — K
+— [hk‘ Pun0 (k —K') + ishp? % (3.23)
v

€, is the energy eigenvalue of the non-perturbed Hamiltonian. We can see the com-
ponents are separated into intra-band and inter-band terms. In order to delete the

inter-band terms, we conduct a unitary transformation noted with e%. First, we
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expand the transformed Hamiltonian.

’ ! 1
e HetY = H—I—[H,S’]+§[[H,S'],S’]+~--
= HY 4+ H,+H,+H
1
+ [H®, 8] + [Ha, 8+ [H' 5+ 5 [H?, 57,8+

sk, 108 (k — K)

k|H,| n'K) = Onn 24
<’I’L | a| n > m i 8ky, nn (3 )
s?h% 0% (k — k')
k|Hy|n'K') = — Onn 2
1 .. . 06(k—X)
After an ingenious choice of S” as
H' +[H?, 8] =0, (3.27)
the expanded Hamiltonian is written in a simple form as follows.
-5’ S — _ 17(0) / 1 Q!
e " He” = Heyp=H +Ha+Hb+[Ha,S]+§[H,S]+~~ (3.28)

Moreover, from the relation in Eq. 3.27, we can calculate the matrix elements of S’
as follows.
—(nk |H'| K" [hw,y (n#n
0 (n=n)
hwn,n’ = En - En’

From this relation and Eq. 3.26, one can see the scale of S’ is ~ kpp,/ /mwy,. The
order of physical quantities are typically hk ~ /s, puw ~ h/a, wpw ~ h?/ma?,
where a is the lattice constant. Hence, the amplitude of S’ is about (a/l,,)*. The
I, is the magnetic length given by \/W and has a scale of ym in a typical field.
Then we can neglect the higher-order terms in Eq. 3.28. Since H, is diagonal (Eq.
3.24) and S’ is off-diagonal (Eq. 3.29) in the energy index, we get

(nk |[H,, S']| nk') = 0. (3.30)
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Next, (nk |[H', S"]| nk’) term is calculated as

1 1 1 "
5 (nk|[H,S][nk)) = — > | eap o (K = K)
195 (k' — k) 9%5(k — k')
kj k, * ! z/ - - ~., 2 x / r G .
+s ( [e% + a)pnn pn ni 8]6; S pnn pnn ak;j?

Applying the definition of effective mass shown in Eq. 3.6, the summation is renor-

malized in the mass and we get

1 o noo_ 1 62En(k> /
5 (nk|[H', S"]|nk") = ~5.~ {k:akg {%ﬂ —m (8ka8k5>0} J(k -k
, .\ [ 0%en(k) 104 (K — k)
o [ ) = 44 (akaam)o} ik
2 25 (1) _
2w 0%, (k) 0% (k' — k) .
ok2 /, Ok;?
(+-+)o means (- )g=o. Using the following relation:
(ky — k') 06 (k —X') JOk,/ =0,
(b, — k) 90 (k — K') [0k, = 5 (k— )
we obtained the components of the full Hamiltonian as follows.
— , e, (k)\ 106 (k—k)
k|H|nk') = k)o (k —k -
e e e e
is (0%, (k) N1, (D%, (k) 0% (k—K)
3 (8k$8ky>05(k_k) — 37 ( oKz ), okp

The Schrodinger equation corresponding to this Hamiltonian is written in the fol-

lowing form:

o (G) 3 G) )£ () - o

After the Fourier transformation, we obtain the final form of the equation as follows:

- (5)* 550,65 +5) 5 (252 ] -
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where F,(r) = [ dke*7"B, (k). Comparing with the Schrodinger equation without

the magnetic fields in the framework of £ - p method given as

£,(0) + B (ZESWN T p o) eh ), (3.32)
[ ) ( Dk, )O]

the Hamiltonian in Eq. 3.31 can be obtained by replacing the momentum p with the

magnetic momentum 7w = p + eA.

3.2.2 Dirac electron in the magnetic field

With the help of L-K theory, the Hamiltonian of Dirac electron in the magnetic

field can be written in the following form:

A il
H=| nmee (3.33)
—iI'mr-0 —A

The square of this Hamiltonian can be block-diagonalized as,
g2 o A2+ T -o)(m- o) 0
0 A+ Tm-o)(m-0) )’

R2k% + 27 7, 0
0 R2k2 + 27

(w-o)(m-0) = (

where 71 are the ladder operators of Landau levels. The products of these operators
can be calculated as follows:
2m T = 4w 4 i(m X ),
= (2l + 1)ehB + ehB,
2r_my =ma+m —i(m X ),

— (20 + 1)ehB — ehB.

(3.34)

[ is the index of Landau levels. Finally, we get the quantized energy of the Dirac

electron in the magnetic field by solving the equation H?¢ = E*.

1 2k
ELS—i\/A?JrZF? Kl+§+§) ehB + 221 (3.35)
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We can see that the states with the same total angular momentum j = [+s/2+1/2
degenerate. In a 2-band model with a strong interaction (A < Er), the effective

mass is given as

1 2
m* A’
hence the Landau level is rewritten as the following form:
1 h2k?
E s =44/ A%+ 2A l—l— + hew. + . (3.36)
’ 2 2m.,

3.2.3 Landé g-factor

We have reviewed a concept of k - p theory. The main feature is the modulation
of effective mass by the band interactions. When we take the spin-orbit interaction
and magnetic field into account, another respect of band interaction appears as the
modulation of Zeeman splitting. The g-factor of a bare electron is 2. On the other
hand, it largely deviates from this value for electrons in some materials [54,90, 91].
Roth [92] first discussed this effect by perturbatively treating the magnetic field
(Lodin partitioning [93]). We can expand the additional Zeeman split of degenerated

bands AFE with the commutators of wave vector as shown below.

oLy H<n|px|z> (Lipylm) — (nlp, 1) 'pw'”q [P2s24]

mg ey E, — E
[0 Cpdn = a el Ul ) o
(n|py| 1) {|pz| n) — (n|p:| 1) (U |py| n)
[CUTE SIS A

When the magnetic field is applied along with the z-direction, only one commutator

[T, my] remains and we obtain

n|m| 1) (Umy| n) — (n|my| ) {L|ma| )
AE = —1e—B Z E _E

Ei#En (3.38)
_ AguBsBz

2
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The effective g-factor geg = go + Ag is clearly modulated by the band interactions.
Carriers in bismuth crystals are the typical example. As mentioned before, the
electron in bismuth is well approximated with the Dirac electron [56,57]. Two energy
band is correlated with spin-orbit coupling so strongly that the Zeeman split has the
same value with the cyclotron energy, which corresponds to the energy degeneration
shown in the Eq. 3.36. It is experimentally confirmed that the enhancement of
effective g-factor in bismuth electron is isotropic [54]. On the other hand, the case of
the hole is different. The Zeeman split is almost twice as large as the cyclotron energy
in the trigonal axis [54,94-97|, while it is negligibly small in binary and bisectrix
directions. Recently, the origin of these mysterious characteristics was unveiled [98]
by explicitly calculating the inter-band effect from the tight-binding model. Although
the gap between the Ty; (hole carrier) and I'¢ bands are nearly 1 eV, the spin-orbit
coupling in bismuth has a comparable scale (~ 1.8 ¢V [90]) and make these bands

coupled.

3.2.4 Inter-band effect and adiabatic phase

The recent viewpoint of topological materials has renewed the interest in the band
interaction in the magnetic field. It was figured out that the Landau quantization
of the energy band reflects the information of the Berry phase [78]. Berry phase is
a phase in wave function in parametric space. While this phase is implicit in the
Schrodinger equation of free particle, it arises with non-trivial phenomena in some
multi-band systems. In the case of electrons in crystals, the adiabatic parameter is
the wave number k. The phase is stimulated to the electron wave when the electron
wave travels through the Brillouin zone, which is reminiscent of the Aharonov Bohm
effect in the external magnetic field. We can regard this phase in the wave space
as an effect of a virtual magnetic field. We call this intrinsic magnetic field Berry
curvature. Some types of crystals possess topologically protected Dirac cone, which
is the crossing point of linear bands in the Brillouin zone. This singularity in the
band structure can be a diverging point of Berry curvature, which is identical to
a magnetic monopole [16]. For example, insulators with non-trivial Z, index is

called topological insulator and it has a conducting state with the Dirac cone on its
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surface [99]. Another example is the Weyl electron system. This system has some
types of breaking of spatial symmetry, which results in a twin of Dirac cones (Weyl
point) or line of degeneration (nodal line) in k-space [16].

We can extract the information of Berry phase out of the quantum oscillation.
Mikitik et al. proposed that phase of the oscillation includes the Berry phase directly
[78]. The cross-sectional area of [-th Landau tube in the Brillouin zone is given

by [100] .
e

h
in the framework of semiclassical electron trajectory in k-space. When this area

S(B) (1+7) (3.39)

becomes maximized, the oscillation in electron-transport coefficients is observed.
The additional constant ~ is corresponding to the phase shift of the oscillation and
is equal to 1/2 when there is no inter-band effect: free electron. They showed that

the phase in a n-th Bloch band can be written as [101]

1 1
= ——— ¢ Q,dk. A4
Y 5~ o ndk (3.40)
Q. (k) = z'/dru,*;nvkuk,n. (3.41)

Q, (k) is the Berry phase in the k-space. When the contour of electron trajectory
includes the level-crossing point, which is corresponding to the Dirac cone mentioned
above, the Berry-phase term becomes non-zero. v = 1 is realized in Dirac electrons.

The relation between the Berry phase and quantum oscillation can be translated
in terms of effective g-factor. In the case of free electrons with light mass in solids, the
levels of the Kramers pair are almost degenerated due to the relatively small Zeeman
splitting (Fig. 3.3a). On the other hand, in the strong limit of 2-band interaction:
Dirac electron, the degenerated energies are shifted due to strong spin-orbit coupling.
In the Dirac electron, the degenerated pair has the same total angular momentum
in the z direction (Fig. 3.3b). The peaks of quantum oscillation are corresponding
to the crossing point of the bottoms of Landau levels and Fermi energy. Hence, the

position of peak is given in the following relation:

(n+1/2)hw. = Ep, (Free electron) (3.42)

VA2 +2Ajhw, = FEp, (Dirac electron) (3.43)
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where j = [ 4+ s/2 + 1/2. When we plot the index corresponding to the peaks of
quantum oscillation as a function of inverse-field (1/B), the points are distributed in
a co-linear line. Moreover, the line has an intercept at 1/2 in the case of a free electron
and crosses the origin in Dirac electron (Fig. 3.3c). This map is called fan diagram,
and we can determine the additional phase of an electron from the intercept of
lines [6,54,102-105]. In more complicated multi-band systems (n > 3), the intercepts
deviate from integer or half-integer. The degree of shift is measured with the ratio
of the Zeeman split to the cyclotron energy called Zeeman cyclotron ratio (denoted
with M [77]). Recently, the k - p theory was extended beyond the framework of
Lodin partitioning and we can treat the magnetic field non-perturbatively in band
calculation with the help of matrix mechanics [88]. This method pointed out that
the ratio M in PbTe, which has been approximated with the Dirac electron system,

has field dependence due to additional inter-band effects from outside of 2-band.

(a) Free electron (b) Dirac electron (c) Fan diagram

EF - n i

:2 __________ o”’ o"’

~“~~~ EZ 'o' ’O’

hw, Free electron ¥ @

”/’ o‘ .”

*\N\N\N\ ’.0 "O
@ ¢  Diracelectron
= 12} @
0 1/B

Figure 3.3: Band edge of Landau levels in (a) Free electron and (b) Dirac electron.

(c) Fan diagram of free and Dirac electron.

We can also find the relationship between the effective g-factor from the inter-

band effect and the Berry curvature. The Berry curvature in the Brillouin zone is
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given by [24,106]

(n(k) [v|m(k)) x (m(k) |v| n(k))
(B (k) — Eu(k))*

B,(k)=Im ) (3.44)

Em#En

This is clearly correlated with the effective g-factor in Eq. 3.38. We can say that the
band proximity enhances the local Berry curvature in the Brillouin zone. Moreover,
in the strongly correlated 2-band system, they are perfectly proportional to each
other.

3.3 Kane model

Kane extended the DKK model by considering the interaction between valence
and conduction band in narrow-gap semiconductor InSb [83]. The main concept is
selecting the basis of atomic orbitals at the symmetry points as DKK theory. This
method successfully explains the non-parabolic band structure in the narrow gap
materials [84] and topological materials [85-87]. By considering the inversion of s,p-
orbitals, and spin-orbit coupling, we can demonstrate the exotic band structures in

Weyl electron systems.

3.3.1 Weyl electron system

The energy dispersion of Weyl electron indicates the linear k-dependence in specific
directions and parabolic dependence in other directions [16,107,108]. Contrary to
the Dirac electron, Weyl semimetals own a twin of degenerated points called Weyl
points. This system fundamentally has broken symmetry in some direction. To take
the anisotropy into account, we have to begin with the Kane model, which is based
on the orbital symmetry of bands.

In the Kane model, the Hamiltonian up to the second order with £ is given in
the following form [109]:

h? X|k - P|z) {x|k - P|Y
Z< | |z) (z] 1Y)

h
X|HkanelY) = Ex6 —k - (X|P|Y — (3.4
(X[ Hkane|Y) x0xy + — (X|P] >+m2 By B (3.45)
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where X, Y are the indices of orbits (X,Y = s, p...). In isotropic case with basis (|s),
—i|Z), —i|Y), —i|Z)), the inter-band term (off-diagonal) is calculated as

h h N
- (s|k - P|p;) = _ZEki (s|P|i) = Ak;. (3.46)

Then, the Hamiltonian can be expressed as the following form:

M(k) Ak, Ak, Ak,
Ak, —M(k) 0 0

H, ane k) + s 3.47
K OB n 0 M) o (3.47)
Ak, 0 0 —M(k)
P 2
1=x,Y,2

A is the half band gap between the s- and p-bands. The eigenvalues are given as

E = eo(k) £ /M (k)2 + A2k2. (3.49)

€o(k) is the parabolic dispersion of bare electron. Without the inter-band interaction,
the energy dispersions are just a pair of parallel parabolic curves as shown in Fig.
3.4a. With the second perturbation M (k), the curvature of the bands are modulated
and the p-band becomes hole-like (Fig. 3.4b). If the order of these bands is inverted
at k =0 (A < 0), these arcs get over-wrapped as shown in Fig. 3.4c. The degeneracy
at £ = 0 is broken as long as the inter-band interaction A is non-zero. In order to
obtain the Weyl-type dispersion with two degenerated points in a specific direction,
we have to consider the spin degrees of freedom and spatial asymmetry.

We demonstrate a derivation of Weyl Hamiltonian in accordance with the down-
folded 8 x 8 Hamiltonian for the I" point of CdzAss by Wang et al. [87]. For simplicity,
we assume four s and p orbitals with spin (|s, 1), |p, 1), |s,4), |p,{)). Especially,
lp, 1)) can be written as |p,) £1i|p,), and the s-p interaction is given by,

h h .
Huar = o= (s k- Plot) = = (s 11k P{p) +ilp)} = Ak (3.50)
ky = kx+tiky
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The 4 x 4 Hamiltonian is given as follows.

M(k) Ak, 0 0
Ak_ —M((k) 0 0
H, = eo(k) + 3.51
Cdsas, = €0(k) 0 0 M) — Ak (3.51)
0 0  —Aky —M(k)

This Hamiltonian is block-diagonalized, and we can decouple the 2 x 2 Hamiltonian

out of it. The decoupled part can be written as
Hoyo = M(k)o, + A(kyo, + kyoy), (3.52)

where o; is the Pauli matrix. The eigenvalues are,

E = eo(k) + /M(k)2+ A%k k_. (3.53)

In this case, the degeneracy in the k, direction cannot be broken with finite A (Fig.
3.4d), and the dispersion in other directions asymptotically becomes Dirac-like when
the band-interaction becomes larger (Fig. 3.4e.f).

To summarize, the Weyl dispersion is originated from the band inversion of s,p-

bands at a band edge, the symmetry breaking, and large band interaction.
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Figure 3.4: Energy dispersion of (a) free electron and (b-f) 2-band Kane model for
interacting s and p orbitals. The energy and the wave number are normalized as
E/|A] = ¢® + /(sign(A) + Rarg?)? + Raq?, where ¢* = h2k*/2m.|A|. ¢* = ¢? for
(b,c) and ¢ = ¢Z + ¢, for (d-f).
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Chapter 4

Magnetoresistance in Bismuth
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Figure 4.1: (a) Unit cell of bismuth crystal. (b) The first Brillouin zone and carrier

inary (x)

pockets and (c) the view from T" point.

Bismuth is one of the oldest materials in the history of solid-state physics. Novel
phenomena have been discovered through the exploration of the properties of this
material. The diamagnetism [110,111], Nernst effect [112], huge magnetoresistance
[1], Shubnikov-de Haas effect [2], and de Haas-van Alphen effect [113] were observed
first in bismuth crystal. The tremendous contribution is not a coincidence. One
remarkable character of bismuth is a huge magnetic response due to the existence
of Dirac electrons [15,75]. Moreover, the small carrier mass makes the quantum

oscillation observable in a moderately low field. In the magneto-transport aspect,
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bismuth is a semimetal with dilute electron- and hole-carriers compensating each
other resulting in huge magnetoresistance.

Recently, the experimental studies observed angular-dependent magnetic response
comprehensively and found new mysteries. Bismuth has binary (z), bisectrix (y), and
trigonal (z) axis. While the transverse magnetoresistance is expected to show six-fold
rotational symmetry with the rotating field in the z-y plane, the observations indi-
cated the suppression of the anisotropy [40,44,45] or symmetry breaking [44,45,114]
at the quantum limit (2 10 T). Moreover, an extremely large field exceeding 40 T
yields an unexpected drop in MR [40]. These characteristics cannot be explained by
conventional semiclassical transport theory. The point is that these anomalies arise
around the quantum limit. In this range, the effect of Landau quantization is not
negligible.

In calculating MR, we took the Landau quantization into account through the
field-dependent carrier concentrations. Bismuth is one of the most suitable systems
for our purpose because the anisotropic masses and effective g-factors of electron and
hole are precisely determined by previous researches [45,54,94] and we can calculate
the field dependence of Landau levels of carriers without ambiguity in all directions
of the magnetic field. Moreover, the Fermi surfaces in bismuth are all ellipsoidal and
we can apply the multiple anisotropic carrier model [44,45,115] (ellipsoidal model)

to describe the magnetoresistivity.

4.1 Magnetoconductivity

Bismuth single crystal contains three small electron pockets at L points and one
hole pocket at T" point in the Brillouin zone (Fig. 4.1b,c). Approximating these car-
rier pockets with ellipsoids, we can calculate the magnetoconductivity tensor by the
method shown in the Sec. 2.1.2. Moreover, the magnetoconductivity with Landau
quantization can be given by replacing the constant carrier density with the sum-
mation of the density of state in all the Landau levels below the Fermi energy. The

magneto-conductivity tensor ¢ in bismuth is calculated as follows:

5= eNu(B) (g;} - B)_l + eNy(B) (,1,;1 + B>_1 . (4.1)



Chapter 4. Magnetoresistance in Bismuth 45

The indices of summation are the number of electron pockets. Due to the symmetry
around the trigonal axis, the mobility tensors of three electrons can be given by
rotating one of them by +27/3. The carrier density of electron N;, hole N, and
the Fermi energy are determined by the charge neutrality condition of the carriers

in the magnetic field:

S N.i(B) = Nu(B). (4.2)

The carrier density in the field is calculated by summing up the density of states in
each Landau level. One Landau level has field-dependent degeneracy in z-y plane
(B//z), which is called Landau degeneracy N, = eB/2mwh. The carrier density in

one carrier pocket at T'= 0 K is calculated as follows:

N@B) = X [ dBEDE - B

_ @2[‘) dEfF(E)/BZ dk.8(E — Eyy.)

B Er 9 _
= 6—22/ dE/ deM
2m*h T JE(k.=0) B.Z. 9Buiky

# kz:kz,El
eB Er 1
- ﬁZ/ dE 0L
1 El(kz:O) ’—’z
z kz:kz,El
GB Z/kF’l dk
-~ 7w2h 0 :

- = > kru(B), (4.3)

where D)(E), fr(E),and kp are the density of states, Fermi distribution function,
and Fermi wave number respectively. It is shown that the carrier density in the field

is given by summing up the Fermi wave numbers in each Landau level.
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4.2 Landau quantization in Bismuth carrier

The Landau quantization in the electrons and hole in bismuth strongly depends
on the orientation of the magnetic field due to the anisotropy of the effective mass
and the effective g-factor. Moreover, the cyclotron energy of the electrons exceeds
the Fermi energy (quantum limit) with a moderately low field (<10 T) because
the effective mass is as small as one-thousandth of the bare electron mass in some
directions. The effective Hamiltonian of the bismuth electron is equivalent to the
Dirac Hamiltonian. These features originate from the strong interaction of isolated
two-bands with spin-orbit coupling. The feature of the Dirac electron is the lowest
Landau level (LLL) stable against the field. On the other hand, the real LLL in
bismuth exhibits field dependence due to the finite inter-band effect [116], and recent
magneto-transport experiments in more than 50 T imply that carrier evaporation is
induced by this field dependence [40].

4.2.1 Dirac electron in bismuth

Small electron pockets located at the L points in the Brillouin zone (Fig. 4.1b,c).
The conduction band at these points is proximate to the valence band with a small
gap and isolated from the other bands (Fig. 4.2). The proximity yields a strong inter-
band effect and this 2-band system can be well described with Dirac Hamiltonian
[56,57] as shown below (Sec.3.1.2).

EWH::A5+mk1§:Wm%] (4.4)

OUZ‘ . I 0
“T (0,; o) ﬁ_<o —1>

A is a half gap and o; is the Pauli matrix. The constant vector W; is corresponding
to the intensity of band interaction and determines the anisotropy of the masses of
electrons. We can easily obtain the quantized energy levels in the magnetic field by
substituting @ = hk + eA with the momentum hk as shown in Sec.3.2.2 (A is the

vector potential). This operator satisfies a commutation relation (7 x 7 = ieB). If
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Figure 4.2: (a)Band structure of bismuth crystal calculated by the tight binding
model [117]. (b)Energy dispersion round the T and L points in the vicinity of the

Fermi energy.

the magnetic field is applied along the z axis, the [-th Landau level of this electron
with spin (s = £1) is given as

Ero(k.) = /A2 +2A (1 + 5/2 + 1/2)hw, + h2k2/2m.). (4.5)

The lowest Landau level (LLL) (I =0, s = —1) is stable against the field since the
scale of Zeeman splitting is equivalent to the cyclotron energy hw.. The electrons in
bismuth have strong anisotropy in the effective mass. The cyclotron energy, cyclotron
mass, and mass along the field are defined as follows:

B detn
hoe =", me=/ 2 m,=b-m-b. (4.6)

me my

m is 3 x 3 effective mass tensor and b is the normalized magnetic field. The effective

mass tensors in two of the three electron pockets are given by +27/3 rotation of
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one tensor (g3 = R (£27/3) - ey - R(£27/3)) as we conducted in the mobility

tensor.

4.2.2 Extended Dirac model

As shown above, Landau levels with the same total angular momentum j = [+s/2
degenerate, and the LLL in the Dirac electron is not shifted by the magnetic field
in the Dirac model. On the other hand, finite interaction between the Dirac 2-
band and outside bands causes splitting in the degenerated pair in real bismuth
crystal [116,118]. This effect can be described by an additional g-factor denoted
with ¢’ [45,54,88] and the Landau levels are given as follows:

Eyy(k.) = VA2 1 2A[( + 5/2 + 1/2)hw, + 2k2/2m.] + 22 ’;BB L@

where g is the Bohr magneton. The field dependence of Landau levels is shown in
Fig. 4.3. The extension is corresponding to first order perturbation and the edge of
the LLL linearly depends on the field. The sign of ¢’ is positive with the field along
the bisectrix axis and negative in the binary and trigonal axis. This means the LLLs
of the conduction and valence bands cross at a high field in the binary and trigonal
axis.

Furthermore, Vecchi et al. suggested non-negligible B? dependence in LLL [116].
This parabolic term originates from the interaction between LLLs of conduction and
valence bands and exhibits anti-crossing behavior when these levels approach each
other. Recently, the observation of extra Shubnikov-de Haas oscillation [40, 119]
suggested the evacuation of carrier pockets in bismuth. These results imply that
the parabolic field-dependence affects the electron transport at more than 40 T.
According to the previous research [40,45,116], the field dependence of LLL is given

in the following form:

R2k2 §upB\>
E0,1<kz>:i\/ (o = 7228 o v (43)

2m, 2

where ¢’ is the modified ¢’ factor [§ = ¢'(1 + 2V'|¢'|upB/A)] and V, V' are param-

eters related to the interactions between conduction and valence bands. With this
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model, the field dependence of the Landau levels and Fermi level are as shown in Fig.
4.4. After the anti-crossing, the LLL of the electron increases drastically and exceeds
the Fermi energy. Therefore, one (two) of the three electron pockets are perfectly
evacuated at 60 T (40 T) with the field along the binary (bisectrix) axis.
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Figure 4.3: Field dependence of the edge of Landau levels and the Fermi level with
the field along the (a) binary, (b) bisectrix, and (c) trigonal axis. Cyan and magenta
lines indicate the electron and hole levels respectively. Red line indicates the Fermi
energy.

4.2.3 Hole in bismuth

The hole pocket in bismuth locates at the T point (Fig. 4.1) and can be well

approximated with an anisotropic free particle [94]. The Landau levels of a hole are

given by,

oupB N h*k?
2 2M,’
where Fj is the hybridization energy of conduction band at the L and valence band
at T point (Fig. 4.2). Q, G, My are the cyclotron frequency, the effective g-factor,
and the effective mass along the field, respectively. The field dependence is shown in
Fig. 4.3 The parameters we used for calculating the Landau levels in electron and
hole are shown in Table 4.1. One can see that the g-factor in hole carrier is extremely

enhanced in the trigonal axis. Recently, it was proved that the bands at the T point

Bo+ A — B, o(k,) = (n + %) K+ G (4.9)
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Figure 4.4: Field-dependent Landau levels and Fermi level up to 65 T considering
the second-order perturbation of LLL interaction [40,45]. Cyan and magenta lines

indicate the electron and hole levels respectively. Red line indicates the Fermi energy.

are not well isolated from each other, and interaction from other bands far above the

Fermi energy remains large, which yields a large and anisotropic spin splitting [98].

4.3 'Transverse magnetoresistance

We discuss the angular dependence of transverse magnetoresistance (TMR) in bis-
muth. TMR is induced by the field perpendicular to the current and the angular
dependence generally reflects the anisotropy of the carrier mobility. A recent ex-
periment on bismuth pointed out that the angular dependence shows the vanishing
of anisotropy or symmetry breaking at low temperature (Fig. 4.5b) [40,44,45,114],
which cannot be explained by conventional semiclassical transport theory. These
phenomena arise around the quantum limit, which suggests a limitation of the con-
ventional theory and a necessity of the extension.

According to the experimental setup, we rotated the field in the binary(x)-
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Table 4.1: Parameters of effective model [40,45]. The values of mass m, M are

normalized by the mass of bare electron.

electron

1 TT Yy zZ Yz
m; 0.00124  0.257  0.00585 -0.0277
g, -3.63 45.6 -7.92 9.20
Vi 0.15 0.15 0.15 0.00
V! -0.0688 -0.0438 -0.0625  0.00

3

hole
i TT Yy zz
M; 0.0698 0.0698 0.743
G; 0791 0.791 62.6

band gap and hybridization energy
2A  15.3 meV
Ey  38.5 meV

bisectrix(y) plane with the current along the trigonal(z) axis (Fig. 4.5a) and demon-
strated the angle-dependent TMR, by calculating (z, z) component of the resistivity
tensor (p = 6!, where ¢ is given by Eq. 4.1). We conducted the calculation at
0.5, 5, 10 T. The electron and hole mobility we used here are shown in Table 4.2.
Figure 4.6a-c shows the results of our calculation. Here we plotted the value of
magneto-conductance 0., = p! to compare with the experiments. We can see the
Cs symmetric star-shaped angular dependence at 0.5 T which reflects the anisotropy
of carrier mobility. On the other hand, the anisotropy is suppressed by increasing the
field and the angular dependence becomes almost isotropic at 10 T. This behavior
qualitatively agrees with the experiments (Fig. 4.5b), and especially, the field range
in which the anisotropy vanishes is consistent.

Moreover, the field-dependent evolution in TMR is corresponding to the field
dependence of the carrier density at a high field (Fig. 4.6d-f). The carrier densities
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Figure 4.5: (a) Schematic image of TMR in bismuth with rotating field. (b) TMR
observed in previous experiments [44,45].

Table 4.2: Mobility of electron and hole (10° cm?/Vs) in bismuth at 4.3 K [115]

iz yy zz  yz
fe; 110 3 67 -7.1
tri 22 22 3.5 0.0

of electron pockets are isotropic at 0.5 T. At the high fields, carrier densities of the
electrons grow in specific directions, which is corresponding to the lowest mobility.
The transverse component in the conductivity tensor o, of electron pocket ey is

given in the following form.
Elzz Nel (B)
B2 (g fizz OS2 0 + fyypis, SN 0 — i, cos? 0)—1
eNel (B)
B2(jizy, c082 0 + f1,,, sin* 0)

Ozz =

(B> 1,  [idiag > ly-) (4.10)

One can see that the contribution from the carrier density and mobility are inversely

correlated and the denominator is corresponding to the mobility distant by 7/2 from
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Figure 4.6: Angular dependence of transverse magneto-conductivity p_! (upper
panels) and electron carrier density (lower panels) at (a,d) 0.5 T (b,e) 5 T (c,f) 10
T.

the field. The carrier density grows in the bisectrix axis, which is corresponding to
minimum mobility. Hence their contributions cancel each other at high fields. When
B =10 T, the anisotropy in the carrier density Npis/Npi, ~ 21 is comparable to that
of mobility ppin/psis ~ 37, which is the origin of isotropic TMR at this field range.

Next, we discuss the origin of the increment in the carrier density in the quantum
limit. Considering the charge neutrality, carrier density in semimetals can be mod-
ulated in the quantum limit [94]. The essence is the field dependence of the lowest
Landau level (LLL). Fig. 4.7a shows the field dependence of the Landau levels in free
electrons and Dirac electrons. The LLL in Dirac electron is stable against the field
because the spin splitting in the Dirac electron is the same as the cyclotron energy

as mentioned in the Sec. 4.2.1. After achieving the quantum limit, the Fermi wave
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Figure 4.7: (a) Field dependence of Landau levels in free electrons and Dirac elec-
trons. (b) Field dependence of carrier density in two-carrier semimetals. (¢) Angular

dependence of carrier density in a semimetal with anisotropic Dirac electron.

number is invariant against the field and the density of state increase by the Landau
degeneracy N, = <2 (Length scale is normalized). According to the Eq. 4.3, the
carrier density linearly increases due to the Landau degeneracy.

We demonstrated the field-dependent carrier density in a simple semimetal whose

Landau levels are given in the following forms.

(s e hee + E (ctectron) (4.11)
€ns = | T 5 5 7C C 2mz electron .
1 R2k?
En,s = EHyb - (n + 5 + gMgC) FLQC - 9 £ (hole) (412)

Mze called Zeeman-cyclotron ratio is the ratio of the Zeeman energy to the cyclotron



Chapter 4. Magnetoresistance in Bismuth 55

energy (98], which takes 1 in the Dirac electron and 0 in the free electron. In the
calculation, this ratio is varied from 0.1 to 1 in electron and fixed to 10~* in the
hole. The mass of the electron is set 1000 times smaller than the hole to realize
the quantum limit at lower fields. We calculated the carrier density by the charge
neutrality condition. In Fig. 4.7b, we can see drastic changes in carrier density after
the quantum limit. The field dependence is clearly correlated to Mz values and the
case M = 1 (Dirac electron) shows a linear dependence.

We also plotted the angular dependence of carrier density in anisotropic electrons.
We considered an isotropic free hole and ellipsoidal Dirac electron. The electron mass
along the y direction is fixed 1/10 times smaller than the z direction. The result
is shown in Fig. 4.7c. The angular dependence becomes anisotropic as the field is
increased and the direction of growth is perpendicular to the direction of the lightest
mass. From Eq. 4.10, we obtained an important suggestion that the anisotropy of
TMR in a semimetal with Dirac-type carriers is suppressed by the carrier density at
the quantum limit.

In conclusion, semimetals with Dirac-type carriers exhibit anisotropic growth
of carrier density in the direction of maximum cyclotron energy, resulting in the
suppression of the anisotropy of transverse magnetoresistance at the quantum limit.
Dilute Dirac electron systems, such as bismuth, generally have a small mass. In other
words, the cyclotron energy is enough large and the quantum limit can be achieved
with a moderately low field. Hence it is possible that the same phenomenon is

observed in other semimetals with anisotropic Dirac electrons.

4.4 Planar Hall effect

The second mystery in recent research in bismuth is the field dependence of the
planar Hall effect (PHE) and anisotropic MR (AMR). When we rotate the magnetic
field in the plane of the Hall bar, the angular dependence of longitudinal and Hall
resistivity is expected in some materials (Fig. 4.8). The oldest history of these
effects dates back to its discovery in 1954 by Goldberg [120]. In the semiclassical
viewpoint, this phenomenon arises from the anisotropy of the system. From an early

age, this phenomenon has been observed in many varieties of materials including
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Figure 4.8: Configuration of PHE and AMR measurement.

semiconductors with cubic symmetry [120-123] and ferromagnetic materials [124].
Recently, the quantum-mechanical origins of PHE were repeatedly reported in Dirac
and Weyl electron systems. When the magnetic field is applied parallel to the elec-
tric field, chiral symmetry in the system is broken resulting in the excitation of
electrons with specific chirality (Chiral anomaly) [17]. This anomaly increases the
chiral carrier concentration and modulates the resistivity. Some theories suggest
a negative magnetoresistance [18,20] and PHE with period 7 [21,22]. Hence, one
of the largest interests in MR study in materials today is the observation of chiral
anomaly [27-35,125]. Indeed, these phenomena are observed in real materials and
regarded as evidence of non-trivial Berry curvature or chiral anomaly. On the other
hand, PHE is not a special phenomenon for general electron systems as referred to
the history of this effect. Very recent experiments suggested a possibility of the triv-
ial (orbital) origin of the PHE [36-39]. Trivial PHE is explained in the framework of
semiclassical transport theory. The problem today is how we distinguish the origin
of PHE, while it is not easy. One honest way to analyze the observed PHE is to

discuss whether the results can be explained by semiclassical models.

In bismuth, a recent experiment suggested some unexpected effect that causes
the field- and angle-dependence in PHE and AMR [35]. They carefully analyzed the
observation with multiple ellipsoidal models and this model successfully agreed with
the angle dependence at low field. However, the PHE and AMR at the high field
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cannot have been explained. The angle-dependence at low field contains the main
sine and cosine curve with the period 7w and the second harmonic wave (Fig. 4.9b).
Increasing the field, the second harmonic component is suppressed and the amplitude
of the main curve is enhanced (Fig. 4.9¢). This enhancement is consistent with the
expected from the chiral anomaly [21,22], which is the reason they suggested some
strange effect in the PHE of bismuth.
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Figure 4.9: (a) Configuration of PHE and AMR in bismuth. (b) Experimental results
for PHE and AMR [35]. Upper panels show the angular dependence of AMR and
lower panels are the PHE.

Figure 4.9a shows the configurations of our calculation for PHE and AMR in
bismuth, which is consistent with the experiment [35]. Rotating the magnetic field in
the plane of Hall bar, the PHE is calculated by the Hall resistivity p,, and the AMR is
the longitudinal resistivity p,, with the current along the x direction. In this section,
we first want to show that the PHE and AMR with the period 7 naturally arise in
general multiple carrier system. Bismuth is a typical multiple carrier system and the
angular dependence becomes more complicated due to its anisotropy. Moreover, the
thickness-dependent carrier mobility and field-dependent carrier concentration can
qualitatively modulate the PHE and AMR signals. In the case of bismuth thin film,
the charge neutrality in carriers is violated so remarkably that we cannot neglect it

in our calculation. Our results well agree with the experiments, and we found that
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the angular dependence can be changeable due to the value of mobility, the strength
of the field, and the compensation condition of the charge. Moreover, we found that
the carrier density in Dirac electrons increases after achieving the quantum limit

resulting in charge compensation of the carriers.

4.4.1 PHE and AMR in isotropic multi-carrier metals

In this section, we show that the PHE and AMR can be originated from multiple
carrier transport. First, we note that single carrier systems do not exhibit the angular
dependence in PHE and AMR in the semiclassical framework (ppgr = 0, papyr =
po). The situation critically changes just by adding another carrier with different
mobility. With the aid of the multiple carrier method in Eq. 2.19, we can easily
derive the angular dependence in isotropic 2-carrier systems. We rotated the field in
the z-y plane and this effect was demonstrated by calculating the (z,y) and (z, )

components of resistivity tensor respectively. The result is shown below.

PPHE = Py = —Apaigsinbcosb, (4.13)

PAMR = Pazz = PL — Npaig cos? 6. (4.14)
1 (1 — pig)*pap1o B
en (1 + p2)(4(pp2B)? + (11 + p2)?))

0 is the angle of the magnetic field measured from the x axis and n is the carrier

Apag = pL—p|=

density. p| = p11|9:7r/2 and p; = p11]e=0 are corresponding to the longitudinal MR
(LMR) and TMR respectively. The angular dependences are simple sine and cosine
curves with a period 7. This functional form is the same as what is expected from
the chiral anomaly [21,22]. We can see three specific properties about the amplitude
Apgig. First, it vanishes when these two carriers are equivalent j1; = ps. Second, it
saturates at a high field limit. Third, the value is greater with smaller mobility (Fig.
4.10a).

4.4.2 Isotropic semimetals

When the charge of carriers is compensated, the semimetals with an isotropic

electron and an isotropic hole give the PHE and AMR in the same form as Eq. 4.13,
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Figure 4.10: Field dependence of the PHE amplitude in (a)isotropic 2-carrier metals
and (b)compensated 2-carrier semimetals with isotropic electron and hole. One of
the mobility p; is varied in 1.0, 0.8, 0.6 7! and the ratio of two mobilities is fixed

to 0.5. The carrier density n is 10'® cm=3.

4.14. The amplitude of this angular dependence is given as follows:

1 B?
L Hape (4.15)

Apgig = pL—p| = en 1 + s

141, o are the mobilities of the electron and hole respectively. The amplitude does not
be zero even when the two carriers have the same mobility. Moreover, the amplitude
increases with the B? characteristic and does not saturate. This is the consequence
of charge neutrality because of the TMR in compensated semimetal parabolic and
non-saturating field dependence. The most contrasting feature is that the amplitude
of PHE increases with increasing mobility is as shown in Fig. 4.10b. When the

charge neutrality is violated, the amplitude is

o pe iy ny (p1 + M2)2 B? (4.16)
e (n1 p1 4 ng p2) (a0 (N1 — n2)? B2+ (ng iy + ng M2)2)

Apdiff =

ni1, ny are the carrier densities of electron and hole. In this case, this amplitude
saturates at a high field and becomes greater with lower mobility like the metals.

The detail of calculation in 2-carrier model is shown in Appendiz A. We further
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showed that the angule-dependence in PHE and AMR holds in isotropic n-carrier

metals (n > 2) and semimetals.

4.4.3 PHE in Bismuth: compensated

Here, we discuss the case of bismuth. This system is a multiple carrier system,
hence we can expect that both PHE and AMR have angular dependence. Due to
the anisotropy, its functional form becomes more complicated. According to the
setup in the experiment, the magnetic field was rotated in the x-y plane, and PHE
and AMR were calculated as the (z,y) and (x,x) components of resistivity tensor
respectively. The carrier concentration in the field was calculated by the charge

neutrality condition in Eq. 4.2.
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Figure 4.11: Thickness dependence of (a) electron and (b) hole mobility in bis-
muth [35,115,126,127]. The data from Hartman and Yang et al. are the maximum

components in the mobility tensor. Broken lines indicate v/# dependence.

We demonstrate the PHE and AMR in bismuth with bulk and film mobility. The
carrier mobility in bismuth strongly depends on the size of the crystals. We plotted
the thickness (t) dependence of the mobility of electron and hole in Fig. 4.11. We
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can see the mobility increase with the thickness, and the thickness dependence is
almost /¢ in the thicker range (¢t > 1um). Since the mean free path in bismuth is
quite long (I ~ 0.3mm) [15], the effective mean free path in the crystals is determined
by the size of the crystal when the size is smaller than the path. In this size range,
the carrier lifetime increases with increasing the film thickness and the thickness

dependence of mobility may come up.
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Figure 4.12: Field- and mobility-dependence of PHE and AMR in bismuth.

Our calculation was conducted with four different conditions: film in the low field,
film in the high field, bulk in the low field, and bulk in the high field. The mobility
in bulk and film were from the low-temperature experiments by R. Hartman [115]
and from S.-Y. Yang [35] respectively. Fig. 4.12 shows the results. The angular
dependence with a period shorter than 7 is present in the case with low field and low
mobility, and this component vanishes with high field or higher mobility. The angular
dependence is identical to the cases of isotropic metals and semimetals as shown in
Eq. 4.13 when p or B is large. These values are always present in coupled in the
magnetoresistivity tensor, hence the behavior of PHE and AMR can be changed by
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the value of uB. We can say that general materials with a large mean free path and

large mobility can exhibit different angular periodicity depending on the thicknesses
or field.

4.4.4 PHE in Bismuth thin film: uncompensated
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Figure 4.13: PHE and AMR in bismuth thin film. (a) low field and high field with
(b) constant carrier density and (c) field-dependent density.

We also discuss the case that the charge neutrality is violated. In real bismuth
thin film (5.3 pm), the charge deviation between electron and hole is remarkably
large [35]. According to the experimental condition, the deviation of electron density
and hole density at zero fields are fixed to be 26.5 % of the electron density. If we do
not consider the field-dependent carrier density, the angular dependence of PHE and
AMR does not change qualitatively and the amplitude saturates at high field (Fig.
4.13b). Especially, the shorter-period component remains even at high fields. This
field-dependent characteristic does not agree with the experiment, which indicates the
vanishing of shorter components and perfect sine- and cosine-like angular dependence

at high field. If the charge of carrier is compensated, this qualitative shift at high
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field is natural as we have seen in Fig. 4.12. It is implied that the key to this change

is the degree of violation of charge neutrality.
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Figure 4.14: Field-dependence of electron and hole density with the field along with

Binary direction.

Next, we assume the field-dependent carrier densities with charge imbalance.
It is also assumed that the imbalance is originated from charged impurity and the
difference between two carrier densities is constant with any fields (N.(B)— N, (B) =
N.(0) — N,(0)). In this case, the periodic characteristics changes at a high field (Fig.
4.13c). Some electron pockets exceed the quantum limit at 14 T, hence the carrier
density is drastically modulated.

Figure 4.14 shows the field dependence of carrier density with the field along
the binary axis calculated with the constant charge difference. At the low field, the
charge difference is about 27% of the electron carrier. On the other hand, both
carriers increase after achieving the quantum limit. The ratio of impurity charge
decreases because of the enhancement of total carrier density and it is only 6% at 14
T.

In summary, the angular dependence of PHE and AMR in bismuth thin film
shows periodic characteristics with both 7 and shorter (7/2) period at low field and

they turn to be a simple sine and cosine curve with period 7 at high field. We
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pointed out that this qualitative change is a natural consequence when the carriers
are compensated. It was also found that the field-dependent carrier increment at the

quantum limit suppresses the degree of the charge imbalance in real bismuth thin
films.

4.5 TMR far beyond the quantum limit

The qualitative shift in angular-dependent TMR, PHE, and AMR across the quan-
tum limit was well explained by considering field dependence of carrier density. On
the other hand, the third mystery remains in the quantitative difference between the
theory and experiments far beyond the quantum limit (B 2 10 T) [40]. The experi-
mental MR in this field range is relatively small than the theoretical expectation, and
it shows a sudden drop at 60 7" (40 T') in binary (bisectrix) direction. Figure 4.15a,b
show that the theoretical value is estimated more than 100 times the observed value
at 10 T both in the binary and bisectrix direction even with the field-dependent
carrier density. Moreover, our model cannot explain the non-monotonic behavior
at 60 T" and 40 T'. This implies something missed in our model. In compensated
semimetals, the TMR generally takes a larger value with higher mobility. Hence, one
possible origin of the extraordinary MR is that the mobility is suppressed at high
fields. We demonstrated TMR assuming several types of field dependence of the car-
rier mobilitiy in bismuth (electron: fi; = fuio/ (14| B|?), hole: 0; = Do /(14| BIP),
p=1,2,...), where 7,; and ~, are fitting parameters. Furthermore, we employed the
quadratic model of the lowest Landau level given in Eq. 4.8 and considered the
carrier evacuation at an extremely high field. Figure 4.15b,c and e,f show the re-
sults of fitting in the case p = 1,2 respectively. We can see that p = 1 well fits
the experiments in both directions. Furthermore, the dip structure at 60 T (40 T)
in the binary (bisectrix) direction, which is corresponding to the carrier evacuation,
is well simulated. This implies that the scattering rate increases linearly with the
magnetic field. Moreover, we found a relationship between the mass of the electron
and the parameter 7,; in electron (ye; o< 1/m..;). This result means that the mobility
of electron with smallest m., heaviest cyclotron mass in other words, is suppressed

most drastically in three electron pockets.
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4.6 Field-dependent mobility

The B! field dependence of mobility is previously reported in dilute metal SrTiOs
[64]. In metals, this type of field dependence yields linear MR. According to the
result of fitting, the field dependence of mobility in bismuth appears at B < 10!
T for electron and B < 1 T for the hole in both binary and bisectrix axis (Fig.
4.16). These ranges are lower than the quantum limit region. Theoretical studies
based on quantum mechanics showed that the linear MR are expected in the quantum
limit [50,51,128]. These theories are based on the scattering by an impurity described
with a delta function. Kahn pointed that the scattering rate with this type of
impurity becomes anisotropic in the quantum limit [128].

On the other hand, many real materials exhibiting linear MR have dilute carrier
concentration [44,45,47], small Fermi energy in other words. This implies that the
spatial dependence of impurity potential is not negligible due to imperfect Coulomb
screening of charged impurities. Mahan demonstrated the scattering by Gaussian
impurity potential [129]. Mahan also pointed that the scattering rate has field de-
pendence at lower fields than the quantum limit, which results in field-dependent
mobility. Moreover, the scattering rate becomes anisotropic and the difference be-
tween in-plane and out-of-plane scattering grows with the field increment. In the
result of bismuth, the field dependence of mobility also has strong anisotropy, and
the carrier concentration is quite small ~ 1077 cm~3. The origin of the field depen-
dence is still an open question, some anisotropic scattering by position-dependent

potential in the magnetic field is a possible candidate.
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Figure 4.15: Purple line: simulated TMR in bismuth with (a,b) p =0, (c,d) p =1,
and (e,f) p = 2. Left pannels show the results in the Binary direction and right
pannels are the results in the Bisectrix direction. Green lines shows the experimental
data.
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4.6. Field-dependent mobility
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Chapter 5

MR in Weyl electron systems
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Figure 5.1: (a) Typical band structure in Weyl electron systems with degenerated
nodes (Weyl semimetals): an example of I" point in CdsAsy [130]. The schematic
images of (b) Chiral anomaly [28] and (c¢) Berry curvature [131] in Weyl semimetals.
Observed (d) negative LMR and (e) PHE in Na3Bi [28].
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Weyl electron systems in solids are characterized by the special band structure.
They have degenerated nodes (Fig. 5.1a) or nodal lines [132] in their Brillouin
zone, which yields non-trivial Berry curvature (Fig. 5.1c) [16,131]. Electric current
and magnetic field can couple through this curvature resulting in the non-trivial
magneto-transport phenomena such as negative longitudinal MR (LMR) and PHE
with the period 7 (Fig. 5.1d,e) [18-22]. The core mechanism of them is the excitation
of the chiral carriers by the magnetic field (Fig. 5.1b) [17]. This is called chiral
anomaly. Experiments followed these predictions recently and observation of the
anomaly in materials has been one of the central issues in Weyl electron physics
[26-35]. Magneto-transport is regarded to be a promising method to identify the

anomaly.

However, PHE alone cannot prove the existence of the anomaly as we showed
in the former chapter. Some experiments suggested PHE from a trivial origin [37]
and necessity of negative LMR for proving the chiral anomaly [36-39]. Conventional
semiclassical theory without Berry curvature cannot give an explanation for the
negative MR so far. On the other hand, the fine structure of the Fermi surface has
been rarely considered. Fermi surfaces cannot be generally approximated by the
conventional multi-carrier model because the electron velocity and the effective mass
differ from point to point on the surfaces. The consequences of considering the local
structure are still to be explored. While the MR calculation method based on the
first principle has been presented and the fine orbital structure in the magnetic field
gets started to be discussed these days [58,67,68], the local effective mass has not

been discussed intensively.

The semiclassical theory extended to the arbitrary dispersion (Eq. 2.3) yields a
new point of view in the magnetoresistance by taking the local effective mass into
account. Especially, this suggests a new origin of negative magnetoresistance. In
this chapter, we demonstrate the magnetoresistance of the Weyl electron system and
show that the negative magnetoresistance can be observed due to the off-diagonal
components of the local effective mass tensor on the Fermi surface. We also found
that the PHE from orbital origin exhibits specific temperature dependence. A dip
structure in the temperature dependence of PHE amplitude is corresponding to the

Fermi energy measured from the Weyl point.
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5.1 Fermi surface in Weyl electron systems
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Figure 5.2: (a) Energy dispersion of the Weyl electron model and Fermi surfaces
(b-d) before and (e,f) after the Lifshitz transition. M = 16 eVA®, k, =001 A7

We employ a minimal model for Weyl electron with the symmetry is broken in

z direction [107,131]. The Hamiltonian is given as

H = A(kyo, + kyo,) + M(k2 — k*)o,. (5.1)
o; is the Pauli matrices. This model is corresponding to the I" point of CdzAss [87]
and given by the k - p method (Kane model) in strongly interacted s and p orbital

bands with single spin (Sec. 3.3.1). The energy eigenvalues of this Hamiltonian are

E= :l:\/M(kQ —R2)2 4 A2+ k2), (5.2)

There is a pair of degenerated points in k = (0,0, £k,,) called Weyl points. The
parameter A corresponds to the intensity of band interaction, and this value deter-
mines the anisotropy in this system. When we fix the Fermi energy deviated from the
Weyl point, the Fermi surfaces appear, and its shape varies according to the value of

this parameter (Fig. 5.2). The Fermi surfaces consist of an isotropic electron surface
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covering an isotropic hole surface with enough small A. Increasing this parameter,
the electron surface shrinks along the equator. When the Lifshitz transition occurs
in the x,y direction, the surfaces are broken into two islands. With further large A,

the pair of surfaces is almost ellipsoidal.

5.2 Magnetoresistance

Magnetoresistance in the Weyl electron system is calculated with the semiclassical
method in Eq. 2.3. We set M =16 eVA2 k, =0.01 A~!, 7 =1ps, and T = 0.2 K in
the following calculation. We fixed the magnetic field along the x axis. The transverse
and longitudinal magnetoresistance are calculated as the diagonal components of
resistivity tensor py,, pz. respectively. The field-dependence in TMR and LMR with
various A are shown in Fig. 5.3. When A is small enough, TMR and relatively small
LMR are estimated and their signs are both positive. On the other hand, we can see
that both MR turn to negative with large A. Although the MR behavior with small
A is expected by the conventional multi-carrier model, it is difficult to explain the
negative MR in the twin ellipsoidal Fermi surfaces with large A.

We note that the negative MR shown here definitely originates from semiclassical
orbitals on the Fermi surfaces because our calculation did not include any terms from
Berry curvature. Moreover, our result presents a negative TMR, which has never
been suggested in Berry-curvature-based physics. We can say that the semiclassical

theory can present negative MR regardless of longitudinal or transverse ones.

5.2.1 The origin of negative MR

Next, we search the origin of the negative MR. When we set the magnetic field
along the z axis, the longitudinal and transverse components of the magnetoresistiv-

ity tensor are written as follows.

PLMR = —— (5.3)

PTMR — (54)
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Figure 5.3: (a) TMR and (b) LMR in Weyl electron calculated from the dispersion
in Eq. 5.2.

We ignored terms that vanish through the integration due to the symmetry. Each
component of conductivity tensor o;; calculated by Eq. 2.3 can be expanded up to
the second-order of the field as shown below [133].

Opa = Og0—€'T (((Qzz0ryy = Qg )V + (Qay Oz — Q) )V, )V2) B* + O<B4)

(5.5)
oy = oy — €T ((ayya.. —al)vl) B>+ O(BY) (5.6)
0,., = 0, —er? <(ozyyozzz — aiz)vg> B* +0(B*Y) (5.7)
0. = —€ T {00, — a,v,) B+ O(B?) (58)
oin = e7{v})

The operation (...) is the integration in the vicinity of Fermi surface shown in Eq.

2.3, and o, is given by inverting the sign of ¢, according to the Onsager’s relations.
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Furthermore, we can expand the resistivities in Eq. 5.3 and Eq. 5.4 up to second-

order after substituting the extended conductivities. The results are

pivr = poo + pP B+ O(BY), (5.9)
PTMR — pyO + (pGauss + pHall)B2 + O(B4), (510)
PP = P2t T ((Qayy — Qa2 )V + (Quy@an — Qay vy )v) , (5.11)
PGauss = p12/0647—3 <<ayyazz - CYZZ)U§> ) (512)
2
PHall = _P§00z0€674 <ayzvzvy - azzv§> ) (513)
1
pPio = —-
Ji0

The coefficients p(Q), PGauss; PHall determine the sign of magnetoresistance in weak
fields. oy o, — ozsz is known as Gaussian curvature on manifolds (Fermi surface) and
<ayzvzvy — azzvz > is proportional to the Hall conductivity o, [134]. We examine the
relation between A and these coefficients. The results are shown in Fig. 5.4a-d. (a)
The LMR coefficient p(® drastically changes after the Lifshitz transition and the sign

() include the off-diagonal components

is inverted at a specific A. All the terms in p
of an inverse mass tensor. We found that the terms with a pair of diagonal and off-
diagonal components «;;;, are numerically dominant with large A and determine
the sign of the coefficient (Fig. 5.4b). In the two TMR coefficients: pgauss and pyan,
the contribution from the Gaussian curvature is positive in all the range of A and
dominant before the Lifshitz transition. On the other hand, the Hall conductivity
negatively contributes to the coefficient and drastically increases after the transition.
The main term switches to the Hall conductivity after the transition resulting in the

sign inversion with large A (Fig. 5.4¢,d).

5.2.2 Off-diagonal effective mass

According to the results in Fig. 5.4, the sign inversions in LMR and TMR, happen
at near points (A ~ 140 meVA). One can find that the LMR coefficient in Eq. 5.11
have two types of term: ayojpv;v, and oyjapvv, (0 # 4, 7 # k). We mapped
these values in the plane of k-space in Fig. 5.5a-f. The ay;a,v;v; value has singular

characteristics at the Weyl points. When A is large, this value becomes large and
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negative around the singularity, and the Fermi surface gets closer to the points.
Hence, the negative off-diagonal mass mainly contributes to the electron conduction
at low temperature resulting in the sign inversion in the LMR. On the other hand, the
;00U component has a smaller value all around the space and the negative region
is well localized near the Weyl point even when A is large. This is the reason the
;00U component determines the sign of LMR. We also mapped o,v;vi/|v;||vk|
and «y; in Fig. 5.6a-f. The off-diagonal term is singular and negative (Fig. 5.6¢)
while the diagonal term is positive (Fig. 5.6f) with large A. Hence, we can attribute

the negative LMR to the negative off-diagonal component in inverse mass tensor.
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Oy Oy, V20, in Ky = 0.001 A1 plane.

The negative off-diagonal component and positive diagonal component maximally
enhances the Hall conductivity, which negatively contributes to the TMR (Eq. 5.13)
and determines the sign. On the other hand, the term from the Gaussian curvature
(Eq. 5.12) is positive because the curvature is dominantly positive in the vicinity of

the Fermi surface with any values of A (Fig. 5.7).

In summary, the negative MR can arise from the negative singularity of off-
diagonal effective mass in the Brillouin zone in the semiclassical viewpoint. When
the singularity is close to the Fermi surface, the anomalous behavior is enhanced and
observable at low temperatures. We want to note that the sign of LMR and TMR is
determined independently in principle. The model of Weyl semimetal we used this
time indicates negative and singular values of off-diagonal inverse mass and positive

diagonal mass, which yields the negative LMR and negative TMR simultaneously.
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5.3 Planar Hall effect

We demonstrate the planar Hall effect (PHE) in the Weyl electron system. The
parameters and the condition of calculation are the same as the MR calculations.
The magnetic field was rotated in x-y plane (B,, By, B,) = (B cosf, Bsinf,0) and
PHE was calculated by py, = [67']s,. The results with several A parameters are
shown in Fig. 5.8. The functional form is a sine curve with the period w. The sign
of PHE with small A is consistent with the expectation of conventional multi-carrier
models (Sec. 4.4.1). When the parameter is increased, the sign is inverted (Fig.
5.8, A =240 meVA). This inversion cannot be explained by a simple model which
approximate the Fermi surface with multiple sphere or ellipsoids (Appendiz A). We
further calculated A-dependence of the Apgig = paylo=sr/a — Paylo=r/a (Fig. 5.9a).
The monotonic increment of the amplitude before the Lifshitz transition and drastic

drop after the point. We can also see that the amplitude monotonically increases
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plane.

with increasing the field and the field value is rarely relevant to the sign of Apgig.
Apaig is given by the difference of TMR and LMR due to the isotropy in the z-y
plane (Appendiz B). Hence, the sign inversion is corresponding to the sign inversion
in the LMR and TMR. The drastic drop after the Lifshitz transition is due to the
large difference between TMR and LMR (Fig. 5.9b), and the sign of PHE is changed
depending on the order of TMR and LMR. Note that the sign of PHE is not always
corresponding to the sign of MR [63].

5.3.1 Temperature dependence of PHE

Finally, we demonstrate the temperature dependence of MR and PHE amplitude.
While the Fermi energy deviates from the Weyl point (E = 0), it is expected that
the thermal carrier can reflect the singular characteristics at the Weyl point. It
possibly appears in the temperature dependence of MR or PHE. The parameter set
is the same as the former MR calculation and the transport lifetime of electron 7 is
assumed to be constant. The A parameter was varied from 60 meVAto 140 meVA.

The temperature dependence of PHE amplitude is shown in Fig. 5.10a. The
amplitude was calculated by the difference of TMR and LMR as mentioned before.
It indicates anomalies in two specific temperatures: a dip or sign inversion around
kpT = Er/2 and a peak around kgT = Epr. The positions of these structures

are irrelevant to the parameter A. The dip structure is especially correlated to the
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Figure 5.8: Angular dependence of PHE in Weyl electron with different A parame-

ters.

energy of the Weyl points. Considering the case A = 100 meVA, the off-diagonal
value of & is relatively small on the Fermi surfaces while the singularity is located at
the Weyl points (Fig. 5.6b). When kgT = Er/2, the tail of the Fermi distribution
function reaches the Weyl points as shown in Fig. 5.11. At this temperature, the
carriers in the vicinity of the Weyl points contribute negatively to the TMR and
LMR. This is the mechanism that the dips in temperature dependence appear. On
the other hand, when A is such large that the effect of singular effective mass is
remarkable on the Fermi surface, the sign changes at low temperature. In this case,
the dip structure does not appear because the main contribution is from the vicinity
of Fermi energy, and carriers from upper energy have a positive contribution to MR at
high temperatures. The results imply that the dip or peak position gives information
about how the Fermi energy is distant from the singularities of the effective mass.
Except for the quantum effect including the Kondo effect [135] or electron localization
[136], the electron lifetime monotonically decreases as temperature grows. Hence,
we can expect the non-monotonic dependence even when the real materials with

temperature-dependent lifetime.
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The results in LMR and TMR are shown in Fig. 5.10b,c. Due to the large
background, the effect of singular effective mass is not clear. There is a peak structure
in the curve with small A, which is not a characteristic originating from the Weyl
points because it appears when the system is equivalent to a normal semimetal.
In the vicinity of £ = 0 with small A, the electron and hole carrier coexist, and
the carrier number varies with temperature. In semimetals, charge compensation in
carriers yields large MR. Hence, the peak structure would appear when the numbers

of each carrier are closest to the valance. With large A, the dependence is monotonic
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decay and we cannot find any anomaly in it.

All the cases of PHE, TMR, and LMR converge at high temperatures because the
electron and hole carriers in much higher and lower energy contribute to conduction.
The effect of Weyl points is hidden in these carriers and the system becomes identical
to an ordinal semimetal.

In conclusion, we can present an application of PHE. As we saw, PHE amplitude
reflects the singularity of effective mass more sensitively than MR and gives informa-
tion about the energy of the points measured from the Fermi energy. By subtracting
LMR from TMR, we can find the position of singularity through the non-monotonic

temperature dependence.
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5.3. Planar Hall effect
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Chapter 6
Summary

We investigated the magneto-transport phenomena in Dirac and Weyl electron
systems based on the semiclassical theory. In semimetals with Dirac electron, we
found a monotonic increment of carrier concentration in the quantum limit. In the
anisotropic case, this increment generally progresses in the direction perpendicular
to the direction of the lowest mobility, which results in the suppression of anisotropy
in transverse magnetoresistance. We have successfully explained the angular depen-
dence of TMR in bismuth at high fields by combining the field-dependent carrier
density and semiclassical transport theory. We have further fit the TMR at high
fields exceeding 40 T by considering the carrier evacuation in electron pockets and
linear field-dependence of scattering rate. We found that this time of field-dependent
mobility is often observed in the materials which exhibit the linear MR. We also found
that the field-dependence of mobility has strong anisotropy. While the origin of this
field-dependence is still an open question, we guess that there would be a hint in the

scattering process of other linear-MR materials.

Next, we calculated the MR and PHE in the Weyl electron system. We found
a new mechanism of sign change in MR. The essence is the off-diagonal terms in
the inverse effective mass tensor. The Weyl points, which are the divergence and
convergence of Berry curvature, are also the singularities of effective mass. The
Fermi surface near the Weyl points possesses a large and negative off-diagonal mass.

By the Jones-Zener expansion of conductivity, we found the negative off-diagonal
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inverse-effective mass is the direct origin of negative LMR. We also found that it
enhances the Hall conductivity resulting in negative TMR.

We also discussed the PHE in multiple carrier, Dirac, and Weyl electron sys-
tems in the semiclassical framework. PHE naturally arises from the multiple carrier
conduction and the amplitude saturates at high fields in metals and uncompen-
sated semimetals. Furthermore, the saturated value is negatively correlated with
the mobility. PHE observed in bismuth, which is a typical Dirac electron system,
was successfully explained by considering the field-dependent carrier concentration.
We found that the increased carrier density in Dirac electron suppresses the viola-
tion from charge compensation and causes the qualitative shift in angular depen-
dence in real cases. We also found that the effect of mass-singularity in the Weyl
electron clearly appears in the temperature dependence of PHE amplitude. The
non-monotonic behaviors including dip and peak structures in the temperature de-
pendence was pointed to correspond to the Fermi temperature. The PHE amplitude
may be useful to identify the energy of the Weyl points measured from the Fermi

energy.
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Appendix A

PHE with spherical and ellipsoidal

Fermi surfaces

A.1 PHE in isotropic two-carrier metals

To evaluate the PHE in multiple carrier systems, we calculated the total conduc-
tivity tensor & by summing up all the conductivity tensors 6 of each carrier (Eq.

2.19). Each conductivity tensor in an isotropic carrier is given in the following form:

59 = (i By

ENL;
= GBEri| MBB WBPH1 EwB | (A
pi = et;/m;.

The sign =+ is corresponding to the sign of carrier charge. m* and 7 represent the mass
and lifetime of carriers respectively. The magnetic field is fixed in the z-y plane. The
magnetoresistivity tensor is calculated by summing up all the conductivity tensors

and taking inversion. In the isotropic 2-electron system with different mobilities (uy,
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t2) and the same density n, TMR and LMR are given as follows:

1 (g1 4 po) (pape B® + 1)
PTMR = — 2 2
en 4(ppa B)? + (p + piz)

1
enpn + 12)

PLMR =

The PHE amplitude is given by these difference (Apaix = prmr — pLvr) and it

saturates at high fields to be ein4£12zfﬁ) (r=p2/p1)-

A.2 Multiple ellipsoidal Fermi surfaces

We consider the cases with anisotropic multiple carriers. The simplest case: two
anisotropic ellipsoidal Fermi surfaces whose axises are fixed to z, y, z direction, can be
realized by replacing the isotropic mobility tensor y;1 in the Eq. A.1 with anisotropic
ones: [ = diag{p, pi2, 3}, v = diag{v1, vo, v3}. The amplitude of PHE with the field

rotating in the z-y plane is

Apai =
1 (11 — 1) (p2 — o) psvs B?
en Apsvs((pn — v1)parn cos? 0 + (po — vo) vy sin® 0) B2 + (g — v1) (p — v2) (13 + v3)

0 is the angle between the field and the x axis. This result indicates that the sign of
PHE is determined by the in-plane (z,y) components of the mobility tensors. The
sign is the same as isotropic metals and semimetals when all the components of one
mobility tensor are greater than those of another carrier (Fig. A.la,d). On the other
hand, the sign is inverted in a moderately high field when the anisotropy of carriers
is enough high and the directions of highest mobility in two carriers are distant by 90
degrees in the z,y plane as shown in Fig. A.1b.e. In the Weyl electron model with
large A, the Fermi surfaces are seemingly twin ellipsoids (Fig. A.1c). Assuming a pair
of parallel ellipsoids, which corresponds to the condition (p1, o, u3) = (v1, va, v3), the
angular dependence of PHE does not emerge (Apgig = 0). However, the finite value of
PHE is estimated in the Weyl electron by fully considering the energy dispersion and

local effective mass. This discrepancy implies that the ellipsoidal (parabolic) model
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is not always a good approximation even when the Fermi surfaces are apparently

ellipsoids.
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Figure A.1: Schematic images of (a) isotropic and anisotropic multi-surfaces, one of
whose mobility is greater than the other, (b) anisotropic surfaces whose directions
of highest mobility is distant by 90 degree in the Hall bar, and (c) equivalent two
ellipsoids. (d-f) Angular dependence of PHE in (a-c) cases.

A.3 n-valley systems

In the case of isotropic n-carrier system, the conductivity rensor with rotating field

is given by summing n-conductivity tensors as 6 = Z?zl(uii — 3)*1. The resistivity
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tensor is given by the inversion. The result is shown below.

B (751 53+522)(cos(9))2+51 (51+S3) (*51 53+522) cos(0) sin() Sy sin(6) i
(512452%) (S1+53) (512452%)(S1+853) S1% 482"
p= (=51 S3+522) cos(0) sin(0) (S1 S5—92%)(cos(0))>+512+52% G, cos(6) ,
(512+522)(S1+53) (512+522)(S1+S3) 517457
So sin(6) __S2 cos(9) S1
L 5124852 5124852 S124592

and PHE and AMR are given as follows:

1 (—51 Sz + 522) cosfsinf

= A2
PPHE en (512 + 522) (Sl + 53) 7 ( )
_ i (—Sl Sg + 822) COS2 0 -+ Sl (Sl + 83) (A 3)
PAME = (S12+ 55%) (St + S3) ’ '
5 = M
— (B)* +1
n 2
wiB
o= Y P
n 32
_ wi° B
S = 2 wEraT

This result shows the sinf cos@ characteristic in PHE and cos?# in AMR hold in
the isotropic multi-carrier system regardless of the number of carriers. Moreover,
these characteristics remain unless the mobility in all the carriers are equal. This

statement is proved as follows:

n n 3R2 n 2 ’
o a2 o\ BT ) _MB
193 = 5" = (z; (mB)2+1> (Z; (mB)2+1> (2 WB)”I)

n

B i1 B B 113 13 B*
B Z (B)? +1) (1iB)* + 1) ’ Z (B)? +1) (1;B)* + 1)

i#] i>j

n

_ Zn: pafty (pi — pu;)> B2
((

— ((B)? + 1) (B)? + 1)

~.S1-55— 8,2 = 0% More than one electrons have different mobility.
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In isotropic 2n-valley semimetals with n-hole and n-electron system, PHE and

AMR are given by the same way, and the results are

1 ((As+ Bs) (A1 + By) — (A — Bg)z) cosfsin 6

p— —_—— P A.4
PPHE en (Al -+ Ag —+ Bl + Bg) ((A1 —+ Bl>2 + (AQ — B2)2) ( )
1 — (A3 + Bs) (A + By) + (A3 — By)® )
PAMR = — 5 cos” 0
en ((A1 + B1)? + (Ay — Bo) ) (A + A3 + By + Bs)
1 A+ B
1 1+ 5 ) (A.5)
en (Al + 31)2 + (A2 — BQ)
where
- Hei . Mhi
A = ———— B = —_—
VS X Gt PTGt
n 2 n 2
:ueiB :uhB
A = T P\ 40 B - —Zv
2= XGemr P T i s
n 3 P2 n 3 R2
pei B 13 B
Ay = —=2_——— B3= —n
o= X Guppa BTl e

The amplitude does not vanish even when all the values of carrier mobility are equal.
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Appendix B

PHE in a system isotropic in z-y

plane

With the help of the Seitz equation [53,137], we can see that the amplitude of
PHE and AMR are equivalent when the system is isotropic in the plane of rotating
magnetic field. The I —V relation in a weak magnetic field is written in the following

form:
E =poj+p," |aj x B+ BB%*j ++(B-j)B+0Tj|, (B.1)

where «, 3,7 are the model parameters. The tensor T describes the anisotropy
of crystals. This time, we fixed the field in the x,y plane, where the Fermi sur-
faces are isotropic. This configuration can be written in the two conditions: B =
(B cos ¢, Bsin¢,0) and T' = diag{0, 0, B2}. The straightforward calculation leads to
the angular dependence of PHE (p,, = E,/j,) and AMR (p,, = E./j.) as shown

below.
2

PPHE = 7 sin pcos ¢ (B.2)
Po
B? B?
PAMR = Po + 5— + L COS2 0 (B?))
Po Po

: _ B? B2 _ B2 :
If we rewrite p| = po + % + 7’7, pL = po+ %, we obtain

PPHE = _<PJ_ - P||) sin ¢ cos ¢, (B-4)
pamr = pL— (po — py)cos® 6. (B.5)
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Hence, we can say that the amplitudes of both PHE and AMR are equivalent to
the difference of transverse and longitudinal magnetoresistance when the system is

isotropic in the plane of the rotating field.
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