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概要

ディスクリプタ形式で表現される

多項式ファジィシステムに対する安定化制御系設計

複雑な非線形システムを多項式ファジィシステムで記述し，多項式リアプノフ関数を

用いた制御系設計に関する研究が行われている． 本論文では，多項式ディスクリプタシ

ステムと sector nonlinearity に基づくファジィシステム表現を組み合わせた新しいシステ

ム表現を提案し，ディスクリプタ形式の利点を生かしつつ，条件導出において新たな工夫

やアイデアを用いることで sum-of-squares に基づく制御系設計条件の 3 つの緩和アプロー

チを提案する．

まず，最初の緩和アプローチとして，非線形システムを安定化するための有理多項式

ファジィ制御器を提案し，多項式ファジィディスクリプタシステムで記述された閉ループ

系に対して，homogenous Lyapunov 関数を用いた nonconvex 設計条件を導出する． つぎ

に，convex 設計条件を導出するために，ディスクリプタ形式の冗長性を利用した設計条件

の導出を行い，その設計条件の緩和を試みる． 最後に，ファジィシステム表現に準じた

多項式スラック行列を導入することで，co-positive relaxation の適用を可能とした設計条

件の緩和 を試みるとともに，多項式 Lyapunov 関数に代わって多項式ファジィ Lyapunov

関数を導入することで緩和した設計条件を導出する． 従来研究では，多項式ファジィ

Lyapunov 関数のシステム解軌道に沿った時間微分において派生するメンバーシップ関数

の時間微分の表現が sum-of-squares の枠組みでは扱えない表現となることがネックとなっ

ていた． 本論文では，メンバーシップ関数の時間微分の分解表現という新たなアイデア

を提案し，この問題の解決を図っている．

最後に，複数のベンチマーク設計問題や複雑非線形システムの設計例題（自転車の安

定化制御問題）を通して 3 つの緩和アプローチの有効性を明らかにする．

本論文は 6 章で構成され，概要は以下の通りである．

第 1 章では緒論を述べる． 本研究の背景や目的を述べ，他の関連手法に対する本研究

の位置付けを説明する．

第 2 章では，本研究の対象システムであるファジィシステム/多項式ファジィシステ

ム，および，本論文で扱う設計条件導出や解法において重要な役割を担う sum-of-squares,

co-positive relaxation について述べる． さらに，本研究で提案するメンバーシップ関数の

時間微分表現の分解についてもそのアイデアを簡単に示す．
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第 3 章では，多項式ファジィシステムを安定化するための有理多項式ファジィ制御器

を提案し，閉ループ系のダイナミクスを多項式ファジィディスクリプタシステムで記述す

る． この多項式ファジィディスクリプタシステムに対して homogenous Lyapunov 関数を

用い，さらに，Euler’s theorem を利用することで nonconvex sum-of-squares 設計条件を導

出する． ベンチマーク設計問題では，その設計条件を解くために path-following アルゴリ

ズムを用い，先行研究との比較検討を通して提案する設計条件の有効性を明かにする．

第 4 章では，解を求めるのが困難である nonconvex 設計条件を回避するため

に，convex sum-of-squares 設計条件を導出する． 第３章で提案した有理多項式ファ

ジィ制御器に代わり多項式ファジィ制御器に限定することで，convex 設計条件を導出す

る． しかし，多項式行列で記述される非線形システムでは，nonconvex から convex への

変換が一般には等価に行えないことが知られており，保守的となる条件導出をなるべく

避けるためにいくつかの工夫がなされている． また，ディスクリプタ形式の冗長性によ

り，システム行列のサイズは増加するが，sum-of-squares 設計条件の数が大きく減少する

ことを示し，２つの設計例題を通して，ディスクリプタ形式導入の有用性も示している．

一つはベンチマーク設計例題で，先行研究に対する優位性を検証している． もう一つは

複雑非線形システムの設計例題として，自転車の安定化制御問題を取り上げており，複雑

非線形システムに対しても有効な設計条件であることを示している．

第 5 章では，新しい概念として，ファジィシステム表現に準じた多項式スラック行列

を定義し，緩和した sum-of-squares設計条件を導出している．第４章では，ディスクリプ

タ形式の冗長性を利用することで，システム行列のサイズは増加するが，sum-of-squares

設計条件の数が大きく減少することを示し，設計条件の可解領域の拡大に成功した． 一

方で，ディスクリプタ形式を用いたことで，多項式ファジィシステム制御で活用してきた

co-positive relaxation の適用が困難となっている． 本論文では，この多項式スラック行列

を導入することで，閉ループ系のディスクリプタ記述に対しても co-positive relaxation を

適用可能となり，さらなる設計条件の緩和に成功している． 加えて，多項式 Lyapunov 関

数に代わって，多項式ファジィ Lyapunov 関数を導入し，さらなる設計条件の緩和を実現

している． とくに，従来研究では，多項式ファジィ Lyapunov 関数のシステム解軌道に

沿った時間微分において派生するメンバーシップ関数の時間微分の表現が sum-of-squares

の枠組みでは扱えない表現となることがネックとなっていた． 本論文では，メンバー

シップ関数の時間微分の分解表現という新たなアイデアを提案し，この問題の解決を図っ

ている． ２つの設計例題を通して提案した設計条件の有効性を示している．

第 6 章では，結論を述べる．本研究のまとめと問題点，および，今後の展望について

述べ る
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Abstract

This thesis presents a stabilization control design for polynomial fuzzy systems repre-

sented in descriptor form. At the very first stage of this research, a closed-loop polynomial

fuzzy system with the controller using rational functions is presented in descriptor form. The

stabilization control design is constructed in the operation domain and presented in sum-of-

squares (SOS) conditions. However, the stabilization criteria are nonconvex with the bilinear

terms that have to be solved with the path-following method.

Thus, in the second method, the concept of the parallel distributed compensation (PDC)

controller is employed to design a polynomial-based fuzzy controller. The closed-loop sys-

tem is presented in descriptor form. A commonly used Lyapunov function for polynomial

fuzzy-model-based (FMB) system is applied in stabilization, and the concept of PDC con-

troller made the stabilization criterion convex. Compared with the polynomial FMB control

design without descriptor form, this method obtains less conservative results though the SOS

conditions are reduced.

Based on the second method, the third approach is launched. In this approach, the

slack matrices are adopted, aiming to obtain more relaxed stabilization criteria. Because

of the fuzzy slack matrices, more relaxed results are obtained. Though the double fuzzy

summation problem is the side effect, this can be solved by co-positivity relaxation. In the

special case that all membership functions are functions of the states being not related to the

inputs, this thesis proposes the fourth method by applying a novel fuzzy Lyapunov function

to further make the conditions more relaxed. Since the novel fuzzy Lyapunov function is

applied, the time derivative of membership function (MF) with sector nonlinearity technique

is also applied. Since the commonly used Lyapunov function can be seen as a special case of

novel fuzzy Lyapunov function, the last method can always obtain more satisfactory results

than previous methods. However, the last method can only be applied in special cases while

the others do not have such the limit.

The six chapters contained in this thesis are as follow:

Chapter 1 is the introduction which includes the research background, motivations, and

the position of this research.

Chapter 2 are the preliminaries, in which definitions, mathematical tools, and relaxation
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tools are introduced.

Chapter 3 proposes a polynomial fuzzy descriptor system approach for rational fuzzy

control design. A polynomial fuzzy model with the controller using rational function is pre-

sented and transformed into the descriptor form. However, when presenting the stabilization

criterion in the SOS conditions, the bilinear terms seem something that can not be removed.

Thus, the path-following method is applied to solve the bilinear issue. A design example

is presented to show the contrast and comparison between the proposed method and the

previous study.

Chapter 4 presents a descriptor system approach for polynomial FMB control design.

Instead of the rational controller, the technique of PDC is applied, and the polynomial FMB

closed-loop system with such the polynomial-based fuzzy controller is adopted in the descrip-

tor form so that the nonconvex conditions met in Chapter 3 are avoided. A commonly used

Lyapunov function for polynomial FMB control system is applied for stabilization analysis.

The redundancy of the descriptor form will raise the dimension of the matrices, though the

SOS conditions decline. To illustrate, two examples are presented. The first is a numerical

one, making a comparison between the proposed method and the previous study. The second

one shows how the proposed method in this chapter is applied to a bicycle’s dynamic system.

Chapter 5 shows a descriptor form approach for the polynomial FMB control systems

design. Through the redundancy of the descriptor form, the fuzzy slack matrices are brought

into stabilization analysis. The double fuzzy summation issue arises inevitably. Nevertheless,

the double fuzzy summation issue can be regarded as the co-positivity problem, which can

be solved by applying the co-positivity relaxation. In addition, for the cases all member-

ship functions are functions of the states being not related to the inputs, this thesis presents

another stabilization analysis approach with the application of the novel fuzzy Lyapunov

function. Based on the ground that the commonly used Lyapunov function can be seen as

the special case of the novel fuzzy Lyapunov function, the stabilization criteria is more re-

laxed than the third one. Also taken into consideration in the stabilization analysis are the

time derivatives of MF because the novel fuzzy Lyapunov function is applied. Meanwhile,

the sector nonlinearity technique is applied to deal with the rest part of the MF time deriva-

tives after polynomial common factors are extracted. Likewise, the numerical examples are

presented to demonstrate the advantages of the proposed third and fourth methods over the

previous studies.

Finally, Chapter 6 gives the conclusion of the previous chapters and the prospective

improvements in future research.
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1
Introduction

The main techniques considered in this thesis are ”fuzzy control” and ”descriptor form.” It

is important to have some basic knowledge of descriptor form before introducing fuzzy control

system. There are many dynamic phenomena that exist in our world. To analyze them, people

try to define some parameters like positions, velocity, acceleration, etc., to ”describe” the

dynamic phenomena, which are usually presented as nonlinear systems. Throughout history,

many control models were developed and tried to represent those nonlinear systems into

general form, for example, the state-space representation. Descriptor system, the product

of problem formulation of the system presented in sets of equations in general form, was

developed in 1977 [1]. The mentioned parameters, positions, velocity, acceleration, etc. are

called ”descriptor variables” in descriptor modeling. Descriptor formulations include many

standard forms of controlling models as the special cases. Therefore, this method contains

more general classes.

Due to the more natural description of dynamical systems than the state-space represen-

tation, the descriptor system had gotten much attention. However, an issue was found in

the descriptor modeling called ”impulsive mode” [2]. The impulse presented by descriptor

can cause many serious problems in the control system. Hence, the designing of descriptor

model should avoid the impulsive model. Some studies had generalized the conditions that

can prevent impulse, for example, the rank condition given by [3], and stabilization condi-

tions given by [4]. The descriptor system which is prevented from impulsive mode is called

”impulse-free.”

There are two ways to present the descriptor system. The first one is to present the

nonlinear system into descriptor system directly ( [1], [35], [5], et. al.) The second one is to

represent the existing standard form models into descriptor form ( [6], [7], [23], et. al.) The

thesis focuses on the second one. After introducing the background of descriptor system, the

introduction of fuzzy control will be given.
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Chapter 1 Introduction

Giving a general form for presenting nonlinear dynamical systems is the biggest achieve-

ment from Takagi-Sugeno (T-S) fuzzy model [8]. In 1985, Tomohiro Takagi and Michio

Sugeno tried to develop a tool that builds a fuzzy model of a system. The so-called ”fuzzy

control” are the studies that discuss how to implicate fuzzy logic for expressing the control

rules. At that time, the linguistic variables, compositional rule, and unimodal fuzzy models

were considered for multivariable control. However, the system required a large amount of

input space. The problem was solved by using multidimensional matrices for fuzzy reason-

ing, which reduced the number of implications and simplified the reasoning. Due to the fact

that fuzzy implications and reasoning-based modeling is one of the most important things

in fuzzy systems’ studies, they tried to deal with the dynamic system in general by consid-

ering multidimensional reasoning method. The membership function of the fuzzy set was

denoted in their research, which means all fuzzy sets are being related to linear membership

functions. The fuzzy implication was presented in the form that contained consequence vari-

ables, premise variables, fuzzy sets, et. al. The algorithm of reasoning allowed the relations

of piecewise linear to be reduced when compared with the traditional linear approximation

method. Furthermore, the linguistic conditions can be presented into linear relations under

the input space of the fuzzy partition. In the identification part, three steps are considered

for the model that is consisting the implications of the previous format. The first one is to

choose the premise variables, which contain a combination premise, an optimum premise,

and the error between output values and output data. The next step is to identify the chosen

premise variables, the step that searches for the optimum premise parameters to minimize

the performance index. The final step is the consequent parameter’s identifications, which

finds the least performance index from the parameters given in the previous two steps. By

considering the format of implication and the algorithm of identification, Tomohiro Takagi

and Michio Sugeno gave a simple form that is able to represent the nonlinear system highly.

There has been widely study about the T-S fuzzy-model-based (FMB) control systems [9]-

[14]. For its control design, a well-known option called ”Parallel Distributed Compensation

(PDC)” controller is usually a choice that contains T-S fuzzy system’s membership functions

[15]. PDC, a concept for fuzzy model control design, is a well-known approach for FMB

controller design. The main idea is to set up the compensators with the rules corresponding

to the T-S fuzzy model, respectively. Every fuzzy rule of the controller can be designed

individually by using the linear control design technique. Note that T-S fuzzy mode shares

2



the fuzzy set to the controller. It is noted that the controller is nonlinear, generally. The

controlling problem is how to select or determine the values of the local feedback gain. The

selected feedback gain should satisfy the stabilization conditions to guarantee the quadratic

stability for PDC controller and the model included in the closed-loop system. First of all,

for the object that is needed to be controlled, present a T-S fuzzy model that can completely

describe the target. Second, design the controllers, and each of them corresponds to one

fuzzy rule. Third, use mathematical tools to test the stability by checking if the conditions

are satisfied. If not, repeat the procedure until conditions are satisfied and find the control

feedback gain. By applying the calculated feedback gain, the closed-loop system should be

asymptotically stable.

The control design of such the model and its stability analysis can be presented in terms

of LMI conditions [15], [16] based on the Lyapunov theory. A quadratic function which is

composed of the multiplication of a matrix which is positive definite, the state vector, and its

transpose is called quadratic Lyapunov function for deriving stability condition. From [19],

the stability conditions are derived from a positive definite matrix, the system matrices, and

each system matrix’s transpose for T-S fuzzy system, which was multiplied together. If the

system only contains one rule in the fuzzy set, the condition reduces to Lyapunov theorem.

The method is to find that positive definite matrix which can prove the stability of the T-S

fuzzy system from the chosen Lyapunov function . When the conditions are satisfied, the sys-

tem would be in the quadratic stable situation. For the purpose of determining the positive

definite matrix, an effective tool, a convex optimization technique called ”Linear Matrices

Inequalities (LMI) [21]”, is introduced. LMI problems are one of the classes of numerical

optimization problems. It takes polynomial-time to solve LMI problems’ optimization issue.

In fact, LMI problems can describe almost most of the control problems or systems. There-

fore, LMI optimization became an important issue about solving the numerical optimization

problem because the original control problems can be solved if it is transformed into LMI

problems. An LMI constrain is a summation of the symmetric matrices multiplied with the

corresponding variables, and the summation is positive definite. If the constraint is held, the

fact that symmetric matrices are positive definite is also held. This constraint can present a

large amount of convex constraints, including the inequalities of linears, matrix norms, Lya-

punov and convex quadratics, et. al. Take stability conditions from Lyapunov approach, for

example, the system matrices and its transform are known and need to determine the value
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Chapter 1 Introduction

of the positive definite matrix which makes the inequality negative, the condition is cast into

LMI problems, and the solution of the determined values are called feasible value.

The nonlinear control system was cast into a simple, natural, and effective form for de-

sign methodology by T-S fuzzy model in general. However, the double summation issue is

the problem found in the PDC-based T-S fuzzy control system [22]. A descriptor approach

which presents the T-S fuzzy system in the descriptor form has been raised by Tanaka et al.

in 2007 [23], and the single fuzzy summation instead of the double fuzzy summation exists

because of the redundancy of the descriptor form. The descriptor design methodology was

presented via fuzzy Lyaounov function, and the stabilization conditions were cast in LMI

terms. [24] shows that descriptor system has the advantage that it can deal the systems with

the larger class when compared with the conventional state-space model. The other advan-

tage is that it can represent independent parametric perturbations tighter than state-space

design methodologies. As for stabilization, most of the studies [25]- [28] considered the piece-

wise Lyapunov functions or switched Lyapunov functions. Some studies [29]- [31], however,

consider the fuzzy Lyapunov functions or piecewise Lyapunov functions, which made the sta-

bilization conditions get the bilinear term. The bilinear LMI problems (i.e., BMI problems)

can be transformed into LMI problems by considering completing the square technique [31]

or using the path-following method, which will be discussed in the forward section. Never-

theless, at that time, such converting techniques like completing square contained the risk of

conservative results. Thus [23] tried to use the new type of fuzzy Lyapunov function and con-

troller for design methodology. The methodology successfully obtained the LMI conditions

without BMI problems. The paper first converted T-S fuzzy model into the special form, then

rewrote the equation into descriptor representation by defining some matrices containing the

elements of the original system. The closed-loop system with descriptor representation is

stabilized by applying a common Lyapunov function. Comparing it with state-space pre-

senting T-S fuzzy model shows that the conditions of LMI were drastically reduced, which

means the descriptor representation of T-S fuzzy model can handle a more complicated sys-

tem. [23] then tried to stabilize the system with the fuzzy Lyapunov function. Two design

methodologies were presented. The first one is the T-S fuzzy descriptor system with PDC

control design. A new Lyapunov function that concerns the fuzzy summation’s inverse ma-

trix is called ”Fuzzy Lyapunov function.” The membership function’s time derivatives were

first time appeared in the stabilization process. By using the properties of the membership
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function and some techniques that will be discussed later, it is able to do extractions of the

differential of membership functions.

This term that ground the membership functions’ time derivative would be a condition

and was added to hold the stability of the fuzzy Lyapunov function. Nevertheless, it was

difficult to select the value. The second control design introduced a new fuzzy controller by

rewriting the feedback gain into the inverse of the fuzzy summation and LMI matrices. The

stabilization was similar, but two series of LMI matrices determine the feedback gain. It

is found out that the feasibility of common Lyapunov function’s methodology is almost the

same as the first fuzzy Lyapunov function’s methodology. But the second fuzzy Lyapunov

function’s methodology obtained more relaxed results than the previous two methods, which

means that the fuzzy Lyapunov function’s methodology can obtain more relaxed results.

Last but not least is that the third corollary in [23] contains the second corollary, which

always obtain more relaxed results. This method has been widely applied [32] - [34]. One

thing that should be noted is that this approach is different from the approach for fuzzy

descriptor system design, which directly presented the nonlinear dynamic system into the

fuzzy descriptor form [35], [36].

Although T-S fuzzy model, PDC controller, and LMI optimization obtained big success

in the last two or three decades, the problems such as not every system can be represented

in LMI problem or the results are too much conservative still be the issue for researchers.

The study of the fuzzy control system gets a breakthrough in 2009. As the extension, [37]

proposed a methodology which adds the T-S fuzzy system with the polynomials as subsys-

tems and calls ”Polynomial Fuzzy Model.” Such polynomial FMB control system’s stability

analysis usually uses the Lyapunov candidate which also contains the polynomial terms. The

stability analysis cannot be presented in LMI conditions since Lyapunov candidate contains

polynomials. Instead, the stabilization criteria are presented in SOS conditions. Due to

that polynomials are added into the fuzzy model, more control systems can be cast into

fuzzy model, and more general and relaxed results than LMI optimization can be obtained

since polynomial based Lyapunov function contains the previous quadratic Lyapunov func-

tion which the latter was taken as the special case. The polynomial FMB control system

design has get a lot of attraction [42]- [48] because of the more extensive result than the

LMI can be obtained [37], [66], [49]. Generally speaking, this kind of fuzzy model has the

feature that rule consequence is consists of polynomials. Same as T-S fuzzy model, fuzzy’s
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IF-THEN rules are the way for representing the inputs and outputs of nonlinear systems.

The difference is that the consequent part of the model contains polynomials. Besides, the

column vector called ”monomial vector” is defined and applied into the model instead of state

vector-only. Polynomial fuzzy model provides the advantage of the fewer rules it generates

when comparing with T-S fuzzy model. In the stabilization part, instead of the traditional

type with only quadratics, a polynomial Lyapunov function is considered. Here, the positive

definite matrix turns into the polynomial matrix, and the monomial vector replaces the state

vector. As mentioned before, quadratics can be taken as a special case included in the poly-

nomials. Hence, the more general status appears in the polynomial Lyapunov function. At

the LMI period, the time derivative of the decision variable’s matrices are zero matrices and

was omitted in the differential of Lyapunov function’s equation because that all the matrices

are constant matrices. However, the decision variable’s matrices’ time derivatives have to

be concerned when differentiating polynomial Lyapunov function since the polynomials are

included. Using the concept of fuzzy Lyapunov function, this part can be rewritten as the

summation of the decision variable’s matrices which is partially differentiated by the state

vector and multiplied by a system matrices without the controller. It is noted that the system

matrices in the fuzzy summation only contain the elements corresponding to the row that the

states’ dynamic, which was not affected by the control inputs. The constrain that guarantees

the system is stable is that the differential of the Lyapunov function is negative. Therefore,

there usually is an identity matrix with the coefficients of a very small positive number which

is added into the conditions.

SOSOPT [38], a MATLAB’s third-party toolbox, is developed for finding SOS conditions’

solutions. Let the conditions be the multivariate polynomials; the SOS conditions hold if a

series of polynomial functions are found, and the condition is equal to the summation of those

functions’ square terms. Naturally, it points out that a property of SOS decomposition is

that the equation of the condition should be positive for all values of state vectors. Recall the

stabilization of the polynomial fuzzy model. Finding a positive semidefinite matrix that makes

the polynomial Lyapunov function be sum of squares is necessary. Semidefinite programming

is usually used for doing SOS decomposition of polynomial Lyapunov function, and the

constraints come from its stabilization process. In general, if a condition is decomposed in

SOS, it is also nonnegative. Thus, a polynomial-time computational relaxation obtained from

decomposition with semidefinite programming proves the global nonnegativity of multivariate
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polynomials [39] [40]. [41] also gives the fact that SOS and nonnegativity have little difference.

There are many options for polynomial FMB control design. Besides PDC controller, this

thesis also concerns the rational controller. Nevertheless, the stability analysis of polynomial

descriptor FMB controller causes the bilinear issue. In previous study, it used the particle

swarm optimization (PSO) algorithm, the method that decides the coefficient of the rational

function, to deal with the bilinear issue, but the solution may not be optimal. In contrast,

this thesis uses the path-following method to solve the bilinear issue.

Path-following is an approach for solving nonconvex stabilization constraints. From [62],

path-following can be applied to solve the bilinear matrix inequalities (BMI) problems, which

means the LMI conditions that contain the bilinear terms. The approach first uses a first-

order perturbation to linearize the BMI problems. By solving a semidefinite problem (SDP),

the perturbation is computed, and the controller’s performance is improved slightly. The

program should repeat the process until the system achieves the desired performance or the

performance cannot further be improved. In other words, to achieve the desired performance,

the program solves a series of linearized problems. These problems improve the control

results when each step that solves the linearized problems. The approach starts from an

initial situation, and better and better designs the controller by modifying the design objects

slowly. Because these objectives are closed in consecutive problems, the BMI can be converted

into LMI constraints, which can be solved at each step. One thing that has to be noted is

that this approach does not guarantee convergence, which means that the solution is not

always acceptable.

Another technique considered in this thesis is the membership function’s time derivatives

[63]- [64]. Since it contains the differential of fuzzy summation in stabilization, the analysis of

the membership functions’ time derivatives must be concerned. This technique is applied for

local stabilization analysis. That is, the membership function has the upper bound or lower

bound. The differentials of membership function are divided into two parts, the differentials

by the state vector and the differential of the time. In the differential of the time, it can be

seen as a function of a fuzzy model. To deal with the problem, the equation of the differential

of membership functions will be separated into two parts, common factors part and the rest.

Because that the design methodology is locally constructed, this rest part contains the upper

and lower bounds. Therefore, it can be extracted by sector nonlinearity techniques.

Polynomial FMB control system designs are applied by descriptor form methodologies in
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this thesis. Transforming the closed-loop system of polynomial fuzzy model into descriptor

representation is the initial step in this design methodology. Besides, by our greatest efforts of

searching the information, no study applies such the descriptor form approach for designing

polynomial FMB control system. As mentioned before, polynomial fuzzy descriptor systems

[50]- [52] which directly uses the fuzzy descriptor system is different from the method this

thesis proposed. The design methodology is similar to [35]. The so-called ”Fuzzy Descriptor

system” is presented as an extension of T-S fuzzy model. When the T-S fuzzy model got

much attention in nonlinear control frameworks for its ability to present the nonlinear system

into a general form, the descriptor system also got famous for the property that is different

from the state-space expression. Similar to descriptor expression, the descriptor system [53]

can describe the system more widely and tighter than state-space expression, too. The

fuzzy descriptor system presents the rule consequence of descriptor, which means that the

consequent part of T-S fuzzy system was represented as descriptor form. This methodology

also contains T-S fuzzy model as the special case. In [35], the fuzzy descriptor system adds

a summation of premise variables multiplied by nonsingular matrices to T-S fuzzy model.

Note that the premise variables are independent of the control input for preventing the

complicated defuzzification. Same as the work of the descriptor systems or the thesis, a new

vector containing the state vector is defined, and the closed-loop system is rewritten. The

control design was also extended. A modified PDC controller including premise variables and

the vectors of feedback gain is applied, but the system needs to calculate the local feedback

gains. The LMI approach was applied for stabilization in [35] with the common Lyapunov

function. In the first method of the thesis, the closed-loop system and the decision variables’

matrices’ structures are similar to the stabilization analysis of [35]. However, the thesis

considers a state-space expressed polynomial model with a different controller and ”rewrites”

it as descriptor form, which is different from this method. Fuzzy descriptor system contains

two features when compared with state-space fuzzy models. It can describe a wider class of

system or nondynamic constraints and is tighter for representing real independent parametric

perturbations. The other is that the stabilization constraints can be reduced due to the

redundancy of descriptor representation.

The descriptor approach has been widely used for T-S fuzzy model’s system design [54]-

[57]. No matter it is the fuzzy system, or other system’s design [58]- [60], they can only

deal with the systems which contain only constant matrices. In contrast, the thesis adds the
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polynomial term to the consequent part of the system, which makes it possible to deal with

the systems that contain the polynomial matrices.

This thesis presents a stabilization control design for descriptor’s representing of polyno-

mial FMB system. Four design methodologies are proposed, and all the design methodologies

are constructed in the operation domain. Thus, their stabilization analysis is local stabiliza-

tion, and the stabilization conditions are presented in SOS conditions.

At first, a rational control design is proposed. The thesis proposes a polynomial fuzzy

model with the controller, which considers the rational functions. From [61], some cases show

that the rational controller can have better performance than PDC-based controller. The

closed-loop system, which polynomial FMB system applied by the rational controller, is rep-

resented in the descriptor form. A homogeneous functions’ method is presented in this thesis

for stabilization. The Lyapunov function candidate is chosen as the homogeneous Lyapunov

function in which the matrix of decision variables is a homogeneous matrix. Considering the

properties of Euler’s homogeneity relation makes the differential of the Lyapunov function

be able to be extracted. The rest part of the stabilization analysis is done by considering the

stabilization method of the descriptor design methodology for T-S fuzzy model. However, the

bilinear term appears in the stabilization conditions and makes it impossible to be solved by

SOSTOOL directly. Therefore, this thesis applies the path-following approach [62] to solve

the conditions. An example shows the comparison between the first proposed method and

the polynomial fuzzy model without descriptor form [37]. The result has been proven that

the proposed method obtains more relaxed results when in the same operation domain.

Based on the fact that the optimal result for solving the stabilization constraints may not

be found by using path-following, the thesis has tried other descriptor form design method-

ology for polynomial FMB control design. The controller is chosen as PDC-based controller,

which shares the same membership functions of the fuzzy model.

In the second method, a polynomial fuzzy model with PDC-based controller is presented

and also be transformed into the descriptor form. The Lyapunov function candidate for sta-

bilization is chosen as a Lyapunov function which is used in the research for polynomial fuzzy

models commonly. The stabilization is extracted by considering some definition related to

some vectors of the membership functions and state-space. Also, the properties of congru-

ence transformation are considered for stabilization analysis. Compared with the polynomial

fuzzy model without descriptor form, the matrices’ dimension in the proposed method is
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higher than the previous study in the same operation domain, though. The number of the

SOS constraints from the proposed method is smaller than the previous study drastically.

The contrast shows that the proposed method is more suitable with the cases that contain

more rules, but the dimension of the state vector should be small. Moreover, compared with

the method in the first method, the second method contains no bilinear or nonconvex terms,

which means that the proposed method does not need to use the path-following algorithm

to solve the conditions. Two examples are provided, including a numerical example and an

application example. The numerical shows that the feasibility (relaxation) of the proposed

approach is similar to the existing polynomial FMB control design approach [37], though.

The smaller number of the constraints means that the proposed method still holds the ad-

vantage when compared with the existing polynomial FMB control design approach. The

application example gives a bicycle dynamic system. The proposed method has been suc-

cessfully made the system asymptotically stable by setting the operation domain of bicycle’s

angle and angular speed.

The rest two methods consider the same model, controller and Lyapunov function as the

second method. The improvement is that it brings the matrices which contain fuzzy slack

variables into the stabilization. The fuzzy slack matrices make the Lyapunov candidate be

rewritten into a new form and produce a new stabilization analysis. The SOS conditions born

from the stabilization analysis contain an issue like the co-positivity problem, the double fuzzy

summation. Thus, applying the co-positive relaxation can be a way to deal with the double

fuzzy summation. A numerical example is presented to make the comparison with [37], the

descriptor design methodology for T-S fuzzy system [23], and the third method. It can be

found out that the third method’s results are more relaxed when making the comparison

with [37] and [23] in some cases.

Furthermore, in some cases that membership functions have no relationship with the

inputs states (i.e., the elements in the membership functions are the vectors which are cor-

responded to the system matrices’ zero rows), the thesis proposes the novel fuzzy Lyapunov

function for the fourth stabilization design approach. This kind of Lyapunov function con-

tains an inverse of fuzzy summation matrix. Since the differential of the Lyapunov function

contains membership function’s differential terms in stabilization, the thesis also proposes a

method to extract the time derivative of membership function. After extracting the differen-

tial of membership function, the state vectors’ partially differential part would be extracted
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by the techniques of sector nonlinearity. Because the third method can be seen as a special

case included in the fourth proposed method, the fourth method is always more relaxed than

the third method. The thesis presents two numerical examples to show the comparison with

the fourth method, the previous method, and previous studies. The first one is a polyno-

mial example, and the comparison is to compare with the fourth method, [37], and the third

method. The results show that the fourth method gets the best relaxation from them. The

second one is an example with constant matrices to compare with the fourth method, [37],

the third method, and [23]. The fourth method has also gotten the best relaxation result.

At the end of Chapter 5, three numerical examples are presented. The first two examples

are the polynomial examples to show the comparison with all the proposed methods in this

thesis and [37]. The final one is a constant example to show the comparison with [23], [37],

and all the proposed methods in this thesis.

To summarize the contributions of the thesis, four points are presented as follows:

� The descriptor representation methodology for polynomial FMB design has no similar

works by our greatest efforts of searching the information.

� More relaxed results are obtained from descriptor representation when comparing the

state-space representation. The conditions of stabilization are also reduced.

� Taking the redundancy, this research brings fuzzy slack variables into stabilization

control design.

� Novel fuzzy Lyapunov function for stabilization is applied as LMI based fuzzy descriptor

systems’ fuzzy Lyapunov function’s extension.

The research also considers the differential of the membership functions and uses the

technique of sector nonlinearity to extract the membership function’s partially differentiated

part by state vectors after the time differential process is extracted.
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2
Preliminaries

Chapter 2 is consists of some necessary mathematical tools and basic definitions which

are applied in the research. Note that in the rest chapters (i.e. Chapter 3, 4, 5, and 6) of

the thesis, the respect to time t will be dropped to simplify the notation. In addation, the

Theorems proposed in the thesis are all constructed in the operation domain.

Dop = {x(t) : xmin
k ≤ xk(t) ≤ xmax

k , k = 1, . . . , n} (2.1)

containing x = 0.

2.1 Definitions

This section introduces the concepts, models, and matrices that will be used in the

presented theorems in the thesis.

2.1.1 Positive Definiteness

A positive definite A ∈ Rn×n’s definition is hold if and only if

xTAx > 0,∀x 6= 0,

λ > 0, when A is symmetric,

A+AT

2
� 0,

A = LLT (2.2)

where λ is A’s eigenvalue and L is a nonsingular matrix. A positive definite matrix’s deter-

minant is always positive, which means that if a matrix is positive definite matrix, than it

will also be ”nonsingular”.
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Congruence Transformation

The relationship of congruent between two matrices X,Y ∈ Sn is hold if a nonsingular

matrix L ∈ Rn×n is found such that

Y = LTXL.

Proof :

If X is positive definite, xTXx > 0,∀x ∈ Rn,x 6= 0. Because X and Y hold congruent

relation, a nonsingular matrix L which makes Y = LTXL is exist. Hence, for all x 6= 0

y = L−1x 6= 0

X � 0 ⇐⇒ xTXx = yTLTXLy = yTY y ⇐⇒ Y � 0.

2.1.2 T-S Fuzzy model

The definition of Takagi-Sugeno fuzzy model is presented as:

Model rule i

If z1(t) is Mi1 and . . . and zp(t) is Mip

then ẋ(t) = Aix(t) + Biu(t)

i = 1, 2, . . . , r

(2.3)

where Ai ∈ Rn×N and Bi ∈ Rn×m are system matrices; r is the number of fuzzy rules;

x(t) ∈ Rn is the state vector; zi is the known premise variable; and u(t) ∈ Rm is the input

vector. The polynomial fuzzy model (2.3) is inferred as

ẋ(t) =
r∑
i=1

hi(z(t)){Aix(t) + Biu(t)} (2.4)

where z(t) = [z1(t) · · · zp(t)] and

hi(z(t)) =

∏p
j=1Mij(zj(t))∑r

k=1

∏p
j=1Mkj(zj(t))
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with the following properties: 
∑r

i=1 hi(z(t)) = 1,

hi(z(t)) > 0 ∀i.
(2.5)

For u = 0, use the quadratic Lyapunov function xTPx can obtain the open loop system

(2.4)’s stabilization criteria and are presented as follow:

P > 0 (2.6)

−AT
i P − PAi > 0 (2.7)

which is shown as LMI problems.

2.1.3 Polynomial Fuzzy model

Consider the following polynomial fuzzy model:

Model rule i

If z1(t) is Mi1 and . . . and zp(t) is Mip

then ẋ(t) = Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)

i = 1, 2, . . . , r

(2.8)

where Ai(x(t)) ∈ Rn×N and Bi(x(t)) ∈ Rn×m are system matrices of polynomials; r is the

number of fuzzy rules; x(t) ∈ Rn denotes the state vector; x̂(x(t)) ∈ RN is a column vector

consist of monomials in x(t) and has the property that x̂(x(t)) = 0 iff x(t) = 0; zi(t) is the

known premise variable; and u(t) ∈ Rm is the input vector. The polynomial fuzzy model

(2.8) is inferred as

ẋ(t) =

r∑
i=1

hi(z(t)){Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)} (2.9)

where z(t) = [z1(t) · · · zp(t)] and

hi(z(t)) =

∏p
j=1Mij(zj(t))∑r

k=1

∏p
j=1Mkj(zj(t))
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with the following properties: 
∑r

i=1 hi(z(t)) = 1,

hi(z(t)) > 0 ∀i.
(2.10)

The stabilization criteria for the model (2.9) can be obtained by employing the polynomial

Lyapunov function and are represented as SOS terms. Due to the fact that such the Lyapunov

function contains the quadratic Lyapunov function employed by T-S fuzzy model, Polynomial

fuzzy model has more general and relaxed stability and conditions than the T-S fuzzy model.

2.1.4 Sum of Squares Decomposition

For x ∈ Rn and i = 1, . . . , r, a multivariate polynomial p(x) is called ” sum of squares”

if and only if there exist polynomials mi(x) satisfying the following equation

p(x) =

r∑
i=1

m2
i (x). (2.11)

For the matrices’ case, p(x) is called sum of squares if and only if a monomials vector U(x)

and a positive semidefinite matrix P are exist such that

p(x) = UT (x)PU(x). (2.12)

The sum of squares program tries to find the polynomial pi(x), i = 1, . . . , r̂ and sum of

squares pi(x), i = (r̂ + 1), . . . , r such that

a0j(x) +
r∑
i=1

pi(x)aij(x) = 0 i = j, . . . , r̂ (2.13)

a0j(x) +
r∑
i=1

pi(x)aij(x) are SOS j = (r̂ + 1), . . . , r (2.14)

where aij(x) are some scalar constant coefficient polynomials.

2.1.5 The Transform Matrix

Because x̂(x(t)) is a vector which is consist of monomials that have the property of

x̂(x(t)) = 0 iff x(t) = 0, there always exists a transformation matrix T (x(t)) that makes
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x̂(x(t)) = T(x(t))x(t). When monomial vectors are equal to the state vector (i.e. x̂(x(t)) =

x(t)), we have T(x(t)) = I. Moreover, consider that x(t) = [x1(t) x2(t)]
T , the thesis gives

the following example to show how T (x(t)) works:

x̂(x(t)) =

 x21(t)

x22(t)

 with T(x(t)) =

 x1(t) 0

0 x2(t)



x̂(x(t)) =

 x41(t)

x22(t)

 with T(x(t)) =

 x31(t) 0

0 x2(t)



x̂(x(t)) =

 x41(t)

x42(t)

 with T(x(t)) =

 x31(t) 0

0 x32(t)

 .

2.2 Mathematical tools

This section introduces the algorithms and methods of relaxation that will be used in

the presented theorems in the thesis.

2.2.1 Euler’s homogeneity relation

Consider a function V (y), which is define in Rn → R. V (y) is said to be a homogeneous

function with degree g ∈ I+ if and only if

gV (y) = yT∇yV (y) = ∇yV (y)Ty. (2.15)

The proof of the relation above follows by differentiation of the homogeneous Lyapunov

function

V (γy) = γgV (y) (2.16)

by setting γ = 1

2.2.2 Path-Following Algorithm

From [62], the purpose of the path-following algorithm is to deal with the bilinear terms

in stability conditions. [62] presents the bilinear matrix inequality (BMI) case, which means
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the LMI conditions containing the bilinear term. Consider the dynamic system

ẋ(t) = Aix(t) + Biu(t), y(t) = Cx(t) (2.17)

where u(t) = δFy(t) and there is the decay rate of α ∈ R in the open-loop system. To find

the feedback gain, the stability conditions are designed as

P � 0 (2.18)

|δFij | ≤ lij (2.19)

(A+BFC)TP + P (A+BFC) � −2(α+ δα)P (2.20)

which contains the bilinear terms of P and δF . Since ẋ(t) = Aix(t) has the decay rate, the

following condition can be compute

ATP0 + P0A � −2αP0. (2.21)

By writing δP = P − P0, we have

P0 + δP � 0 (2.22)

|δFij | ≤ lij (2.23)

(A+BFC)T (P0 + δP ) + (P0 + δP )(A+BFC) � −2(α+ δα)(P0 + δP ). (2.24)

Because δP , δα, and δF are very small, the third condition can be rewritten as

AT (P0 + δP ) + (P0 + δP )A+ (BFC)TP0 + P0(BFC) � −2α(P0 + δP )− 2δαP0 (2.25)

which can be solved by LMI. Back to the dynamic system (2.17), if u = Fy, the path-

following is shown as follows:

step 1 : Decide the initial value of F .

step 2 : Find the minimum value of α by solving the problems

P � 0 (2.26)

ATP + PA � −2αP0. (2.27)
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step 3 : Apply the value of P from step 2, and solve the following conditions

P + δP � 0 (2.28)

AT (P + δP ) + (P + δP )A+ (BFC)TP + P (BFC) � −2α(P + δP )− 2δαP (2.29)

to find the minimum value of α.

step 4 : Set F = F + δF and P = P + δP and go back to step 2.

The system stops the loop until the α exceed the value that the user want or α cannot be

further improved. The bilinear problem will turn into linear step by step in the stabilization

conditions by applying path-following method, though. The solution of this algorithm cannot

guarantee convergence.

2.2.3 Co-positive Relaxation

Consider a matrix W = [Wij ] ∈ Rr×r. Checking the co-positivity of W is to check if

qTWq =
r∑
i=1

r∑
j=1

qiqjWij ≥ 0 (2.30)

for all q = [q1, q2, . . . , qr]
T ∈ R, qi ≥ 0. Let qi = q̂2i , then the checking equation above means

to check the condition

Zs(q̂) =

(
r∑

k=1

)s r∑
i=1

r∑
j=1

q̂2i q̂
2
jWij is SOS (2.31)

where q̂ = [q̂1, q̂2, . . . , q̂r]
T , and s is a non-negative integer.

2.2.4 Membership function time derivative

When all membership functions are not related to the inputs’ states (i.e. hρ(z(t)) =

hρ(x̃(t)) ∀ρ), the membership function time derivative could be represented as

ḣρ(x̃(t)) =
∂hρ(x̃(t))

∂x(t)
ẋ(t)

=
∂hρ(x̃(t))

∂x(t)

r∑
i=1

hi(x̃(t))Ai(x(t))x̂(x(t)).

(2.32)
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(2.32) are divided in two parts, a polynomial common factors part, which is denoted in

Oρ(x(t)), and the rest part, which is denoted in yρ(x(t)). Then (2.32) is simplified to the

form

ḣρ(x̃(t)) = yρ(x(t))Oρ(x(t)). (2.33)

yρ(x(t)) is the part that will be applied the technique of sector nonlinearity, after extracting

with the technique, it can be rewritten as

yρ(x(t)) =
2∑

m=1

ωρm(x(t))Cρm (2.34)

where

Cρ1 = max
x(t)∈Dop

yρ(x(t)), Cρ2 = min
x(t)∈Dop

yρ(x(t))

ωρ1(x(t)) =
yρ(x(t))− Cρ2
Cρ1 − Cρ2

, ωρ2(x(t)) =
Cρ1 − yρ(x(t))

Cρ1 − Cρ2

with the following properties:

ωρm(x(t)) > 0,
2∑

m=1

ωρm(x(t)) = 1.

By substituting (2.34) into (2.33), the membership function time derivative are represented

as

ḣρ(x̃(t)) =
2∑

m=1

ωρm(x(t))µρm(x(t))

with µρm(x(t)) = CρmOρ(x(t)).

For example, for x̂(x(t)) = x(t) = [x1(t) x2(t)]
T , consider a polynomial fuzzy model (2.8)

with three rules, the system matrices, and membership functions as follows:

A1 =

 x21(t) + x22(t) x1(t) + x2(t)

0.25 0.25

 , A2 =

 3x1(t)x2(t) −x1(t) + x2(t)

0.25 0.25

 ,
A3 =

 −1 + x(t)1 + x21(t) −4

0.25 0.25


B1 =

 1

0

 , B2 =

 8

0

 , B3 =

 x22(t)

0


h1(x2(t)) =

1 + sin(x2(t))

3
, h2(x2(t)) = h3(x2(t)) =

2− sin(x2(t))

6
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Then x̃(t) = x2(t) and the time derivative of h1(x2(t)) can be obtained as

ḣ1(x2(t)) =
∂h1(x2(t))

∂x2
(t)ẋ2(t)

=
∂h1(x2(t))

∂x2(t)

r∑
i=1

hi(x2(t))A
2
i (x(t))x̂(x(t))

=
cos(x2(t))

3
× 0.25× (x1(t) + x2(t)).

Rewrite ḣ1(x2(t)) into the form of (2.33), it can be obtained that

O1(x(t)) =
x1(t) + x2(t)

12
, y1(x(t)) = cos(x2(t)).

This example is assumed to be constructed in the following operation domain:

Dop = {x : −π ≤ xk ≤ π, k = 1, 2}.

Apply the technique of sector nonlinearity to y1(x(t)), and obtains the result that

y1(x(t)) =

2∑
m=1

ω1m(x(t))C1m

where

C11 = max
x(t)∈Dop

y1(x(t)) = 1, C12 = min
x(t)∈Dop

y1(x(t)) = −1

ω11(x(t)) =
y1(x(t))− C12

C11 − C12
, ω12(x(t)) =

C11 − y1(x(t))

C11 − C12
.

Finally, the decomposition of ḣ1(x2(t)) can be implemented as

ḣ1(x̃(t)) =

2∑
m=1

ω1m(x(t))µ1m(x(t))

with

µ11(x(t)) = C11O1(x(t)) =
x1(t) + x2(t)

12

µ12(x(t)) = C12O1(x(t)) = −x1(t) + x2(t)

12
.

The above steps are also applied to the rest membership function to decompose their

differentials.
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3
A Polynomial Fuzzy Descriptor

System Approach for Rational

Fuzzy Control Design

This chapter proposed a rational method for polynomial FMB control design. This

chapter first presents a polynomial fuzzy model. Second, a controller composed of the poly-

nomial rational function is considered. The model and the controller form the closed-loop

systems and are represented like a descriptor system. The stabilization analysis uses Lya-

punov theory and homogeneous functions. Because of the polynomials, the stabilization

conditions are represented in SOS instead of LMI terms. The stabilization analysis produces

bilinear terms in the conditions. Thus, the path-following algorithm’s technique is applied to

solve the stabilization conditions.

3.1 Rational Controller and Closed-loop System

This chapter introduces a controller combined with rational functions. The rational

functions contain the polynomial matrices and polynomial functions. Similar to the PDC

controller, the elements in the rational functions share polynomial fuzzy model (2.9)’s mem-

bership functions. Applying the controller to the model (2.9) can obtain a closed-loop system.

The structure of rational function makes it possible to rewrite the closed-loop system as de-

scriptor form like [35].

Consider a rational controller which is shown as follow

u =

∑r
i=1 hi(z)Fi(x)∑r
j=1 hj(z)nj(x)

x̂(x) (3.1)
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where the control feedback gain are Fi(x) ∈ Rm×N for x and nj(x) is the polynomial function

in x. By applying the controller (3.1) to (2.9), the closed-loop system will be

ẋ =

r∑
i=1

hi(z){Ai(x) + Bi(x)

∑r
j=1 hj(z)Fj(x)∑r
k=1 hk(z)nk(x)

}x̂(x). (3.2)

Multiplying
∑r

k=1 hk(z)nk(x) on both side of (3.2) makes it be

r∑
i=1

hi(z)ni(x)ẋ =
r∑
i=1

r∑
j=1

hi(z)hj(z){nj(x)Ai(x) + Bi(x)Fj(x)}x̂(x). (3.3)

Define a vector x#(x) = [x̂(x) ẋ]T to simplify (3.3) and we have

E∗ẋ#(x) =
r∑
i=1

r∑
j=1

hi(z)hj(z)G#
i j(x)x#(x) (3.4)

where

E∗ =

 I 0

0 0

 ,G#
ij(x) =

 0 I

nj(x)Ai(x) + Bi(x)Fj(x) −nj(x)I

 .
The equation (3.4) is a closed-loop system written in descriptor form.

3.2 Main Result

This section shows the stabilization analysis for (3.4). The research uses a polynomial

homogeneous Lyapunov function here. By using the homogeneous function’s properties and

the proving steps of the fuzzy descriptor system, stabilization can be achieved. The stabi-

lization conditions is presented in SOS terms.

Theorem 1 :

Consider a positive definite symmetric homogeneous polynomial matrix Z1(x), polyno-

mial matrices Z3(x) amd Mj(x), polynomials σijβ(x) and nj(x) and a scalar α < 0. The

closed-loop system (3.3) is asymptotically stable if the following conditions are satisfied.

vTz1(Z1(x)− ε(x)I)vz1 is SOS (3.5)

− vTLαii(x)v is SOS, i = 1, . . . , r (3.6)
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− vT (Lαij(x) +Lαji)(x)v is SOS, i < j ≤ r (3.7)

σijβ(x) is SOS, i = 1, . . . , r, j = 1, . . . , r, β = 1, . . . , n (3.8)

where v and vz1 are vectors which is independent from x, ε(x) > 0 when x 6= 0, and

Lαij(x) =

 Lα1 (x) ∗

L3ij(x) L4j(x)


in which

Lα1 (x) = ZT
3 (x) +Z3(x)− αZ1(x)−

n∑
β=1

σijβ(x)Qβ(x)I

L3ij(x) = nj(x)Ai(x)Z1(x) + Bi(x)Mj(x)− nj(x)Z3(x) +Z1(x)

L4j(x) = −2nj(x)Z1(x)

Qβ(x) = (xβ − xmaxβ )(xβ − xminβ ).

Solving the conditions can obtain the feedback gain as

Fj(x) = Mj(x)Z−11 (x).

Proof :

Consider the Lyapunov-based analysis utilizing the following homogeneous Lyapunov

function:

V (x) = xTadj(Z1(x))x. (3.9)

As mention before, Z1(x) has the properties as positive definite, symmetric, homogeneous,

and polynomial. Consider the Euler’s homogeneity relation introduced in preliminaries part,

we have

gV (x) = gxTadj(Z1(x))x = xT∇xV (x). (3.10)

Therefore, it is obtained that

gadj(Z1(x))x = ∇xV (x). (3.11)

The next step is to use the homogeneous Lyapunov function’s stabilization analysis raised
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by [45] and the stabilization approach for fuzzy descriptor system raised by [35], to do the

stabilization. The differential of the polynomial homogeneous Lyapunov function (3.9) is

V̇ (x) = ẋT∇xV (x) = gẋTadj(Z1(x))x

= g[ẋ ẍ]

 I 0

0 0


 adj(Z1(x)) 0

S3(x) adj(Z1(x))


 x
ẋ


= gẋ#T (x)E∗TX(x)x#(x)

=
g

2
[ẋ#T (x)E∗TX(x)x#(x) + x#T (x)E∗TX(x)ẋ#(x)]

=
g

2

r∑
i=1

r∑
j=1

hi(z)hj(z)x
#T (x){G#T

ij (x)X(x) +XT (x)G#
ij(x)}x#(x). (3.12)

Because Z1(x) is a homogeneous matrix, it has such the property

Z−11 (x) =
adj(Z1(x))

det(Z1(x))
(3.13)

which means that

Z−11 (x)Z1(x) =
adj(Z1(x))Z1(x)

det(Z1(x))
= I. (3.14)

According to (3.13) and (3.14), we have

adj(Z1(x))Z1(x) = det(Z1(x)). (3.15)

To obtain that (3.12) is negative, such a condition below should be satisfied

G#T
ij (x)X(x) +XT (x)G#

ij(x) ≺ 0. (3.16)

Define a matrix

R(x) =

 Z1(x) 0

Z3(x) Z1(x)


where

Z3(x) =
1

det(Z1(x))
Z1(x)S3(x)Z1(x)

and multiply the left side of (3.16) with RT (x) and the right side with R(x), we have

RT (x)G#T
ij (x)X(x)R(x) +RT (x)XT (x)G#

ij(x)R(x) ≺ 0. (3.17)
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Using the properties (3.13) to (3.15) can obtain that

X(x)R(x) = det(Z1(x))I. (3.18)

Therefore, (3.17) can be transformed into

RT (x)G#T
ij (x)det(Z1(x))I + det(Z1(x))IG#

ij(x)R(x) ≺ 0. (3.19)

Divide (3.19) with det(Z1(x)) and define a matrix like the below to simplify it, we have

Lij(x) =

 L1(x) LT3ij(x)

L3ij(x) L4j(x)

 ≺ 0 (3.20)

where

L1(x) = ZT
3 (x) +Z3(x)

L3ij(x) = nj(x)Ai(x)Z1(x) + Bi(x)Mj(x)− nj(x)Z3(x) +Z1(x)

L4j(x) = −2nj(x)Z1(x).

Furthermore, for

Lij(x) �

 αZ1(x) 0

0 0


we have

Lij(x)−

 αZ1(x) 0

0 0

 � 0 (3.21)

Assume that there exist polynomials σijβ(x) and they are positive definite, than the following

inequality should hold in the operation domain

ψ(z,x) = −
r∑
i=1

r∑
j=1

m∑
β=1

hi(z)hj(z)σijβ(x)Qβ ≥ 0.

Because ψ(z,x) is semi-positive definite, (-1)*(3.21) is also semi-positive definite can be hold
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if the following condition is satisfy

−

Lij(x)−

 αZ1(x) 0

0 0


 � E∗ψ(z,x) � 0. (3.22)

By moving the right part to the left, we have

−

Lij(x)−

 αZ1(x) 0

0 0

+E∗ψ(z,x)

 � 0. (3.23)

Then define matrices Lαij(x) to simply (3.23)

Lαij(x) =

 Lα1 (x) LT3ij(x)

L3ij(x) L4j(x)

 , and −Lαij(x) � 0 (3.24)

where

Lα1 (x) = ZT
3 (x) +Z3(x)− αZ1(x)−

n∑
β=1

σijβ(x)Qβ(x)I

L3ij(x) = nj(x)Ai(x)Z1(x) + Bi(x)Mj(x)− nj(x)Z3(x) +Z1(x)

L4j(x) = −2nj(x)Z1(x).

In addition,

r∑
i=1

r∑
j=1

hi(z)hj(z)x
#T (x)Lαij(x)x#(x)

=

r∑
i=1

hi(z)x
#T (x)Lαii(x)x#(x) +

r∑
j=1

∑
i<j

hi(z)hj(z)x
#T (x)(Lαij(x) +Lαji(x))x#(x)

leads the conditions (3.6) and (3.7). �

3.3 Path Following

Since there are the bilinear terms in the matrices Lαij(x), SOSOPT cannot solve the

stabilization criteria directly. Thus, the research applies path-following approach for solving

the conditions (3.5)-(3.8). The path-following steps are shown as follow:
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Step 1 : Set a constant η = 0.The polynomials nj0(x) which is positive definite and its

coefficients are randomly decided is defined.

Step 2 : Apply SOSOPT to solve:

min
Z1(x),Z3(x),Mj(x),σijβ(x)

α subject to (3.5)− (3.8)

by setting nj(x) = nj0(x)

Step 3 : Apply the Z1(x) and Z3(x) obtained from Step 2 and solve the following conditions

by SOSOPT:

min
δZ1(x),δZ3(x),δnj(x),Mj(x),σijβ(x)

α subject to (3.5)− (3.8)

vTz1(Z1(x) + δZ1(x)− ε(x)I)vz1 is SOS

− vTL#α
ii (x)v is SOS, i = 1, . . . , r

− vT (L#α
ij (x) +L#α

ji )(x)v is SOS, i < j ≤ r

σijβ(x) is SOS, i = 1, . . . , r, j = 1, . . . , r, β = 1, . . . , n

vT1

 εnn
2
j (x) δnj(x)

δnj(x) 1

 v1 is SOS j = 1, . . . , r

vT2

 εz1Z1(x)ZT
1 (x) δZ1(x)

δZT
1 (x) I

 v2 is SOS
vT3

 εz3Z3(x)ZT
3 (x) δZ3(x)

δZT
3 (x) I

 v3 is SOS
where

L#α
ij (x) =

 L#α
1 (x) ∗

L#
3ij(x) bmL#

4j(x)


in which

L#α
1 (x) = (Z3(x) + δZ3(x))T + (Z3(x) + δZ3(x))− α(Z1(x) + δZ1(x))−

n∑
β=1

σijβ(x)Qβ(x)I

L#
3ij(x) = Ai(x)(nj(x)Z1(x) + δZ1(x)nj(x) + δnj(x)Z1(x)) + Bi(x)Mj(x)

− (nj(x)Z3(x) + δZ3(x)nj(x) + δnj(x)Z3(x)) + (Z1(x) + δZ1(x))
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L#
4j(x) = −2(nj(x)Z1(x) + δZ1(x)nj(x) + δnj(x)Z1(x)).

Step 4 : Set nj(η+1)(x) = nj(x) + δnj(x) with δnj(x) obtained from Step 3. After setting

η = η + 1, go back to Step 2.

Repeat the iteration until α < 0 which is found in Step 2 or α < 0 cannot decrease any

more regarding to former iterations.

3.4 Designing Example

This section presents an example to compare the proposed Theorem 1 and previous

studies. For x = [x1 x2]
T , consider the polynomial fuzzy model (2.9) which has the system

matrices and membership functions shown in [42] with r = 3

A1 =

 −1 + x1 + x21 + x1x2 − x22 1

−a −6


A2 =

 −1 + x1 + x21 + x1x2 − x22 1

0 −6


A3 =

 −1 + x1 + x21 + x1x2 − x22 1

0.2172a −6


B1 = B2 = B3 =

 x1

b


h1 =

1

1 + e
(x1+4)

2

, h3 =
1

1 + e
−(x1−4)

2

h2 = 1− h1 − h3. (3.25)

The operation domain is set as x1 ∈ [−1 1] and x2 ∈ [−1 1] and the polynomial function is

set as nj(x) = nj0 + nj1x
2
1 + nj2x

2
2. Under this situation and a = 2.5, the maximum feasible

value obtained by the proposed method is b = 8.5. When b = 8.5, no solution can be found

by Theorem 2 of [37] and [42]. This example proves that the extra polynomials provided by

(3.1) and the homogeneous Lyapunov function, which removes the limitation of x̃ can help

the system (3.4) to obtain more relaxed results.

Remark 1. The purpose of the designing examples is to show the ”relaxation” of our pro-
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posed stabilization criteria, which means our proposed stabilization criteria can find feasible

solutions that other studies cannot find. The importance of the maximum feasible value is

the “relaxation” of the stabilization criterion. The quantity of the maximum feasible value

of “b” itself has no meaning for the considering system. It is a methodology for presenting

relaxation.

The solution of decision variable are presented as follows:

Z1(x) =

 3.351x21 − 0.253x1x2 + 3.545x22 −3.483x21 − 1.173x1x2 − 1.87x22

−3.483x21 − 1.173x1x2 − 1.87x22 8.763x21 + 2.185x1x2 + 5.987x22



Z3(x) =

 −6.217x21 + 2.661x1x2 − 8.856x22 6.424x21 − 1.138x1x2 + 7.82x22

−3.442x21 + 0.719x1x2 − 4.755x22 −11.97x21 +−1.048x1x2 − 11.132x22



M1(x) =





−1.252x41 − 0.595x31x2 − 1.871x21x
2
2

−0.595x1x
3
2 − 0.49x42 − 0.229x31

−0.026x21x2 − 0.28x1x
2
2 − 0.029x32

−0.257x21 − 0.085x1x2 − 0.14x22





1.946x41 + 0.577x31x2 + 3.223x21x
2
2

+0.491x1x
3
2 + 1.257x42 + 0.086x31

+0.104x21x2 − 0.011x1x
2
2 − 0.008x32

−0.019x21 + 0.131x1x2 − 0.173x22





M2(x) =





−2.014x41 − 0.782x31x2 − 2.99x21x
2
2

−0.734x1x
3
2 − 0.993x42 − 0.158x31

+0.092x21x2 − 0.246x1x
2
2 − 0.038x32

−2.267x21 − 0.449x1x2 − 1.622x22





2.613x41 + 1.042x31x2 + 3.978x21x
2
2

+0.69x1x
3
2 + 1.552x42 − 0.087x31

+0.036x21x2 − 0.19x1x
2
2 − 0.026x32

+2.828x21 + 0.811x1x2 + 1.846x22





M3(x) =





−2.899x41 − 0.851x31x2 − 3.134x21x
2
2

−0.406x1x
3
2 − 0.79x42 − 0.102x31

+0.083x21x2 − 0.144x1x
2
2 − 0.011x32

−0.872x21 − 0.141x1x2 − 0.654x22





3.84x41 + 1.185x31x2 + 4.092x21x
2
2

+0.477x1x
3
2 + 1.053x42 − 0.178x31

−0.059x21x2 − 0.102x1x
2
2 − 0.015x32

+0.763x21 + 0.356x1x2 + 0.324x22




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n1(x) = 0.573x21 + 0.564x22 + 0.167

n2(x) = 0.502x21 + 0.598x22 + 0.875

n3(x) = 0.827x21 + 0.363x22 + 0.304

The simulation result is shown in Fig 3.1 and Fig 3.2.
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Figure 3.1: The simulation results of x
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Figure 3.2: The simulation results of control input u
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4
A Descriptor System Approach

for Polynomial

Fuzzy-Model-Based Control

Design

A polynomial FMB control design by using descriptor system approach is proposed in

this chapter. A PDC-based controller is concerned in this chapter, and the closed-loop system

is expressed in descriptor form. The stabilization is analyzed by applying a commonly used

Lyapunov candidate. Two examples, including a numerical one used for comparison and the

other one verifying the applicability, are provided.

4.1 A Model With PDC-Based Controller

Consider the polynomial fuzzy model (2.9). By applying the concept of PDC technique,

the following controller is employed:

u(x) =

r∑
i=1

hi(z)Fi(x)x. (4.1)

At First, the fuzzy controller (4.1) is converted into

0 =

r∑
i=1

hi(z)Fi(x)x− u(x)

=
r∑
i=1

hi(z){Fi(x)x− u(x)}. (4.2)
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Moreover, the transformation matrix T(x) which is introduced in preliminaries section is

applied to represent the relationship between the state vector x and its monomial vector

x̂(x), that is,

x̂(x) = T(x)x.

Therefore, from (2.9) and (4.2), the closed-loop systems can be rewritten in descriptor form:

E∗ẋ∗(x) =
r∑
i=1

hi(z)A
∗
i (x)x∗(x) (4.3)

where

E∗ =


I 0 0

0 0 0

0 0 0

 ,x∗ =


x

x̂(x)

u(x)

 ,A∗i =


0 Ai(x) Bi(x)

T(x) −I 0

Fi(x) 0 −I

 .

4.2 Main Result

The stabilization analysis for (4.3) is presented in this section, which is presented in

terms of SOS. Before introducing the Lyapunov function, the definitions of Ak
i (x) and x̃

should be given [37]. Define Ak
i (x) which denotes system matrix Ai(x)’s kth row, where

K = {k1, k2, . . . , km} is corresponded to system matrix Bi(x)’s row index in which contains

the zero row, and define the vector

x̃(t) = [xk1(t) · · · xkm ]T . (4.4)

Moreover, the research defines the vector of membership functions

h = [h1(z) · · · hr(z)]T .

Theorem 2 :

If there exist a symmetric polynomial matrix X(x̃), polynomial matrices X21(x), X22(x),

X23(x), X31(x), X32(x), X33(x), Mi(x), and polynomials σiβ(x), (4.3) is asymptotically

stable when satisfying the following conditions,

vT (X̂(x)− ε1(x)I)v is SOS (4.5)
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− vT (Hi(x))v is SOS, i = 1, . . . , r (4.6)

σiβ(x) is SOS, i = 1, . . . , r, β = 1, . . . , n, (4.7)

where

X̂(x) =


X(x̃) 0 0

X21(x) X22(x) X23(x)

X31(x) X32(x) X33(x)

 .
Hi(x) is given as

Hi(x) =


Ai(x)X21(x) + Bi(x)X31(x) + XT

21(x)AT
i (x)

+XT
31(x)BT

i (x)−
∑

k∈K
∂X
∂xk

(x̃)Ak
i (x)x̂(x)

−
∑n

β=1 σiβ(x)Qβ(x)I + ε2i(x)I

 ∗ ∗

 T(x)X(x̃)−X21(x)+

XT
22(x)AT

i (x) + XT
32(x)BT

i (x)

 (−X22(x)−XT
22(x)) ∗

 Mi(x)−X31(x)+

XT
23(x)AT

i (x) + XT
33(x)BT

i (x)

 (−X32(x)−XT
23(x)) (−X33(x)−XT

33(x))


(4.8)

in which

Qβ(x) = (xβ − xminβ )(xβ − xmaxβ )

polynomials ε1(x) > 0 and ε2i(x) > 0 for all x 6= 0. The feedback gain is obtained from

Fi(x) = Mi(x)X−1(x̃). (4.9)

Proof:

A Lyapunov function candidate which is commonly used in the studies of polynomial
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fuzzy model is considered:

V (x) = xTX−1(x̃)x. (4.10)

From the definition of K, we have

ẋk =

r∑
i=1

hi(z)A
k
i (x)x̂(x) (4.11)

for k ∈ K, and

∂X−1

∂xi
(x̃) = 0 (4.12)

for i /∈ K. Then V (x)’s time derivative will be

V̇ (x) = ẋTX−1(x̃)x + xTX−1(x̃)ẋ + xT Ẋ
−1

(x̃)x

=


ẋ

˙̂x(x)

u̇(x)


T 

I 0 0

0 0 0

0 0 0




X−1(x̃) 0 0

P21(x) P22(x) P23(x)

P31(x) P32(x) P33(x)




x

x̂(x)

u(x)



+


x

x̂(x)

u(x)


T 

X−1(x̃) PT
21(x) PT

31(x)

0 PT
22(x) PT

32(x)

0 PT
23(x) PT

33(x)




I 0 0

0 0 0

0 0 0




ẋ

˙̂x(x)

u̇(x)



+


x

x̂(x)

u(x)


T 

∑n
k=1

∂X−1

∂xk
(x̃)Ak

i (x)x 0 0

0 0 0

0 0 0




x

x̂(x)

u(x)



(4.13)

Therefore, we have

V̇ (x) = ẋ∗TE∗T P̂(x)x∗(x) + x∗T P̂
T

(x)E∗ẋ∗(x)

+ x∗TCi(x)x∗(x)

=

r∑
i=1

hi(z)x
∗T (x){A∗Ti (x)P̂(x) + P̂

T
(x)A∗i (x)

+ Ci(x)}x∗(x) (4.14)
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where

P̂(x) =


X−1(x̃) 0 0

P21(x) P22(x) P23(x)

P31(x) P32(x) P33(x)


and

Ci(x) =


∑n

k=1
∂X−1

∂xk
(x̃)Ak

i (x)x 0 0

0 0 0

0 0 0

 .
In the operation domain Dop,

ψ(z,x) = −
r∑
i=1

n∑
β=1

hi(z)σiβ(x)(xβ − xminβ )(xβ − xmaxβ ) ≥ 0

where σiβ(x) ≥ 0 which is hold in (4.7). Therefore, V̇ (x) < 0 for Dop − {0} is satisfied if

V̇ (x) ≤

x∗T P̂
T

(x)


−(ψ(z,x) + ε2i(x))I 0 0

0 0 0

0 0 0

 P̂(x)x∗ (4.15)

where polynomials ε2i(x) > 0 in x 6= 0. Let X̂(x) = P̂
−1

(x). Condition (4.6) implies the

truth that

− {X̂T
(x)A∗Ti (x) + A∗i (x)X̂(x)−Di(x)

−


(
∑n

β=1 σiβ(x)Qβ(x)− ε2i(x))I 0 0

0 0 0

0 0 0

} ≥ 0 (4.16)

where

Di(x) =


∑

k∈K
∂X
∂xk

(x̃)Ak
i (x)x̂(x) 0 0

0 0 0

0 0 0

 .

Note that Ak
i (x)x̂(x) is a scalar. We have the inequality below by multiplying (4.16) from

left side and right side by P̂
T

(x) and P̂(x) respectively
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− {A∗Ti (x)P̂(x) + P̂
T

(x)A∗i (x)− P̂
T

(x)


(
∑n

β=1 σiβ(x)Qβ(x)− ε2i(x))I 0 0

0 0 0

0 0 0

 P̂(x)

−


∑

k∈K X−1(x̃) ∂X∂xk (x̃))X−1(x̃)Ak
i (x)x̂(x) 0 0

0 0 0

0 0 0

} ≥ 0.

The preliminaries’ chapter gives that X(x̃)’s invert matrix is exist. Therefore, X−1(x̃)X(x̃) =

I. By doing derivative on both side with respect to xk, the following equation is obtained

∂X−1

∂xk
(x̃)X(x̃) + X−1(x̃)

∂X

∂xk
(x̃) = 0. (4.17)

Therefore

X−1(x̃)
∂X

∂xk
(x̃)X−1(x̃) = −∂X

−1

∂xk
(x̃). (4.18)

From (4.18), the inequality (4.16) can be represented in

− {A∗Ti (x)P̂(x) + P̂
T

(x)A∗i (x) + Ci(x)

− P̂
T

(x)


(
∑n

β=1 σiβ(x)Qβ(x)− ε2i(x))I 0 0

0 0 0

0 0 0

 P̂(x)} > 0. (4.19)

From (4.14), if (4.19) holds for i = 1, . . . , r, then (4.15) holds. Consequently, if the condition

(4.6) holds, V̇ (x) < 0 for Dop − {0} is satisfied. �

Remark 2. Compare the proposed Theorem 2 and the approach of [37] with considering

the operation domain, Table 4.1 presents the differences. From the Table 4.1, the number

of the SOS constrains of the approach of [37] is r(r + 1)/2 + rβ + 1, with considering the

operation domain. In contrast, the number of SOS constraints of the proposed approach

applying the descriptor form is only r + rβ + 1. The value of β is n, and the term rβ is

omitted since both the approach of [37] and proposed Theorem 2 contain this term. We

have the fact that the descriptor representation’s redundancy can decrease design conditions’
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numbers drastically. The phenomenon goes evident with large r, that is, the nonlinear system

with more non-polynomial nonlinear terms. In contrast, the dimension part, the stabilization

matrix’s dimension is n for the approach of [37] and is 2n + m for the proposed approach.

Therefore, compared with the approach of [37], the proposed approach is more suitable for

the polynomial fuzzy model with more rules and fewer states. Moreover, through our several

trials, the feasibility (relaxation) of the proposed approach is similar to the approach of [37].

Table 4.1: Comparison Between the Proposed Approach and the Approach of [37] with
Considering the Operation Domain.

The Proposed Approach Approach of [37]
Number of SOS Constraints r + 2 r(r + 1)/2 + 2

Dimension of stabilization Matrix 2n+m n

4.3 Design Examples

This section gives two examples. One example is to make a comparison with the existing

polynomial FMB control design approach, and the other example verifies the applicability of

the proposed method.

Example 1:

Given that x̂(x) = x = [x1 x2]
T , consider the polynomial fuzzy model (2.9) which has the

system matrices and membership functions shown in [42] with r = 3:

A1 =

 −1 + x1 + x21 + x1x2 − x22 1

−a −6


A2 =

 −1 + x1 + x21 + x1x2 − x22 1

0 −6


A3 =

 −1 + x1 + x21 + x1x2 − x22 1

0.2172a −6


B1 =

 x1

b

 ,B2 =

 x1

b

 ,B3 =

 x1

b


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h1 =
1

1 + e
(x1+4)

2

, h3 =
1

1 + e−
(x1−4)

2

h2 = 1− h1 − h3.

The operation domain x1 ∈ [−2 2] and x2 ∈ [−2 2]. Since no zero row are shown in Bi(x), the

elements in matrix X(x̃) contain only constant. When a is set to be 2, the maximum values

of b can be found for feasible solution in the proposed approach and the approach of [37] with

considering the operation domain are both close to 8. It shows the feasibility of these two

approaches is similar as mentioned in Remark 2. As Remark 1 mentioned, the quantity

of the maximum feasible value of “b” itself has no meaning for the considering system. It is

just a methodology for presenting relaxation. When a = 2 and b = 8, the Fig 4.1 shows the

simulation results, which is represented in the phase plot, and the solution matrices is

X(x̃) =

 2.384 −4.148

−1.163 38.66



X21(x) =

 0.309x1 − 0.072x2 + 2.664 0.445x1 + 0.323x2 + 0.422

−4.141x1 − 1.628x2 − 0.88 −0.335x1 − 0.696x2 + 9.191



X22(x) =



 0.096x21 + 0.007x1x2 + 0.078x22

+0.407x1 − 0.275x2 + 1.471


 −0.068x21 + 0.025x1x2 + 0.033x22

−1.036x1 − 0.58x2 + 0.383

 −0.465x21 − 0.024x1x2 + 0.328x22

−1.44x1 − 1.397x2 + 0.385


 2.336x21 + 1.18x1x2 + 1.511x22

−1.802x1 − 0.805x2 + 3.656





X23(x) =



 −0.078x21 + 0.014x1x2 − 0.015x22

−0.984x1 − 0.513x2 − 0.631

 1.886x21 + 1.404x1x2 + 0.523x22

+0.058x1 − 0.034x2 + 5.127





X31(x) =

[
−4.107x1 − 1.199x2 − 1.504 −0.237x1 − 0.523x2 + 3.63

]
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X32(x) =


 −0.328x21 − 0.012x1x2 + 0.246x22

−1.023x1 − 1.056x2 + 0.784


 1.649x21 + 0.857x1x2 + 1.117x22

−1.425x1 − 0.652x2 − 3.693




X33(x) = 1.967x21 + 0.77x1x2 + 1.193x22 − 0.019x1 − 0.104x2 + 4.909

M1(x) =


 0.187x21 + 0.535x1x2 − 0.357x22

−7.872x1 − 0.456x2 − 5.301


 −3.998x21 + 0.521x1x2 − 4.149x22

−0.081x1 + 0.096x2 − 0.796




M2(x) =


 0.256x21 + 0.528x1x2 − 0.287x22

−7.898x1 − 0.408x2 − 5.676


 −3.861x21 + 0.489x1x2 − 3.943x22

−0.164x1 − 0.039x2 − 0.809




M3(x) =


 0.28x21 + 0.519x1x2 − 0.251x22

−7.857x1 − 0.366x2 − 5.817


 −3.811x21 + 0.497x1x2 − 3.879x22

−0.202x1 − 0.064x2 − 0.847




From Fig 4.1, it shows a locally asymptotically stable results for closed-loop FMB control

system in the operation domain.
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Figure 4.1: The phase plot of the simulation results
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Table 4.2: Bicycle Dynamic’s Parameters

Parameter Value Unit
M 25.5 [kg]

Ia 10.0 [kgm2]

L 1.0 [m]

h 0.575 [m]

v 2.5 [m/s]

η π
3 [rad]

Example 2:

Consider a bicycle dynamic system as Fig 4.2 and 4.3 shows. In Fig 4.2a L denotes the

length of the wheels base, η denotes the steering angle, h denotes the height of the bicycle’s

center of gravity, φ denotes the steering angle, and v denotes the running velocity. In Fig

4.2b M denotes the whole mass of the bicycle, and θ is the camber angle of the bicycle. In

Fig 4.3 β denotes the direction angle and R denotes the turning radius. Note that g denotes

the gravitational acceleration and its value is g = 9.81 m/s2.

(a) The bicycle coordinate from side position (b) The bicycle coordinate from back position

Figure 4.2: Two bicycle’s coordinates
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Figure 4.3: The bicycle coordinate from top position

The total dynamic of the bicycle is presented in the equation as

Iaθ̈ = Mghsinθ − Mv2h

L
· sin(η) · φ (4.20)

where Ia is the moment of inertia. The dynamic equation (4.20) can be rewritten in matrices

form as the following equation [65]:

 θ̇

θ̈

 =

 θ̇

Mgh
Ia

sinθ

+

 0

−Mv2h
LIa
· sin(η)

φ. (4.21)

By utilizing the Taylor series as technique proposed in [66], sinθ can be represented as

sinθ = h1θ + h2

(
θ − θ3

6

)
(4.22)

with the membership functions

h1 =


6(sinθ−θ)

θ3
+ 1 , θ 6= 0

0 θ = 0
, h2 = 1− h1.

Let x1 = θ and x2 = θ̇. Using (4.22), the dynamic (4.21) can be equal to the system matrices

of polynomial fuzzy model (2.9) with the parameters r = 2 and x̂(x) = x = [x1 x2]
T . Also,
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the system matrices is represented as

A1(x) =

 0 1

Mgh
Ia

0

 ,A2(x) =

 0 1

Mgh
Ia

(1− x21
6 ) 0

 ,B1(x) = B2(x) =

 0

−Mv2h
LIa
· sin(η)

 .
The operation domain is set to be x1 ∈ [−π

2
π
2 ] and x2 ∈ [−π π], and the bicycle parameters

are given in Table 4.2. By solving the SOS constraints (4.5)-(4.7), the solutions are shown as

X(x̃) =



 1.791x21 + 7.493× 10−7x1

+5.268


 −7.533x21 + 6.857× 10−7x1

−11.044

 2.98x21 − 1.222× 10−6x1

+0.869


 8.453x21 + 4.635× 10−6x1

+8.801





X21(x) =



0.231x41 + 0.001x31x2 + 0.022x21x
2
2

+4.804× 10−7x31 + 9.014× 10−8x21x2

−1.987× 10−8x1x
2
2

+0.541x21 − 0.016x1x2 + 0.094x22

+8.828× 10−7x1 + 4.169× 10−7x2 + 1.048





−0.512x41 − 0.034x31x2 − 0.17x21x
2
2

+4.975× 10−8x31 + 8.595× 10−7x21x2

−3.34× 10−8x1x
2
2

−0.855x21 − 0.024x1x2 − 0.295x22

+8.936× 10−8x1 + 1.136× 10−6x2 − 1.129




−4.166x41 + 0.154x31x2 − 0.506x21x
2
2

−4.73× 10−7x31 + 3.421× 10−7x21x2

−3.791× 10−7x1x
2
2

−6.646x21 + 0.157x1x2 − 2.103x22

−6.457× 10−7x1 + 1.562× 10−6x2 − 8.372





3.169x41 − 0.605x31x2 + 1.726x21x
2
2

−2.954× 10−7x31 − 1.241× 10−6x21x2

+6.351× 10−7x1x
2
2

+3.341x21 − 0.321x1x2 + 3.368x22

−3.505× 10−7x1 − 2.017× 10−6x2 + 5.373




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X22(x) =



0.478x41 + 0.066x31x2 + 0.393x21x
2
2

+0.013x1x
3
2 + 0.061x42 + 2.021× 10−7x31

+2.204× 10−7x21x2 + 2.157× 10−7x1x
2
2

+1.525× 10−7x32

+0.558x21 + 0.054x1x2 + 0.382x22

+2.448× 10−7x1 + 2.141× 10−7x2

+0.655





−0.041x41 + 0.003x31x2 − 0.07x21x
2
2

−0.007x1x
3
2 − 0.048x42 − 1.798× 10−9x31

−2.391× 10−7x21x2 + 1.166× 10−8x1x
2
2

−1.528× 10−8x32

+0.329x21 − 0.007x1x2 + 0.189x22

+2.044× 10−7x1 − 1.85× 10−7x2

+0.726




−0.72x41 + 0.039x31x2 − 0.172x21x
2
2

+0.002x1x
3
2 − 0.008x42 − 7.09× 10−7x31

+2.284× 10−7x21x2 − 2.844× 10−7x1x
2
2

+2.394× 10−8x32

−1.198x21 + 0.116x1x2 − 0.501x22

−7.997× 10−7x1 + 3.686× 10−7x2

−2.561





5.951x41 + 0.225x31x2 + 1.64x21x
2
2

+0.09x1x
3
2 + 0.334x42 + 4.387× 10−7x31

−3.442× 10−8x21x2 + 6.448× 10−7x1x
2
2

+2.576× 10−7x32

+5.1x21 + 0.149x1x2 + 1.117x22

+5.792× 10−7x1 + 7.356× 10−8x2

+7.597





X23(x) =





−0.32x41 + 0.06x31x2 + 0.168x21x
2
2

+0.014x1x
3
2 + 0.004x42 − 3.581× 10−7x31

−1.826× 10−7x21x2 − 2.382× 10−7x1x
2
2 − 3.077× 10−7x32

−0.175x21 + 0.042x1x2 + 0.111x22

−4.839× 10−7x1 − 3.133× 10−7x2 − 0.489




−1.951x41 − 0.367x31x2 − 0.84x21x
2
2

−0.294x1x
3
2 + 0.136x42 − 1.364× 10−6x31

−3.093× 10−7x21x2 − 2.501× 10−7x1x
2
2 − 1.076× 10−7x32

−2.35x21 + 0.061x1x2 − 1.248x22

−1.48× 10−6x1 − 4.076× 10−7x2 − 3.971




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X31(x) =



0.269x41 + 0.436x31x2 + 0.174x21x
2
2

+7.399× 10−9x31 − 1.828× 10−8x21x2

+1.293× 10−7x1x
2
2

+0.039x21 + 0.647x1x2 + 0.443x22

+2.045× 10−7x1

+1.677× 10−7x2 + 0.628





2.695x41 − 1.721x31x2 + 3.064x21x
2
2

+1.068× 10−6x31 − 4.598× 10−7x21x2

+7.125× 10−7x1x
2
2

+3.584x21 − 1.08x1x2 + 4.127x22

+1.293× 10−6x1

−2.099× 10−8x2 + 4.058





X32(x) =



1.183x41 + 0.06x31x2 + 0.284x21x
2
2

+0.008x1x
3
2 + 0.043x42 + 1.739× 10−7x31

+1.384× 10−7x21x2 + 1.359× 10−7x1x
2
2

+1.2× 10−7x32

+1.201x21 + 0.055x1x2 + 0.293x22

+1.369× 10−7x1

+7.228× 10−8x2 + 1.587





0.821x41 + 0.044x31x2 − 0.103x21x
2
2

+0.021x1x
3
2 − 0.028x42 + 7.371× 10−7x31

+5.623× 10−8x21x2 − 7.613× 10−8x1x
2
2

−1.503× 10−9x32

+1.091x21 − 0.02x1x2 + 0.115x22

+8.365× 10−7x1

−2.913× 10−7x2 + 1.637





X33(x) =1.538x41 + 0.105x31x2 + 1.187x21x
2
2 − 0.087x1x

3
2 + 1.426x42

+ 4.902× 10−7x31 + 2.796× 10−7x21x2 + 4.12× 10−7x1x
2
2 + 2.808× 10−7x32

+ 1.286x21 + 0.066x1x2 + 1.473x22 + 5.504× 10−7x1 + 6.154× 10−7x2 + 1.76

M1(x) =




4.299x21 + 0.611x1x2

+0.095x22 + 3.03× 10−6x1

+1.055× 10−6x2 + 9.47




9.458x21 − 0.558x1x2

+6.275x22 + 2.318× 10−6x1

+4.161× 10−6x2 + 8.526



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M2(x) =




3.019x21 + 0.684x1x2

+0.121x22 + 2.079× 10−6x1

+8.995× 10−7x2 + 9.445




8.073x21 − 0.588x1x2

+6.254x22 + 2.756× 10−6x1

+4.144× 10−6x2 + 8.507




By choosing the initial conditions as x1 = π
6 and x2 = 0, the simulation results are shown

in Fig 4.4, 4.5, and 4.6. It is obtained that the bicycle system controlled by the proposed

Theorem2 is asymptotically stable.

0 5 10 15

time
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Figure 4.4: The bicycle’s angle

49



Chapter 4 A Descriptor System Approach for Polynomial Fuzzy-Model-Based Control Design
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Figure 4.5: The bicycle’s angle speed
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Figure 4.6: The control input
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5
Stabilization By Fuzzy Slack

Matrices and Novel Fuzzy

Lyapunov Candidate

Chapter 4 presents a control design of polynomial FMB system beyond descriptor form’s

methodology. In this chapter, the research tries different ways to do the previous chapter’s

stabilization. Same as Chapter 4, a polynomial fuzzy model with PDC-based controller forms

a closed-loop system and is applied by descriptor representation. In the first proposed the-

orem in chapter 5, a common Lyapunov function like Chapter 4 is applied for stabilization.

The difference is that chapter 5 brings polynomial fuzzy slack matrices into stabilization based

on descriptor form representation’s redundancy. The fuzzy summation problem, caused by

the fuzzy slack matrices, is solved by co-positivity relaxation because it can be seen as the

co-positivity problem. In the second proposed theorem in chapter 5, a novel fuzzy Lyapunov

function is proposed to do the stabilization analysis. Note that the second proposed theorem

is based on the situation that input vectors have no relation to membership functions. As the

former is included in the novel fuzzy Lyapunov function and is taken as a special case, the fact

that the second theorem obtains less conservative stabilization results than the first theorem

is held. Because of the applying of novel fuzzy Lyapunov function, the membership functions’

time derivatives are required to apply in the stabilization analysis. This extraction divides

the differential function into common factors and the rest. Hence, to deal with this rest,

the sector nonlinearity technique is applied. Finally, this chapter presents six examples to

present the relaxation and comparison between these proposed theorems and previous studies.
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5.1 Stabilization via fuzzy slack matrices

Consider a polynomial fuzzy model (2.9) applied with the PDC-based controller (4.1) and

it is presented as the descriptor form (4.3). This section stabilizes the closed-loop system

(4.3) by fuzzy slack matrices. The fuzzy slack matrix is defined as

χjk(h,x) =

r∑
i=1

hi(z)Xjki(x), j = 2, 3, k = 1, 2, 3 (5.1)

where Xjki(x) are polynomial matrices in x. Therefore, the Lyapunov function (4.10) can

be rewritten as

V (x) = xTX−1(x̃)x = x∗T (x)E∗Θ−1(h,x)x∗(x) (5.2)

where

Θ(h,x) =


X(x̃) 0 0

χ21(h,x) χ22(h,x) χ23(h,x)

χ31(h,x) χ32(h,x) χ33(h,x)

 . (5.3)

By substituting the Lyapunov function (4.10) into the augmented form (5.2) , the fuzzy slack

matrices χjk(h,x) approach’s stabilization criterion are obtained.

Theorem 3 :

Consider the operation domain (2.1). If there are polynomials σijβ(x), a symmetric poly-

nomial matrix X(x̃) and polynomial matrices Mi(x), Xjki(x) , the system (2.9) is asymptot-

ically stable when satisfying

vT (X̂i(x)− ε1i(x)I)v is SOS, i = 1, . . . , r (5.4)

−

(
r∑

k=1

ĥ2k

)s r∑
i=1

r∑
j=1

ĥ2i ĥ
2
jv
T
1 Hij(x)v1 is SOS (5.5)

σijβ(x) is SOS, i, j = 1, . . . , r, β = 1, . . . , n (5.6)

where v and v1 are the vectors which are independent from x; s is a non-negative integer;

X̂i(x) =


X(x̃) 0 0

X21i(x) X22i(x) X23i(x)

X31i(x) X32i(x) X33i(x)


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and Hij(x) are given as

Hij(x) =



Aj(x)X21i(x) + Bj(x)X31i(x)

+XT
21i(x)AT

j (x) + XT
31i(x)BT

j (x)

−
∑

k∈K
∂X
∂xk

(x̃)Ak
j (x)x̂(x)

−
∑n

β=1 σijβ(x)Qβ(x)I + ε2ij(x)I


∗ ∗

 T(x)X(x̃)−X21i(x)+

XT
22i(x)AT

j (x) + XT
32i(x)BT

j (x)

 (
−X22i(x)−XT

22i(x)

)
∗

 Mj(x)−X31i(x)+

XT
23i(x)AT

j (x) + XT
33i(x)BT

j (x)

 (
−X32i(x)−XT

23i(x)

) (
−X33i(x)−XT

33i(x)

)


(5.7)

in which

Qβ(x) = (xβ − xmax
β )(xβ − xmin

β ), β = 1, . . . , n

polynomials ε1i(x) > 0 and ε2ij(x) > 0 for x 6= 0. The following equation can obtained the

stabilizing feedback gain.

Fj(x) = Mj(x)X−1(x̃). (5.8)

Proof:

Consider the Lyapunov function (4.10) in which X(x̃) > 0 is satisfied for x 6= 0 if (5.4)

holds. The Lyapunov function V (x)’s time derivative are

V̇ (x) = ẋTX−1(x̃)x+ xTX−1(x̃)ẋ+ xT Ẋ−1(x̃)x

= ẋTX−1(x̃)x+ xTX−1(x̃)ẋ

+ xT
n∑
k=1

∂X−1

∂xk
(x̃)ẋk.

(5.9)
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From the definition of K, it is obtained that

ẋk =
r∑
i=1

hi(z)A
k
i (x)x̂(x) (5.10)

for k ∈K, and

∂X−1

∂xi
(x̃) = 0 (5.11)

for i /∈K. Moreover, X−1(x̃)X(x̃) = I holds the following relation [37]:

∂X−1

∂xk
(x̃) = −X−1(x̃)

∂X

∂xk
(x̃)X−1(x̃). (5.12)

The derivative of Lyapunov function V (x)’s with respect of time can be represented as fol-

lowing by applying the augmented fuzzy matrix Θ(h,x) of (5.3) with (5.9) - (5.12).

V̇ (x) = ẋ∗T (x)E∗Θ−1(h,x)x∗(x)

+ x∗T (x)Θ−T (h,x)E∗ẋ∗(x)

− x∗T (x)Θ−T (h,x)
r∑
j=1

hj(z)

× Γj(x)Θ−1(h,x)x∗(x)

=
r∑
j=1

hj(z)x∗T (x)A∗Tj (x)Θ−1(h,x)x∗(x)

+ x∗T (x)Θ−T (h,x)
r∑
j=1

hj(z)A∗j (x)x∗(x)

− x∗T (x)Θ−T (h,x)
r∑
j=1

hj(z)

× Γj(x)Θ−1(h,x)x∗(x)

(5.13)

where

Γj(x) =


∑

k∈K
∂X
∂xk

(x̃)Ak
j (x)x̂(x) 0 0

0 0 0

0 0 0

 .
Furthermore, in the operation domain Dop, we have the inequality:

ψ(h,x) = −
r∑
i=1

r∑
j=1

n∑
β=1

hi(z)hj(z)σijβ(x)Qβ(x) ≥ 0 (5.14)
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where σijβ(x) ≥ 0 which is satisfied by (5.6). Define

Ψ(h,x) =


(ψ(h,x) + ε2(h,x))I 0 0

0 0 0

0 0 0


where ε2(h,x) =

∑r
i=1

∑r
j=1 hj(z)hi(z)ε2ij(x) being with polynomials ε2ij(x) > 0 for x 6= 0.

According to (2.10), ε2(h,x) > 0 for x 6= 0. In addition, (5.14) holds in Dop and X(x̃) is

a symmetric positive definite matrix. From the introduction of congruence in preliminaries,

the inequality

−X−1(x̃)(ψ(h,x) + ε2(h,x))IX−1(x̃) < 0 (5.15)

holds for Dop − {0}. From (5.15), it can be obtained that

− xTX−1(x̃)(ψ(h,x) + ε2(h,x))IX−1(x̃)x

= −x∗T (x)Θ−T (h,x)Ψ(h,x)Θ−1(h,x)x∗(x) < 0

(5.16)

for Dop − {0}. Therefore, V̇ (x) < 0 for Dop − {0} is satisfied when the following condition

hold

V̇ (x) ≤ −x∗T (x)Θ−T (h,x)Ψ(h,x)Θ−1(h,x)x∗(x). (5.17)

Applying V̇ (x) of (5.13) and letting (5.17)’s the right part move to the left, (5.17) is able to

be rewritten as
r∑
j=1

hj(z)x∗T (x)A∗Tj (x)Θ−1(h,x)x∗(x)

+ x∗T (x)Θ−T (h,x)

r∑
j=1

hj(z)A∗j (x)x∗(x)

− x∗T (x)Θ−T (h,x)

r∑
j=1

hj(z)Γj(x)Θ−1(h,x)x∗(x)

+ x∗T (x)Θ−T (h,x)Ψ(h,x)Θ−1(h,x)x∗(x) ≤ 0.

(5.18)

Inequality (5.18) holds if

r∑
j=1

hj(z){A∗Tj (x)Θ−1(h,x) + Θ−T (h,x)A∗j (x)−Θ−T (h,x)Γj(x)Θ−1(h,x)}

+ Θ−T (h,x)Ψ(h,x)Θ−1(h,x) ≤ 0.

(5.19)
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Multiplying (5.19)’s left by ΘT (h,x) and right by Θ(h,x) respectively to obtained simplify

the inequality above

r∑
i=1

r∑
j=1

hi(z)hj(z){X̂T
i (x)A∗Tj (x) + A∗j (x)X̂i(x)− Γj(x)

+


(−
∑n

β=1 σijβ(x)Qβ(x) + ε2ij(x))I 0 0

0 0 0

0 0 0

} ≤ 0.

(5.20)

Letting Mj(x) = Fj(x)X(x̃), if the following condition:

r∑
i=1

r∑
j=1

hi(z)hj(z)vT1 (−Hij(x))v1 ≥ 0. (5.21)

holds for all v1 ∈ R2n+m, inequality (5.20) holds

By applying the technique of co-positive relaxation in preliminaries’ chapter, the condition

(5.5) guarantees (5.21) being satisfied that means V̇ (x) < 0 for Dop − {0}. �

Remark 3. In [37], the polynomial fuzzy model (2.9) is stabilized by the following commonly

used Lyapunov function:

V (x) = x̂T (x)X−1(x̃)x̂(x). (5.22)

In contrast, the Lyapunov function (4.10) in chapter 4 is seen as a slightly modified version

of (5.22) which changes x̂(x) to x. Another thing is that the descriptor representation

(4.3)’s redundancy allows fuzzy slack matrices χjk(h, x) be introduced in the designing of

stabilization. These slack matrices make Theorem 3 get more relaxed results than [37] in

some cases. Example 1 shows a numerical case to prove this remark. One thing that has to

be noted is that this Theorem does not guarantee all the cases to have more relaxed results

than [37]. The reason is the fact that the stabilization criterion of [37] cannot be taken as

Theorem 3’s special case.

5.2 Stabilization via the novel fuzzy Lyapunov function

The following design methodology for stabilization is based on the cases that the inputs

vectors don’t relate to membership functions (i.e. hi(z) = hi(x̃) ∀i) in this subsection. A
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Section 5.2 Stabilization via the novel fuzzy Lyapunov function

function called ”Novel Fuzzy” is proposed for obtaining more relaxed stabilization results.

Furthermore, extracting membership functions’ time derivatives should be an issue when

doing the stabilization analysis since the novel fuzzy Lyapunov function is concerned. The

preliminaries have introduced membership functions’ differential extraction, which is pre-

sented as

ḣi(x̃) =

2∑
m=1

ωim(x)µim(x) (5.23)

with the techniques of sector nonlinearity. Where µim(x) are polynomial functions in x and

2∑
m=1

ωim(x) = 1 (5.24)

(For more details, see the preliminaries’ Chapter). The membership functions’ differential

extraction (5.23) and novel fuzzy Lyapunov function produce the stabilization criterion, which

will be introduced in Theorem 4.

Theorem 4 :

Consider the operation domain (2.1) and for hi(z) = hi(x̃) ∀i satisfying (5.23), if there

exist polynomials σijβ(x), symmetric polynomial matrices Xi(x̃) and polynomial matrices

Mi(x), Xjki(x), the transformed polynomial fuzzy descriptor system (4.3) is asymptotically

stable when the conditions below are satisfied.

vT (X̂
∗
i (x)− ε1i(x)I)v is SOS i = 1, . . . , r (5.25)

−

(
r∑

k=1

ĥ2k

)s r∑
i=1

r∑
j=1

ĥ2i ĥ
2
jv
T
1 H̄ijρm(x)v1 is SOS

ρ = 1, . . . , r − 1, m = 1, 2

(5.26)

σijβ(x) is SOS i, j = 1, . . . , r, β = 1, . . . , n (5.27)

where v and v1 are the vectors being independent from x; s is a non-negative integer;

X̂
∗
i (x) =


Xi(x̃) 0 0

X21i(x) X22i(x) X23i(x)

X31i(x) X32i(x) X33i(x)


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and H̄ijρm(x) are

H̄ijρm(x) =



Aj(x)X21i(x) + Bj(x)X31i(x)

+XT
21i(x)AT

j (x) + XT
31i(x)BT

j (x)

−
∑

k∈K
∂Xi
∂xk

(x̃)Ak
j (x)x̂(x)

−(r − 1)µρm(x)(Xρ(x̃)−Xr(x̃))

−
∑n

β=1 σijβ(x)Qβ(x)I + ε2ij(x)I


∗ ∗

 T(x)Xi(x̃)−X21i(x)+

XT
22i(x)AT

j (x) + XT
32i(x)BT

j (x)

 −X22i(x)−XT
22i(x) ∗

 Mj(x)−X31i(x)+

XT
23i(x)AT

j (x) + XT
33i(x)BT

j (x)

 −X32i(x)−XT
23i(x) −(X33i(x) + XT

33i(x))


(5.28)

in which

Qβ(x) = (xβ − xmax
β )(xβ − xmin

β ), β = 1, . . . , n

polynomials ε1i(x) > 0 and ε2ij(x) > 0 for x 6= 0. It can be obtained that the stabilizing

feedback gain is

Fj(x) = Mj(x)X̄−1(h, x̃). (5.29)

Proof:

Choose a novel fuzzy Lyapunov function as the candidate

V (x) = xT X̄−1(h, x̃)x (5.30)

where

X̄(h, x̃) =
r∑
i=1

hi(x̃)Xi(x̃)

andXi(x̃) are symmetric polynomial in x̃ of (4.4). If (5.25) holds, the inequality X̄(h, x̃) > 0

is satisfied for x 6= 0 . The novel fuzzy Lyapunov function V (x)’s time derivatives are
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Section 5.2 Stabilization via the novel fuzzy Lyapunov function

V̇ (x) = ẋT X̄
−1

(h, x̃)x + xT X̄
−1

(h, x̃)ẋ + xT ˙̄X−1(h, x̃)x. (5.31)

Since X̄
−1

(h, x̃)X̄(h, x̃) = I, it is obtained that

˙̄X−1(h, x̃)X̄(h, x̃) + X̄
−1

(h, x̃) ˙̄X(h, x̃) = 0

which means

˙̄X−1(h, x̃) = −X̄−1(h, x̃) ˙̄X(h, x̃)X̄
−1

(h, x̃). (5.32)

Furthermore,

˙̄X(h, x̃) =
r∑
i=1

ḣi(x̃)Xi(x̃) +
r∑
i=1

hi(x̃)Ẋi(x̃)

=
r∑
i=1

ḣi(x̃)Xi(x̃) +
r∑
i=1

hi(x̃)
n∑
k=1

∂Xi

∂xk
(x̃)ẋk.

(5.33)

From the definition of K, (5.10) is satisfied for k ∈K, and

∂Xi

∂xj
(x̃) = 0 (5.34)

for j /∈K. Therefore, (5.33) is transformed to

˙̄X(h, x̃) =

r∑
i=1

ḣi(x̃)Xi(x̃) +

r∑
i=1

r∑
j=1

hi(x̃)hj(x̃)

×
∑
k∈K

∂Xi

∂xk
(x̃)Ak

j (x)x̂(x).

(5.35)

Taking (5.32) with (5.35) into (5.31), it is obtained that

V̇ (x) = ẋT X̄
−1

(h, x̃)x + xT X̄
−1

(h, x̃)ẋ− xT X̄−1(h, x̃)

×

 r∑
i=1

ḣi(x̃)Xi(x̃) +

r∑
i=1

r∑
j=1

hi(x̃)hj(x̃)

×
∑
k∈K

∂Xi

∂xk
(x̃)Ak

j (x)x̂(x)

)
X̄−1(h, x̃)x.

(5.36)
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By defining

Θ̄(h,x) =


X̄(h, x̃) 0 0

χ21(h,x) χ22(h,x) χ23(h,x)

χ31(h,x) χ32(h,x) χ33(h,x)



Γ̂ij(x) =


∑

k∈K
∂Xi
∂xk

(x̃)Ak
j (x)x̂(x) 0 0

0 0 0

0 0 0


Γ̄(h,x) =

r∑
i=1

r∑
j=1

hi(x̃)hj(x̃)Γ̂ij(x)

ϕi(x̃) =


Xi(x̃) 0 0

0 0 0

0 0 0


then it is able to rewrite (5.36) as

V̇ (x) = ẋ∗T (x)E∗Θ̄−1(h,x)x∗(x)

+ x∗T (x)Θ̄−T (h,x)E∗ẋ∗(x)

− x∗T (x)Θ̄−T (h,x){
r∑
i=1

ḣi(x̃)ϕi(x̃)

+ Γ̄(h,x)}Θ̄−1(h,x)x∗(x)

=

r∑
j=1

hj(x̃)x∗T (x)A∗Tj (x)Θ̄−1(h,x)x∗(x)

+ x∗T (x)Θ̄−T (h,x)
r∑
j=1

hj(x̃)A∗j (x)x∗(x)

− x∗T (x)Θ̄−T (h,x){
r∑
i=1

ḣi(x̃)ϕi(x̃)

+ Γ̄(h,x)}Θ̄−1(h,x)x∗(x).

(5.37)

Furthermore, inequality (5.14) holds for Dop. Therefore, V̇ (x) < 0 in the region Dop − {0} is

satisfied if

V̇ (x) ≤ −x∗T (x)Θ̄−T (h,x)Ψ(h,x)Θ̄−1(h,x)x∗(x). (5.38)
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From (5.37), inequality (5.38) can be rewritten as

x∗T (x){
r∑
j=1

hj(x̃)
(
A∗Tj (x)Θ̄−1(h,x)

+Θ̄−T (h,x)A∗j (x)
)
− Θ̄−T (h,x)

( r∑
i=1

ḣi(x̃)ϕi(x̃)

+ Γ̄(h,x)

)
Θ̄−1(h,x)

+ Θ̄−T (h,x)Ψ(h,x)Θ̄−1(h,x)}x∗(x) ≤ 0.

(5.39)

Inequality (5.39) holds if

r∑
j=1

hj(x̃){A∗Tj (x)Θ̄−1(h,x) + Θ̄−T (h,x)A∗j (x)}

− Θ̄−T (h,x){
r∑
i=1

ḣi(x̃)ϕi(x̃) + Γ̄(h,x)}Θ̄−1(h,x)

+ Θ̄−T (h,x)Ψ(h,x)Θ̄−1(h,x) ≤ 0.

(5.40)

Multiply (5.40)’s right by Θ̄(h,x) and its left by Θ̄T (h,x) respectively, we have

r∑
j=1

hj(x̃){Θ̄T (h,x)A∗Tj (x) + A∗j (x)Θ̄(h,x)}

−
r∑

ρ=1

ḣρ(x̃)ϕρ(x̃)− Γ̄(h,x) + Ψ(h,x) ≤ 0.

(5.41)

According to (2.10),
∑r

ρ=1 ḣρ(x̃) = 0 holds such that

ḣr(x̃) = −
r−1∑
ρ=1

ḣρ(x̃). (5.42)

Then inequality (5.41) can be written as

r∑
j=1

hj(x̃){Θ̄T (h,x)A∗Tj (x) + A∗j (x)Θ̄(h,x)}

−
r−1∑
ρ=1

ḣρ(x̃)(ϕρ(x̃)−ϕr(x̃))

− Γ̄(h,x) + Ψ(h,x) ≤ 0.

(5.43)
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Applying (5.23) with the property(5.24), inequality (5.43) is equivalent to

1

r − 1

r−1∑
ρ=1

2∑
m=1

ωρm(x)

{ r∑
j=1

hj(x̃){Θ̄T (h,x)A∗Tj (x)

+ A∗j (x)Θ̄(h,x)} − (r − 1)µρm(x)(ϕρ(x̃)−ϕr(x̃))

− Γ̄(h,x) + Ψ(h,x)

}
≤ 0.

(5.44)

Letting Mj(x) = Fj(x)X̄(h, x̃), inequality (5.44) holds if the following conditions hold for

all v1 ∈ R2n+m:
r∑
i=1

r∑
j=1

hi(z)hj(z)vT1 (−H̄ijρm(x))v1 ≥ 0

ρ = 1, . . . , r − 1, m = 1, 2.

(5.45)

Also applies the technique of co-positive relaxation, the condition (5.26) guarantees (5.45)

being satisfied that means V̇ (x) < 0 for Dop − {0}. �

Remark 4. If Xi(x̃) = X(x̃) ∀i, Theorem 4 will become Theorem 3. The more relaxed

results are always obtained by Theorem 4 when compared to Theorem 3, though. There

is the limit that only the case no relation between membership functions and the inputs

(i.e. hi(z) = hi(x̃) ∀i) can apply Theorem 4, while no constrain is included in Theorem 3.

Beyond the situation that the system’s inputs is not related to membership functions, the

membership function’s time derivatives can be represented as

ḣi(z) =
∂hi(z)

∂x
ẋ

=
∂hi(z)

∂x

r∑
i=1

hi(z){Ai(x)x̂(x) + Bi(x)u}

which shows that the equation above is held with the control input u, which is necessary.

However, the fact that if the stabilization progress, which includes membership function’s

time derivative decomposition (5.23) (i.e. ḣi(z)), the control input u cannot be obtained.

That is why the control input u is not able to appear in the equation above from Theorem 4.
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Remark 5. Consider an open-loop descriptor systems presented in [4]

Eẋ = Ax (5.46)

where x ∈ Rn and A,E ∈ Rn×n. From theorem 2.2 of [4], (5.46) is regular, impulse-free, and

asymptotically stable if and only if there exist a matrix V such that

{
V TA+ATV < −W

ETV = V TE ≥ 0
(5.47)

for any positive definite matrix W . Conditions (5.47) are locally hold by,

� (3.5), (3.6), and (3.7) in Theorem 1 in Chapter 3.

� (4.5) and (4.6) in Theorem 2 in Chapter 4.

� (5.4) and (5.5) in Theorem 3 in Chapter 5.

� (5.25) and (5.26) in Theorem 3 in Chapter 5.

Therefore, if the proposed Theorems can find feasible solutions of designing examples in

Chapter 3, 4, and 5, the systems in designing examples are ”impulse-free”.

Remark 6. As Remark 2 mentioned, the descriptor form increases the size of the matrices.

Thus, the computational time increases when the structure of the system goes complicated.

The proposed Theorem 2 has the lowest computational time, which is almost the same as

the state-space polynomial model of [37] since the results of stabilization (4.5), (4.6), and

(4.7) are convex, and it has the fewest slack variables from Theorem 2 - 4. Theorem 3 and

4’s computational time are decided by the paramter of co-positive s from (5.5) and (5.26).

The bigger s is, the longer it takes. Theorem 1 also contains low computational time in SOS

decomposition, though. Its nonconvex stabilization results require path-following algorithm,

which does SOS decomposition many times make a long computational time. The conclusion

is, all the proposed Theorems have a big computational time to obtain the solution except

Theorem 2. However, the design examples show that the proposed Theorems can achieve the

real time control.
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5.3 Design Examples

In this section, to show the relaxation and effectiveness, six examples are given. In the

first example, the result gives that the proposed Theorem 3 obtains the best result. The

example uses the existing corollaries including the LMI-based descriptor form approach with

quadratic Lyapunov function and SOS-based non-descriptor form approach. The second and

third examples utilize the case for no relation between input vectors and membership func-

tions. The second example is a polynomial FMB example with the comparison of Theorem

3, Theorem 4, and SOS-based non-descriptor form approach. The results show that Theorem

4 has the best stability. The third example presents a LMI case (i.e. only constant system

matrices are considered in polynomial fuzzy models). Previous corollaries such as LMI-based

descriptor form approach with quadratic Lyapunov function and SOS-based non-descriptor

form approach, Theorem 3, and Theorem 4 are considered for the comparison. Consequently,

Theorem 4, which applies the novel fuzzy Lyapunov function (5.30) can obtain the best result.

The last three examples show the comparison between Theorem 1-4 and previous studies,

including two polynomial examples and one constant example.

Example 1:

Consider the polynomial fuzzy model (2.9) with parameters r = 3, x̂(x) = x = [x1 x2]
T ,

and the constant system matrices [71]:

A1 =

 1.59 −7.29

0.01 0

 , A2 =

 0.02 −4.64

0.35 0.21


A3 =

 −a −4.33

0 0.05


B1 =

 1

0

 , B2 =

 8

0

 , B3 =

 −b+ 6

−1

 .
To compare the stability, a is set as a = 2 and operation domain is set as x1 ∈ [−1 1] and

x2 ∈ [−1 1] Table 5.1 shows the stabilization results, which is represented in the maximum

values of b that each corollary can find, including [23], [37] and the proposed Theorem 3.

As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has no

meaning for the considering system. It is just a methodology for presenting relaxation.
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Table 5.1: Comparison of the Results

Studies Max feasible value of b

Theorem 2 of [37] None
Corollary 2 of [23] 6.34
The proposed Theorem 3 6.38

Since x̂(x) = x, the Lyapunov candidates for corollary 2 of [37] and Theorem 3 are the

same . As mentioned in Remark 3, the fuzzy slack matrices are introduced into Theorem 3’s

stabilization analysis under the redundancy of descriptor representation. The results reveal

that Theorem 3 has the best stability. Moreover, X(x̃) is a constant matrix since there is no

zero row in B3. Hence, the Lyapunov candidates for the proposed Theorem 3 and [23] are

also the same. Nevertheless, in this example, Theorem 3 has fuzzy slack matrices and local

feedback gains, which are polynomials, while [23] only contains constant matrices. Moreover,

co-positive technique is applied by the proposed Theorem 3 applies with SOS-based to deal

with the double fuzzy summation problems from the stabilization analysis. Thus, Theorem

3 can obtain more relaxed results than [23] in this example. Fig. 5.1 shows the simulation

result presented in phase plot. The membership functions are chosen as:

h1(z) =
1 + sin(x2)

3
, h2(z) = h3(z) =

2− sin(x2)

6
.

and phase plot are consider the parameters a = 2 and b = 6.38 for Theorem 3 and shows that

the system is asymptotically stable. The solution of decision variables are shown as follows:

X(x̃) =

 7.692 −0.827

−0.827 0.983



X211(x) =



 6.767× 10−10x1

−3.706× 10−9x2 − 4.684


 7.92× 10−11x1

+1.449× 10−11x2 − 0.549

 −9.521× 10−12x1

−8.705× 10−11x2 + 1.577


 1.132× 10−12x1

−1.498× 10−12x2 + 0.95




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X212(x) =



 1.283× 10−8x1

−7.687× 10−9x2 + 15.218


 −2.135× 10−9x1

+8.329× 10−13x2 − 11.377

 −3.238× 10−9x1

+6.51× 10−10x2 + 2.264


 −3.926× 10−11x1

−9.209× 10−11x2 + 1.908





X213(x) =



 −1.083× 10−8x1

−6.925× 10−9x2 + 13.972


 −7.279× 10−11x1

+1.362× 10−9x2 − 5.768

 1.426× 10−9x1

+2.949× 10−10x2 + 1.718


 −9.013× 10−11x1

−4.013× 10−11x2 + 0.889





X221(x) =




0.045x21 − 3.92× 10−11x1x2

+0.045x22 + 2.321× 10−9x1

−4.202× 10−10x2 + 4.425



−0.006x21 + 8.644× 10−11x1x2

−0.006x22 − 6.182× 10−10x1

−5.612× 10−10x2 − 0.663


0.006x21 − 5.525× 10−11x1x2

+0.006x22 − 3.298× 10−11x1

+3.026× 10−10x2 − 0.409




0.002x21 + 1.879× 10−12x1x2

+0.002x22 − 5.088× 10−12x1

−1.322× 10−11x2 + 0.432





X222(x) =




0.103x21 − 3.209× 10−10x1x2

+0.103x22 + 7.251× 10−9x1

+6.711× 10−10x2 + 43.373



−0.045x21 + 1.471× 10−10x1x2

−0.045x22 − 5.367× 10−10x1

−7.572× 10−10x2 − 4.441


0.025x21 + 8.852× 10−11x1x2

+0.025x22 + 8.119× 10−10x1

+1.434× 10−10x2 − 4.533




0.015x21 + 1.798× 10−11x1x2

+0.015x22 − 9.032× 10−10x1

+7.904× 10−11x2 + 1.47




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X223(x) =




0.385x21 + 2.515× 10−9x1x2

+0.385x22 − 4.525× 10−9x1

−2.012× 10−9x2 + 23.438




0.015x21 − 8.749× 10−11x1x2

+0.015x22 − 9.279× 10−10x1

−1.033× 10−9x2 − 2.417


−0.06x21 − 3.041× 10−10x1x2

−0.06x22 − 2.028× 10−10x1

+8.995× 10−11x2 + 0.175




0.003x21 + 1.174× 10−11x1x2

+0.003x22 + 2.109× 10−10x1

+5.424× 10−11x2 + 0.451





X231(x) =

 −0.142x21 + 2.65× 10−8x1x2 − 0.142x22

+4.396× 10−8x1 + 2.383× 10−8x2 + 29.183

(
−0.046x21 − 1.566× 10−9x1x2 − 0.046x22 + 4.774× 10−10x1 + 1.171× 10−9x2 + 0.432

)


X232(x) =

 1.128x21 − 6.952× 10−10x1x2 + 1.128x22

+1.143× 10−9x1 + 7.085× 10−9x2 + 46.309

(
−0.178x21 + 5.992× 10−9x1x2 − 0.178x22 − 6.052× 10−10x1 − 1.044× 10−9x2 − 1.731

)


X233(x) =

 0.87x21 + 4.674× 10−8x1x2 + 0.87x22

+8.177× 10−9x1 − 3.884× 10−9x2 + 36.735

(
0.026x21 − 6.593× 10−9x1x2 + 0.026x22 − 1.088× 10−9x1 − 6.346× 10−10x2 − 3.186

)


X311(x) =


 1.137× 10−8x1

+5.593× 10−9x2 − 11.084


 2.443× 10−11x1

+5.315× 10−11x2 + 7.413



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X312(x) =


 −9.556× 10−9x1

−6.468× 10−9x2 − 2.704


 −1.854× 10−9x1

−3.093× 10−10x2 − 1.192




X313(x) =


 8.586× 10−9x1

+7.531× 10−9x2 − 10.162


 1.297× 10−9x1

−4.035× 10−10x2 + 3.414




X321(x) =




0.026x21 − 1.365× 10−10x1x2

+0.026x22 + 1.929× 10−9x1

−8.651× 10−10x2 − 26.339




0.037x21 − 1.195× 10−10x1x2

+0.037x22 + 1.633× 10−9x1

+1.538× 10−10x2 + 1.834




X322(x) =



−0.06x21 + 3.742× 10−10x1x2

−0.06x22 + 6.532× 10−9x1

+1.201× 10−9x2 + 3.894




0.046x21 − 3.319× 10−10x1x2

+0.046x22 − 7.555× 10−10x1

+7.834× 10−11x2 + 0.779




X323(x) =



−0.06x21 − 1.494× 10−9x1x2

−0.06x22 − 1.003× 10−9x1

−1.107× 10−9x2 − 11.882



−0.052x21 + 1.295× 10−10x1x2

−0.052x22 + 2.034× 10−9x1

+2.318× 10−9x2 + 1.402




X331(x) = 8.594x21 + 8.927× 10−8x1x2 + 8.594x22

+ 5.225× 10−8x1 − 3.337× 10−8x2 + 28.576

X332(x) = 8.42x21 + 1.089× 10−7x1x2 + 8.42x22

+ 8.877× 10−8x1 − 2.491× 10−10x2 + 55.065

X333(x) = 8.932x21 + 6.438× 10−8x1x2 + 8.932x22

+ 4.657× 10−8x1 − 3.457× 10−8x2 + 39.605
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M1(x) =



0.012x41 − 5.064× 10−9x31x2 + 0.023x21x
2
2

−3.145× 10−9x1x
3
2 + 0.012x42

−4.247× 10−9x31

−5.561× 10−9x21x2 + 1.237× 10−9x1x
2
2

−4.25× 10−9x32

−8.579x21 − 7.937× 10−8x1x2 − 8.579x22

−6.088× 10−8x1

+5.076× 10−9x2 + 0.655





−0.015x41 − 1.425× 10−10x31x2 + 0.0004x21x
2
2

−1.321× 10−10x1x
3
2 − 0.015x42

−8.436× 10−11x31

+1.881× 10−11x21x2 − 5.415× 10−11x1x
2
2

+6.053× 10−11x32

+0.015x21 + 3.673× 10−10x1x2 + 0.015x22

+8.558× 10−11x1

−8.489× 10−11x2 + 6.859




M2(x) =



0.339x41 + 7.12× 10−9x31x2 + 0.059x21x
2
2

+2.979× 10−9x1x
3
2 + 0.339x42

−7.495× 10−9x31

+3.462× 10−9x21x2 − 1.046× 10−10x1x
2
2

+1.245× 10−9x32

−71.616x21 − 8.738× 10−7x1x2 − 71.616x22

−5.464× 10−7x1

+8.797× 10−8x2 − 378.656





0.034x41 + 3.684× 10−10x31x2 + 0.039x21x
2
2

+4.566× 10−10x1x
3
2 + 0.034x42

+2.192× 10−10x31

+3.691× 10−11x21x2 + 1.589× 10−10x1x
2
2

+2.366× 10−11x32

−0.015x21 − 1.739× 10−9x1x2 − 0.015x22

−4.48× 10−10x1

+1.174× 10−10x2 − 2.517




M3(x) =



−0.631x41 + 8.629× 10−9x31x2 − 0.28x21x
2
2

+1.318× 10−8x1x
3
2 − 0.631x42

+9.107× 10−9x31

−5.55× 10−9x21x2 + 5.189× 10−9x1x
2
2

−2.36× 10−9x32

+3.301x21 − 1.112× 10−8x1x2 + 3.301x22

+8.481× 10−9x1

+7.803× 10−10x2 + 52.225





−0.16x41 − 3.302× 10−9x31x2 − 0.101x21x
2
2

−7.699× 10−9x1x
3
2 − 0.16x42

−3.045× 10−9x31

−1.229× 10−9x21x2 − 2.641× 10−9x1x
2
2

+7.307× 10−10x32

+9.447x21 + 1.25× 10−7x1x2 + 9.447x22

+7.527× 10−8x1

−1.187× 10−8x2 + 49.727




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Figure 5.1: The phase plot of the simulation results

Example 2:

Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and x̂(x) = x =

[x1 x2]
T . The example gives the following system matrices and membership functions:

A1(x) =


1.59− 1.66x1x2

 −8 + 0.22x2

−1.68x22 − 1.45x21


0 −0.36


A2(x) =

 −a− x1 + x2 −4− 0.5x1x
2
2 − 3.35x21

0 −0.04


B1(x) =

 1 + x21 + x22

0

 , B2(x) =

 −b+ 6 + 9x21 + 6x22

0


h1(x2) =

1 + sin(x2)

2
, h2(x2) =

1− sin(x2)

2
.

To show the comparison, a is set as a = 2 and operation domain is set as x1 ∈ [−2 2] and

x2 ∈ [−2 2].

By applying the technique described preliminaries which is about the decomposition (5.23)
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Table 5.2: Comparison of the Results

Studies Max feasible value of b

The proposed Theorem 1 7.02
Theorem 2 of [37] 7.06
The proposed Theorem 2 7.1

of ḣ1(x2), it can be obtained that

µ11 = 0.1589, µ12 = −0.1002.

In preliminaries, the property (5.42) points that the numbers of membership function’s

differentials are r − 1. In this case, the decomposition of ḣ2(x2) is not needed for Theorem

4. Table 5.2 shows the maximum value of b in which [37], Theorem 3, and Theorem 4 can

find. As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has

no meaning for the considering system. It is just a methodology for presenting relaxation.

As Remark 3 says, Theorem 3 cannot always obtain better results than [37] since its

Lyapunov function is not a special case. In this example, Table 5.2 reveals that better stability

is seen in [37] when compared to Theorem 3. The table also shows that the stabilization

analysis done by novel fuzzy Lyapunov function (5.30) and the decomposition (5.23) of time

derivatives of membership function can obtain a more relaxed result than [37]. Moreover, it is

no doubt that more relaxed results than Theorem 3 are obtained in Theorem 4, as mentioned

in Remark 4. Fig. 5.2 shows the simulation results presented in phase plot of Theorem 4

with the parameters a = 2 and b = 7.1, and it can be seen that the system is asymptotically

stable.

The solution of the decision variables are shown as follows:

X1(x̃) =

 (6.19x22 − 1.044x2 + 21.677) (−0.03x22 + 0.006x2 + 0.327)

(−0.03x22 + 0.006x2 + 0.327) (0.002x22 − 0.004x2 + 0.046)



X2(x̃) =

 (15.825x22 − 5.629x2 + 14.396) (−0.025x22 − 0.008x2 + 0.046)

(−0.025x22 − 0.008x2 + 0.046) (0.004x22 − 0.004x2 + 0.039)


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X211(x) =



 0.515x1x2 − 0.413x22

−0.121x1 + 0.82x2 + 9.178


 −0.018x1x2 − 0.001x22

+0.008x1 + 0.003x2 − 0.037

 0.063x1x2 + 0.01x22

−0.391x1 − 0.108x2 + 1.532


 −0.001x1x2 + 0.005x22

+0.001x1 − 0.003x2 + 0.112





X212(x) =



 3.025x1x2 − 0.011x22

−1.792x1 + 2.977x2 + 14.313


 0.003x1x2 − 0.001x22

−0.002x1 − 0.025x2 − 0.068

 −0.026x1x2 − 0.025x22

−0.083x1 − 0.968x2 + 1.474


 3.264× 10−5x1x2 + 0.002x22

+0.001x1 − 0.004x2 + 0.054





X221(x) =



 0.24x21 + 0.099x1x2 + 0.2x22

−0.033x1 + 0.172x2 + 3.336


 0.013x21 − 0.042x1x2 + 0.001x22

−0.011x1 + 0.005x2 − 0.761

 −0.045x21 − 0.079x1x2 − 0.005x22

−0.134x1 − 0.044x2 + 0.723


 0.019x21 + 0.003x1x2 + 0.012x22

+0.003x1 + 0.007x2 + 0.186





X222(x) =



 1.519x21 + 0.054x1x2 + 0.875x22

−0.366x1 + 0.195x2 + 7.632


 0.005x21 + 0.003x1x2 − 0.136x22

−0.034x1 − 0.216x2 − 0.872

 −0.014x21 − 0.004x1x2 + 0.009x22

−0.174x1 + 0.112x2 + 0.201


 0.01x21 − 4.685× 10−5x1x2

+0.001x22 + 0.004x1 + 0.001x2 + 0.268





X231(x) =



 −0.029x21 − 0.139x1x2 + 0.036x22

+0.072x1 − 0.37x2 − 2.167

 0.008x21 − 0.003x1x2 + 0.0001x22

+0.263x1 + 0.018x2 − 0.836





X232(x) =



 9.147x21 + 0.073x1x2 + 0.007x22

+0.201x1 + 0.168x2 − 4.557

 0.0004x21 + 1.606× 10−5x1x2

+0.0002x22 + 0.083x1 + 0.001x2 − 0.369





72



Section 5.3 Design Examples

X311(x) =


 −0.023x1x2 − 0.384x22

−0.054x1 + 0.191x2 − 25.383


 −6.541x1x2 + 5.295× 10−5x22

+0.01x1 − 0.009x2 + 0.197




X312(x) =


 −0.021x1x2 − 0.314x22

−0.004x1 − 0.074x2 − 14.821


 −4.131x1x2 + 0.0002x22

+0.0009x1 − 0.001x2 + 0.02




X321(x) =


 0.034x21 + 0.209x1x2 − 0.015x22

−0.056x1 − 0.084x2 − 3.989


 0.003x21 − 0.001x1x2 + 0.001x22

+0.037x1 + 0.001x2 + 0.641




X322(x) =


 0.011x21 + 0.008x1x2 − 0.006x22

+0.123x1 − 0.142x2 − 2.025


 0.0002x21 + 5.925× 10−6x1x2

+0.0002x22 + 0.009x1 + 0.001x2 + 0.12




X331(x) = 0.009x21 + 0.001x1x2 + 0.014x22 + 0.115x1 + 0.016x2 + 9.564

X332(x) = 0.002x21 + 0.0004x1x2 + 0.003x22 + 0.017x1 + 0.004x2 + 6.296

M1(x) =
 −13.896x21 − 3.044x1x2 − 15.848x22

+2.078x1 + 2.565x2 − 36.743


 −0.019x21 − 0.023x1x2

+0.011x22 + 0.016x1 − 0.006x2 − 0.025




M2(x) =
 −59.709x21 − 1.136x1x2 − 41.135x22

−0.622x1 + 1.277x2 − 9.791


 0.001x21 + 0.002x1x2

+0.01x22 + 0.0005x1 − 0.002x2 − 0.01



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Figure 5.2: The phase plot of the simulation results
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Table 5.3: Comparison of the Results

Studies Max feasible value of b

Theorem 2 of [37] 52.13
The proposed Theorem 3 52.13
Corollary 3 of [23] 52.14
The proposed Theorem 4 52.16

Example 3 :

Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and x̂(x) = x =

[x1 x2]
T and give the following constant system matrices and membership functions:

A1(x) =

 0.20 −3.22

0.35 0.12

 , A2(x) =

 −a −6.63

0.45 0.15


B1(x) =

 8

0

 , B2(x) =

 −b+ 6

0


h1(x2) =

1 + sin(x2)

2
, h2(x2) =

1− sin(x2)

2
.

To show the comparison, a is set as a = 2 and operation domain is set as x1 ∈ [−1 1] and

x2 ∈ [−1 1].

By applying the technique described preliminaries for the decomposition (5.23) of ḣ1(x2),

it can be obtained that

µ11 = 0.2041, µ12 = −0.2191.

Same as Example 2, the decomposition of ḣ2(x2) is not needed. Table 5.3 shows the maximum

values of b in which [37], [23], Theorem 3 and Theorem 4 can find. As Remark 1 mentioned,

the quantity of the maximum feasible value of “b” itself has no meaning for the considering

system. It is just a methodology for presenting relaxation.

From table 5.3, it gives the information that LMI-based descriptor form design approach

stabilized by quadratic Lyapunov function as the approach presented in [23] sometimes ac-

quires better stability than polynomial method as Theorem 3 and [37]. Here, Theorem 4

chooses x̃ = x2 and apply to the novel fuzzy Lyapunov function (5.30)’s stabilization be-

cause that input matrices Bi’ second rows are all zeros. This Lyapunov function is more

flexible than [23] which applies quadratic fuzzy Lyapunov function. Besides, citeTanaka2007
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just considers the lower bound of membership function time derivative, while the proposed

Theorem 4 considers both the upper and lower bounds. Hence, Theorem 4 can have more

relaxed stability than [23] in this example. Fig. 5.3 shows the simulation result represented

in phase plot of Theorem 4 with the parameters a = 2 and b = 52.16, and it can be seen that

the system is asymptotically stable. The solution of the decision values are shown as follows:

X1(x̃) =

 (0.003x22 − 1.002× 10−12x2 + 87.025) (−0.0002x22 − 6.902× 10−14x2 − 2.924)

(−0.0002x22 − 6.902× 10−14x2 − 2.924) (0.001x22 − 1.274× 10−13x2 + 8.524)


X2(x̃) =

 (0.018x22 − 1.575× 10−12x2 + 86.997) (0.001x22 + 9.637× 10−13x2 − 2.885)

(0.001x22 + 9.637× 10−13x2 − 2.885) (0.001x22 − 7.181× 10−14x2 + 8.524)



X211(x) =




2.66× 10−6x1x2

+0.001x22 + 15.722

−3.724× 10−9x1 + 2.893× 10−8x2




0.0003x1x2 − 0.01x22 − 3.959

−7.291× 10−10x1

−5.191× 10−10x2


7.285× 10−5x1x2

+0.005x22 + 11.338

+2.089× 10−9x1 − 6.633× 10−9x2




−1.247× 10−5x1x2

+0.0002x22 + 1.996

−6.52× 10−10x1 + 1.127× 10−9x2





X212(x) =



 0.0006x1x2 − 0.013x22 − 0.979

+1.226× 10−8x1 + 3.699× 10−8x2


 0.002x1x2 − 0.022x22 − 4.619

−2.581× 10−9x1 − 4.422× 10−9x2

 −0.001x1x2 + 0.025x22 + 1.974

−6.256× 10−9x1 + 1.52× 10−8x2


 −9.985× 10−5x1x2 + 0.0002x22 + 0.229

−2.811× 10−9x1 + 1.706× 10−9x2




X221(x) =

 0.118x21 + 0.043x1x2 + 0.134x22 + 9.903

+2.299× 10−9x1 − 2.139× 10−9x2


 −0.0001x21 − 0.001x1x2 − 0.004x22 − 20.535

−4.558× 10−10x1 + 1.076× 10−8x2

 −0.014x21 − 0.004x1x2 − 0.011x22 + 17.737

+2.04× 10−9x1 − 2.636× 10−9x2


 0.016x21 + 0.005x1x2 + 0.017x22 + 2.683

−4.92× 10−10x1 − 1.692× 10−9x2




X222(x) =

 0.84x21 + 0.014x1x2 + 0.817x22 + 9.035

+6.186× 10−9x1 + 1.309× 10−8x2


 −0.109x21 − 0.02x1x2 − 0.101x22 − 17.791

−4.461× 10−10x1 − 7.298× 10−9x2

 0.001x21 − 0.002x1x2 − 0.013x22 + 17.146

+5.606× 10−9x1 − 5.265× 10−9x2


 0.127x21 + 0.036x1x2 + 0.129x22 + 3.704

+3.799× 10−9x1 + 4.24× 10−9x2




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X231(x) =



 −0.002x21 − 0.001x1x2 + 0.001x22

+8.42× 10−9x1 + 1.133× 10−8x2 + 0.431

 −4.902x21 + 0.001x1x2 − 0.008x22

−1.036× 10−8x1 − 4.237× 10−9x2 − 1.106





X232(x) =



 −0.021x21 + 0.005x1x2 − 0.025x22

−3.878× 10−9x1 + 2.133× 10−8x2 + 0.302

 −0.005x21 − 0.008x1x2 + 0.033x22

−4.844× 10−9x1 + 1.54× 10−9x2 − 1.114





X311(x) =
 0.002x1x2 − 0.015x22 − 1.393

+8.652× 10−9x1 + 1.119× 10−8x2


 6.304x1x2 − 0.0003x22 + 0.056

+1.968× 10−10x1 + 3.133× 10−10x2




X312(x) =
 −0.004x1x2 + 0.164x22 + 0.722

+7.391× 10−9x1 + 2.437× 10−9x2


 −0.0004x1x2 + 0.002x22 + 0.162

+9.235× 10−10x1 + 8.437× 10−10x2




X321(x) =
 −0.006x21 − 0.002x1x2 − 0.007x22 − 1.146

−1.539× 10−9x1 − 1.892× 10−9x2


 0.001x21 − 5.211× 10−5x1x2 + 0.005x22

+2.82× 10−9x1 + 2.886× 10−9x2 + 0.728




X322(x) =
 −0.033x21 − 0.0002x1x2 − 0.031x22 − 0.968

−2.014× 10−9x1 − 2.562× 10−9x2


 −0.025x21 − 0.003x1x2 − 0.025x22 + 0.205

−4.784× 10−10x1 + 1.846× 10−9x2




X331(x) = 0.599x21 − 0.0001x1x2 + 0.63x22 − 6.345× 10−10x1 + 8.16× 10−10x2 + 0.689

X332(x) = 0.599x21 − 0.001x1x2 + 0.63x22 + 2.201× 10−9x1 − 1.64× 10−9x2 + 0.709
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M1(x) =

−4.777x21 + 0.015x1x2 − 5.03x22

−1.142× 10−9x1

+6.902× 10−10x2 − 8.327



−0.0002x21 + 7.374× 10−5x1x2 − 0.0003x22

−4.023× 10−12x1

+6.902× 10−10x2 − 0.259




M2(x) =


27.568x21 − 0.083x1x2 + 29.028x22

+6.28× 10−9x1

−4.154× 10−9x2 − 25.334



−0.001x21 − 0.0004x1x2 − 0.001x22

+3.405× 10−11x1

−8.366× 10−11x2 − 0.26



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Figure 5.3: The phase plot of the simulation results

Example 4:

Consider the polynomial fuzzy model (2.9) with parameters r = 2, x̂(x) = x = [x1 x2]
T ,

and the polynomial system matrices:
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A1(x) =


1.59− 1.66x1x2

 −8 + 0.22x2

−1.68x22 − 1.45x21


0 −0.36


A2(x) =

 −a− x1 + x2 −6− 0.5x1x
2
2 − 3.35x21

0 −0.01


B1(x) =

 1 + x21 + x22

0

 , B2(x) =

 −b+ 6 + 9x21 + 6x22

0


h1 =

1 + sin(x2)

2
, h2 = 1− h1.

By applying the technique described preliminaries which is about the decomposition (5.23)

of ḣ1(x2), it can be obtained that

µ11 = 0.0031, µ12 = −0.0401.

In preliminaries, the property (5.42) points that the numbers of membership function’s dif-

ferentials are r − 1. In this case, the decomposition of ḣ2(x2) is not needed for Theorem 4.

Table 5.4 shows the maximum value of b in which [37] and all Theorems in the thesis can

find. As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has

no meaning for the considering system. It is just a methodology for presenting relaxation.

The results reveal that the proposed Theorem 1 and 2 doesn’t obtain any feasible solution

while [37] does. As mentioned in Remark 3, Theorem 2 cannot always obtain better result

than [37] since its Lyapunov function is not a special case, neither does Theorem 3. Further-

more, Theorem 1 is almost an independent system from Theorem 2 - 4 and [37]. Thus, it is

not guaranteed that Theorem 1 - 3 can always obtain more relaxed results than [37]. The

only thing that can be guaranteed is that Theorem 3, which brings polynomial fuzzy slack

matrices into stabilization, is more general and relaxed than Theorem 2 since it has more

slack variables. The other thing is that this example proves that novel fuzzy Lyapunov func-

tion is better than quadratic Lyapunov function as Remark 4 mentioned. Fig. 5.4 shows

the simulation result of Theorem 4 presented in phase plot, and it brings out that the system

is asymptotically stable.
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Figure 5.4: The phase plot of the simulation results

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

Figure 5.5: The phase plot of the simulation results

Example 5:

Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and x̂(x) = x =
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Table 5.4: Comparison of the Results

Studies Max feasible value of b

The proposed Theorem 1 None
The proposed Theorem 2 None
Corollary 2 of [37] 5.06
The proposed Theorem 3 5.7
The proposed Theorem 4 6.15

[x1 x2]
T . The example gives the following system matrices and membership functions:

A1(x) =


1.59− 1.66x1x2

 −8 + 0.22x2

−1.68x22 − 1.45x21


0 −0.36


A2(x) =

 −a− x1 + x2 −6− 0.5x22 − 3.35x21

0 −0.01


B1(x) =

 1 + x21 + x22

0

 , B2(x) =

 −b+ 6 + 9x21 + 6x22

0


h1 = 1− 1

1 + 0.5e−
x2
2

, h2 = 1− h1.

To show the comparison, a is set as a = 2 and operation domain is set as x1 ∈ [−1 1] and

x2 ∈ [−1 1].

By applying the technique described preliminaries which is about the decomposition (5.23)

of ḣ1(x2), it can be obtained that

µ11 = 0.003, µ12 = −0.0119.

In preliminaries, the property (5.42) points that the numbers of membership function’s

differentials are r − 1. In this case, the decomposition of ḣ2(x2) is not needed for Theorem

4. Table 5.6 shows the maximum value of b in which [37] and all Theorems in the thesis can

find. As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has

no meaning for the considering system. It is just a methodology for presenting relaxation.

Theorem 1 is almost an independent system from Theorem 2 - 4 and [37]. Thus, it is not

guaranteed that Theorem 1 can always obtain more relaxed results than [37]. Theorem 3,
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Table 5.5: Comparison of the Results

Studies Max feasible value of b

The proposed Theorem 1 41.25
Corollary 2 of [37] 41.49
The proposed Theorem 2 41.51
The proposed Theorem 3 41.51
Corollary 3 of [23] 45.45
The proposed Theorem 4 45.84

which brings polynomial fuzzy slack matrices into stabilization, is more general and relaxed

than Theorem 2 since it has more slack variables. Theorem 4 obtains the best result, proving

that the novel fuzzy Lyapunov function is better than the quadratic Lyapunov function as

Remark 4 mentioned. Fig. 5.5 shows the simulation results presented in phase plot of

Theorem 4. It can be seen that the system is asymptotically stable.

Example 6 :

Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and x̂(x) = x =

[x1 x2]
T and give the following constant system matrices and membership functions:

A1(x) =

 0.25 −3.12

0.35 0.1

 , A2(x) =

 −a −5.63

0.45 0.2


B1(x) =

 8

0

 , B2(x) =

 −b+ 6

0


h1(x2) =

1 + sin(x2)

2
, h2(x2) =

1− sin(x2)

2
.

To show the comparison, a is set as a = 2 and operation domain is set as x1 ∈ [−1 1] and

x2 ∈ [−1 1].

By applying the technique described preliminaries for the decomposition (5.23) of ḣ1(x2),

it can be obtained that

µ11 = 0.2049, µ12 = −0.2247.

Same as Example 2, the decomposition of ḣ2(x2) is not needed. Table 5.5 shows the maximum

values of b in which [37], [23], and all Theorems in the thesis can find. As Remark 1

mentioned, the quantity of the maximum feasible value of “b” itself has no meaning for the

considering system. It is just a methodology for presenting relaxation.
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Table 5.6: Comparison of the Results

Studies Max feasible value of b

The proposed Theorem 1 None
Corollary 2 of [37] 7.12
The proposed Theorem 2 7.13
The proposed Theorem 3 7.14
The proposed Theorem 4 7.25

Here, Theorem 4 chooses x̃ = x2 and apply to the novel fuzzy Lyapunov function (5.30)’s

stabilization because that input matrices Bi’ second rows are all zeros. The first thing is that

sometimes polynomial fuzzy slack matrices don’t greatly affect the stabilization results beyond

the same Lyapunov function. This is shown by Theorem 2 and 3, which have almost the

same results. The next thing is that novel fuzzy Lyapunov function in Theorem 4 and fuzzy

Lyapunov function in [23] perform better than quadratic Lyapunov function. Especially novel

fuzzy Lyapunov function in Theorem 4 is more flexible than [23]. Besides, [23] just considers

the lower bound of membership function time derivative, while the proposed Theorem 4

considers both the upper and lower bounds. Hence, Theorem 4 can have the most relaxed

stability than [23] in this example. Fig. 5.6 shows the simulation result represented in phase

plot of Theorem 4, and it can be seen that the system is asymptotically stable.
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Figure 5.6: The phase plot of the simulation results
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6
Conclusions and Future Work

6.1 Conclusion

A descriptor form design methodology for polynomial FMB control systems has been pre-

sented in this thesis. The polynomial fuzzy model has been represented in descriptor form.

Four design methodologies have been proposed, and all of them are constructed in the op-

eration domain. Thus, their stabilization analysis is local stabilization, and the stabilization

conditions are presented in SOS terms.

At first, in Chapter 3, a rational control design has been proposed. The thesis proposed

a polynomial fuzzy model with the controller, which considers the rational functions. The

closed-loop system containing the model and the controller is represented in the descriptor

form. To stabilize the system, a homogeneous functions’ method has been presented in this

thesis. The Lyapunov candidate has been chosen as the homogeneous Lyapunov function

in which the matrix of decision variables is a homogeneous matrix. By considering the

properties of Euler’s homogeneity relation, the differential of the Lyapunov function has been

able to be extracted. The rest part of the stabilization has been analyzed by considering the

stabilization method of the descriptor design methodology for T-S fuzzy model. However,

the bilinear term appears in the stabilization conditions and makes it impossible to solve

directly by SOSTOOL. Therefore, the path-following approach has been applied to solve the

conditions. An example has been presented to show the comparison between the proposed

method and the polynomial fuzzy model without descriptor form. The result has been proven

that the proposed method obtains more relaxed results when in the same operation domain.

Because the path-following method may not find the optimal result for solving the stabi-

lization constraints, the thesis has tried other descriptor form design methodology for poly-

nomial FMB control design. The controller for polynomial fuzzy model has been changed

to the PDC-based polynomial controller, which shares the membership function with the
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polynomial fuzzy model.

In Chapter 4, a polynomial fuzzy model with PDC-based polynomial controller has been

presented and has been represented in the descriptor form. The Lyapunov candidate for sta-

bilization has been chosen as a Lyapunov function which is commonly used in the research for

polynomial fuzzy model. The stabilization has been extracted by considering the definition

of the vector x̃ and the vector of the membership function. The properties of congruence

transformation have also been considered for stabilization analysis. Compared with the poly-

nomial fuzzy model without descriptor form (previous study), in the same operation domain,

the matrices’ dimension in the proposed method is higher than the previous study, though.

The number of the SOS constraints from the proposed method is smaller than the previous

study. The contrast shows that the proposed method is more suitable with the cases that

contain more rules, but the state vector’s dimension should be small. Moreover, compared

with the method in Chapter 3, the proposed method has not contained the bilinear or non-

convex term. The proposed method does not need to use the path-following algorithm to

solve the conditions. Two examples have been provided, including a numerical example and

an application example. The numerical shows that the feasibility (relaxation) of the pro-

posed approach is similar to the existing polynomial FMB control design approach, though.

The smaller number of constraints means that the proposed method still held the advantage

when compared with the existing polynomial FMB control design approach. The application

example gives a bicycle dynamic system. The proposed method has been successfully made

the system stable by setting the operation domain of the bicycle’s angle and angle speed.

Chapter 5 has considered the same model, controller, and Lyapunov function as Chap-

ter4. The improvement is that the matrices which contain fuzzy slack variables have been

brought into the stabilization. The fuzzy slack matrices have made the Lyapunov candidate

be rewritten into a new form and produce a new stabilization analysis. The SOS condi-

tions born from the stabilization analysis contain double fuzzy summation, which can be

taken as co-positivity problem. Thus, the copositive relaxation has been applied and made

the double fuzzy summation disappear from the conditions. A numerical example has been

presented to compare the existing polynomial FMB control design approach, the descriptor

design methodology for T-S fuzzy system, and the proposed approach. The summary has

been shown that the proposed method can obtain the more relaxed result than the rest two

approaches in some cases.
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Furthermore, for the special cases that all membership functions are functions of the states

being not related to the inputs, Chapter 5 has proposed the second stabilization design ap-

proach which applies the novel fuzzy Lyapunov function. This kind of Lyapunov function

contains an inverse of fuzzy summation matrix. Since the differential of the Lyapunov func-

tion contains membership function’s differential terms in stabilization, the thesis has proposed

a method to extract the time derivative of membership function. After extracting the dif-

ferential of membership function, the sector nonlinearity method has been applied to deal

with the rest part of the membership function, which considers its maximum and minimum

values in the operation domain. Because the first method of Chapter 5 is seen as a special

case of the proposed method, the thesis has proven that the proposed method is always more

relaxed than the first method in Chapter 5. Two numerical examples have been presented to

show the comparison with the proposed method, the previous method, and previous studies.

The first one is a polynomial example, and the comparison is to compare with the proposed

method, existing polynomial FMB control design approach, and the first method of Chapter

5. The results have been shown that the proposed method performs best from them. The

second one is an LMI example to compare with the proposed method, the existing polyno-

mial FMB control design approach, the first method of Chapter 5, and the descriptor design

methodology for T-S fuzzy system. The proposed method has also obtained the best result.

Finally, there have been three common examples that compare the four proposed Theorems

in the thesis with the previous studies. The results have shown that Theorem 4 has the best

performance than other proposed Theorems and previous studies beyond the special case.

6.2 Future Planes

Because the novel fuzzy Lyapunov function can have the best performance than the pro-

posed three Theorems, we will try the modification on this part. As the stabilization analysis

of the novel fuzzy Lyapunov function brings the issue of membership functions’ time deriva-

tives, the research will add this term to the current PDC-based control design. In the common

cases, this term cannot be implemented to the controller since it requires the future informa-

tion of the input signals and may need to consider the observer-based controller and feedback.

Therefore, bringing the time derivatives of membership functions to the controller makes it
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necessary to construct the model under the special case that

hi(z) = hi(x̃) ∀i

where x̃ is the vector that is the vector that is not related to the input vector, which means

that the membership function is the function that has no relationship to the input vector.

Beyond the special case, no future information is needed to estimate the derivative of the

states in the membership function. The future information can be predicted by the current

state. It can be expected that this method can also obtain better results than the current

research Theorem 4. The next step may be adding the constrain to membership function,

since the research’s design methodologies are all constructed locally. In this thesis, only the

differential of membership functions is added to the upper and lower bound. This concept

will be added into the membership function ”without” differentiation. Last but not least, the

region-of-attraction (ROA)’s analysis is considered since design methodologies are all locally

constructed. Finding the ROA makes graphing the phase plot more easily. Not only tries

to find the ROA, but the research also searches for the method to extend the ROA that the

system can calculate.

The four design methodologies are proposed for the polynomial FMB control systems,

which are in ”type-1”. As potential improvements, the polynomial FMB control systems

which are in ”type-2” like [67] presented can also apply to the design methodologies as the

extension. Moreover, even the so-called ”type-3” polynomial FMB control systems can be

applied under the issue of how to apply the interval type-3 membership function [68] into

the proposed descriptor form design methodologies is solved. Besides, since the technique of

polynomial fuzzy models can be applied to neural network, [69], [70] shows the possibilities

for the proposed descriptor form design methodologies’ application.

The main purpose of the thesis is to design the stabilization control for polynomial fuzzy

model by transforming the closed-loop system into descriptor form. The stabilization results

can be extended to achieve other specifications such as H∞, H2, guarantee cost, et. al. in the

future. In addition, different types of controllers can be applied to the model. Currently, only

rational and PDC-based controllers are considered in the thesis. For instance, the controller

with observer-based or decimal controllers, which are more product class, may be a choice.
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