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ABSTRACT

This thesis presents a stabilization control design for polynomial fuzzy systems repre-
sented in descriptor form. At the very first stage of this research, a closed-loop polynomial
fuzzy system with the controller using rational functions is presented in descriptor form. The
stabilization control design is constructed in the operation domain and presented in sum-of-
squares (SOS) conditions. However, the stabilization criteria are nonconvex with the bilinear
terms that have to be solved with the path-following method.

Thus, in the second method, the concept of the parallel distributed compensation (PDC)
controller is employed to design a polynomial-based fuzzy controller. The closed-loop sys-
tem is presented in descriptor form. A commonly used Lyapunov function for polynomial
fuzzy-model-based (FMB) system is applied in stabilization, and the concept of PDC con-
troller made the stabilization criterion convex. Compared with the polynomial FMB control
design without descriptor form, this method obtains less conservative results though the SOS
conditions are reduced.

Based on the second method, the third approach is launched. In this approach, the
slack matrices are adopted, aiming to obtain more relaxed stabilization criteria. Because
of the fuzzy slack matrices, more relaxed results are obtained. Though the double fuzzy
summation problem is the side effect, this can be solved by co-positivity relaxation. In the
special case that all membership functions are functions of the states being not related to the
inputs, this thesis proposes the fourth method by applying a novel fuzzy Lyapunov function
to further make the conditions more relaxed. Since the novel fuzzy Lyapunov function is
applied, the time derivative of membership function (MF) with sector nonlinearity technique
is also applied. Since the commonly used Lyapunov function can be seen as a special case of
novel fuzzy Lyapunov function, the last method can always obtain more satisfactory results
than previous methods. However, the last method can only be applied in special cases while
the others do not have such the limit.

The six chapters contained in this thesis are as follow:

Chapter 1 is the introduction which includes the research background, motivations, and
the position of this research.

Chapter 2 are the preliminaries, in which definitions, mathematical tools, and relaxation
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tools are introduced.

Chapter 3 proposes a polynomial fuzzy descriptor system approach for rational fuzzy
control design. A polynomial fuzzy model with the controller using rational function is pre-
sented and transformed into the descriptor form. However, when presenting the stabilization
criterion in the SOS conditions, the bilinear terms seem something that can not be removed.
Thus, the path-following method is applied to solve the bilinear issue. A design example
is presented to show the contrast and comparison between the proposed method and the
previous study.

Chapter 4 presents a descriptor system approach for polynomial FMB control design.
Instead of the rational controller, the technique of PDC is applied, and the polynomial FMB
closed-loop system with such the polynomial-based fuzzy controller is adopted in the descrip-
tor form so that the nonconvex conditions met in Chapter 3 are avoided. A commonly used
Lyapunov function for polynomial FMB control system is applied for stabilization analysis.
The redundancy of the descriptor form will raise the dimension of the matrices, though the
SOS conditions decline. To illustrate, two examples are presented. The first is a numerical
one, making a comparison between the proposed method and the previous study. The second
one shows how the proposed method in this chapter is applied to a bicycle’s dynamic system.

Chapter 5 shows a descriptor form approach for the polynomial FMB control systems
design. Through the redundancy of the descriptor form, the fuzzy slack matrices are brought
into stabilization analysis. The double fuzzy summation issue arises inevitably. Nevertheless,
the double fuzzy summation issue can be regarded as the co-positivity problem, which can
be solved by applying the co-positivity relaxation. In addition, for the cases all member-
ship functions are functions of the states being not related to the inputs, this thesis presents
another stabilization analysis approach with the application of the novel fuzzy Lyapunov
function. Based on the ground that the commonly used Lyapunov function can be seen as
the special case of the novel fuzzy Lyapunov function, the stabilization criteria is more re-
laxed than the third one. Also taken into consideration in the stabilization analysis are the
time derivatives of MF because the novel fuzzy Lyapunov function is applied. Meanwhile,
the sector nonlinearity technique is applied to deal with the rest part of the MF time deriva-
tives after polynomial common factors are extracted. Likewise, the numerical examples are
presented to demonstrate the advantages of the proposed third and fourth methods over the
previous studies.

Finally, Chapter 6 gives the conclusion of the previous chapters and the prospective

improvements in future research.
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INTRODUCTION

The main techniques considered in this thesis are ”fuzzy control” and ”descriptor form.” It
is important to have some basic knowledge of descriptor form before introducing fuzzy control
system. There are many dynamic phenomena that exist in our world. To analyze them, people
try to define some parameters like positions, velocity, acceleration, etc., to ”describe” the
dynamic phenomena, which are usually presented as nonlinear systems. Throughout history,
many control models were developed and tried to represent those nonlinear systems into
general form, for example, the state-space representation. Descriptor system, the product
of problem formulation of the system presented in sets of equations in general form, was
developed in 1977 [1]. The mentioned parameters, positions, velocity, acceleration, etc. are
called ”descriptor variables” in descriptor modeling. Descriptor formulations include many
standard forms of controlling models as the special cases. Therefore, this method contains
more general classes.

Due to the more natural description of dynamical systems than the state-space represen-
tation, the descriptor system had gotten much attention. However, an issue was found in
the descriptor modeling called ”impulsive mode” [2]. The impulse presented by descriptor
can cause many serious problems in the control system. Hence, the designing of descriptor
model should avoid the impulsive model. Some studies had generalized the conditions that
can prevent impulse, for example, the rank condition given by [3], and stabilization condi-
tions given by [4]. The descriptor system which is prevented from impulsive mode is called
”impulse-free.”

There are two ways to present the descriptor system. The first one is to present the
nonlinear system into descriptor system directly ( [1], [35], [5], et. al.) The second one is to
represent the existing standard form models into descriptor form ( [6], [7], [23], et. al.) The
thesis focuses on the second one. After introducing the background of descriptor system, the

introduction of fuzzy control will be given.



Chapter 1 Introduction

Giving a general form for presenting nonlinear dynamical systems is the biggest achieve-
ment from Takagi-Sugeno (T-S) fuzzy model [8]. In 1985, Tomohiro Takagi and Michio
Sugeno tried to develop a tool that builds a fuzzy model of a system. The so-called ”fuzzy
control” are the studies that discuss how to implicate fuzzy logic for expressing the control
rules. At that time, the linguistic variables, compositional rule, and unimodal fuzzy models
were considered for multivariable control. However, the system required a large amount of
input space. The problem was solved by using multidimensional matrices for fuzzy reason-
ing, which reduced the number of implications and simplified the reasoning. Due to the fact
that fuzzy implications and reasoning-based modeling is one of the most important things
in fuzzy systems’ studies, they tried to deal with the dynamic system in general by consid-
ering multidimensional reasoning method. The membership function of the fuzzy set was
denoted in their research, which means all fuzzy sets are being related to linear membership
functions. The fuzzy implication was presented in the form that contained consequence vari-
ables, premise variables, fuzzy sets, et. al. The algorithm of reasoning allowed the relations
of piecewise linear to be reduced when compared with the traditional linear approximation
method. Furthermore, the linguistic conditions can be presented into linear relations under
the input space of the fuzzy partition. In the identification part, three steps are considered
for the model that is consisting the implications of the previous format. The first one is to
choose the premise variables, which contain a combination premise, an optimum premise,
and the error between output values and output data. The next step is to identify the chosen
premise variables, the step that searches for the optimum premise parameters to minimize
the performance index. The final step is the consequent parameter’s identifications, which
finds the least performance index from the parameters given in the previous two steps. By
considering the format of implication and the algorithm of identification, Tomohiro Takagi
and Michio Sugeno gave a simple form that is able to represent the nonlinear system highly.

There has been widely study about the T-S fuzzy-model-based (FMB) control systems [9]-
[14]. For its control design, a well-known option called ”Parallel Distributed Compensation
(PDC)” controller is usually a choice that contains T-S fuzzy system’s membership functions
[15]. PDC, a concept for fuzzy model control design, is a well-known approach for FMB
controller design. The main idea is to set up the compensators with the rules corresponding
to the T-S fuzzy model, respectively. Every fuzzy rule of the controller can be designed

individually by using the linear control design technique. Note that T-S fuzzy mode shares



the fuzzy set to the controller. It is noted that the controller is nonlinear, generally. The
controlling problem is how to select or determine the values of the local feedback gain. The
selected feedback gain should satisfy the stabilization conditions to guarantee the quadratic
stability for PDC controller and the model included in the closed-loop system. First of all,
for the object that is needed to be controlled, present a T-S fuzzy model that can completely
describe the target. Second, design the controllers, and each of them corresponds to one
fuzzy rule. Third, use mathematical tools to test the stability by checking if the conditions
are satisfied. If not, repeat the procedure until conditions are satisfied and find the control
feedback gain. By applying the calculated feedback gain, the closed-loop system should be
asymptotically stable.

The control design of such the model and its stability analysis can be presented in terms
of LMI conditions [15], [16] based on the Lyapunov theory. A quadratic function which is
composed of the multiplication of a matrix which is positive definite, the state vector, and its
transpose is called quadratic Lyapunov function for deriving stability condition. From [19],
the stability conditions are derived from a positive definite matrix, the system matrices, and
each system matrix’s transpose for T-S fuzzy system, which was multiplied together. If the
system only contains one rule in the fuzzy set, the condition reduces to Lyapunov theorem.
The method is to find that positive definite matrix which can prove the stability of the T-S
fuzzy system from the chosen Lyapunov function . When the conditions are satisfied, the sys-
tem would be in the quadratic stable situation. For the purpose of determining the positive
definite matrix, an effective tool, a convex optimization technique called ”Linear Matrices
Inequalities (LMI) [21]”, is introduced. LMI problems are one of the classes of numerical
optimization problems. It takes polynomial-time to solve LMI problems’ optimization issue.
In fact, LMI problems can describe almost most of the control problems or systems. There-
fore, LMI optimization became an important issue about solving the numerical optimization
problem because the original control problems can be solved if it is transformed into LMI
problems. An LMI constrain is a summation of the symmetric matrices multiplied with the
corresponding variables, and the summation is positive definite. If the constraint is held, the
fact that symmetric matrices are positive definite is also held. This constraint can present a
large amount of convex constraints, including the inequalities of linears, matrix norms, Lya-
punov and convex quadratics, et. al. Take stability conditions from Lyapunov approach, for

example, the system matrices and its transform are known and need to determine the value



Chapter 1 Introduction

of the positive definite matrix which makes the inequality negative, the condition is cast into
LMI problems, and the solution of the determined values are called feasible value.

The nonlinear control system was cast into a simple, natural, and effective form for de-
sign methodology by T-S fuzzy model in general. However, the double summation issue is
the problem found in the PDC-based T-S fuzzy control system [22]. A descriptor approach
which presents the T-S fuzzy system in the descriptor form has been raised by Tanaka et al.
in 2007 [23], and the single fuzzy summation instead of the double fuzzy summation exists
because of the redundancy of the descriptor form. The descriptor design methodology was
presented via fuzzy Lyaounov function, and the stabilization conditions were cast in LMI
terms. [24] shows that descriptor system has the advantage that it can deal the systems with
the larger class when compared with the conventional state-space model. The other advan-
tage is that it can represent independent parametric perturbations tighter than state-space
design methodologies. As for stabilization, most of the studies [25]- [28] considered the piece-
wise Lyapunov functions or switched Lyapunov functions. Some studies [29]- [31], however,
consider the fuzzy Lyapunov functions or piecewise Lyapunov functions, which made the sta-
bilization conditions get the bilinear term. The bilinear LMI problems (i.e., BMI problems)
can be transformed into LMI problems by considering completing the square technique [31]
or using the path-following method, which will be discussed in the forward section. Never-
theless, at that time, such converting techniques like completing square contained the risk of
conservative results. Thus [23] tried to use the new type of fuzzy Lyapunov function and con-
troller for design methodology. The methodology successfully obtained the LMI conditions
without BMI problems. The paper first converted T-S fuzzy model into the special form, then
rewrote the equation into descriptor representation by defining some matrices containing the
elements of the original system. The closed-loop system with descriptor representation is
stabilized by applying a common Lyapunov function. Comparing it with state-space pre-
senting T-S fuzzy model shows that the conditions of LMI were drastically reduced, which
means the descriptor representation of T-S fuzzy model can handle a more complicated sys-
tem. [23] then tried to stabilize the system with the fuzzy Lyapunov function. Two design
methodologies were presented. The first one is the T-S fuzzy descriptor system with PDC
control design. A new Lyapunov function that concerns the fuzzy summation’s inverse ma-
trix is called ”Fuzzy Lyapunov function.” The membership function’s time derivatives were

first time appeared in the stabilization process. By using the properties of the membership



function and some techniques that will be discussed later, it is able to do extractions of the
differential of membership functions.

This term that ground the membership functions’ time derivative would be a condition
and was added to hold the stability of the fuzzy Lyapunov function. Nevertheless, it was
difficult to select the value. The second control design introduced a new fuzzy controller by
rewriting the feedback gain into the inverse of the fuzzy summation and LMI matrices. The
stabilization was similar, but two series of LMI matrices determine the feedback gain. It
is found out that the feasibility of common Lyapunov function’s methodology is almost the
same as the first fuzzy Lyapunov function’s methodology. But the second fuzzy Lyapunov
function’s methodology obtained more relaxed results than the previous two methods, which
means that the fuzzy Lyapunov function’s methodology can obtain more relaxed results.
Last but not least is that the third corollary in [23] contains the second corollary, which
always obtain more relaxed results. This method has been widely applied [32] - [34]. One
thing that should be noted is that this approach is different from the approach for fuzzy
descriptor system design, which directly presented the nonlinear dynamic system into the
fuzzy descriptor form [35], [36].

Although T-S fuzzy model, PDC controller, and LMI optimization obtained big success
in the last two or three decades, the problems such as not every system can be represented
in LMI problem or the results are too much conservative still be the issue for researchers.
The study of the fuzzy control system gets a breakthrough in 2009. As the extension, [37]
proposed a methodology which adds the T-S fuzzy system with the polynomials as subsys-
tems and calls ”Polynomial Fuzzy Model.” Such polynomial FMB control system’s stability
analysis usually uses the Lyapunov candidate which also contains the polynomial terms. The
stability analysis cannot be presented in LMI conditions since Lyapunov candidate contains
polynomials. Instead, the stabilization criteria are presented in SOS conditions. Due to
that polynomials are added into the fuzzy model, more control systems can be cast into
fuzzy model, and more general and relaxed results than LMI optimization can be obtained
since polynomial based Lyapunov function contains the previous quadratic Lyapunov func-
tion which the latter was taken as the special case. The polynomial FMB control system
design has get a lot of attraction [42]- [48] because of the more extensive result than the
LMI can be obtained [37], [66], [49]. Generally speaking, this kind of fuzzy model has the

feature that rule consequence is consists of polynomials. Same as T-S fuzzy model, fuzzy’s
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IF-THEN rules are the way for representing the inputs and outputs of nonlinear systems.
The difference is that the consequent part of the model contains polynomials. Besides, the
column vector called ”monomial vector” is defined and applied into the model instead of state
vector-only. Polynomial fuzzy model provides the advantage of the fewer rules it generates
when comparing with T-S fuzzy model. In the stabilization part, instead of the traditional
type with only quadratics, a polynomial Lyapunov function is considered. Here, the positive
definite matrix turns into the polynomial matrix, and the monomial vector replaces the state
vector. As mentioned before, quadratics can be taken as a special case included in the poly-
nomials. Hence, the more general status appears in the polynomial Lyapunov function. At
the LMI period, the time derivative of the decision variable’s matrices are zero matrices and
was omitted in the differential of Lyapunov function’s equation because that all the matrices
are constant matrices. However, the decision variable’s matrices’ time derivatives have to
be concerned when differentiating polynomial Lyapunov function since the polynomials are
included. Using the concept of fuzzy Lyapunov function, this part can be rewritten as the
summation of the decision variable’s matrices which is partially differentiated by the state
vector and multiplied by a system matrices without the controller. It is noted that the system
matrices in the fuzzy summation only contain the elements corresponding to the row that the
states’ dynamic, which was not affected by the control inputs. The constrain that guarantees
the system is stable is that the differential of the Lyapunov function is negative. Therefore,
there usually is an identity matrix with the coefficients of a very small positive number which
is added into the conditions.

SOSOPT [38], a MATLAB’s third-party toolbox, is developed for finding SOS conditions’
solutions. Let the conditions be the multivariate polynomials; the SOS conditions hold if a
series of polynomial functions are found, and the condition is equal to the summation of those
functions’ square terms. Naturally, it points out that a property of SOS decomposition is
that the equation of the condition should be positive for all values of state vectors. Recall the
stabilization of the polynomial fuzzy model. Finding a positive semidefinite matrix that makes
the polynomial Lyapunov function be sum of squares is necessary. Semidefinite programming
is usually used for doing SOS decomposition of polynomial Lyapunov function, and the
constraints come from its stabilization process. In general, if a condition is decomposed in
SOS, it is also nonnegative. Thus, a polynomial-time computational relaxation obtained from

decomposition with semidefinite programming proves the global nonnegativity of multivariate



polynomials [39] [40]. [41] also gives the fact that SOS and nonnegativity have little difference.

There are many options for polynomial FMB control design. Besides PDC controller, this
thesis also concerns the rational controller. Nevertheless, the stability analysis of polynomial
descriptor FMB controller causes the bilinear issue. In previous study, it used the particle
swarm optimization (PSO) algorithm, the method that decides the coefficient of the rational
function, to deal with the bilinear issue, but the solution may not be optimal. In contrast,
this thesis uses the path-following method to solve the bilinear issue.

Path-following is an approach for solving nonconvex stabilization constraints. From [62],
path-following can be applied to solve the bilinear matrix inequalities (BMI) problems, which
means the LMI conditions that contain the bilinear terms. The approach first uses a first-
order perturbation to linearize the BMI problems. By solving a semidefinite problem (SDP),
the perturbation is computed, and the controller’s performance is improved slightly. The
program should repeat the process until the system achieves the desired performance or the
performance cannot further be improved. In other words, to achieve the desired performance,
the program solves a series of linearized problems. These problems improve the control
results when each step that solves the linearized problems. The approach starts from an
initial situation, and better and better designs the controller by modifying the design objects
slowly. Because these objectives are closed in consecutive problems, the BMI can be converted
into LMI constraints, which can be solved at each step. One thing that has to be noted is
that this approach does not guarantee convergence, which means that the solution is not
always acceptable.

Another technique considered in this thesis is the membership function’s time derivatives
[63]- [64]. Since it contains the differential of fuzzy summation in stabilization, the analysis of
the membership functions’ time derivatives must be concerned. This technique is applied for
local stabilization analysis. That is, the membership function has the upper bound or lower
bound. The differentials of membership function are divided into two parts, the differentials
by the state vector and the differential of the time. In the differential of the time, it can be
seen as a function of a fuzzy model. To deal with the problem, the equation of the differential
of membership functions will be separated into two parts, common factors part and the rest.
Because that the design methodology is locally constructed, this rest part contains the upper
and lower bounds. Therefore, it can be extracted by sector nonlinearity techniques.

Polynomial FMB control system designs are applied by descriptor form methodologies in
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this thesis. Transforming the closed-loop system of polynomial fuzzy model into descriptor
representation is the initial step in this design methodology. Besides, by our greatest efforts of
searching the information, no study applies such the descriptor form approach for designing
polynomial FMB control system. As mentioned before, polynomial fuzzy descriptor systems
[50]- [52] which directly uses the fuzzy descriptor system is different from the method this
thesis proposed. The design methodology is similar to [35]. The so-called ”Fuzzy Descriptor
system” is presented as an extension of T-S fuzzy model. When the T-S fuzzy model got
much attention in nonlinear control frameworks for its ability to present the nonlinear system
into a general form, the descriptor system also got famous for the property that is different
from the state-space expression. Similar to descriptor expression, the descriptor system [53]
can describe the system more widely and tighter than state-space expression, too. The
fuzzy descriptor system presents the rule consequence of descriptor, which means that the
consequent part of T-S fuzzy system was represented as descriptor form. This methodology
also contains T-S fuzzy model as the special case. In [35], the fuzzy descriptor system adds
a summation of premise variables multiplied by nonsingular matrices to T-S fuzzy model.
Note that the premise variables are independent of the control input for preventing the
complicated defuzzification. Same as the work of the descriptor systems or the thesis, a new
vector containing the state vector is defined, and the closed-loop system is rewritten. The
control design was also extended. A modified PDC controller including premise variables and
the vectors of feedback gain is applied, but the system needs to calculate the local feedback
gains. The LMI approach was applied for stabilization in [35] with the common Lyapunov
function. In the first method of the thesis, the closed-loop system and the decision variables’
matrices’ structures are similar to the stabilization analysis of [35]. However, the thesis
considers a state-space expressed polynomial model with a different controller and ”rewrites”
it as descriptor form, which is different from this method. Fuzzy descriptor system contains
two features when compared with state-space fuzzy models. It can describe a wider class of
system or nondynamic constraints and is tighter for representing real independent parametric
perturbations. The other is that the stabilization constraints can be reduced due to the
redundancy of descriptor representation.

The descriptor approach has been widely used for T-S fuzzy model’s system design [54]-
[57]. No matter it is the fuzzy system, or other system’s design [58]- [60], they can only

deal with the systems which contain only constant matrices. In contrast, the thesis adds the



polynomial term to the consequent part of the system, which makes it possible to deal with
the systems that contain the polynomial matrices.

This thesis presents a stabilization control design for descriptor’s representing of polyno-
mial FMB system. Four design methodologies are proposed, and all the design methodologies
are constructed in the operation domain. Thus, their stabilization analysis is local stabiliza-
tion, and the stabilization conditions are presented in SOS conditions.

At first, a rational control design is proposed. The thesis proposes a polynomial fuzzy
model with the controller, which considers the rational functions. From [61], some cases show
that the rational controller can have better performance than PDC-based controller. The
closed-loop system, which polynomial FMB system applied by the rational controller, is rep-
resented in the descriptor form. A homogeneous functions’ method is presented in this thesis
for stabilization. The Lyapunov function candidate is chosen as the homogeneous Lyapunov
function in which the matrix of decision variables is a homogeneous matrix. Considering the
properties of Euler’s homogeneity relation makes the differential of the Lyapunov function
be able to be extracted. The rest part of the stabilization analysis is done by considering the
stabilization method of the descriptor design methodology for T-S fuzzy model. However, the
bilinear term appears in the stabilization conditions and makes it impossible to be solved by
SOSTOOL directly. Therefore, this thesis applies the path-following approach [62] to solve
the conditions. An example shows the comparison between the first proposed method and
the polynomial fuzzy model without descriptor form [37]. The result has been proven that
the proposed method obtains more relaxed results when in the same operation domain.

Based on the fact that the optimal result for solving the stabilization constraints may not
be found by using path-following, the thesis has tried other descriptor form design method-
ology for polynomial FMB control design. The controller is chosen as PDC-based controller,
which shares the same membership functions of the fuzzy model.

In the second method, a polynomial fuzzy model with PDC-based controller is presented
and also be transformed into the descriptor form. The Lyapunov function candidate for sta-
bilization is chosen as a Lyapunov function which is used in the research for polynomial fuzzy
models commonly. The stabilization is extracted by considering some definition related to
some vectors of the membership functions and state-space. Also, the properties of congru-
ence transformation are considered for stabilization analysis. Compared with the polynomial

fuzzy model without descriptor form, the matrices’ dimension in the proposed method is
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higher than the previous study in the same operation domain, though. The number of the
SOS constraints from the proposed method is smaller than the previous study drastically.
The contrast shows that the proposed method is more suitable with the cases that contain
more rules, but the dimension of the state vector should be small. Moreover, compared with
the method in the first method, the second method contains no bilinear or nonconvex terms,
which means that the proposed method does not need to use the path-following algorithm
to solve the conditions. Two examples are provided, including a numerical example and an
application example. The numerical shows that the feasibility (relaxation) of the proposed
approach is similar to the existing polynomial FMB control design approach [37], though.
The smaller number of the constraints means that the proposed method still holds the ad-
vantage when compared with the existing polynomial FMB control design approach. The
application example gives a bicycle dynamic system. The proposed method has been suc-
cessfully made the system asymptotically stable by setting the operation domain of bicycle’s
angle and angular speed.

The rest two methods consider the same model, controller and Lyapunov function as the
second method. The improvement is that it brings the matrices which contain fuzzy slack
variables into the stabilization. The fuzzy slack matrices make the Lyapunov candidate be
rewritten into a new form and produce a new stabilization analysis. The SOS conditions born
from the stabilization analysis contain an issue like the co-positivity problem, the double fuzzy
summation. Thus, applying the co-positive relaxation can be a way to deal with the double
fuzzy summation. A numerical example is presented to make the comparison with [37], the
descriptor design methodology for T-S fuzzy system [23], and the third method. It can be
found out that the third method’s results are more relaxed when making the comparison
with [37] and [23] in some cases.

Furthermore, in some cases that membership functions have no relationship with the
inputs states (i.e., the elements in the membership functions are the vectors which are cor-
responded to the system matrices’ zero rows), the thesis proposes the novel fuzzy Lyapunov
function for the fourth stabilization design approach. This kind of Lyapunov function con-
tains an inverse of fuzzy summation matrix. Since the differential of the Lyapunov function
contains membership function’s differential terms in stabilization, the thesis also proposes a
method to extract the time derivative of membership function. After extracting the differen-

tial of membership function, the state vectors’ partially differential part would be extracted

10



by the techniques of sector nonlinearity. Because the third method can be seen as a special
case included in the fourth proposed method, the fourth method is always more relaxed than
the third method. The thesis presents two numerical examples to show the comparison with
the fourth method, the previous method, and previous studies. The first one is a polyno-
mial example, and the comparison is to compare with the fourth method, [37], and the third
method. The results show that the fourth method gets the best relaxation from them. The
second one is an example with constant matrices to compare with the fourth method, [37],
the third method, and [23]. The fourth method has also gotten the best relaxation result.
At the end of Chapter 5, three numerical examples are presented. The first two examples
are the polynomial examples to show the comparison with all the proposed methods in this
thesis and [37]. The final one is a constant example to show the comparison with [23], [37],
and all the proposed methods in this thesis.

To summarize the contributions of the thesis, four points are presented as follows:

e The descriptor representation methodology for polynomial FMB design has no similar

works by our greatest efforts of searching the information.

e More relaxed results are obtained from descriptor representation when comparing the

state-space representation. The conditions of stabilization are also reduced.

e Taking the redundancy, this research brings fuzzy slack variables into stabilization

control design.

e Novel fuzzy Lyapunov function for stabilization is applied as LMI based fuzzy descriptor

systems’ fuzzy Lyapunov function’s extension.

The research also considers the differential of the membership functions and uses the
technique of sector nonlinearity to extract the membership function’s partially differentiated

part by state vectors after the time differential process is extracted.

11






PRELIMINARIES

Chapter 2 is consists of some necessary mathematical tools and basic definitions which
are applied in the research. Note that in the rest chapters (i.e. Chapter 3, 4, 5, and 6) of
the thesis, the respect to time ¢ will be dropped to simplify the notation. In addation, the

Theorems proposed in the thesis are all constructed in the operation domain.
Dop = {2(t) : 2™ < ap(t) < 2™k =1,...,n} (2.1)

containing x = 0.

2.1 Definitions

This section introduces the concepts, models, and matrices that will be used in the

presented theorems in the thesis.

2.1.1 Positive Definiteness

A positive definite A € R™"*™’s definition is hold if and only if

xl Az > 0,V # 0,

A >0, when A is symmetric,

A+ AT
2

A=LL" (2.2)

=0,

where A is A’s eigenvalue and L is a nonsingular matrix. A positive definite matrix’s deter-
minant is always positive, which means that if a matrix is positive definite matrix, than it

will also be "nonsingular”.
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Congruence Transformation

The relationship of congruent between two matrices X,Y € S™ is hold if a nonsingular

matrix L € R™" is found such that
Y =L"XL.

Proof:
If X is positive definite, 27 Xa > 0,Va € R?, x # 0. Because X and Y hold congruent

relation, a nonsingular matrix L which makes Y = LT X L is exist. Hence, for all 2 # 0
y=L 1lx#0

X>0 <= ' Xe=y"L"XLy=y'Yy < Y = 0.

2.1.2 T-S Fuzzy model
The definition of Takagi-Sugeno fuzzy model is presented as:

Model rule ¢
If z1(t) is M;; and ... and z,(t) is My,
then &(t) = A;x(t) + Bu(t)

i=1,2 ..., 71

where 4; € RN and B; € R™™ are system matrices; r is the number of fuzzy rules;
x(t) € R™ is the state vector; z; is the known premise variable; and u(t) € R™ is the input

vector. The polynomial fuzzy model (2.3) is inferred as
() = > hi(z(t){Aim(t) + Bu(t)} (2.4)
i=1

where z(t) = [21(t) --- 2p(t)] and

| I My (1)
hi(z(t)) = 22:1 H?:l My (z(t))

14
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with the following properties:

> i1 hi(2(t) =1,
ha(2(t)) > 0 Vi.

(2.5)

For u = 0, use the quadratic Lyapunov function 7 Pz can obtain the open loop system

(2.4)’s stabilization criteria and are presented as follow:

P>0 (2.6)

—ATP - PA; >0 (2.7)

which is shown as LMI problems.

2.1.3 Polynomial Fuzzy model
Consider the following polynomial fuzzy model:

Model rule i

If z1(t) is M;1 and... and z,(t) is M, 28)
2.8
then @(t) = A;(a(t))a(a(t)) + Bi(a(t))u(?)

i=1,2 ..., 7

where A;(x(t)) € R™Y and B;(x(t)) € R™™ are system matrices of polynomials; r is the
number of fuzzy rules; x(t) € R™ denotes the state vector; @(z(t)) € RY is a column vector
consist of monomials in «(t) and has the property that &(x(t)) = 0 iff x(t) = 0; z;(t) is the
known premise variable; and u(t) € R™ is the input vector. The polynomial fuzzy model

(2.8) is inferred as

(t) = ) hi(z(){ Ai(x(t)(2(t)) + Bi(2(t))u(t)} (2.9)
1=1

where z(t) = [21(f) -+ 2p(t)] and

_ I My (5 @)
D k=1 H§:1 Mij(z(t))

hi(z(t))

15
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with the following properties:

iz hi(z(t)) =1,
hi(2(t)) > 0 Vi.

(2.10)

The stabilization criteria for the model (2.9) can be obtained by employing the polynomial
Lyapunov function and are represented as SOS terms. Due to the fact that such the Lyapunov
function contains the quadratic Lyapunov function employed by T-S fuzzy model, Polynomial

fuzzy model has more general and relaxed stability and conditions than the T-S fuzzy model.

2.1.4 Sum of Squares Decomposition

For x € R™ and ¢ = 1,...,r, a multivariate polynomial p(x) is called ” sum of squares”

if and only if there exist polynomials m;(x) satisfying the following equation

pl@) = m(z). (2.11)
=1

For the matrices’ case, p(x) is called sum of squares if and only if a monomials vector U (x)

and a positive semidefinite matrix P are exist such that
p(z) =UT (2)PU(x). (2.12)

The sum of squares program tries to find the polynomial p;(x), ¢ = 1,...,7 and sum of

squares p;(x), i = (F +1),...,r such that

aoj(:n)—i—Zpi(x)aij(:c) =0 i=7,...,T (2.13)
i=1
apj(x) + Zpi(a:)aij(:n) are SOS j=(r+1),...,r (2.14)
i=1

where a;j(x) are some scalar constant coefficient polynomials.

2.1.5 The Transform Matrix

Because &(x(t)) is a vector which is consist of monomials that have the property of

z(x(t)) = 0 iff x(t) = 0, there always exists a transformation matrix T'(x(¢)) that makes

16
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2(z(t)) = T(x(t))x(t). When monomial vectors are equal to the state vector (i.e. Z(x(t)) =
x(t)), we have T(x(t)) = I. Moreover, consider that =(t) = [x1(t) x2(t)]7, the thesis gives

the following example to show how T'(x(t)) works:

xi(t x1(t 0
a(a(t)) = 0 i T(x(t)) = 1(£)
I x5(t) | I 0 xa(t) |
| x5 (t ] i x3(t 0 ]
a(z(t)) = 0 i T(z(t)) = i)
I x5(t) | I 0 xa(t) |
3 (t x3(t 0
a(z(t) = | " with  T(z(t)) = i)
w3(t) 0 a3(t)

2.2 Mathematical tools

This section introduces the algorithms and methods of relaxation that will be used in

the presented theorems in the thesis.

2.2.1 Euler’s homogeneity relation

Consider a function V' (y), which is define in R" — R. V(y) is said to be a homogeneous

function with degree g € I'" if and only if

gV (y) =y"V,V(y) =V,V(y)y. (2.15)

The proof of the relation above follows by differentiation of the homogeneous Lyapunov

function

V(vy) =7V (y) (2.16)

by setting v =1

2.2.2 Path-Following Algorithm

From [62], the purpose of the path-following algorithm is to deal with the bilinear terms

in stability conditions. [62] presents the bilinear matrix inequality (BMI) case, which means

17
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the LMI conditions containing the bilinear term. Consider the dynamic system

i(t) = Ajx(t) + Bu(t), y(t) = Ca(t) (2.17)

where u(t) = 0Fy(t) and there is the decay rate of & € R in the open-loop system. To find

the feedback gain, the stability conditions are designed as

P=0 (2.18)
0F3;] < 1 (2.19)
(A+ BFC)"P + P(A+ BFC) < —2(a+6a)P (2.20)

which contains the bilinear terms of P and ¢ F'. Since &(t) = A;x(t) has the decay rate, the

following condition can be compute

ATPy+ PhA < —2aP,. (2.21)

By writing 0P = P — Py, we have

Py+ 6P >0 (2.22)
0F;| < 1 (2.23)

(A+BFC)"(Py+6P) + (Py + 6P)(A+ BFC) < —2(a + éa)(Py + 6 P). (2.24)

Because 0 P, §a, and 0 F are very small, the third condition can be rewritten as

AT(Py+6P) + (Py+ 6P)A+ (BFC)" Py + Py(BFC) < —2a(Py + 6 P) — 26aPy (2.25)

which can be solved by LMI. Back to the dynamic system (2.17), if u = Fy, the path-
following is shown as follows:
step 1: Decide the initial value of F'.

step 2: Find the minimum value of a by solving the problems

P >0 (2.26)

ATP + PA < —2aP,. (2.27)

18
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step 3: Apply the value of P from step 2, and solve the following conditions

P+6P =0 (2.28)

AT(P+6P)+ (P +6P)A+ (BFC)'P + P(BFC) < —2a(P + 6P) — 25aP  (2.29)

to find the minimum value of a.
step 4: Set F = F +6F and P = P 4+ 0P and go back to step 2.

The system stops the loop until the a exceed the value that the user want or o cannot be
further improved. The bilinear problem will turn into linear step by step in the stabilization
conditions by applying path-following method, though. The solution of this algorithm cannot

guarantee convergence.

2.2.3 Co-positive Relaxation

Consider a matrix W = [W;;] € R™". Checking the co-positivity of W is to check if

T

.
Wq=> > ag;Wiy; >0 (2.30)
i=1 j=1

for all ¢ = [q1, 42, ..., ¢|7 €R, ¢ > 0. Let ¢; = ¢, then the checking equation above means

to check the condition

Z%(q) = (Z) > > @ @wy; is SOS (2.31)

k=1/ i=1j=1

where ¢ = [G1, G2, ...,4,]7, and s is a non-negative integer.

2.2.4 Membership function time derivative

When all membership functions are not related to the inputs’ states (i.e. h,(2(t)) =

hy(2(t)) ¥p), the membership function time derivative could be represented as

(2.32)
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(2.32) are divided in two parts, a polynomial common factors part, which is denoted in
O,(=(t)), and the rest part, which is denoted in y,(z(t)). Then (2.32) is simplified to the

form

i (@(1)) = up((1)) O, (2(1)). (2.33)

yp(x(t)) is the part that will be applied the technique of sector nonlinearity, after extracting

with the technique, it can be rewritten as

2
Yp(a(t) = > wom((t))Com (2.34)
m=1
where
Ot = g, w(el): Con = iy, up(alt)
_ Yp(x(t)) — Cp2 Cp1 — yp((t))
wor (2(t)) = ”Cpl - Cpr . wpa(x(t)) f’cpl —pcp2

with the following properties:

2
wom (@(1)) >0, > wom(@(1)) = 1.
m=1

By substituting (2.34) into (2.33), the membership function time derivative are represented

as

2
hp(i(t)) = Z wpm(w(t))upm(m(t»

with pipm(2(t)) = CpmO,(2(1)).
For example, for 2(x(t)) = z(t) = [z1(t) 22(t)]”, consider a polynomial fuzzy model (2.8)
with three rules, the system matrices, and membership functions as follows:

23 (t) + 23(t) x1(t) + 22(2) 3z1(t)wa(t) —x1(t) + m2(t)

A1 = 5 A2 = )
0.25 0.25 0.25 0.25
4y —1+azt)l+2i(t) —4
0.25 0.25

B, — 1 By — 8 By — z3(t)

0 0 0
mea(t) = 2RO 1)) = ) = 20020

20
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Then &(t) = x2(t) and the time derivative of hj(x2(t)) can be obtained as

hn(ea(1) = W(tm(w

T

8h1 xg t ~
= o) ;h@ 72(1) A (a(t) a(a()

= COS(?(”) % 0.25 x (z1(t) + 22(1)).

Rewrite hi(z2(t)) into the form of (2.33), it can be obtained that

Ou(aft)) = L2 1y (af4)) = con(as(t)).

This example is assumed to be constructed in the following operation domain:

Dop={x: —n <z, <7, k=1, 2}.

Apply the technique of sector nonlinearity to y;(«(t)), and obtains the result that

where
On= max yi(a(t) =1, Cio= min y(z()=-1
wn(a(t)) = LED = Oz | ry) = Cu—n(@t)

Cn—C ’ Ci1 — Cr2

Finally, the decomposition of h;(z2(t)) can be implemented as

Z wlm Mlm ( (t))
with

xl(t) + .%'Q(t)
12
z1(t) + 22(t)
12 '

11 (z(t)) = C1101(x(t)) =

p2(x(t)) = C1201 (2(t)) = —

The above steps are also applied to the rest membership function to decompose their

differentials.
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3

A PoryNOMIAL Fuzzy DESCRIPTOR
SYSTEM APPROACH FOR RATIONAL

Fuzzy CONTROL DESIGN

This chapter proposed a rational method for polynomial FMB control design. This
chapter first presents a polynomial fuzzy model. Second, a controller composed of the poly-
nomial rational function is considered. The model and the controller form the closed-loop
systems and are represented like a descriptor system. The stabilization analysis uses Lya-
punov theory and homogeneous functions. Because of the polynomials, the stabilization
conditions are represented in SOS instead of LMI terms. The stabilization analysis produces
bilinear terms in the conditions. Thus, the path-following algorithm’s technique is applied to

solve the stabilization conditions.

3.1 Rational Controller and Closed-loop System

This chapter introduces a controller combined with rational functions. The rational
functions contain the polynomial matrices and polynomial functions. Similar to the PDC
controller, the elements in the rational functions share polynomial fuzzy model (2.9)’s mem-
bership functions. Applying the controller to the model (2.9) can obtain a closed-loop system.
The structure of rational function makes it possible to rewrite the closed-loop system as de-
scriptor form like [35].

Consider a rational controller which is shown as follow

> i1 hi(z)Fi(x) £l
2 =1 hj(2)nj(z) (@) (3.1)

23
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where the control feedback gain are F;(x) € R™ ¥ for z and n;(z) is the polynomial function

in . By applying the controller (3.1) to (2.9), the closed-loop system will be

2 =1 hi(2) Fj()
2 k=1 b (2)ni (@)

r= ZT: hi(z){Ai(x) + B;(x) tx(x). (3.2)
i=1

Multiplying >, _; hx(2)nk(x) on both side of (3.2) makes it be

Yo hilz)ni(@)e =YY hi(2)hj(z){n;(x)Ai(2) + Bi(2) Fj(z)}& (). (3.3)
=1

i=1 j=1

Define a vector ¥ (x) = [#(z) |7 to simplify (3.3) and we have

Erit(z) =Y > hi(2)h(2)GF j(z)at (x) (3.4)

i=1 j=1

where

I 0 4 0 I
0 0 ny(@)Ai(@) + Bi(@)Fy(@) —nj(@)I

The equation (3.4) is a closed-loop system written in descriptor form.

3.2 Main Result

This section shows the stabilization analysis for (3.4). The research uses a polynomial
homogeneous Lyapunov function here. By using the homogeneous function’s properties and
the proving steps of the fuzzy descriptor system, stabilization can be achieved. The stabi-
lization conditions is presented in SOS terms.

Theorem 1:
Consider a positive definite symmetric homogeneous polynomial matrix Z;(x), polyno-
mial matrices Z3(x) amd Mj(x), polynomials o;;3(x) and n;(x) and a scalar & < 0. The

closed-loop system (3.3) is asymptotically stable if the following conditions are satisfied.
vh(Z)(x) — e(x)I)v,; is SOS (3.5)
— v L (x)v is SOS, i=1,...,r (3.6)
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- 'vT(L%(m) + L) (x)v is SOS, i <j<r (3.7)
oijg(x) is SOS, i=1,....r, j=1,...,r, B=1,...,n (3.8)

where v and v are vectors which is independent from x, e(x) > 0 when x # 0, and

in which

Solving the conditions can obtain the feedback gain as
Fi(w) = My(2)Z; ' (x).

Proof:
Consider the Lyapunov-based analysis utilizing the following homogeneous Lyapunov

function:

V(z) =zl adj(Z,(z))x. (3.9)

As mention before, Z;(x) has the properties as positive definite, symmetric, homogeneous,
and polynomial. Consider the Euler’s homogeneity relation introduced in preliminaries part,

we have

gV(x) = gzl adj(Z,(z))x = 'V, V(x). (3.10)

Therefore, it is obtained that
gadj(Zi(x))x =V, V(x). (3.11)
The next step is to use the homogeneous Lyapunov function’s stabilization analysis raised
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by [45] and the stabilization approach for fuzzy descriptor system raised by [35], to do the

stabilization. The differential of the polynomial homogeneous Lyapunov function (3.9) is

V(z) =27V, V(x) = g&ladj(Z,(x))x

gl & I 0 adj(Zy(x)) 0 T
0 0 S3(x) adj(Z,(x)) &
= gi" T (2) B X (x)27 (2)

= J[e*" (@) BT X (@)2* (@) + 2*7 (2) B X ()% ()]
- g S5 hi)hi(2)a* T (@) {GET (@) X (2) + XT(2) G (x) e (x).  (3.12)

i=1 j=1

Because Z;(x) is a homogeneous matrix, it has such the property

Z (z) = m (3.13)
which means that
Z7 (%) Z1(z) = “djc(lil(g)();l)(m) =1 (3.14)
According to (3.13) and (3.14), we have
adj(Z1(x))Z1(x) = det(Z1(x)). (3.15)

To obtain that (3.12) is negative, such a condition below should be satisfied

G ()X (z) + X (x)G]: (z) < 0. (3.16)
Define a matrix
R(x) _ Z1 (:I}) 0
Zg(:L') Zl (ZIZ)
where
2@) = 1z 2 @S 2(@)

and multiply the left side of (3.16) with R” (x) and the right side with R(x), we have

R ()G} (z) X (z)R(x) + R" (x) X" (2)G7(z) R(z) < 0. (3.17)
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Using the properties (3.13) to (3.15) can obtain that
X (x)R(x) = det(Z1(x))I. (3.18)
Therefore, (3.17) can be transformed into
R"(2)G}" (x)det(Z1(x))I + det(Z: (z)) IG]; (x)R(z) < 0. (3.19)
Divide (3.19) with det(Z;(x)) and define a matrix like the below to simplify it, we have

Ly(z) Li;()

Lsij(z) Laj(z)

where

Li(z) = Z3 (z) + Z3(x)
Lsij(z) = nj(z)Ai(z) Z1(z) + Bi(z) Mj(z) — nj(z)Zs(x) + Z1(x)

L4j(.’13) = —27”Lj(:13)Z1 (:13)

Furthermore, for

OzZl (:12) 0
Lij(z) <
0 0
we have
aZi(x) 0
0 0

Assume that there exist polynomials o;;5(x) and they are positive definite, than the following

inequality should hold in the operation domain

U(z@) ==Y > > hi(2)hj(2)05(@)Qs > 0.

i=1 j=1p=1

Because 9 (z, x) is semi-positive definite, (-1)*(3.21) is also semi-positive definite can be hold
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if the following condition is satisfy

Lij(z) - aZ;(w) "1 = Bruze) =0, (3.22)

@)

By moving the right part to the left, we have

OéZl (ac) 0
Lij(x) — + E*Y(z,2) | = 0. (3.23)
0 0
Then define matrices L{;(x) to simply (3.23)
. Lf(@) L) )
Lij(x) = , and — L§i(x) = 0 (3.24)

Ls;j(z) Laj(z)

where

In addition,

> D hi()hi(z)a™ (@) L (@) 2" (2)

i=1 j=1
=Y hi(z)e? T (@) Lij(x)a? (@) + Y ) hi(2)h(2)a™T (@) (L (@) + Lf;(2))z" (2)
i=1 j=1 i<j
leads the conditions (3.6) and (3.7). O

3.3 Path Following

Since there are the bilinear terms in the matrices L%(:c), SOSOPT cannot solve the
stabilization criteria directly. Thus, the research applies path-following approach for solving

the conditions (3.5)-(3.8). The path-following steps are shown as follow:

28



Section 3.3 Path Following

Step 1: Set a constant 7 = 0.The polynomials njo(x) which is positive definite and its
coefficients are randomly decided is defined.

Step 2: Apply SOSOPT to solve:

min a subject to (3.5) — (3.8)
Zy(x),Z3(x),M;(x),0458(x)

by setting n;(x) = njo(x)

Step 3: Apply the Z;(x) and Z3(x) obtained from Step 2 and solve the following conditions

by SOSOPT:
min a subject to (3.5) — (3.8)
0Z1(z),0Z3(x),0m;(x),M;(x),0:55(x)
v (Zy(x) + 02, (x) — e(x)I)v,; is SOS
- vTL?Z-Ea(az)v is SOS, i=1,...,r
— v (L7%(x) + L) (z)v is SOS, i <j<r
ij 7i ’ ~
oijg(x) is SOS, i=1,....r, j=1,...,r, B=1,...,n
enn3(x) on;(x
o (@) on;(@) v1is SOS j=1,...,r
57%](513) 1
e1Z1(x)ZY (x) 6Z1(x
o 1Z1(w)Z; (x) 6Z1(x) vy i5 SOS
§Z¥ (x) I
€.323(x)ZT (x) 6Z3(x
o 3Z3(x)Z3 (x) 0Z3(x) vs is SOS
§Z1 (x) I
where
L7z *
“ 7 #
L3 (x) bmLj;(x)
in which

LT (@) = (Zs(2) +025(2))" + (Zs(2) + 6Z5(2)) — a(Z1(@) +8Z1(2)) — ) 0yjs(@)Qp(@)T
B=1

L

5i;(®) = Ai(@)(n(®) Z1(2) + 021 (x)n;(z) + onj(x) Z1(x)) + Bi(z) M;(z)
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Lz-(m) = —2(nj(x)Z1(x) + 6 Z1(x)n;(x) + én;(x)Zi(x)).

Step 4: Set njmi1)(x) = nj(x) + onj(x) with én;(x) obtained from Step 3. After setting
n=mn+ 1, go back to Step 2.
Repeat the iteration until o < 0 which is found in Step 2 or a < 0 cannot decrease any

more regarding to former iterations.

3.4 Designing Example

This section presents an example to compare the proposed Theorem 1 and previous
studies. For & = [z1 22]T, consider the polynomial fuzzy model (2.9) which has the system

matrices and membership functions shown in [42] with r = 3

A 14z +23+zay—a3 1
1 =
—a —6
A —1+m1+x%+x1x2—x% 1
2 pr—
0 —6
A —1+$1+x%+x1a}2—x% 1
3=
0.2172a —6
Z1
B, =By, =B3 =
b
1 1
hy = G 3= —(@—4)
1+e 2 1+e 2
ho =1—hy — hs. (3.25)

The operation domain is set as x; € [—1 1] and z2 € [—1 1] and the polynomial function is
set as n;(x) = njo + njlx% + njgsc%. Under this situation and a = 2.5, the maximum feasible
value obtained by the proposed method is b = 8.5. When b = 8.5, no solution can be found
by Theorem 2 of [37] and [42]. This example proves that the extra polynomials provided by
(3.1) and the homogeneous Lyapunov function, which removes the limitation of & can help

the system (3.4) to obtain more relaxed results.

Remark 1. The purpose of the designing examples is to show the "relaxation” of our pro-
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posed stabilization criteria, which means our proposed stabilization criteria can find feasible
solutions that other studies cannot find. The importance of the maximum feasible value is
the “relaxation” of the stabilization criterion. The quantity of the maximum feasible value
of “b” itself has no meaning for the considering system. It is a methodology for presenting

relaxation.

The solution of decision variable are presented as follows:

3.3512% — 0.253x179 + 3.54523  —3.4832% — 1.173x122 — 1.8723

Zi(x) =
—3.4832% — 1.173x129 — 1.8723  8.7632% + 2.185x129 + 5.98723
Zs(@) —6.21722 + 2.661z179 — 8.85623 6.424x2 — 1.138z w2 + 7.8223
3 =
—3.44222 + 0.7192129 — 4.75523 —11.972% + —1.048z 22 — 11.13223
—1.252z1 — 0.59523 x5 — 1.8712223 1.9462% + 0.577x3 g + 3.2232222
—0.595x123 — 0.4925 — 0.229273 +0.49121 23 + 1.25724 + 0.086273
M (z) =

—0.02622 79 — 0.28z123 — 0.029z3

—0.25722 — 0.08521 w5 — 0.1423

—2.01421 — 0.782x3x9 — 2.992323
—0.734z123 — 0.993z3 — 0.15823

+0.1042329 — 0.011z123 — 0.008z3
—0.0192% + 0.131z122 — 0.17323

2.613z% + 1.04223 25 + 3.9782323
+0.6971 23 + 1.55225 — 0.087x3

Ms(z) =
+0.09273 79 — 0.24671 235 — 0.03873 +0.036x3 79 — 0.197123 — 0.02623
—2.267x2 — 0.449x1 79 — 1.62223 +2.8282% + 0.811z1 29 + 1.84623
—2.899z1 — 0.851z3x9 — 3.1342223 3.84x7 4+ 1.185x3x9 + 4.09222 22
—0.406z1 25 — 0.7923 — 0.10223 +0.477z123 + 1.05324 — 0.17823
M;(x) =

+0.0832329 — 0.144z123 — 0.01123
—0.87222 — 0.1412179 — 0.65423
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0.573z2 + 0.56422 + 0.167

n(x)

0.5022% + 0.59823 + 0.875

na(x)

0.8272% + 0.36323 + 0.304

n3(x)

The simulation result is shown in Fig 3.1 and Fig 3.2.

1
08 - - <~ < <

= == = > > >_&_ = L . L - J

== = = = = . . . L

b = = = - . . . . L o

b —

- - - - -

b - - -

\\\\\

- - - <N

Figure 3.1: The simulation results of x
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-0.05

-0.1

-0.2

-0.25

-0.3

-0.35 I I I I

time

Figure 3.2: The simulation results of control input u
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4

A DESCRIPTOR SYSTEM APPROACH
FOR POLYNOMIAL
Fuzzy-MoODEL-BASED CONTROL

DESIGN

A polynomial FMB control design by using descriptor system approach is proposed in
this chapter. A PDC-based controller is concerned in this chapter, and the closed-loop system
is expressed in descriptor form. The stabilization is analyzed by applying a commonly used
Lyapunov candidate. Two examples, including a numerical one used for comparison and the

other one verifying the applicability, are provided.

4.1 A Model With PDC-Based Controller

Consider the polynomial fuzzy model (2.9). By applying the concept of PDC technique,

the following controller is employed:
w(z) = hi(z) Fi(z)m. (4.1)
At First, the fuzzy controller (4.1) is converted into

0="> hi(z)Fi(z)z — u()
i=1

= Z hi(2){ F;(x)x — u(zx)}. (4.2)
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Moreover, the transformation matrix T'(x) which is introduced in preliminaries section is
applied to represent the relationship between the state vector x and its monomial vector

Z(x), that is,

Therefore, from (2.9) and (4.2), the closed-loop systems can be rewritten in descriptor form:

B (2) =Y hi(2) Al (0)2" () (4.3)
i=1
where
I00 T 0  Ai(z) Bi(z)
E=1000]|,2=| 2@ |4 =| T(® -I 0
000 u(x) F;(x) 0 —I

4.2 Main Result

The stabilization analysis for (4.3) is presented in this section, which is presented in
terms of SOS. Before introducing the Lyapunov function, the definitions of A¥(x) and z
should be given [37]. Define A¥(x) which denotes system matrix A;(z)’s kth row, where
K = {k1, ko, ..., kn} is corresponded to system matrix B;(x)’s row index in which contains

the zero row, and define the vector

x(t) = [xg, () - ka]T. (4.4)

Moreover, the research defines the vector of membership functions

h=1[hi(z) - h(2)]7.

Theorem 2:
If there exist a symmetric polynomial matrix X(&), polynomial matrices Xo (), Xoo(x),
Xos(x), Xs1(x), X32(x), Xz3(x), M;(x), and polynomials o;g(x), (4.3) is asymptotically

stable when satisfying the following conditions,

vl (X(x) — ey (x) D is SOS (4.5)
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— o' (Hj(x))vis SOS, i=1,...,r (4.6)
oig(x) is SOS, i=1,...,r,=1,...,n, (4.7)
where
X(x) 0 0

H;(x) is given as

A;(x) X21(2) + Bi(w) X31(2) + X3, () A] ()
+ X5, (0) B (2) = Xy 9 (2) A () () * *

Oz,

=2 p=10is(2)Qp(2) I + €2:(x) I

T(@) X(z) - X (@)+ (—Xa2(z) — X35()) *
X5 (x) AT (2) + XLy (x) BT (2)

Mz(m) — X31 ($)+

X33(z) A] () + X33(x) B] ()

%

(4.8)
in which
Qp(@) = (5 — 2f"™) (w5 — 25*")
polynomials €1(z) > 0 and eg;(x) > 0 for all z # 0. The feedback gain is obtained from
Fi(z) = Mi(z) X~ (2). (4.9)

Proof:

A Lyapunov function candidate which is commonly used in the studies of polynomial
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fuzzy model is considered:

V(z) =2 X '(z)z. (4.10)
From the definition of K, we have
T, = Zr: hi(z) A% (x)a(x) (4.11)
i=1
for k € K, and
8;: () =0 (4.12)

for i ¢ K. Then V(x)’s time derivative will be

- - T r T
x X Y(z) Phi(x) Pi(z) || I 0 0 x (4.13)
+ | i(x) 0 Ph(x) Ph(z) | |00 0 || )
I u(x) | [ 0 Ply(z) Piy() 0 0 0] ()
- 17T r 7
2 i P @AN@T 0 0| | @
+ | (x) 0 00 ()
| u(@) | | 0 00 ]| u@ ]
Therefore, we have
+ 7 Ci(z)x" ()
- Zh (@4 (@) P(a) + P (2)A()
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where
X Nz 0 0
P(z) = Py (xz) Paa(z) Pas(z)
P3i(z) Psa(z) Pss(x)
and

In the operation domain Dy,

T

Y(zw) = =YY hiz)ois(@) (s — ) (a5 — ) = 0

i=1 g=1

where o;5(2) > 0 which is hold in (4.7). Therefore, V() < 0 for D,, — {0} is satisfied if

—(Y(z, ) + e2i(x))I 0 0

2T P (x) 0 0 0 | P@)z (4.15)

0 0 0

where polynomials eg;(€) > 0 in « # 0. Let X(x) = 1571(:3). Condition (4.6) implies the

truth that
(X (2 AT (z) + AY(z) X(2) — Di(x)
(22:1 oig(x)Qp(x) — e25(x))I 0 0
- 0 00 (}=0 (4.16)
0 0 0
where

Siex (@) AN@al) 0 0
D;(z) = 0 0 0
0 0 0
Note that AF(z)a(x) is a scalar. We have the inequality below by multiplying (4.16) from

left side and right side by PT(w) and P(x) respectively
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(>"h=1 ip()Qp(x) — €2i(x))I 0 0
T ~T ~

—{A;T(x)P(x) + P (x)A}(z) — P (2) 0 0 0| P(x
0 0 0
Shex X @)X (2) X (@) A (D)@(z) 0 0
- 0 0 01}=0.
0 0 0

The preliminaries’ chapter gives that X()’s invert matrix is exist. Therefore, X !(Z) X(Z) =

I. By doing derivative on both side with respect to x, the following equation is obtained

). G X

Do (w)X(ic)—kX_l(in)a—m(ic) = 0. (4.17)
Therefore
40X ox ' .
X 1(:1:)6—3%(:1:)X Yz) = — 2,1 (). (4.18)

From (4.18), the inequality (4.16) can be represented in

{4 (@) P(2) + P’ (2)A] (2) + Cila)
(> f=1 0ip(®)Qp(z) — e2i(x))I 0 0
- P () 0 0 0 | P@)}>0. (4.19)

0 00

From (4.14), if (4.19) holds for ¢ = 1,..., r, then (4.15) holds. Consequently, if the condition
(4.6) holds, V() < 0 for D,, — {0} is satisfied. O

Remark 2. Compare the proposed Theorem 2 and the approach of [37] with considering
the operation domain, Table 4.1 presents the differences. From the Table 4.1, the number
of the SOS constrains of the approach of [37] is 7(r + 1)/2 + 8 + 1, with considering the
operation domain. In contrast, the number of SOS constraints of the proposed approach
applying the descriptor form is only r 4+ r8 + 1. The value of 8 is n, and the term rf is
omitted since both the approach of [37] and proposed Theorem 2 contain this term. We

have the fact that the descriptor representation’s redundancy can decrease design conditions’
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numbers drastically. The phenomenon goes evident with large r, that is, the nonlinear system
with more non-polynomial nonlinear terms. In contrast, the dimension part, the stabilization
matrix’s dimension is n for the approach of [37] and is 2n + m for the proposed approach.
Therefore, compared with the approach of [37], the proposed approach is more suitable for
the polynomial fuzzy model with more rules and fewer states. Moreover, through our several

trials, the feasibility (relaxation) of the proposed approach is similar to the approach of [37].

Table 4.1: Comparison Between the Proposed Approach and the Approach of [37] with
Considering the Operation Domain.

The Proposed Approach | Approach of [37]

Number of SOS Constraints r 42 r(r+1)/2+2

Dimension of stabilization Matrix 2n+m n

4.3 Design Examples

This section gives two examples. One example is to make a comparison with the existing
polynomial FMB control design approach, and the other example verifies the applicability of
the proposed method.

Ezample 1:
Given that Z(x) = x = |11 x2]7, consider the polynomial fuzzy model (2.9) which has the

system matrices and membership functions shown in [42] with r = 3:

4 —l—i—xl—i—x%—kmlxg—x% 1
1:
—a —6
A 14z +a2+zma—123 1
9 =
0 —6
4 —l—i—xl—i—x%—kmlxg—m% 1
3 —_
0.2172a —6
I I I
Bl - 7BQ = 7B3 =
b b b
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1 1
h=—%5 hs=

1+e 2 14e™
ho =1—hy — hs.

(z1—4)
2

The operation domain x; € [—2 2] and 2 € [—2 2]. Since no zero row are shown in B;(x), the
elements in matrix X (&) contain only constant. When a is set to be 2, the maximum values
of b can be found for feasible solution in the proposed approach and the approach of [37] with
considering the operation domain are both close to 8. It shows the feasibility of these two
approaches is similar as mentioned in Remark 2. As Remark 1 mentioned, the quantity
of the maximum feasible value of “b” itself has no meaning for the considering system. It is
just a methodology for presenting relaxation. When a = 2 and b = 8, the Fig 4.1 shows the

simulation results, which is represented in the phase plot, and the solution matrices is

2.384 —4.148
X(@) =
~1.163  38.66

0.309x1 — 0.072x2 + 2.664  0.445x1 + 0.323x2 + 0.422

Xgl(a}) =
—4.141z1 — 1.62813 — 0.88  —0.33521 — 0.69629 + 9.191
0.09622 + 0.007z122 + 0.078z3 —0.068z% + 0.025z1 22 + 0.03322
+0.407x1 — 0.275x9 + 1.471 ~1.03621 — 0.5825 + 0.383
ng(w) =
—0.46522 — 0.024x1 79 + 0.32873 2.33622 + 1.18z1 22 + 1.51123
—1.44x1 — 1.39729 + 0.385 —1.802x1 — 0.805x2 + 3.656
—0.078z% + 0.014x1 22 — 0.01522
—0.984z; — 0.513z5 — 0.631
Xos3(z) =
1.88627 + 1.404z1 75 + 0.52323
40.058x1 — 0.034x5 + 5.127
Xs1(z) = | —4.10721 — 1.19929 — 1.504 —0.23721 — 0.523x2 + 3.63
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Xan(a) —0.32822 — 0.012x1 79 + 0.24623 1.6492% + 0.857z 72 + 1.11723
32(T) =
—1.023x1 — 1.05625 + 0.784 —1.425z1 — 0.652x2 — 3.693
Xs3(x) = 1.9672% + 0.77z 29 4+ 1.19323 — 0.0192; — 0.10425 + 4.909
Mi(a) 0.1872% + 0.53521 22 — 0.35723 —3.9982% + 0.521z 29 — 4.14922
1\Z) =
—7.872x1 — 0.45625 — 5.301 —0.081z1 4 0.09622 — 0.796
My() 0.25622 + 0.528z 22 — 0.28723 —3.8612% + 0.4897 19 — 3.94373
2\Z) =
—7.898z1 — 0.40872 — 5.676 —0.164z7 — 0.03922 — 0.809
Ma(a) = 0.2822 4 0.519z129 — 0.25123 —3.811z% + 0.497x 29 — 3.87922
S (x) =
—7.857x1 — 0.366x2 — 5.817 —0.20221 — 0.064x5 — 0.847

From Fig 4.1, it shows a locally asymptotically stable results for closed-loop FMB control

system in the operation domain.

s sl s s s s § = <. =

o e v m e e m m e e e e e e e =~
R N N
A A A D N PN |

N S b ~

Figure 4.1: The phase plot of the simulation results
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Table 4.2: Bicycle Dynamic’s Parameters

Parameter | Value | Unit
M 25.5 [ke]
I, 10.0 | [kgm?]
L 1.0 [m]
h 0.575 [m]
v 2.5 [m/s]
U 3 [rad]

Ezxample 2:

Consider a bicycle dynamic system as Fig 4.2 and 4.3 shows. In Fig 4.2a L denotes the
length of the wheels base, 17 denotes the steering angle, h denotes the height of the bicycle’s
center of gravity, ¢ denotes the steering angle, and v denotes the running velocity. In Fig
4.2b M denotes the whole mass of the bicycle, and 6 is the camber angle of the bicycle. In
Fig 4.3 8 denotes the direction angle and R denotes the turning radius. Note that g denotes

the gravitational acceleration and its value is g = 9.81 m/s.

NS
/
/
h
|
|
v
/e o
/ ™ L 1
|
(a) The bicycle coordinate from side position (b) The bicycle coordinate from back position

Figure 4.2: Two bicycle’s coordinates
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Figure 4.3: The bicycle coordinate from top position

The total dynamic of the bicycle is presented in the equation as

. Muv?h
1,0 = Mghsinf — Y

-sin(n) - ¢ (4.20)

where I, is the moment of inertia. The dynamic equation (4.20) can be rewritten in matrices

form as the following equation [65]:

0 0 0 i’ 21)
0 Ml—aghsinﬁ _J\/gih - sin(n)

By utilizing the Taylor series as technique proposed in [66], sinf can be represented as

63
sinf = h16 + ho <9 - 6) (4.22)

with the membership functions

6(sinf—0)
6sm0=0) L 1 g£0
hy = o 7 he =1— hy.

0 =0

Let 21 = 0 and 25 = 0. Using (4.22), the dynamic (4.21) can be equal to the system matrices

of polynomial fuzzy model (2.9) with the parameters r = 2 and #(x) = & = |11 22]7. Also,
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the system matrices is represented as

Ay (z) o A;(x) " 1 Bi(z) = Ba() "
1\r) = , A2(T) = 2 , D1(X) = D2(T) = ) '
o 1= 0 4t - sin(n)

The operation domain is set to be x1 € [-5 F] and x5 € [—7 7], and the bicycle parameters

are given in Table 4.2. By solving the SOS constraints (4.5)-(4.7), the solutions are shown as

1.79122 + 7.493 x 10~ "2, ~17.5332% + 6.857 x 10~ a1y

+5.268 —11.044
X(z) =
2.9877 — 1.222 x 107024 8.453x% + 4.635 x 1070z
+0.869 +8.801
Xgl(w) =

0.23121 + 0.001z3z2 + 0.0222223 —0.512z7 — 0.03423z9 — 0.172%23

+4.804 x 10~ "z$ +9.014 x 10~ %232y
—1.987 x 1078z 23
+0.54122 — 0.01621 72 + 0.09423
+8.828 x 10~ w1 + 4.169 x 10~ "z9 + 1.048
—4.166x1 + 0.15423 79 — 0.5062323
—4.73 x 10772} + 3.421 x 10~ "wix,
—3.791 x 10~ "z 23

—6.64622 + 0.157x1 79 — 2.10323

—6.457 x 107721 + 1.562 x 10 %29 — 8.372
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+4.975 x 107823 + 8.595 x 10~ "z 2z,
—3.34 x 10782123
—0.8552% — 0.024x122 — 0.29522
+8.936 x 107821 + 1.136 x 10 625 — 1.129
3.169z% — 0.605x3x9 + 1.7262323
—2.954 x 107723 — 1.241 x 10 %222
+6.351 x 10~ "z 23
+3.34122 — 0.32121 29 + 3.36873
—3.505 x 1077z — 2.017 x 107529 + 5.373




ng(m) =

0.478x% + 0.066z3x2 + 0.3932223
+0.013z123 + 0.06123 + 2.021 x 10~ "z3
+2.204 x 10~ 2329 + 2.157 x 10~z 23

+1.525 x 10~ 723
+0.5582% + 0.054x1 29 + 0.38223
+2.448 x 10~ "2y + 2.141 x 10~ x5
+0.655

—0.7227 + 0.039z3z2 — 0.1722323
+0.002z123 — 0.008z3 — 7.09 x 10~ 723
+2.284 x 10772229 — 2.844 x 10~z 23

+2.394 x 107823
—1.1982% + 0.116x129 — 0.50123
—~7.997 x 10~ 7z1 + 3.686 x 10~ 729
—2.561

X23(:13) =

47

—0.322% + 0.06x3x2 + 0.16822 232
+0.014z123 + 0.004z35 — 3.581 x 10~ "3
—1.826 x 10~ "z?xy — 2.382 x 10~ "z123 — 3.077 x 10~ 723
—0.1752% + 0.042x129 + 0.11123
—4.839 x 107"z — 3.133 x 10~ 729 — 0.489
—1.951z1 — 0.36723x9 — 0.842222
—0.294x123 + 0.13625 — 1.364 x 10~ %23
—3.093 x 10~ "z3zy — 2.501 x 10~ 72123 — 1.076 x 10~ a3
—2.352% + 0.061z1 29 — 1.24823
—1.48 x 107521 — 4.076 x 10~ "z9 — 3.971

Section 4.3 Design Examples

—0.041z7 + 0.00323z2 — 0.072%23
—0.007z123 — 0.048z5 — 1.798 x 10~ %23
—2.391 x 10~ "2%xy + 1.166 x 10~8z; 23

—1.528 x 10823
+0.3292% — 0.007z1 22 + 0.18923
+2.044 x 10772 — 1.85 x 10~ "2y
+0.726
5.951x% + 0.22523 79 + 1.642323
+0.09z1 73 + 0.33473 + 4.387 x 10~ 723
—3.442 x 10782229 + 6.448 x 10~z 23
+2.576 x 10~ "x3
+5.122 + 0.14971 29 + 1.11723

+5.792 x 10~ w1 + 7.356 x 10829

+7.597
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X31(m) =

0.269z% + 0.43623 29 + 0.1742323
+7.399 x 107923 — 1.828 x 10~8z3x,
+1.293 x 10~ "z123
+0.0392% + 0.647x1 29 + 0.44323
+2.045 x 107"z

+1.677 x 10~ 729 + 0.628

ng(ac) =

1.183z1 + 0.0623 x5 + 0.2842323
+0.008z1 23 + 0.043x5 + 1.739 x 10~ "z3
+1.384 x 10~ "22z9 + 1.359 x 10~ 72123

+1.2 x 107723

+1.20122 4 0.05521 22 + 0.29373

+1.369 x 10~y

+7.228 x 107829 + 1.587

2.695z — 1.7212329 + 3.0642323
+1.068 x 107623 — 4.598 x 10~ "z 3z,
+7.125 x 10~ "z123
+3.5842% — 1.08z 22 + 4.12723
+1.293 x 107524

—2.099 x 107829 + 4.058

0.821z% + 0.044x3z9 — 0.1032323
+0.021z123 — 0.028z3 + 7.371 x 10~ "2}
+5.623 x 10782229 — 7.613 x 10~ 8z 23

—1.503 x 10~ %23
+1.09122 — 0.02z122 + 0.11523

+8.365 x 10~ "1

—2.913 x 10~ 729 + 1.637

Xs3(x) =1.53827 + 0.10523 20 4 1.1872323 — 0.087x1 25 + 1.42625

+4.902 x 107723 +2.796 x 10~ 2320 + 4.12 x 10~ 2125 + 2.808 x 10~ "=

+ 1.28622 4 0.06621 29 + 1.47322 4 5.504 x 10~ @1 + 6.154 x 10~ "z5 + 1.76

4.299z7 4 0.611zq 22
M, (z) =

+1.055 x 107629 +9.47
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+0.09523 + 3.03 x 107 %2

9.458z% — 0.5587 122
+6.27523 + 2.318 x 107 %2
+4.161 x 10~ 5z5 + 8.526
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3.01922 + 0.684x1 29 8.07372 — 0.5887129
M(z) = +0.12123 + 2.079 x 10~%2 +6.25422 + 2.756 x 10762,
+8.995 x 10~ "mo + 9.445 +4.144 x 107529 + 8.507

By choosing the initial conditions as 1 = § and x2 = 0, the simulation results are shown
in Fig 4.4, 4.5, and 4.6. It is obtained that the bicycle system controlled by the proposed

Theorem?2 is asymptotically stable.

0.6

0.5 4

0.3 4

0.1 - bl

-0.1 B

-0.2 ! I

time

Figure 4.4: The bicycle’s angle
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det)/dt

15
time

Figure 4.5: The bicycle’s angle speed

0.5

-0.5 !

15
time

Figure 4.6: The control input
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STABILIZATION BY Fuzzy SLACK
MATRICES AND NOVEL Fuzzy

LYAPUNOV CANDIDATE

Chapter 4 presents a control design of polynomial FMB system beyond descriptor form’s
methodology. In this chapter, the research tries different ways to do the previous chapter’s
stabilization. Same as Chapter 4, a polynomial fuzzy model with PDC-based controller forms
a closed-loop system and is applied by descriptor representation. In the first proposed the-
orem in chapter 5, a common Lyapunov function like Chapter 4 is applied for stabilization.
The difference is that chapter 5 brings polynomial fuzzy slack matrices into stabilization based
on descriptor form representation’s redundancy. The fuzzy summation problem, caused by
the fuzzy slack matrices, is solved by co-positivity relaxation because it can be seen as the
co-positivity problem. In the second proposed theorem in chapter 5, a novel fuzzy Lyapunov
function is proposed to do the stabilization analysis. Note that the second proposed theorem
is based on the situation that input vectors have no relation to membership functions. As the
former is included in the novel fuzzy Lyapunov function and is taken as a special case, the fact
that the second theorem obtains less conservative stabilization results than the first theorem
is held. Because of the applying of novel fuzzy Lyapunov function, the membership functions’
time derivatives are required to apply in the stabilization analysis. This extraction divides
the differential function into common factors and the rest. Hence, to deal with this rest,
the sector nonlinearity technique is applied. Finally, this chapter presents six examples to

present the relaxation and comparison between these proposed theorems and previous studies.
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5.1 Stabilization via fuzzy slack matrices

Consider a polynomial fuzzy model (2.9) applied with the PDC-based controller (4.1) and
it is presented as the descriptor form (4.3). This section stabilizes the closed-loop system

(4.3) by fuzzy slack matrices. The fuzzy slack matrix is defined as
Xjk(h,x) = Zh Xipi(z), j=2,3k=1,2, 3 (5.1)

where X ;(x) are polynomial matrices in @. Therefore, the Lyapunov function (4.10) can

be rewritten as

Vi) =2 X ()= o () E'O ! (h,z)z*(x) (5.2)
where
X(z) 0 0
O(h, @) = | xa(h,x) X2(h,z) Xx23(h.x) |- (5.3)

xsi(h,x) xs2(h,x) xs3(h, )
By substituting the Lyapunov function (4.10) into the augmented form (5.2) , the fuzzy slack
matrices xji(h,x) approach’s stabilization criterion are obtained.
Theorem 3:
Consider the operation domain (2.1). If there are polynomials o;;5(), a symmetric poly-
nomial matrix X(Z) and polynomial matrices M;(x), Xji;(x) , the system (2.9) is asymptot-

ically stable when satisfying

v (Xi(x) — eri(®) Do is SOS, i=1, ..., r (5.4)

_ <Zﬁ%> ZZh2h2 H;;(z)v; is SOS (5.5)
k=1 =1 j=1

oijg(x) isSOS, 4, j=1,...,nr, =1, ..., n (5.6)

where v and vy are the vectors which are independent from x; s is a non-negative integer;
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Section 5.1 Stabilization via fuzzy slack matrices

and H;j(x) are given as

Hij(z) =

+X’£17,( z) A () + Xgu( ) Bj (2)

— D kek 8a:k( )Ak(m)@(ﬂn)
=2 51 0ijp(@®)Qp(2) I + e2i5(z) I
T(x) X(x) — Xo1i(x)+ < X(a) - Xho(o) > .

(~Xolo) - Xuto) ) ~Xolo) - X))

(5.7)

in which

Qp(x) = (w5 — 2f™)(wg —af™), B=1, ..., n

polynomials €1;(x) > 0 and eg;;(x) > 0 for  # 0. The following equation can obtained the
stabilizing feedback gain.
Fj(z) = M;(z) X" '(2). (5.8)

Proof:
Consider the Lyapunov function (4.10) in which X (&) > 0 is satisfied for @ # 0 if (5.4)

holds. The Lyapunov function V(x)’s time derivative are

V(z)=2'X @)z +2" X ()¢ + 2" X (@)
=" X Y @)z + 2" X (@) (5.9)

0X~ 1
T
T Z 8.%'k
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From the definition of K, it is obtained that

i = 3 hil2) AL ()ala) (5.10)
i=1
for k € K, and
oxX1
T) = A1
(@ =0 (5.11)

for i ¢ K. Moreover, X (&)X (&) = I holds the following relation [37]:

-1
@)= -X"@)

(#) X~ (@). (5.12)

oxy, Oxy,

The derivative of Lyapunov function V' (x)’s with respect of time can be represented as fol-

lowing by applying the augmented fuzzy matrix @ (h,x) of (5.3) with (5.9) - (5.12).
V(iz) =7 (2) E'O L (h,z)x" (x)
+ T ()0 T (h, ) E*&* (x)
T(h,2) Y hy(2)
j=1
x Tj(x)® ! (h,z)z" ()

_ Z hy( () A7 ()0 (h, 2)2" () (5.13)
© "(h,z) Zrzl hj(z)Aj(z)z"(z)
p=
© 7 (h,x) Z_} hy(2)
« T;(z)0 ! (h, z)2" (z)

where
Yk (@) Af(@)@(x) 0 0
Lj(x) = 0 00
0 00

Furthermore, in the operation domain D,,, we have the inequality:

ZZZh z)oijp(x)Qp(x) = 0 (5.14)

i=1 j=1 p=1
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Section 5.1 Stabilization via fuzzy slack matrices
where 0;;3(x) > 0 which is satisfied by (5.6). Define

((h,x) + ea(h,x))I 0 0
\Il(h,ar;): 0 0 0

0 0 0

where ez(h, @) = 311 > hj(2)hi(2)e2ij(x) being with polynomials e;;(x) > 0 for z # 0.
According to (2.10), ez(h,z) > 0 for  # 0. In addition, (5.14) holds in D,, and X(Z) is
a symmetric positive definite matrix. From the introduction of congruence in preliminaries,
the inequality

— X Y @) (Y(h, ) + ea(h, ) IX () <0 (5.15)

holds for D,, — {0}. From (5.15), it can be obtained that

— 2" X Y (&) (Y(h, ) + ea(h, ) IX ' (2)x
(5.16)
= 2T ()@ T(h,x)¥(h,2)® (h,x)z" (x) <0

for D,, — {0}. Therefore, V() < 0 for D,, — {0} is satisfied when the following condition
hold

Viz) < -2 ()0 T (h,z)®(h, £)® (h, ) (). (5.17)

Applying V (z) of (5.13) and letting (5.17)’s the right part move to the left, (5.17) is able to

be rewritten as

Zh (AT ()07 (h, )z (2)
© " (h,x)) hj(z)A}(x)a" (x)
=1 (5.18)
T(h,x Zh “h,z)x*(z)
+ T ()0 T (h,z)®(h, )@ (h,z)z*(x) < 0.
Inequality (5.18) holds if
Zh {AT ()@ (h,x) + © T (h,z)A}(x) — © T (h,z)T;(z)® ' (h,z)}
(5.19)

+ 0 T(h,x)®(h,£)® (h,z) <0.
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Multiplying (5.19)’s left by ®T (h, ) and right by ©(h,x) respectively to obtained simplify

the inequality above

SN m(2)hi() X ()47 (2) + Aj(2) X(x) — Tj(=)

i=1 j=1
(=251 0ijp(@)Qp(T) + €e2i5(x))I 0 0 (5.20)
+ 0 0 0|}<=o.

0 0 0

Letting M;(x) = Fj(x)X (), if the following condition:

' T
D ) hi(2)hi(2)v] (- Hij(x))vy > 0. (5.21)
i=1 j=1
holds for all v; € R?"*™ inequality (5.20) holds
By applying the technique of co-positive relaxation in preliminaries’ chapter, the condition

(5.5) guarantees (5.21) being satisfied that means V(z) < 0 for D,, — {0}. O

Remark 3. In [37], the polynomial fuzzy model (2.9) is stabilized by the following commonly
used Lyapunov function:

V(e) =2 (2) X 1(2)a(x). (5.22)

In contrast, the Lyapunov function (4.10) in chapter 4 is seen as a slightly modified version
of (5.22) which changes #(x) to . Another thing is that the descriptor representation
(4.3)’s redundancy allows fuzzy slack matrices x;i(h, x) be introduced in the designing of
stabilization. These slack matrices make Theorem 3 get more relaxed results than [37] in
some cases. Example 1 shows a numerical case to prove this remark. One thing that has to
be noted is that this Theorem does not guarantee all the cases to have more relaxed results
than [37]. The reason is the fact that the stabilization criterion of [37] cannot be taken as

Theorem 3’s special case.

5.2 Stabilization via the novel fuzzy Lyapunov function

The following design methodology for stabilization is based on the cases that the inputs

vectors don’t relate to membership functions (i.e. hi(z) = h;(@) Vi) in this subsection. A
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Section 5.2 Stabilization via the novel fuzzy Lyapunov function

function called "Novel Fuzzy” is proposed for obtaining more relaxed stabilization results.
Furthermore, extracting membership functions’ time derivatives should be an issue when
doing the stabilization analysis since the novel fuzzy Lyapunov function is concerned. The
preliminaries have introduced membership functions’ differential extraction, which is pre-

sented as

2
hi(#) =) wim (@) pim () (5.23)

with the techniques of sector nonlinearity. Where p;, () are polynomial functions in @ and

2
D wim(z) =1 (5.24)
m=1

(For more details, see the preliminaries’” Chapter). The membership functions’ differential
extraction (5.23) and novel fuzzy Lyapunov function produce the stabilization criterion, which
will be introduced in Theorem 4.

Theorem 4 :

Consider the operation domain (2.1) and for h;(z) = h;(€) Vi satisfying (5.23), if there
exist polynomials o;;3(x), symmetric polynomial matrices X;(Z) and polynomial matrices
M;(z), Xjii(x), the transformed polynomial fuzzy descriptor system (4.3) is asymptotically
stable when the conditions below are satisfied.

o' (X (x) — e (x)Dv isSOS i=1, ..., r (5.25)

)

- (ZT: Bi) ET: i: BzziL?U{I:Iijpm(CL‘)U1 is SOS

k=1 i=1 j=1 (5.26)
p=1, ,r—1, m=1, 2
oijg(x) isSOS i, j=1,...,r, =1 ..., n (5.27)

where v and vy are the vectors being independent from x; s is a non-negative integer;
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and Hjjpm(z) are

Hijpm(x) =
[ [ A;(2)Xou(2) + B;(2) Xs1i(a)
X5, (2) AT (2) + X5,(2) BT (x)
— Y hek T (@) Af (@) () * *
—(r = Dppm () (X, (2) — X, (Z))

=2 521 0ijp(@)Qp(x) I+ e2i5(x) I

— Xo2i(x) — X39;() *
222( )AT( x) + X321( )BJT(@
M;(z) — Xzi(x)+ T

—Xagi(x) — Xi3(x)  —(Xss(x) + Xi,())

XgSz(:B)A (z) + X33z( )BT(“?)

(5.28)

in which

Qp(@) = (wp — xf™)(wg —xf™), B=1,....n

polynomials e1;() > 0 and eg;;(x) > 0 for  # 0. It can be obtained that the stabilizing
feedback gain is
Fj(z) = M;(z) X ' (h,&). (5.29)

Proof:

Choose a novel fuzzy Lyapunov function as the candidate

V() =2 X Yh, &)z (5.30)

where

and X;(&) are symmetric polynomial in & of (4.4). If (5.25) holds, the inequality X (h, &) > 0

is satisfied for & # 0 . The novel fuzzy Lyapunov function V(x)’s time derivatives are
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Section 5.2 Stabilization via the novel fuzzy Lyapunov function

Viz) = &' X '(h,)z+ 2’ X '(h, )z + 2" X '(h, ).

Since Xﬁl(h, %) X(h,z) = I, it is obtained that

which means

Furthermore,

= T hi(@)Xi(®)+ Y hi(®)> OXi &)k

i=1 1=1 k=1

From the definition of K, (5.10) is satisfied for £ € K, and

al‘j (i) =0

for j ¢ K. Therefore, (5.33) is transformed to

X(h,@) =Y hi(@)Xi(@)+ > > hi(&)h;(Z)
=1

i=1 j=1

<3 g‘;‘z (&) Al(2)d(x).

keK

Taking (5.32) with (5.35) into (5.31), it is obtained that
Vie) =&’ X '(h,2)z+ 2 X '(h, )z — 2" X (h, &)

x (Z hi(@) Xi(&) + D Y hi(@)h(&)

i=1 j=1

x> 0Xi (@)A?(@@@:)) X '(h,&)z.

oz
kek Ok
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By defining

X (h,x) 0 0
O(h,@) = | xa(h,z) Xao2(h,x) Xx23(h,)

xsi(h,x) xs2(h,x) xs3(h,x)

Ykek 2t (@) Af(D)(x) 0 0

Tij(z) = 0 0 0

0 00

T(h,@) =Y > hi(@h;(@T;(x)

i=1 j=1
Xi(&) 0 0

pi(T) = 0 00
0 00

then it is able to rewrite (5.36) as

V(z) = #7(2) E'O L (h,z)z" (x)
+ 27 (2)® T (h, ) E'i* (x)
— T (2)@ T (h, w){z hi(Z)pi(&)
i=1
+T(h,2)}0 ' (h,z)z"(z)
= Z hj(i’)a}*T(q;)A;T(w)@_l(h, x)x' (x) (5.37)
j=1
+ g:*T(;B)(:)*T(h, x) Z hg(fc)A;‘(a:)a:*(a;)
j=1
— a:*T(:I:)C:)*T(h, cc){z hz(;};)(pl(j,)
i=1
+T(h,2)}0 ! (h,z)z*(z).

Furthermore, inequality (5.14) holds for D,,. Therefore, V() < 0 in the region D,, — {0} is
satisfied if
Viz) < -2 (2)® T (h,z)¥(h, )@ (h,x)z" (). (5.38)
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From (5.37), inequality (5.38) can be rewritten as

r

27 (@3 (@) (AT ()0 (h,2)
j=1

+61 (h.3)45(2) - 67 (.2) 3 hu(@ei(a)

I‘(h,a:)) O !(h,x)

+ 0 T(h,z)®(h,)® (h,z)}z* (z) <0.
Inequality (5.39) holds if
Z hi(@){ AT (20 ' (h,z) + © T (h,z)A}(z)}
—@‘Thx{Zh &)+ T(h,2)}07  (h,z)
+ O T(h,z)®(h, )@ ' (h,z) <0
Multiply (5.40)’s right by ©(h, x) and its left by @7 (h, ) respectively, we have
Zh 2){0" (h,z) A" (x) + A} (x)O(h,z)}
- Z ho(@)9p(#) — T(h, ) + ¥ (h, ) <0
p=1
According to (2.10), 377, hp(?n) = 0 holds such that
hr(i') == Z hp(i)-
Then inequality (5.41) can be written as

Zh 2){0" (h,x) A" (x) + A} (x)O(h,x)}

r—1
=Y (@) (pp(@) — or(E))

p=1

—TL(h,z)+ ¥ (h,z) <0
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Applying (5.23) with the property(5.24), inequality (5.43) is equivalent to

2

r—1
T2 2 o) S @6 4T e

p=1m=1

+ A;(m)é(h»@} — (r = Dppm(x)(pp() — @r()) (5.44)

—T(h,z) + ¥(h, :1:)} <0.

Letting M,(x) = Fj(xz)X (h,Z), inequality (5.44) holds if the following conditions hold for

all v; € R?m;

Z Z hi(2)h;(2)v] (= Hijpm(z))v1 > 0

i=1 j=1 (5.45)
p=1 ...,r—1, m=1, 2.
Also applies the technique of co-positive relaxation, the condition (5.26) guarantees (5.45)

being satisfied that means V(z) < 0 for D,, — {0}. O

Remark 4. If X;(z) = X(2) Vi, Theorem 4 will become Theorem 3. The more relaxed
results are always obtained by Theorem 4 when compared to Theorem 3, though. There
is the limit that only the case no relation between membership functions and the inputs
(i.e. hi(z) = hi(®) Vi) can apply Theorem 4, while no constrain is included in Theorem 3.
Beyond the situation that the system’s inputs is not related to membership functions, the

membership function’s time derivatives can be represented as

ox

— OB S ) Adw)ilo) + Bl

=1

which shows that the equation above is held with the control input w, which is necessary.
However, the fact that if the stabilization progress, which includes membership function’s
time derivative decomposition (5.23) (i.e. hi(z)), the control input u cannot be obtained.

That is why the control input u is not able to appear in the equation above from Theorem 4.
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Section 5.2 Stabilization via the novel fuzzy Lyapunov function
Remark 5. Consider an open-loop descriptor systems presented in [4]
Exr = Ax (5.46)

where x € R" and A, E € R™". From theorem 2.2 of [4], (5.46) is regular, impulse-free, and

asymptotically stable if and only if there exist a matrix V' such that

VIA+ ATV < - W
(5.47)

E'Vv =VTE>0
for any positive definite matrix W. Conditions (5.47) are locally hold by,
e (3.5), (3.6), and (3.7) in Theorem 1 in Chapter 3.

e (4.5) and (4.6) in Theorem 2 in Chapter 4.

e (5.4) and (5.5) in Theorem 3 in Chapter 5.

(5.25) and (5.26) in Theorem 3 in Chapter 5.

Therefore, if the proposed Theorems can find feasible solutions of designing examples in

Chapter 3, 4, and 5, the systems in designing examples are ”impulse-free”.

Remark 6. As Remark 2 mentioned, the descriptor form increases the size of the matrices.
Thus, the computational time increases when the structure of the system goes complicated.
The proposed Theorem 2 has the lowest computational time, which is almost the same as
the state-space polynomial model of [37] since the results of stabilization (4.5), (4.6), and
(4.7) are convex, and it has the fewest slack variables from Theorem 2 - 4. Theorem 3 and
4’s computational time are decided by the paramter of co-positive s from (5.5) and (5.26).
The bigger s is, the longer it takes. Theorem 1 also contains low computational time in SOS
decomposition, though. Its nonconvex stabilization results require path-following algorithm,
which does SOS decomposition many times make a long computational time. The conclusion
is, all the proposed Theorems have a big computational time to obtain the solution except
Theorem 2. However, the design examples show that the proposed Theorems can achieve the

real time control.
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5.3 Design Examples

In this section, to show the relaxation and effectiveness, six examples are given. In the
first example, the result gives that the proposed Theorem 3 obtains the best result. The
example uses the existing corollaries including the LMI-based descriptor form approach with
quadratic Lyapunov function and SOS-based non-descriptor form approach. The second and
third examples utilize the case for no relation between input vectors and membership func-
tions. The second example is a polynomial FMB example with the comparison of Theorem
3, Theorem 4, and SOS-based non-descriptor form approach. The results show that Theorem
4 has the best stability. The third example presents a LMI case (i.e. only constant system
matrices are considered in polynomial fuzzy models). Previous corollaries such as LMI-based
descriptor form approach with quadratic Lyapunov function and SOS-based non-descriptor
form approach, Theorem 3, and Theorem 4 are considered for the comparison. Consequently,
Theorem 4, which applies the novel fuzzy Lyapunov function (5.30) can obtain the best result.
The last three examples show the comparison between Theorem 1-4 and previous studies,
including two polynomial examples and one constant example.

Ezample 1:
Consider the polynomial fuzzy model (2.9) with parameters r = 3, &(x) = & = [v1 z2]7,

and the constant system matrices [71]:

1.59 —-7.29 0.02 —4.64
Ay = , Ag =

0.01 0 0.35 0.21

—a —4.33
As =

0 0.05

1 8 —-b+6
B, = , By = , B3 =

0 0 -1

To compare the stability, a is set as a = 2 and operation domain is set as x; € [—1 1] and
x9 € [—1 1] Table 5.1 shows the stabilization results, which is represented in the maximum
values of b that each corollary can find, including [23], [37] and the proposed Theorem 3.
As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has no

meaning for the considering system. It is just a methodology for presenting relaxation.
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Table 5.1: Comparison of the Results

Studies Max feasible value of b
Theorem 2 of [37] None
Corollary 2 of [23] 6.34

The proposed Theorem 3  6.38

Since Z(x) = x, the Lyapunov candidates for corollary 2 of [37] and Theorem 3 are the
same . As mentioned in Remark 3, the fuzzy slack matrices are introduced into Theorem 3’s
stabilization analysis under the redundancy of descriptor representation. The results reveal
that Theorem 3 has the best stability. Moreover, X(Z) is a constant matrix since there is no
zero row in Bs. Hence, the Lyapunov candidates for the proposed Theorem 3 and [23] are
also the same. Nevertheless, in this example, Theorem 3 has fuzzy slack matrices and local
feedback gains, which are polynomials, while [23] only contains constant matrices. Moreover,
co-positive technique is applied by the proposed Theorem 3 applies with SOS-based to deal
with the double fuzzy summation problems from the stabilization analysis. Thus, Theorem
3 can obtain more relaxed results than [23] in this example. Fig. 5.1 shows the simulation

result presented in phase plot. The membership functions are chosen as:

1+ sin(z)

ha(2) = : 2 —sin(xo)

; ha(2) = hs(z) = 5

and phase plot are consider the parameters a = 2 and b = 6.38 for Theorem 3 and shows that

the system is asymptotically stable. The solution of decision variables are shown as follows:

7.692 —0.827
X(z) =
—0.827 0.983
6.767 x 107101, 7.92 x 1071z,
—3.706 x 107929 — 4.684 +1.449 x 10~ 129 — 0.549
Xo11(x) =
—9.521 x 1071244 1.132 x 1071244
—8.705 x 10~ Mgy + 1.577 —1.498 x 107229 + 0.95

65



Chapter 5 Stabilization By Fuzzy Slack Matrices and Novel Fuzzy Lyapunov Candidate

1.283 x 10782,

—7.687 x 107929 + 15.218
Xoio(x) =

—3.238 x 10792

+6.51 x 107195 + 2.264

—1.083 x 108z

—6.925 x 107929 + 13.972
Xo13(x) =
1.426 x 107924

+2.949 x 1071925 + 1.718

0.04522 — 3.92 x 1071z 2y
+0.04523 + 2.321 x 107 %24
—4.202 x 107024 4 4.425
Xoo1(x) =
0.0062% — 5.525 x 10~z 29

+0.00623 — 3.298 x 10~y

+3.026 x 1071929 — 0.409

0.10322 — 3.209 x 107192129
+0.10323 + 7.251 x 107 %2
+6.711 x 1071029 + 43.373

Xog(x) =

0.0252% + 8.852 x 10~ Mz z9

+0.02523 + 8.119 x 10710z

+1.434 x 1071929 — 4.533
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— —
— =

—2.135 x 107924
+8.329 x 1071329 — 11.377

—3.926 x 10~ Mg, )

—9.209 x 10~ M2y + 1.908

—7.279 x 10~y
+1.362 x 107925 — 5.768
—9.013 x 10~y
—4.013 x 10~ "z9 4 0.889

—0.00622 + 8.644 x 10~ 220 ]
—0.00623 — 6.182 x 1071924
—5.612 x 107025 — 0.663
0.0022% + 1.879 x 10~ 2229

+0.00273 — 5.088 x 10122

—1.322 x 10~ Mgy + 0.432 )

—0.04522 +1.471 x 107102 29
—0.04522 — 5.367 x 101924
—7.572 x 107025 — 4.441
0.0152% + 1.798 x 10~ Ha 29
+0.01523 — 9.032 x 10702

+7.904 x 10~y +1.47



0.385x2 + 2.515 x 10~ %z119
+0.38523 — 4.525 x 107224
—2.012 x 107 %29 + 23.438

Xoo3(x) =
—0.0622 — 3.041 x 10~ P2 29
—0.0623 — 2.028 x 107107
+8.995 x 10~ Hzy +0.175
Xoz1(x) =

Xoz(x) =

Xos3(x) =

1.137 x 10824
Xsi1(x) =

+5.593 x 10229 — 11.084
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( —0.04622 — 1.566 x 107 %2129 — 0.04623 + 4.774 x 107021 + 1.171
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0.01522 — 8.749 x 10~ Mz 29
+0.01523 — 9.279 x 107102
—1.033 x 107 %29 — 2.417
0.003z% 4+ 1.174 x 10~z 29
+0.00323 + 2.109 x 107102

+5.424 x 10~ z9 + 0.451

—0.1422% + 2.65 x 107 8x129 — 0.14223
+4.396 x 10~ 827 + 2.383 x 107829 + 29.183

1.1287% — 6.952 x 10~ 192129 + 1.12823

+1.143 x 107 %2 + 7.085 x 10 %29 + 46.309

0.87x% +4.674 x 10732129 + 0.8723
+8.177 x 107 %21 — 3.884 x 10229 + 36.735

( 0.0262% — 6.593 x 10722179 + 0.02623 — 1.088 x 107221 — 6.346 x 1071025 — 3.186 >

2.443 x 10~ gy

+5.315 x 107wy 4+ 7.413

x 10 %29 + 0.432 )

( —0.1782% + 5.992 x 10~ %2122 — 0.17823 — 6.052 x 1071921 — 1.044 x 107929 — 1.731 )
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—9.556 x 1079z —1.854 x 107914
X312(x) =
—6.468 x 107 %29 — 2.704 —3.093 x 107025 — 1.192
8.586 x 10794 1.297 x 10~ %2
X313(x) =
+7.531 x 10~ %29 — 10.162 —4.035 x 107025 + 3.414
0.0262% — 1.365 x 10710225 0.0372% — 1.195 x 10710229
Xo1(x) = +0.02623 + 1.929 x 10~%21 +0.03723 + 1.633 x 10~%2;
—8.651 x 107025 — 26.339 +1.538 x 107029 + 1.834
—0.0627 + 3.742 x 107 1% 29 0.04627 — 3.319 x 10710229
Xizo(x) = —0.0623 + 6.532 x 10~%2¢ +0.04623 — 7.555 x 1071924
+1.201 x 10~ %29 + 3.894 +7.834 x 10~ 29 +0.779
—0.062% — 1.494 x 107 %2129 —0.0522% + 1.295 x 10~ 02 29
Xso3(x) = —0.0622 — 1.003 x 107924 —0.05223 + 2.034 x 10~ %2

—1.107 x 107929 — 11.882 +2.318 x 107229 + 1.402

X331 () = 8.5942% + 8.927 x 10 8z 29 + 8.59423

+5.225 x 107821 — 3.337 x 10 825 + 28.576

X330(x) = 84227 + 1.089 x 10~ "xy 29 + 8.4213

+8.877 x 107 %21 — 2.491 x 10925 + 55.065

X333(x) = 8.9322% + 6.438 x 10 8z 29 + 8.93223

+4.657 x 10~ %21 — 3.457 x 10~ %25 + 39.605
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Ml(iB) =

0.012z7 — 5.064 x 10~ %2329 + 0.0232323
—3.145 x 10~ %2123 + 0.01223
—4.247 x 107 %23
—5.561 x 107 %2329 + 1.237 x 10~ %2123
—4.25 x 107923
—8.579zF — 7.937 x 108z 29 — 8.57923
—6.088 x 107814
+5.076 x 10925 + 0.655

0.3392% + 7.12 x 10~ %23x5 + 0.0592223
+2.979 x 1092123 + 0.33925
—7.495 x 107223
+3.462 x 107 %2229 — 1.046 x 10710223
+1.245 x 107923
—71.61622 — 8.738 x 10~ "x129 — 71.61623
—5.464 x 107"y

+8.797 x 10 8z — 378.656

—0.631z7] + 8.629 x 10 %23x9 — 0.282713
+1.318 x 107 8z123 — 0.63125
+9.107 x 107923
—5.55 x 107 %2229 + 5.189 x 10~ 2123
—2.36 x 107923
+3.3012% — 1.112 x 10 82129 + 3.30122
+8.481 x 10792

+7.803 x 1071925 + 52.225
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—0.0152 — 1.425 x 10~ 02325 4 0.000423 23
—1.321 x 1070223 — 0.01525
—8.436 x 10~ g3
+1.881 x 10~ a2y — 5.415 x 1071z 23
+6.053 x 107123
+0.0152% + 3.673 x 1072125 + 0.01523
+8.558 x 10~z

—8.489 x 10~ M 29 + 6.859

0.034z% + 3.684 x 10712239 + 0.0392223
+4.566 x 107102123 + 0.03423
+2.192 x 1071023
+3.691 x 10~ Ha2zy + 1.589 x 1070223
+2.366 x 10~ 1z3
—0.0152% — 1.739 x 10~ %2125 — 0.01523
—4.48 x 1071924

+1.174 x 107199 — 2,517

—0.1627 — 3.302 x 10~ %2329 — 0.1012223
—7.699 x 10~ %2123 — 0.1625
—3.045 x 107223
—1.229 x 107 %2329 — 2.641 x 10~ %2123
+7.307 x 1071023
+9.44722 +1.25 x 10~ "wy29 + 9.44723
+7.527 x 107814

—1.187 x 107829 + 49.727
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Figure 5.1:

Example 2:

The phase plot of the simulation results

Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and &(z) = & =

[#1 22]7. The example gives the following system matrices and membership functions:

—8 4+ 0.22x9
1.59 — 1.661’1332
A (z) = —1.6823 — 1.4522
0 —0.36
—a—x1+x0 —4-— 0.53013:% — 3.353:%
As(z) =
0 —0.04
1+ 23 + 23 —b+ 6 + 927 + 623
Bi(z) = , Ba(z) =
0 0
1+ sin(x 1 —sin(x
hi(22) = 2(2)’ ho(29) = 2<2)

To show the comparison, a is set as a = 2 and operation domain is set as x; € [—2 2] and

X9 € [—2 2].

By applying the technique described preliminaries which is about the decomposition (5.23)
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Table 5.2: Comparison of the Results

Studies Max feasible value of b
The proposed Theorem 1  7.02
Theorem 2 of [37] 7.06

The proposed Theorem 2 7.1

of hy(xz), it can be obtained that

H11 = 0.1589, H12 = —0.1002.

In preliminaries, the property (5.42) points that the numbers of membership function’s
differentials are » — 1. In this case, the decomposition of hy(x2) is not needed for Theorem
4. Table 5.2 shows the maximum value of b in which [37], Theorem 3, and Theorem 4 can
find. As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has
no meaning for the considering system. It is just a methodology for presenting relaxation.

As Remark 3 says, Theorem 3 cannot always obtain better results than [37] since its
Lyapunov function is not a special case. In this example, Table 5.2 reveals that better stability
is seen in [37] when compared to Theorem 3. The table also shows that the stabilization
analysis done by novel fuzzy Lyapunov function (5.30) and the decomposition (5.23) of time
derivatives of membership function can obtain a more relaxed result than [37]. Moreover, it is
no doubt that more relaxed results than Theorem 3 are obtained in Theorem 4, as mentioned
in Remark 4. Fig. 5.2 shows the simulation results presented in phase plot of Theorem 4
with the parameters a =2 and b = 7.1, and it can be seen that the system is asymptotically
stable.

The solution of the decision variables are shown as follows:

X,(®) (6.1923 — 1.044w5 + 21.677)  (—0.03z3 + 0.00624 + 0.327)
1(x) =
(—0.0323 + 0.006x2 + 0.327)  (0.00222 — 0.004z5 + 0.046)

Xa(®) (15.825x3 — 5.629x9 + 14.396)  (—0.02522 — 0.008z2 + 0.046)
2\) =
(—0.02523 — 0.008z2 + 0.046)  (0.004z3 — 0.004x2 + 0.039)
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Xon(z) =

Xo(z) =

X1 (z) =

Xo92(x) =

Xogo(x) =

0.515x129 — 0.41323
—0.12121 + 0.82z9 + 9.178

0.063z122 + 0.0123
—0.391z; — 0.10872 + 1.532

—0.026x129 — 0.02523

0.2496% + 0.099x1 22 + 0.2:6%
—0.033z1 + 0.17225 + 3.336

3.025x1x9 — 0.0llx%
—1.792z1 + 2.977xo + 14.313

—0.083x1 — 0.968x2 + 1.474 )

—0.0452% — 0.079z122 — 0.00523
—0.134z; — 0.04425 + 0.723

1.5192% + 0.054x1 29 + 0.875x3
—0.366x1 + 0.19529 + 7.632

—0.01422 — 0.00421 22 + 0.00923
—0.174x1 + 0.11225 + 0.201

Xoz1(x) =

72

—0.0292% — 0.1392122 + 0.03622
+0.072x1 — 0.37z9 — 2.167
0.00822 — 0.003z122 + 0.000123
+0.26321 + 0.01879 — 0.836

9.1472% + 0.073z122 + 0.00723
+0.201z1 + 0.168x2 — 4.557
0.0004z7 + 1.606 x 1052122

40.000222 + 0.083z7 + 0.001z2 — 0.369

—0.018z122 — 0.001z3
+0.00821 + 0.003x4 — 0.037

—0.0017129 + 0.00523

+0.001z1 — 0.003z2 + 0.112

0.003z122 — 0.00123
—0.002z; — 0.025z2 — 0.068

3.264 x 10752129 + 0.00223

+0.00121 — 0.004z2 + 0.054

0.013z% — 0.04221 22 + 0.00123
—0.011z; + 0.005z2 — 0.761

0.0192% 4 0.003z1 22 + 0.01223

+0.003z1 + 0.007z2 + 0.186

0.00522 + 0.003z129 — 0.13623
—0.034z1 — 0.21629 — 0.872
0.012% — 4.685 x 10~ %129

+0.00123 + 0.004z; + 0.001x5 + 0.268
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—0.023x179 — 0.38423 —6.5417179 + 5.295 x 10~°23
Xz11(x) =
—0.05421 + 0.191z9 — 25.383 4+0.0121 — 0.00925 4 0.197
—0.0212129 — 0.31423 —4.131x179 + 0.000223
X312(x) =
—0.004z1 — 0.074z2 — 14.821 +0.000921 — 0.001z2 + 0.02
0.034z2 + 0.209z122 — 0.01522 0.003z2 — 0.001z122 + 0.00122
X3o1(x) =
—0.05621 — 0.084z2 — 3.989 +0.037x1 + 0.001x2 + 0.641
0.011z2 + 0.008z122 — 0.00623 0.0002z7 + 5.925 x 10~ %2129
X322(x) =
+0.12327 — 0.14229 — 2.025 +0.000223 + 0.009z1 + 0.001z2 + 0.12

X331 (x) = 0.00922 + 0.001z 29 4 0.01423 + 0.1152; + 0.01625 + 9.564

Xs32(x) = 0.00222 + 0.0004z1 25 + 0.00323 + 0.017z1 + 0.004z5 + 6.296

M (x) =
_ —13.89622 — 3.044x1 79 — 15.84823 —0.0192% — 0.02371 22
+2.078x1 + 2.565x2 — 36.743 40.01123 + 0.01621 — 0.00629 — 0.025
Ms(x) =
- —59.70927 — 1.136x1 29 — 41.13523 0.001z7 + 0.00271 22
—0.622z1 + 1.277x2 — 9.791 +0.0122 + 0.000521 — 0.002z9 — 0.01
2 T T .
150 N
1 o L
o5f - i
s S
150 S .
_2-2 i 1 0 1 ) ;
x

1

Figure 5.2: The phase plot of the simulation results
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Table 5.3: Comparison of the Results

Studies Max feasible value of b
Theorem 2 of [37] 52.13
The proposed Theorem 3 52.13
Corollary 3 of [23] 52.14

The proposed Theorem 4 52.16

Ezample 3:
Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and &(z) = & =

[z1 22)7 and give the following constant system matrices and membership functions:

0.20 -—-3.22 —a —6.63
Ai(x) = , As(x) =

0.35 0.12 0.45 0.15

8 —b+6
B (x) = , Ba(x) =

0 0

1+ sin(x 1 —sin(x

hi(zg) = 5 ( 2)7 2(xg) = 5 (z2)

To show the comparison, a is set as a = 2 and operation domain is set as 1 € [—1 1] and
xg € [—11].

By applying the technique described preliminaries for the decomposition (5.23) of hy (),
it can be obtained that

11 = 0.2041, piy0 = —0.2191.

Same as Example 2, the decomposition of hg(a2) is not needed. Table 5.3 shows the maximum
values of b in which [37], [23], Theorem 3 and Theorem 4 can find. As Remark 1 mentioned,
the quantity of the maximum feasible value of “b” itself has no meaning for the considering
system. It is just a methodology for presenting relaxation.

From table 5.3, it gives the information that LMI-based descriptor form design approach
stabilized by quadratic Lyapunov function as the approach presented in [23] sometimes ac-
quires better stability than polynomial method as Theorem 3 and [37]. Here, Theorem 4
chooses & = x2 and apply to the novel fuzzy Lyapunov function (5.30)’s stabilization be-

)

cause that input matrices B;’ second rows are all zeros. This Lyapunov function is more

flexible than [23] which applies quadratic fuzzy Lyapunov function. Besides, citeTanaka2007
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just considers the lower bound of membership function time derivative, while the proposed

Theorem 4 considers both the upper and lower bounds. Hence, Theorem 4 can have more

relaxed stability than [23] in this example. Fig. 5.3 shows the simulation result represented

in phase plot of Theorem 4 with the parameters a = 2 and b = 52.16, and it can be seen that

the system is asymptotically stable. The solution of the decision values are shown as follows:

3 (0.003x3 — 1.002 x 10~ 225 + 87.025)
X1 (a:) =
(—0.0002z2 — 6.902 x 10~ 4xy — 2.924)

Xo(z) =

(0.00122 + 9.637 x 10~13z5 — 2.885)

2.66 x 107522
+0.00122 + 15.722
—3.724 x 107221 + 2.893 x 108z,
Xo11(x) =
7.285 x 1075z 29
+0.00522 + 11.338

+2.089 x 107221 — 6.633 x 1022

0.0006z1 22 — 0.013z3 — 0.979

+1.226 x 107821 + 3.699 x 10 82,
Xo12(x) =

—0.001z122 + 0.02523 + 1.974
—6.256 x 107 %21 + 1.52 x 10~ 8z

X1 (z) =

0.118z% + 0.043z 122 + 0.13423 + 9.903
+2.299 x 107 %21 — 2.139 x 10 %25
—0.01422 — 0.004x1 79 — 0.01123 + 17.737
+2.04 x 107%21 — 2.636 x 10229

Xogo(x) =

0.84z% + 0.014z122 + 0.81723 + 9.035
+6.186 x 107921 + 1.309 x 108z,
0.00122 — 0.0027122 — 0.01323 + 17.146
+5.606 x 107921 — 5.265 x 10~ %29
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(—0.000223 — 6.902 x 10~ 42y — 2.924)

(0.00123 — 1.274 x 10~ 1325 + 8.524)

(0.01823 — 1.575 x 107229 4+ 86.997)  (0.00123 + 9.637 x 10~ 39 — 2.885)
(0.00123 — 7.181 x 10~ Hzy + 8.524)

0.0003z122 — 0.0122 — 3.959
—7.291 x 107102
—5.191 x 10704
—1.247 x 10 %z 29
+0.000273 + 1.996
—6.52 x 107021 4+ 1.127 x 10 %25

0.002z122 — 0.0222% — 4.619

—2.581 x 107 9% — 4.422 x 10 92,

—9.985 x 10~ °z129 + 0.000223 + 0.229
—2.811 x 107%21 + 1.706 x 10~ %24

—0.000122 — 0.001z122 — 0.00423 — 20.535
—4.558 x 107021 +1.076 x 108z
0.0162% 4 0.0052122 + 0.01722 + 2.683
—4.92 x 107021 — 1.692 x 107 %29

—0.1092% — 0.02z122 — 0.10123 — 17.791
—4.461 x 10702 — 7.298 x 107 %29
0.1272% + 0.0362 22 + 0.12923 + 3.704
+3.799 x 107 %21 + 4.24 x 107 %29
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—0.0022% — 0.001z122 + 0.00122
+8.42 x 107921 + 1.133 x 10829 + 0.431
Xos1(x) =
—4.9022% + 0.001z122 — 0.00872
—1.036 x 107827 — 4.237 x 107929 — 1.106
—0.0212% + 0.005x129 — 0.02523
—3.878 x 107921 + 2.133 x 10~ 829 + 0.302
Xogo(x) =
—0.0052% — 0.008z1z2 + 0.03323
—4.844 x 107 %1 + 1.54 x 10 %29 — 1.114
Xs11(x) =
0.002x129 — 0.01523 — 1.393 6.304z1 72 — 0.000322 + 0.056
+8.652 x 107 %21 + 1.119 x 10825 +1.968 x 107192, 4+ 3.133 x 1070z,
Xs12(x) =
—0.004z172 + 0.16423 + 0.722 —0.0004x1 22 + 0.00223 + 0.162
+7.391 x 107 %21 + 2.437 x 1029 +9.235 x 1071921 + 8.437 x 107102,
X301 (x) =
—0.00622 — 0.002x179 — 0.00723 — 1.146 0.001z% — 5.211 x 10752129 + 0.00523
—1.539 x 107921 — 1.892 x 10792, +2.82 x 107921 + 2.886 x 10929 + 0.728
X300(x) =
—0.033z% — 0.0002x1 79 — 0.03123 — 0.968 —0.02527 — 0.003x122 — 0.02523 + 0.205
—2.014 x 107921 — 2.562 x 10 %24 —4.784 x 10702, + 1.846 x 10 %24

X331 () = 0.59927 — 0.0001z125 + 0.63235 — 6.345 x 107 1%2; +8.16 x 10~ 25 + 0.689

X332(x) = 0.59927 — 0.001z129 4 0.6323 + 2.201 x 10 %21 — 1.64 x 10~ %29 4+ 0.709
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M (z) =
—4.7772% + 0.01521 22 — 5.0323 —0.000222 + 7.374 x 10~5x129 — 0.000323
—1.142 x 107924 —4.023 x 101224
+6.902 x 1071925 — 8.327 +6.902 x 1071925 — 0.259
Mj(x) =
27.5687% — 0.083z172 + 29.02873 —0.00122 — 0.0004z1 22 — 0.00123
+6.28 x 10792 +3.405 x 10712y
—4.154 x 107929 — 25.334 —8.366 x 10~ Mzy — 0.26
1
081
06] -
><(\I
_06 - - - - - - - N - - N : - - - - -
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Figure 5.3: The phase plot of the simulation results
Example 4:

Consider the polynomial fuzzy model (2.9) with parameters r = 2, #(z) = & = [r1 22]7,

and the polynomial system matrices:
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—8 + 0.22%2

1.59 — 1.66%11‘2

Ay (z) = —1.6823 — 1.4522
0 —0.36

—a—x1+x9 —6-— 0.53:130% — 3.351‘%

As(z) =
0 —0.01

1+ 22 + 3 —b + 6 + 927 + 623

B (z) = , Ba(x) =
0 0
Lt o

LG Y

2 I

By applying the technique described preliminaries which is about the decomposition (5.23)

of hi(x2), it can be obtained that

M1l = 0.0031, H12 = —0.0401.

In preliminaries, the property (5.42) points that the numbers of membership function’s dif-
ferentials are r — 1. In this case, the decomposition of hg (z2) is not needed for Theorem 4.
Table 5.4 shows the maximum value of b in which [37] and all Theorems in the thesis can
find. As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has
no meaning for the considering system. It is just a methodology for presenting relaxation.
The results reveal that the proposed Theorem 1 and 2 doesn’t obtain any feasible solution
while [37] does. As mentioned in Remark 3, Theorem 2 cannot always obtain better result
than [37] since its Lyapunov function is not a special case, neither does Theorem 3. Further-
more, Theorem 1 is almost an independent system from Theorem 2 - 4 and [37]. Thus, it is
not guaranteed that Theorem 1 - 3 can always obtain more relaxed results than [37]. The
only thing that can be guaranteed is that Theorem 3, which brings polynomial fuzzy slack
matrices into stabilization, is more general and relaxed than Theorem 2 since it has more
slack variables. The other thing is that this example proves that novel fuzzy Lyapunov func-
tion is better than quadratic Lyapunov function as Remark 4 mentioned. Fig. 5.4 shows
the simulation result of Theorem 4 presented in phase plot, and it brings out that the system

is asymptotically stable.

78



Section 5.3 Design Examples

Q=== =F = T ——T——
1.5{" 'iikf
1*\ © I
o -
05 - - o -4
£ o =
0.5+ E
a1+ E
15} .

2 L L L L
-2 -1 0 1 2
X4

1 e _
osl- - - .. ... L]
O.GA‘TQ T
04f o L
wf T B

5N O’AC 3»*
ozr ]
04} e
06}
-0.8 -
4Ll w w w w w w w w w w

Figure 5.5: The phase plot of the simulation results

Ezample 5:

Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and &(x) = =
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Table 5.4: Comparison of the Results

Studies Max feasible value of b

The proposed Theorem 1 None
The proposed Theorem 2 None
Corollary 2 of [37] 5.06
The proposed Theorem 3 5.7
The proposed Theorem 4 6.15

[z1 22]7. The example gives the following system matrices and membership functions:

—8 4 0.22x9
1.59 — 1.66:131$2
Ay (z) = —1.6823 — 1.4522
0 —-0.36
—a—x1+x9 —6—0.523 — 3.3522
Az (x) =
0 —0.01
1+ 2% + a3 —b+ 6 + 927 + 623
B (x) = , Ba(x) =
0 0
1
hi=1————— hy=1-hy.
14 0.5 2

To show the comparison, a is set as a = 2 and operation domain is set as 1 € [—1 1] and
xo € [—1 1].
By applying the technique described preliminaries which is about the decomposition (5.23)

of hy(@s), it can be obtained that

p11 = 0.003, @12 = —0.0119.

In preliminaries, the property (5.42) points that the numbers of membership function’s
differentials are r — 1. In this case, the decomposition of ha(z2) is not needed for Theorem
4. Table 5.6 shows the maximum value of b in which [37] and all Theorems in the thesis can
find. As Remark 1 mentioned, the quantity of the maximum feasible value of “b” itself has
no meaning for the considering system. It is just a methodology for presenting relaxation.

Theorem 1 is almost an independent system from Theorem 2 - 4 and [37]. Thus, it is not

guaranteed that Theorem 1 can always obtain more relaxed results than [37]. Theorem 3,
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Table 5.5: Comparison of the Results

Studies Max feasible value of b
The proposed Theorem 1 41.25
Corollary 2 of [37] 41.49

The proposed Theorem 2 41.51
The proposed Theorem 3 41.51
Corollary 3 of [23] 45.45
The proposed Theorem 4 45.84

which brings polynomial fuzzy slack matrices into stabilization, is more general and relaxed
than Theorem 2 since it has more slack variables. Theorem 4 obtains the best result, proving
that the novel fuzzy Lyapunov function is better than the quadratic Lyapunov function as
Remark 4 mentioned. Fig. 5.5 shows the simulation results presented in phase plot of
Theorem 4. It can be seen that the system is asymptotically stable.

Example 6:

Consider the polynomial fuzzy model (2.9) with the parameters r = 2 and &(z) = ¢ =

[1 22]7 and give the following constant system matrices and membership functions:

0.25 —-3.12 —a —5.63
Ai(z) = , As(z) =

0.35 0.1 0.45 0.2

8 —b+6
Bi(z) = , Ba(z) =

0 0

1+ sin(x 1 —sin(x

hi(z2) = 5 ( 2), ha(x2) = 5 (z2)

To show the comparison, a is set as a = 2 and operation domain is set as x; € [—1 1] and
xg € [—11].

By applying the technique described preliminaries for the decomposition (5.23) of hi (x2),
it can be obtained that

11 = 0.2049, pu10 = —0.2247.

Same as Example 2, the decomposition of hs (z2) is not needed. Table 5.5 shows the maximum
values of b in which [37], [23], and all Theorems in the thesis can find. As Remark 1
mentioned, the quantity of the maximum feasible value of “b” itself has no meaning for the

considering system. It is just a methodology for presenting relaxation.
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Table 5.6: Comparison of the Results

Studies Max feasible value of b

The proposed Theorem 1 None
Corollary 2 of [37] 7.12
The proposed Theorem 2 7.13
The proposed Theorem 3 7.14
The proposed Theorem 4 7.25

Here, Theorem 4 chooses & = x5 and apply to the novel fuzzy Lyapunov function (5.30)’s
stabilization because that input matrices B;’ second rows are all zeros. The first thing is that
sometimes polynomial fuzzy slack matrices don’t greatly affect the stabilization results beyond
the same Lyapunov function. This is shown by Theorem 2 and 3, which have almost the
same results. The next thing is that novel fuzzy Lyapunov function in Theorem 4 and fuzzy
Lyapunov function in [23] perform better than quadratic Lyapunov function. Especially novel
fuzzy Lyapunov function in Theorem 4 is more flexible than [23]. Besides, [23] just considers
the lower bound of membership function time derivative, while the proposed Theorem 4
considers both the upper and lower bounds. Hence, Theorem 4 can have the most relaxed
stability than [23] in this example. Fig. 5.6 shows the simulation result represented in phase

plot of Theorem 4, and it can be seen that the system is asymptotically stable.

0.8 | B ]

0.6 - k!

Figure 5.6: The phase plot of the simulation results
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6.1 Conclusion

A descriptor form design methodology for polynomial FMB control systems has been pre-
sented in this thesis. The polynomial fuzzy model has been represented in descriptor form.
Four design methodologies have been proposed, and all of them are constructed in the op-
eration domain. Thus, their stabilization analysis is local stabilization, and the stabilization
conditions are presented in SOS terms.

At first, in Chapter 3, a rational control design has been proposed. The thesis proposed
a polynomial fuzzy model with the controller, which considers the rational functions. The
closed-loop system containing the model and the controller is represented in the descriptor
form. To stabilize the system, a homogeneous functions’ method has been presented in this
thesis. The Lyapunov candidate has been chosen as the homogeneous Lyapunov function
in which the matrix of decision variables is a homogeneous matrix. By considering the
properties of Euler’s homogeneity relation, the differential of the Lyapunov function has been
able to be extracted. The rest part of the stabilization has been analyzed by considering the
stabilization method of the descriptor design methodology for T-S fuzzy model. However,
the bilinear term appears in the stabilization conditions and makes it impossible to solve
directly by SOSTOOL. Therefore, the path-following approach has been applied to solve the
conditions. An example has been presented to show the comparison between the proposed
method and the polynomial fuzzy model without descriptor form. The result has been proven
that the proposed method obtains more relaxed results when in the same operation domain.

Because the path-following method may not find the optimal result for solving the stabi-
lization constraints, the thesis has tried other descriptor form design methodology for poly-
nomial FMB control design. The controller for polynomial fuzzy model has been changed

to the PDC-based polynomial controller, which shares the membership function with the
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polynomial fuzzy model.

In Chapter 4, a polynomial fuzzy model with PDC-based polynomial controller has been
presented and has been represented in the descriptor form. The Lyapunov candidate for sta-
bilization has been chosen as a Lyapunov function which is commonly used in the research for
polynomial fuzzy model. The stabilization has been extracted by considering the definition
of the vector & and the vector of the membership function. The properties of congruence
transformation have also been considered for stabilization analysis. Compared with the poly-
nomial fuzzy model without descriptor form (previous study), in the same operation domain,
the matrices’ dimension in the proposed method is higher than the previous study, though.
The number of the SOS constraints from the proposed method is smaller than the previous
study. The contrast shows that the proposed method is more suitable with the cases that
contain more rules, but the state vector’s dimension should be small. Moreover, compared
with the method in Chapter 3, the proposed method has not contained the bilinear or non-
convex term. The proposed method does not need to use the path-following algorithm to
solve the conditions. Two examples have been provided, including a numerical example and
an application example. The numerical shows that the feasibility (relaxation) of the pro-
posed approach is similar to the existing polynomial FMB control design approach, though.
The smaller number of constraints means that the proposed method still held the advantage
when compared with the existing polynomial FMB control design approach. The application
example gives a bicycle dynamic system. The proposed method has been successfully made
the system stable by setting the operation domain of the bicycle’s angle and angle speed.

Chapter 5 has considered the same model, controller, and Lyapunov function as Chap-
terd. The improvement is that the matrices which contain fuzzy slack variables have been
brought into the stabilization. The fuzzy slack matrices have made the Lyapunov candidate
be rewritten into a new form and produce a new stabilization analysis. The SOS condi-
tions born from the stabilization analysis contain double fuzzy summation, which can be
taken as co-positivity problem. Thus, the copositive relaxation has been applied and made
the double fuzzy summation disappear from the conditions. A numerical example has been
presented to compare the existing polynomial FMB control design approach, the descriptor
design methodology for T-S fuzzy system, and the proposed approach. The summary has
been shown that the proposed method can obtain the more relaxed result than the rest two

approaches in some cases.
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Furthermore, for the special cases that all membership functions are functions of the states
being not related to the inputs, Chapter 5 has proposed the second stabilization design ap-
proach which applies the novel fuzzy Lyapunov function. This kind of Lyapunov function
contains an inverse of fuzzy summation matrix. Since the differential of the Lyapunov func-
tion contains membership function’s differential terms in stabilization, the thesis has proposed
a method to extract the time derivative of membership function. After extracting the dif-
ferential of membership function, the sector nonlinearity method has been applied to deal
with the rest part of the membership function, which considers its maximum and minimum
values in the operation domain. Because the first method of Chapter 5 is seen as a special
case of the proposed method, the thesis has proven that the proposed method is always more
relaxed than the first method in Chapter 5. Two numerical examples have been presented to
show the comparison with the proposed method, the previous method, and previous studies.
The first one is a polynomial example, and the comparison is to compare with the proposed
method, existing polynomial FMB control design approach, and the first method of Chapter
5. The results have been shown that the proposed method performs best from them. The
second one is an LMI example to compare with the proposed method, the existing polyno-
mial FMB control design approach, the first method of Chapter 5, and the descriptor design
methodology for T-S fuzzy system. The proposed method has also obtained the best result.
Finally, there have been three common examples that compare the four proposed Theorems
in the thesis with the previous studies. The results have shown that Theorem 4 has the best

performance than other proposed Theorems and previous studies beyond the special case.

6.2 Future Planes

Because the novel fuzzy Lyapunov function can have the best performance than the pro-
posed three Theorems, we will try the modification on this part. As the stabilization analysis
of the novel fuzzy Lyapunov function brings the issue of membership functions’ time deriva-
tives, the research will add this term to the current PDC-based control design. In the common
cases, this term cannot be implemented to the controller since it requires the future informa-
tion of the input signals and may need to consider the observer-based controller and feedback.

Therefore, bringing the time derivatives of membership functions to the controller makes it
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necessary to construct the model under the special case that

where x is the vector that is the vector that is not related to the input vector, which means
that the membership function is the function that has no relationship to the input vector.
Beyond the special case, no future information is needed to estimate the derivative of the
states in the membership function. The future information can be predicted by the current
state. It can be expected that this method can also obtain better results than the current
research Theorem 4. The next step may be adding the constrain to membership function,
since the research’s design methodologies are all constructed locally. In this thesis, only the
differential of membership functions is added to the upper and lower bound. This concept
will be added into the membership function ”without” differentiation. Last but not least, the
region-of-attraction (ROA)’s analysis is considered since design methodologies are all locally
constructed. Finding the ROA makes graphing the phase plot more easily. Not only tries
to find the ROA, but the research also searches for the method to extend the ROA that the
system can calculate.

The four design methodologies are proposed for the polynomial FMB control systems,
which are in "type-1”7. As potential improvements, the polynomial FMB control systems
which are in ”type-2” like [67] presented can also apply to the design methodologies as the
extension. Moreover, even the so-called ”type-3” polynomial FMB control systems can be
applied under the issue of how to apply the interval type-3 membership function [68] into
the proposed descriptor form design methodologies is solved. Besides, since the technique of
polynomial fuzzy models can be applied to neural network, [69], [70] shows the possibilities
for the proposed descriptor form design methodologies’ application.

The main purpose of the thesis is to design the stabilization control for polynomial fuzzy
model by transforming the closed-loop system into descriptor form. The stabilization results
can be extended to achieve other specifications such as H,, Hs, guarantee cost, et. al. in the
future. In addition, different types of controllers can be applied to the model. Currently, only
rational and PDC-based controllers are considered in the thesis. For instance, the controller

with observer-based or decimal controllers, which are more product class, may be a choice.
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