
MARCH 2022

A dissertation submitted in partial satisfaction of the requirements for
the degree of Doctor of Philosophy in Engineering

Parallelization of a Poisson Solver by

Block Red-Black Ordering and Its Application

to Particle-in-Cell Plasma Simulation

The University of Electro-Communications
Graduate School of Informatics and Engineering

Department of Computer and Network Engineering

Akemi Shioya

Parallelization of a Poisson Solver by

Block Red-Black Ordering and Its Application to Particle-in-Cell

Plasma Simulation

Committee Members:

Prof. Yusaku Yamamoto
Associate Prof. Tomoya Tatsuno

Prof. Nobito Yamamoto
Prof. Hidenori Ogata

Associate Prof. Tadashi Yamazaki
Tetsu Narumi

i

Copyright 2022 Akemi Shioya
All rights reserved.

ii

概要

ブロック赤黒順序付けによる Poisson ソルバーの並列化と

Particle-in-Cell プラズマシミュレーションへの応用

プラズマ挙動を解析する Particle-In-Cell 法を製造装置解析に適用すると、Poisson 方程式の求解
が、計算時間の多くを占める。この求解を Krylov 部分空間法で行うための修正不完全分解前処
理は高い収束性を持ち、その並列化には高度な並列性と少ない同期点を持つブロック赤黒順序付
けが使用できる。これらの組み合わせた時に発生するゼロピボットによる破綻の必要十分条件を
示し、これを回避して強力な前処理とする方法を示した。我々はこの前処理の GPU 上への実装
を試み、実装上の工夫とパラメータ最適値により、既存ライブラリよりも高速に精度の良い解を
得た。さらに、ブロック赤黒順序付けの高い収束性の理由を示すために、収束性を調査した。

iii

Abstract

Parallelization of a Poisson Solver by

Block Red-Black Ordering and Its Application to Particle-in-Cell

Plasma Simulation

The particle-in-cell method is a particle-based approach to the analysis of non-equilibrium
plasma behavior under low-pressure conditions. In applications of the method to manufacturing
equipment, a significant proportion of the required computational time is consumed by solving
linear simultaneous equations with sparse coefficient matrices, which results from discretizing
the Poisson equations by finite difference. Modified incomplete factorization with no fill-in is
effective as a preconditioner for solution with the Krylov subspace method without requiring
additional memory. Compensating for the discarded fill-in values of the diagonal elements results
in faster convergence than the simple incomplete factorization preconditioner. The block red-
black ordering can be used to parallelize this preconditioner with a large degree of parallelism
and fewer synchronization points. The block red-black ordering leverages the fact that blocks
of orthogonal grids can be painted in two colors to reduce the synchronization point to one.
Moreover, it enables the degree of parallelism and convergence to be flexibly adjusted by varying
the number of blocks.

Although the combination of modified incomplete factorization and block red-black order-
ing appears to produce a powerful and parallelizable preconditioner, in reality, it can cause a
breakdown of factorization due to zero pivots. In this work, this phenomenon is analyzed to
determine the necessary and sufficient conditions for the occurrence of zero-pivot in the case of
orthogonal grids. We also prove theoretically and experimentally that adding perturbations to
the diagonal elements or relaxing the compensation of the dropped fill-in are valid techniques
to mitigate this issue. Numerical results show that the resulting preconditioner not only avoids
the zero-pivot but also achieves a higher convergence rate and is applicable up to 103 degrees
of parallelism.

Therefore, we implemented this preconditioner on a graphics processing unit (GPU) with a
higher degree of parallelism. We realized coalesced memory access by optimizing the storage
form of the matrix for block parallelization. To reduce the amount of data and utilize the
single-precision performance of the GPU, we adopted a mixed-precision calculation in which
some array data and operations were respectively stored and performed in single-precision,
while nonetheless retaining an accuracy comparable to to comprehensive use of double-precision
computation. Several numerical experiments were performed to determine the optimal values
of adjustable parameters such as block partitioning conditions and parallel grain size. The
results of performance comparisons using an NVIDIA Quadro GP100 GPU and an NVIDIA
Tesla K40t GPU show that our solver is faster than existing libraries, even with conservative

iv

implementations using OpenACC directives. The test problems for the series of numerical test
results were obtained from potential calculations of a 3D magnetron sputter model using the
particle-in-cell method with a 7-point stencil.

In addition, we investigated the convergence of block red-black ordering using the model
problem, and identified the reason for the fast convergence of this ordering.

v

Contents

1 Introduction 1
1.1 Background and Purpose . 1
1.2 Contributions . 3
1.3 Outline of the Thesis . 4

2 Plasma Simulation via the Particle-In-Cell Method 5
2.1 Particle-In-Cell/Monte Carlo Collision Method 5
2.2 Application and Acceleration of the PIC method 9

3 Krylov Subspace Methods for Linear Simultaneous Equations and Precondi-
tioning Techniques 13
3.1 Krylov Subspace Methods . 14

3.1.1 Generating an Orthonormal Basis for Krylov Subspaces 14
3.1.2 Conjugate Gradient (CG) Method . 16
3.1.3 BiConjugate Gradient (BiCG) Method . 17
3.1.4 BiConjugate Gradient Stabilized (BiCGSTAB) Method 18

3.2 Incomplete Factorization Preconditioners . 20
3.2.1 Modified Incomplete (MILU/MIC) Factorization 24
3.2.2 Perturbed Modified Incomplete (PMILU/PMIC) Factorization 25
3.2.3 Relaxed Modified Incomplete (RMILU/RMIC) Factorization 26

3.3 Parallelization . 27
3.3.1 Parallel Architectures and Implementation Frameworks 27
3.3.2 Parallelization of Preconditioning by Reordering 28
3.3.3 Block Red-Black (BRB) Ordering . 28

4 Numerical Stability of MILU(0) Preconditioning Based on Block Red-Black
Ordering 31
4.1 Introduction . 31
4.2 Occurrence of Zero Pivot . 32
4.3 Avoiding Zero Pivot . 35

4.3.1 Mitigating the Problem by Introducing Perturbations 35
4.3.2 Mitigating the Problem by Relaxing Compensation 36

4.4 Numerical Experiment . 40
4.4.1 Test Problems and Computational Environment 40
4.4.2 Convergence Behavior . 41
4.4.3 Parallel Performance . 44

4.5 Conclusion . 44

5 GPU Acceleration of MILU(0) Parallelized by Block Red-Black Ordering 47
5.1 Introduction . 47
5.2 Fundamentals of GPU Computing . 48

5.2.1 GPU Features and CUDA . 48
5.2.2 OpenACC . 51

5.3 GPU Implementation of Preconditioned Iterative Solver 52

vi

5.3.1 The original code . 52
5.3.2 Method of GPU Implementation by OpenACC Directives 53
5.3.3 GPU Implementation: Issues and Solutions 54
5.3.4 GPU Implementation: Improvements . 56

5.4 Performance Test . 67
5.4.1 Test Problems and Computational Environment 67
5.4.2 Performance Test Results . 68

5.5 Conclusion . 78

6 Convergence analysis of BRB ordered PMILU(0)/PMIC(0) preconditioning 80
6.1 Introduction . 80
6.2 Order of Condition Numbers of PMILU(0)/PMIC(0) Preconditioned Matrix . . . 81
6.3 Experimental Analysis . 82

6.3.1 Effect of Perturbation Factor . 82
6.3.2 Diagonal Element Size . 87
6.3.3 Eigenvalue Spectrum . 89

6.4 Conclusion . 90

7 Conclusion 93

Acknowledgment 95

Bibliography 96

A Convergence of Poisson Equation in Other Time Steps of PIC Method 103

B Performance of GPU Implementation vs. Theoretical Peak 107

C Avoiding Indirect References Using Grid Structures 109

vii

List of Figures

2.1 Basic flow of PIC/MCC method. 7
2.2 3D magnetron sputter model. 11
2.3 Magnetic field on midpoint cut plane in the y-axis direction. 11
2.4 Geometry size of 3D magnetron sputter model. 12
2.5 Ratio of computational time for each subroutine. 12

3.1 BRB coloring and ordering of a 8× 4 grid. 29
3.2 Sparse pattern of the matrix arising from BRB ordering in Fig. 3.1. 29

4.1 An example of BRB ordering where zero pivot occurs. 34
4.2 Zero pivot occurrence node in grid ordered by BRB ordering. 41
4.3 Number of blocks and number of iterations required for convergence with MILU(0)

preconditioner. 43
4.4 Number of blocks and number of iterations required for convergence with PMILU(0)

preconditioner. 43
4.5 Number of blocks and number of iterations required for convergence with RMILU(0)

preconditioner. 43

5.1 CPU and GPU tasks and data flow. 53
5.2 Näıve data storage for non-coalesced memory access. 55
5.3 Improved data storage for coalesced memory access. 55
5.4 Convergence history of BiCGSTAB with mixed-precision Kx = y. 57
5.5 Number of blocks and number of iterations required for convergence. 60
5.6 S.R.I. and number of iterations required for convergence. 61
5.7 Incompatibility ratio and number of iterations required for convergence. 61
5.8 Computation time as a function of the number of blocks (proposed implementation). 62
5.9 gang, worker, and vector values and average computation time for the red block

forward substitution. 64
5.10 gang, worker, and vector values and average computation time for SpMV. . . . 65
5.11 gang, worker, and vector values and average computation time for dot product. 66
5.12 Number of blocks and the number of iterations required for PBiCGSTAB to

converge. 69
5.13 Number of blocks and computation time for PBiCGSTAB iterative loop (näıve

implementation). 70
5.14 Comparison of näıve and improved implementations of CUDA Core ×2 blocks

profiling results on GP100. 70
5.15 Computation time for simple block division condition. 71
5.16 Comparison of computation time between double-precision and mixed-precision

when using different precision convergence criteria. 72
5.17 Comparison of computation time by combining ordering and preconditioner. . . . 72
5.18 Comparison of the compuation time of the proposed method with cuSPARSE,

MAGMA, ViennaCL, and Ginkgo. 76
5.19 Comparison of parallel computational performance using library routines for sys-

tems ordered by BRB ordering. 78

viii

5.20 Comparison of computation time for each subroutine of PIC method simulation
with and without GPU parallelization. 79

6.1 Diagonal element sizes of A factorized with PMILU(0) (ζ = 2π2). 88
6.2 Diagonal element sizes of A factorized with ILU(0). 88
6.3 PMILU(0) (ζ = 2π2) factorized ãii corresponding to diagonal node i. 89
6.4 Eigenvalue spectrum of K−1A with PMILU(0) (ζ = 2π2). 90
6.5 Eigenvalue spectrum of K−1A with ILU(0). 91
6.6 Eigenvalue spectrum of K−1A with PMILU(0) (ζ = 2π2) for problem size N . . . 92

A.1 Number of blocks and the number of iterations with MILU(0) preconditioner at
PIC 100th step. 104

A.2 Number of blocks and number of iterations with PMILU(0) preconditioner at
PIC 100th step. 104

A.3 Number of blocks and number of iterations with RMILU(0) preconditioner at
PIC 100th step. 104

A.4 Number of blocks and number of iterations with MILU(0) preconditioner at PIC
10,000th step. 105

A.5 Number of blocks and number of iterations with PMILU(0) preconditioner at
PIC 10,000th step. 105

A.6 Number of blocks and number of iterations with RMILU(0) preconditioner at
PIC 10,000th. 105

A.7 Number of blocks and number of iterations with MILU(0) preconditioner at PIC
30,000th step. 106

A.8 Number of blocks and number of iterations with PMILU(0) preconditioner at
PIC 30,000th step. 106

A.9 Number of blocks and number of iterations with RMILU(0) preconditioner at
PIC 30,000th step. 106

ix

List of Tables

4.1 Number of block divisions in each axis direction. 42
4.2 Number of threads and computation time for a problem size of 59× 59× 29 grid. 45
4.3 Number of threads and computation time for a problem size of 119× 119× 59 grid. 46

5.1 GPUs used in this study. 50
5.2 Number of blocks with optimized partitioning conditions. 62
5.3 gang, worker and vector specified in each loop. 67
5.4 Environments used in the performance test. 68
5.5 Parallel preconditioning methods used in the comparison. 73
5.6 Initialization processing time. 75

6.1 Perturbation factor ζ and minimum eigenvalues λmin for block partition. 84
6.2 Perturbation factor ζ and maximum eigenvalues λmax for block partition. 84
6.3 Perturbation factor ζ and spectrum condition numbers κ(K−1A) for block partition 85
6.4 Perturbation factor ζ and iteration number for block partition. 86
6.5 Perturbation factor ζ and remainder matrix norm ∥R∥F for block partition. . . . 86

B.1 Execution of PBiCGSTAB iteration loop on GP100. 108

x

Chapter 1

Introduction

1.1 Background and Purpose

Particle-In-Cell (PIC) is a numerical analysis method for non-equilibrium plasma in a rar-
efied gas [1, 2]. In the PIC method, the actual plasma behavior is reproduced by moving the
simulation particles that represent charged particles, thereby enabling the simulation of non-
equilibrium plasma, which is difficult to perform using ordinary continuum approximation. In
PIC plasma simulation, the electric potential is obtained by solving the Poisson equation from
the charge density distribution, where the charge of the simulated particle is assigned to each
grid point. In such simulations, solving the Poisson equation is an important problem that
sometimes accounts for the majority of calculation time.

The solution of the Poisson equation is reduced to the solution of linear system Ax = b
with a large sparse matrix, as in various scientific and technical calculations. For solving linear
simultaneous equations, Krylov subspace methods preconditioned with Incomplete LU (ILU)
or Incomplete Cholesky (IC) factorization are widely used. LU factorization is the factorization
of a matrix into the product of lower triangular matrix L and upper triangular matrix U . In
Cholesky factorization, U is L⊤. In incomplete factorization, when an element that was zero in
the original matrix becomes nonzero (fill-in), it is sometimes dropped and retained as zero. This
suppresses the increase in the number of nonzero matrix elements but has a negative effect on
convergence. The level at which fill-ins are allowed is indicated by the number in parentheses,
and the level for dropping all fill-ins is 0, represented by (0). Modified ILU/IC (MILU/IC)
is a variant of incomplete factorization that reduces the effect of this dropping and improves
convergence. MILU(0)/IC(0) drops the elements at zero position in the original matrix at the
time of factorization, and it subtracts the sum of the dropped elements in each row from the
diagonal element of that row of U to compensate for the dropping. The MILU(0)/MIC(0)
preconditioner is generally known to have a stronger convergence acceleration effect compared
with ILU(0)/IC(0). In fact, the spectral condition number, which indicates the number of
iterations required for convergence, is O(h−1), where h is the grid size used for discretizing the
model problem; meanwhile, in ILU(0)/IC(0), the condition number is O(h−2) [3, 4, 5].

In recent years, with the emergence of high-degree parallelism of computers, speeding up
computation through parallelization has become an important issue. However, it is well known
that parallelization of ILU/IC preconditioner, which uses natural ordering of the grid points, is
difficult. The incomplete factorization requires that, before processing the rows associated with

1

the node with a certain index number, the rows with smaller numbers connecting to the node
should be processed. With the natural ordering of orthogonal structured grids, the processing
of a row cannot begin until all rows associated with a set of nodes upwind in each axis have
been processed; therefore, most of the factorization needs to be completed sequentially.

Reordering techniques are used to maximize the number of nodes for which no adjacent
nodes have a smaller number than their own [6, 7, 8, 9, 10, 11, 12]. A technique used in
combination with reordering is the coloring technique, in which nodes that can be computed at
the same time are given the same color to parallelize computations that contain dependencies.
For example, nodes that can be computed without waiting for other nodes to be computed are
colored with color (1), and nodes that depend only on nodes with color (1) are colored with
color (2). In this case, after the nodes with color (1) are computed in parallel, the processes are
synchronized once and then the nodes with color (2) can be computed in parallel. A reordering
method that uses this coloring technique is block red-black (BRB) ordering [13]. BRB ordering
can control the degree of parallelism up to half the number of nodes in parallel, and the number
of colors required is small; therefore, BRB is suitable for orthogonal structured grids, which
has few synchronization points and can be expected to improve convergence by blocking. The
ILU(0)/IC(0) preconditioner in combination with BRB ordering achieves high parallelism in
various model and practical problems [14, 15], and its effectiveness in combination with several
types of ILU preconditioners has also been verified [16].

As the MILU(0)/MIC(0) preconditioner has a high convergence acceleration effect, it is
natural to parallelize them via reordering. However, it has been noted that MILU(0)/MIC(0)
can result in factorization breakdowns by zero or very small pivots when combined with several
ordering strategies. In particular, in the case of a self-adjoint difference operator discretized
based on an evenly spaced grid, combining nodal red-black ordering or parallel wavefront or-
dering with MILU(0)/MIC(0) preconditioner results in a zero pivot or a pivot on the order of
O(h) [17]. This breakdown risk has not been investigated for BRB ordering.

In parallel computing, the use of accelerator devices in computers ensure a higher degree of
parallelism is becoming more common to meet the expectations of higher speeds. With regard
to parallelization of the PIC method, speeding up the computation using accelerator devices
were considered [18, 19, 20]; and a comparison of computational speeds among them shows that
GPUs have fast computational speeds [21]. Owing to the high computing performance of the
GPU, speeding up the computation in combination with the improved MILU and BRB ordering
should be possible. However, these preconditioning methods have been mainly evaluated in a
multicore environment on the CPU, and few studies have been conducted on the GPU, which
is a manycore device.

In this research, we will accelerate the plasma simulation using PIC method by parallelizing
the solution of the Poisson equation, which accounts for the majority the computation time when
the PIC method is applied to a manufacturing device. For the solver preconditioner, we use
MILU(0), which has good convergence, and for parallelization we use BRB ordering, which can
take advantage of the property that blocks made from orthogonal structure grid can be painted
in two colors. To use them in combination to speed up computation, their characteristics will
be investigated and GPUs will be optimized highly parallel environments.

We first analyze the combination of BRB ordering and the MILU/MIC preconditioner and
show the risks when they are applied to the matrix resulting from the discretization of difference
operators. In particular, if certain conditions of block division are met, a zero pivot occurs during
factorization and an effective preconditioner cannot be obtained. We also show via theoretical

2

analysis and numerical experiments that this problem can be mitigated by the introduction of
perturbations or relaxations. Subsequently, we conduct a GPU parallelization of the solution
of simultaneous linear equations with coefficient matrices preconditioned by MILU(0) and BRB
ordering with reduced breakdown issues. The implementation measures necessary to bring out
the convergence behavior and high performance are examined under the condition of a large
number of blocks and a high degree of parallelism. In numerical experiments, we demonstrate
the convergence behavior and computation time to obtain a solution of Krylov subspace method
solver applied to coefficient matrices with several preconditioners. The coefficient matrices are
obtained from the Poisson equation for a 3D magnetron sputtering equipment simulation using
PIC method while varying the matrix size. These test problems use a regular grid and a 7-
point stencil, and the Poisson equation is discretized using the 3D finite difference method. In
addition, we show the convergence of model problems reordered by BRB ordering using various
degrees of parallelism.

1.2 Contributions

The contributions of this research are as follows.

BRB ordering breakdown analysis and workaround suggestions: We analyzed the
combination of BRB ordering and the MILU(0)/MIC(0) preconditioner and demonstrated that
if some block division condition is met when they are applied to the matrix resulting from
the discretization of a difference operator, then zero pivots occur during the factorization and
no effective preconditioner can be obtained. We also demonstrated that this problem can be
alleviated by the introduction of perturbations or relaxations and that the improved method
retains the convergence acceleration effect even at high parallelism levels. As a result, the
MILU(0)/MIC(0) preconditioner and BRB ordering, which have excellent parallel acceleration,
can be used together; the combination of these methods can now be regarded as an efficient,
stable, and highly parallel preconditioner.

Development of BRB-ordered parallel solver for GPU: For parallel solvers running
on GPU, we proposed a data storage format to favor the so-called coalesced access, which
significantly improves the memory throughput. In addition, the calculation can be sped up
while maintaining the overall accuracy by using the mixed precision of single precision and
double precision for the substitution calculation, thereby taking advantage of the amount of
single-precision floating-point data and the high single-precision arithmetic performance of the
GPU. We optimized the block division conditions for the manycore configuration considering
the block size in each direction and clarified the effect of specifying the parallel granularity
on the parallel calculation speed. By using these in combination, a high-speed solver can be
implemented in a maintainable manner using OpenACC directives.

Analysis of convergence of BRB ordering: We clarified the fact that the optimum value
of the perturbation factor differs depending on the block division scheme of BRB ordering.
Furthermore, we showed the sufficient condition for the order of the condition number to be
O(h−1) is satisfied in perturbed MILU(0) preconditioned coefficient matrix with a small number
of blocks. We also showed that even when the number of blocks is large, features that have a

3

positive impact on convergence appear in the eigenvalue spectrum, revealing the reason for the
superior convergence characteristics of BRB ordering.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2
Chapter 2 describes the outline and speedup of the PIC method, a plasma simulation method

that incorporates the Poisson solver.

Chapter 3
The first half of Chapter 3 describes the Krylov subspace method used for the solver and the

preconditioning method accelerating its convergence. In the second half, we describe parallel
computing and an ordering method used to parallelize the preconditioner.

Chapter 4
In Chapter 4, we describe the mechanism by which zero pivot occurs in the combination

of parallelization using BRB ordering and the MILU(0)/MIC(0) preconditioner, and we show
that the introduction of perturbation or relaxation is effective in alleviating this problem. The
contents of this chapter are based on our previous work [22].

Chapter 5
Chapter 5 describes GPU features and a parallelization framework. Then, relaxed MILU(0)

preconditioned solver, parallelized by applying BRB ordering, was implemented on GPU. This
chapter elaborates on the content of our work [23] and evaluates its effect on the overall PIC
method.

Chapter 6
Chapter 6 experimentally analyzes the effect of BRB ordering on the convergence of the

perturbed MILU(0)/MIC(0) preconditioner. The content of this chapter is based on our pre-
liminary work [24].

Chapter 7
In Chapter 7, we present our conclusions.

4

Chapter 2

Plasma Simulation via the
Particle-In-Cell Method

Plasma is the fourth phase of matter, whereas the other three are solids, liquids, and gases.
Several charged particles of this state exist in the universe, and they are being utilized in in-
dustries to micromachine and etch silicon surfaces, gas lasers, and more. Plasma phenomena
are complex, and simulations are being used to understand them. Gas phase simulation meth-
ods are primarily divided into two categories: those based on particle models that track the
trajectory of a large number of individual particles, and those based on fluid models that solve
a distribution function smoothed on a grid. A conventional particle-modeling method is the
particle-in-cell (PIC) method, which is useful for simulating plasma flows in a low-pressure re-
gion. Here, we describe a PIC/Monte Carlo collision (MCC) method [1] that employs the MCC
method to handle the collisions within a cell.

2.1 Particle-In-Cell/Monte Carlo Collision Method

The PIC method is a simulation model that considers the plasma to be a collection of charged
particles, such as electrons and ions. Because it is difficult to account for all the charged particles
and neutral gas molecules, calculations are executed by representing multiple charged particles
with a simulated particle called a super-particle. The number of real particles represented by
a super-particle is called the weight of the super-particle. The plasma behavior is calculated
by tracing the behavior of these super-particles. Super-particles are charged particles with
charge q, mass m, position X, and velocity V . It is assumed that the density and temperature
distributions of the neutral gas molecules are not altered during the calculation.

Fig. 2.1 illustrates the basic workflow of the PIC/MCC method. The computational domain
is divided into grids (field nodes) with small cells, and the super-particles are arranged according
to the density and temperature at time t = 0 (Fig. 2.1, top left). The charges of the super-
particles are distributed at their respective node points, and the charge allocation ρ at the node
points is obtained (Fig. 2.1, upper center). The potential ϕ at the lattice node is calculated by
the Poisson equation from the ρ of the node (Fig. 2.1, upper right), whereas the electric field
E and the magnetic field B are calculated from the potential are interpolated at the particle
position (Fig. 2.1, lower right). The movement of the particles is calculated using the Newtonian

5

equations of motion:

m
∂V

∂t
= F , (2.1.1)

∂X

∂t
= V , (2.1.2)

F = q(E + V ×B). (2.1.3)

Secondary electron, ion emissions, annihilation, reflection, or absorption is calculated if a particle
reaches a wall boundary during its movement (Fig. 2.1, lower middle). After the calculation of
the movement is completed, the reactions between the charged particle and the neutral particle
are calculated by the MCC method from the reaction probability, according to the collision cross
section (Fig. 2.1, bottom left). Once all the PIC calculations in that time step are completed,
the step is increased and the whole process is repeated until the flow reaches a steady-state, or
the prespecified time is reached.

The magnetic field is calculated as a static magnetic field based on the Biot-Savart law:

B =
µ

4π

∫
V
d3rm

jm(rm)× (r − rm)

|r − rm|3
(2.1.4)

jm =
1

µ0
(∇×M) (2.1.5)

from the magnet arrangement and magnetic characteristics, where r, rm, µ0, and M , respec-
tively, denote the position vector, position of the magnet, permeability of the vacuum, and
magnetization of the external magnets with dimension equivalent to B.

We use the implicit method based on the study conducted by Vahedi et al. [2] for particle
motion. The new velocities Vn and positions Xn at time-step n of the super-particles are
obtained by

Vn = Vn−1 +
q

2m
(En−1 + Vn−1 ×B +En + Vn ×B)dt, (2.1.6)

Xn = Xn−1 +
1

2
(Vn + Vn−1)dt, (2.1.7)

where dt is the time-step size. Because there are terms on the right-hand side with a time
step n that are unknown, the particles are moved using the l-th predicted values V l and X l

of predictor-corrector loop, while the corresponding electric field El
n is derived by solving the

Poisson equation. The predicted values of V l+1 and X l+1 are obtained by

V l+1 = Vn−1 +
qdt

2m
(En−1 + Vn−1 ×B) +

qdt

2m
(El

n + V l
n ×B), (2.1.8)

X l+1 = Xn−1 + Vn−1dt+
qdt

2m
(En−1 + Vn−1 ×B)

dt

2
+

qdt

2m
(El

n + V l
n ×B)

dt

2
. (2.1.9)

Xn is rewritten as
Xn = X̃n + δXn (2.1.10)

6

Initial particle

placement on grid
Charge allocation to nodes

q

Super particle

E

Electric potential

solved on nodes

Figure 2.1: Basic flow of PIC/MCC method.

7

with X̃n as the X derived only from time step n− 1, and δXn representing the part obtained
from time step n. For simplicity, Eq. (2.1.6) is substituted into Eq. (2.1.7), then B̃ is ignored
and E(X) is regarded as the electric field of position X; consequently, we obtain

Xn = Xn−1 +
1

2
(Vn−1 +

q

2m
(En−1(Xn−1) +En(Xn))dt+ Vn−1)dt (2.1.11)

= Xn−1 +Xn−1dt+

(
dt

2

)2 q

m
En−1(Xn−1) +

(
dt

2

)2 q

m
En(Xn), (2.1.12)

with the 1st – 3rd terms becoming X̃n, and the 4th term δXn. Using δEn(X̃n), which is En

at the position X̃n as an estimated value of En(Xn) yields

Xn = X̃n +

(
dt

2

)2 q

m
En(X̃n). (2.1.13)

Similarly, the charge density ρ becomes

ρn = ρ̃n + δρn

= ρ̃n −∇ · (ρ̃nδXn)

= ρ̃n −∇ ·
[
ρ̃n

(
dt

2

)2 q

m
En(X̃n)

]
= ρ̃n −∇ ·

[
ρ̃n

(
dt

2

)2 q

m
(∇ϕn)

]
and the Poisson equation is rewritten as

∂2ϕ

∂X2
= −ρ

ϵ

= −
ρ̃−∇ · [ρ̃n(dt2)

2 q
m(∇ϕn)]

ϵ
,

where ϵ is the permittivity. Using the electrical susceptibility χ = (q(dt)2/4mϵ)ρ, the aforemen-
tioned implicit Poisson equation is written as

∇ · (ϵ[1 + χ]∇ϕ) = −ρ. (2.1.14)

We solve this equation using the finite difference method. For simplicity, we present the
formula with a uniform orthogonal grid for a planar two-dimensional coordinate system (x−y).
If the finite difference method is applied to the following two-dimensional implicit Poisson
equation

∂

∂x

(
ϵ[1 + χ]

∂

∂x

)
+

∂

∂y

(
ϵ[1 + χ]

∂

∂y

)
= −ρ(x, y), (2.1.15)

it becomes

1

∆x

(
Ki+1/2,j

ϕi+1,j − ϕi,j

∆x
−Ki−1/2,j

ϕi,j − ϕi−1,j

∆x

)
+

1

∆y

(
Ki,j+1/2

ϕi,j+1 − ϕi,j

∆y
−Ki,j−1/2

ϕi,j − ϕi,j−1

∆y

)
= −ρi,j .

8

Here, ∆x and ∆y represent the respective lattice widths in the x and y directions, the variables
with subscripts i and j denote the values on the node, the variables with subscripts i± 1/2 and
j ± 1/2 are the values of the node midpoint, and Ki,j represents the value of ϵi,j [1 + χi,j]. By
arranging the terms of the above equation for each variable ϕ, we obtain

Ki+1/2,j

∆x2
ϕi+1,j +

Ki−1/2,j

∆x2
ϕi−1,j +

Ki,j+1/2

∆y2
ϕi,j+1 +

Ki,j−1/2

∆y2
ϕi,j−1

−
(
Ki+1/2,j

∆x2
+

Ki−1/2,j

∆x2
+

Ki,j+1/2

∆y2
+

Ki,j−1/2

∆y2

)
ϕi,j = −ρi,j .

The boundary condition of the Poisson equation occurs when the outermost plasma flow
region is in contact with a solid. The exact location where the potential is calculated in this
region depends on the identity of the solid.

Dirichlet conditions are imposed on metallic surfaces. For example, if the known potential
ϕ̃i−1,j at nodei− 1, j is defined,

Ki+1/2,j

∆x2
ϕi+1,j +

Ki,j+1/2

∆y2
ϕi,j+1 +

Ki,j−1/2

∆y2
ϕi,j−1

−
(
Ki+1/2,j

∆x2
+

Ki−1/2,j

∆x2
+

Ki,j+1/2

∆y2
+

Ki,j−1/2

∆y2

)
ϕi,j = −ρi,j −

Ki−1/2,j

∆x2
ϕ̃i−1,j .

The same is true when ϕi+1, j, ϕi,j−1, and ϕi,j+1 are defined.
Neumann conditions are imposed on non-metallic boundaries. For example, if ∂ϕ/∂x =

Ex(x, y) is applied to nodes i, j, and if node i + 1, j is outside the computational domain, we
assume an virtual potential ϕi+1,j at a position symmetrical to i−1, j with respect to i, j. When
the slope is approximated by a second-order central difference,

ϕi+1,j = ϕi−1,j − 2∆xEx(x, y) (2.1.16)

is obtained. Accordingly, assuming Ki+1/2,j = Ki−1/2,j will result in(
Ki+1/2,j

∆x2
+

Ki−1/2,j

∆x2

)
ϕi−1,j +

Ki,j+1/2

∆y2
ϕi,j+1 +

Ki,j−1/2

∆y2
ϕi,j−1

−
(
Ki+1/2,j

∆x2
+

Ki−1/2,j

∆x2
+

Ki,j+1/2

∆y2
+

Ki,j−1/2

∆y2

)
ϕi,j = −ρi,j +

Ki+1/2,j

∆
x2(2∆x)Ex(x, y).

These equations can be easily extended to three dimensions.
The resulting coefficient matrix is a sparse matrix with up to five elements per row in two

dimensions, and up to seven elements in three dimensions. In the case of unequally spaced
nodes, the coefficient matrix becomes nonsymmetric.

We repeat the particle motion and Poisson equation solving until ϕ is converged by the
predictor-corrector loop.

2.2 Application and Acceleration of the PIC method

The PIC method has been utilized to understand plasma phenomena, and its effectiveness
has been examined by reproducing various phenomena and comparison with experimental val-
ues [1, 25]. Several methods for accelerating the PIC method have also been investigated

9

with the increase in computer performance [26, 18, 21]. Sparse grid combination [27] and
load distribution [28] are some of the acceleration techniques, and recently, some studies have
considered approaches that involve tiling on GPU [19] and particle partitioning by offloading
computationally-intensive workloads such as particle motion and interpolation into available
GPUs [20]. With the use of acceleration techniques, large-scale PIC simulations using a large
number of node points and super-particles, such as fusion reactors [29] and cosmological systems
[30, 31], have become feasible, in addition to the reproduction of laboratory phenomena.

We investigate a magnetron sputter model as an industrial application of the PIC method.
Several cases of the PIC method for magnetron sputtering have been verified to reproduce
experimental results [32, 33, 34]. Magnetron sputtering is a key application adopted in the
development of industrial manufacturing equipment that utilizes this phenomenon because so-
lutions can be obtained in a relatively stable manner via the PIC method. However, the models
that can be analyzed are limited because the computational cost increases significantly with
the increase in device size and plasma density. Therefore, there is a need for faster magnetron
sputtering simulation via PIC method.

For a preliminary evaluation of the computational cost, we employed a test problem modeling
a typical 3D DC magnetron sputtering apparatus, with its shape and size close to that of an
actual device. Fig. 2.2 presents a schematic of the model. The static magnetic field illustrated
in Fig. 2.3 was used as the magnetic field distribution at the grid point. Argon 1Pa was
uniformly distributed as an initial ambient gas configuration. The electrode has secondary
electron emission coefficients of 0.02 and −200 V. The sidewalls and substrate were grounded
to 0 V. All their boundaries were metal surfaces treated as Dirichlet boundaries. In addition,
all grid points were assumed to have a vacuum permittivity ϵ0. The device size was 60 mm ×
60 mm × 30 mm, as presented in Fig. 2.4, and a 1 mm uniform orthogonal mesh were formed.

The coefficient matrix of the Poisson equation for this model becomes a symmetric sparse
matrix. It becomes nonsymmetric if a non-uniform orthogonal grid is used near the boundaries
to increase the computational accuracy. To address this situation, our simulation code used a
solution method and preconditioning that can treat nonsymmetric matrices. Specifically, we
used the BiCGSTAB method known for its superior efficiency and stability (Section 3.1.4), with
the MILU(0) preconditioner (Section 3.2.1), among nonsymmetric Krylov subspace solvers.

The implicit PIC method illustrated in Section 2.1 was implemented with Fortran90, and all
floating-point data and operations in the code were in double precision; further, we performed
MPI parallelization via the particle decomposition method. An Intel compiler and MPICH [35]
were used. The computational environment was an NEC Express5800/R120b-1 with an Intel
Xeon CPU X5675@3.06 GHz (6 cores, 12 threads) ×2.

Fig. 2.5 presents the proportion of the calculation time for 60,000 steps of PIC simulation
taken by each subroutine when calculated across 8 parallel cores on a single node. The overall
computational time was 30.5 h. The calculation time of the predictor-corrector loop enclosed
by the dashed line in Fig. 2.5 was the largest, occupying 83% of the total time. Within the
predictor-corrector loop, deriving the potential from the Poisson equation took the longest,
taking up 57% of the total. Accordingly, some studies report that the computation of the
potential in the PIC method is expensive [36, 27].

In this study, the potential was determined using an approach that accelerates the solution
of simultaneous linear equations with Krylov subspace methods. The next several Chapters
discuss the linear solver, and the results are applied to the PIC method in Chapter 5.

10

Target

voltage -200 V

Substrate

(grounded)

Side wall

(grounded)

Figure 2.2: 3D magnetron sputter model.

[Tesla]

Figure 2.3: Magnetic field on midpoint cut plane in the y-axis direction.

11

Figure 2.4: Geometry size of 3D magnetron sputter model.

Potential calculations 56.94%

Corrector calculations 13.15%

Predictor calculations 8.55%

Interpolation 3.62%

Electric �ield calculations 0.73%

Output value calculations 6.61%

Particle generation & annihilation 4.86%

dt control 1.54%

Figure 2.5: Ratio of computational time for each subroutine.

12

Chapter 3

Krylov Subspace Methods for Linear
Simultaneous Equations and
Preconditioning Techniques

Finding an approximate solution to partial differential equations (PDEs), which describe natural
and engineering phenomena by discretizing them using the finite element method (FEM) or finite
difference method (FDM), involves solving a large-scale simultaneous linear equation Ax = b.
This simultaneous linear equation has a sparse coefficient matrix A, which is large-scale and
most of its elements are zero.

When the problem size is small, the direct solution method is effective. Meanwhile, when
the scale of the problem is large, the iterative solution method, which can efficiently obtain the
required accuracy in terms of storage capacity and computational complexity, is used. There
are two types of iterative methods: the stationary method, which updates the approximation
solution by a linear recurrence relation, and the nonstationary method, which is based on the
generation of orthogonal vector sequences and orthogonal polynomials. The Krylov subspace
method is a nonstationary method for creating orthogonal vector sequences. Conjugate gra-
dient methods are applied to symmetric positive definite matrices, and derivatives exist for
nonsymmetric matrices.

Accurately predicting the convergence of the iterative methods is difficult, but superficial
error limits can often be obtained. The spectral condition number κ of a symmetric positive
definite matrix A is given by κ = λmax/λmin, where λmax and λmin are the maximum and
minimum eigenvalues of A, respectively. To find the upper bound of the difference between the
exact solution x∗ and the approximation solution x(n), obtained at the n-th iteration of the
conjugate gradient method for the linear equation Ax = b, a bound on the A-norm of the error
can be used for the initial approximation solution x(0) :√

(x(n) − x∗, A(x(n) − x∗)) ≤ 2

(√
κ− 1√
κ+ 1

)n√
(x(0) − x∗, A(x(0) − x∗)) (3.0.1)

It is clear from this equation that the number of iterations for the relative error to reach the
small value of ε is roughly proportional to

√
κ. For an elliptical second-order PDE, the coefficient

matrix A typically has the condition number κ = O(h−2), where h is the mesh width used for
discretization, and the number of iterations is expected to be O(h−1) for the conjugate gradient
method without preconditioning.

13

As the rate at which the iterative methods converge depends on the eigenvalue spectrum of
the coefficient matrix, these methods often require a matrix called a preconditioner, which trans-
forms the coefficient matrix into a matrix with a better spectrum. Using a good preconditioner
improves the convergence of the iterative method and fully recovers the extra cost required to
construct and apply the preconditioner. In fact, the iterative method may not converge without
a preconditioner.

The effect of the preconditioner can be estimated by examining the proximity eigenvalues of
the corresponding Lanczos process. Consider a case in which the eigenvalues at both ends of the
minimum and maximum sides of the coefficient matrix K−1A are sufficiently separated. Then,
the conjugate gradient method for solving a linear system, with K−1A as the coefficient matrix,
eliminates the error components in the eigenvector direction corresponding to the eigenvalues
at both ends, and then proceeds as if these eigenvalues are non-existent. Hence, the rate of
convergence depends on a reduced system with a small spectral condition number [37, 38]. It
is also known that convergence improves when eigenvalues form one or more clusters [39, 40].

3.1 Krylov Subspace Methods

In general, for the matrix A ∈ Rm×m and vector y ∈ Rm, the vector sequence {y, Ay, A2y, . . .}
generated by multiplying y with the power of A, is called the Krylov sequence. The subspace
Kn(A;y), called the Krylov subspace, of order n is defined as the subspace spanned by the first
n vectors:

Kn(A;y) = span(y, Ay, . . . , An−1y). (3.1.1)

In the Krylov subspace Kn(A; r(0)) formed from r(0), with the initial approximation solution
as x(0), and the initial residual as r(0) = b − Ax(0). An iterative solution method, called
the Krylov subspace method, generates a sequence of approximation solutions x(n) satisfying
x(n) − x(0) ∈ Kn(A; r(0)).

As K1(A; r(0)) ⊆ K2(A; r
(0)) ⊆ . . . ⊆ Kn(A; r(0)), the approximation solution is updated

whereas the space to be searched is expanded. Because the condition on the space alone does
not determine the approximate solution x(n), we have the freedom to choose any vector in the
Krylov subspace Kn(A; r(0)) as x(n). Three types of principles, namely, residual minimization,
which chooses x(n) in Kn(A; r(0)) so that the norm of the residual r(n) = Ax(n)−b is minimized,
the Ritz-Galerkin method, which defines x(n) using the orthogonal condition

r(n)⊥Kn(A; r(0)), (3.1.2)

and the Petrov-Galerkin method, which defines x(n) using the orthogonal condition

r(n)⊥Ln (3.1.3)

with some appropriate subspace sequence L1 ⊆ L2 ⊆ . . . ⊆ Ln of Rm, are used as conditions
imposed on the residual r(n) corresponding to the approximate solution x(n).

3.1.1 Generating an Orthonormal Basis for Krylov Subspaces

Consider expressing the approximation solution x(n) as a linear combination of the basis vectors
of the Krylov subspace Kn(A; r(0)). In this case, using an orthonormal basis is advantageous
in terms of numerical stability and ease of theoretical derivation of the solution method.

14

Orthogonalization of the vector sequence {r(0), Ar(0), . . . , An−1r(0)} using the Gram-Schmidt
method can yield an orthonormal system q(1), q(2), . . . , q(n) of the Krylov subspace

Kn(A; r(0)) = span(r(0), Ar(0), . . . , An−1r(0)), (3.1.4)

which is called the Arnoldi process, as shown in Algorithm 1. In Algorithm 1, lines 3 to 5
represent the orthogonalization process, and lines 6 to 7 represent the normalization process.

Algorithm 1 Arnoldi process

1: q(1) = r(0)/∥r(0)∥2
2: for n = 1, 2, . . . do
3: for i = 1 to n do
4: hin = (q(i), Aq(n))
5: end for
6: hn+1,n = ∥Aq(n) − Σn

i=1hinq
(i)∥2

7: q(n+1) = (Aq(n) − Σn
i=1hinq

(i))/hn+1,n

8: end for

From the Arnoldi process, we obtain q(i) = h1iq
(1) + h2iq

(2) + . . .+ hi+1,iq
(i+1). Therefore,

if the m× n orthogonal matrix Qn = [q(1)|q(2)| . . . |q(n)] and the (n+ 1)× n matrix

H̃n =

h11 h12 . . . h1n
h21 h22 . . . h2n

. . .
. . .

...
hn,n−1 hnn

hn+1,n

 (3.1.5)

are defined, AQn = Qn+1H̃n holds. When Q⊤
n is multiplied from the left, because the columns

of Qn are mutually orthogonal, the n× n Hessenberg matrix is obtained as follows:

Hn = Q⊤
nAQn = Q⊤

nQn+1H̃n =

1 0 . . . 0
0 1 . . . 0

. . .
. . .

...
0 1

0

 H̃n =

h11 h12 . . . h1n
h21 h22 . . . h2n

. . .
. . .

...
hn,n−1 hnn

 (3.1.6)

This can be seen as a matrix obtained by projectingA onto span(q(1), q(2), . . . , q(n)) = Kn(A; r(0)).
Next, considering the case where A is a symmetric matrix, Hn also becomes a symmetric

matrix, and as hin = (Aq(i), q(n)) = 0 with i ≤ n−2 from the orthogonality of q(1), q(2), . . . , q(n),
Hn becomes a symmetric tridiagonal matrix. That is, Aq(i) must be orthogonalized only against
q(i) and q(i−1). The Arnoldi process for symmetric matrices using this is shown in Algorithm
2, which is called the Lanczos process.

Using the Lanczos process, q(n+1) can only be obtained from q(n) and q(n−1). That is, if A
is a symmetric matrix, and u(n) = Un(A)u(0) generated by the n-th degree polynomial Un(z)
satisfies the orthogonal condition, then there exist real numbers ξn, ηn, ζn and the three-term
recurrence relation

Un+1(z) = ξnzUn(z) + ηnUn(z) + ζnUn−1(z) (3.1.7)

holds. This is called the Lanczos principle and is used to derive the conjugate gradient (CG)
method shown in Section 3.1.2.

15

Algorithm 2 Lanczos process

1: q(0) = 0, q(1) = r(0)/∥r(0)∥2
2: for n = 1, 2, . . . do
3: hn−1,n = (q(n−1), Aq(n))
4: hnn = (q(n), Aq(n))
5: hn+1,n = ∥Aq(n) − hn−1,nq

(n−1) − hnnq
(n)∥2

6: q(n+1) = (Aq(n) − hn−1,nq
(n−1) − hnnq

(n))/hn+1,n

7: end for

3.1.2 Conjugate Gradient (CG) Method

The CG method for symmetric matrices is derived from the Lanczos principle using the spatial
conditions of the Krylov subspace and the orthogonal conditions (3.1.2) of the Ritz-Galerkin
method. In the CG method, the residual r(n) = b−Ax(n) corresponding to the approximation
solution x(n) at the n-th iteration is expressed as r(n) = Rn(A)r

(0) by the n-th degree polynomial
Rn(z). At this time,

x(n+1) = x(n) −A−1(Rn+1(A)−Rn(A))r(0) (3.1.8)

holds; thus, when setting
Xn+1(z) = (Rn+1(z)−Rn(z))/z, (3.1.9)

it becomes
x(n+1) = x(n) −Xn+1(A)r

(0). (3.1.10)

Using the Lanczos principle (3.1.11), Rn(z) and (Rn+1(z)−Rn(z))/z are obtained such that
the residual r(n) = Rn(A)r(0) becomes orthogonal. From Rn(0) = 1, as ηn + ζn = 1, Rn+1(z)
becomes

Rn+1(z) = ξnzRn(z) + (1− ζn)Rn(z) + ζnRn−1(z), (3.1.11)

and by rewriting this into a simultaneous binary recurrence relation,

Rn+1(z)−Rn(z)

ξnz
= Rn(z)−

ζnξn−1

ξn

Rn(z) +Rn−1(z)

ξn−1z
(3.1.12)

and setting

Pn(z) =
Rn+1(z)−Rn(z)

ξnz
, αn = −ξn, βn = −ζnξn−1

ξn
, (3.1.13)

the recurrence relations
Pn(z) = Rn(z) + βn−1Pn−1(z) (3.1.14)

Rn+1(z) = Rn(z) + αnzPn(z) (3.1.15)

are obtained, and thus
p(n) = r(n) + βn−1p

(n−1) (3.1.16)

r(n+1) = r(n) − αnAp(n). (3.1.17)

From the recurrence relation of Rn+1(z) (3.1.15) and (Rn+1(A)r(0), Pn(A)r(0)) = 0, the
coefficient αn becomes

αn =
(Rn(A)r(0), Pn(A)r(0))

(APn(A)r(0), Pn(A)r(0))
=

(r(n),p(n))

(Ap(n),p(n))
. (3.1.18)

16

Furthermore, from the recurrence relation of Pn(z) (3.1.14) and (Pn(A)r(0), APn−1(A)r(0)) = 0,
the coefficient βn−1 becomes

βn−1 = −(Rn(A)r(0), APn−1(A)r(0))

(Pn−1(A)r(0), APn(A)r(0))
=

(r(n), Ap(n−1))

(p(n−1), Ap(n−1))
. (3.1.19)

By defining Kz(n) = r(n) for preconditioning, and q(n) = Ap(n) as the vector that holds
the result of the matrix vector product, and setting ρn = (r(n), z(n)), the algorithm of the CG
method with preprocessing shown in Algorithm 3 is obtained.

Algorithm 3 CG with preconditioner K

1: Compute r(0) = b−Ax(0) for some initial guess x(0)

2: for n = 1, 2, . . . , until convergence do
3: solve Kz(n−1) = r(n−1)

4: ρn−1 = (r(n−1), z(n−1))
5: if n = 1 then
6: p(n) = z(n−1)

7: else
8: βn−1 = ρn−1/ρn−2

9: p(n) = z(n−1) + βn−1p
(n−1)

10: end if
11: q(n) = Ap(n)

12: αn = ρn−1/(p
(n), q(n))

13: x(n) = x(n−1) + αnp
(n)

14: r(n) = r(n−1) − αnq
(n)

15: if norm of r(n) is small enough then
16: stop
17: end if
18: end for

3.1.3 BiConjugate Gradient (BiCG) Method

For a nonsymmetric matrix, a sequence of residuals that satisfy the orthogonal condition cannot
be generated by the approach used in the CG method. The BiCG method is a Petrov-Galerkin
method that considers the auxiliary equation A⊤x̃ = b̃ and the shadow residual r̃ = b̃− A⊤x̃,
and has an orthogonal condition

r(n)⊥Kn(A
⊤; r̃(0)) (3.1.20)

which corresponds to setting Ln = Kn(A
⊤; r̃(0)) in the orthogonal condition (3.1.3). Consider

a new Krylov subspace

Kn(A
⊤; r̃(0)) = span(r̃(0), (A⊤)r̃(0), . . . , (A⊤)n−1r̃(0)), (3.1.21)

which uses residual biorthogonalization instead of orthogonalization.
Here, we consider constructing a biorthogonal system of r(n) = Rn(A)r(0) and r̃(n) =

Rn(A)r̃(0) from the n-th order residual polynomial Rn(z) and the initial residual. When the
biorthogonal condition is satisfied, Rn(z) satisfies the three-term recurrence relation (3.1.11)

17

according to the generalized Lanczos principle. The recurrence relation of Rn+1(z) (3.1.15),
and the recurrence relation of Pn(z) (3.1.14), are derived similarly to the CG method.

As the coefficients αn and βn−1 are obtained by

αn =
(Rn(A

⊤)r̃(0), Rn(A)r(0))

(Pn(A⊤)r̃(0), APn(A)r(0))
=

(r̃(n), r(n))

(p̃(n), Ap(n))
(3.1.22)

βn−1 = − (Rn(A
⊤)r̃(0), Rn(A)r

(0))

(Rn−1(A⊤)r̃(0), Rn−1(A)r(0))
=

(r̃(n), r(n))

(r̃(n−1), r(n−1))
(3.1.23)

from biorthogonality, the approximation solution x(n) can be computed sequentially using

x(n+1) = x(n) + αnPn(A)r(0). (3.1.24)

From the above relational expression, the BiCG method can be derived by creating the
recurrence relations for

r(n) = Rn(A)r(0), r̃(n) = Rn(A)r̃(0) (3.1.25)

p(n) = Pn(A)r(0), p̃(n) = Pn(A)r̃(0) (3.1.26)

and x(n).
By defining Kz(n) = r(n) and K⊤z̃(n) = r̃(n) for preconditioning, and q(n) = Ap(n) and

q̃(n) = A⊤p̃(n), as the vectors that hold the result of the matrix vector product, and setting ρn =
(r̃(n), z(n)), the algorithm of the BiCG method, with the preconditioner shown in Algorithm 4
is obtained.

The BiCG method can be applied to nonsymmetric matrices, but it requires matrix-vector
products of the transposed matrices, as shown in lines 5 and 16. Moreover, its convergence
behavior is often irregular, and there is a risk of breakdown when the inner products calculated
in lines 6 and 17 become close to 0.

3.1.4 BiConjugate Gradient Stabilized (BiCGSTAB) Method

There is a product-type iterative method that accelerates convergence using the n-th degree
polynomial Un(z), while avoiding the computing operation with A⊤ of the BiCG method. The

residual of the product-type iterative method is defined as r(n) = Un(A)r
(n)
BiCG = Un(A)Rn(A)r(0).

The conjugate gradient squared (CGS) method updates the residual vector as r(n) = (Rn(A))2r(0).
As a result, the computing operation with the transposed matrix is avoided, but irregular con-
vergence behavior appears, which is sometimes more severe than that of the BiCG method as
the square of the residual polynomial of the BiCG method is used.

The BiCGSTAB method was developed to solve nonsymmetric simultaneous linear equa-
tions while avoiding the irregular convergence patterns that occur in the CGS method. The
residual vector is updated as r(n) = Sn(A)Rn(A)r(0). Here, the n-th order polynomial Sn(z) is
recursively defined at each step, with the aim of stabilizing the convergence behavior. Similarly,
p is also updated by p(n) = Sn(A)Pn(A)r(0). Sn(z) is defined by a simple recursive formula:

Sn+1(z) = (1− ωn)Sn(z) (3.1.27)

18

Algorithm 4 BiCG with preconditioner K

1: Compute r(0) = b−Ax(0) for some initial guess x(0)

2: r̃(0) = r(0)

3: for n = 1, 2, . . . , until convergence do
4: solve Kz(n−1) = r(n−1)

5: solve K⊤z̃(n−1) = r̃(n−1)

6: ρn−1 = (r̃(n−1), z(n−1))
7: if n = 1 then
8: p(n) = z(n−1)

9: p̃(n) = z̃(n−1)

10: else
11: βn−1 = ρn−1/ρn−2

12: p(n) = z(n−1) + βn−1p
(n−1)

13: p̃(n) = z̃(n−1) + βn−1p̃
(n−1)

14: end if
15: q(n) = Ap(n)

16: q̃(n) = A⊤p̃(n)

17: αn = ρn−1/(p̃
(n), q(n))

18: x(n) = x(n−1) + αnp
(n)

19: r(n) = r(n−1) − αnq
(n)

20: r̃(n) = r̃(n−1) − αnq̃
(n)

21: if norm of r(n) is small enough then
22: stop
23: end if
24: end for

19

using the free parameter ωn. The coefficients αn and βn are rewritten as

αn =
(r̃

(n)
BiCG, r

(n)
BiCG)

(p̃
(n)
BiCG, Ap

(n)
BiCG)

=
(r̃

(n)
BiCG, r

(n)
BiCG)

(r̃
(n)
BiCG, Ap

(n)
BiCG)

=
(Sn(A

⊤)r̃(0), r
(n)
BiCG)

(Sn(A⊤)r̃(0), Ap
(n)
BiCG)

=
(r̃(0), Sn(A)Rn(A)r(0))

(r̃(0), ASn(A)Pn(A)r(0))
=

(r̃(0), r(n))

(r̃(0), Ap(n))

(3.1.28)

βn =
(r̃

(n+1)
BiCG , r

(n+1)
BiCG)

(r̃
(n)
BiCG, r

(n)
BiCG)

=
(Sn+1(A

⊤)r̃(0), r
(n+1)
BiCG)

(Sn(A⊤)r̃(0), r
(n)
BiCG)

αn

ωn

=
(r̃(0), Sn+1(A)Rn+1(A)r(0))

(r̃(0), Sn(A)Rn(A)r(0))

αn

ωn
=

(r̃(0), r(n+1))

(r̃(0), r(n))

αn

ωn

(3.1.29)

using Sn(A) instead of updating r̃(n) associated with A⊤. The residual vector is updated as

r(n+1) = Sn+1(A)Rn+1(A)r(0) = (1− ωnA)Sn(A)(Rn(A)− αnAPn(A))r(0)

= (1− ωnA)(r(n) − αnApn).
(3.1.30)

ωn is chosen to minimize the residual norm ∥r(n+1)∥2. When the auxiliary vector

s(n+1) = r(n) − αnAp
(n) (3.1.31)

is introduced, the residual vector becomes

r(n+1) = s(n+1) − ωnAs
(n+1) (3.1.32)

so the value of ωn is given as

ωn =
(As(n+1), s(n+1))

(As(n+1), As(n+1))
. (3.1.33)

Using s(n+1), x and p are updated as

x(n+1) = x(n) + αnp
(n) + ωn(r

(n) − αnAp(n)) = x(n) + αnp
(n) + αns

(n+1) (3.1.34)

p(n+1) = Sn+1(A)Pn+1(A)r(0) = Sn+1(A)(Rn+1(A) + βnPn(A))r(0)

= Sn+1(A)Rn+1(A)Rn+1(A) + βn(1− ωn) + Sn(A)Pn(A)r(0)

= rn+1 + βn(p
(n) − ωnAp(n)).

(3.1.35)

By defining Kp̂ = p(n) and Kŝ = s(n) for preprocessing, and v(n) = Ap̂ and t(n) = Aŝ as
the vectors that hold the result of the matrix vector product, and setting ρn = (r̃(0), r(n)), the
algorithm of the BiCGSTAB method with preprocessing, as shown in Algorithm 5, is obtained.

3.2 Incomplete Factorization Preconditioners

The convergence rate of the iterative method depends on the spectral characteristics of the
coefficient matrix. Preconditioners are used to transform simultaneous linear equations into
a problem with better spectral characteristics and the same solution. For example, if the

20

Algorithm 5 BiCGSTAB with preconditioner K

1: Compute r(0) = b−Ax(0) for some initial guess x(0)

2: r̃ = r(0)

3: for n = 1, 2, . . . , until convergence do
4: ρn−1 = (r̃, r(n−1))
5: if ρn−1 = 0 then
6: method fails
7: end if
8: if n = 1 then
9: p(n) = r(n−1)

10: else
11: βn−1 = (ρn−1/ρn−2)(αn−1/ωn−1)
12: p(n) = r(n−1) + βn−1(p

(n−1) − ωn−1v
(n−1))

13: end if
14: solve Kp̂ = p(n)

15: v(n) = Ap̂
16: αn = ρn−1/(r̃,v

(n))
17: s(n) = r(n−1) − αnv

(n)

18: if norm of s(n) is small enough then
19: x(n) = x(n−1) + αnp̂ and stop
20: end if
21: solve Kŝ = s(n)

22: t(n) = Aŝ
23: ωn = (t(n), s(n))/(t(n), t(n))
24: x(n) = x(n−1) + αnp̂+ ωnŝ
25: r(n) = s(n) − ωit

(n)

26: if norm of r(n) is small enough or ωn = 0 then
27: stop
28: end if
29: end for

21

preconditioner K approximates the coefficient matrix A in any way, the equation Ax = b can
be transformed into K−1Ax = K−1b, with no change in the solution. Furthermore, compared
with A, the coefficient matrix K−1A is expected to become closer to the identity matrix having
the condition number 1. With this, it can be expected that the convergence of the Krylov
subspace method will become faster.

A more accurate way to introduce the preconditioner is to divide the preconditioner into
K = K1K2 and transform the original equation as K−1

1 AK−1
2 (K2x) = K−1

1 b. Preconditioning
with K1 = I is called right preconditioning, and the preconditioning with K2 = I is called left
preconditioning. Algorithms 3 – 5 use the right preconditioning.

The conditions that need to be satisfied by the preconditioner K are :

• K−1A is as close to the identity matrix as possible.
• Generation of K is easy.
• Calculation of K−1x is easy.

To satisfy these conditions, an incomplete factorization preconditioner is used.
Most of the preconditioners are given in a factorized form such as K = LU , where L is

the lower triangular matrix and U is the upper triangular matrix. If the factorization process
ignores the update of the fill element, that is, an element that was originally zero but becomes
nonzero in the exact factorization, it is called an incomplete factorization. At this time, the
effect of preprocessing is affected by the amount of K approximating A. If the original matrix
is an M -matrix, it is guaranteed that incomplete factorization exists for many factorization
strategies.

By performing A = LU factorization, Ax = b is replaced by LUx = b, and the solution
x is obtained by solving Ly = b and Ux = y. The forward/ backward substitution method
used to solve these triangular systems is called a triangular solver. In the ‘solve’ in the iterative
calculation shown in Algorithms 3 – 5, which repeatedly finds x from different b’s, L and U
once found can be used repeatedly.

The algorithms for the LU factorization of matrix A ∈ Rn×n include the outer-product form
Gaussian method, the inner-product form Gaussian method, and the Crout method, all of which
have different data reference regions and update regions. In this section, we first explain the
LU factorization procedure based on the inner-product form Gaussian method, which is often
used for sparse matrices.

The k-th stage operation of the factorization a
(k+1)
ij = a

(k)
ij − (a

(k)
ik /a

(k)
kk)a

(k)
kj uses the matrix

Lk =

1
0 1
... 0

. . .
...

. . . 1
0 1
... −lk+1,k 1

−lk+2,k 0
. . .

...
...

...
...

...
. . . 1

0 0 · · · 0 −ln,k 0 · · · 0 1

(3.2.36)

22

with lik = a
(k)
ik /a

(k)
kk , and can be written as A(k+1) = LkA

(k), where A(k) is the coefficient matrix
immediately before starting the elimination of the k-th stage. When this is repeated up to n
stages, A(n) becomes the upper triangular matrix U . Thus, if the above procedure is repeatedly
applied starting from A(1) = A, A(n) becomes

U = A(n) = Ln−1A
(n−1) = Ln−1Ln−2A

(n−2) = · · · = Ln−1Ln−2 · · ·L1A, (3.2.37)

where the element uij of U is a
(n)
ij . In addition, because L = L−1

n−1L
−1
n−2 · · ·L

−1
1 , A = LU holds.

Because L−1
k is a matrix obtained by reversing the sign of the lik element of Lk,

L =

1
l21 1
... l32

. . .
...

. . . 1
lk,k−1 1

... lk+1,k 1

lk+2,k lk+2,k+1
. . .

...
...

...
...

...
. . . 1

ln1 ln2 · · · ln,k−1 −ln,k ln,k+1 · · · ln,n−1 1

. (3.2.38)

At this time, even if a
(0)
ij of the original matrix A is at the zero position, the element lij or uij

at the same position of L or U may not be zero.
In the substitution calculation to solve LUx = b, Ly = b is solved by forward substitution

yi =

{
bi i = 1

bi −
∑i−1

j=1 lijyj i = 2, 3, · · · , n
(3.2.39)

in order from i = 1 to n, and Ux = y is solved by backward substitution

xi =

{
1
uii

yi i = n
1
uii

(yi −
∑n

j=i+1 uijyj) i = n− 1, n− 2, · · · , 1
(3.2.40)

in order from i = n to 1. The elements of y and x that appear on the right side must be
updated, which can prevent the parallelization of substitution calculations. The method that
can be used to avoid this and parallelize it will be described in Section 3.3.2.

If the original coefficient matrix is symmetric positive definite, the LU factorization becomes
the Cholesky factorization. For the LU/Cholesky factorizations, we can consider an approximate
factorization that discards all the fill-ins occurring at positions of zero elements in the original
matrix. This is called the incomplete LU/Cholesky factorization with level(0) (ILU(0)/IC(0)).
Algorithm 6 shows the ILU(0) factorization algorithm.

The order of the condition number of the ILU(0)/IC(0) preprocessed coefficient matrix
is known to be O(h−2), where h is the mesh size. This is the same as in the case of a non-
preconditioned coefficient matrix, and an isolated minimum eigenvalue appears in the eigenvalue
spectrum [41, 42].

23

Algorithm 6 ILU(0) factorization of an matrix A ∈ Rn×n

1: for i = 1 to n do
2: for k = 1 to i− 1 if aik ̸= 0 do
3: aik = aik/akk
4: for j = k + 1 to n if akj ̸= 0 do
5: if aij ̸= 0 then
6: aij = aij − aikakj
7: end if
8: end for
9: end for

10: end for

3.2.1 Modified Incomplete (MILU/MIC) Factorization

A modified incomplete factorization [43, 3, 5] can be used to improve the convergence accel-
eration effect in incomplete factorization. It accomplishes this by reducing the effect of fill-in
drops during the factorization. In the ILU(0)/IC(0) factorization, the fill-in element at the
zero-value position of the original matrix is discarded during the row update operation. In the
MILU(0)/MIC(0) factorization, the sum of the values of the discarded elements is added to the
diagonal elements of the row. With this compensation, the preconditioner has the same row
sum as the original matrix; thus reducing the effect of rejection.

Algorithm 7 shows the MILU(0) factorization algorithm. It differs from the ILU(0) factor-
ization algorithm owing to the addition of line 7, which holds the rejected fill-in value, and
line 13, which compensates for the discarded elements. The preconditioner K is obtained from
Algorithm 7, as follows: Let Â be the matrix generated by Algorithm 7, and let D̂, L̂, and Û be
the diagonal, exact lower, and exact upper parts of the matrix Â, respectively. It then becomes
Â = L̂+ D̂ + Û . At this time, K is factorized as K = (L̂+ I)(D̂ + Û), where I is the identity
matrix. Moreover, when the original matrix A is symmetric, K becomes (L̂+ I)D̂(I + L̂⊤).

Algorithm 7 MILU(0) factorization of matrix A ∈ Rn×n

1: for i = 1 to n do
2: s = 0.0
3: for k = 1 to i− 1 if aik ̸= 0 do
4: aik = aik/akk
5: for j = k + 1 to n if akj ̸= 0 do
6: if aij = 0 then
7: s = s+ aikakj
8: else
9: aij = aij − aikakj

10: end if
11: end for
12: end for
13: aii = aii − s
14: end for

In the modified incomplete factorization, the diagonal element becomes close to zero due to

24

a compensation to the diagonal element, and there is a risk of breakdown due to division by the
zero pivot. This becomes particularly problematic when ordering is applied for parallelization.

In the eigenvalue spectrum of a level-zero incompletely factorized matrix, isolated eigenvalues
appear on the maximum side, and the minimum eigenvalue becomes 1 [41, 42]. One reason to
consider modified incomplete factorization is the behavior of the spectral condition number of
the preprocessed system, which is discussed in association with perturbation and relaxation.

3.2.2 Perturbed Modified Incomplete (PMILU/PMIC) Factorization

Variations of modified incomplete factorization with perturbation added to diagonal elements,
are often treated as being indistinguishable from MILU/MIC, but they are distinguished here as
perturbed modified incomplete factorization (PMILU/PMIC). In the PMILU/PMIC factoriza-
tion, the diagonal elements of the coefficient matrix, before factorization are multiplied by 1+ζh2

with mesh size h and perturbation coefficient ζ. In other words, the MILU/PMIC factorization
is applied to the A+ E matrix and not on the original matrix A, where E = ζh2diag(A).

Algorithm 8 shows the PMILU(0) factorization algorithm. A line perturbing the diagonal
element before, factorization is inserted between lines 2 and 3 of the Algorithm 7.

Algorithm 8 PMILU(0) factorization of matrix A ∈ Rn×n

1: for i = 1 to n do
2: s = 0.0
3: aii = aii(1 + ζh2)
4: for k = 1 to i− 1 if aik ̸= 0 do
5: aik = aik/akk
6: for j = k + 1 to n if akj ̸= 0 do
7: if aij = 0 then
8: s = s+ aikakj
9: else

10: aij = aij − aikakj
11: end if
12: end for
13: end for
14: aii = aii − s
15: end for

It has been confirmed that the condition number of PMILU/PMIC preconditioned matrix
is reduced from O(h−2) to O(h−1) in some problems [3, 4]. When ζ = 0, the algorithm becomes
the MILU(0)/MIC(0) method. Theoretical analysis suggests that a non-zero perturbation of A
is required to achieve this order, but numerical experiments have pointed out that the condition
number of O(h−1) may be obtained even in the absence of perturbations [3]. In the eigenvalue
spectrum of an incompletely factorized matrix with level 0, isolated eigenvalues appear on both
sides of the minimum and maximum [42]. It is necessary to introduce perturbations that are
small enough to bring the minimum eigenvalue closer to 1 and large enough to control the
maximum eigenvalue. An estimation method [44] for the maximum and minimum eigenvalues
including the internal distribution, was developed. The introduction of perturbations not only
improves convergence, but also reduces the risk of zero pivot in MILU(0)/MIC(0) by increasing

25

the original diagonal elements. An explanation of the effect on the zero pivot is provided in
Section 4.3.1.

3.2.3 Relaxed Modified Incomplete (RMILU/RMIC) Factorization

Relaxed modified incomplete factorization [23], also called the relaxed ILU/IC, relaxes the
amount of compensation for fill-in, and reduces the effect on the superiority of diagonal elements.
In the RMILU/RMIC factorization, the sum of the rejected fill-in is multiplied by a relaxation
parameter 0 ≤ α ≤ 1, and then added to the diagonal elements.

Algorithm 9 shows the RMILU(0) factorization algorithm. It differs from the MILU(0)
factorization algorithm in that the relaxation coefficient is multiplied by the compensation
value in line 13.

Algorithm 9 RMILU(0) factorization of an matrix A ∈ Rn×n

1: for i = 1 to n do
2: s = 0.0
3: for k = 1 to i− 1 if aik ̸= 0 do
4: aik = aik/akk
5: for j = k + 1 to n if akj ̸= 0 do
6: if aij = 0 then
7: s = s+ aikakj
8: else
9: aij = aij − aikakj

10: end if
11: end for
12: end for
13: aii = aii − αs
14: end for

When α = 0, the algorithm reduces to the ILU(0)/IC(0) method, and when α = 1 , the
algorithm becomes the MILU(0)/MIC(0) method. An optimal value of α that depends on the
mesh size h has been proposed [45, 42], whereas α = 0.95 has also been proposed as an empirical
recommended value [46].

As an improvement in the eigenvalue spectrum by relaxation, isolated eigenvalues appear
on both sides of the minimum and maximum in the eigenvalue spectrum of the incompletely
factorized matrix with level 0 [41, 42]. When a small number of eigenvalues are isolated near the
maximum and minimum, fewer iterations are estimated compared with a uniform distribution
[37]. Analysis of the eigenvalue distribution shows the equivalence between the perturbation
and relaxation methods used to calculate the incomplete factorization [44]. The introduc-
tion of relaxation not only improves convergence, but also reduces the risk of zero pivot in
MILU(0)/MIC(0) by reducing the fill-in subtracted from the diagonal elements. An explana-
tion of the effect on the zero pivot is provided in Section 4.3.2.

26

3.3 Parallelization

In recent years, parallel computing has become widespread as a means of performing large-scale
calculations. Therefore, adapting numerical calculation methods to multicore and manycore
devices has become an important challenge. Several attempts have been made to implement it-
erative methods for large-scale simultaneous equations on various parallel computers. To achieve
parallelization, alternative algorithms are being developed that extract as much parallelism as
possible from standard algorithms and enhance parallelism by avoiding sequential processes. In
addition, it is necessary to devise an implementation that matches the characteristics of the
arithmetic unit and data communication in the machine that executes the calculation.

3.3.1 Parallel Architectures and Implementation Frameworks

Computer configurations are advancing from single-core to multicore, manycore processors, and
devices to increase parallelism. The following parallelizations are widely used to increase the
degree of parallelism of computers:

(a) Within a single compute node with multiple cores.
(b) Using accelerator devices.
(c) Among compute nodes with multiple nodes connected to each other.

Accelerator devices have long been used to accelerate computations in many scientific applica-
tions, and acceleration using GPUs is now widespread. Parallelization includes thread paral-
lelization and process parallelization.

In thread parallelization, threads parallelize data on a common memory, which corresponds
to (a) and (b). The process is started as a sequential operation, and when the computation
reaches a loop with a large amount of calculation, parallel execution is performed by the threads.
When this is completed, the operation returns to the sequential operation. Thread paralleliza-
tion can be implemented by directives, and typical APIs that use directives include OpenMP
and OpenACC [47]. The OpenACC is specialized for GPUs. The directives are inserted into
the program code as a comment statement and specify the methods of parallelization, among
others, to the compiler. If the compiler does not accept OpenACC directives, they remain as
comment statements. In this way, directive-based parallelization can be implemented without
leaving the original code, which has advantages for program maintainability and code porta-
bility. Declaring parallel sections based on directive syntax causes the compiler to properly
generate and control threads. Parallelization is instructed by sandwiching the loop with the
directives, and the parallelization method, private variables, reduction, etc., are specified as
options. When using an accelerator device, directives are inserted to exchange data with the
device.

Process parallelization corresponds to (c). As each process has its own data, parallel com-
putation, wherein processes run on different nodes is possible. Multiple independent processes
that execute the same program are generated, and operations are performed in parallel. Each
process has a separate memory space, and the processes cooperate by exchanging messages. A
library standard for message passing is the message passing interface (MPI) [48]. As the API is
standardized, it can be executed on any machine where MPI is installed without changing the
program. It can also be used for parallelization on a single node, but it also requires data distri-
bution processing. System control and communication are performed by calling MPI functions.

27

Each process has an identification number called a rank, and the behavior for each rank can be
defined.

Thread parallelism and process parallelism can be combined and implemented, and large-
scale computations often use hybrid parallelization, where process parallelism is used to execute
multiple thread-parallelized nodes and arithmetic accelerators [49, 50, 51, 20].

3.3.2 Parallelization of Preconditioning by Reordering

Owing to the limitations in parallelism, for example, during preconditioning, including sequen-
tial processes such as simple ILU factorization, methods to enhance parallelism have been
developed. Major parallelization methods include partitioning the domain and computing each
domain in parallel, and using graph theory algorithms to increase parallelism. Here, we de-
scribe a graph-theory-based parallelization method that involves the renumbering of problem
variables.

In the forward/backward substitution calculation for incomplete factorization preprocessing,
before calculating the row corresponding to a node, the row for the smaller/larger numbered
nodes that are connected to the node must be calculated. If some nodes are numbered so
that they are not adjacent to the nodes with smaller/larger numbers than themselves, they can
be calculated without waiting for the other rows to be calculated. This means that the rows
corresponding to a series of nodes starting from those nodes can be parallelized.

Such ordering methods include the multicolor method, the nested dissection method, and
the Cuthill-Mckee method [11, 12]. The nodal multicolor method makes it possible to compute
nodes with the same color in parallel, by coloring adjacent nodes with different colors and
numbering the nodes with the same color in sequence [10]. If the nodes are colored by two
colors, the nodal red-black (nodal RB) method is used. In the nested dissection method, nodes
are divided into regions, and ordered from each region to its boundary [7]. If the region is divided
in only one direction, it is a one-way dissection method [8]. In the Cuthill-Mckee method, the
number of adjacent nodes is taken as the degree and leveled from the nodes with the lowest
degree, after which the ordering is repeated in the order of the levels [6]. If we reorder it further
in reverse, it is called the reverse Cuthill-Mckee method [9].

Generally, there is a trade-off between the degree of parallelism and the number of iterations
for ordering strategies. Ordering affects the error matrix, causing clustering and clamping in
the eigenvalue spectrum [52]. The deterioration of convergence may be improved by allowing
a fill-in, but it has a negative impact on parallelism and data volume. The Frobenius norm of
the remainder matrix R = A − LU [53], and the graph information [54, 55, 15], are evaluated
as indicators of the effect of ordering on convergence.

3.3.3 Block Red-Black (BRB) Ordering

In this study, to parallelize incomplete LU preprocessing, we use the block red-black (BRB)
ordering [13], which partitions the nodes into blocks and applies red-black ordering to the blocks.
When two or more colors are used for color coding, it is called block multicolor ordering, which
has also been applied to irregular lattices to confirm its validity [56, 57].

The BRB method reduces the synchronization cost by reducing the number of colors com-
pared to the block multicolor method while maintaining the convergence rate [14]. The number
of blocks is twice that of parallel processes. The number of nodes in a block is, on average, the

28

27 28 11 12 31 32 15 16

25 26 9 10 29 30 13 14

3 4 19 20 7 8 23 24

Figure 3.1: BRB coloring and ordering of a 8× 4 grid.

Figure 3.2: Sparse pattern of the matrix arising from BRB ordering in Fig. 3.1.

total number of nodes divided by the number of blocks. The tasks corresponding to the nodes
contained in a block are processed by a single process or thread.

In BRB ordering, grid points are numbered using the following procedure:

Step 1. Divide the calculation region into blocks.

Step 2. Paint the blocks in red or black so that the adjacent blocks have different colors.

Step 3. Number the grid points in the red block. The numbering within each block is kept in
the lexicographical order.

Step 4. After all the grid points in the red block have been numbered, the grid points in the
black block are numbered in the same manner.

Fig. 3.1 shows an example of the BRB ordering of a two-dimensional 5-point finite difference
grid. Here, the 4× 2 blocks on the grid are constructed such that each block consists of a 2× 2
subgrid of the entire 8× 4 grid.

The nonzero pattern of the coefficient matrix arising from this new ordering is shown in
Fig. 3.2. The diagonal blocks correspond to matrix elements within the same block, and the
non-diagonal blocks, in the lower-left and upper-right, correspond to matrix elements between

29

two grid points with different colors. One grid point is adjacent to a grid point within the
same block, and to grid points in a block with the other color. This eliminates dependency
among blocks, with the same color and enables the forward and backward substitution process
for each block with the same color to be performed in parallel. The forward substitution
requires synchronization after all the red diagonal blocks have been processed, and the backward
substitution requires synchronization after all the black diagonal blocks have been processed,
each time.

It has been pointed out that the combined use of nodal RB ordering and MILU/MIC factor-
ization creates a breakdown problem owing to the occurrence of zero pivot [17]. This is because
the reduction of the diagonal elements due to the compensation of fill-in is of the same size as
the diagonal elements themselves. Even in the case of BRB ordering, zero pivot occurs in the
internal black blocks, where all the adjacent red blocks in the direction of decreasing coordinate
values are internal blocks. The mechanism of the zero pivot and the detailed conditions for
their occurrences are described in Section 4.2. As shown in Section 4.3, this problem can be
avoided by introducing a perturbation or relaxation.

There is a trade-off between parallelism and convergence also in BRB ordering, but unlike
nodal RB ordering, BRB ordering can adjust the block size to balance convergence and paral-
lelism. In general, convergence indicators such as S.R.I. [15] and incompatible ratio [54] worsen,
with an increasing number of blocks. However, for the combination of either the PMILU(0)
or RMILU(0) factorization with BRB ordering, an increase in the number of blocks does not
necessarily lead to worse convergence, as long as each block contains more than several tens of
nodes. Figs. 4.4, 4.5 and 5.12 also show a near-flat trend in this range. This suggests the exis-
tence of a condition that allows for both high parallelism and fast convergence. The relationship
between block partitioning and convergence rate is discussed in Section 5.3.4.2.

30

Chapter 4

Numerical Stability of MILU(0)
Preconditioning Based on Block
Red-Black Ordering

4.1 Introduction

Since MILU/MIC preconditioner has a high convergence acceleration effect, it is a natural idea
to parallelize them through reordering. However, it has been noted that the combination of
some reordering strategies and MILU/MIC preconditioning can lead to a factorization with
zero or very small pivots. In particular, for matrices arising from the discretization of second-
order linear differential operators on an equally spaced grid, it was proved that nodal red-
black (nodal RB) ordering or multiple wave-front type ordering combined with MILU/MIC
factorization results in zero pivot or O(h) pivot, respectively [17]. Perturbation [4] or relaxation
[41] is reported to alleviate the problem.

In this chapter we consider this danger under the following assumptions.

Assumption 1. The matrix A is derived from a finite difference discretization of the second-
order linear partial differential equation (PDE) on an equally spaced grid using the two-dimensional
five-point or three-dimensional seven-point stencil. Thus, A has a symmetric sparse pattern.

Assumption 2. If i is an interior node of the grid, then the i-th row of A has zero row sum.
In other words, the PDE does not have zeroth-order terms, and has the form:

c1
∂2u

∂x2
+ c2

∂2u

∂x∂y
+ c3

∂2u

∂y2
+ c4

∂u

∂x
+ c5

∂u

∂y
= f, (4.1.1)

where c1, . . ., c5 and f are in general functions of x and y.

As useful tools for analyzing the properties of the preconditioning matrices generated by the
MILU(0)/MIC(0) factorization, we define influence range [58, 17] introduced by Eijkhout and
of depth used for the discussion of the influence range.

Definition 1. [58, 17] For a matrix A that has a symmetric sparse pattern, the influence range
for node i is defined as the set:

I(i) = {j : ∃i0, · · · , ip (j = i0 < · · · < ip = i)

and ∀q ∈ {1, 2, . . . , p} (iq and iq−1 are connected.)}. (4.1.2)

31

Furthermore, we define depth D(i) as the maximum length of the chain i0 < i1 < · · · < ip = i
that appears in the definition of I(i) for node i.

Since iq and iq−1 are connected, aiqiq−1 ̸= 0 and the iq−1-th row is used to update the iq-th
row. Thus, I(i) is considered as the set of rows that directly or indirectly affect the i-th row
during factorization. From the definition, it is easy to see that if k ∈ I(i), then I(k) ⊆ I(i). If
the i-th row is not updated from any row, then I(i) = ∅ and only then D(i) = 0. The concepts
of the influence range and depth are useful for analyzing the generation and mitigation of zero
pivot.

In this chapter we analyze the combination of block red-black (BRB) ordering and MILU/MIC
factorization under these assumptions and definitions. Then, we show the dangers when applied
to matrices resulting from the discretization of difference operators. Especially, we show that
under certain conditions regarding the number of block partitions, zero pivot occurs during fac-
torization and no effective preconditioner can be obtained. We also show that this problem can
be mitigated by perturbation or relaxation, and that the resulting combination of the perturbed
or relaxed preconditioner and BRB ordering is more effective than the combination of ILU(0)
preconditioner and BRB ordering, as shown by the numerical results.

The remainder of this chapter consists of the following. In Section 4.2, we show how zero
pivoting occurs in certain combinations of ordering strategies and MILU factorization. On this
basis, we derive necessary and sufficient conditions for the occurrence of zero pivot in BRB
ordering. We describe perturbation and relaxation methods that can solve this problem in
Sections 4.3.1 and 4.3.2, respectively. The experimental results of the resulting preconditioner
performance are presented in Section 4.4. Finally, Section 4.5 gives some summary.

4.2 Occurrence of Zero Pivot

The combination of MIC/MILU factorization with ordering methods such as nodal RB ordering
or ordering by diagonal leads to the danger of zero pivots. The following conditions that produce
a zero pivot have been proven by Eijkhout. Here, the condition is expressed by a generalized row
sum. For a fixed vector c = (c1, c2, . . . , cn) independent of i, the row sum of the i-th row in A
is defined as

∑n
j=1 cjaij . Using generalized row sums for the modified incomplete factorization,

line 7 of Algorithm 7 is rewritten as

s = s+ aikakj(cj/ci). (4.2.3)

The generalized row sum of row i after being updated by row k is always equal to the generalized
row sum obtained without dropping any fill-in [17]. A generalized row sum is a row sum when
c = (1, 1, . . . , 1).

Theorem 1. (Lemma 4.1 of Eijkhout [17]) For a symmetric sparse pattern matrix A, suppose
that the following conditions hold for some i.

(i) Matrix has zero generalized row sum at row i,
(ii) Generalized row sum is zero for all nodes in the influence range of i, and
(iii) i is not included in the influence range of any other node.

Then, the unperturbed modified incomplete decomposition either makes uii a zero pivot or gen-
erates a zero pivot in the influence range of i. When the matrix is an M -matrix, the latter is
not possible to occur, and the condition is then a necessary condition to produce a zero pivot.

32

Here we give a proof of Theorem 1 using the notation we introduced in Definition 1.

Proof. If a zero pivot occurs in any row contained in I(i), the theorem is trivial. Therefore,
in the following we assume that zero pivot does not occur in I(i). In that case, the rows in
I(i) will be deleted first, since i is only updated by the rows in I(i). By changing the order
of elimination, we can avoid breakdown in the elimination of rows i′ < i that do not belong to
I(i), and the elimination of row i can be done without breakdown.

We prove that the generalized row sum of any row k ∈ I(i) becomes zero after the elimination
is done. We use mathematical induction on D(k). First, consider the case where D(k) = 0. In
this case, I(k) = ∅, so row k is not updated by any row. Therefore, its generalized row sum is
zero due to condition (ii). Next, we assume that the proposition is true for all rows in I(i) with
depth < d, where d is a positive integer. Now, take the row k ∈ I(i) with D(k) = d. Then any
row k′ used to update row k exists in I(k) ⊆ I(i). Moreover, D(k′) < d because D(k) ≥ d+ 1
otherwise. By assumption, for row k′, the generalized row sum after elimination equals zero.
Hence, the generalized row sum of row k, which is zero by condition (ii), is unchanged by the
update by row k′. Since this is true for any row k′ updating row k, the proposition is also true
for d+ 1. By induction, for any row k ∈ I(i), the generalized row sum after elimination equals
zero.

Since row i is updated only from rows in I(i), the generalized row sum of row i is invariant
after elimination. Therefore, the generalized row sum of row i is zero from condition (i).
However, there is no non-zero element on the left side of the diagonal element in row i after
elimination. Furthermore, condition (iii) implies that there are no non-zero elements on the
right-hand side of the diagonal. Therefore, for row i, the diagonal element after elimination
needs to be zero. For a proof of the necessary condition in the M -matrix case, see [17].

From Theorem 1, we show that the BRB ordered coefficient matrix has a zero pivot when
certain conditions are satisfied. The following theorem covers the simplest case where the
domain is rectangular in two dimensions or rectangular parallelepiped in three dimensions.

Theorem 2. Let A be a matrix satisfying the Assumptions 1 and 2. Assume further that the
region is rectangular or rectangular parallelepiped and that A is ordered by BRB. Then, if any
one of the conditions:

(a) The first block is black and the number of blocks in each direction is greater than 4, or
(b) The first block is red and the number of blocks in each direction is greater than 4 and
greater than 5 in at least one direction,

is satisfied, an unperturbed MILU(0)/MIC(0) applied to A will produce a zero pivot.

Proof. First, assume that (a) is satisfied. We consider the 2D case, which is rectangular. Let
Nx be the number of blocks in the x direction and Ny the number of blocks in the y direction,
and define the block index (iB, jB), where 1 ≤ iB ≤ Nx, 1 ≤ jB ≤ Ny and Nx, Ny ≤ 4. As an
example, consider the BRB coloring shown in Fig. 4.1.

Now consider the node i in the upper right corner of the black block (3, 3). The node i is
drawn by the filled circle in Fig. 4.1. Since node i is a part of the inner block and has zero row
sum from 1, the condition (i) of Theorem 1 is satisfied.

Next, consider the influence range I(i) of i. In Fig. 4.1, I(i) is enclosed by a dashed line.
The blocks adjacent to the black block (3, 3) are red blocks (2, 3), (3, 2), (4, 3) and (3, 4). A

33

R B

R RBB

B

B

RB

R

R R

BR

B

B R

Figure 4.1: An example of BRB ordering. The node i (filled circle) where the zero pivot occurs
and its influence range I(i) (dashed line).

node in a red block has a smaller number than a node in a black block, and is adjacent only to
a node in a black block. Therefore, it is easy to show that I(i) is the set of nodes that belong
to these red blocks and the block (3, 3) itself. Since the blocks (2, 3), (3, 2) and (3, 3) are inner
blocks, all nodes which belong to them have zero row sum. By contrast, blocks (4, 3) and (3, 4)
are boundary blocks. However, the nodes in the block (4, 3) belonging to I(i) are located only
at the left end of the block, and the nodes in the block (3, 4) belonging to I(i) are located only
at the bottom of the block. All of these nodes are internal nodes that maintain zero row sums.
Therefore, the condition (ii) of Theorem 1 is satisfied.

Finally, i is not included in the influence range of any other node, because it has a number
larger than any node it touches. Therefore, the condition (iii) of Theorem 1 is also satisfied.

The i-th pivot from Theorem 1 becomes zero pivot in MILU(0)/MIC(0) without perturbation
of A. The same method can be used to prove the theorem for 3D in the case of a rectangular
parallelepiped region.

Next, assume that (b) is satisfied. We consider the 2D case again. In this case, we can show
that the conditions of Theorem 1 are satisfied in the same way as in (a), by focusing on the
black block (4, 3) (when Nx ≥ 5) or the black block (3, 4) (when Ny ≥ 5). It is easy to extend
this to the 3D case.

Theorem 2 can be further generalized to irregular regions. That is, the theorem holds for
the case where there is an interior black block such that all of the adjacent red blocks are
themselves interior in the direction of decreasing x, y or z coordinates. In this case, the pivot
corresponding to the largest node number i is zero in the modified incomplete factorization of
A without perturbation.

34

4.3 Avoiding Zero Pivot

4.3.1 Mitigating the Problem by Introducing Perturbations

The zero pivot mentioned in Theorem 2 is caused by the fact that the total amount subtracted
from the diagonal element by elimination and compensations for the fill-in is equal to of the
diagonal element itself. It was reported in [17] that the introduction of perturbations to the
diagonal elements solves the problem of pivots close to zero and improves the convergence
behavior. The introduction of perturbation means that the diagonal elements of the coefficient
matrix are multiplied by 1 + ζh2 prior to factorization, where h is the grid size and ζ is the
perturbation coefficient. The algorithm for the perturbed MILU factorization with level 0
(PMILU(0)) is given in Algorithm 8. We apply the same approach to avoid zero pivot in BRB
ordering as well.

As a preparation to prove the theorem concerning the effect of perturbation, we present the
following lemma on updating of off-diagonal elements.

Lemma 1. Let A be a matrix satisfying Assumption 1. Then, if the incomplete factorization
with level 0, where all fill-ins are dropped, is applied to A, then the off-diagonal nonzero elements
of A are not updated.

Proof. This can be proved by contradiction. Assume that the elimination by the ℓ-th row
updates the non-zero element ajk (j ̸= k). In this case, both ajℓ and aℓk must be nonzero. The
incomplete factorization with level 0 does not allow for fill-ins, which means that all of ajk, ajℓ,
and aℓk are nonzero elements in the original matrix. However, this is a condition for three nodes
j, k, and ℓ where j is adjacent to k and ℓ, and k is adjacent to j and ℓ, which is impossible in
a regular lattice. Therefore, the off-diagonal nonzero elements of A are kept at their original
values during the factorization.

The following theorem shows that perturbations introduced to the diagonal elements alle-
viate the problem of zero pivots, at least for certain types of matrices. This theorem is not
restricted to matrices reordered by BRB ordering, but can also be applied when the domain is
not rectangular or rectangular parallelepiped.

Theorem 3. Let A be a matrix satisfying Assumption 1. Suppose that A is an M -matrix and
is normalized to make the diagonal elements 1. Suppose further that row i satisfies conditions
(i), (ii) and (iii) of Theorem 1 for the generalized row sum defined by a positive vector c =
(c1, c2, . . . , cn). Then, if the PMILU(0)/MIC(0) factorization is applied to A, then the pivot
satisfies ukk ≥ ζh2 for all k ∈ I(i) ∪ {i}.
Proof. Multiplying the diagonal element of A by 1 + ζh2 is the same as adding a perturbation
of ζh2 to the element after elimination. Let âkj (j ≥ k) be the element in the kth row before
adding the perturbation after elimination, then ukk = âkk + ζh2 and ukj = âkj (j > k). Also
note that from Lemma 1, the nonzero elements on the off-diagonal of A are not updated and
remain negative during the factorization.

Here, we show by induction that for k ∈ I(i) ∪ {i}, ukk ≥ ζh2 and
∑n

j=1 cjukj > 0. First,
consider the case where D(k) = 0. In this case, since I(k) = ∅, the k row is not updated from
any of the rows. Therefore, from condition (ii) of Theorem 1,

n∑
j=1

cj âkj =
n∑

j=1

cjakj = 0. (4.3.4)

35

By introducing perturbations,

ukk = âkk + ζh2 = akk + ζh2 ≥ ζh2. (4.3.5)

It is also clear that
n∑

j=1

cjukj =

n∑
j=1

cjakj + ζh2 = ζh2 > 0. (4.3.6)

Next, assume that this claim holds for all rows of I(i) when depth is less than some positive
integer d. Now, choose a row of k ∈ I(i) ∪ {i} with D(k) = d. It can be seen from conditions
(i) and (ii) of Theorem 1 that the initial value of its generalized row sum is 0. Let k′ be an
arbitrary row used to eliminate k rows. Then, k′ ∈ I(k) ⊆ I(i) and D(k′) < d. Therefore, by
hypothesis, uk′k′ ≥ ζh2 > 0. Since akk′ < 0, the multiplier used in elimination −akk′/uk′k′ is
positive. From the combination of this fact and the hypothesis

∑n
j=1 cjuk′j > 0, the generalized

row sum of the k-th row is positive after the elimination by the k′-th row. Therefore, after that
of the k-th row is finished,

∑n
j=1 cj âkj > 0 and

ukk = âkk + ζh2 > −
∑
j ̸=k

cj
ck

âkj + ζh2 = −
∑
j ̸=k

cj
ck

akj + ζh2 ≥ ζh2. (4.3.7)

This completes the induction and proves the theorem.

This theorem shows that with the introduction of perturbations, the pivot that becomes
zero in the modified incomplete factorization without perturbations becomes at least ζh2 away
from zero.

4.3.2 Mitigating the Problem by Relaxing Compensation

One way to avoid the possibility of zero pivot other than perturbation is the relaxed modified
incomplete factorization, which is used to improve the convergence of incomplete factorization
preconditioner. The algorithm for the relaxed MILU factorization with level 0 (RMILU(0)) is
shown in Algorithm 9. In the RMILU(0), the fill-in element generated during the factorization
is multiplied by a relaxation parameter 0 ≤ α ≤ 1 before being subtracted from the diagonal
element. This method is expected to alleviate the problem of zero pivot generation by making
the compensation for fill-in smaller.

Before presenting the theorem, we introduce some notation.

Definition 2. The set of column indices of the non-zero elements on the left side of the diagonal
of the k-th row is defined as L(k). Then, L(k) is the set of indices of the row that updates k-
th row. Similarly, the set of column indices of the nonzero elements on the right side of the
diagonal is defined as R(k). Then, R(k) is the set of row indices that are updated by the k-th
row from the symmetric sparse pattern of A. Also, define rk as the row sum of the k-th row
after elimination. Furthermore, we define Sℓk by

slk =
1

ull

rl + (1− α)
∑

j∈R(l)\{k}

(−alj)

 . (4.3.8)

36

The following theorem shows that relaxation of the compensation reduces the problem of
zero pivots for at least certain types of matrices. Since the analysis in this case is more difficult
than that for perturbations, we consider the restricted condition that the number of nonzero
elements in each row in I(i) ∪ {i} is the same and c = (1, 1, . . . , 1).

Theorem 4. Let A be an M -matrix satisfying Assumption 1. Now, suppose that conditions
(i), (ii) and (iii) of Theorem 1 are satisfied for the row sum. We also assume that every
row of I(i) ∪ {i} has p nonzero elements on the off-diagonal, where p is a positive integer,
µ = mink∈I(i)∪{i},ℓ ̸=k,akℓ ̸=0 |akℓ| and ω = maxk∈I(i)∪{i},ℓ ̸=k |akℓ|. Assume further that µ and ω
satisfy condition

ω ≤ min

{
p− 2

p− 1
− (p− 3)µ− (1− α), (p− 1)µ− (1− α)

}
, (4.3.9)

where α (0 ≤ α ≤ 1) is the relaxation parameter. Then, applying the MILU(0)/MIC(0) fac-
torization relaxed by the parameter α to A, the pivot satisfies ukk ≥ (1 − α)(p − 1)µ2 for all
k ∈ I(i) ∪ {i}.

Proof. As shown in Lemma 1, the off-diagonal nonzero elements of A are not updated by the
factorization and are kept negative. Also, in the case of k ∈ I(i) ∪ {i}, from the zero row sum
property,

∑
ℓ̸=k(−akℓ) = akk = 1. Therefore, 0 < µ ≤ ω ≤ 1.

There are no non-zero elements on the left side of the diagonal after elimination, and thus

rk = ukk +
∑

l∈R(k)

akℓ (4.3.10)

If k ∈ I(i) ∪ {i}, then∑
ℓ∈L(k)

akℓ + akk +
∑

l∈R(k)

akℓ =
∑

ℓ∈L(k)

akℓ + 1 +
∑

l∈R(k)

akℓ = 0 (4.3.11)

by the zero row sum property. Combining (4.3.10) and (4.3.11) yields

ukk = akk +
∑

l∈L(k)

akℓ + rk. (4.3.12)

Assume that k ∈ I(i) ∪ {i} and L(k) ̸= ∅. Consider the change that elimination by the row
ℓ ∈ L(k) makes to the row sum of the k-th row. This elimination sets akℓ to zero and leaves the
other off-diagonal elements intact. Thus, the increase in the contribution from the non-diagonal
elements to the row sum is −akℓ. The diagonal element akk is increased by −akℓaℓk/uℓℓ by
elimination. The total fill-in to be added to the diagonal is −α(akℓ/uℓℓ)

∑
j∈R(ℓ)\{k} aℓj . The

change in the row sum by all these contributions combined is

−akℓ −
akℓaℓk
uℓℓ

− α
akℓ
uℓℓ

∑
j∈R(ℓ)\{k}

aℓj

= −akℓ
uℓℓ

uℓℓ + aℓk +
∑

j∈R(ℓ)\{k}

aℓj + (1− α)
∑

j∈R(ℓ)\{k}

(−aℓj)

= −akℓ

uℓℓ

rℓ + (1− α)
∑

j∈R(ℓ)\{k}

(−aℓj)

 (4.3.13)

37

where we used Eq. (4.3.10) in the last equation. Then, the first row sum of k-th rows is zero,
and thus the final row sum considering contributions from all ℓ ∈ L(k) can be written as

rk =
∑

l∈L(k)

(−akℓ)sℓk (4.3.14)

using sℓk. Eqs. (4.3.8), (4.3.12) and (4.3.14) represent the propagation of the row sum change
during the PMILU(0)/PMIC(0) factorization.

To prove the theorem, for any k ∈ I(i) and m ∈ R(k), the claim

skm ≥ (1− α)(p− 1)µ (4.3.15)

is shown by induction.
First, consider the case where D(k) = 0. In this case, since I(k) = ∅, the row k is not

modified from any row. Therefore, from condition (ii) of Theorem 1, we have ukk = akk = 1
and rk = 0. In addition, because row k is unchanged from any row, there are no nonzero
elements on the left side of the diagonal. That is, all of the p non-diagonal nonzero elements
are on the right side of the diagonal. Therefore, from Eq. (4.3.8), skm is bounded below as

skm = (1− α)
∑

j∈R(k)\{m}

(−akj) ≥ (1− α)(p− 1)µ (4.3.16)

and the claim (4.3.15) holds.
Next, we assume that Eq. (4.3.15) holds for all rows of I(i) with the depth less than a

positive integer d.
Now, choose a row k ∈ I(i) with D(k) = d. Then the row ℓ used to eliminate row k satisfies

D(ℓ) < d, so sellk from the hypothesis. Therefore, the row sum of row k after elimination is
evaluated as

rk =
∑

l∈L(k)

(−akℓ)sℓk ≥ (1− α)(p− 1)µ
∑

l∈L(k)

(−akℓ). (4.3.17)

Meanwhile, substituting Eq. (4.3.12) into Eq. (4.3.8), the definition of skm, we get

skm =
(1− α)

∑
j∈R(k)\{m}(−akj) + rk

akk +
∑

l∈L(k) akl + rk
. (4.3.18)

We show that this right-hand side is bounded below. Let |L(k)| = q and |R(k)| = p−q. Because
row k is updated from at least one row, q ≥ 1. Furthermore, in order to be consistent with the
assumption k ∈ I(i), it must hold that q ≤ p− 1, that is, R(k) ̸= ∅.

Note that the first term in the numerator of (4.3.18) is the sum of the first and second terms
in the denominator, which can be bounded as in

(1− α)
∑

j∈R(k)\{m}

(−akj) ≤
∑

j∈R(k)

(−akℓ) = akk +
∑

j∈L(k)

akℓ, (4.3.19)

where we are using the zero row sum property for the last equality.
Next, consider the general inequality

b+ ϵ

a+ ϵ
≥ b+ δ

a+ δ
, (4.3.20)

38

where the four positive numbers a, b, ϵ and δ are a ≥ b and ϵ ≥ δ. By applying this to Eq. (4.3.18)
with a as the right-hand side of Eq. (4.3.19), b as the left-hand side of Eq. (4.3.19), ϵ = rk, and
δ as the right-hand side of Eq. (4.3.17),

skm ≥
(1− α)

∑
j∈R(k)\{m}(−akj) + (1− α)(p− 1)µ

∑
l∈L(k)(−akℓ)

akk +
∑

l∈L(k) akℓ + (1− α)(p− 1)µ
∑

l∈L(k)(−akℓ)
(4.3.21)

is obtained. The numerator is rewritten as

(1− α)(p− 1)µ

[∑
j∈L(k)

(−akj) +
∑

j∈R(k)\{m}

(−akj)

+

{
1

(p− 1)µ
− 1

} ∑
j∈R(k)\{m}

(−akj)

]

= (1− α)(p− 1)µ

[
1 + akm +

{
1

(p− 1)µ
− 1

} ∑
j∈R(k)\{m}

(−akj)

]

≥ (1− α)(p− 1)µ

[
1− ω +

{
1

(p− 1)µ
− 1

}
(p− q − 1)µ

]
(4.3.22)

using the zero row sum property for the first equation. The denominator is expressed as

akk +
∑

l∈L(k)

akl + (1− α)(p− 1)µ
∑

l∈L(k)

(−akl) ≤ 1− qµ+ (1− α), (4.3.23)

where (p − 1)µ ≤ 1 and
∑

l∈L(k)(−akl) ≤ 1 were used. Substituting (4.3.22) and (4.3.23) into
(4.3.21), we get

skm ≥ (1− α)(p− 1)µ ·
1− ω +

{
1

(p−1)µ − 1
}
(p− q − 1)µ

1− qµ+ (1− α)
. (4.3.24)

Since the denominator of the right-hand side is positive, we can see that the claim (4.3.15) holds
if

−ω +

{
1

(p− 1)µ
− 1

}
(p− q − 1)µ ≥ −qµ+ (1− α) (4.3.25)

or

ω ≤
(
2µ− 1

p− 1

)
q + 1− (p− 1)µ− (1− α). (4.3.26)

The minimum value of the linear function of q on the right hand side in the interval 1 ≤
q ≤ p− 1 is{

(p− 1)µ− (1− α) at q = p− 1 when µ ≤ 1
2(p−1)

p−2
p−1 − (p− 3)µ− (1− α) at q = 1 when µ > 1

2(p−1) .
(4.3.27)

In both cases, the minimum value is greater than or equal to ω according to the condition
(4.3.9), and (4.3.15) holds for k. With the induction thus completed, (4.3.15) holds for any
k ∈ I(i) and m ∈ R(k).

39

Now, since the claim (4.3.15) holds, the pivot ukk of k ∈ I(i) ∪ {i} is bounded from below.
If D(k) = 0, then row k is not eliminated from any row, so

ukk = 1 > (1− α)(p− 1)µ2 (4.3.28)

from the scaling assumption.
Next, we assume that k ∈ I(i) and D(k) > 0. Then there are one or more nonzero elements

on the left side of the diagonal. Therefore, from Eqs. (4.3.14) and (4.3.15),

rk =
∑

l∈L(k)

(−akℓ)sℓk ≥ µ · (1− α)(p− 1)µ ≥ (1− α)(p− 1)µ2. (4.3.29)

Combing this with Eq. (4.3.10), we get

ukk = rk −
∑

l∈R(k)

akℓ ≥ rk ≥ (1− α)(p− 1)µ2. (4.3.30)

Finally, consider the case of k = i. Then there are no nonzero elements on the right side of
the diagonal, so

∑
l∈L(i)(−aiℓ) = aii = 1. Therefore,

ri =
∑
l∈L(i)

(−aiℓ)sℓi ≥

 ∑
l∈L(i)

(−aiℓ)

 · (1− α)(p− 1)µ = (1− α)(p− 1)µ, (4.3.31)

and from Eq. (4.3.10),

uii = ri ≥ (1− α)(p− 1)µ ≥ (1− α)(p− 1)µ2. (4.3.32)

While Theorem 4 places some restrictions on A, it covers the case where all nodes of I(i)∪{i}
are internal nodes, which we dealt with in Theorem 2.

In the case of the Poisson equation discretized with a 2D 5-point stencil, since p = 4 and
µ = ω = 1/4, the inequality (4.3.9) holds at α ≥ 5/6. Also, in the 3D 7-point stencil case,
since p = 6 and µ = ω = 1/6, the inequality holds in α ≥ 13/15. This inequality holds even for
nonsymmetric matrices when the magnitudes of all non-diagonal non-zero elements fall within
some narrow range.

4.4 Numerical Experiment

4.4.1 Test Problems and Computational Environment

We evaluated the performance of perturbed or relaxed MILU(0) preconditioner parallelized with
BRB ordering. As test problems, we used the coefficient matrix and right-hand side vector for
the Poisson equation (2.1.14) used to obtain the potential ϕ within the 3D magnetron sputter
simulation shown in Fig. 2.2. At all boundaries, Dirichlet boundary conditions are imposed on
ϕ. The analysis domain was the 60 mm ×60 mm ×30 mm parallelepiped shown in Fig. 2.4,
and the equations were discretized using the 7-point finite difference method with a uniform
orthogonal mesh of 1 mm or 0.5 mm.

40

x

y

z

Figure 4.2: Zero pivot occurrence node (filled circles) in grid ordered by BRB ordering with
8× 8× 4 blocks.

The number of unknowns is 59× 59× 29 = 100, 949 and 119× 119× 59 = 835, 499 for a grid
size of 1 mm and 0.5 mm, respectively. The coefficient matrices and right-hand side vectors for
the test problems were obtained from the 1,000th time step of the PIC simulation.

The preconditioned BiCGSTAB algorithm used to solve the linear equations is shown in
Algorithm 5. The coefficient matrix and right-hand side vectors were reordered by BRB ordering
with the first block in red. In the algorithm, forward/backward substitution, represented as
‘solve’, was parallelized on a block-by-block basis, while inner product, AXPY (αx+ y), sparse
matrix-vector product, and other vector operations were parallelized on an element-by-element
basis. The OpenMP loop directive was used for these parallelizations. The convergence criterion
for the BiCGSTAB method is ∥rk∥2/∥Ax0−b∥2 < 10−8, where rk and x0 are the residual vector
at the k-th iteration and the initial estimated solution x0 = 0, respectively.

The numerical experiments were performed on a single node of Fujitsu PRIMEHPC FX10
with a SPARC64 IXfx@1.650 GHz (16 cores, 16 threads). The code was implemented using
Fortran90 and OpenMP, and compiled using Fujitsu Fortran 1.2.1. Floating point data and
operations were made to have double-precision.

4.4.2 Convergence Behavior

MILU(0)/MIC(0) factorization generates a zero pivot if the condition of Theorem 2 is satisfied.
In this test problem, Assumptions 1 and 2 in Theorem 2 are satisfied, and the color of the
first block is red. Therefore, zero pivot occurs if condition (b), the number of blocks in each
direction is at least 4 and at least 5 in at least one direction, is satisfied. An example of 8×8×4
blocks division that satisfies this condition is shown in Fig. 4.2. In this figure, the nodes where
zero pivot is predicted to occur by Theorem 2 are shown as filled circles. These are the nodes
with the largest node numbers in the internal black block, where all directions with decreasing
node numbers are adjacent to the internal red block. In this experiment, we confirmed that
the convergence speed actually deteriorated in the block division condition where these nodes
occur.

The relationship between the number of iterations of MILU(0) preconditioned BiCGSTAB

41

Table 4.1: Number of blocks N and number of block divisions Nx,Ny,Nz in each axis direction.

N Nx Ny Nz Zero pivot condition

1 1 1 1 -
2 2 1 1 -
4 2 2 1 -
8 2 2 2 -
16 4 4 1 -
32 4 4 2 -
64 8 8 1 -

128 8 8 2 -
256 8 8 4 true
512 16 16 2 -
1024 16 16 4 true
2048 32 32 2 -
4096 32 32 4 true
8192 32 32 8 true

16384 32 32 16 true
32768 64 64 8 true
65536 64 64 16 true
131072 64 64 32 true

and the number of blocks N is shown in Fig. 4.3. The number of blocks Nx, Ny and Nz in each
axial direction for the block N and whether they satisfy the zero pivot condition are shown
in Table 4.1. In Fig. 4.3, the left end corresponds to natural ordering, where N = 1, and
the right end corresponds to nodal RB ordering, where N is equal to the number of nodes.
The values of N , for which no data is shown, correspond to the case where the calculation
was terminated because the number of iterations exceeded 100,000. This graph shows that the
number of iterations increases significantly in N where the conditions of Theorem 4.1 shown in
Table 4.1 are satisfied. By contrast, for N where the condition was not satisfied, the number of
iterations was suppressed even if N was large.

Figs. 4.4 and 4.5 show the convergence of two improved MILU(0) preconditioners, namely
PMILU(0) and RMILU(0), respectively. For PMILU(0) or RMILU(0) with α ≥ 13/15, it is
guaranteed by Theorem 3 or Theorem 4, respectively, that zero pivots will not occur in this
problem. Both of these preconditioners converged in fewer iterations than ILU(0). As with the
ILU(0) preconditioner, the number of iterations with these improved MILU(0) preconditioners
increases with the number of blocks. When N ≤ 500, ζh2 = 0.01 or α = 0.95 converges
the fastest. As N increases, the difference due to these parameters becomes smaller. For the
problem sizes of 59 × 59 × 29 grid, with more than 10,000 blocks, and 119 × 119 × 59 grid,
with more than 100,000 blocks, the number of iterations of the improved MILU(0) is about the
same as that of ILU(0). In summary, for these problem sizes, the improved MILU(0) is more
effective than ILU(0) for block sizes up to a few thousand, and its number of iterations increases
relatively gently with the number of blocks.

The convergence behavior at other steps of the PIC simulation is shown in Appendix A.

42

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

s
n

o it
ar

et i f
o r

e
b

m
u

N
(a) (b)

Figure 4.3: Number of blocks N and number of iterations required to converge with MILU(0)
preconditioner. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

0

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oit
ar

eti f
o r

e
b

m
u

N

(a) (b)

Figure 4.4: Number of blocks N and number of iterations required to converge with PMILU(0)
preconditioner. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

0

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oi t
ar

eti f
o r

e
b

m
u

N

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

(a) (b)

Figure 4.5: Number of blocks N and number of iterations with RMILU(0) preconditioner. (a)
59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

43

4.4.3 Parallel Performance

Tables 4.2 and 4.3 show the parallel computation times for the problem sizes of 59×59×29 grid
and 119× 119× 59 grid, respectively. Time [s] in the table includes ordering and factorization
time. We used ζh2 = 0.01 for the perturbation and α = 0.95 for the relaxation. These are the
parameters that achieve the minimum number of iterations when N ≤ 500.

Note that Tables 4.2 and 4.3 are the results of parallelizing the operations on vectors, while
Figs. 4.4 and 4.5 are the result of performing all operations sequentially. This causes slight
differences in the results of the inner product calculation in the BiCGSTAB routine, and there
are differences in the number of iterations required for convergence even under conditions with
the same block partitioning and parameters.

For all problem sizes and block partitioning conditions corresponding to parallelization
up to 16 threads considered here, the number of iterations was smaller for PMILU(0) and
RMILU(0) than for ILU(0). The corresponding execution time was also shorter for PMILU(0)
and RMILU(0) than for ILU(0). However, speed-up of PMILU(0) and RMILU(0) when the
number of threads is increased is smaller that of than ILU(0). The reasons for this may be that
the increase in the number of iterations due to the increase in the number of threads is larger
for PMILU(0) and RMILU(0) than for ILU(0), and that the ratio of the sequential processing
part such as ordering to the total time is larger because the total execution time for PMILU(0)
and RMILU(0) is shorter.

4.5 Conclusion

In this chapter, we pointed out that zero pivots may occur in the combination of BRB ordering
and unperturbed modified incomplete factorization, and showed that this problem may be
mitigated by introducing perturbation or relaxation.

A necessary and sufficient condition for the occurrence of zero pivot in BRB ordering was
derived based on Eijkhout’s previous research. The condition is that there is an interior black
block such that all adjacent red blocks are interior in the direction of decreasing x, y, z coordi-
nates. Then the i-th pivot corresponding to the largest node number i in the block will be zero
in the modified incomplete factorization without perturbation of the coefficient matrix.

To alleviate this problem, the introduction of perturbations to the diagonal elements or the
relaxation of the compensation for the dropped fill-in can be effective. We have shown theorems
showing that introducing perturbations or relaxations can resolve the zero-pivot problem and
keep the pivot above a certain threshold, at least for a certain class of matrices.

The experimental results show that the convergence actually deteriorates for unperturbed
MILU(0) with blocks that satisfy the condition for generating zero pivots, and convergence
improves with the introduction of perturbations and relaxations. The number of iterations
required for convergence has a trend of increasing with the number of blocks. However, up
to a number of blocks on the order of 103 for problem sizes with 105 − 106 unknowns, high
convergence rate is achieved by combining the improved modified incomplete factorization with
BRB ordering. These parallelized preconditioners are considered to be a promising choice for
preconditioning in massively parallel environments.

44

Table 4.2: Number of threads and computation time for a problem size of 59 × 59 × 29 grid
(h = 0.001).

Thread N Nx Ny Nz
ILU(0)

Iteration Time [s] Speed-up

1 1 1 1 1 38 3.265 1.00
2 4 2 2 1 38 1.737 1.90
4 8 2 2 2 38 0.908 3.60
8 16 4 4 1 41 0.522 6.25
16 32 4 4 2 40 0.306 10.57

Thread N Nx Ny Nz
PMILU(0) (ζh2 = 0.01)

Iteration Time [s] Speed-up

1 1 1 1 1 17 1.513 1.00
2 4 2 2 1 21 0.998 1.52
4 8 2 2 2 22 0.557 2.72
8 16 4 4 1 21 0.301 5.03
16 32 4 4 2 24 0.216 7.00

Thread N Nx Ny Nz
RMILU(0) (α = 0.95)

Iteration Time [s] Speed-up

1 1 1 1 1 16 1.386 1.00
2 4 2 2 1 20 0.956 1.45
4 8 2 2 2 21 0.525 2.64
8 16 4 4 1 21 0.301 4.61
16 32 4 4 2 22 0.207 6.70

45

Table 4.3: Number of threads and computation time for a problem size of 119× 119× 59 grid
(h = 0.0005).

Thread N Nx Ny Nz
ILU(0)

Iteration Time [s] Speed-up

1 1 1 1 1 69 96.705 1.00
2 4 2 2 1 74 53.223 1.82
4 8 2 2 2 70 26.036 3.71
8 16 4 4 1 71 14.168 6.83
16 32 4 4 2 75 9.452 10.23

Thread N Nx Ny Nz
PMILU(0) (ζh2 = 0.01)

Iteration Time [s] Speed-up

1 1 1 1 1 28 40.111 1.00
2 4 2 2 1 36 26.070 1.54
4 8 2 2 2 37 13.919 2.88
8 16 4 4 1 36 7.414 5.42
16 32 4 4 2 36 4.800 8.36

Thread N Nx Ny Nz
RMILU(0) (α = 0.95)

Iteration Time [s] Speed-up

1 1 1 1 1 26 37.294 1.00
2 4 2 2 1 32 23.259 1.45
4 8 2 2 2 34 13.020 2.86
8 16 4 4 1 33 6.834 5.46
16 32 4 4 2 36 4.828 7.72

46

Chapter 5

GPU Acceleration of MILU(0)
Parallelized by Block Red-Black
Ordering

5.1 Introduction

In recent years, the use of accelerator devices for high-speed parallel computation has increased,
and among them, parallelization strategies to take advantage of the high parallel computing
power of GPUs have been extensively studied. In order to exploit the high-speed computational
performance of GPUs, it is necessary to develop a highly parallel algorithm that can use a
large number of threads, as well as to design an implementation that effectively utilizes the
memory hierarchy. The development of APIs and libraries to assist GPU programming has
reduced the cost of implementation for GPUs. Programming models widely used in GPU
computing include compute unified device architecture (CUDA) [59] for NVIDIA GPUs and
open computing language (OpenCL) [60] for cross-platform support. For easier implementation
of GPU parallelism, there are also directive-based programming approaches, such as OpenACC
[47] and OpenMP, which cover major platforms. OpenACC, which is one of the automation
technologies for parallelization, enables the user to expand existing programs to use GPUs by
merely inserting directives. In the field of GPU parallelization, OpenACC is ahead of OpenMP.
The drawback of directive based parallelization is that maximum efficiency is not guaranteed
without tuning [61]. However, since changes to the original program are kept to a minimum, it
is suitable for maintaining programs over time and running them on a variety of computers.

As an application to matrix calculations, the performance improvement of GPU-parallelized
computation by optimizing data layout and pipeline processing has been studied [62, 63]. In
particular, the study of GPU implementations of sparse matrix solvers such as CG methods
started from early on and their effectiveness has been established [64, 65]. Level scheduling
and self-scheduling have been studied as common methods for parallel computation on GPUs of
sequential operations in linear solvers such as incomplete factorization and forward/backward
substitutions [66, 67, 68, 69]. Two approaches to level scheduling are available. The first is
the self-scheduling algorithm, which executes a task when the corresponding dependent task
is completed [68]. The second is an algorithm that creates a graph of task dependencies by
analysis, and then applies parallel processing based on the graph [66]. The level scheduling

47

algorithm is effective when the dependency among the elements is small [69]. In the method
of parallel processing of independent sets extracted by graph coloring [70], the dependencies
between elements are represented by a graph. Nodes in the graph are colored to be different
from neighboring nodes that have dependencies, and nodes with the same color are processed in
parallel. Because the graph coloring problem is NP-complete, lower cost and sufficiently efficient
approximation algorithms have been studied for GPU implementations [71, 70]. Alternatively,
instead of sequential substitutions, methods that solve the triangular systems by iterative solvers
[72], or that creates an explicit inverse of the preconditioner and calculating the product [73, 74]
has also been proposed. Similarly, domain decomposition methods for improving parallelism
are also used in combination with these approaches [75, 76]. Some of these results are provided
as libraries for basic matrix operations [77, 78] and for calling linear solvers and preconditioning
as functions [79, 80, 81, 82].

The combination of RMILU(0) preconditioner and BRB ordering with high convergence
acceleration effect and a large degree of parallelism can be a viable alternative to the GPU
acceleration methods mentioned above. Although the recent research has proposed a many-
core implementation that combines ILU(0) preconditioner with block multicolor ordering [83],
this method has so far been evaluated mainly on CPUs. Furthermore, for the combination of
RMILU(0) and BRB ordering, even when the number of blocks is on the order of 103, which
is necessary to take advantage of GPU parallelism, increasing the number of blocks does not
necessarily lead to slower convergence if the problem size is large enough (see Figs. 4.5 and
5.12), and GPU parallelization can be expected to speed up the solution process.

Therefore, in this chapter, we evaluate the performance of this preconditioner on GPUs with
high computing power. The solver targets 3D finite difference calculations using a Cartesian
grid and a 7-point stencil. In addition, OpenACC, a directive based parallelization framework,
is used for GPU parallelization to achieve high maintainability. In addition, several optimization
strategies were explored, such as taking advantage of GPU’s high single-precision floating point
performance and improving memory access patterns. As a test problem, we used the Poisson
equation (2.1.14) arising from PIC plasma simulations to investigate the effects of preconditioner
and its optimization on GPU parallelization.

The rest of this chapter is organized as follows. Section 5.2 explains the basics of the CUDA
architecture and OpenACC. In Section 5.3, we describe the details of the implementation of
GPU parallelization using OpenACC and the optimization strategy. In Section 5.4, we validate
the performance of our implementation and compare it with some existing methods from major
libraries. Finally, we conclude this chapter with Section 5.5.

In this chapter, we use the empirically recommended value of α = 0.95 [46] as the relaxation
parameter α used in RMILU(0).

5.2 Fundamentals of GPU Computing

5.2.1 GPU Features and CUDA

GPU’s superior processing power and memory bandwidth increase the execution speed of pro-
grams. In most cases, GPU communicates with CPU via Peripheral Component Interconnect
Express (PCIe) and acts as a co-processor for host CPU. NVIDIA GPUs of the Pascal genera-
tion and later, including the Quadro GP100 used in this experiment, support NVLink, which is
faster than PCIe. NVLink enables interconnections between GPUs and NVLink-enabled CPUs,

48

such as IBM Power microprocessors, and between GPUs and GPUs. As a general processing
flow, first the input data is copied from CPU memory to GPU memory, then it is processed on
GPU, and then the result of the parallel processing on GPUs is copied to CPU memory.

NVIDIA GPUs have multiple streaming multiprocessors (SMs) that run multiple threads in
parallel. Each SM contains the CUDA core as the execution unit, scheduler, shared memory,
and L1, constant, and texture caches.

When a kernel function is called from the host side, the control is transferred to the GPU
device side. The parallel granularity in the logical components of CUDA consists of grids, thread
blocks, and threads, in order of increasing size, and kernel functions are executed by threads in
the grid. Threads in the grid are organized into thread blocks. Threads in a thread block have
the same behavior on the same SM.

The hardware components of the device, SM, and CUDA core correspond to the logical
components of the grid, thread block, and thread program, respectively. When the kernel grid
is started, the thread blocks that make up the block are allocated to the SM. Each SM divides
the allocated thread block into warps of 32 thread units and allocates hardware resources to
them. Warp is the SM’s execution unit. Warp threads, which have the address of current
instruction and the state of the register, executes the instruction on their data. The number of
warps running simultaneously is limited by the amount of resources available in the SM.

Two GPUs with different characteristics shown in Table 5.1 are used to compare the impact
of their performance on computation speed. Both Quadro GP100 and Tesla K40t support
double-precision computation, with the GP100 in particular offering enhanced double-precision
performance and improved data operations. Each SM of Quadro GP100 has 64 single-precision
CUDA cores and 32 double-precision CUDA cores. Hence, double-precision operations have
1/2 the performance of single-precision operations. Meanwhile, each SM of the Tesla K40t has
192 single-precision CUDA cores and 64 double-precision CUDA cores. Hence, the performance
ratio is 1/3. The GP100 has 3584 CUDA cores that perform basic operations grouped into 56
SMs, while the K40t has 2880 CUDA cores grouped into 15 SMs. The GP100 is a configuration
that contains more SMs with fewer cores than the K40t. As a result, the number of register
entries and amount of shared memory that can be used by a single CUDA core is larger, and
performance is improved by reducing the number of cases where instructions cannot be executed
due to resource limitations shared by SMs. In addition, the GP100 SM has an improved warp
scheduler and a higher clock rate. Due to the combined effect, GP100 achieves performance of
10.3 TFLOPS in single-precision and 5.2 TFLOPS in double-precision, whereas the performance
of K40t is 4.29 TFLOPS in single-precision and 1.43 TFLOPS in double-precision.

Factors that limit the performance of the kernel include computing resources, memory band-
width, and memory instruction latency. To improve these, the following tuning is effective.

Degree of parallelism: In order to maintain sufficient parallelism for each SM, the number
of blocks in the kernel and the number of threads per block can be adjusted. In order
to improve device utilization, it is effective to use multiple kernel calls on a single device,
such as multiple grid-level parallelization.

Global memory access: To improve the performance of GPU parallel computing, optimiza-
tion of memory transactions is essential. On this account, the two important concepts
are memory alignment and coalescing. First, an aligned memory access occurs when the
starting address of a device memory transaction is a multiple of the cache line granularity
used for that transaction. Second, coalesced memory access occurs when 32 consecutive

49

Table 5.1: GPUs used in this study.

Property Quadro GP100 Tesla K40t

Compute capability 6.0 3.5
Total amount of global memory 16278 MB 11520 MB

No. of CUDA cores 3584 2880
FP32 CUDA cores/GPU 3584 2880
FP64 CUDA cores/GPU 1792 960

Total amount of shared memory/block 49152 bytes 49152 bytes
Total No. of registers available/block 65,536 65,536

Warp size 32 32
Max No. of threads/multiprocessor 2,048 2,048

Max No. of threads/block 1,024 1,024
Max size of a thread block (x, y, z) (1024, 1024, 64) (1024, 1024, 64)

GPU max clock rate 1.44 GHz 0.75 GHz
Peak FP64 performance (board) 5.2 TFOPS 1.43 TFLOPS
Peak FP32 performance (board) 10.3 TFLOPS 4.29 TFLOPS

Memory clock rate 715 Mhz 3004 Mhz
Memory bus width 4096-bit 384-bit

L2 Cache Size 4194304 bytes 1572864 bytes
Total amount of constant memory 65536 bytes 65536 bytes

Max memory pitch 2147483647 bytes 2147483647 bytes
Max memory bandwidth 717 GB/s 288 GB/s

No. of SM 56 15
FP32 CUDA cores/SM 64 192
FP64 CUDA cores/SM 32 64

50

threads in a warp access consecutive memory locations. If these two conditions are met,
the global memory access can be executed with as few transactions as possible. Thus,
the memory bandwidth will be fully utilized. Furthermore, loop unrolling can be used to
increase the number of independent memory operations performed to increase the paral-
lelism of memory accesses.

Shared memory: Shared memory can be used as a programmable cache to avoid bank con-
flicts. It supports on-chip data reuse and improves the global memory access pattern,
thereby reducing the required global memory bandwidth.

Register: The register is a resource divided among the active warps of the SM. Also, the
smaller the number of registers used in the kernel, the larger the number of thread blocks
allocated to each SM, which can increase the number of parallel threads per SM and
improve occupancy and performance.

5.2.2 OpenACC

OpenACC [47] is a high-level programming model that absorbs barriers caused by the environ-
ment. OpenACC [47] offloads the region of code specified by the directive to an accelerator
device such as GPUs. OpenACC frees the programmer from the task of managing communica-
tion and specifying parallelization details, and allows the programmer to parallelize the program
with less effort than CUDA. The program is easy to maintain because the original code can
be kept intact, and for this reason, it is very powerful for parallelizing the large programs on
GPUs. While OpenACC is more versatile, certain environment-specific features, such as the
shared memory of NVIDIA GPUs, can be difficult to use with OpenACC.

Unlike the case where parallel processing is performed on shared data on the same memory
from the same CPU, when accelerator devices are used, processing related to data management
is required. The declaration of variables on GPUs and the copying of data between host devices
and GPUs are indicated by the data directive. Parallelization of loops or groups of loops can be
specified by inserting a directive into the part to be parallelized, as in OpenMP. In OpenACC,
parallelization is indicated by the accelerator compute directive. If the user wants to set any
additional options for the directive, the clause list is appended after the directive.

To transfer data from CPUs to GPUs, insert the data copyin directive specifying the array
or variable to be transferred, at the point of transfer. To transfer data from GPUs to CPUs,
insert the data copyout directive in the same way. In addition to these clauses, create clause,
which directs data generation on GPU, delete clause, which directs data deletion on GPUs,
and other clauses are used together in data directive. data directive for dynamically allocated
data can be omitted by activating unified memory. For loops that use data on GPUs, it is
possible to specify the existence of data by a clause in the accelerate compute directive, and to
specify what to do if the data does not exist. However, the control of data placement in GPUs
is automatically generated by OpenACC.

The parallelization of the computation is specified by the accelerate compute directive. The
clause set in the accelerate compute directive can be used to specify asynchronous processing
up to the synchronization point. Conditional branching based on the device specified conditions
and specification of parallel granularity are also supported. There are three levels of parallel
granularity that can be specified in OpenACC, namely, gang, worker, and vector, from the
coarser level to the finer level. The largest granularity of gang corresponds to a thread block in

51

CUDA and consists of one or more execution threads. For each stream processor, one gang is
scheduled at a time. worker corresponds to a warp in CUDA of gang and is composed of one
or more vector elements with a fixed vector width. vector elements correspond to threads in
CUDA contained in a single execution stream, and the operations in the unit vector are SIMD
and vector operations contained in worker. The major difference between the OpenACC and
CUDA thread models is that in OpenACC, the concept of worker (warp) is directly provided
in the programming model, while CUDA programmers do not need to be aware of warp.

kernels directive and parallel directive are accelerate compute directives. The kernels

area is executed in parallel within the gang unit and the parallel area is executed in parallel in
multiple gang units. In the kernels clause, the loop directive and the parameters that specify
parallel granularity, gang, worker, and vector, can be omitted. In that case, the size of each
of the three layers is automatically selected so that all layers are used as much as possible to
parallelize the loop. The user can also specify the size by placing numbers in brackets after the
gang, worker, and vector respectively. A proper choice of these parameters will improve the
performance. In the accelerator compute directives, the data used in computation is specified
by a clause: present clause is inserted to use data already presented in GPUs. present clause
can be omitted when transferring data via data directive within the same subroutine or unified
memory is enabled. loop directive placed after the accelerate compute directive is used to
explicitly indicate the independence of the loop, the sequential processing, and the settings of
gang, worker, and vector.

5.3 GPU Implementation of Preconditioned Iterative Solver

In this section, we implement our BiCGSTAB solver, which combines BRB ordering and
RMILU(0) preconditioner, on GPU.

5.3.1 The original code

Our code consists of the reordering of the coefficient matrix, the solution and the right-hand
side vectors by BRB ordering, the RMILU(0) factorization of the coefficient matrix, and the
BiCGSTAB solver.

The preconditioned BiCGSTAB (PBiCGSTAB) solver is the main part of this program,
and its algorithm is shown in Algorithm 5. Most of the computational load of this algorithm is
accounted for by the forward/backward substitutions shown as ’solve’ in lines 14 and 21, and
the sparse matrix-vector product (SpMV) shown in lines 15 and 22.

As an example of substitution calculation, the loop structure for forward substitution of the
red block is shown in Algorithm 10. This corresponds to the computation for node i in the red
block in the forward substitution (3.2.39).

The LU-factorized elements of the n×n sparse matrix A used in the substitution calculation
are stored in the modified sparse row storage (MSR) format [11]. The array alu stores the
diagonal elements of the row corresponding to the index in its first n positions. Subsequent
positions store the value of non-diagonal nonzero elements. The array jlu stores an index,
which is the starting position in common to alu and jlu of the row corresponding to the index,
in its first n positions. Subsequent positions store the column indices of non-diagonal nonzero
elements. The array ju stores the starting index of the upper triangular part.

52

Algorithm 10 Forward substitution of red blocks

1: for iblock = 1 to redblocknum do
2: for i = istart(iblock) to iend(iblock) do
3: s = y(i)
4: for k = jlu(i) to ju(i)− 1 do
5: s = s− alu(k) ∗ x(jlu(k))
6: end for
7: x(i) = s
8: end for
9: end for

Road

geometry dataCPU

GPU

Create

reordering permutation

Copy host

reordering permutation

A index

Reorder

A index

Copy host

A value, b

Reorder

A value, b

Initialize

device

Reraxed

MILU(0)
PBiCGSTAB

Reorder

x

Copy device

x

PIC computation

Figure 5.1: CPU and GPU tasks and data flow.

In the loop statement, redblocknum contains the number of red blocks. istart(iblock) con-
tains the index of the first row of the (iblock)-th red block, and iend(iblock) contains the index
of the last row of the (iblock)-th red block. Since each red block can be computed indepen-
dently, the red block iblock can be computed in parallel if the outermost loop is parallelized.
In forward substitution, after all the red block rows have been processed, synchronization is
required before processing of the black block rows can begin. With the results of the red block,
each black block can be computed independently, so parallel computation can be done for these
blocks as well as for the red block. In backward substitution, as in forward substitution, the
black block can be computed in parallel, and then, after synchronization, the red block can be
computed in parallel.

There is no sequential nature in the SpMV process, and each element of the resulting vector
can be calculated in parallel, just like vector operations such as the AXPY operation.

5.3.2 Method of GPU Implementation by OpenACC Directives

The tasks and data flows performed by CPU and GPU are shown in Fig. 5.1.
The index array of the coefficient matrix and the array of reordering permutation generated

by the CPU are both sent to the GPU. Reordering using these arrays is executed on the
GPU. The array of values in the coefficient matrix and the array of right-hand side vectors
are generated each time a potential is needed by the PIC method, and sent to the GPU to be

53

reordered. For data transfer between the host CPU and the device GPU, the data directive
was used. The parallel computation directives for the loops in RMILU(0) (Algorithm 9) and
in PBiCGSTAB (Algorithm 5) used the present clause to tell them to use the data that has
already been transferred. Listing 5.1 shows a näıve implementation of the forward substitution of
red blocks (Algorithm 10) using OpenACC. Just by inserting a few lines of directives beginning
with ’!$acc’ before and after the loop, OpenACC will parallelize the loop on the GPU. In the
substitution calculation, the loop directive with the independent clause was inserted above
the block loop to indicate parallel computation of blocks with the same color. The size of the
respective parallel granularity was also added to the loop directive by the gang, worker, and
vector clauses. The option whether to use the L1 cache or not and the register size are specified
in the compile options.

Listing 5.1: OpenACC implementation of Algorithm 10

!$acc kernels present(istart ,iend ,jlu ,ju ,alu ,x,y) async (0)

!$acc loop independent gang vector (128)

do iblock = 1, redblocknum

do i = istart(iblock), iend(iblock)

s = y(i)

do k = jlu(i), ju(i)-1

s = s - alu(k)*x(jlu(k))

enddo

x(i) = s

enddo

enddo

!$acc end kernels

!$acc wait (0)

The obtained solutions are reordered into the natural ordering and then sent to the CPU
by the data copyout directive.

However, it is difficult to fully exploit the computational power of GPUs with a näıve
implementation that just inserts simple directives. In the next section, we explain the problems
of the näıve implementation and propose possible solutions.

5.3.3 GPU Implementation: Issues and Solutions

In the following, we list the challenges of GPU implementations along with the problems of the
näıve implementation.

• Ensuring Sufficient Parallelism to Run Many GPU Threads
In BRB ordering, the number of blocks that have the same color, or in other words, one-
half of the total number of blocks, is the degree of parallelism. Since the GP100 has 3584
cores and the K40t has 2880 cores, the total number of red and black blocks required to
use all the cores is at least 7168 or 5760. The BRB ordering has a potential to parallelize
the RMILU(0) factorization using the order of 103 blocks for the model size targeted in
this study without significantly reducing the convergence speed, as shown in Fig. 5.12.

• Realizing Coalesced Memory Access in the Forward/Backward Substitution
In the coefficient matrix sorted by the BRB method, the matrix elements are stored as
shown in Fig. 5.2 if the data is stored in row or column wise order. In block-parallelized

54

Memory … … …

The element of !irst block The element of second block The element of third block

Figure 5.2: Näıve data storage for non-coalesced memory access.

… …

The The

Figure 5.3: Improved data storage for coalesced memory access.

substitution computation, when one thread in a warp accesses the i-th element of a block,
the adjacent thread accesses the i-th element of the adjacent same-color block. These
elements are as far apart in memory as the number of elements in the block, and thus
reloading occurs. As a result, coalesced memory access, where neighboring threads access
neighboring memory, cannot be achieved, and performance is degraded.
To solve this problem, we changed the way the matrix elements are stored, as shown in
Fig. 5.3. The data is stored in such a way that the first element of all blocks with the
same color is first stored in a contiguous region, and then the second element of each block
is stored in the subsequent region. Similarly, the i-th element of all blocks of the same
color is stored in a contiguous region. This allows 32 consecutive threads in the warp
to access contiguous memory locations and fully utilize the global memory bandwidth
through coalesced memory access. The solution vector and the right-hand side vector
used for the substitution calculation were also stored in a contiguous region with the i-th
element of all blocks of the same color so that coalesced memory access is achieved when
blocks of the same color are calculated in parallel. To ensure that operations on these
input and output vectors, other than the assignment calculations in PBiCGSTAB, are
coalesced memory accesses, the data for other vectors and coefficient matrix are stored in
the same order, and the vector operations and SpMVs are block-parallelized so that one
thread is responsible for one block. This reordering is implemented in ’Reorder A index’
and ’Reorder A value, b’, shown in Fig. 5.1.

• Increasing the Number of Independent Memory Operations
To keep the GPU pipeline running for as much time as possible, we unrolled the inner-
most loop of the forward/backward substitutions and SpMV to increase the number of
independent memory operations. In BRB ordering, the nodes in a block are numbered in
the natural order, so the number of nonzero elements in one row of the L and U matrices
can be easily estimated. Since a 7-point stencil is assumed in this study, the maximum
number of nonzero off-diagonal elements in the L matrix used the forward substitution is
3 for the row corresponding to the node in the red block and 6 for the row corresponding

55

to the node in the black block. Therefore, we unrolled the loops by fixing the length of
the innermost loop to 3 and 6 for the red and black node rows, respectively. Zero elements
were padded in rows where the number of elements was less than this fixed length. The
innermost loop of the backward substitution using the U matrix was similarly unrolled
with the black and red node rows fixed at 3 and 6, respectively. In SpMV, the innermost
loop length was set to 7, with zero padding where necessary. Our implementation strategy
can also be applied to structural grid with more complex stencils, e.g., 27-point stencils.
In that case, the innermost loop length can still be estimated using the same method.

• Exploiting the Single-Precision Performance of GPU
To reduce the amount of data and to take advantage of the high single-precision per-
formance of GPUs, we use single-precision floating point in part of BiCGSTAB method.
When using right preconditioning (lines 14-15 and 21-22 of Algorithm 5) as a precon-
ditioning for Krylov subspace method, it is known that the accuracy of the computed
solution does not degrade even when preconditioning is done in single-precision because
the relationship between the computed solution and the residuals is preserved [84]. There-
fore, in this implementation, L and U matrices are stored as single-precision floating point
arrays, and RMILU(0) factorization and the substitution calculation using them are per-
formed in single-precision. The vectors p̂ and ŝ, which are the outputs of the substitution
calculations in the BiCGSTAB routine, are also stored as single-precision floating point
arrays. For all other floating point data and operations, double-precision is used.
Preconditioning using single-precision is equivalent to using slightly different precondi-
tioning matrices at each iterative step. When the preconditioner is variable in this way,
it is called flexible Krylov subspace method, which in a narrow sense uses an algorithm
modified to compensate for errors due to variable preconditioner, and in a broad sense
includes combinations with standard algorithms [86, 87]. The former correction is made
to satisfy local conjugacy in CG method [85], for example, but it is not possible to make
a correction that generally preserves the two conditions of bi-conjugacy in BiCGSTAB
method. Therefore, we use the standard BiCGSTAB algorithm in our implementation.
Fig. 5.4 shows the convergence history of the relative residual norm implemented with this
mixed-precision in BiCGSTAB. The implemented mixed-precision version showed almost
the same convergence behavior as the version that used double-precision for all floating
point data and operations. Analysis of the variation of the residual vector of BiCGSTAB
due to changes in the preconditioning matrix shows that the former can be bounded by
a constant multiple of the latter [87]. Since the variation of the preconditioning matrix
due to the use of single-precision is approximately O(

√
ϵ), where ϵ is the rounding unit of

double-precision, this would justify the use of the standard BiCGSTAB method.

5.3.4 GPU Implementation: Improvements

5.3.4.1 Structure of the Code

The following is the list of tasks performed by our code, which employs the improvements
described in the previous section. The data and processing flow shown in Fig. 5.1 will remain
unchanged except for the fact that the data layout will change as the order for coalesced memory
access is sorted during reordering.

Initialization

56

1E-15

1E-13

1E-11

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

0 10 20 30 40 50 60 70 80 90 100

R
e

la
ti

v
e

 r
e

s
id

u
a

l
n

o
r
m

Figure 5.4: Convergence history of BiCGSTAB with mixed-precision Kx = y for test problem
at PIC 10,000th step on (a) 59× 59× 29 grid.

• Create reordering permutation
Create a permutation array to be used for array reordering. This permutation array is
used to reorder the coefficient matrices and right-hand side vectors of the lexicographic
order stored in CSR format, and to achieve coalesced memory access during the block
parallel computation with BRB ordering.

• Copy reordering permutation and A index from host
These arrays, generated on the CPU, are sent to the GPU via the data copyin directive.

• Reorder A index
The index array of A is reordered on the GPU using the permutation array.

Iterative solver

• Copy A value and b from host
The array of values of A and b generated by the PIC simulation running on the CPU is
transferred to the GPU via the data copyin directive.

• Reorder A value and b
The values of A and b are reordered using the permutation array on the GPU. For incom-
plete factorization, the lower triangular part, upper triangular part, and diagonal part
of the coefficient matrix are allocated to separate single-precision floating point arrays.
These data are stored in the rearranged position, while being converted to single-precision.
The values of the coefficient matrices used in the SpMV of lines 15 and 22 of Algorithm 5
are stored in double-precision in the rearranged position of the array of double-precision
floating point numbers.

• Relaxed MILU(0)
Execute the RMILU(0) factorization shown in Algorithm 9. Since the matrix is structured
as shown in Fig. 3.2, the computation of blocks with the same color can be performed in
parallel. The results of factorization are overwritten on the single-precision arrays of the
lower triangular part, upper triangular part, and diagonal part, respectively.

• PBiCGSTAB
Listing 5.1 is rewritten to Listing 5.2 to support the modified data layout for coalesced

57

access when block elements are computed in parallel, and to unroll the innermost loop.
Vector operations in PBiCGSTAB, such as SpMV, inner product, and AXPY, are also
computed in parallel on a block-by-block basis in the same way as substitutions to achieve
coalesced memory access. The implementation of SpMV is shown in Listing 5.3. List-
ing 5.4 shows an OpenACC implementation of the vector inner product for s-norm of line
18 in Algorithm 5 as an example of basic vector operation.

Listing 5.2: OpenACC implementation of Algorithm 10

!$acc kernels present(istart ,iend ,jl ,alr ,x,y,jlcolr) async (0)

!$acc loop independent gang (1024) worker (2) vector (16)

do iblock = 1, lastblock

x(iblock) = y(iblock)

rownum = nblock * (iend(iblock) -istart(iblock)) + iblock

do i = (iblock + nblock), rownum , blocknum

s = y(i)

k = jl(i)

s = s-alr(k) *x(jlcolr(k))

s = s-alr(k+tempnblock) *x(jlcolr(k+tempnblock))

s = s-alr(k+2* tempnblock)*x(jlcolr(k+2* tempnblock))

x(i) = s

enddo

enddo

!$acc end kernels

!$acc wait (0)

Listing 5.3: OpenACC implementation of SpMV

!$acc kernels present(istart ,iend ,a,ja ,x,y,ia) async (0)

!$acc loop independent gang worker (2) vector (16)

do iblock = 1, nblock

rownum = nblock * (iend(iblock) -istart(iblock)) + iblock

do i = iblock , rownum , blocknum

k = ia(i)

s = a(k) * x(ja(k))

s = s + a(k+nblock) * x(ja(k+nblock))

s = s + a(k+2* nblock) * x(ja(k+2* nblock))

s = s + a(k+3* nblock) * x(ja(k+3* nblock))

s = s + a(k+4* nblock) * x(ja(k+4* nblock))

s = s + a(k+5* nblock) * x(ja(k+5* nblock))

s = s + a(k+6* nblock) * x(ja(k+6* nblock))

y(i) = s

enddo

enddo

!$acc end kernels

!$acc wait (0)

58

Listing 5.4: OpenACC implementation of dot product

!$acc kernels loop independent gang vector (64) reduction (+: snrm)

do iblock = 1, nblock

do i = iblock , rownum + iblock , blocknum

snrm = snrm + s(i) * s(i)

enddo

enddo

!$acc end kernels

• Reorder x
The array of solution vector x after convergence is reordered into a natural ordering using
the permutation array.

• Copy x from device
　 The reordered array of solution vector x is sent from the GPU to the CPU via the
data copyout directive.

While BRB ordering is based on known structural grid, in this chapter we optimize the
implementation based on common sparse matrix formats as shown in Listings 5.2 and 5.3.
There have been studies to accelerate the matrix computation using such grid information on
GPUs [88, 89, 90]. An example of improving the proposed implementation that uses information
about the structure of the grid to avoid indirect references is provided in Appendix C.

5.3.4.2 Parameter Optimization

The code and calculation method have adjustable parameters that affect the calculation speed.
In the following, we discuss their optimization to improve performance. The test problems and
execution environments shown in Section 5.4.1 are used to optimize the parameters.

The Number of Blocks and the Parallel Granularity
The number of blocks is chosen to balance the generally conflicting requirements of being

small enough not to adversely affect convergence speed, but large enough to take advantage
of GPU’s many cores. The relationship between the number of iterations and the number of
blocks for PBiCGSTAB method is shown in Fig. 5.5. Since we are evaluating all possible block
division patterns when the number of grids is (a) 59× 59× 29, we have multiple plots with the
same number of blocks. In other words, even given the same number of blocks, there are several
choices on how to divide each axial direction of x, y, z, and the different orderings resulting from
them affect the number of iterations required for convergence.

To estimate the effect of reordering on convergence rate, we can use the Frobenius norm
of the remainder matrix R = A − LU [53], the simple remainder index (S.R.I.) [15], or the
incompatibility ratio [54]. In S.R.I., the average of Irsl of all nodes is calculated as S.R.I.,
given the number Irsl ≡ℓ C2 = ℓ(ℓ − 1)/2 of each node, where ℓ is the number of neighboring
nodes with larger node numbers. The Irsl of a node is uniquely determined from the number
of adjacent nodes whose node number is greater than itself. This indicator is based on the fact
that neighboring nodes with higher numbers contribute to the update of R. Thus, the S.R.I.
shows how many times R has been updated as a whole, and shows the same trend as the R
norm. Incompatibility ratio is the percentage of incompatible nodes where both upwind and
downwind neighbors in one or more directions have a node number greater than their own. This

59

0

10

20

30

40

50

60

70

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

o it
a

r
eti f

o
r

e
b

m
u

N

Figure 5.5: Number of blocks and number of iterations required for convergence of test problem
at PIC 10,000th step on (a) 59× 59× 29 grid.

indicator is also related to the degree of updating R. As with the R norm, it is known that
orderings with small values of S.R.I. or incompatibility ratio tend to converge quickly.

The relationship between the number of iterations for PBiCGSTAB method and S.R.I. or
incompatibility ratio is shown in Fig. 5.6 and Fig. 5.7, respectively. Here, we use BRB ordering
and RMILU(0) factorization as preconditioning and evaluate all block division patterns as in
Fig. 5.5. Although there is variation in the number of iterations for the same value of the index,
the smaller the index, the better the convergence tends to be. In the case of BRB ordering over
a 3D Cartesian structure lattice, nodes with large Irsl are those located in the three planes with
the smallest x, y and z coordinates in each red block, and these nodes are incompatible nodes
(unless these planes are the boundaries of the computational domain).

Thus, the smallest S.R.I. and incompatibility ratio are obtained when x = y = z = 3
√
n/(2p),

where n is the number of nodes and p is the number of parallel threads. The corresponding
method of block division is the condition that each block is as close to a cube as possible.

Fig. 5.8 shows the relationship between the calculation time and the number of blocks in
PBiCGSTAB. Here, the block division condition was determined using the method described
above.

In order to reduce the computation time, it is necessary to select the smallest possible
number of blocks that satisfies the following two conditions:

(1) The total number of blocks is a multiplier of 32, where 32 is the number of threads per
warp, the execution unit of CUDA.

(2) The number of blocks per SM is greater than or equal to 32× 6.

However, when the problem size is small, selecting the number of blocks to meet these require-
ments may result in a very small block size. This can increase the number of iterations required

60

0

10

20

30

40

50

60

70

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

s
n

oit
a

r
eti f

o
r

e
b

m
u

N

Figure 5.6: S.R.I. and number of iterations required for convergence of test problem at PIC
10,000th step on (a) 59× 59× 29 grid.

0

10

20

30

40

50

60

70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

s
n

oit
a

r
eti f

o
r

e
b

m
u

N

Figure 5.7: Incompatibility ratio and number of iterations required for convergence of test
problem at PIC 10,000th step on (a) 59× 59× 29 grid.

61

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

3

4

5

6

7

8

9

10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1E+2 1E+3 1E+4 1E+5

0
0

1
P

G f
o]s[

e
mit

d
es

p
al

E 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1E+3 1E+4 1E+5 1E+6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1E+3 1E+4 1E+5 1E+6 1E+7

0.00

0.05

0.10

0.15

0.20

0.25

0.30t
0

4
K f

o]s[
e

mit
d

es
p

a l
E

(a) (b) (c)

Figure 5.8: Computation time as a function of the number of blocks (proposed implementation).

Table 5.2: Number of blocks with optimized partitioning conditions.

GP100 K40t

(a) 59 × 59 × 29 grid 26100 blocks 6000 blocks
(b) 119 × 119 × 59 grid 32000 blocks 8640 blocks
(c) 239 × 239 × 119 grid 32000 blocks 19200 blocks

for convergence, resulting in a larger computation time. In this case, choosing a larger block
size that does not satisfy (1) and (2), or in other words, a smaller number of blocks, can reduce
the overall execution time.

Table 5.2 shows the block partitioning condition that results in the fastest solution with
these conditions taken into account. Thus, in the following experiments, we used 26100 blocks
for (a) 59×59×29 grid, 32000 blocks for (b) 119×119×59 grid and (c) 239×239×119 grid on
GP100. Also, we used 6000 blocks for (a) 59× 59× 29 grid, 8640 blocks for (b) 119× 119× 59
grid and 19200 blocks for (c) 239× 239× 119 grid on K40t.

Parallelization granularities gang, worker and vector

gang, worker and vector are the parallelization granularities that can be specified in Ope-
nACC, corresponding to thread blocks, warps and threads in CUDA, respectively (see Sec-
tion 5.2.2). Figs. 5.9 – 5.11 show the relationship between the average calculation time of

62

the loops of red block forward substitution (Listing 5.2), SpMV (Listing 5.3) and dot product
(Listing 5.4) and the values of gang, worker and vector, given as clauses for the kernels

directive.
Here, we use the block division condition shown in Table 5.2.
In most cases where worker × vector was the same, the computation time was almost the

same. When 1 was specified for worker or vector different results were obtained from other
conditions where worker × vector was the same. This often happens, especially when the
vector of K40t is set to 1.

For all problem sizes and GPUs, the computation time will be longer if the value of gang
× worker × vector is too small to use all cores. The computation time also increases when
the value of gang × worker × vector is very large, which is often the case when the problem
size is small. The optimal condition lies somewhere in between, and its location depends on
the problem size, the number of blocks, and the operations performed in the loop. Even if the
value of gang × worker × vector is appropriate, an inappropriate combination will increase
the computation time. If the values of gang and worker are omitted, the result is almost always
the same as if the good condition was set. However, for loops with a lot of data loading and
random access, omission is not a good choice, and the performance peaks lie on the side where
gang × worker × vector is small.

If the parallel directive is used, the result will be the same as any other condition where
worker × vector is equal even if either worker or vector is set to 1. Except for this point, the
computation times for parallel and kernels, where gang, worker, and vector are the same,
are almost the same.

The values of gang, worker, and vector, which gave good results for the main parallel
operations on GP100 and K40t are shown in Table 5.3. No significant speedup was observed
by using L1 cache or limiting the number of registers.

63

g
a
n
g
(1
2
8
)

g
a
n
g
(2
5
6
)

g
a
n
g
(5
1
2
)

g
a
n
g
(1
0
2
4
)

g
a
n
g

g
a
n
g
 w
o
rk
e
r

vector()vector() vector() vector() vector()vector()

(a
)

(b
)

(c
) K40tGP100K40tGP100 K40tGP100

[µ
s]

F
ig
u
re

5.
9:

g
a
n
g
,
w
o
r
k
e
r
,
an

d
v
e
c
t
o
r
va
lu
es

an
d
av
er
ag

e
co
m
p
u
ta
ti
on

ti
m
e
fo
r
th
e
re
d
b
lo
ck

fo
rw

ar
d
su
b
st
it
u
ti
o
n
.

64

g
a
n
g
(1
2
8
)

g
a
n
g
(2
5
6
)

g
a
n
g
(5
1
2
)

g
a
n
g
(1
0
2
4
)

g
a
n
g

g
a
n
g
 w
o
rk
e
r

vector()vector() vector() vector() vector()vector()

(a
)

(b
)

(c
) K40tGP100K40tK40tGP100

[µ
s]

F
ig
u
re

5.
10

:
g
a
n
g
,
w
o
r
k
e
r
,
an

d
v
e
c
t
o
r
va
lu
es

an
d
av
er
ag

e
co
m
p
u
ta
ti
on

ti
m
e
fo
r
S
p
M
V
.

65

g
a
n
g
(1
2
8
)

g
a
n
g
(2
5
6
)

g
a
n
g
(5
1
2
)

g
a
n
g
(1
0
2
4
)

g
a
n
g

g
a
n
g
 w
o
rk
e
r

vector()vector() vector() vector() vector()vector()

(a
)

(b
)

(c
) K40tGP100K40tGP100 K40tGP100

[µ
s]

F
ig
u
re

5.
11

:
g
a
n
g
,
w
o
r
k
e
r
,
an

d
v
e
c
t
o
r
va
lu
es

an
d
av
er
ag

e
co
m
p
u
ta
ti
on

ti
m
e
fo
r
d
ot

p
ro
d
u
ct
.

66

Table 5.3: gang, worker and vector specified in each loop.

GP100 K40t
gang worker vector gang worker vector

Substitution 1024 2 16 2 64
SpMV 2 16 2 256

Dot product 1 64 2 64
Several AXPY/loop 512 1 64 512 1 64

1 AXPY/loop 512 1 64 1024 2 64
Creating r̃ 2 16 16 8

Ordering input vectors 256 1 2 128 128 1
Ordering output vector 512 1 256

MILU(0) 16 1 128 8 16
Ordering A values 51 2 8 4 128 256 1

Ordering LU values 16 1 128 16 2
Preparing for ordering A 128 1 32 64 1 8
Preparing for ordering L 128 1 8 128 8 2
Preparing for ordering U 128 1 8 32 1 64

Preparing for ordering vectors 512 4 4 128 1 8

5.4 Performance Test

5.4.1 Test Problems and Computational Environment

We evaluated the performance of our implementation of the PBiCGSTAB solver combined
with RMILU(0) preconditioner and BRB ordering on the GPU. As test problems, we used the
coefficient matrix and right-hand side vector for the Poisson equation (2.1.14) used to obtain
the potential ϕ within the 3D magnetron sputter simulation shown in Fig. 2.2. The shape and
size of the computational domain to be simulated are shown in Fig. 2.4. For the discretization of
the Poisson equation (2.1.14), a seven-point finite difference method with a uniform orthogonal
grid was used. Dirichlet boundary conditions of −200 V for the target and 0 V for the substrate
and sidewall were imposed on ϕ as shown in Fig. 2.2.

The number of unknowns is (a) 59 × 59 × 29 = 100, 949, (b) 119 × 119 × 59 = 835, 499,
and (c) 239 × 239 × 119 = 6, 797, 399 for grid sizes of 1, 0.5, and 0.25 mm, respectively. (a),
(b), and (c) in the figures shown in this chapter represent these sizes of the test problems. The
coefficient matrices and right-hand side vectors for the test problems were obtained from the
10,000th time step of the PIC simulation.

The RMILU(0) preconditioner, parallelized by BRB ordering, was optimized as described
in Section 5.3.4. A relaxation parameter α = 0.95 was used for the RMILU(0) factorization.
The convergence criterion for the PBiCGSTAB method, unless otherwise specified, is that the
relative residual norm ∥rk∥2/∥Ax0−b∥2 < 10−8, where rk and x0 are the residual vector at the
k-th iteration and the initial estimated solution x0 = 0, respectively. After the convergence cri-
terion using the working vector norm in line 18 or 26 of Algorithm 5 is satisfied and the iteration
is stopped, convergence is confirmed by the true relative residual norm ∥Axk − b∥2/∥Ax0− b∥2
calculated from the obtained solution xk. The program is implemented by Fortran90. Float-

67

Table 5.4: Environments used in the performance test.

GDEP MAS-i7WF SGI ICE XA

GPU
Quadro GP100 Tesla K40t
(Table 5.1, right) (Table 5.1, left)

CPU Core i7 6800K Xeon E5-2680v3 12C
CPU Speed 3.4 GHz 2.5 GHz

CPU cores/threads 6/12 12/24
Compiler PGI Fortran 17.4 PGI Fortran 16.1

CUDA versiton 9.1 8.0

ing point data and operations were made to have double-precision, except for those marked as
single-precision in the previous section.

The two different computing environments employed in the experiments are shown in Table
5.4. Data transfer between the CPU and the GPU was done via PCIe. The program was
compiled using the -O3 optimization setting for both compilers.

5.4.2 Performance Test Results

5.4.2.1 Comparison with Näıve Implementation

We compare the performance of implementations, namely, the one before introducing the im-
provements shown in Sections 5.3.3 and 5.3.4 and the other after introducing them. The imple-
mentation before introducing them is called näıve, and after introducing them is called improved.
Figs. 5.12 and 5.13 show the number of iterations and computation time, respectively, of the
PBiCGSTAB iterative loop with the näıve implementation. The horizontal axis of the graph
shows the number of blocks, and the right end of each graph is the number of nodes. Therefore,
the rightmost point is the result of nodal RB ordering. Since the number of iterations required
for convergence under the same conditions is the same for GP100 and K40t, Fig. 5.12 shows the
number of iterations common to the two environments. The ‘Elapsed time’ in Fig. 5.12 is the
time to compute the iterative loop of PBiCGSTAB. The data transfer time between the CPU
and GPU is included, while the time taken for ordering and PMILU(0) factorization is not.

In BRB ordering, the number of same-color blocks, or one-half of the number of blocks,
becomes the parallelism, so the computation time becomes smaller as the number of blocks
increases until the number of blocks becomes large enough to use up the number of threads
on the GPU. In a näıve implementation, the computation time is locally minimized when the
number of blocks is close to the number of CUDA cores ×2, due to the competition between the
overhead of non-contiguous memory accesses caused by accessing elements stored farther away,
which is greater with fewer blocks as described in the previous section, and the convergence
acceleration effect of blocking, which is greater with fewer blocks. Overall, the execution time
is minimized in the nodal RB with the largest number of blocks, which has the lowest overhead
of non-contiguous accesses. Thus, the näıve implementation does not take advantage of the
convergence acceleration effect of the blocking of BRB ordering.

By contrast, in the improved implementation, the overhead of non-contiguous access was
eliminated by changing the storage format of the matrix. This minimized the execution time

68

0

10

20

30

40

50

60

s
n

oi t
ar

eti f
o r

e
b

m
u

N

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

140

160

180

200

(a) (b) (c)

Figure 5.12: Number of blocks and the number of iterations required for PBiCGSTAB to
converge.

in the region of smaller number of blocks, as shown in Fig. 5.8, and allowed us to fully exploit
the convergence-accelerating effect of blocking.

Fig. 5.14 shows how much the modified implementation improves the computation time of
each part of the PBiCGSTAB iterative loop compared to the näıve implementation. Here, the
number of blocks is determined to be the number of CUDA cores ×2, which is the local minimum
value in Fig. 5.13. The computation time for forward and backward substitutions, which was
long in näıve implementations, has been reduced by reducing the overhead of data access. The
vector operations contained in SpMV and others had no data access problems even with a näıve
implementation, but the change of the vectors p̂ and ŝ as input to SpMV to single-precision
reduced the amount of data loading and calculation time in SpMV.

In the following sections, we use the block division condition that proved to be a good condi-
tion in Section 5.3.4.2 (Table 5.2). The peak performance ratio of the improved implementation
using this block partitioning condition is described in Appendix B.

Even if the block partitioning is simply chosen, high performance can be obtained as shown
in Fig. 5.15. For the conditions chosen here, the total number of blocks is the number of CUDA
cores ×4 and the number of blocks in each direction is close to 3

√
the total number of blocks.

The results shown in this figure, as well as the results in the following sections, include the
computation time for ordering and PMILU(0) factorization, in addition to the iterative loop
shown in Fig. 5.13.

5.4.2.2 Effect of Using Mixed-Precision

The difference between the convergence histories of the mixed-precision and double-precision
solvers shown in Fig. 5.4 increases after the relative residual norm reaches 10−8, which is used
as our criterion. For comparison of the mixed-precision and double-precision solvers, two con-
vergence criteria for the relative residual norm were used: less than 10−8, which is shown in
Section 5.4.1 as the common condition, and less than 10−13 as the high precision condition.
The latter convergence condition was chosen because the relative residual norm when using
only double-precision is no smaller than about 10−14, as seen in Fig. 5.4.

The result is shown in Fig. 5.16. For problems other than the smallest size, the mixed-

69

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1E+3 1E+4 1E+5

0
0

1
P

G f
o]s[

e
mi t

d
es

p
al

E 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1E+3 1E+4 1E+5 1E+6

0

2

4

6

8

10

12

14

16

18

1E+3 1E+4 1E+5 1E+6 1E+7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

t
0

4
K f

o]s[
e

mit
d

e s
p

al
E 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0

5

10

15

20

25

30

(a) (b) (c)

Figure 5.13: Number of blocks and computation time for PBiCGSTAB iterative loop (näıve
implementation).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Naïve Improved

T
im

e
 [

s]

0

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Naïve Improved

e

mi
T

[s
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Naïve Improved

T
im

e
 [

s]

(a) (b) (c)

Figure 5.14: Comparison of näıve and improved implementations of CUDA Core ×2 blocks
profiling results on GP100.

70

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.00

0.01

0.02

0.03

0.04

0.05

(a) (b) (c)

43 53 53 53 77 79
Num. of

iterations

0
0

1
P

G f
o]s[

e
mit

d
es

p
al

E

Figure 5.15: Computation time for simple block division condition.

precision method was faster. In particular, in the biggest problem, the overall computation
time was reduced even though the number of iterations was increased by the use of mixed-
precision. Similar results are shown for the case where the convergence criterion is 10−13,
suggesting that the mixed-precision technique is effective even when higher precision is required
for larger problems.

5.4.2.3 Effect of Block Red-Black Ordering and Relaxed MILU(0) Preconditioner

In order to evaluate the effectiveness of BRB ordering and RMILU(0) preconditioner, we com-
pare in Fig. 5.17 the performance of the four combinations. Here, ILU(0) factorization was used
as a comparison to RMILU(0), and nodal RB ordering was used as a comparison to optimized
BRB. The implementation shown in Section 5.3.4 has been adopted in all conditions. The
computation time is affected by the number of iterations.

As shown in Fig. 5.5, the BRB requires fewer iterations to converge than the nodal RB,
which corresponds to the right end of the graph. This is the same regardless of whether ILU(0)
or RMILU(0) preconditioner is used. The BRB combined with RMILU(0) had fewer iterations
to convergence than the combination with ILU(0) for all problem sizes. The advantage of
the combination of RMILU(0) and BRB becomes more pronounced the larger the size of the
problem and the larger the number of nodes contained in one block. For the largest size problem,
RMILU(0) combined with nodal RB converged in fewer iterations than ILU(0) combined with
it. However, RMILU(0) combined with nodal BR in the two smaller problems had the same
number of iterations as ILU(0). In summary, we can say that RMILU(0) preconditioner has a
higher convergence acceleration effect when combined with blocked RB.

5.4.2.4 Comparison with Existing Sparse Matrix Iterative Solver Libraries

There are libraries that include GPU-parallelized incomplete factorization and PBiCGSTAB
routines. We compared the performance of our implementation with that of the PBiCGSTAB
routines implemented in cuSPARSE [78], MAGMA [79], ViennaCL [80], and Ginkgo [81], which
are the most widely used libraries.

71

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0.00

0.04

0.08

0.12

0.16

0.20

0.240
0

1
P

G f
o]s[

e
mit

d
es

p
al

E 0.00

0.01

0.02

0.03

0.04

0.05

(a) (b) (c)

43 46 78 78 53 53 105 94 77 78 147 130
Num. of

iterations

Figure 5.16: Comparison of computation time between double-precision and mixed-precision
when using different precision convergence criteria.

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.00

0.01

0.02

0.03

0.04

0.05

43 49 62 60 53 76 117 115 77 147 197 232

0
0

1
P

G f
o]s[

e
mit

d
es

p
al

E

(a) (b) (c)

Num. of

iterations

Figure 5.17: Comparison of computation time by combining ordering and preconditioner.

72

Table 5.5: Parallel preconditioning methods used in the comparison.

Library ILU(0) / Triangular solver

cuSPARSE Cohen-Castonguay’s graph coloring algorithm
MAGMA Level scheduling / ISAI
ViennaCL Chow-Patel’s fine-grained algorithm

Ginkgo Chow-Patel’s fine-grained algorithm / ISAI

Among the parallel preconditioning methods used in each library, the methods used for the
comparison are shown in Table 5.5. These are the methods that yielded the fastest solution to
our problem among the methods that use the LU factorization-based preconditioning employed
by the respective libraries.

As input data, the coefficient matrix in CSR format, the right-hand side vector of the test
problem, and the same initial estimated solution x0 = 0 as for the proposed method were given
to these libraries. As input parameters for the library routines, convergence decision values
equivalent to the convergence criteria of the proposed method shown in Section 5.4.1 were
given. Furthermore, from the solutions obtained, it was checked whether the true residuals had
been reduced to the specified standard. If non-default parameters are used with libraries, they
are shown below. The features and parallelization methods of each library are as follows.

• cuSPARSE
cuSPARSE is a sparse matrix and vector arithmetic library for CUDA. In addition to
basic matrix-vector operations, cuSPASRE includes a triangular solver, which can be
parallelized by level scheduling derived from the structure of the coefficient matrix and
ordering routines based on Cohen-Castonguay’s graph coloring [71, 91].
cuSPARSE provides the functions used to compute each row in Algorithm 5, and the
solver that calls these functions is used for comparison. The triangular solver routines
exist in cuSPARSE, and mixed-precision can be implemented using these routines. How-
ever, cuSPARSE’s triangular solver and other routines that target vectors require match-
ing the precision of the input and output. Therefore, the input or output vectors that
require double-precision elsewhere other in the algorithm need to be copied into single or
double-precision arrays before or after calling the single-precision triangular solver. As a
result, the mixing-precision was slightly faster for the K40t, but slower for the GP100.
In this section, we show the results using double-precision for all arrays and calculations
in cuSPARSE. Trianglar solver is parallelized with graph coloring. Since cuSPARSE is
embedded in CUDA, the test code was implemented by Fortran as well as the proposed
method and compiled by CUDA Fortran on each machine.

• MAGMA
MAGMA is a library implemented primarily for CUDA, with APIs based on LAPACK and
BLAS. Various preconditioner and iterative solution including PBiCGSTAB method rou-
tines are provided. As a triangular solver, a user can choose ILU(0) with either cuSPARSE
level scheduling or incomplete sparse approximate inverse (ISAI) [74]. ISAI replaces the
forward/backward substitution with the calculation of the product using the approxi-
mate inverse of L and U obtained from the ILU factorization. In this section, we show

73

the results of calculations using the double-precision PBiCGSTAB routine with ILU(0)
and ISAI. MAGMA 2.3.0 was built using OpenBLAS 0.2.20 [92], and the test code was
implemented in C and compiled using gcc 4.8.5.

• ViennaCL
ViennaCL is a header library for C++ with interface to uBLAS included in Boost library
[93]. In ViennaCL, PBiCGSTAB routines preconditioned by ILU are parallelized by using
techniques such as level scheduling and blocking. Among the parallelization methods
implemented in the library, Chow-Patel’s fine-grained ILU(0) [94] is the fastest at solving
our test problems. This algorithm considers the ILU factorization as the problem of
computing the unknowns lik and ukj . This problem is solved by fixed point iteration

x(n+1) = G(x(n)), (n = 1, 2, · · ·), (5.4.1)

where x is a vector consisting of lik’s and ukj ’s, and the elements of x(n+1) can be computed
in parallel. Similarly, by performing fixed point iteration as G = I−D−1K, the triangular
system Kx = y is solved, where D is a diagonal matrix with the same diagonal elements
as K.
In this section, we present computational results obtained from the double-precision
PBiCGSTAB routine using Chow-Patel’s fine-grained ILU(0). The test code was im-
plemented with C++ and compiled by the CUDA compiler corresponding to the CUDA
version installed in the respective test environment. The version used is ViennaCL 1.7.1
with Boost 1.68.0. Because the original PBiCGSTAB routine of ViennaCL uses precon-
ditioned vectors such as K−1p and K−1s for convergence test, the convergence condition
becomes stricter than the criterion used for the other libraries, while the number of iter-
ations becomes larger. In order to determine convergence under the conditions shown in
Section 5.4.1, two arrays holding the vectors p and s are copied and used for the deter-
mination. The operations required for this increased the execution time per iteration by
about 0.8% over the original routine.

• Ginkgo
Ginkgo is a newer library for linear systems than the others, and requires a C++ 11 com-
pliant compiler to build. As a parallelized ILU factorization, Chow-Patel’s fine-grained
ILU(0), which is used in ViennaCL, is implemented. In addition, as a parallelized trian-
gular solver, ISAI, which is used in MAGMA, is implemented.
In this section, we present computational results for Ginkgo 1.1.1, obtained from Chow-
Patel’s fine-grained ILU(0) and the PBiCGSTAB routine using ISAI. The test code was
implemented in C++, and gcc 6.3.1 was used to build Ginkgo and the test code.

Fig. 5.18 shows the execution time of the proposed method and the existing library routines
for GPUs. The elapsed time in the figure is the time taken for the task performed each time the
PIC simulation needs to calculate the potential. This includes the execution time for transfer
of array data between the host and the device, reordering, ILU factorization and PBiCGSTAB.

The initialization time of the proposed method, which includes the execution time of acc init()

function and data copyin dummy integer directive, is 0.990 s and 0.275 s for GP100 and K40t,
respectively. This time is especially large for GP100.

The time taken for tasks that are executed only once when the computational grid is invari-
ant, such as the execution of the initialization function of the library and the tasks included
in the initialization category of Section 5.3.4.1, is shown as the initialization time in Table 5.6.

74

Table 5.6: Initialization processing time [s].

Opt. BRB cuSPARSE MAGMA Ginkgo

(a) 59× 59× 29 grid 0.009 0.568 0.721 1.209
GP100 (b) 119× 119× 59 grid 0.073 0.601 0.728 1.357

(c) 239× 239× 119 grid 0.496 0.774 0.725 1.264
(a) 59× 59× 29 grid 0.016 0.705 0.049

K40t (b) 119× 119× 59 grid 0.170 0.725 0.055
(c) 239× 239× 119 grid 1.351 0.972 0.055

This initialization includes both tasks whose computational work depends on the size of the
test problem and tasks with constant work. In ViennaCL, no explicit initialization is required.

According to the result of the proposed method, the difference between GP100 and K40t is
small because the number of iterations is reduced due to the small optimal number of blocks
for K40t, and the mixed accuracy is useful for the small memory bandwidth. The result of
ViennaCL also shows a small difference, which is presumably due to the effect of the initialization
time contributing to the computation time because of the absence of the initialization function.

The number of colors used for graph coloring in cuSPARSE was 33 for the (a) 59× 59× 29
grid and (b) 119 × 119 × 59 grid test problems, and 46 for the (c) 239 × 239 × 119 grid test
problem. Although cuSPARSE may have worse convergence due to coloring-based reordering,
the number of iterations is smaller than that of MAGMA and Ginkgo using ISAI. In Ginkgo,
the convergence behavior varies from run to run, and convergence may be judged even though
the actual residuals have not decreased to the prespecified value. The results shown in the figure
were obtained from a run that yielded a solution that converged to the prespecified value. In
the runs where a solution was obtained, Ginkgo ran as fast as or faster than the other libraries.

The proposed method has the lowest number of iterations required for convergence for all test
problems. Due to the convergence acceleration effect of the preconditioner and the optimization
using the structure of the three-dimensional finite difference matrix based on the structural grid,
the proposed method was able to obtain a fast solution. Especially when applied to the large test
problems, the proposed method obtained solutions faster than cuSPARSE, MAGMA, ViennaCL
or Ginkgo, even including device initialization. In the case of solving multiple simultaneous
equations, the difference is even larger because the initialization time, which is performed only
once, has a smaller impact.

The computation time when ILU(0) is used for preconditioner and nodal RB ordering is used
for parallelization is shown in Fig. 5.17. In the results using the incomplete factorization and
ordering, the number of iterations of our proposed routine is close to the number of iterations
of other library routines, while its computation time is shorter than that of using the library
routine. This suggests that even solvers implemented in OpenACC, which is generally considered
to have a speed disadvantage, can achieve the same or better performance as those implemented
in CUDA or OpenCL, depending on the method.

75

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

37 58 64 45 44 94 113 86 77 182 210 163

0
1
2
3
4
5
6
7
8
9

10
11
120

0
1

P
G f

o]s[
e

mit
d

es
p

al
E

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0

10

20

30

40

50

60t
0

4
K f

o]s[
e

mit
d

es
p

a l
E

(a) (b) (c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

43 55 58 45 62 53 92 110 86 110 77 175 222 163 211

Num. of

iterations

Num. of

iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Figure 5.18: Comparison of the execution time of the proposed method with cuSPARSE,
MAGMA, ViennaCL, and Ginkgo. *Results of Ginkgo are derived only from calculations that
actually converged.

76

5.4.2.5 Performance of solving BRB-ordered systems with existing library rou-
tines

Some of the existing libraries verified in this study are equipped with a parallelization module
based on level scheduling that takes advantage of the parallelism inherent in the structure
of the coefficient matrix. Therefore, we evaluated the performance when the input to these
libraries is a coefficient matrix with a highly parallel matrix structure by BRB ordering. To
achieve coalesced memory access during parallel computation execution, the matrix elements
were stored in an array in the order shown in Fig. 5.3. In its storage format, the storage position
is determined by the number of red blocks nrb, black blocks nbb, and red nodes nrn. The j-th
element belonging to the i-th red block is stored at the position i+(j−1)nrb. Whereas, the j-th
element belonging to the i-th black block is at the position i+(j− 1)nbb+nrn. Fig. 5.19 shows
the computation time of parallelization using the level scheduling routines of each library on
GP100 with the input being the coefficient matrix and right-hand side vector ordered by BRB
ordering. Here, the ‘Precondsetup’ shown in the graph is the analysis of the matrix structure
for level scheduling and the computation time for ILU factorization. Note that the results of
Fig. 5.19 do not include the data copy and reordering times that were included in the results
of Fig. 5.18. The results of cuSPARSE were equal to or better than those obtained when the
parallelism was extracted by the graph coloring routines included in the library. The results
for MAGMA and ViennaCL showed that the setup time was larger than the time required for
the iterations. The setup time for the level scheduling of each library was very large compared
to the setup time of ISAI in MAGMA, which was 0.107 s, 0.299 s, and 1.897 s, and the setup
time of Chow-Patel’s fine-grained ILU(0) in ViennaCL, which was 0.073 s, 0.542 s, and 4.385
s, in ascending order of the problem size. Therefore, to make effective use of BRB ordering in
MAGMA or ViennaCL, it is necessary to devise a way to reduce the large setup time. One way
to do this would be to add routines to assist in level scheduling based on the matrix structure.

5.4.2.6 Performance of PIC Simulation with Proposed Method Incorporated

We evaluated the speed-up effect of the proposed method when incorporated into the PIC-based
plasma simulation described in Section 2.1. The original code used in the preliminary evaluation
shown in Section 2.2 is an MPI parallel code for super particles using the particle decomposition
method. In addition to the incomplete factorization and iterative solver proposed in this chapter,
the charge density smoothing, and matrices and right-hand side vectors generation included in
the ‘potential calculation’ routine, and the electric field calculation included in the ‘electric
field calculation’ routine were GPU-parallelized. The processing in the initialization category
of Section 5.3.4.1 is performed only once at the start of PIC simulation, and the processing in
the iterative solver category of the same section is repeated each time a potential is needed at
each step.

Compilation and execution was done using OpenMPI [95] on the GDEP MAS-i7WF with
Quadro GP100 shown in Section 5.4.1. Fig. 5.20 shows the computation time of each subroutine
for a test problem with a problem size of (a) 59 × 59 × 29 and the same conditions as the
test problem in this section, computed up to 10000 steps with MPI parallelism of 6. GPU
parallelization requires additional time to transfer data, but the reduction in computation time
due to faster computation outweighs this, resulting in shorter computation times for GPU-
parallelized subroutines. The charge density calculation included in the potential calculation
routine is not entirely GPU-parallelized because it includes the time for parallel computation

77

0

5

10

15

20

25

30

35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.00
0

1
P

G f
o]s[

e
mit

d
es

p
al

E 0.0

0.1

0.2

0.3

0.4

0.5

0.6

43 48 45 50 53 73 75 75 77 143 148 145
Num. of

iterations

(a) (b) (c)

Figure 5.19: Comparison of parallel computational performance using library routines for sys-
tems ordered by BRB ordering.

by the particle decomposition method and process synchronization on the CPU. However, the
ratio of the potential calculation routine to the total calculation time became small, and it is
confirmed that the overall calculation time can be shortened by using the GPU parallelization
of the proposed method.

5.5 Conclusion

In this chapter, we parallelize the solution of a linear system with the coefficient matrix precon-
ditioned by RMILU(0) factorization and BRB ordering. The method is optimized for parallel
computing using GPUs.

BRB ordering generally requires fewer iterations than nodal RB sequencing to obtain a
convergent solution. However, in the forward/backward substitution of BRB ordered coefficient
matrices, if the matrix elements are stored in the row or column direction, there is a problem
of adjacent threads accessing the data at distant locations and causing overhead due to data
reloading. To solve this problem, we changed the order of storing element data to achieve
coalesced access. Furthermore, to take advantage of GPU’s fast single-precision operations, and
decrease the load time, the operations and the data for the forward/backward substitutions
were made single-precision. For optimization of parameters, the block partitioning condition
and the parallel granularity size of OpnenACC were examined. In general, there is a trade-off
between increasing the parallelism by increasing the number of the same-colored blocks and the
convergence speed. On the other hand, the parallelism must be sufficiently large to allocate
tasks to the many threads of GPUs. In order to achieve these balances, the condition was set so
that the number of blocks per SM is a multiple of 32 over 32× 6, and that the number of nodes
contained in each block in each axial direction is equal. The optimal values of the parameters
for each of the parallel granularity gang, worker, and vector in the OpenACC directive depend

78

0.0E+0 1.0E+3 2.0E+3 3.0E+3 4.0E+3 5.0E+3 6.0E+3 7.0E+3 8.0E+3 9.0E+3 1.0E+4 1.1E+4

MPI 6

process

MPI 6

process +

GPU

Time [s]

Potential calculation Corrector calculation

Predictor calculation Interpolation

Electoric !ield calculation Output value calculation

Figure 5.20: Comparison of computation time for each subroutine of PIC method simulation
with and without GPU parallelization.

on the GPU specification, what processing is done in the loop, and the size of the array to be
processed. Here we set the parameters that showed good results for all sizes of the test problem
to the loops processed by the respective GPUs.

These implementation methods and optimizations resulted in a significant increase in com-
putational speed compared to previous implementations, delivering solutions faster than the
leading iterative solver libraries for GPUs.

79

Chapter 6

Convergence analysis of BRB
ordered PMILU(0)/PMIC(0)
preconditioning

6.1 Introduction

We consider simultaneous linear equations Ax = b obtained by applying a two-dimensional
5-point difference finite formula to the two-dimensional Poisson equation as a model problem.
As described in Chapter 3, the condition number of the unpreconditioned coefficient matrix A is
known to be O(h−2), where h is the grid size. By contrast, it is known that the condition number
of A preconditioned using PMILU(0)/PMIC(0) methods with natural ordering is O(h−1), which
is one rationale for the effectiveness of this preconditioner. Because of its sequential nature,
several methods have been proposed to parallelize the ILU(0)/IC(0) preconditioner through a
reordering. This includes BRB ordering, which is empirically known to realize a convergence
acceleration comparable to sequential PMILU(0)/PMIC(0) factorization. Therefore, in this
chapter, we investigate the reason for its high convergence acceleration effect by analyzing
the properties of the matrices obtained by applying BRB ordering and a PMILU(0)/PMIC(0)
preconditioner to the model problem.

In the model problem applied here, we consider a square region Ω = [0, 1]2 and the Poisson
equations

−∆u(x, y) = f(x, y) in Ω, (6.1.1)

u(x, y) = 0 on ∂Ω. (6.1.2)

Each of the x, y directions is divided into N + 1 intervals, and the equation at grid point (i, j)
is discretized as

−ui,j−1 − ui−1,j + 4ui,j − ui+1,j − ui,j+1 = h2fi,j (i, j = 1, 2, ..., N), (6.1.3)

where h is the grid width. Here, the diagonal elements of coefficient matrix A are 4, while all
the off-diagonal elements representing the relationship with the neighboring nodes have values
of −1, and there are at most four off-diagonal elements per row.

80

This model problem has been used to evaluate the convergence acceleration effects of the
PMILU/PMIC preconditioner with natural ordering [3, 4, 5, 42]. In this chapter, we also use
this problem to conduct an empirical analysis of the effects of BRB ordering.

6.2 Order of Condition Numbers of PMILU(0)/PMIC(0) Pre-
conditioned Matrix

In general, the performance of Krylov subspace method solvers is improved when combined
with an ILU(0)/IC(0) preconditioner. However, when two-dimensional elliptic partial differen-
tial equations are discretized using a finite difference or finite element method, the condition
number κ(K−1A) of preconditioned matrix K−1A is O(h−2), which is the same as κ(A). This
problem can be remedied using PMILU(0), which perturbs the diagonal elements in advance
and compensates the diagonal elements for the fill-in values dropped during an incomplete
factorization.

The PMILU(0) factorization algorithm is shown in Algorithm 8. In this chapter, the diagonal
element aii updated through factorization is represented by ãii to distinguish it from the original
diagonal elements. Consequently, line 5 in Algorithm 8 is rewritten as aik = aik/ãkk, and line
14 is rewritten as ãii = aii − s.

In this factorization, the element aij is updated if two conditions are satisfied. As one
condition, aij ̸= 0, and as the other, there exists k < i, j such that aik ̸= 0 and akj ̸= 0. For a
matrix A obtained from a 2D 5-point stencil, these conditions are satisfied when all three nodes
i, j, and k are adjacent to each other or i = j.

In a two-dimensional square grid, there are no combinations of nodes that satisfy the former
condition, and thus the non-diagonal element aij , where i ̸= j, is not updated and becomes

ãij = aij (i ̸= j). (6.2.4)

That is, in PMILU(0) factorization, only the diagonal elements for which the latter condition
is satisfied are updated. Note that, even when ordering is applied, only the diagonal element is
updated because the conditions in which i is adjacent to j and k, and j is adjacent to i and k,
cannot be satisfied in a two-dimensional square grid (see Lemma 1).

The PMILU(0) factorization can also be regarded as the MILU(0) factorization for the
matrix A + E, where E = ζh2diag(A). In addition, the fill-in r̂, which is dropped when
updating the (i, j) element, is aik = aik/ãkk from line 5 of Algorithm 8, and thus from line 8
becomes

r̂ij =
aikakj
ãkk

. (6.2.5)

Dropping this fill-in is equivalent to conducting an exact LU factorization of the matrix with
r̂ added to the (i, j) element of A + E. In addition, subtracting the fill-in for the same row
element from aii is the equivalent to applying an exact LU factorization for a matrix with

r̂ii = −
∑
j ̸=i

r̂ij (6.2.6)

added to the (i, j) element of A+ E.
Define a matrix R̂ = (r̂ij), where r̂ij is defined by Eqs. (6.2.5) and (6.2.6) for elements

with a fill-in and diagonal elements, respectively, and r̂ij = 0 otherwise. Then, the PMILU(0)

81

factorization is the computation of an upper triangular matrix U and a lower triangular matrix
L, whose diagonal elements have a value of 1 satisfying

A+ E + R̂ = LU. (6.2.7)

Here, U has the same sparse pattern as the upper triangular part of A, the diagonal element of
which is ãii, and the non-diagonal element is aij , which is the same as that of A.

The coefficient matrix A of the model problem (6.1.3) is a symmetric matrix. When A
is a symmetric matrix, the ILU factorization becomes an IC factorization. In this case, from
lik = aik/ãkk = aki/ãkk, we obtain

L = (DU)⊤, (6.2.8)

where D = diag(1/ã11, 1/ã22, . . . , 1/ãnn). Eq. (6.2.7) is thus rewritten as

A+ E + R̂ = U⊤DU, (6.2.9)

where D is a diagonal matrix with positive diagonal elements, and R̂ is a symmetric matrix.
Consequently, the eigenvalues of R̂ are real, and from Eq. (6.2.6) and r̂ij ≥ 0(i ̸= j),

|r̂ii| =
∑
j ̸=i

|r̂ij | (6.2.10)

holds for any row i of R̂. Here, r̂ii ≤ 0, and thus R̂ is a semi-negative definite matrix. In
addition, if we define K = U⊤DU and R = E + R̂, we have

A = K −R. (6.2.11)

The following theorem holds for the order of the eigenvalues.

Theorem 5. (Theorem 2.1 of Gustafsson [3]) Assume A to be a matrix given by the model
problem (6.1.3). In addition, R = R̂ + E, A = K − R, assuming R̂ as a semi-negative definite
matrix, and E as a diagonal matrix of diagonal element size O(h−2). Further, assume that
there is a constant c that is independent of h, and for any vector v ∈ Rn,

0 ≤ −(R̂v,v) ≤ 1

1 + ch
(Av,v). (6.2.12)

Then,
λmax(K

−1A)

λmin(K−1A)
= O(h−1). (6.2.13)

Based on a theoretical discussion of this theorem and experiments, it was observed that
the condition number O(h−1) is obtained for the model problem (6.1.3) if it is preconditioned
through PMIC(0) factorization with natural ordering.

6.3 Experimental Analysis

6.3.1 Effect of Perturbation Factor

In PMILU(0)/PMIC(0), there is an option for the value of the perturbation factor ζ, which
determines how much the diagonal elements are perturbed. For Poisson equations, it has been

82

pointed out that the convergence conditions are insensitive to this parameter [5]. By contrast, a
good estimate ζ ≈ 2π2 has been obtained by extending the condition with the smallest condition
number obtained through Fourier analysis in the case of periodic boundary conditions to include
Dirichlet conditions [96]. These analyses have been applied for natural ordering. Therefore, in
this section, we explore the relationship between BRB ordering and the perturbation factor.

From the example obtained from the model problem (6.1.3) of unknown number n = 1024 for
32×32 grid points (N = 32), we evaluated the spectral condition number κ(K−1A) = λmax/λmin,
the Frobenius norm ∥R∥F [53] of the remainder matrix R = A−LU , and the iteration number
of the CG method. The eigenvalues were obtained using the eigs function in MATLAB. The
algorithm of the CG method is shown in Algorithm 3. For the number of iterations, we used
the right-hand vector obtained from the solution u(x, y) = x(x − 1)y(y − 1)exy, and obtained
the number of iterations needed for the relative error norm to reach a value of less than 10−8.
Herein, we also show the result of ILU(0), which does not compensate dropped elements to
diagonal elements.

The minimum eigenvalues are shown in Table 6.1, the maximum eigenvalues are shown in
Table 6.2, and the condition numbers are shown in Table 6.3. In the natural ordering results,
the value of ζ achieving the smallest condition number is lower than π2, as shown in [96]. When
ζ > 0, the smaller the perturbation, the closer the minimum eigenvalue is to 1, and the larger the
perturbation, the smaller the minimum and maximum eigenvalues. Furthermore, the smaller
the perturbation, the larger the increase in the maximum eigenvalue owing to the increase in
the number of blocks, and the condition number rapidly deteriorates. This is not as pronounced
in the unperturbed MILU(0) case with ζ = 0. Therefore, when the BRB ordered block number
is larger, a larger ζ has the best condition, and in the case of node RB with equal block and
node numbers, the ILU(0) condition number is smaller than the best value of ζ for PMILU(0).

The numbers of iterations are shown in Table 6.4. Overall, the number of iterations tends
to be small when the condition number is small. However, a rapid increase in the number
of iterations owing to the zero pivot when ζ = 0 does not appear in the condition number.
Conversely, a rapid deterioration in the condition number when ζ > 0 and ζ is small is not
that remarkable in terms of the number of iterations. In addition, the phenomenon in which
the number of iterations becomes smaller under conditions with a large number of blocks and
ζ ≥ 100π2 cannot be predicted from the condition number.

The Frobenius norms ∥R∥F of R are shown in Table 6.4. Here, ζ for which ∥R∥F is small,
tends to be larger than ζ for which the condition number becomes smaller. Moreover, a rapid
deterioration in the condition number when ζ > 0 and ζ is small is not reflected in ∥R∥F . By
contrast, the phenomenon by which the number of iterations becomes smaller under conditions
with a large number of blocks and ζ ≥ 100π2 can be predicted from the reduction of ∥R∥F .

83

T
ab

le
6.
1:

P
er
tu
rb
at
io
n
fa
ct
or

ζ
an

d
m
in
im

u
m

ei
ge
n
va
lu
es

λ
m
in

fo
r
b
lo
ck

p
ar
ti
ti
on

N
B
×
N

B
.

ζ
0

0.
01

0.
25

π
2

0.
5π

2
π
2

2
π
2

5π
2

10
π
2

15
π
2

20
π
2

25
π
2

40
π
2

50
π
2

10
0
π
2

20
0
π
2

IL
U
(0
)

N
B
:1

0.
33

0
1.
00

0
0.
80

3
0.
59

2
0.
37

5
0.
21

4
0.
09

3
0.
04

8
0.
03

3
0.
02

5
0.
02

0
0.
01

2
0.
01

0
0.
00

5
0
.0
0
2

0
.0
3
0

N
B
:2

0.
32

3
1.
00

0
0.
79

8
0.
59

0
0.
37

4
0.
21

4
0.
09

3
0.
04

8
0.
03

3
0.
02

5
0.
02

0
0.
01

2
0.
01

0
0.
00

5
0
.0
0
2

0
.0
2
9

N
B
:4

0.
31

6
1.
00

0
0.
80

1
0.
59

5
0.
37

7
0.
21

5
0.
09

4
0.
04

8
0.
03

3
0.
02

5
0.
02

0
0.
01

2
0.
01

0
0.
00

5
0
.0
0
2

0
.0
2
7

N
B
:8

0.
30

4
1.
00

0
0.
80

7
0.
60

4
0.
38

4
0.
21

8
0.
09

4
0.
04

8
0.
03

3
0.
02

5
0.
02

0
0.
01

2
0.
01

0
0.
00

5
0
.0
0
2

0
.0
2
5

N
B
:1
6

0.
28

4
1.
00

0
0.
82

5
0.
62

8
0.
39

8
0.
22

4
0.
09

5
0.
04

9
0.
03

3
0.
02

5
0.
02

0
0.
01

2
0.
01

0
0.
00

5
0
.0
0
2

0
.0
2
0

N
B
:3
2

0.
23

1
1.
00

0
0.
88

9
0.
71

9
0.
44

5
0.
23

8
0.
09

8
0.
04

9
0.
03

3
0.
02

5
0.
02

0
0.
01

2
0.
01

0
0.
00

5
0
.0
0
2

0
.0
1
2

T
ab

le
6.
2:

P
er
tu
rb
at
io
n
fa
ct
or

ζ
an

d
m
ax

im
u
m

ei
ge
n
va
lu
es

λ
m
a
x
fo
r
b
lo
ck

p
ar
ti
ti
on

N
B
×
N

B
.

ζ
0

0.
01

0.
25

π
2

0.
5π

2
π
2

2π
2

5π
2

10
π
2

15
π
2

20
π
2

25
π
2

40
π
2

50
π
2

10
0
π
2

20
0
π
2

IL
U
(0
)

N
B
:1

3.
48

9.
60

6.
12

4.
87

3.
73

2.
80

1.
91

1.
44

1.
24

1.
12

1.
03

0.
89

0.
83

0.
69

0.
52

1
.2
0

N
B
:2

5.
78

24
.5
9

12
.9
0

9.
43

6.
62

4.
57

2.
81

1.
97

1.
61

1.
40

1.
25

1.
00

0.
90

0.
69

0.
52

1
.2
4

N
B
:4

6.
36

14
9.
2

20
.7
2

12
.4
5

7.
60

4.
80

2.
82

1.
97

1.
61

1.
40

1.
25

1.
00

0.
90

0.
69

0.
5
2

1
.2
4

N
B
:8

9.
93

1.
2E

4
50

.1
7

25
.5
8

13
.2
4

7.
04

3.
27

1.
97

1.
63

1.
40

1.
25

1.
00

0.
90

0.
69

0.
52

1
.2
5

N
B
:1
6

18
.1
1

2.
7E

4
10

9.
7

55
.0
5

27
.7
0

14
.0
3

5.
81

3.
05

2.
12

1.
64

1.
37

1.
06

0.
94

0.
69

0.
52

1
.2
6

N
B
:3
2

26
.6
7

5.
4E

4
22

0.
9

11
0.
6

55
.4
2

27
.8
3

11
.2
8

5.
76

3.
91

2.
99

2.
43

1.
59

1.
31

0.
72

0.
5
2

1
.3
3

84

T
ab

le
6.
3:

P
er
tu
rb
at
io
n
fa
ct
or

ζ
an

d
sp
ec
tr
u
m

co
n
d
it
io
n
n
u
m
b
er
s
κ
(K

−
1
A
)
fo
r
b
lo
ck

p
ar
ti
ti
on

N
B
×
N

B
.

ζ
0

0.
01

0.
25

π
2

0.
5π

2
π
2

2π
2

5π
2

10
π
2

15
π
2

20
π
2

25
π
2

40
π
2

50
π
2

10
0
π
2

2
0
0
π
2

IL
U
(0
)

N
B
:1

10
.5

9.
6

7.
6

8.
2

9.
9

13
.1

20
.4

30
38

.1
45

.5
52

.5
71

.8
83

.9
13

8.
3

2
1
0
.3

3
9
.8

N
B
:2

17
.9

24
.6

16
.2

16
17

.7
21

.4
30

.1
40

.9
49

.5
57

63
.6

80
.7

90
.5

13
8.
3

2
1
0
.3

4
2
.9

N
B
:4

20
.1

14
9.
3

25
.9

20
.9

20
.1

22
.3

30
.1

40
.8

49
.5

56
.9

63
.6

80
.6

90
.5

13
8.
3

2
1
0
.3

4
5
.1

N
B
:8

32
.6

1.
1E

4
62

.2
42

.3
34

.5
32

.3
34

.7
40

.8
49

.9
57

.2
63

.7
80

.8
90

.5
13

8.
3

2
1
0
.3

5
0
.4

N
B
:1
6

6
3.
8

3.
0E

4
13

3
87

.6
69

.5
62

.7
60

.8
62

.5
64

.6
66

.6
69

.1
85

.8
94

.5
13

8.
2

2
1
0
.2

6
4
.6

N
B
:3
2

11
5.
4

5.
4E

4
24

8.
6

15
3.
9

12
4.
7

11
7.
1

11
5.
1

11
6.
5

11
8.
5

12
0.
4

12
2.
4

12
8

13
1.
4

14
5.
3

2
1
0
.2

1
1
0
.7

85

T
ab

le
6.
4:

P
er
tu
rb
at
io
n
fa
ct
or

ζ
an

d
it
er
at
io
n
n
u
m
b
er

fo
r
b
lo
ck

p
ar
ti
ti
on

N
B
×
N

B
.

ζ
0

0.
01

0.
25

π
2

0.
5π

2
π
2

2π
2

5π
2

10
π
2

15
π
2

20
π
2

25
π
2

40
π
2

50
π
2

10
0
π
2

20
0π

2
IL
U
(0
)

N
B
:1

25
25

23
22

22
23

27
31

34
37

39
45

48
61

74
3
5

N
B
:2

30
30

28
26

27
27

32
35

37
39

40
46

49
61

74
3
5

N
B
:4

46
45

36
32

31
31

33
35

38
39

41
46

49
61

74
3
6

N
B
:8

73
8

12
8

55
46

41
37

35
37

39
40

42
47

49
61

74
3
8

N
B
:1
6

14
12

25
5

95
76

62
53

46
44

44
4
3

44
48

50
61

74
4
2

N
B
:3
2

-
40

9
13

0
10

0
80

67
56

52
53

53
53

53
54

57
68

4
9

T
ab

le
6.
5:

P
er
tu
rb
at
io
n
fa
ct
or

ζ
an

d
re
m
ai
n
d
er

m
at
ri
x
n
or
m

∥R
∥ F

fo
r
b
lo
ck

p
ar
ti
ti
on

N
B
×
N

B
.

ζ
0

0.
01

0.
25

π
2

0.
5π

2
π
2

2
π
2

5
π
2

10
π
2

15
π
2

20
π
2

25
π
2

40
π
2

50
π
2

10
0
π
2

20
0π

2
IL
U
(0
)

N
B
:1

34
.2

34
.2

33
32

.2
30

.7
28

.3
22

.9
16

.6
13

.4
14

.1
17

.9
34

.8
47

10
7.
7

22
6.
5

1
2
.8

N
B
:2

34
.4

34
.4

33
.4

32
.6

31
.2

28
.9

23
.5

17
.1

13
.7

14
.2

17
.8

34
.5

46
.7

10
7.
4

22
6.
4

1
2
.9

N
B
:4

35
.5

35
.4

34
.6

33
.8

32
.4

30
.2

24
.8

18
.4

14
.7

14
.6

17
.7

33
.9

46
10

6.
9

22
6

1
3
.2

N
B
:8

37
.5

37
.5

36
.9

36
.3

35
.2

33
.2

28
21

.5
17

.2
15

.9
17

.8
32

.7
44

.6
10

5.
6

22
5

1
4
.2

N
B
:1
6

43
.3

43
.3

42
.9

42
.5

41
.7

40
.1

35
.6

29
.1

24
.1

20
.9

20
.3

30
.5

41
.6

10
2.
3

22
2.
7

1
7
.2

N
B
:3
2

-
68

.9
68

.6
68

.2
67

.5
66

.2
62

.3
56

.3
51

46
.6

43
.2

40
.5

44
.9

96
.3

21
6.
8

2
4
.5

86

6.3.2 Diagonal Element Size

As is shown by Eq. (6.2.4), for our model problem (6.1.3) the off-diagonal elements of the
PMIC(0) factorization are not updated from −1 of the original coefficient matrix. Hence,
Eq. (6.2.5) becomes

r̂ij =
1

ãkk
, (6.3.14)

and thus the element at the position corresponding to the fill-in of remainder matrix R is
the reciprocal of the diagonal element ãkk. It is necessary for the element at the position
corresponding to the fill-in of R to be less than or equal to (1 + ch)−1, as a sufficient condition
for the condition number of a matrix preprocessed based on Theorem 5 to be O(h−1). Under
natural ordering, this condition holds. To examine the degree to which this condition is satisfied
in cases of BRB ordering, in this section, we obtain ãii and compute the following:

ci =
ãii − [4− (Number of fill-ins)]

h
. (6.3.15)

The values of ãii and ci at node i are shown in Figs. 6.1 and 6.2. Here, 64 × 64 (N = 64),
32 × 32 (N = 32), and 16 × 16 (N = 16) grid points are used. In PMILU(0), the natural
ordering yields ci, independent of the grid size. In other words, the sufficient condition for the
condition number to be O(h−1) is satisfied based on the theory. In the block division of 2 × 2
and 4× 4, ci corresponding to the nodes located at the left and bottom ends of each red block
that are not at the periphery of the computational domain, shown in Fig. 6.1, is close to zero.
For the other nodes, however, the value of ci is close to the value under natural ordering.

In the diagonal element ãii corresponding to the node in the red block, the value of the row
corresponding to the lower-left node in the block in Fig. 6.1 is first calculated. The computed
value is then used to update the node values connected to the right and above the node. Because
of this ordered update, ãii is symmetric about the diagonal from the lower-left to the upper-right
of the computational domain.

The value of ãii for this diagonal node with a small number of blocks is shown in Fig. 6.3.
The horizontal axis of this graph is the diagonal node index, where the index of the diagonal
node to the lower-left of the computational domain is 1 and increases toward the upper-right.
In the graph, the results with a larger number of blocks are displayed in the foreground, and
thus only the points with the larger number of blocks are visible when the values are equal. As
shown by the ‘Block pattern’ in Fig. 6.1, all diagonal nodes are those on the diagonal of the
red block. Except for a few nodes from the bottom-left of each red block, the values are close
to those of the natural ordering with a 1× 1 block. The values of ãii in the red block near the
left or bottom edge, except for cases in which these edges are part of the boundary, show the
same pattern independently of the number of block divisions, and are the same if the relative
positions from the bottom-left of the block are the same. As a result, the smaller the number
of blocks, the larger the percentage of ãii that is close to the value of the natural ordering.

This similarity to natural ordering may be the reason why convergence close to natural
ordering is achieved when the number of block divisions is small. However, as the number of
divisions increases, the proportion of small ãii increases, and ci becomes close to 0 within most
of the area. This is considered the cause of deteriorating the convergence when the number of
block divisions is large.

87

0.0

4.0

2.0

0

30

15

N = 64 N = 32 N = 16 N = 64 N = 32 N = 16
Block

pattern
6

4
×

6
4

3

2
×

3
2

1

6
×

1
6

8

×
8

4

×
4

2
×

2

1

×
1

Block

pattern

Figure 6.1: Diagonal element sizes ãii and ci of A factorized with PMILU(0) (ζ = 2π2).

0.0

4.0

2.0

0

100

50

N = 64 N = 32 N = 16 N = 64 N = 32 N = 16
Block

pattern

6
4

×
6

4

3
2

×
3

2

1
6

×
1

6

8
×

8

4
×

4

2

×
2

1
×

1

Block

pattern

Figure 6.2: Diagonal element sizes ãii and ci of A factorized with ILU(0).

88

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15

Diagonal node index

N = 16

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30

Diagonal node index

N = 32

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60

Diagonal node index

N = 64

Figure 6.3: PMILU(0) (ζ = 2π2) factorized ãii corresponding to diagonal node i.

6.3.3 Eigenvalue Spectrum

As shown in Chapter 3, convergence depends not only on the condition number but also on the
eigenvalue spectrum. Therefore, in this section, we compute all eigenvalues of the preconditioned
matrix K−1A and investigate the eigenvalue spectrum.

Herein, an example obtained from a model problem (6.1.3) with unknowns n = 1024 on a
32×32 grid point is described. The eigenvalues of K−1A were obtained using the eigs function
in MATLAB.

For the perturbation factor ζ, we use ζ = 2π2 as described in Section 6.3.2. Figs. 6.4 and
6.5 show the eigenvalues, arranged in ascending order, under the assumption that the ‘λ index’
of the smallest eigenvalue is 1, and the ‘λ index’ of the largest eigenvalue is 1024.

Fig. 6.4 shows the eigenvalue spectrum of PMILU(0) with ζ = 2π2. Because the increase
in the maximum eigenvalue owing to the increase in the number of blocks is greater than the
increase in the minimum eigenvalue, the condition number increases with the number of blocks.
In Section 6.3.2, we show that the distribution of ãii with a small number of blocks, such as
2×2 and 4×4 blocks, is close to that of the natural ordering of a 1×1 block with the exception
of some of the red blocks. The eigenvalue distribution under these conditions also shows the
same trend as the 1× 1 block except for some large isolated eigenvalues.

Fig. 6.5 shows the eigenvalue spectrum of ILU(0). In ILU(0), both the minimum and
maximum eigenvalues are small, and no large eigenvalues appear even with a large number of
blocks. Because the change with an increase in the number of blocks is small, the degradation
is less than that of PMILU(0) under the condition in which the numbers of nodes and blocks
are similar.

PMILU(0) is characterized by a small number of extreme values on both sides and a gradual
change between them under natural ordering. A small number of large eigenvalues appear in
the case of a low block count ordering. Such extreme eigenvalues have a smaller effect on
convergence. In the CG method, their effect is removed by an additional number of iterations
that is equal to the number of isolated large eigenvalues [37]. For block numbers of 16 × 16
or higher, the eigenvalues on the maximum side form several populations. In PMILU(0) and
ILU(0), with nodal RB ordering, where the number of blocks is equal to the number of nodes,

89

0

5

10

15

20

25

30

0 200 400 600 800 1000

32×32 blocks

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000

e
ul

a
v

n
e

gi
E

λ
1×1 block

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000

2×2 blocks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000

4×4 blocks

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

e
ul

a
v

n
e

gi
E

λ

8×8 blocks

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

16×16 blocks

Figure 6.4: Eigenvalue spectrum of K−1A with PMILU(0) (ζ = 2π2).

a nearly clustering population of eigenvalues close to eigenvalue 1 appears, and the number
of iterations increases slowly with respect to the condition number. Convergence is improved
through an eigenvalue cluster formation, and this phenomenon occurs for a number of blocks
close to the number of nodes. These features of the eigenvalue spectrum that lead to better
convergence are thought to be one of the reasons for the excellent convergence of BRB ordering.

The eigenvalue spectrum of K−1A with the PMILU(0) factorization for the same three
problem sizes as in Section 6.3.2, N = 64, N = 32 and N = 16, is shown in Fig. 6.6. When
the number of blocks is small relative to the problem size, i.e., the number of nodes per block
is large, the spectrum does not change significantly with the number of blocks. By contrast,
when this quantity is small, conditions with the same number of nodes per block show results
with a similar trend. These results are similar to the trend shown in Figs. 4.4, 4.5, and 5.12,
where the number of iterations increases when the number of nodes per block becomes almost
the same small value in the comparison with different problem sizes.

6.4 Conclusion

In this chapter, we examined the convergence acceleration effects of a preconditioner using
a combination of BRB ordering and PMILU(0). Under the ordering condition with a large
number of blocks, the number of discarded fill-ins increases, and thus the diagonal elements
become smaller owing to the larger compensation in PMILU(0). Therefore, in such a case,
the convergence is better under the condition of large perturbations to the diagonal elements.

90

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

32×32 blocks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

e
ul

a
v

n
e

gi
E

λ
1×1 block

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

2×2 blocks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

4×4 blocks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

e
u l

a
v

n
e

gi
E

λ

8×8 blocks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

16×16 blocks

Figure 6.5: Eigenvalue spectrum of K−1A with ILU(0).

Except for cases in which the perturbation coefficient is extremely large, the condition number,
remainder matrix norm, and number of iterations all become larger as the number of blocks
increases. The perturbation coefficient with the best convergence differs depending on the
number of blocks.

A sufficient condition for the condition number to be O(h−1) is that the element corre-
sponding to the fill-in position of the remainder matrix is less than or equal to (1+ ch)−1. This
condition is satisfied for all nodes under natural ordering. For BRB ordering with a small num-
ber of blocks, these values are close to those of natural ordering except at the left and bottom
boundaries of the red blocks. Although the condition number increased with the increase in the
number of blocks, the eigenvalue spectrum showed favorable properties for a fast convergence,
such as isolated extreme eigenvalues and clustering. These features partially explain the high
convergence acceleration effect of BRB ordering.

91

0.1

1

10

100

0 500 1000 1500 2000 2500 3000 3500 4000

λ
e

ul
a
v

n
e

gi
E

N= 64

0.1

1

10

0 200 400 600 800 1000

λ
e

ul
a
v

n
e

gi
E

N= 32

0.1

1

10

0 50 100 150 200 250

λ
e

u l
a
v

n
e

gi
E

λ index

N=16

Figure 6.6: Eigenvalue spectrum of K−1A with PMILU(0) (ζ = 2π2) for problem size N .

92

Chapter 7

Conclusion

In this thesis, we describe a method for the acceleration of the solution-finding process of the
Poisson equation, which accounts for a significant amount of the computational time associated
with the application of plasma simulations to industrial manufacturing equipment using the PIC
method. Our strategy is to use the Krylov subspace method preconditioned by the MILU(0)
factorization as a solver and to parallelize it on a GPU.

In Chapter 4, we observed that combining a BRB ordering strategy and a unperturbed
MILU(0) could yield a zero pivot and presented a necessary and sufficient condition for such
a zero pivot to occur. The condition was defined as the presence of an inner black block such
that all neighboring red blocks in the direction of decreasing x, y, and z are inner blocks. If
i is the largest node number in the interior black block for which this condition is satisfied,
then the value of the i-th pivot of the unperturbed MILU(0) factorized coefficient matrix is
zero. To alleviate this problem, it is useful to add perturbations to the diagonal elements of
the coefficient matrix in advance or to relax the amounts be added to the diagonal elements to
compensate for the fill-in, which is dropped during factorization.

We present a theorem that states that introducing perturbations and relaxations solves the
problem of zero pivots and that pivots remain above a certain threshold for at least a certain class
of matrices. Numerical results have shown that the convergence of the unperturbed MILU(0)
preconditioner deteriorates in the presence of node i, which satisfies the requirement for the
occurrence of a zero pivot. The results of the numerical experiments further showed that
introducing perturbation or relaxation not only suppresses the deterioration of convergence
under in the conditions in which a zero-pivot occurs but also improves convergence over the
unperturbed MILU(0) even in cases with no zero pivots.

In BRB ordering, the number of iterations required to satisfy a given convergence criterion
tends to increase with the increase in the number of isochromatic blocks corresponding to the
degree of parallelism. Numerical experimentation using a multicore CPU with the order of 10
parallel blocks showed relatively little effect of deterioration of convergence owing to the increase
in the number of blocks. A simplified parallelization performed by inserting OpenMP directives
into the loop has been shown to provide computational acceleration efficiencies. In the con-
vergence study, the combination of the perturbed or relaxed MILU(0) (PMILU(0)/RMILU(0))
factorization and the BRB ordering led to high convergence rates of up to 103 blocks in the
105 − 106 node problem. Therefore, this approach was considered promising as a prerequisite
in massively parallel environments and was considered as an option.

In Chapter 5, we implemented a parallel linear equation solver for GPU hardware based

93

on the RMILU(0) preconditioner and BRB ordering. We used OpenACC directives for GPU
parallelization for high maintainability and made several optimizations to fully exploit the
performance capabilities of GPU.

In BRB ordering, the number of iterations is smaller than in nodal RB ordering. However,
there is a problem associated with adjacent threads accessing data at remote locations, because
as parallel computation is performed for each block, which contains multiple rows and columns
when the elements of the matrix are stored in the row or column direction. When manipu-
lating sparse matrix data on a GPU, this problem results in slower data access because the
memory throughput of the GPU hardware cannot be fully utilized. Consequently, in simple
parallelization, nodal RB ordering is faster despite the large number of iterations required, be-
cause neighboring rows are computed in parallel. To solve this problem, we realize coalesced
access by sorting the data to enable adjacent threads to access consecutive data. In addition,
a mixed-precision iterative solver that uses single precision for preconditioner was implemented
as a preconditioner using single-precision to reduce the amount of data and utilize the fast
single-precision computational capabilities of the GPU.

To optimize the parameters, we examined the effects of the block partitioning condition
of the BRB ordering and the size of the parallel granularity of OpenACC. Balancing the two
requirements of moderate block size to retain the convergence speed and a sufficiently large
number of blocks to assign tasks to a large number of threads in a GPU resulted in blocks in
multiples of 32 per SM, greater than or equal to 32 × 6. The optimal value of the calculation
granularity gang-worker-vector set in the OpenACC directive clause is not only dependent on
the performance of GPU and the processing content in the loop but also on the problem size.

These implementation techniques and optimizations dramatically improved the computa-
tional speed, and the results showed that the proposed method was able to obtain solutions
faster than major GPU-based iterative solver libraries.

A further investigation of the convergence of the perturbed MILU(0) preconditioning with
BRB ordering using the model problem has been presented in Chapter 6. When the spectral con-
dition number of the preconditioned coefficient matrix is O(h−1), it exhibits good convergence.
In the case of a small number of blocks, a sufficient condition for satisfying this requirement
of the diagonal element being O(h−1) was almost achieved. Increasing the number of blocks
resulted in an increase in the number of elements for which the condition was not satisfied;
however, the eigenvalue spectrum exhibited characteristics which accelerated convergence, such
as isolated maximum and minimum eigenvalues, clustering, and gaps. We considered them to
be the reason the reason behind the good convergence of BRB ordering over a wide range of
degree of parallelism.

Herein, we mainly focused on the experimental analysis of a preconditioner, targeting
NVIDIA GPU of the Kepler and Pascal generations with superior double-precision arithmetic
performance. As the next step in this research, we intend to proceed with a theoretical analysis
of the characteristics of the preconditioner. Furthermore, additional implementations must be
developed variations to accommodate accelerator devices with various specifications, including
less than single precision. These may be expected to lead to better insights into the properties of
other ordering strategies and preconditioners, and accelerate the solution of linear simultaneous
equations to broaden the capability of practical simulation models.

94

Acknowledgment

I would like to express my gratitude to my advisor, Professor Yusaku Yamamoto, for his guid-
ance in conducting this research. I am deeply grateful to Professors Hidenori Ogata, Nobito
Yamamoto, Tadashi Yamazaki, Tetsu Narumi, and Tomoya Tatsuno for serving on the review
committee. I would also like to give a special acknowledgment to Professor Takeshi Iwashita,
Hokkaido University, for his valuable comments and advice as the originator of the block red-
black ordering. Furthermore, I would like to thank Professor Shuhei Kudo and all of my
colleagues in the Yusaku Yamamoto’s laboratory at the University of Electro-Communications
for their continuous support and suggestions.

95

Bibliography

[1] Charles K. Birdsall. Particle-in-cell charged-particle simulations, plus Monte Carlo col-
lisions with neutral atoms, PIC-MCC. In IEEE Transactions on Plasma Science, 19(2),
pp. 65–85, 1991.

[2] V. Vahedi, G. DiPeso, C. K. Birdsall, M. A. Lieberman, T. D. Rognlien. Capacitive RF
discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical
techniques. In Plasma Sources Science and Technology, 2(4), pp. 261–272, 1993.

[3] Ivar Gustafsson. A class of first order factorization methods. In BIT Numerical Mathe-
matics, 18(2), pp. 142–156, 1978.

[4] Ivar Gustafsson. Modified incomplete Cholesky (MIC) methods. In Evans, D. (ed.),
Preconditioning methods: analysis and applications, Gordon and Breach, New York, pp.
265–294, 1983.

[5] Anne Greenbaum. Iterative methods for solving linear systems. Society for Industrial and
Applied Mathematics, 1997.

[6] Elizabeth Cuthill, James McKee. Reducing the bandwidth of sparse symmetric matrices.
In ACM Proceedings of the 24th National Conference, pp. 157–172, 1969.

[7] Alan George. Nested dissection of a regular finite element mesh. In SIAM Journal on
Numerical Analysis, 10(2), pp. 345–363, 1982.

[8] Alan George. An automatic one-way dissection algorithm for irregular finite element
problems. In SIAM Journal on Numerical Analysis, 17(6), pp. 740–751, 1980.

[9] Wing-Man Chan, Alan George. A linear time implementation of the reverse Cuthill-McKee
algorithm. In BIT Numerical Mathematics, 20(1), pp. 8–14, 1980.

[10] Loyce M. Adams, James M. Ortega. A multi-color SOR method for parallel computation.
In proceedings 1982 Internat. Conf. on Parallel Processing, pp. 53–56, 1982.

[11] Yousef Saad. Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadel-
phia, 2003.

[12] Victor Eijkhout. Introduction to High Performance Scientific Computing, Lulu.com, 2013.

[13] Takeshi Iwashita, Masaaki Shimasaki. Block red-black ordering: A new ordering strategy
for parallelization of ICCG method. In International Journal of Parallel Programming,
31(1), pp. 55–75, 2003.

96

[14] Takeshi Iwashita, Masaaki Shimasaki. Block red-black ordering for parallelized ICCG
solver with fewer synchronization points. In IPSJ Journal, 43(4), pp. 893–904, 2002.

[15] Takeshi Iwashita, Yuuichi Nakanishi, Masaaki Shimasaki. Comparison criteria for parallel
orderings in ILU preconditioning. In SIAM Journal on Scientific Computing, 26(4), pp.
1234–1260, 2005.

[16] N. Guessous, O. Souhar. The effect of block red-black ordering on block ILU preconditioner
for sparse matrices. In Journal of Applied Mathematics and Computing, 17(1), pp. 283–
296, 2005.

[17] Victor Eijkhout. Beware of unperturbed modified incomplete factorizations. In B. Bel-
gium, R. Beauwens and P. de Groen (Eds.), Proc. of the IMACS International Symposium
on Iterative Methods in Linear Algebra, 1992.

[18] Eric J. Hallman, Kristian C. Beckwith, Peter Stoltz. Performance and scalability of
parallel PIC and fluid codes on Xeon Phi based supercomputers. In 2014 IEEE 41st
International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International
Conference on High-Power Particle Beams (BEAMS), IEEE, 2014．

[19] Viktor K. Decyk, Singh V. Tajendra . Particle-in-cell algorithms for emerging computer
architectures. In Computer Physics Communications, 185(3), pp. 708–719, 2014.

[20] Steven W. D. Chien, Jonas Nylund, Gabriel Bengtsson, Ivy B. Peng, Artur Podobas,
Stefano Markidis. sputniPIC: an Implicit Particle-in-Cell Code for Multi-GPU Systems.
In 2020 IEEE 32nd International Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD), pp. 149–156. IEEE, 2020.

[21] A. Vapirev, J. Deca, G. Lapenta, S. Markidis, I. Hur. Initial results on computational
performance of Intel many integrated core, sandy bridge, and graphical processing unit
architectures: implementation of a 1D c++/OpenMP electrostatic particle-in-cell code.
In Concurrency and Computation: Practice and Experience, 27(3), pp. 581–593, 2015.

[22] Akemi Shioya, Yusaku Yamamoto. The danger of combining block red-black ordering
with modified incomplete factorizations and its remedy by perturbation or relaxation. In
Japan Journal of Industrial and Applied Mathematics, 35(1), pp. 195–216, 2018.

[23] Akemi Shioya, Yusaku Yamamoto. Block red-black MILU (0) preconditioner with relax-
ation on GPU. In Parallel Computing, 103, 102760, 2021.

[24] 塩谷 明美, 山本有作. ブロック赤黒順序付けされた摂動付き修正不完全分解前処理の収束性
解析. 応用数理学会 2021年度年会, D1-1-4, 2021.

[25] M. Lobet, E. d’Humires, M. Grech, C. Ruyer, X. Davoine, L. Gremillet. Modeling of
radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic
laser-plasma interaction. In Journal of Physics: Conference Series, 688, 012058. IOP
Publishing, 2016.

[26] T. Umeda, Y. Omura, T. Tominaga, H. Matsumoto. A new charge conservation method
in electromagnetic particle-in-cell simulations In Computer Physics Communications,
156(1)，pp. 73–85，2003．

97

[27] L. Garrigues, B. Tezenas du Montcel, G. Fubiani, F. Bertomeu, F. Deluzet, J. Narski.
Application of sparse grid combination techniques to low temperature plasmas particle-
in-cell simulations. I. Capacitively coupled radio frequency discharges. In Journal of
Applied Physics, 129(15), 153303, 2021.

[28] Yohei Miyake, Hiroshi Nakashima. Low-cost load balancing for parallel particle-in-cell
simulations with thick overlapping layers. In 2013 12th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, pp. 1107–1114. IEEE,
2013.

[29] D. Wnderlich, S. Mochalskyy, I. M. Montellano, A. Revel. Review of particle-in-cell
modeling for the extraction region of large negative hydrogen ion sources for fusion. In
Review of Scientific Instruments, 89(5), 052001, 2018.

[30] J. Deca, G. Lapenta, R. Marchand, S. Markidis. Spacecraft charging analysis with the
implicit particle-in-cell code iPic3D. In Physics of Plasmas, 20(10), 102902, 2013．

[31] Ahmad Nizam, Hideyuki Usui, Yohei Miyake. The Particle-In-Cell simulation on LEO
spacecraft charging and the wake structure using EMSES. In Journal of Advanced Simu-
lation in Science and Engineering, 6(1), pp. 21–31, 2019.

[32] C. H. Shon, J. K. Lee. Modeling of magnetron sputtering plasmas. In Applied Surface
Science, 192(1-4), pp. 258–269, 2002.

[33] Ivan Kolev, Annemie Bogaerts. Detailed numerical investigation of a dc sputter mag-
netron. In IEEE Transactions on Plasma Science, 34(3), pp. 886–894, 2006.

[34] Ivan Kolev, Annemie Bogaerts. Numerical study of the sputtering in a dc magnetron.
In Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 27(1), pp.
20–28, 2009.

[35] MPICH, http://www.mpich.org/.

[36] Marcin Turek, Marcin Brzuszek, Juliusz Sielanko. An MPI-based parallel code for high
performance 3-D particle-in-cell ion source plasma simulation. In Annales Universitatis
Mariae Curie-Sklodowska, sectio AI-Informatica, 6(1), pp. 137–148, 2007.

[37] Owe Axelsson. A class of iterative methods for finite element equations. In Computer
Methods in Applied Mechanics and Engineering, 9(2), pp. 123–137, 1976.

[38] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Don-
garra, Victor Eijkhout, Roldan Pozo, Charles Romine, Henk van der Vorst. Templates for
the solution of linear systems: building blocks for iterative methods. Society for Industrial
and Applied Mathematics, 1994.

[39] Paul Concus, Gene H. Golub, Dianne P.O’Leary. A generalized conjugate gradient method
for the numerical solution of elliptic partial differential equations. In Sparse Matrix Com-
putations, Academic Press, pp. 309–332, 1976.

[40] David Kratzer, Seymour V. Parter, Michael Steuerwalt. Block splittings for the conjugate
gradient method. In Computers & Fluids, 11(4), pp. 255–279, 1983.

98

[41] Owe Axelsson, Gunhild Lindskog. On the eigenvalue distribution of a class of precondi-
tioning methods. In Numerische Mathematik, 48(5), pp. 479–498, 1986.

[42] Are Magnus Bruaset. A survey of preconditioned iterative methods. Pitman Research
Notes in Mathematics Series, vol. 328. Lonman Scientific and Technical: Harlow, Esssex,
England, 1995.

[43] Todd Dupont, Richard P. Kendall, H. H. Rachford, Jr.. An approximate factorization pro-
cedure for solving self-adjoint elliptic difference equations. In SIAM Journal on Numerical
Analysis, 5(3), pp. 559–573, 1968.

[44] Owe Axelsson. Bounds of eigenvalues of preconditioned matrices. In SIAM Journal on
Matrix Analysis and Applications, 13(3), pp. 847–862, 1992.

[45] Tony F. Chan. Fourier analysis of relaxed incomplete factorization preconditioners. In
SIAM Journal on Scientific and Statistical Computing, 12(3), pp. 668–680, 1992.

[46] Henk A. van der Vorst. High performance preconditioning. In SIAM Journal on Scientific
and Statistical Computing, 10(6), pp. 1174–1185, 1989.

[47] OpenACC, http://www.openacc.org/.

[48] Message Passing Interface Forum, http://www.mpi-forum.org/.

[49] Joshua Payne, Dana Knoll, Allen McPherson, William Taitano, Luis Chacon, Guangye
Chen, Scott Pakin. Computational co-design of a multiscale plasma application: A process
and initial results. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, IEEE, pp. 1093–1102, 2014.

[50] Xiaocheng Liu, Ziming Zhong, Kai Xu. A hybrid solution method for CFD applications
on GPU-accelerated hybrid HPC platforms. In Future Generation Computer Systems, 56,
pp. 759–765, 2016.

[51] Alfredo Buttari, Markus Huber, Philippe Leleux, Théo Mary, Ulrich Ruede, Barbara
Wohlmuth. Block Low Rank Single Precision Coarse Grid Solvers for Extreme Scale
Multigrid Methods. https://hal.archives-ouvertes.fr/hal-02528532, 2020.

[52] A. B. Alves, E. N. Asada, A. Monticelli. Critical evaluation of direct and iterative methods
for solving Ax= b systems in power flow calculations and contingency analysis. In Pro-
ceedings of the 21st International Conference on Power Industry Computer Applications.
Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No. 99CH36351),
IEEE, pp. 15–21, 1999.

[53] Iain S. Duff, and Gerard A. Meurant. The effect of ordering on preconditioned conjugate
gradients. In BIT Numerical Mathematics, 29(4), pp. 635–657, 1989.

[54] Shun Doi, Takumi Washio. Ordering strategies and related techniques to overcome the
trade-off between parallelism and convergence in incomplete factorizations. In Parallel
Computing, 25(13-14), pp. 1995–2014, 1999.

99

[55] Robert Bridson, Wei-Pai Tang. Comparison criteria for parallel orderings in ILU precon-
ditioning. In SIAM Journal on Scientific Computing, 22(5), pp. 1527–1532, 2001.

[56] Takeshi Iwashita, Hiroshi Nakashima, Yasuhito Takahashi. Algebraic block multi-color
ordering method for parallel multi-threaded sparse triangular solver in ICCG method. In
2012 IEEE 26th International Parallel and Distributed Processing Symposium, IEEE, pp.
474–483, 2012.

[57] Gaku Ishii, Yusaku Yamamoto, Takeshi Takaishi. Acceleration and Parallelization of a
Linear Equation Solver for Crack Growth Simulation Based on the Phase Field Model.
Mathematics, 9(18), 2248, 2021.

[58] Victor Eijkhout. Analysis of parallel incomplete point factorizations. In Linear Algebra
and Its Applications, 154, pp. 723–740, 1991.

[59] NVIDIA, CUDA Toolkit, https://developer.nvidia.com/cuda-toolkit.

[60] The Khronos Group Inc, OpenCL, https://www.khronos.org/opencl/.

[61] Lucas Grillo, Ruymn Reyes, Francisco de Sande. Performance evaluation of OpenACC
compilers. In 2014 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, IEEE, pp. 656–663, 2014.

[62] Stefan Rosenberger, Gundolf Haase. Effective OpenACC Parallelization for Sparse Matrix
Problems. SFB-Report No. 2017–008, 2017.

[63] Olav Aanes Fagerlund, Takeshi Kitayama, Gaku Hashimoto, Hiroshi Okuda. Effect of
GPU communication-hiding for SpMV using OpenACC. In International Journal of Com-
putational Methods, 13(02), 1640011, 2016.

[64] Jeff Bolz, Ian Farmer, Eitan Grinspun, Peter Schroder. Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. In ACM Transactions on Graphics (TOG), 22(3), pp.
917–924, 2003.

[65] Rudi Helfenstein, Jonas Koko. Parallel preconditioned conjugate gradient algorithm on
GPU. In Journal of Computational and Applied Mathematics, 236(15), pp. 3584–3590,
2012.

[66] Maxim Naumov. Parallel solution of sparse triangular linear systems in the preconditioned
iterative methods on the GPU. In Technical Report NVR-2011, NVIDIA Corp., Westford,
MA, USA, 2011.

[67] Jiaquan Gao, Ronghua Liang, Jun Wang. Research on the conjugate gradient algorithm
with a modified incomplete Cholesky preconditioner on GPU. In Journal of Parallel and
Distributed Computing, 74(2), pp. 2088–2098, 2014.

[68] Weifeng Liu, Ang Li,,Jonathan Hogg, Iain S. Duff, Brian Vinter. A synchronization-
free algorithm for parallel sparse triangular solves. In European Conference on Parallel
Processing, Springer, Cham, pp. 617–630, 2016.

100

[69] Daniel Erguiz, Ernesto Dufrechou, Pablo Ezzatti. Assessing sparse triangular linear sys-
tem solvers on GPUs. In 2017 International Symposium on Computer Architecture and
High Performance Computing Workshops (SBAC-PADW), IEEE, pp. 37–42, 2017.

[70] Pingfan Li, Xuhao Chen, Zhe Quan, Jianbin Fang, Huayou Su, Tao Tang, Canqun Yang.
High performance parallel graph coloring on GPGPUs. In 2016 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW), IEEE, pp. 845–854,
2016.

[71] Maxim Naumov, Patrice Castonguay, Jonathan Cohen. Parallel Graph Coloring with
Applications To the Incomplete-LU Factorization on the GPU. In Technical Report NVR-
2015-001, NVIDIA Corp., Westford, MA, USA, 2015.

[72] Edmond Chow, Hartwig Anzt, Jennifer Scott, Jack Dongarra. Using Jacobi iterations and
blocking for solving sparse triangular systems in incomplete factorization preconditioning.
In Journal of Parallel and Distributed Computing, 119, pp. 219–230, 2018.

[73] Jiaquan Gao, Yu Wang, Jun Wang, Ronghua Liang. Adaptive optimization modeling
of preconditioned conjugate gradient on multi-GPUs. In ACM Transactions on Parallel
Computing (TOPC), 3(3), pp. 219–230, 2016.

[74] Hartwig Anzt, Thomas K. Huckle, Jurgen Brackle, Jack Dongarra. Incomplete sparse
approximate inverses for parallel preconditioning. In Parallel Computing, 71, pp. 1–22,
2018.

[75] Marco Ament, Gunter Knittel, Daniel Weiskopf, Wolfgang Strasser. A parallel precondi-
tioned conjugate gradient solver for the Poisson problem on a multi-GPU platform. In
2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.
IEEE, 2010.

[76] Yan Chen, Xuhong Tian, Hui Liu, Zhangxin Chen, Bo Yang, Wenyuan Liao, Peng Zhang,
Ruijian He, Min Yang. Parallel ILU preconditioners in GPU computation. In Soft Com-
puting, 22(24), pp. 8187–8205, 2018.

[77] NVIDIA, cuBLAS, https://developer.nvidia.com/cublas.

[78] NVIDIA, cuSPARSE, https://developer.nvidia.com/cusparse.

[79] MAGMA, http://icl.cs.utk.edu/magma/.

[80] ViennaCL, http://viennacl.sourceforge.net/.

[81] Ginkgo, https://ginkgo-project.github.io/.

[82] PETSc, https://www.mcs.anl.gov/petsc.

[83] Takeshi Iwashita, Senxi Li, and Takeshi Fukaya. Hierarchical block multi-color ordering: A
new parallel ordering method for vectorization and parallelization of the sparse triangular
solver in the ICCG method. In CCF Transactions on High Performance Computing, 2(2),
pp. 84–97, 2020.

101

[84] Hiroto Tadano, Tetsuya Sakurai. On single precision preconditioners for Krylov sub-
space iterative methods. In International Conference on Large-Scale Scientific Computing,
Springer, Berlin, Heidelberg, pp. 721–728, 2007.

[85] Yvan Notay. Flexible conjugate gradients. In SIAM Journal on Scientific Computing,
22(4), pp. 1444–1460, 2000.

[86] Judith A. Vogel. Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems.
In Applied Mathematics and Computation, 188(1), pp. 226–233, 2007.

[87] Jie Chen, Lois C. McInnes, Hong Zhang. Analysis and practical use of flexible BiCGStab.
In Journal of Scientific Computing, 68(2), pp. 803–825, 2016.

[88] Azamat Mametjanov, Daniel Lowell, Ching-Chen Ma, Boyana Norris. Autotuning stencil-
based computations on GPUs. In 2012 IEEE international conference on cluster comput-
ing, pp. 266–274, 2012.

[89] Daniel Lowell, Jeswin Godwin, Justin Holewinski, Deepan Karthik, Chekuri Choudary,
Azamat Mametjanov, Boyana Norris, Gerald Sabin, P. Sadayappan, Jason Sarich. Stencil-
aware GPU optimization of iterative solvers. In SIAM Journal on Scientific Computing,
35(5), pp. S209–S228, 2013.

[90] Kazuya Matsumoto, Yasuhiro Idomura, Takuya Ina, Akie Mayumi, Susumu Yamada.
Implementation and performance evaluation of a communication-avoiding gmres method
for stencil-based code on GPU cluster. In The Journal of Supercomputing, 75(12), pp.
8115–8146, 2019.

[91] Jonathan Cohen, Patrice Castonguay. Efficient graph matching and coloring on the GPU.
In GPU Technology Conference, pp. 1–10, 2012.

[92] OpenBLAS: An optimized BLAS library, https://www.openblas.net/.

[93] Boost C++ Libraries, https://www.boost.org/.

[94] Edmond Chow, Aftab Patel. Fine-grained parallel incomplete LU factorization. In SIAM
Journal on Scientific Computing, 37(2), pp. C169–C193, 2015.

[95] OpenMPI, https://www.open-mpi.org/.

[96] Tony F. Chan, Howard C. Elman. Fourier Analysis of Iterative Methods for Elliptic
Problems. In SIAM Review, 31(1), pp. 20–49, 1989.

102

Appendix A

Convergence of Poisson Equation in
Other Time Steps of PIC Method

In Section 4.4.2, the Poisson equation obtained from the 1,000th time step of the PIC simulation
with the conditions shown in Section 4.4.1 was solved. In this appendix, we show the number of
iterations using the coefficient matrices and right-hand side obtained from 100th, 10,000th, and
30,000th time steps as input to the same solver. The electric susceptibility χ and the charge
density ρ in the Poisson equation (2.1.14) change with the progression of time steps. Therefore,
the coefficient matrix and the right-hand side vector that depend on χ and ρ are different for
each time step.

Figs. A.1 – A.3, Figs. A.4 – A.6 and Figs. A.7 – A.9 show the number of iterations required
for convergence at 100th step, 10,000th step and 30,000th step, respectively.

Figs. A.1, A.4 and A.7 are the results of unperturbed MILU(0) preconditioner under the
same conditions as Fig. 4.3. In these figures, the missing plots in graph (b) are the condi-
tions under which the calculation was terminated because the number of iterations exceeded
100,000. Figs. A.2, A.5 and A.8 are the results of using PMILU(0) preconditioner with the same
conditions as Fig. 4.4. Similarly, Figs. A.3, A.6 and A.9 are the results of using RMILU(0) pre-
conditioner with the same conditions as Fig. 4.5.

The number of iterations tested in each step, with the same parameters of incomplete factor-
ization and the same block partitioning condition, shows the same trend as that of the 1,000th
time step shown in Section 4.4.2.

103

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

s
n

o it
ar

et i f
o r

e
b

m
u

N
(a) (b)

Figure A.1: Number of blocks N and number of iterations with MILU(0) preconditioner at PIC
100th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

0

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oit
ar

eti f
o r

e
b

m
u

N

(a) (b)

Figure A.2: Number of blocks N and number of iterations with PMILU(0) preconditioner at
PIC 100th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

0

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oi t
ar

eti f
o r

e
b

m
u

N

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

(a) (b)

Figure A.3: Number of blocks N and number of iterations with RMILU(0) preconditioner at
PIC 100th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

104

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

s
n

o it
ar

et i f
o r

e
b

m
u

N
(a) (b)

Figure A.4: Number of blocks N and number of iterations with MILU(0) preconditioner at PIC
10,000th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

0

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oit
ar

eti f
o r

e
b

m
u

N

(a) (b)

Figure A.5: Number of blocks N and number of iterations with PMILU(0) preconditioner at
PIC 10,000th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oi t
ar

eti f
o r

e
b

m
u

N

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

(a) (b)

Figure A.6: Number of blocks N and number of iterations with RMILU(0) preconditioner at
PIC 10,000th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

105

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

s
n

o it
ar

et i f
o r

e
b

m
u

N
(a) (b)

Figure A.7: Number of blocks N and number of iterations with MILU(0) at PIC 30,000th step.
(a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

0

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oit
ar

eti f
o r

e
b

m
u

N

(a) (b)

Figure A.8: Number of blocks N and number of iterations with PMILU(0) preconditioner at
PIC 30,000th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

0

10

20

30

40

50

60

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

s
n

oi t
ar

eti f
o r

e
b

m
u

N

0

20

40

60

80

100

120

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

(a) (b)

Figure A.9: Number of blocks N and number of iterations with RMILU(0) preconditioner at
PIC 30,000th step. (a) 59× 59× 29 grid (h = 0.001) and (b) 119× 119× 59 grid (h = 0.0005).

106

Appendix B

Performance of GPU
Implementation vs. Theoretical
Peak

In this appendix, we compare the performance of the GPU implementation shown in Chapter
5 with the theoretical peak. For comparison, we use the performance of the PBiCGSTAB
iterative loop, which has the largest impact on the computation time, executed on GP100. The
time required for data transfer between the CPU and GPU, data reordering, and PMILU(0)
factorization are not included in the results shown here.

Table B.1 shows the number of floating-point operations and data requirements for the
PBiCGSTAB iterative loop on a GP100 with the specifications shown in Table 5.1. The FLOP
time (single/double peak) in the table is the number of floating point operations multiplied by
the reciprocal of the peak FLOPS for each precision. Peak performance (mixed) is the sum of
the number of single and double precision floating point operations divided by the sum of the
peak FLOP times. Similarly, Performance (mixed) is the sum of the number of floating-point
operations divided by the Elapsed time. The ratio of that to Peak performance (mixed) is
shown as Rate of peak performance. For all test problem sizes, the actual execution time is far
from it estimated from the peak operation performance alone, and is not compute bound. By
contrast, the data transfer rate reaches a value close to the peak as the size of the test problem
increases. Therefore, the performance of loading and storing of data on the GPU determines
the computation speed.

107

T
ab

le
B
.1
:
E
x
ec
u
ti
on

of
P
B
iC

G
S
T
A
B

it
er
at
io
n
lo
op

on
G
P
10

0.

59
×
59

×
29

gr
id

11
9
×
11

9
×
59

gr
id

23
9
×
23

9
×
11

9
gr
id

E
la
p
se
d
ti
m
e

1
.7
09

×
10

−
2
s

7
.4
13

×
10

−
2
s

7.
14

2
×
10

−
1
s

F
lo
at
in
g
p
oi
n
t
op

er
at
io
n
(s
in
gl
e)

15
2,
20

6,
06

8
1,
61

1,
14

5,
72

8
18

,9
86

,4
42

,5
52

F
L
O
P

ti
m
e
(s
in
gl
e
p
ea
k
)

1
.4
78

×
10

−
5
s

1
.5
64

×
10

−
4
s

1.
84

3
×
10

−
3
s

F
lo
at
in
g
p
oi
n
t
op

er
at
io
n
(d
ou

b
le
)

22
2,
22

7,
70

6
2,
26

3,
77

9,
58

6
26

,4
90

,8
71

,6
78

F
L
O
P

ti
m
e
(d
ou

b
le

p
ea
k
)

4
.2
74

×
10

−
5
s

4
.3
53

×
10

−
4
s

5.
09

4
×

10
−
3
s

P
ea
k
p
er
fo
rm

an
ce

(m
ix
ed

)
65

10
G
F
L
O
P
S

65
49

G
F
L
O
P
S

65
56

G
F
L
O
P
S

P
er
fo
rm

an
ce

(m
ix
ed

)
21

.9
1
G
F
L
O
P
S

52
.2
7
G
F
L
O
P
S

63
.6
8
G
F
L
O
P
S

R
at
e
of

p
ea
k
p
er
fo
rm

an
ce

0.
33

66
%

0.
79

82
%

0.
97

13
%

M
em

or
y
tr
an

sf
er

F
P
32

25
7,
57

2,
58

0
2,
68

5,
98

4,
88

0
31

,6
18

,6
30

,1
20

M
em

or
y
tr
an

sf
er

F
P
64

19
7,
09

8,
76

1
2,
00

6,
23

8,
53

1
23

,4
09

,3
63

,9
99

M
em

or
y
tr
an

sf
er

in
te
ge
r

17
1,
93

1,
85

2
1,
71

2,
84

2,
90

2
20

,0
50

,5
55

,4
82

R
eq
u
ir
ed

d
at
a

19
2.
8
G
B
/s

45
3.
9
G
B
/s

55
1.
6
G
B
/s

R
at
e
of

p
ea
k
st
re
am

in
g
b
an

d
w
id
th

26
.8
9%

63
.3
0%

76
.9
3%

108

Appendix C

Avoiding Indirect References Using
Grid Structures

In Chapter 5, we showed an implementation using indirect references based on a sparse matrix
format. BRB ordering is based on the fact that the grid structure is known, and by using it,
indirect references can be avoided. In this appendix, we show an example of storing the data
for our test problem in an array without indirect references.

Listing C.1 shows an example of rewriting the forward substitution for the red block shown
in Listing 5.2 to get the data in the array without indirect references.

The nxblock and nyblock are the number of blocks along each axial direction, x and y,
respectively, and are known from the grid structure. The nxnode and nynode are the number
of nodes along the x and y axes, respectively, and are also known from the grid structure.
From these values, the block indices ibx, iby and ibz in each axis direction of the block
under calculation are first obtained. Next, the number of nodes ixmax and iymax in each axial
direction of the block under calculation is calculated, which is used to calculate the position of
the data to be used in the array x.

The iterations of the proposed method are bandwidth-bound, as shown in Appendix B.
Therefore, reducing the amount of loading from the integer array, which accounts for 20% of
the memory transfer, has the potential to speed up the computation.

However, in arrays targeted for indirect reference avoiding, the data is block-ordered for
parallelization and stored in such a way that coalesced access is achieved when computing in
block parallel. This makes the code to calculate the position of the data in the array complicated.
Thus, there is also the possibility that the increase in time due to the additional operations
outweighs the decrease in time due to the omission of loading the integer array for indirect
references. The computation time for the forward substitution for the red block, which is
rewritten to Listing 5.2 and the other conditions are the same as in Chapter 5, is 40% larger
for test question size (a) and 4% larger for (b), while it is 8% smaller for (c).

The forward substitution for the black block, the backward substitution for the red block,
and SpMV require a reference to x corresponding to a node contained in a block other than
the block that contains itself. Therefore, the calculation to find the location of x to be loaded
is more complicated. The computation time for theforward substitution for the black block,
which finds the position of x by the same method as for the red block, is 65% larger for (a),
26% larger for (b), and 10% larger for (c).

109

For both of the two types of forward substitutions, the time advantage of loading the x

position data from the array over computing position becomes smaller as the problem size and
the number of nodes in the block increase. Therefore, optimizing this indirect-reference omission
method for large problem sizes may result in shorter solution times.

110

Listing C.1: Example of revising Listing 5.2 to no indirect reference

do iblock = 1, lastblock

x(iblock +1) = real(y(iblock +1))

rownum = nblock * (iend(iblock) - istart(iblock)) + iblock

ibz = int(iblock /(nxblock*nyblock /2.0) &

- (1.0/(nxblock*nyblock /1.5))) + 1

if(mod(ibz ,2).ne.0) then

iby = (int((iblock -ceiling ((ibz -1)*(nxblock*nyblock /2.0))) &

/(nxblock /2.0) -(1.0/(nxblock /1.5)))+1)

else

iby = (ceiling ((iblock -ceiling ((ibz -1)*(nxblock*nyblock /2.0))) &

/(nxblock /2.0)))

endif

if(mod(ibz ,2).ne.0) then

ibx = ceiling ((iby -1)*(nxblock /2.0))

else

ibx = int((iby -1)*(nxblock /2.0))

endif

ibx = (iblock - ceiling ((ibz -1)*(nxblock*nyblock /2.0)) - ibx &

)*2 - mod(ibz+iby+1,2) * 1

iymax = nynode/nyblock

if((mod(nynode ,nyblock)-iby +1).gt.0) then

iymax = iymax + 1

endif

ixmax = nxnode/nxblock

if((mod(nxnode ,nxblock)-ibx +1).gt.0) then

ixmax = ixmax + 1

endif

do i = (iblock + nblock), rownum , nblock

s = real(y(i+1))

k = jl(i)

if((i-nblock*iymax*ixmax).gt.0) then

p0 = i-nblock*iymax*ixmax

else

p0 = 0

endif

s = s-alr(k)*x(p0+1)

if((i-nblock*ixmax).gt.0) then

p1 = i-nblock*ixmax

else

p1 = 0

endif

s = s-alr(k+tempnblock) *x(p1+1)

if((i-nblock).gt.0) then

p2 = i-nblock

111

else

p2 = 0

endif

s = s-alr(k+2* tempnblock)*x(p2+1)

x(i+1) = s

enddo

enddo

112

