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　劣線形漸進型アルゴリズムとグラフ上の
FPTアルゴリズムの研究

千葉恭平

内容梗概

アルゴリズム研究者の伝統的な基本合意事項として、多項式時間アルゴリズム

が存在する問題は効率的に解けるとされてきた。有用な応用を持つ問題の多く

がNP困難問題であり、P , NPの前提の元では多項式時間アルゴリズムは存在

しないので、多項式時間の近似アルゴリズムが多く開発されてきた。しかし近

年の計算機の性能の飛躍的な向上に伴って、扱うデータの量が古い常識では考

えられないほど大規模になり、データの全てを読み込むだけでもかなりの時間

を必要とするようになってきた。そのため多項式時間アルゴリズムを用いたと

しても現実的には膨大な計算時間を要することがあり、従来の計算モデルから

のパラダイムシフトが起きている。我々はこのパラダイムシフトを「劣線形時

間パラダイム」と呼び、ビックデータの解析手法として、線形時間アルゴリズム

や劣線形時間アルゴリズムを開発することの重要性が今後ますます高まってい

くと予想している。この問題に対処するため、我々は二つの技法に取り組んだ。

一つ目は劣線形漸進型アルゴリズムである。まず、厳密アルゴリズムとは入

力を全て読み込んだ上で厳密解を出力するアルゴリズムである。次に、劣線形

時間アルゴリズムとはデータの一部を読み込むことで解を出力する確率的アル

ゴリズムで、今世紀に入ってから盛んに研究されるようになり、これまでに数多

くの研究が存在するアルゴリズムである。そして、漸進型アルゴリズムとは多

項式時間近似アルゴリズムを用いて、最初は少ない計算時間から粗い近似解を

求め、計算時間の増加に伴って段々と精度の良い近似解を出力するアルゴリズ

ムである。既存の漸進型アルゴリズムの研究は、個別の問題を具体的に解く多

項式時間近似アルゴリズムを漸進型化するものであり、確率的アルゴリズムや

劣線形時間アルゴリズムを考慮した研究は存在せず、一般的な変換法を示した

成果は無い。この漸進型アルゴリズムを劣線形時間にまで拡張したものを劣線

形漸進型アルゴリズムと呼ぶ。多項式時間アルゴリズムは入力をすべて読みこ

んでから動作することを前提としているが、劣線形漸進型アルゴリズムは徐々

に読み込むデータ量を増やしながら結果の精度を段々と上げていくという手法

であるため、大規模データに対してもデータの読み込み量に応じた精度の解を



出力することができる。我々は任意の劣線形時間アルゴリズムと厳密アルゴリ

ズムの組に対して劣線形時間アルゴリズムを構成できることを証明し、劣線形

漸進型アルゴリズムの枠組みと理論基盤を構成した。

二つ目は固定パラメータ容易（FPT）アルゴリズムである。FPTアルゴリズ

ムとは計算時間があるパラメータに対してのみ指数的であり、入力の大きさに

対しては多項式的であるようなアルゴリズムである。FPTアルゴリズムはパラ

メータの値が小さい場合に問題が効率的に解けるため、入力が大きい場合も問

題を扱いやすくなっている。我々は実験計画法に重要な応用を持つグラフ理論の

組合せ最適化問題、具体的には与えられたグラフの全ての辺を最小数のクリー

クで被覆する問題を扱った。クリークとは誘導部分グラフが完全グラフである

ような頂点集合である。この時、クリーク同士の辺上での重なり合いを許し、さ

らに元のグラフからの食み出しも許すような被覆を考える。この問題は有限射

影平面やブロックデザインやスクールガールの問題の自然な拡張になっており、

食み出しを考慮することがこれらの応用に対して重要な意味を持つ。例えば n

個のアイテムをいくつかの実験試行で比較したいとき、同時に比較できるアイ

テムは最大でもm個で、比較しなければならないアイテムの組が与えられてい

る場合、最小の試行回数を見つけることがこの問題として形式化される。この

際、比較されても比較されなくても良い組が食み出しに相当している。我々は

この問題を広義辺被覆と名付けた。既存研究では、食み出しを考慮した結果は

存在しない。本研究では k = 3の場合について考え、広義 K3辺被覆問題がNP

完全であることを証明し、二種類の FPTアルゴリズムを構成した。一つ目は与

えられたグラフG = (V, E)に対して、Gに含まれる K3の数を k個した場合の

O( |V | |E | + 2k |E |)時間アルゴリズムであり、もう一つは、木幅 tの木分解が与

えられた場合のO(2{2(t + 1)(t + 2)}t2n)時間のアルゴリズムである。
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Abstract
Traditionally, for a given problem, if a polynomial-time algorithm exists, the problem

is described as being “efficiently” solvable. For this reason, polynomial-time algo-

rithms have been developed for many problems. Moreover, for NP-hard problems,

which are believed to be unsolvable in polynomial time, our practical goal has been

to find polynomial-time approximation algorithms. In recent years, however, as the

performance of computers has increased drastically, the amount of data has become

unimaginably large, and a paradigm shift from the traditional computational model

has occurred. This is because the amount of data is so enormous that it takes a lot

of time even just to read the whole data. We call this paradigm shift the “sublinear

computation paradigm,” and expect that it will become increasingly important to de-

velop linear and sublinear-time algorithms. To address this problem, we have worked

on two techniques in this research.

The first technique is the sublinear progressive algorithms. A sublinear-time

algorithm is an algorithm that outputs a solution by reading a portion of the data.

The idea was given in the 1990s and many research work have been done particularly

in this century. A progressive algorithm outputs an approximate solution in a short

time, and then gradually improves the accuracy of the results as time progresses. We

extend this idea to sublinear-time algorithms and we call them sublinear progressive

algorithms. A sublinear progressive algorithm is an algorithm that outputs a solution,

by reading a small amount of data at first, updates the accuracy of the solution with

every reading of the input, and finally outputs the exact solution. A polynomial-time

algorithm, on the contrary, is basically supposed to work after reading all the inputs.

A sublinear progressive algorithm, however, outputs some solutions with reading

only a constant-sized portion of the input, and hence it is expected to output solutions

in a very short time even for large data. Although some progressive algorithms have

been known in the context of polynomial-time algorithms, they are polynomial-time

algorithms that solve individual problems, and there is no research that considers

progressive algorithms for probabilistic or sublinear-time algorithms. We give a



theoretical framework of sublinear progressive algorithms and present Sublinear

Progressive Algorithm Theory (SPA Theory, for short), which enables us to make

a sublinear progressive algorithm for any property that has both a constant-time

algorithm and an exact algorithm (an exponential time one is allowed) without losing

any computation time in the big-O sense. This provides a theoretical foundation for

sublinear progressive algorithms.

The second technique is fixed-parameter tractable (FPT) algorithms. An FPT

algorithm runs in exponential time only for some parameters, and polynomial for the

size of the input. This algorithm solves the problem efficiently for small values of

the parameters and makes the problem easier to handle even for large inputs. In this

research, we construct an FPT algorithm for a combinatorial optimization problem

that has important applications in the design of experiments. Especially, we consider

a problem of covering the edges of a given graph with a minimum number of cliques.

We allow cliques to overlap and the “spilling-out” of a clique from the edges of

the graph. We call this problem the Kk edge cover problem in a wide sense. This

problem is a common extension of block design and schoolgirl problems. Allowing

for spilling-out is useful for those applications. For example, suppose that we would

like to compare n items in multiple experimental trials, the maximum number of

items that can be compared simultaneously is k, and the pairs of items that must be

compared are given by a graph. In this case, finding the minimum number of trials

is formalized as this problem. In the previous researches, there are many results that

consider problems of covering vertices and edges with a minimum number of cliques.

However, there are no theoretical results that take spilling-out into account. In this

research, we consider the case of k = 3, prove that it is NP-complete, and construct an

FPT algorithm: (1) for a given graph G = (V, E), where k is the number of K3s in G,

there exists an O( |V | |E | + 2k |E |)-time algorithm, and (2) given a tree-decomposition

of width t, there is an O(22(t+1)(t+2)t2 |V |)-time algorithm.
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Chapter 1 Introduction
As a traditional basic consensus among algorithm researchers, linear-time algorithms

have been regarded as the fastest algorithms. However, with the remarkable devel-

opment of information systems and database technologies, we face a paradigm shift

from the traditional computational models because of the increasing amount of data

that should be handled. It is called the “sublinear computation paradigm,” which was

proposed in the academic research project "Foundations of Innovative Algorithms for

Big Data (ABD14)" in Japan [94]. Even polynomial time algorithms may take a huge

amount of time in reality when dealing with big data that was unthinkable according

to old common sense. Hence, in computer science, the study of analysis methods for

big data is one of the most important issues.

1.1 Property Testing and Sublinear-Time Algorithms
Algorithms that work by reading all of the data are necessarily polynomial time or

superpolynomial time algorithms. Certainly, it is necessary to read all of the input for

calculating an exact solution, but we have cases where it is not necessary to read all of

the input for getting an approximate solution. If the exact solution can be obtained by

reading part of the input, then there is waste in the input representation. From now on,

we assume that there is no waste in the input representation. Various approximation

algorithms have been studied, and among them, sublinear-time algorithms, which

compute by reading only a part of the data, and in particular constant-time algorithms

which only look at a constant-sized part of the data no matter how large the data is,

are beginning to attract attention. Since these algorithms do not read all of the input,

they are necessarily probabilistic algorithms, and the solutions may contain errors. In

other words, it is an attempt to obtain a solution from a part of data by allowing two

kinds of ambiguity: approximation parameter and fault probability. The most studied

framework in sublinear-time algorithms is property testing. Property testing is a

relaxation of the decision problem, which probabilistically outputs a yes-no answer

as to whether a given input satisfies the desired property or is far from the property.

Property testing was initially presented by Blum, Ludy, and Rubinfeld [22].

They constructed algorithms to test monotonicity, linearity, and other properties of
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functions. Later, Rubinfeld and Sudan formulated the concept of property testing [96].

They introduced the idea of the distance between an input function and the property,

and constructed algorithms to test whether the input satisfies the property or is far

from the property. They conducted research on algebraic properties such as multi-

linearity and low-degree polynomials. In addition, Alon et al. conducted a property

testing of graphs using Szemerédi’s regularity lemma [9]. They used Szemerédi’s

regularity lemma to obtain a polynomial time algorithm that find a subgraph that is

not k-colorable or k-colorable by changing (adding or deleting) at most ϵn2 (ϵ > 0)

edges on n−vertex graph [104]. As an extension of this work, Goldreich, Goldwasser,

and Ron made algorithms for property testing of graphs [59]. They constructed a

framework on dense graph models for graphs with many edges, i.e., the adjacency

matrix representation is valid. They introduced the notion of distance between the

input graph and the property, that is, the input is ϵ-far from the property if the

changing (addition or delection) of ϵn2 edges in the input graph does not satisfy the

property. They presented constant-time algorithms for k-coloring, ρ-clique, ρ-cut,

and ρ-bisection. In this dense graph model, it is proved that monotone property1 [13]

and hereditary property2 [12] property are constant-time testable. Later, these proofs

were extended and the necessary and sufficient conditions for testable properties in

the dense graph model were clarified [11].

On the other hand, there are some properties that are often established in sparse

graphs such as connectivity and planarity. In dense graphs, the graph is almost

always connected and non-planar. In order to consider these properties, another

model handling sparse graphs has been introduced. This graph model was introduced

and examined by Goldreich and Ron as the bounded degree model [60]. It has been

proved that cycle-freeness [60], k-edge connectivity [110], and minor-closedness3

[20] are constant-time testable. Regarding property testing in specific classes of

graphs, it has been proved that arbitrary properties can be tested in constant time

for forests [80], outerplanar graphs [15], hyperfinite graphs (see Definition 23 in

1 A property of a graph is called monotone if it is closed under removal of edges and vertices.
2 A property of a graph is called hereditary if it is closed with respect to induced subgraphs.
3 A property of a graph is called minor-closed if it is closed under removal of edges/vertices and

edge contraction.
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Chapter 2) [89], and hierarchical scale-free graphs (see Definition 31 in Chapter 2)

[66].

1.2 Progressive Algorithms
A progressive algorithm outputs a tentative solution in the middle of calculating the

exact solution of the problem, and updates the accuracy of the solution. On the other

hand, an exact algorithm outputs the exact solution of a problem. For some problems,

exact algorithms require much time (e.g. exponential time) and we may need faster

approximation algorithms. Even if the exact algorithm runs in polynomial time, we

sometimes need faster ones. For example, let us consider the case when we need

to immediately respond to a sudden request. Specifically, route searching problem

and emergency evacuation planning problems, there are often situations where the

situation changes from time to time and we want to find an approximate solution

immediately, even if it is not the optimal solution. You may not respond immediately

if you use exact algorithms to deal with big data. You want to get an immediate

solution, even if it is an approximate result. If you can get an approximate solution

immediately, you will be able to meet the request. After that, if you have extra time,

then it is desirable to take time to find a better solution and finally the best one.

Ideally, a method can increase accuracy gradually as time elapses. This means that

the computation time to output each approximate solution get longer and longer with

each output. This is the progressive algorithm, specifically, it is capable of outputting

a sequence of solutions satisfying a monotonically decreasing function.

Progressive algorithms were proposed in the application form of ABD14. Later,

the same term, progressive geometric algorithms, was proposed by Alewijnse et al. at

SoCG 2014 [8]. They showed how to combine the (1 + ϵ )-approximation algorithm

with the exact algorithm to obtain an efficient progressive algorithm. In particular,

they gave a progressive geometric algorithm that computes convex hulls and computes

popular places from trajectory data. After this, progress algorithms were proposed for

problems including. group Steiner tree search [81], sorting in the external memory

model [84], Euclidean minimum spanning tree [85], Huffman coding and the im-

provement of convex hulls and its extension to 3D [44], the closest pair problem [86],

and the weighted interval scheduling problem [95]. All of them require polynomial

4



time even to output the first approximation solution. This is because these algorithms

read all of the input at the first step of the algorithm.

There is no research on progressive algorithms for probabilistic algorithms and

sublinear-time algorithms before our research. It is a natural idea to consider a

progressive algorithm that outputs a solution by reading a part of the input. Then

we can say that the algorithm is progressive if it outputs solutions whose accuracy

becomes better and better according to the amount of the input read by the algorithm.

We call such algorithms sublinear progressive algorithms [39].

1.3 Sublinear Progressive Algorithms
A sublinear progressive algorithm is an algorithm that initially computes an approxi-

mate solution from a small amount of data, and gradually updates the accuracy of the

solution by reading more data. Although this idea may be considered to be similar to

the known progressive algorithms, it is not true. Because all of the known progressive

algorithms read the whole input at first, that is, they are based on the techniques of lin-

ear or superlinear algorithms. On the other hand, our sublinear progressive algorithms

use sublinear-time algorithms, which read only sublinear-sized part of the input. For

this reason, it is not possible to directly use the techniques presented for the known

progressive algorithms and a completely new framework and theorems are required

to establish the theory of sublinear progressive algorithms. We start with explanation

how to formulate sublinear progressive algorithms. In addition, we explain some

other known ideas similar to sublinear progressive algorithms and explain the differ-

ences between them. We introduce a brief overview of the methods resulting from

these considerations. The method of constructing a sublinear progressive algorithm

in this dissertation is a technique of constructing a progressive algorithm by com-

bining a constant-time algorithm and an exact algorithm. The sublinear progressive

algorithms presented in this work satisfy the following conditions.

• The computation time to output a solution with a given accuracy is a constant

multiple of the computation time of the original constant-time algorithm.

• The total computation time is a constant multiple of the computation time of the

original exact algorithm.

This means that the computation time loss of the sublinear progressive algorithm
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compared to the original algorithms is at most a constant multiple. We prove that

there exists an ideal sublinear progressive algorithm that satisfies these conditions.

1.4 FPT Graph Algorithms
No polynomial time algorithm is known for any NP-complete of NP-hard problem

yet. The problem of determining whether it is possible to solve these problems in

polynomial time is called the P vs. NP problem and is one of the fundamental unsolved

problems in computer science. A known exact algorithm to compute NP-complete

or NP-hard problems requires exponential time. However, there are problems that

can be computed in time polynomial in the size of an input but exponential in some

parameter k. Then, if k is small, those problems can be solved in polynomial time for

the input size. Such an algorithm is called a fixed-parameter tractable (FPT) algorithm

because it can solve the problem efficiently when the parameters are fixed to small

values. The first systematic study of parameterized computational complexity was

done by Downey and Fellows [47]. For example, the most well-studied problem in

this area is the vertex cover problem. A vertex cover of a graph is a set of vertices

that includes at least one endpoint of every edge of the graph.

Problem Vertex Cover

Instance: A graph G = (V, E), a positive integer k ≥ 1.

Question: Does G have a vertex cover of size at most k?

It is well known that the vertex cover problem is NP-complete. For this problem,

many FPT algorithms have been developed, and these algorithms have been improved

and speeded up. The computation time of the best algorithm is O(kn + 1.28k ) [17,

31, 34, 35, 91]. In terms of parameterized computational complexity, enumeration

[48] and kernelization [1] of solutions have also been studied. Kernelization of the

problem and depth-bounded search trees are used to speed up FPT algorithm [90].

The problem has been studied on planar graphs [5, 7, 28]. An FPT algorithm that

works fast enough for practical use with large inputs is developed and experimentally

evaluated [2, 6, 33].

Since each combinatorial optimization problem has a very different setting, a

specialized FPT algorithm is required for each problem. Hence, it is unlikely that the

existing methods can be applied directly, and new problems require their own FPT

6



algorithms. However, it is important to note that not every problem in NP has an FPT

algorithm. For example, there is an O(2k n2) algorithm for vertex cover, but there is

no O(no(k)) algorithm for independent set under the assumption that FPT , W [1].

Keeping this in mind, we have considered two FPT algorithms for a combinatorial

optimization problem that has important applications in Design of Experiments.

1.5 Design of Experiments
Design of experiments is the study (field) of designing efficient experimental methods.

It is closely related to school girl problem [78], block design [29, 97, 106], and graph

theory [45]. In particular, the application of block design to design of experiments

has been well studied [42, 102, 103]. We consider the following problem.

Problem 1. There are several samples and machines. Each sample can only be

evaluated relatively. The number of samples that machines can hold is fixed. You

have to compare several combinations several times. If the number of samples is a,

the number of machines is b, the number of samples the machine can hold is c, and the

required number of comparisons between each pair of items is d, what combination

minimizes the number of experiments?

This is one of the problems in the design of experiments and the block design

problem. This combinatorial optimization problem can be solved for a small number

of constant pairs, but as the number increases, it becomes difficult to find a solution.

No general solution or equation have been found. In graph theory, this problem can

be thought of as the problem of covering edges of a complete graph with cliques. 1

In an actual comparison experiment, however, there may be don’t-care pairs that are

allowed not to be compared. This corresponds to the problem of allowed to cover

pairs of vertices that do not have edges in the input graph, and this situation can

be represented by a “spilling-out” of cliques in the input graph. This is a very easy

extension, but no studies have been done to consider the “spilling-out” in the covering.

We call this problem the Kk edge cover problem in a wide sense and investigate the

computational complexity and FPT algorithms of this problem. This problem can be

regarded as a common generalization of the design of experiments and block design.

1 A clique is a subset of vertices of a graph such that every two vertices are adjacent.
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1.6 Our contributions
Sublinear Progressive Algorithms
The main purpose of this research is to develop a framework and theoretical basis

for sublinear progressive algorithms and to provide a theoretical proof for the com-

putation time and the accuracy of the solution. The sublinear progressive algorithm

constructed by the method in this dissertation is briefly described as follows. If there

exist a sublinear-time algorithm and an exact algorithm for a property, we can con-

struct a sublinear progressive algorithm, that is, given a number of outputs r ≥ 2 and

a time t ≥ 1 to get the first solution, the algorithm outputs r solutions {S1, S2, . . . , Sr }
(Sr is the exact solution) in sequence, satisfying the following conditions.

(1) S1 is obtained in time O(t).

(2) for any i ∈ {1, . . . , r } the worst-case computation time Ti for getting Si is

O(T∗(Si)), where T∗(Si) is the computation time to get Si by using the orig-

inal constant-time algorithm (if i ∈ {1, . . . , r − 1}) or the exact algorithm (if

i = r).

(3) R := maxi∈{2,...,r } Ti/Ti−1 is minimized in the big-O sense. It means that the

maximum and minimum values are at most a constant multiple.

(4) The ϵ i and pi are not the input, but the epsiloni and pi of the solution output by

the algorithm.

This means that the time to output {S1, . . . , Sr−1} (resp., Sr), using the original

sublinear-time algorithm (resp., the exact algorithm) from the beginning and the

time to output {S1, . . . , Sr−1} (resp., Sr) using the sublinear progressive algorithm are

the same in the big-O sense. This result enables the conversion of any sublinear-time

algorithm and any exact algorithm into a progressive algorithm. This bridges the gap

in computation time that existed between polynomial time algorithms and sublinear-

time algorithms and makes it possible to smoothly switch between algorithms. In

addition, we show the relationship between approximation parameter and fault proba-

bility for a given computation time. We clarify the relationship between computation

time and accuracy, and it is possible to run the algorithm up to the desired time-based

accuracy, which will improve the usefulness of sublinear-time algorithms.

FPT Graph Algorithms
We formulate the Kk edge cover problem in a wide sense, which has important
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applications to design of experiments and block design problems [37]. This is the

problem of edge covering by cliques in graph theory. The main purpose of this

research is to consider the “spilling-out” that was not considered in the past research

and we clarify the computational complexity of this problem. We start with small k,

because it contains an existing problem. A brief overview of the formulation is as

follows. For a given graph G = (V, E), we find the minimum number of 3-cliques

(K3s) that cover all edges of G. The minimum size of a K3 edge cover is denoted by

γ3(G). Multiple covering or covering one edge by more than one 3-clique is allowed.

Moreover, in this problem, we allow “spilling-out,” i.e., a set of three vertices {x, y, z}
can be covered by a 3-clique even if the induced subgraph by them is not a clique. We

call this problem the K3 edge cover problem in a wide sense. The problem is defined

as follows.

Problem K3-edge-cover-in-a-wide-sense (K3EC)

Instance: A graph G = (V, E), and a positive integer h ≥ 1.

Question: γ3(G) ≤ h?

For this problem we obtain the following results. Let C4 and C5 be the cycles of

length 4 and 5, respectively.

Theorem 2. K3EC is NP-complete even if graphs are restricted to planar, cubic, and

C4,C5-free as subgraphs (i.e., not restricted to induced ones).

The proof is done by a reduction from the maximum independent set problem on

planar and cubic graphs. Since it is NP-complete, we constracted two FPT algorithms

as follows.

Theorem 3. For K3EC, there is an O( |E | |V | + 2k |E |)-time algorithm, where k is the

number of 3-cliques in G.

Theorem 4. For K3EC, if a tree-decomposition of width t is given, there is an

O(22(t+1)(t+2)t2 |V |)-time algorithm.
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Chapter 2 Formulation of Sublinear-time Algorithms
for Sublinear Progressive Algorithms

2.1 Introduction
There is a lot of research being done using big data, for instance, evacuation plan

problems, protein function predictions by combinatorial rigidity, data structure, sparse

structure extraction, and data clustering theory using a bayesian approach. Require-

ments for computer algorithms are also evolving, particularly in the need for speed.

For example, in the past, polynomial-time algorithms were considered fast, but if

we applied an O(n2)-time algorithm on big data of a peta-byte scale or more, we

would have encountered problems with computational resources or the running time.

When we handle big data, even a linear-time algorithm may be too slow. Certainly,

in the era of big data, we need sublinear-time algorithms. If the computation time of

an algorithm is o(n), where n is the size of an input, then the algorithm is called a

sublinear-time algorithm. If the running time is constant (i.e., O(1)), then it is called

a constant-time algorithm, which is a special case of a sublinear-time algorithm.

This paradigm shift from traditional computation models is called the “sublin-

ear computation paradigm,” which was proposed in the academic research project

"Foundations of Innovative Algorithms for Big Data (ABD14) [94]" in Japan. Under

this paradigm, we have obtained many fruitful results [76, 77], especially the area of

constant-time algorithms. The paper [66] presents a constant-time “universal” tester

for a model of complex networks, and was selected as one of the best three work in

the final report of the project.

In this section, we survey sublinear-time, mainly constant-time, algorithms. In

this area, property testing is the most examined framework. Property testing prob-

abilistically distinguishes between an input having a predetermined property from

that the input is far from satisfying the property. Property testing was first presented

by Rubinfeld and Sudan [96] in 1992 in the context of program checking. The first

study that presented the notion of constant-time testability of combinatorial structures

(mainly graphs) was given by Goldreich, Goldwasser, and Ron [59], whose confer-

ence version appeared in 1995 (STOC’95). Many studies following their idea of

testability have appeared and the importance of this area is growing. See [21, 57, 58]
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for details.

This section is organized as follows. After presenting the basic notation and

terminology in Subsection 2.2, we show some tools useful in this area in Subsec-

tion 2.3. Basic techniques are explained by examples based on fundamental problems

in Subsection 2.4. Next, we present key results in this area, focusing mainly on

characterizations of constant-time testable properties in Subsection 2.5.

2.2 Notations and Terminology
Basic terms and symbols
In this section, a graph is simple, i.e., it has neither self-loop nor parallel edges, unless

otherwise stated. For simplicity, we omit rounding operators necessary to ensure that

all values of formulas such as
√

n are integers.

Let Z and R be the set of integers and real numbers, respectively. For any set of

real numbers R, R+ := {x ∈ R | x > 0} and R+0 := {x ∈ R | x ≥ 0}, e.g., Z+0 is the set

of nonnegative integers.

Oracles
A sublinear computation time means that an algorithm does not read the whole data

of an input except for the case where an input is very small (i.e., smaller than a

constant). Thus in other to consider sublinear-time algorithms, how to model the

problems is important. A sublinear-time algorithm gets the data of the input through

an oracle. If an algorithm makes a query, then an oracle gives a constant-sized

answer. For example, in the dense-graph model, which is one of the most studied

models, the edge-oracle is used: if an algorithm asks a pair of vertex ID’s, say (i, j)

then the oracle answers 1 if there is an edge between them, and 0 otherwise. Here,

we normally assume that the ID of vertices are given by a set of successive positive

integers from 1 to n, where n is the number of vertices and the algorithm knows n.

Through this oracle, algorithms get (partial) information of the input graph.

Since an algorithm reads only a part of the input, getting a correct result is basically

impossible. Thus we should introduce a relaxation. We explain “property testing,”

which is the most studied framework in subliner-time algorithms.

In this framework, we allow an approximation error: An algorithm for testing a

property accepts an input with high probability (say more than 2/3) if the input has
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the property, or rejects the input with high probability if it is far from having the

property. To treat this idea mathematically, we must define what a property is and

what being “far” means.

Distance and ϵ-farness
The above “far” is quantified by using a positive real number ϵ > 0: In order to explain

the farness, we use graphs as examples. For other types of inputs, e.g., functions,

grammars, strings, images, and figures, similar methods as graphs are used.

We introduce the distance between two instances (= inputs). We can define the

distance only between two instances of the same size, say N . Note that since an

input is represented by the answers of an oracle, N is equal to the number of possible

different queries, e.g., for the edge-oracle, N = n2, where n is the number of vertices.

1 In other words, if the inputs are graphs, then we define the distance only between

graphs with the same number of vertices. We call a graph that consists of n vertices

an n-graph.

The distance between two instances I and I′ of size N , denoted by dist(I, I′), is

defined as follows. Let ℓ(I, I′) be the number of distinct queries of the oracle whose

answers are different between I and I′, e.g., if I = G = (V, E) and I′ = G′ = (V, E′)

are n-graphs and the oracle is the edge-oracle, then ℓ(G,G′) is the number of pairs

(i, j) ∈ {1, . . . , n}×{1, . . . , n} such that (i, j) ∈ E∧(i, j) < E′ or (i, j) < E∧(i, j) ∈ E′.

See Fig. 1 for an example: ℓ(G,G′) = 2 since removing (1, 4) and adding (4, 6) are

necessary to make G equal to G′.

1 2

3 4

5 6

1 2

3 4

5 6

G G’

Figure 1: ℓ(G,G′) = 2.

1 If the input is an undirected simple graph, then it must be
(
n
2

)
= n(n − 1)/2. We normally use,

however, n2 for simplicity. Note that multiplying any constant has essentially no effect.
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Now,

dist(I, I′) :=
ℓ(I, I′)

N
. (1)

Next, we define the distance between an instance and a property. Before showing

the definition, we define properties. Let Π be the universal set of possible instances.

Let ΠN be the subset of instances of Π with size N . Clearly Π =
∪∞

i=1 Πi. A property

P of graphs is closed under isomorphism if G ∈ P and G and G′ is isomorphic,

G′ ∈ P as well. The intuitive meaning of two instances being isomorphic is that

they are the same except for their labels (IDs), e.g., when we consider graphs, two n-

graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if there is a bijection π : V → V ′

such that (i, j) ∈ E ⇔ (π(i), π( j)) ∈ E′. For an example of properties, a graph

property “planar” is defined by the set of planar graphs. Note that this is closed under

isomorphism. For any property P, Pi := P ∩ Πi.

The distance between an instance I and a property P is defined as follows. Let N

be the size of I. Then,

dist(I,P) :=


minI ′∈PN dist(I, I′) if PN , ∅,
∞ otherwise.

Let I and I′ be the instances and P be a property. For a positive real number

ϵ > 0, we say that I and I′ are ϵ-far if dist(I, I′) > ϵ ; otherwise, ϵ-close. We say that

I and P are ϵ-far if dist(I,P) > ϵ ; otherwise, ϵ-close.

Testers
We define testing algorithms, one-sided error, query complexity, and testers as follows.

Definition 5. A testing algorithm for a property P is an algorithm that, given query

access (by the oracles) to an instance I, accepts every graph from P with probability

at least 2/3, and rejects every graph that is ϵ-far from P with probability at least

2/3. If the testing algorithm accepts every graph from P with probability 1, then the

algorithm is called one-sided-error.

The success probability 2/3 may look too small to apply to actual situations.

However, this is not essential, since we can decrease fault probability to be any small

positive value by iterating the algorithm a constant number of times that depends on

the value.
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Definition 6. (Query complexity and tester) The number of queries made by an

algorithm to the given oracle is called the query complexity of the algorithm. If the

query complexity of a testing algorithm is bounded by a constant independent of the

size of instance N (but it may depend on ϵ), then the algorithm is called a tester. A

property is testable if there is a tester for the property.

2.3 General Tools
Inequalities useful for bounding probabilities
First, we present some general tools useful for analyzing the probabilities of random-

ized algorithms. Since these tools will be used later in this section, readers can skip

this section and go to the next section for the nonce, and return when they appear

later.

Lemma 7. For any real value x, 1 + x ≤ ex .

Proof: It is easily obtained by differentiating ex − x − 1 and e0 = 1. □

Theorem 8. [64] (Hoeffding’s inequality) Let X1, . . . , Xs be independent random

variables bounded as ai ≤ Xi ≤ bi (ai < bi) for all i ∈ {1, . . . , s}. X := 1
s
∑s

i=1 Xi.

Let Ex[X] be the expected value of X . Then for any t ≥ 0, the probability that

|X − Ex[X]| ≥ t occurs is bounded by the following inequality:

Pr[|X − Ex[X]| ≥ t] ≤ 2 exp
(
− 2s2t2∑s

i=1(bi − ai)2

)
. (2)

The regularity lemma
Next, we present the monumental lemma known as Szeméredi’s regularity lemma.

Before explaining this lemma, we need to provide some terms.

For a pair of subsets of vertices A, B ⊆ V of a graph G = (V, E), we denote the set

of edges between A and B by E(A, B), i.e., E(A, B) := {(v, w) ∈ E | v ∈ A, w ∈ B}.
The density between A and B is defined as den(A, B) := |E(A,B) |

|A| |B | .

Definition 9. (ϵ-regular pair) Let 0 < ϵ ≤ 1 be a real number and A, B ⊆ V . A pair

(A, B) is called ϵ-regular if |den(A, B) − den(X,Y ) | ≤ ϵ for any two subsets X ⊆ A

and Y ⊆ B satisfying |X | ≥ ϵ |A| and |Y | ≥ ϵ |B |.
Definition 10. (ϵ-regular equipartition) A family of subsetsV = {V1, . . . ,Vk } (Vi ⊆ V ,

for all i ∈ {1, . . . , k}) is called a partition of V if Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ k
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and V = V1 ∪ · · · ∪ Vk . This k is called the order of the partition. A partition

V = {V1, . . . ,Vk } of the vertex set of a graph is called an equipartition if |Vi | and |Vj |
differ by no more than 1 for all 1 ≤ i < j ≤ k. An equipartitionV = {V1, . . . ,Vk } of

the vertex set of a graph is called ϵ-regular if all but at most ϵk2 of the pairs (Vi,Vj )

(i, j ∈ {1, . . . , k}) are ϵ-regular.

Now we can explain the lemma.

Theorem 11. [11, 104] (Szeméredi’s regularity lemma) For every pair of an integer

t and a real number ϵ > 0 there exists an integer T = T11(t, ϵ ) such that any graph

with n ≥ T vertices has an ϵ-regular equipartition of order k, where t ≤ k ≤ T .

Yao’s minimax principle
In this subsection, we introduce Yao’s minimax principle, which is based on the idea

that any randomized algorithm can be regarded as a distribution over deterministic

algorithms. We say that a deterministic algorithm A errs in testing a property P on

an instance I if A rejects I if I ∈ P and A accepts I if I is ϵ-far from P. We consider

a distribution of instances I. The subdistribution consisting of instances whose size

is N is denoted by IN . Clearly I = ∪∞
i=1 Ii.

Yao’s minimax principle can be expressed in many different forms. The following

is one in the property testing form.

Theorem 12. [21, 58, 107] (Yao’s minimax principle) Let P be a property and

q : Z+ × R+ → Z+ be a function. Assume that for any ϵ > 0 and for infinitely many

N ∈ Z+, there exists a distribution IN such that for every deterministic algorithm A

whose query complexity is q(N, ϵ ), the following holds:

Pr
I∼IN

[A errs in testing P on I] >
1
3
,

where I ∼ IN means that I is chosen according to distribution IN . Then the query

complexity of any algorithm to test P on parameter ϵ and size N is more than q(N, ϵ ).

Proof: Let A be an arbitrary randomized algorithm for testing P with query com-

plexity at most q(N, ϵ ). A is regarded as a distribution over deterministic algorithms.

Thus the probability of A errs in testing P when instances are given over the distri-

bution IN is expressed as follows.

Pr
A∼A, I∼IN

[A errs in testing P] ≥ min
A∈supp(A)

Pr
I∼IN

[A errs in testing P], (3)
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where supp(A) is the support ofA which is the subset of non-zero values. From the

assumption, (3) is greater than 1/3. Therefore the probability of A errs in testing P
when instances are given over the distribution IN is more than 1/3. □

2.4 Basic Techniques
An elementary example of testers
Here we show an elementary (maybe naive) example of testers to help readers to

understand how testers work. A function f : {0, . . . , n} → R is linear if there are real

values a, b ∈ R such that f (x) = ax + b for all x ∈ {0, . . . , n}. 1 A function f is ϵ-far

from being linear if for at least ϵn variables x ∈ {0, . . . , n}, f (x) must be changed to

make f linear.

We will show a tester for testing linearity. The oracle of this problem, for any

x ∈ {0, . . . , n}, returns f (x). In this algorithm we assume that ϵ ≤ 1/4. If ϵ ≥ 1/4,

then using ϵ ≤ 1/4 is sufficient. The algorithm is the following.

procedure Linearity

begin
01 choose s = 2ϵ−1 values S = {x1, x2, . . . , xs} from {0, . . . , n} independently and

uniformly at random;

02 check whether all points (xi, f (xi)), xi ∈ S are collinear;

03 if they are collinear, then accept the input; otherwise, reject it;

end.

Theorem 13. Linearity is a one-sided-error tester of linearity with query complexity

O(ϵ−1).

Proof: If the input is linear, then it is clearly accepted by the algorithm. Assume that

the input is ϵ-far from being linear. Let B be one of the minimum sets of integers

i ∈ {1, . . . , n} such that (xi, f (xi)) should be changed to make the input linear. From

the assumption, |B | > ϵn. Thus the probability of a randomly chosen i being not in

B is 1 − ϵ .

1 In many articles of property testing, “linearity” is used in the different form. To give priority to
good understanding of persons who are not familiar with this area, we use this definition.
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Let L be the line formed by all the points that are not in (xi, f (xi))(i < B). If S

is collinear, then (i) S ∩ B = ∅ or (ii) |S − B | ≤ 1 (note that (ii) occurs only when

the points in S ∩ B are accidentally on a line, say LB, and note that LB may cross L).

The algorithm accepts the input by mistake in only these cases. The probability that

(i) occurs is

(1 − ϵ )s ≤ (e−ϵ )s = e−ϵ s = e−ϵ (2ϵ
−1) = e−2 ≤ 1

6
. (4)

The first inequality is obtained from Lemma 7.

The probability that (ii) occurs is at most

sϵ s−1 = 2ϵ s−2 = 2(1 − (1 − ϵ ))s−2 ≤ 2
(
e1(1−ϵ )) s−2

= 2
(
e−1

) (1−ϵ )(s−2)
(5)

inequality is obtained from Lemma 7. From 1 − ϵ ≥ 3/4 and s = 2ϵ−1 ≥ 8 (since

ϵ ≤ 1/4),

(1 − ϵ )(s − 2) ≥ 3. (6)

From (5) and (6), it follows that the probability that (ii) occurs is at most

2e−3 <
1
6
. (7)

From (4) and (7), the probability that the algorithm accepts the input in mistake is at

most 1/6 + 1/6 = 1/3, i.e., the algorithm rejects it with probability at least 2/3.

This algorithm is clearly one-sided-error, since every linear input is never rejected.

The query complexity is O(s) = O(ϵ−1). □

Testing triangle-freeness on dense graphs
We show an example on graph-property testing. For an integer n ∈ Z+, we denote

by Kn a complete n-graph. If a graph does not contain any K3 as a subgraph, then

it is said to be triangle-free. Triangle-freeness is clearly a property since any graph

isomorphic to a triangle-free graph is triangle-free.

We first consider a tester for triangle-freeness in the dense-graph model, where

the edge-oracle is used. We show a one-sided-error tester of triangle-freeness as

follows, where G = (V, E) is a given n-graph and sϵ is an integer that is fixed by ϵ

and will be defined later.
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procedure Triangle-Freeness

begin
01 choose s = sϵ vertices S = {v1, v2, . . . , vs} from V independently and uniformly at

random;

02 make the subgraph G(S) induced by S through the oracle;

03 if G(S) contains no K3, then accept the input; otherwise, reject it;

end.

This algorithm is one-sided-error, since it rejects an input only if it finds a copy

of K3. Showing that it rejects every graph that is ϵ-far from being triangle-free with

probability at least 2/3 is not simple.

Lemma 14. [10] For any ϵ > 0, there is an integer s = s14(ϵ ) such that for any

graph, if it is ϵ-far from being triangle-free, then a subgraph induced by s vertices

chosen uniformly at random from the graph contains a K3 with probability at least

2/3.

Proof sketch: Let G = (V, E) be an n-vertex graph ϵ-far from being triangle-free. Let

S be the set of vertices chosen by the above algorithm. From Theorem 11, it can be

proven that there are T = T14(ϵ ), γ = γ14(ϵ ) and t = t14(ϵ ) that satisfy the following

property: If n ≥ T , then G has a γ-regular equipartition V of V with t ≤ |V| ≤ T .

Since G is ϵ-far from being triangle-free, (the detail is omitted but) it can be shown

that there must be W1,W2,W3 ∈ V such that den(Wi,W j ) ≥ 2γ for all 1 ≤ i < j ≤ 3.

SinceV is an equipartition, |Wi |/n > 1/(2T ) holds. From this, (the detail is omitted

again but) it follows that if s is large enough, S includes three vertices v1 ∈ W1,

v2 ∈ W2, and v3 ∈ W3 such that (v1, v2), (v2, v3), (v3, v1) ∈ E with high probability. □

Theorem 15. [10] Triangle-freeness on the dense-graph model is testable by Triangle-

Freeness with one-sided error.

Proof: We adopt s14(ϵ ) in Lemma 14 as sϵ in the procedure. If the graph is triangle-

free, the algorithm clearly accepts it, and thus the algorithm is one-sided-error.

Assume that the input graph is ϵ-far from being triangle-free. From Lemma 14, G(S)

contains at least one K3 with probability at least 2/3, and the input is rejected with

probability at least 2/3. □
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Note that the query complexity of this algorithm is huge, since the constant s14(ϵ )

in Lemma 14 is a tower of ϵ−1.

Parameter testing
We explain a method for approximating a value in constant time. Such a framework

is sometimes called parameter testing.

Definition 16. Let x∗ ∈ R+0 be a nonnegative real value. For a pair of nonnegative

real values α ≥ 1 and β ≥ 0, a value x is said to be an (α, β)-approximation of x∗ if

x∗

α
− β ≤ x ≤ αx∗ + β. (8)

As an example, we show a constant-time (1, ϵn)-approximation algorithm for eval-

uating the number of edges of a given graph in the “bounded-degree-graph model.”

The bounded-degree-graph model (or the bounded-degree model, for short) only

considers graphs such that every vertex has at most a constant number of neighbors,

which is defined as follows.

Definition 17. (Degree and bounded-degree) We call the number of adjacent vertices

of a vertex v ∈ V of G = (V, E) is the degree of v , which is denoted by degG (v),

i.e., degG (v) := |{w ∈ V | (v, w) ∈ E}|. The subscript G may be omitted if it is

clear. For a positive integer d ∈ Z+, if degG (v) ≤ d for every vertex v ∈ V in graph

G = (V, E), then G is said to be d-bounded-degree. The set of d-bounded-degree

graphs is denoted by Γ(d). Sometimes d-bounded-degree is called bounded-degree

for short.

The bounded-degree model considers only Γ(d), where d is arbitrary. For any

graph G = (V, E) ∈ Γ(d), |E | ≤ dn/2, where n = |V |, i.e., |E | = O(n) for any

constant d. Hence G is sparse. This means that the edge-oracle is useless, since for

almost all queries, the answers are “There is no edge between the pair of vertices.”

Thus in the bounded-degree model, the following oracles are used.

• Degree-oracle: If an algorithm gives a vertex v ∈ V , this oracle returns deg(v ).

• Adjacent-vertex-oracle: If an algorithm gives a pair of v ∈ V and an integer

i ∈ {1, . . . , deg(v)}, this oracle returns the ith vertex adjacent of v if exists, and

0 otherwise.

In this model, the denominator of the distance (Equation(1)) is dn.
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Lemma 18. [65] In the d-bounded-degree model, for any ϵ > 0 and any 0 < p < 1,

a (1, ϵn)-approximation of |E | can be obtained with probability at least 1 − p and

query complexity O(d2ϵ−2 log p−1).

Clearly |E | can be expressed by the following equations, where Ex[deg] is the

average degree of G:

|E | = 1
2

∑
v∈V

deg(v) =
n · Ex[deg]

2
. (9)

By using this equation, we can construct an algorithm for estimating |E | as follows.

procedure Graph-Size-Estimation

begin
01 choose s = d2

8ϵ2 ln 2
p vertices S = {v1, . . . , vs} from V independently and uniformly

at random;

02 calculate deg = 1
s
∑s

i=1 deg(vi) and m = n · deg/2;

03 output m;

end.

Proof of Lemma 18: From Hoeffding’s inequality (Theorem 8),

Pr[|deg − Ex[deg]| ≥ 2ϵ] ≤ 2 exp
(
−2s2(2ϵ )2

sd2

)
= 2 exp

(
ln

p
2

)
= p. (10)

From m = n · deg/2 and |E | = n · Ex[deg]/2, it follows that the above probability is

equal to Pr[|m − |E | | ≥ ϵn]. Therefore m is a (1, ϵn)-approximation of |E |. □

Lower bounds on query complexity
Some properties have been known to be non-testable. In this subsection we show

how to prove non-testability by using examples.

A graph G = (V, E) is called bipartite if V can be partitioned into two subsets V1

and V2 such that every edge is between V1 and V2, i.e., E = E(V1,V2). Bipartiteness

is clearly a property. Bipartiteness is the property that was first found to have a

super-constant lower bound for testing. This was obtained by Goldreich and Ron

[60].
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Theorem 19. [60] For the 3-bounded-degree (graph) model, there is a real number

ϵ > 0 such that any testing algorithm for bipartiteness with parameter ϵ requires

Ω(
√

n) queries, where n is the number of vertices.

Proof sketch: In order to use Yao’s minimax principle (Theorem 12), we construct

a distribution G on 3-bounded-degree graphs such that any deterministic algorithm

whose query complexity less than
√

n/4 cannot distinguish the given graph being

bipartite from being 0.01-far from being bipartite with probability at least 2/3.

G consists of two subsets G1 and G2: the former consists of bipartite graphs and

the latter consists of graphs that are 0.01-far from being bipartite. A graph is given

from G1 or G2 with the same probability, and any algorithm whose query complexity

is small cannot distinguish a graph fromG1 and a graph fromG2 with high probability.

We restrict that n to be even.

1. G1 consists of all 3-regular graphs that are composed of a Hamiltonian cycle and

a perfect matching.

2. G2 consists of all 3-regular graphs that are composed of a Hamiltonian cycle

and the perfect matching satisfying the following restriction: the distance on the

cycle between every two vertices that are connected by a perfect matching edge

must be odd.

Clearly all graphs in G2 are bipartite. It can be also proven that almost all graphs in

G1 are 0.01-far from being bipartite.

Furthermore, it can be proven that any testing algorithm that performs o(
√

n)

queries cannot distinguish between a graph chosen randomly from G1 and a graph

chosen randomly from G2. □

In the same paper [60], it is shown that testing being an expander requires Ω(
√

n)

queries.

Stricter Ω(n) lower bounds on query complexity have been known for some

properties. Bogdanov, Obata, and Trevisan [26] showed the first Ω(n) lower bound

for Bounded-degree graph 3-colorability, and furthermore for Vertex Cover, Max Cut,

Max 2SAT, Max E3SAT, 1 and Max E3LIN, 2 where all the problems above are on the

1 EkSAT is SAT, with each clause has exactly k literals.
2 EkLIN-h is the problem of deciding the satisfiability of a system of linear equations modulo h,

with each equation has exactly k variables.
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bounded-degree model, by introducing a reduction method. Later Yoshida and Ito

[109] showed that 3-edge-colorability, Directed/undirected Hamiltonian path/cycle,

3-dimensional matching, and Schaefer-type generalized 3SAT, all in the bounded-

degree model, have the same (linear) lower bounds by introducing some new reduction

methods.

2.5 Characterizations of Testable Properties
One of the most attractive themes in the area of property testing to find a combinatorial

characterization of testable properties.

Dense graphs
For the dense-graph model, a complete combinatorial characterization of testable

property was found by Alon et al. [11]. To put it briefly, this characterization is

expressed by the regularity lemma (in Subsection 2.3). To explain it a little more, the

characterization is said to be “regular reducible,” which is shown as follows.

Definition 20. (Regularity instance) A regularity instance R is given by an error-

parameter ϵ > 0, an integer k, a set of
(

k
2

)
densities 0 ≤ ηi, j ≤ 1 indexed by

1 ≤ i < j ≤ k, and a set R of pairs (i, j) of size at most ϵk2. A graph is said to

satisfy the regularity instance if it has an equipartition {Vi | 1 ≤ i ≤ k} such that for

all (i, j) < R the pair (Vi,Vj ) is ϵ-regular and satisfies |E(Vi,Vj ) | = ηi, j |Vi | |Vj |, i.e.,

den(Vi,Vj ) = ηi, j . The complexity of the regularity instance is max(k, 1/ϵ ).

Definition 21. (Regular-reducible) A graph property P is regular-reducible if for

any δ > 0 there exists r = rP (δ) such that for any n there is a family R of at most r

regularity instances each of complexity at most r , such that the following holds for

every ϵ > 0 and every n-graph G.

1. If G ∈ P, then for some R ∈ R, G is δ-close to R.

2. If G is ϵ-far from P, then for any R ∈ R, G is (ϵ − δ)-far1 from R.

Theorem 22. [11] For the dense-graph model, a graph property is testable if and

only if it is regular-reducible.

For example, the triangle-freeness is regular-reducible.

Bounded-degree graphs

1 Here we extend the term “ϵ-far” to negative ϵ , since for every instance can be regarded as ϵ-far
(from any family of instances) for any ϵ ≤ 0 from the definition.

22



We have not obtained a complete characterization of testable properties in the

bounded-degree (graph) model. However, an important sufficient condition called

“hyperfiniteness” was found.

Definition 23. [67] Let ϵ > 0, t > 0, and d > 0. Let G = (V, E) be a d-

degree-bounded n-graph. If one can remove at most ϵdn edges from G so that each

connected component of the resulting graph has at most t vertices, then G is called

(ϵ, t)-hyperfinite (with respect to degree bound d). For a function ρ : R+ → R+, if G

is (ϵ, ρ(ϵ ))-hyperfinite for every ϵ > 0, then G is called ρ-hyperfinite. A set G of d-

degree-bounded graphs is called ρ-hyperfinite if every graph G ∈ G is ρ-hyperfinite.

G is called hyperfinite if there is a function ρ such that G is ρ-hyperfinite.

Definition 24. [67] Let ϵ > 0, t > 0, and d > 0. Let G = (V, E) be an n-vertex

d-degree-bounded graph. A partition V of V is called an (ϵ, t)-hyperfinite partition

if |W | ≤ t for every W ∈ V and the number of edges whose terminal vertices are in

different sets ofV is at most ϵdn.

Note that if a graph is hyperfinite, then it is close to a graph that can be partitioned

into small connected components. If a graph can be partitioned into small connected

components, then local search from randomly chosen vertices is well suited. In fact,

the following theorem was given by Newman and Sohler [89].

Theorem 25. [89] In the bounded-degree model, every graph property is testable for

any hyperfinite family of graphs.

Unfortunately this theorem is not a necessary condition, e.g., k-edge/vertex-

connectedness for any fixed k ≥ 3 is not hyperfinite but testable [60, 110]. However,

a necessary condition based on hyperfiniteness was found by Fichtenberger, Peng,

and Sohler et al. [49] as shown in the following.

A subproperty of a property P is a property that is a subset of P. A property is

non-trivially testable if it is testable and there exists ϵ > 0 such that there is an infinite

number of graphs that are ϵ-far from the property.

Theorem 26. [49] Every testable property of bounded-degree graphs is either finite

or contains an infinite hyperfinite subproperty. Also, the complement of every non-

trivially testable graph property contains an infinite hyperfinite subproperty.

Usually we suppose that testing algorithms know the size of the input, e.g., the

number of vertices of a given graph. Alon and Shapira [12], however, introduced an
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idea of oblivious tester, which must work without knowing the size, and showed a

complete characterization of one-sider-error oblivious testers.

Recently, combinatorial characterizations of one-sided error testability for mono-

tone and hereditary properties in the bounded-degree model were presented by Ito,

Khoury, and Newman [70]. If for any G ∈ P, a graph obtained by removing an arbi-

trary edge (resp., vertex) is in P, then P is called monotone (resp., hereditary) [13].

Note that any minor-closed property [46] (including planarity) and k-colorability for

any k ∈ Z+ (including bipartiteness) are monotone and hereditary. This character-

ization covers not only undirected graphs but also digraphs. In their paper, an idea

of “forbidden configurations” was presented. This idea may be useful in obtaining

a characterization of one-sided-error testable properties with no restriction on the

bounded-degree model.

General graphs
We have shown two models on graphs: the dense-graph model and the bounded-

degree model. Another popular model is the general (graph) model. This model is a

generalization of the two models mentioned above.

In this model, an upper bound d of the average degree of every graph is given,

i.e., d ≥ ∑
i∈V deg(i)/n for every graph. Ordinarily we assume that d is a constant,

and thus this model treats sparse graphs. The distance is defined as Equation (1),

where d is the upper bound on the average degree. This model allows all oracles that

can be used in the other two models.

As written above, this model is a generalization of the other two models and

it is inevitably more difficult. Recently, models that focus on hierarchy have been

researched. For example, there is research that focuses on graphs where the size

distribution of the cliques shows a power law, and the degree distribution shows a

power law after contracting those cliques [100]. This research is focused on the

hierarchy of isolated cliques. A clique is a subgraph in which there exists an edge

between every pair of vertices. For a nonnegative integer c ≥ 0, a c-isolated clique

is a clique, such that the number of outgoing edges (edges between the clique and

the other vertices) is less than ck, where k is the number of vertices of the clique.

A 1-isolated clique is sometimes simply called an isolated clique [68, 69]. There

are other studies that focus on hierarchy, in a subclass of SF called HSF , each of
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which is defined as follows.

Definition 27. [66] Let E (G) be the graph obtained from G by contracting all isolated

cliques. Two distinct isolated cliques never overlap, except in the special case of

double-isolated-cliques, which consists of two isolated cliques with size k sharing

k−1 vertices. A double-isolated-clique Q has no edge between Q and the other part of

the graph (i.e., dG(Q) = 0), and thus we specially define that a double-isolated-clique

in G is contracted into a vertex in E (G). Under this assumption, E (G) is uniquely

defined.

Definition 28. [66] (Scale-Free (multi)graph) For positive real numbers c > 0 and

γ > 1, a class of scale-free (multi)graphs SF (c, γ) consists of (multi)graphs G =

(V, E) for which the following condition holds. Let vi be the number of vertices v

with degG (v ) = i. Then,

vi ≤ cni−γ, for all γ ∈ 2, 3, . . .. (11)

Definition 29. [66] (Hierarchical Scale-Free multigraphs; HSF ) For positive real

numbers c > 0, γ > 1, and a positive integer n0 ≥ 1, a class of hierarchical scale-free

(multi)graphs HSF = HSF (c, γ, n0) consists of (multi)graphs G = (V, E) for

which the following conditions hold.

(i) G ∈ SF (c, γ).

(ii) Consider the infinite sequence of graphs G0 = G,G1 = E (G0),G2 = E (G1), . . ..

If |V [Gi]| ≥ n0, then Gi includes at least one isolated cliqueQ ⊆ V with |Q| ≥ 2.

(Note that if Gk has no such isolated clique, then Gk = Gk+1 = Gk+2 = · · · . )

In thisHSF , the following theorems are proven.

Theorem 30. [66] For anyHSF = HSF (c, γ, n0) with γ > 2 and any real number

ϵ > 0, there is a real number t = t30(HSF , ϵ ), such thatHSF is (ϵ, t)-hyperfinite.

Theorem 31. [66] Every property is testable forHSF (c, γ, n0) with γ > 2.

In the general-graph model, while no other universal (constant-time) tester has

been known, universal testing algorithms with polylog(n)-time query complexity

have been found on forests [80] and outerplanar graphs [15].

Other results
We briefly introduce some other results on not only characterizations but also various

types of problems. On affine-invariant functions, Yoshida [108] presented a complete
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characterization of testable properties.

Batu, Berenbring, and Sohler [19] gave a parameter-testing algorithm for the bin

packing problem with query complexity Õ(
√

n · poly(ϵ−1)). Ito, Kiyoshima, and

Yoshida [71] showed a parameter-testing algorithm for the knapsack problem with

query complexity Õ(ϵ−4). For EXPTIME-complete problems, the generalized chess,

shogi (Japanese chess), and xiangqui (Chinese chess) were proven to be all testable

by Ito, Nagao, and Park [72].

Lovász and Vesztergombi [82] introduced an idea of nondeterministic property

testing, and showed a relation to deterministic (i.e., ordinary) property testing. In

response to this paper Gishboliner and Shapira [56] an additional result using Sze-

merédi’s regularity lemma.

2.6 Some Algorithms with Analogous Concepts
There are several algorithms that have similar concepts to sublinear progressive

algorithms. In this subsection, we refer to the characteristics of these algorithms and

their differences from progressive algorithms.

2.6.1 Online Algorithms
An online algorithm processes step by step, in the order that the input is given to the

algorithm, i.e., it modifies the answer to fit each input when it is given. In contrast, an

offline algorithm runs after reading all of the input [27]. For example, insertion sort

is an online algorithm and selection sort is an offline algorithm. The online algorithm

is defined as follows.

An online algorithm is one that receives a sequence of requests, and per-

forms an immediate action in response to each request. Each sequence of

requests and corresponding actions have associated cost. . . . The competi-

tive ratio of an online algorithm is the maximum value of the ratio between

the cost incurred by the online algorithm and the cost incurred by an optimal

algorithm [74].

In detail, they are defined as follows.

Definition 32. [74] (Online problems and algorithms) An online problem is specified

by:

• A set R of requests;
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• A set A of actions;

• A cost function c :
∪

n=1,2,... (Rn × An) → R+ whereR+ denotes the nonnegative

reals.

For any request sequence r ∈ Rn, define Opt(r) as mina∈An c(r, a). An online

algorithm A is determined by a function fA : R+ → A, where R+ is the set

of all finite nonempty sequences of requests. In response to a sequence of re-

quests r = r1, r2, . . . , rt the algorithm performs the sequence of actions A(r) =

fA (r1), fA (r1r2), . . . , fA (r1r2 . . . rt ) and incurs the cost c(r,A(r)).

Definition 33. [74] (Competitive ratio) For any positive constant d, the online algo-

rithmA is said to be d-competitive if there exists a constant b such that, for all request

sequences r, c(r,A(r)) ≤ dOpt(r) + b. The competitive ratio of A is defined as the

greatest lower bound of the set of c such that A is c-competitive.

Note that not all offline algorithms can be converted to online algorithms. Some

algorithms can be converted depending on the problem, while others cannot. In other

words, the online algorithm is an offline algorithm that allows sequential processing.

It processes inputs that have arrived so far and does not know the future inputs, i.e.,

what and how many input will come. Certainly, its performance depends on the order

in which the inputs are received. The online algorithm is designed to minimize the

cost for the worst input. From this point of view, for evaluating the performance of an

online algorithm, we use a measure called the competitive ratio, which compares with

the cost of the optimal offline algorithm. It is important to design an online algorithm

with a small competitive ratio and to prove upper or lower bounds of the competitive

ratio. The online algorithm and sublinear progressive algorithms are similar in the

idea of sequential processing. However, the sublinear progressive algorithm outputs

a best-effort solution from the available input according to a pair of the approximation

parameter and the fault probability. It is a solution that predicts and evaluates the

entire input. In addition, there is a theoretical guarantee of the accuracy of the

solution. When it is able to read all of the input, the sublinear progressive algorithm

outputs the best solution from the input, which does not depend on the order of arrival.

2.6.2 Incremental Algorithm
Another algorithm with a similar concept is the incremental algorithm. Incremental

algorithms, known as incremental computing and incremental learning, are used in
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a variety of contexts and have different meanings. There are definitions by Giraud-

Carrier [41] and by Zhou and Chen [111] in the context of machine learning, but

these are not theoretical definitions. In this literature on machine learning, input is

read from a dataset, but in incremental machine learning, input is given sequentially

over time, and each time a new input is read, learning is performed, and the learning

is updated according to the input. Amir et al. mention the difference between online

algorithms and incremental algorithms in the context of machine learning.

We distinguish “online” from “incremental” learning. Online has to dis-

card a sample after learning (no memory) and unlike to incremental learn-

ing is not allowed to store it [98].

They define the difference between online and incremental as the difference in whether

the input can be stored. In this field, they devise how to store the information of the

input so far in a small number of areas. However, in this definition, the two algorithms

are basically the same in the sense that they read the input from start to finish.

On the other hand, there is research that explicitly uses the name incremental in

the theoretical field. For example, the following is a definition by Sharp.

An incremental algorithm is given a sequence of inputs, and finds a sequence

of solutions that build incrementally while adapting to the changes in the

input. . . . There are k time steps, or levels, defined by a sequence of k inputs.

The goal is to produce a sequence of k outputs, one per time step, such that

two constraints are satisfied. The first, known as the feasibility constraint,

requires the level l output to be feasible with respect to the level l input. The

second, known as the incremental constraint, requires the level l output to

be a superset of that of level l − 1, that is, the output builds incrementally.

These two constraints define feasible incremental solutions; we can then

evaluate and compare these solutions using a variety of objective functions,

such as the aggregate value and competitive ratio objectives [99].

In addition to this, she mentions the difference between online and incremental as

follows.

Online algorithms also take in a sequence of inputs and produce incremental

solutions; unlike their incremental counterparts, however, they do not know

the input sequence in advance. We use our incremental results to better
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understand online algorithms and to indicate how their performance can

be improved [99].

She defines an incremental algorithm as being able to know the input sequence in

advance and incremental algorithm solutions to be inclusive.

Furthermore, there is another method, an algorithm called incremental computing

[3, 4, 30, 50]. In this literature, incremental means that when data is updated, the

output is changed according to the changed data.

Whereas incremental algorithms are used in a variety of contexts, the sublinear

progressive algorithm is clearly different from them.

2.6.3 Anytime Algorithms
The definition of Anytime algorithm is as follows.

Definition 34. [23] (Anytime algorithms) Anytime algorithms are defined as al-

gorithms that return some answer for any allocation of computation time and are

expected to return better answers when given more time.

Anytime algorithms can be interrupted at any time to obtain an intermediate

solution, and the accuracy of the intermediate solution improves with time. For

example, heuristics such as simulated annealing and genetic algorithms are among

the typical methods for anytime algorithms. Several notions have been proposed

regarding the accuracy of intermediate solutions of anytime algorithms [112]. The

anytime algorithm is intended to be a polynomial-time algorithm and it is similar to

the idea of an incremental algorithm. Indeed, the sublinear progressive algorithm is

a kind of anytime algorithm and it is close to the anytime algorithm with an accuracy

guarantee, but there are three main differences.

• The sublinear progressive algorithm output solutions with an accuracy corre-

sponding to the amount of input read.

An anytime algorithm reads all of the input, keeps a tentative solution, and up-

dates the accuracy of that solution, whereas the sublinear progressive algorithms

read an input and improves the output solution over time.

• There are theoretical guarantees for execution time and error functions.

The performance of anytime algorithms has been evaluated experimentally,

whereas we show a formula for the relationship between computation time and

accuracy for the sublinear progressive algorithms.
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• Finally, a sublinear progressive algorithm outputs the exact solution.

While anytime algorithms do not need to output the exact solution, the sublinear

progressive algorithms eventually outputs the exact solution in the end.

2.6.4 Progressive Geometric Algorithms
In order to construct a framework for the sublinear progressive algorithm, we introduce

the definition of the progressive geometric algorithm [8]. Alewijnse et al. do not only

give two progressive geometric algorithms but also define a progressive geometric

algorithm and explain the policy. The progressive geometric algorithm conbines

a polynomial-time (1 + ϵ )-approximation algorithm with an exact algorithm. In

addition, they introduce ideal conditions that the solution error and computation time

should satisfy. They define a progressive geometric algorithm as one that outputs

partial solutions r times according to a convergence function that gives an upper

bound on the error of a partial solution. They assume two ways of setting the running

time.

• Set the maximum time to output each partial solution. The maximum time to

wait for the next partial solution to be output can be set.

• Set the maximum amortized time Tr/r for the worst-case total running time Tr

for outputting 1, . . . , r partial solutions. The first solution is obtained early, and

the running time increases as the later solutions are obtained.

Note that these settings are only a statement that such an optimization method exists.

They do not suggest a general way to construct a progressive geometric algorithm,

and there is no guarantee that a conversion that satisfies these two conditions exist.

Their progressive geometric algorithm is structured to follow such a policy. In this

progressive geometric algorithm, the convergence function only gives an upper bound

on the error of partial solution, and then it is important to note that the error is not

necessarily monotonically decreasing. Moreover, they write that monotonicity is

desired as a property of a solution. This idea is similar to one of the incremental

algorithms introduced in the previous section. The convex hulls algorithm presented

in their paper is constructed so that the solution has monotonicity.

With that in mind, we would like to convert a sublinear-time algorithm into a

progressive algorithm. Their method cannot be used directly because sublinear-time

algorithms have two parameters: approximation parameter and fault probability. If
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only the approximation parameter is sufficiently reduced with respect to the fault

probability, we cannot say that the accuracy has improved, and vice versa. Both need

to be decreased in a well-balanced. The solution must be output while taking into

account the contribution of the approximation parameter and the fault probability to

the computation time. In addition, it should be noted that the solution of sublinear

algorithms (property testing) is not necessarily monotonic. If we let the solution be

monotone, it is not inconceivable that we could store the sampled input and use it

to search for the next solution. However, the randomness of the sampling is lost,

and the effects of sampling bias cannot be ignored. Based on these properties and

the framework of the sublinear-time algorithms, we need to construct the sublinear

progressive algorithm. The two types of computation time settings they mention are

both important. We ideally would like to perform an optimization that achieves both.
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Chapter 3 Framework and Theorem of Sublinear Pro-
gressive Algorithms

3.1 Preliminaries
In this chapter, we present the idea of “sublinear progressive algorithms.” Constant-

or sublinear-time algorithms are useful when we need to get a solution quickly if a

problem suddenly occurs and we should need to read huge data if we used a traditional

polynomial-time algorithm. In such a case, it is useful to get an approximate solution

quickly by using a constant- or sublinear-time algorithm. Even in such a case, however,

after getting a temporary solution, we may hope to get a better solution gradually as

time permits. Ideally, we would like to get better and better solutions gradually, and

to get an exact solution finally at the same time as if we applied an exact algorithm

from the beginning.

We call such algorithms “sublinear progressive algorithms[39],” which are illus-

trated in Fig. 2. Only preliminary results on this idea have been presented by the

authors in an international conference1 [38].

In this chapter, we show that for any problem, if there are both a constant-time

algorithm and an exact algorithm, we can construct an ideal sublinear-time algorithm,

i.e., given any positive integers r ≥ 2 and t ≥ 1, an algorithm that outputs r solutions

Figure 2: Sublinear Progressive Algorithms.

1 Oral presentation only. No proceedings were published.
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S1, S2, . . . , Sr in this order, where Sr is the exact solution which is obtained without

error, under the constraint that

(1) S1 is obtained in time at most t,

(2) for any i ∈ {1, . . . , r } the worst-case computation-time Ti for getting Si is

O(T∗(Si)), where T∗(Si) is the computation time to get Si by using the orig-

inal constant-time algorithm (if i ∈ {1, . . . , r − 1}) or exact algorithm (if i = r),

and

(3) R := maxi∈{2,...,r } Ti/Ti−1 is minimized in the big-O sense.

The meaning of Constraint (3) is that the time we should wait for the next solution

follows a geometric progression. If it follows an arithmetic progression, T2 is close to

Tr/r and then Tr/r is close to Tr which is the time to output the final (exact) solution

in the big-O sense. Thus, in this case, we must wait for a very long time (until Tr/r) to

get the second solution if T∗(Sr ) is huge. By introducing the geometric progression,

the waiting times become gradually longer and longer. It means that the time to obtain

Si is R times the total computation time to output Si−1. It is to obtain progressively

better solutions, which means incremental solution improvement.

3.2 Analysis of Fault Probability
In this subsection, we evaluate the fault probability of sublinear-time algorithms.

A Monte Carlo algorithm that returns the correct answer with probability at least
1
2 < p < 1 is called a p-exact algorithm. When a p-exact algorithm outputs a yes-

no answer, we can get a decision by majority vote. In other words, the algorithm

is repeated multiple times to obtain a solution that accounts for more than half of

the total. If p is greater than 1
2 , the probability that the majority decision is correct

approaches 1 as the number of times the algorithm is repeated. We consider evaluating

this probability as follows.

Lemma 35. (Success probability of majority voting) For 1
2 < p < 1 (p ∈ R), if the

p-exact algorithm is run n times, the probability of obtaining the correct answer by

majority vote is at least 1 − 1/ecpn, where cp =
1
2p (p − 1

2 )2.

To prove this lemma, we use the corollary obtained from Chernoff’s inequality

below.

Theorem 36. [36] (Chernoff’s inequality) Let X1, X2, . . . , Xn be mutually independent
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{0, 1} random variables, and µ be the expected value of X := X1 + · · · + Xn. For any

λ > 0,

Pr[X ≥ (1 + λ)µ] <
(

eλ

(1 + λ)(1+λ)

) µ
,

Pr[X ≤ (1 − λ)µ] <
(

eλ

(1 − λ)(1−λ)

) µ
.

Corollary 37. [87] Let X1, X2, . . . , Xn be mutually independent {0, 1} random vari-

ables, and µ be the expected value of X := X1 + · · · + Xn. For any 0 < λ ≤ 1,

Pr[X ≥ (1 + λ)µ] ≤ exp
(
−λ

2µ

3

)
Pr[X ≤ (1 − λ)µ] ≤ exp

(
−λ

2µ

2

)
Proof of Lemma 35: Let the p-exact algorithm run n times, and the probability of

getting the correct answer by majority vote is at least
n∑

j=⌊n/2⌋+1

(
n
j

)
p j (1 − p)n− j,

where j is the number of successes. Let X be a random variable representing the

number of correct answers,

Pr[X = k] =
(
n
k

)
pk (1 − p)n−k,

which is clearly a binomial distribution. From Chernoff’s inequality, we can estimate

the probability of getting the correct answer by majority voting. From Corollary 37,

calculate the probability that the majority vote fails, that is, the probability that X is

less than the majority. Since the expectation of the binomial distribution is µ = np,

if λ = 1 − 1
2p , then (1 − λ)µ = n

2 , and the following holds:

Pr[X < n/2] = Pr[X < (1 − λ)µ] ≤ e−
1

2p n(p− 1
2 )2
=

1
ecpn , (12)

where cp =
1
2p (p − 1

2 )2 (cp is a constant determined by the probability p). Therefore,

the probability of getting the correct answer by majority vote is at least 1−1/ecpn. □

Corollary 38. Let q be the fault probability of a majority vote if a algorithm with

fault probability p is run k times. The following inequality is satisfied:

k ≥ 1
cp

loge
1
q
,

where cp =
1
2p (p − 1

2 )2.
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Proof of Corollary 38: From Equation (12) of Lemma 35, 1/ecpk is less than or equal

to q,

1
ecpk ≤ q ⇐⇒ 1

q ≤ ecpk

⇐⇒ loge
1
q ≤ loge ecpk

⇐⇒ loge
1
q ≤ cpk

⇐⇒ 1
cp

loge
1
q ≤ k □

3.3 SPA Theorem
We present Sublinear Progressive Algorithm Theorem (SPA Theorem, for short) as

follows.

Definition 39. LetP be a property. For positive real numbers ϵ > 0 and 0 < p < 1/2,

a random valuable S ∈ {yes, no} which is the output of testing algorithm for P is said

to be an (ϵ, 1 − p)-solution. If the input is in P, S = yes with probability at least

1 − p. If the input is ϵ-far from P, S = no with probability at least 1 − p.

Our algorithm, given r ≥ 2, outputs r solutions S1, S2, . . . , Sr , where Si is an

(ϵ i, 1 − pi)-solution for i = 1, . . . , r − 1, and Sr is the exact solution. Let Ti be

the time to get Si by the progressive algorithm. Condition (2) in Subsection 3.1

means that every intermediate solutions and the final solution must be calculated in

almost the same time as the original constant-time or exact algorithms. In order

to satisfy Condition (3), these solutions are obtained in time following a geometric

progression, i.e., Ti = O(tτi−1) for some τ > 1. Moreover, from the requirement of

actual applications, ϵ i and pi should decrease gradually.

The following theorem shows that for any property, if it has a constant-time

algorithm and an exact algorithm (an exponential-time algorithm is allowed), then a

sublinear progressive algorithm satisfying the above conditions exists.

Theorem 40. (SPA Theorem: property testing version) Let P be a property. Suppose

that there exist a tester Alg0 whose time complexity is T∗(ϵ, 1 − p), where ϵ > 0 is

an approximation parameter and 0 < p ≤ 1/2 is a fault probability, and an exact

algorithm Alg1 whose time complexity is T∗(n), where n is the size of the input, for P.

Then there exists an algorithm, given any positive integers r ≥ 1 and 0 < t ≤ T∗(n),

that provides r solutions S1, S2, . . ., Sr , in time T1, T2, . . ., Tr , respectively, and
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satisfies the following conditions:

(1) T1 = Θ(t).

(2.1) Sr is the exact solution and Si is an (ϵ i, 1 − pi)-solution for some ϵ i > 0

and 0 < pi ≤ 1/2, for all i ∈ {1, . . . , r − 1}.
(2.2) Tr = O(T∗(n)) and Ti = O(T∗(ϵ i, 1 − pi)), for all i ∈ {1, . . . , r − 1}.
(3) For i ∈ {1, . . . , r − 1},Ti = O(tτi−1) for there exists τ ≥ 2 (τ is independent of

i), and moreover if τ > 2, then Ti = Θ(tτi−1).

(4) Both ϵ i and pi decrease with increasing i.

Note that in O(∗) and Θ(∗) in this theorem, ϵ , r , and t are regarded as variables.

Although we did not define ϵr and pr in this theorem, we can introduce them as ϵr = 0

and pr = 0 (since Sr is the exact solution).

In Condition (3) of this theorem, the common ratio of increasing Ti is at least 2,

i.e., τ ≥ 2. This is because if τ is smaller than 2, then we do not need to calculate

solutions so frequently, and it is sufficient to use 2 as the common ratio. Moreover,

the latter half of Condition (3) “if τ > 2, then Ti = Θ(tτi−1)” is important. If this

constraint does not exist, Ti = O(tτi−1) (for i ∈ {1, . . . , r−1}) can be trivially satisfied

by letting τ be very huge, e.g., τ ≥ T∗(n)/T1.

Proof of Theorem 40: All of Conditions (*) appearing in this proof represent the

conditions in the statement of this theorem.

From Condition (1), we calculate appropriate ϵ1 and p1 that satisfyT∗(ϵ1, 1−p1) ≤
max{2t, t + c} for an appropriate constant c > 0, and then the algorithm is required

to output S1 ∈ {yes, no} when t is small. Note that since any random solution is an

(ϵ, 1/2)-solution for any ϵ , there must be such ϵ1 and p1. Hence,

T1 := max{2t, t + c}. (13)

Let τ and T ′1, . . ., T ′r be as follows, where n is the size of the input.

τ = max

(
T∗(n)

T1

) 1
r−1

, 2
 , (14)

T ′i := min{T1τ
i−1,T∗(n)} (i = 1, . . . , r). (15)

If (T∗(n)/T1)1/(r−1) < 2 in (14), then τ = 2 and T ′i may reach T∗(n) before i = r ,

and the algorithm can stop there, i.e., if there exists k such that T ′k−1τ ≥ T∗(n), then
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we stop the increase of T ′i at this point, i.e., T ′k = T ′k+1 = · · · = T ′r . Let k be the

minimum positive integer that satisfies the above condition. Note that k < r occurs

only if τ = 2. From these definitions, T ′1 = T1 and T ′k = T ′r = T∗(n).

For each i = 2, . . . , k −1, we calculate ϵ i and pi that satisfy T∗(ϵ i, 1− pi) = Θ(T ′i ).

Since T∗(ϵ, 1 − p) is a decreasing function of both ϵ and p and T∗(ϵ, 1 − p) ≤ T∗(n)

for any 0 ≤ ϵ ≤ 1 and 0 ≤ p ≤ 1 (because Alg1 outputs a (0, 1)-solution and thus if

T∗(ϵ, 1 − p) > T∗(n) for some ϵ and p, then we can replace Alg0 with Alg1 for such

ϵ and p), there must be such ϵ i and pi satisfying ϵ i ≤ ϵ i−1 and pi ≤ pi−1.

Now we present the progressive algorithm. Note that k < r occurs only if τ = 2,

and otherwise k = r .

procedure Progressive

begin
01 do from i = 1 to k − 1;

02 if T ′i = T∗(n) then stop;

03 calculate ϵ i and pi;

04 call Alg0(ϵ i, 1 − pi) and output the solution (Si);

05 enddo
06 call Alg1 and output the solution (S∗);

end.

We show that this algorithm satisfies the conditions. Conditions (1), (2.1) and

(4) are clear from the construction of the algorithm. From T ′1 = T1 = max{2t, t + c},
Condition (2.2) is clear for i = 1.

For every i ∈ {2, . . . , k},

Ti =

i∑
j=1

T ′i =
i∑

j=1
T ′1τ

j−1 =
1
τ − 1

(τi−1 − 1)T ′1

≤ 2τi−1T ′1 (because τ ≥ 2)

= 2T ′i .

From this, it follows that Tk = Tr = O(T∗(n)) and O(T∗(ϵ i, 1− pi)) for i ∈ {2, . . . , k −
1}, i.e., Condition (2.2) is satisfied for all i. The former half of Condition (3) is clear.
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If τ > 2, then k = r and the latter half of Condition (3) is satisfied. □

Theorem 40 assures that we can construct a progressive algorithm without losing

any computation time in the big-O sense. Furthermore, it can be observed that the

above algorithm is the optimum in some meaning as shown below.

Observation 41. The algorithm constructed in the proof of Theorem 40 is an algo-

rithm that minimizes the ratio R := maxi∈{2,...,r } Ti/Ti−1 in the big-O sense, among all

algorithms that satisfy all of the conditions.

Proof of Observation 41: Let T̂i be the time when the i-th solution Si is output by

a constant-time algorithm. To obtain the exact solution Sr we need at least T∗(n)

time, i.e., T̂r ≥ T∗(n). Moreover, the first solution S1 must be outputted by sublinear

progressive algorithm in time Θ(t). Since T1 = Θ(t), we have T̂1 ≤ c′T1 for some

constant c′ ≥ 1. Thus,

T̂r

T̂1
≥ T∗(n)

c′T1
=
τr−1

c′
(by (14) and τ ≥ 2).

From

T̂r ≤ Rr−1T̂1,

it follows that

R ≥ *, T̂r

T̂1

+-
1

r−1

≥
(

1
c′

) 1
r−1

τ ≥ τ
c′

(because c′ ≥ 1)

= Ω(τ).

□

3.4 Representative Example of ϵ i and pi

We consider a representative case on sublinear progressive algorithms. From Corol-

lary 38, in many constant-time algorithms, the computation time for getting an

(ϵ, 1 − p)-solution can be represented by

t(ϵ, 1 − p) = c′
(
1
ϵ

)c′′

log2
1
p
, (16)

where c′ and c′′ are constants that depend on the property.
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Under this assumption we show the concrete expressions of ϵ i and pi that appeared

in Theorem 40. However, there is a freedom to fix the ratio between ϵ i and pi, i.e.,

even if the value of t(ϵ i, 1 − pi) is fixed, there are two valuables, ϵ i and pi, and we

cannot fix them.

In the proof of Theorem 40, the computation time of Si is longer than that of

Si−1 at the ratio of τ, i.e., t(ϵ i, 1 − pi)/t(ϵ i−1, 1 − pi−1) = τ. This τ can be divided

into the ϵ-dependent ratio, (1/ϵ )c′′, and the p-dependent ratio, log2(1/p). Here, we

separate computation time as ρ : 1 − ρ for arbitrary 0 ≤ ρ ≤ 1 in every step, i.e., the

ϵ-dependent ratio becomes τρ times longer and the p-dependent ratio becomes τ1−ρ

times longer in each step.

The freedom in fixing ϵ1 and p1 still remains. If p1 is fixed, then from t(ϵ1, 1−p1) =

T1 and (16), we obtain

ϵ1 =
*.,

c′ log2
1
p1

T1

+/-
1
c′′

. (17)

Note that ϵ i ≤ 1. From this, c′ log2(1/p1) ≤ T1, and thus

p1 ≥
1
2

T1/c′

. (18)

By setting c in (13) to be larger than or equal to this c′, p1 can be at most 1/2.

We can choose any p1 that satisfies (18). From the above discussions, ϵ i and pi for

i ∈ {2, . . . , r − 1} are expressed as follows.

ϵ i =
ϵ1

τρ(i−1)/c , (19)

pi = pτ(1−ρ)(i−1)
1 . (20)

3.5 Considerations and Observations on Application
Accuracy
Note that the accuracy in sublinear progressive algorithms is a pair of approximation

parameter and fault probability. A property testing algorithm outputs yes or no as

the answer. Even though this answer is a yes-no answer, it has a fault probability.

In other words, even if the algorithm outputs yes, it does not necessarily mean that
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the true answer is yes. For example, we run the sublinear-time algorithm 10 times

with (ϵ1, p1) and got all yes. Next, we run the sublinear-time algorithm 20 times with

(ϵ2, p2) and got 18 times yes and 2 times no. The percentage of yes has dropped from

100% to 90%. This kind of output can be obtained despite the correct conditions such

that ϵ1 ≥ ϵ2 and p1 ≥ p2. At first glance, this appears to violate the condition that

the accuracy of the solution is monotonically decreasing. Under these situations, we

consider the results of ϵ2 and p2 to be more accurate. The reason is that the algorithm

often outputs yes all 10 times by chance. The decrease of the yes proportion does not

decrease the accuracy. The pair of ϵ i and pi itself is interpreted as accuracy.

Why to run the exact algorithm only once at the end?
If you give a sublinear-time algorithm (ϵ, p) = (0, 0) as input, it output the same

solution as the exact solution in principle. Although it can be regarded as an exact

algorithm, the sublinear progressive algorithm runs the exact algorithm only once

at the end. The sublinear-time algorithm with (ϵ, p) = (0, 0) has some overhead

compared to the exact algorithm because the sublinear-time algorithm originally

outputs the answer from a part of the input. This means that before ϵ and p reach 0,

the computation time of the sublinear-time algorithm is the same as the computation

time of the exact algorithm. If it is able to read all the input, then it is appropriate to

switch to the exact algorithm.

There is another reason for such a framework. The sublinear progressive algo-

rithm is a combination of the constant-time algorithm and the exact algorithm for

convenience. Here, the exact algorithm means an algorithm that reads all inputs, so

the exact algorithm can be replaced by any algorithm that reads all inputs. In other

words, for example, our method allows for the combination of any sublinear-time and

polynomial-time approximation algorithms. The combination of the polynomial-time

approximation algorithm and the exponential-time exact algorithm is as described in

related work. By combining our method with previous research, we can smoothly

switch between algorithms.
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Chapter 4 K3 edge cover problem in a wide sense
4.1 Introduction
In this chapter, we consider combinatorial optimization problems that have important

applications in the design of experiments.

Problem 1 (reshown). There are several samples and machines. Each sample can

only be evaluated relatively. The number of samples that a machine can hold is fixed.

You have to compare several combinations several times. If the number of samples

is (a), the number of machines is (b), the number of samples the machine can hold is

(c), and the number of comparisons is (d), what combination minimizes the number

of comparisons?

This problem is closely related to the block design and schoolgirl problems [78].

• If a = 15, b = 5, c = 3, d = 1, then it is a schoolgirl problem.

• If b = (a−1)
2 , c = 3, d = 1, it is a generalized schoolgirl problem.

• If a, b, c, and d are all variables, it is the block design.

This problem can be formulated as a problem in graph theory. We cover all edges of

a given complete graph G = (V, E), |V | = a, with b cliques of size c. The number

of times an edge should be covered is d. What do the given graph and an edge mean

in the design of experiments? It represents a combination to be compared, and a

complete graph indicates that pairs must be compared. If an input graph is not a

complete graph, some pair with no edges represents no need for comparison. This is

a natural extension and has already been studied as a problem of edge covering [93].

It is NP-hard in the case where c is a variable and the problem of minimizing b for

any a and d = 1.

We discussed the case of comparing if there is an edge or not comparing if there

is no edge. In many cases of actual experiments, it is likely that there are pairs that do

not need to be compared, and a pair can be compared more than once. We consider

a further extension of this problem. What would be the extension if there are some

intermediate states between covered or uncovered? It corresponds, in graph theory,

to covering the edges of the original graph by allowing “spilling-out” and overlap

on the edges. This is a very simple setting, but there is no result of edge coverings

that consider “spilling-out.” We call this problem the Kk edge cover problem in a
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wide sense [37]. The problem can be formulated as follows. For a given graph

G = (V, E), find the minimum number of k-cliques (Kks) that cover all edges of

G. Multiple covering or covering one edge by more than one k-cliques is allowed.

“Spilling-out” means that a set of k vertices can be covered by a k-clique even if the

induced subgraph by them is not a clique. The K2 edge cover problem in a wide

sense is trivial because the minimum number of cliques is the number of edges in the

graph. In this chapter, we prove that the case k = 3 is NP-hard.

4.2 Definitions
We consider only simple undirected graphs (graphs with no self-loop and no parallel

edge). The number of edges of graph G is denoted as | |G | |. We call a subgraph (or its

vertex set) that is a complete graph clique. A clique consisting of k vertices is called

a k-clique and denoted by Kk . For a graph G = (V, E), a family X = {X1, . . . , Xp} of

vertex subsets is called a Kk edge cover in a wide sense (or a Kk edge cover for short)

if (1) |Xi | = k for any i ∈ {1, . . . , p} and (2) for any edge (u, v ) ∈ E, there is a vertex

subset Xi ∈ X such that u, v ∈ Xi. In this case, we say that edge (u, v ) is covered by

Xi. We call p the size of the Kk edge cover. The minimum size of a Kk edge cover

is denoted by γk (G). In the Kk edge cover problem, if one edge e is contained in a

clique in a solution set, then we say e is covered. In this dissertation, we consider

only the case of k = 3, i.e., the K3 edge cover problem in a wide sense. The problem

is defined as follows.

Problem K3-edge-cover-in-a-wide-sense (K3EC)

Instance: A graph G = (V, E), and a positive integer h ≥ 1.

Question: γ3(G) ≤ h?

For this problem we obtain the following results. Let C4 and C5 be the cycles of

length 4 and 5, respectively.

Theorem 2. K3EC is NP-complete even if graphs are restricted to planar, cubic, and

C4,C5-free as subgraphs (i.e., not restricted to induced ones).

Theorem 3. For K3EC, there is an O( |E | |V | + 2k |E |)-time algorithm, where k is the

number of 3-cliques in G.

Theorem 4. For K3EC, if a tree-decomposition of tree-width t is given, there is an

O(22(t+1)(t+2)t2 |V |)-time algorithm.
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4.3 Related Work
The school girl problem, block design, and covering by cliques have been extensively

studied. The school girl problem is a classical combinatorial mathematical problem

[78], and fast algorithms for solving this problem have been studied [18]. Block

design is a well-known problem in the field of discrete mathematics [106], concrete

patterns [75] and applications [92] have been considered. For more details on block

design and graphs, see [32], [45], and [83].

There are related studies on the problem of covering a vertex by paths [63,

88]. K3EC is directed related to the following problems. Problem Partition-into-

cliques, PIC for short, is a problem, given a graph G = (V, E) and an integer K , for

deciding whether or not V can be partitioned into k (≤ K ) cliques. Problem Covering

by cliques, CBC for short, is a problem, given a graph G = (V, E) and an integer K ,

for deciding whether or not V can be covered by k (≤ K ) cliques which are subgraphs

of G and cover (include) all edges in E. PIC can be regarded as a problem of covering

vertices by cliques. CBC can be regarded as a problem covering edges by cliques with

edge repetitions allowed. These two problems are known to be NP-complete [73, 93].

Regarding PIC, polynomial-time algorithms are known for circular arc graphs [55],

for chordal graphs [54], for comparability graphs [61]. Regarding CBC, intersection

number is the smallest number of cliques which cover (include) all edges in E [73],

and an FPT algorithm with parameter k (the size of the solution) is given [43, 62].

K3EC differs from them in the following two parts: (1) it allows spilling-out and (2)

the size of the clique is limited. There have been no studies on this problem. Clearly,

the problems of covering by K1 or K2 are trivial. For the problem of covering by

P2, which is a path consisting of two edges, a polynomial-time algorithm is easily

obtained by modifying our algorithm given in the proof of Lemma 45. If there is no

size restriction of cliques, K3 edge cover in wide sense becomes trivial, since covering

by a |V |-clique is optimal.

4.4 NP-Completeness
In this section, we show a proof of Theorem 2.

Theorem 2 (reshown). K3EC is NP-complete even if graphs are restricted to planar,

cubic, and C4,C5-free as subgraphs (i.e., not restricted to induced ones).

43



Figure 3: Reduction to K3EC from IS.

K3EC is clearly in NP. Thus we will show NP-hardness. It will be done by

reducing the Maximum Independent Set (IS), which is a well-known NP-complete

problem [53].

Let H = (W, F) be a graph. A vertex subset V ′ ⊆ V such that there is no edge

between any vertices of V ′ is called an independent set, and |V ′| is its size. The

problem is defined as follows.

Problem Maximum Independent Set (IS)

Instance: A graph H = (W, F), and a positive integer h ≥ 1.

Question: Does H have an independent set with size at least h?

Theorem 40. [52] IS is NP-complete even if H is planar and cubic.

We show how to reduce IS to K3EC. Let (H = (W, F), h) be an instance of IS,

where H is cubic and planar. We construct an instance (G = (V, E), k) of K3EC as

follows.

Intuitively, we obtain G from H by replacing a vertex w ∈ W with a K3 with

vertices w0, w1, and w2; next, connecting the three edges e0, e1, and e2 incident

to w (note that H is cubic) to w0, w1, and w2 one by one. See an example of this

reduction in Fig. 3. Note that if H is a cubic planar graph, then G is cubic, planar,

and C4,C5-free. Let k = 5
2 n − h, where n = |W |.

It is clear that this reduction can be done in polynomial-time. Thus it is sufficient

to show that H has an independent set of size h if and only if G has a K3 edge cover
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Figure 4: Delta-triangle (left) and 3L-triangle (right).

of size k = 5
2 n − h.

Before showing it, we introduce some terms. Each K3 of G, which corresponds

to a vertex in W , is called a triangle. The three edges in a triangle are called triangle-

edges. On the other hand, edges connecting distinct triangles are called link-edges.

If two distinct triangles are connected by a link-edge, then they are called adjacent.

Let X be a K3 edge cover of G of size p, where p is an integer. If X ∈ X covers

three edges, then X is called a delta. If X ∈ X covers just two edges, then X is called

an L. If X ∈ X covers only one edge, then X is called an I. If a triangle is covered

by a delta, then the triangle is called a delta-triangle. If a triangle is covered by three

Ls, then the triangle is called a 3L-triangle (see Fig. 4).

If all triangles are covered by delta-triangles or 3L-triangles, the K3 edge cover is

called regular. If there is no pair of adjacent 3L-triangles in a regular K3 edge cover,

the K3 edge cover is called independent regular.

Lemma 41. If H has an independent set U ⊆ W with |U | = h, then G has a K3 edge

cover X with |X| = 5
2 n − h.

Proof: We construct X from U as follows. For a triangle in G, if the corresponding

vertex in H is in U , then we let the triangle be covered by a 3L, and otherwise be

covered by a delta. The remaining edges in G are covered by Is. See Fig. 5 for

example.

We calculate the size of X. Let n = |W |. Since H = (W, F) is cubic, |F | = 3
2 n.

From this, it follows that the number of triangles and link-edges in G are n and 3
2 n,
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Figure 5: U (left) and the corresponding X (right): In the left figure, black vertices

are in U, the triangle covered by a 3L in X.

respectively. Since the number of 3L-triangles is h, the number of delta-triangles is

n − h. The number of link-edges covered by 3L is 3h, and the number of link-edges

covered by Is is 3
2 n − 3h. By summing up the numbers of deltas, 3Ls, and Is used in

X, we get the following equations:

|X| = (n − h) + 3h +
3
2

n − 3h =
5
2

n − h. (21)

Therefore, X is the desired K3 edge cover. □

Note that the K3 edge cover X obtained above is independent regular. To show

the reverse of this lemma is a little more complicated. We first show the following

lemma.

Lemma 42. If G has a K3 edge cover X, then G has an independent regular K3 edge

cover X′ with |X′| ≤ |X|.
Proof: First we construct a regular K3 edge cover X′ with |X′ | ≤ |X| from X. At the

first step, let X′ be equal to X. If X′ is not regular, we modify X′ to be regular by

using the following operations.

• Operation I: If there is a pair X, X ′ ∈ X′ such that all edges covered by X ′ are

also covered by X , then remove X ′ from X′.
• Operation II: If there is X ∈ X′ that covers only one triangle-edge and no

link-edge, then X is replaced with a delta covering the triangle-edge together
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Figure 6: Operation IV.

with the other two triangle-edges in the triangle.

• Operation III: If a triangle-edge e is covered by a delta and an L, then the L is

replaced with an I covering only e′, where e′ is the other edge covered by L.

• Operation IV: If the three edges of a triangle are covered by more than three Ls,

these Ls are changed to a 3L (at least one L is removed; see Fig. 6).

An algorithm for changing X′ to be regular is the following.

procedure Regularize(X′)
begin

do while X′ is not regular;

if Operation I can be applied then apply Operation I;

else if Operation II can be applied then apply Operation II;

else if Operation III can be applied then apply Operation III;

else if Operation IV can be applied then apply Operation IV;

end if
enddo

end
end procedure

We show that the above procedure stops in finite steps for any input X′. Each

operation never increases the size of X′. Moreover, both the number of Ls and the

number of X ∈ X′ that cover only one triangle-edge never increase too. Operations I

and IV decrease the size of X′, and thus they can be applied finite times. Operations

II and III decrease the number of X ∈ X′ that cover only one triangle-edge and the
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Figure 7: Operation V.

number of Ls, respectively, and thus they can be applied finite times. From these

discussions, Procedure Regularize stops in finite steps, totally. It is clear that if

Regularize(X′) stops, X′ is regular, because if X′ is not regular, then operations I-V

are applicable.

Now we obtain a regular K3 edge cover X′. We next change it to an independent

regular K3 edge cover.

• Operation V: If there is a pair of adjacent 3L-triangles, then replace one of

the two Ls which share the same edge (e.g., the central edge of Fig. 7) with a

delta-triangle, and apply Operation III to the triangle (see Fig. 7).

Operation V does not increase the size of the cover. By applying the above

operation whenever possible, X′ finally becomes independent regular. □

Now we show the reverse of Lemma 41.

Lemma 43. If G has a K3 edge coverX with |X| = 5
2 n−h, then H has an independent

set U ⊆ W with |U | = h.

Proof: Assume that G has a K3 edge cover X with |X | = 5
2 n − h. From Lemma 42,

G has an independent regular K3 edge cover X′ with |X′ | ≤ |X|. Since there are no

adjacent 3L-triangles in G,

U := {w ∈ W | the corresponding triangle in G is a 3L-triangle in X′} (22)

becomes an independent set. From the discussion made in the proof of Lemma 41,

|X′ | = 5
2 n − |U |. Thus if 5

2 n − |U | = |X′| ≤ |X| = 5
2 n − h, then |U | ≥ h. Therefore

any U′ ⊆ U with |U′ | = h is the desired independent set of H . □

Now we establish the proof of Theorem 2.

Proof of Theorem 2: Follows directly from Lemmas 41 and 43. □
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Chapter 5 FPT algorithms
As shown by Theorem 2, K3EC is NP-hard even for planar and cubic graphs. In

this chapter, we consider two FPT algorithms. Not all NP-hard problems have FPT

algorithms. In addition, note that the computational complexity varies depending on

the problem. For example, there is an O(2k n2) algorithm for Vertex Cover, but there

is no O(no(k)) algorithm for Independent Set under the assumption of FPT , W [1].

Each NP-hard combinatorial optimization problem requires a specialized FPT because

the problem settings are different. Keeping the above in mind, we consider two FPT

algorithms.

The first one is FPT algorithm with the number of K3s as a parameter in Section

5.1. In graph theory, the girth is the length of a shortest cycle contained in a graph

[46]. If the graph does not contain any cycle, its girth is defined to be infinity [101].

A graph with girth 4 or more is triangle-free. In a triangle-free graph, K3 can cover

at most two edges. It is important to know how many K3s are included in a graph.

We considered FPT algorithm with this parameter.

The second is an FPT algorithm with the tree-width as a parameter in Section

5.2. If a tree-decomposition is a mapping of a graph to a tree, and a tree-width is a

parameter that represents the "tree-ness" of the graph. If we can convert a given graph

to a tree decomposition, the algorithm can treat the graph like a tree. This means that

the obtained tree can be traversed exactly once bottom-up, which means that dynamic

programming on the tree decomposition is easier to construct. Unfortunately, the

problem of finding the tree-width t has been shown to be NP-complete [14]. However,

for graphs with small tree-width t, polynomial time algorithms for input n are known.

Bodlaender proved the existence of the O(tO(t3) · n)-time algorithm [24]. This is still

being improved, and there have been many studies of computation time for various

approximation [25, 51]. In addition, there is a nice tree decomposition, which has

good properties that make it easy to consider dynamic programming. Klok showed

that a tree decomposition of tree-width t can be converted to a nice tree decomposition

of tree width t in O(tn)-time [79]. Hence, we consider dynamic programming on

nice tree decomposition and FPT with tree-width. There are few studies on covering

with width as a parameter, but there are some researches on vertex cover [16, 105].
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5.1 A Parameter of the Number of K3

In this section, we prove the following theorem.

Theorem 3 (reshown). For K3EC, there is an O(mn + 2k m)-time algorithm, where

k is the number of 3-cliques in G.

5.1.1 K3 Edge Cover Problem in a Wide Sense on Trees
First, we consider K3EC in a tree, prove the following lemma.

Lemma 44. If T = (V, E) is a tree, γ3(T ) = ⌈|E |/2⌉.
Proof: If T is a path, γ3(T ) = ⌈| |T | |/2⌉ is trivial. We consider the case where there is

a vertex with degree 3 or more. We call such a vertex a branching vertex (see Fig. 8

(a)).

Let v be a branching vertex. We divide T into a set of subtrees {T1, . . . ,Tk } (where

k is the degree of v) according to the following rule: each Ti is a maximal subtree

such that v is one of its leaves (see Fig. 8 (b)). The size of a subtree Ti is defined as

| |Ti | |. If the size is odd, the subtree is called an odd-subtree and otherwise it is called

an even-subtree. If there are two odd-subtrees, we join them into one even-subtree.

By applying this as far as possible, we finally get a set of subtrees {T ′1, . . . ,T ′k } which

includes at most one odd-subtree (see Fig. 8 (c)).

(a) (b) (c)

Figure 8: (a) example of tree (one of branch point is the white circle)， (b) branch

point partition {T1, . . . ,T6}， (c) | |Ti | | is connected to {T1
′, . . . ,T4

′}.

By applying this operation to each subtree recursively, we finally get a set of paths

which consists of at most one path with odd size. For each path P, γ3(P) = ⌈| |P | |/2⌉.
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By summing them up, we obtain the following upper bound:

γ3(T ) ≤ ⌈||T | |/2⌉ . (23)

Next, we show the lower bound. Since K3 is not included in the tree, each X can

cover at most two edges in any K3 edge cover {X1, . . . , Xp}, and thus the following

inequality holds:

γ3(T ) ≥ ⌈||T | |/2⌉ . (24)

From Eqs. (23) and (24), γ3(T ) = ⌈|E |/2⌉ is obtained. □

5.1.2 P2 Edge Cover Problem in a Wide Sense
Covering with P2 (a path of length 2) corresponds to that K3EC without using deltas.

Hence, we consider the following lemma.

Lemma 45. For any connected graph G = (V, E), the minimum size of K3 edge cover

problem in a wide sense without using deltas is ⌈|E |/2⌉.
To prove this lemma, we use the following operation. Let G = (V, E) be a graph

and v ∈ V be a vertex with degree at least two. Delete v together with the edges

incident to v from G and add two new vertices v′ and v′′. New edges are added as

follows. The set of vertices adjacent to v is denoted by W = {w ∈ V | (v, w) ∈ E |}.
Let X and Y be two non-empty partition of W such that X ∪ Y = W , X ∩ Y = ∅, and

|X |, |Y | , ∅, and add edge sets EX = {(v′, w) | w ∈ X } and EY = {(v′′, w) | w ∈ Y }
to E. The above operation is denoted by a vertex-division on v , i.e., it is defined by

getting G′ = (V ′, E′) such that V ′ = (V − {v }) ∪ {v′, v′′} and E′ = (E − {(v, w) ∈
E | w ∈ W }) ∪ EX ∪ EY . Note that since there is arbitrariness in the way of dividing

W into X and Y , the result of a vertex partition is not defined uniquely if the degree

of v is more than two.

Proof of Lemma 45: By applying the vertex-division on an arbitrary vertex v on an

arbitrary cycle of G = (V, E), the resulting graph is still connected and the number

of edges does not change, and the number of cycles decreases at least by one. Thus

by applying a finite number of vertex-divisions to G, we get a tree T that has the same

number of edges as G. From Lemma 44, γ3(T ) = ⌈| |T | |/2⌉ = ⌈|E |/2⌉. Since T is the

spanning tree of G, and for any pair of adjacent edges in T , the corresponding pair of

edges are also adjacent in G, there is a K3 edge cover in G with the size of γ3(T ). On
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the other side, the size of K3 edge cover in G without deltas is clearly at least ⌈|E |/2⌉.
From the above discussion, this lemma is obtained. □

5.1.3 The Number of 3-cliques in the Graph as a Parameter
We prove Theorem 3 using Lemma 45 as follows.

Proof of Theorem 3: We give an algorithm for solving the problem. The algorithm

focuses on an arbitrary triangle of G. It divides the case into two cases according

to whether or not the triangle is covered by a delta. If it is covered by a delta, the

algorithm deletes the three edges in the triangle from G. Otherwise, the algorithm

gives a label “not covered by a delta” to the triangle. The algorithm recursively applies

the above operations as far as an unlabeled triangle exists. The graph finally obtained

is not allowed to be covered by using any delta, and the solution can be obtained from

Lemma 45. From that, the computation time of each case is O(m) and the number

of branches is at most k and the algorithm requires Θ(mn) time for enumeration all

triangles [40]. Therefore, the total computation time is O(mn + 2k m). □

5.2 Tree-width as a Parameter
Here we give an FPT algorithm with width as a parameter.

Theorem 4 (reshown). For K3EC, if a tree-decomposition of width t is given, there

is an O(22(t+1)(t+2)t2n)-time algorithm.

First, we assume that all graphs considered here are connected; otherwise, it is

enough to manage each connected component one by one. 1 Under this assumption,

we do not need to consider I (K3 covering only one edge) as shown in the following.

Lemma 46. If G = (V, E) is connected and |V | ≥ 3, there is an optimal solution that

includes no I.

Proof: Since G is connected and |V | ≥ 3, every edge has at least one adjacent edge.

Hence if an edge is covered by an I, we can replace this I with a delta or an L (K3

covering two edges). The size of K3 edge covers does not change by this change. By

applying this operation whenever an I exists, we finally obtain a K3 edge cover that

uses no I with the same size. □

Next, we introduce some terms and prepare some other lemmas.

1 This is valid for K3 edge covers. If we use K4, this strategy does not necessarily work.
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Definition 47. [79] (Tree-decomposition) A tree-decomposition of a graph G =

(V, E) is a pair D = (S,T ) with a family S = {B1, . . . , Br } of subsets of V and a tree

T = (I, F) such that I = {1, . . . , r } and the following three conditions are satisfied.

For every i ∈ I, i is called a node and Bi is called a bag.

(1)
∪

i∈I Bi = V ,

(2) for every edge (v, w) ∈ E, there is at least one bag Bi such that (v, w) ∈ Bi, and

(3) for each vertex v the set of nodes {i ∈ I | v ∈ Bi} forms a subtree of T．

Definition 48. [79] (Tree-width) The width of a tree-decomposition D = (S,T ) is

defined as maxi∈I ( |Bi | − 1). The tree-width of a graph G is the minimum possible

width through all tree-decompositions of G.

Definition 49. [79] (Nice tree-decomposition) A tree-decomposition D = (S,T ) is

called nice if the following four conditions are satisfied.

(1) T is a rooted tree and each node has at most two children.

(2) If a node i has two children j and k, then Bi = B j = Bk .

(3) If node i has a unique child j, then “|Bi | = |Bj | + 1 and B j ⊂ Bi ” or “|Bi | =
|B j | − 1 and Bi ⊂ B j”.

(4) Every bag corresponding to a leaf node of D consists of only one vertex.

Definition 50. [79] (Node types of a nice tree-decomposition) In a nice tree-decomposition

({Bi | i ∈ I},T = (I, F)) every node has one of the following four possible types.

Leaf: A node that is a leaf.

Introduce: A node i that has a child j and |Bi | > |B j |.
Forget: A node i that has a child j and |Bi | < |B j |.
Join: A node that has two children.

Lemma 51. [79] If a tree-decomposition with width t of graph G is given, a nice

tree-decomposition of width t having O( |V (G) |) nodes can be obtained in O(t2 ·
max( |V (T ) |, |V (G)) |))-time.

5.2.1 Preliminaries
Our algorithms use a nice tree-decomposition obtained by using Lemma 51. From

here every tree-decomposition appearing below is a nice tree-decomposition, unless

otherwise stated. In what follows a tree decomposition is regarded as a nice tree

decomposition. Let i and j be nodes in I and let Bi and B j be bags corresponding to

i and j, respectively. If j is a descendant (an ancestor, resp.) of i, then Bj is called a
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Figure 9: An example of a graph and a nice tree-decomposition.

descendant (an ancestor, resp.) of Bi. The lower vertex set B↓ of a bag B is defined

as follows:

B↓ := {v ∈ B′ | B′ is a descendant of B} − B. (25)

Let B+↓ := B↓ ∪ B. The upper vertex set B↑ of the bag B is B↑ = V − B+↓ . Also,

B+↑ := B↑ ∪ B. For an arbitrary K3 edge cover X = {X1, . . . , Xp} of a graph G and

an arbitrary vertex subset W ⊆ V , let XW := {Xi ∈ X | Xi ⊆ W }, which is a partial

solution of X for W . The edge set of the subgraph of G = (V, E) induced by W ⊆ V

is denoted by EW .

Let GB+↓
= (B+↓ , EB+↓

) be the subgraph of G = (V, E) induced by B+↓ . Let E−B+↓ ,X
be

the set of edges not covered by XB+↓
in EB+↓

. X∗W is called an optimal partial solution

for W if X∗ is the minimum size of the K3 edge cover problem.

Our algorithm traces the rooted tree T in the postorder, and for each bag B,

constructs a set of partial solutions for B+↓ such that one of them is an optimal partial

solution. For saving the memory, we compress the data of the partial solutions and

store them as a table. We will explain the details in the following.

For an intuitive explanation, let us assume a bag B has k vertices. For the bag

B = {v1, v2, . . . , vk }, we create a table T[B], which is a compressed representation of
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the partial solutions. Let GB := (B, EB) be the subgraph of G induced by B. Let

E+B := {(v, w) ∈ EB+↓
| {v, w} ∩ B , ∅}, i.e., E+B is the set of edges in EB+↓

that are

incident to at least one vertex in B. Let E′B be E′B := E+B − EB , i.e., the set of edges

in E+B that are incident to just one vertex in B. Let h = |EB | be the number of edges

between vertices of B, and we give serial numbers to these edges as e1, . . . , eh.

Let X j , j = {1, . . . , q}, be the partial solutions stored in T[B]. X j is represented

as row j of T[B]. Each row of T[B] is divided into three parts: the first part consists

of k (= |B |) columns, the second part consists of h columns, and the third part is

only one column (see Fig. 10 for an example of T[B]. Note that in this figure, the

tree-decomposition is not nice so as to make it simple). That is, T[B] consists of

k + h + 1 columns. The i-th cell of the first part of row j stores the number of edges

between vi and vertices in B↓ and uncovered by X j (Note that the set of these edges is

E−B+↓ ,X j ∩ E′B). It will be shown later (in Lemma 54) that this number is enough to be

1 or 0. The i-th cell of the second part of row j is 1 if ei is covered by X j ; otherwise

0. The size |X j | of X j is stored in the third part of row j. For notational simplicity,

this value |X j | is represented by ω in the following. The compressed expression of a

partial solution excluding the third part is called the signature of the partial solution.

In the following, we show some lemmas necessary for supporting our algorithm.

Lemma 52. For any bag B of a tree-decomposition of a graph, and two vertices

u ∈ B↑ and v ∈ B↓, there is no edge between u and v , i.e., (u, v ) < E.

Proof: From Condition (3) of Definition 47, there is no bag containing both u and v ,

hence (u, v ) < E. □

Lemma 53. For any optimal solution X and a bag B, all edges belonging to E−B+↓ ,X
are incident to vertices in B.

Proof: Assume that an edge (u, v ) ∈ E−B+↓ ,X
is not incident to any vertex in B, i.e.,

u, v < B. Since E−B+↓ ,X
⊆ EB+↓

, it follows that u, v ∈ B↓. Let X be an element of X
that covers (u, v ). Since X < XB+↓

and (u, v ) ∈ E−B+↓ ,X
, X covers at least one edge

besides edge (u, v ). 1 Let the edge be (v, w) without loss of generality. Here, since

1 Since X is an element of X and X < XB+↓ , it means that one of the vertices in X is not in B+↓ .
X should contain another vertex w other than u and v that is not in B, because u, v ∈ B↓ ⊆ B+↓ .
Therefore, we have that X covers at least one edge besides (u, v ), say, (u, w) or (v, w) (I does not
exist from Lemma 46).
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(a)　　

(b)

(c)

Figure 10: An example of T[B]: (a) a tree-decomposition (note that it is not nice)，

(b) a K3 edge cover, (c) Table T[B] and the row corresponding to the K3 edge cover.

56



there is no edge between B↑ and B↓, w ∈ B+↓ follows from Lemma 52, contradicting

X < XB+↓
. □

Lemma 54. If there is a solution X, then there is a solution X′ such that |X′ | ≤ |X|
and |{(v, w) ∈ E−B+↓ ,X′

| w ∈ B↓}| ∈ {0, 1} for any bag B and any v ∈ B.

Proof: For any solution X, if there are X = {v, u, w}, X ′ = {v, u′, w′} ∈ X with

v ∈ B, u, u′ ∈ B↑, u , u′, and w, w′ ∈ B↓, then X and X ′ can be replaced with

Y = {v, u, u′} and Y ′ = {v, w, w′}, because there is no edge that is not covered by

this replacement from Lemma 52. By applying this procedure as far as possible, the

number of uncovered edges between v and B↓ becomes 0 or 1. □

Lemma 54 assures that each cell of the first part of each row is 1 or 0.

Lemma 55. For two solutions X and X′ and a bag B, assume that the signatures of

the two partial solutions XB+↓
and X′B+↓ are the same. Then, there is a solution X′′

such that X′′B+↓ = XB+↓
and |X′′| = |X′ | − |X′B+↓ | + |XB+↓

|.
Proof: If E−B+↓ ,X

= E−B+↓ ,X′
, the statement of this lemma holds by letting X′′ = X

from Lemma 53. Therefore, we assume that E−B+↓ ,X
, E−B+↓ ,X′

in the following part.

Since X and X′ have the same signature, every edge belonging to E−B+↓ ,X
− E−B+↓ ,X′

or

E−B+↓ ,X′
− E−B+↓ ,X

has one end vertex in B and the other in B↓. Furthermore, for any

v ∈ B, the number of edges belonging to E−B+↓ ,X
− E−B+↓ ,X′

and incident to v is equal

to the number of edges belonging to E−B+↓ ,X′
− E−B+↓ ,X

and incident to v . Therefore,

it is possible to give a one-to-one correspondence between these elements on the

same edges (if exist). Assume that an element X ′ of X′ − X covers an edge (v, w) in

E−B+↓ ,X′
− E−B+↓ ,X

(where v ∈ B and w ∈ B↓). In this case, X ′ is not a delta because if

X ′ = {v, w, u} is a delta, then from X ′ < X′B+↓ , u ∈ B↑ and (u, v ), (w, u) ∈ E, but the

existence of edge (w, u) contradicts Lemma 52. Moreover X ′ is not an I: otherwise,

X ′ = {v, w} ∈ X′B+↓ , which contradicts (v, w) ∈ E−B+↓ ,X′
. Therefore, X ′ is an L, and the

edge covered in addition to (v, w) is (u, v ) (where u ∈ B↑) without loss of generality.

Let the edge in E−B+↓ ,X
− E−B+↓ ,X′

corresponding to (v, w) be (v, w′). If we replace X ′

with {u, v, w′}, the signature does not change. Hence, if X of X covers an edge in

E−B+↓ ,X′
− E−B+↓ ,X

, we can replace with X ′. Let X′′′ be the set obtained by replacement.

Here |X′′′| = |X′ − X| and X ′′′ covers all edges in E−B+↓ ,X
. Therefore, by letting

X′′ = X′′′ ∪ XB, we obtain the desired solution. □

Lemma 56. Let B be a forget node and B′ be its child node. Let edge (u, w) satisfy
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u ∈ B′ − B and w ∈ B′↓. Let X be an optimal solution. Then, there is a set X ∈ X
such that u, w ∈ X and X ⊆ B′+↓ .

Proof: Assume that for every X ∈ X containing u and w, X ⊈ B′+↓ . Then there exists

v ∈ B′↑ and X ∈ X such that X = {u, w, v }. Since B is a forget node, B ⊂ B′ and

hence v ∈ B↑. On the other hand (u, v ) ∈ E or (w, v ) ∈ E must hold, because there is

no I from Lemma 46, contradicting Lemma 52. □

Lemma 57. Let B be a join node and B′ and B′′ be its child nodes. Then, B′↓∩B′′↓ = ∅.
Proof: From the definition of B′↓, any vertex belonging to B′↓ does not belong to B′.

Therefore, from the definition of tree-decomposition (Condition (3) of Definition 47),

these vertices do not belong to B′′↓ either and hence this lemma follows. □

5.2.2 Algorithm
When creating table T[B], if there are two or more partial solutions whose signatures

are the same we can remove these partial solutions except one that has the minimum

ω among them. A strict proof of the correctness of this operation will be shown

after describing the algorithm (Lemma 58). We explain the algorithm step by step as

follows. This algorithm scans the tree of a nice tree-decomposition in the postorder

and creates a table T[B] at each node (bag) B so that T[B] has a partial optimal

solution. Finally, an optimal solution exists in the table of the root node.

T[B] is created from the tables of the children of B. Since the tree decomposition

is nice, the number of children is at most two. The basic strategy of creating T[B] is

to enumerate all possible partial solutions. That is, for each row (partial solution) X
in B′, which is one of the children of B, the algorithm enumerates all possible cases

of covering or uncovering the edges in E−B+↓ ,X
. if |E−B+↓ ,X | is bounded by a constant

number, the enumeration for them can be done in constant time. However since |EB+↓
|

grows up to m on the root of the decomposition tree, the number of different partial

solutions becomes exponential. This problem is resolved by using Lemma 58. That

is, from this lemma, keeping only partial solutions whose signatures are different is

sufficient.

The operation for constructing T[B] for each node (bag) B consists of two stages:

one is Enumerating Stage and the other is Refinement Stage. In Enumerating Stage, all

possible partial solutions are enumerated. In Refinement Stage, partial solutions that

are unnecessary (i.e., that are not partial solutions of optimal solutions) are removed.
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In the following, these stages are illustrated. First, Enumerating Stage for each type

(leaf, introduce, forget, and join) is shown. Since Refinement Stage is the same for

every type, it will be shown after explaining Enumerating Stages of all types.

Enumerating Stage
1. Leaf nodes

Let B be a leaf node, and u be its (unique) element. Create Table as shown in

Table 1.

Table 1: Since GB = (B = {u}, EB = ∅) for leaf node B = {u}, XB = ∅ for any

solution X. Therefore, T[B] looks like what is shown.

u ω

0 0

2. Introduce nodes
Let B = {u, v1, v2, . . . , vk } be an introduce node and B′ = {v1, v2, . . . , vk } be its

child. For each row of T[B′], create rows of T[B] according to the following

operations. Let XB+↓
be the partial solution corresponding to the row (of T[B′])

(see Fig. 11).

Step 1. For each edge (vi, v j ), apply the following operations. Let wi and w j be

vertices adjacent to vi and v j in B′↓, respectively, and are not covered by the

partial solution that corresponds to the currently focused row of T[B′] yet (if

exist). Note that vi (resp., v j) has at most one such vertex from Lemma 54.

List up all possible combinations of the following cases and make a row

corresponding to each of the combinations: (1) {vi, v j, u} are covered by a

K3, (2) {vi, v j, wi} are covered by a K3, and (3) {vi, v j, w j } are covered by a

K3. Create all combinations of the above three cases. Then, at most 23 = 8

rows are created for the currently focused row in T[B′].

Step 2. For each row created in Step 1, update the values in the cells of the

first, the second and the third parts.

3. Forget nodes
Let B = {v1, v2, . . . , vk } be a forget node and B′ = {u, v1, v2, . . . , vk } be its child.
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Figure 11: An example of making T[B] from T[B′], where B = {b, c, f } (introduce

node) and B′ = {c, f } (the child of B), on the graph and the tree-decomposition

shown in Fig. 9. Each row corresponds to a partial solution of the K3 edge cover,

e.g., the first row in Table (d) shows a partial solution {∅} and the second row shows

a partial solution {{c, f }}. Furthermore, in Table (a), the first row shows a partial

solution {∅} and the third row shows a partial solution {{b, c, f }}. Operation (i) refers

to wi and w j in Step 1, and Step 1 corresponds to operations (i) and (ii). Operation

(iii) is an operation included in the update of Step 2, which deletes rows that are no

longer needed. (i) Since there is no non-zero cell in the first part of T[B′] in (d), the

algorithm does nothing in (i). (ii) List up all possible cases to cover edges in B. In

this case, we consider the combination of whether the two edges ((b, c) and (c, f ))

are covered or not, i.e., the first row of (b) means neither (b, c) nor (c, f ) are covered,

the second row means (b, c) is covered but (c, f ) is not, the third row means both

(c, f ) and (b, c) are covered by one K3, and the fourth row means (c, f ) is covered

but (b, c) is not. (iii) Because the third row and the sixth row of (b) have the same

signature and the value of ω of the latter is larger than the former, the latter (the sixth

row) is deleted. Furthermore, because the fourth and the fifth rows are completely

the same, only one of them is left. Consequently, the table of (a) is obtained.
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For each row of T[B′], create T[B] according to the following operations. Let

XB+↓
be the partial solution corresponding to the row (of T[B′]) (see Fig. 12).

Step 1. For each edge (u, vi), apply the following operations. Let wu and wi be

vertices adjacent to u and vi in B′↓, respectively, and are not covered by the

partial solution that corresponds to the currently focused row of T[B′] yet

(if exist). Note that u (resp., vi) has at most one such vertex from Lemma 54.

Let v j be a vertex adjacent to at least one of u or vi. List up all possible

combinations of the following cases and make a row corresponding to each

of the combinations: (1) {u, vi, v j } are covered by a K3, (2) {u, vi, wu} are

covered by a K3, and (3) {u, vi, wi} are covered by a K3. Create all cases

of combinations of the above three cases. Then, at most 23 = 8 rows are

created for the currently focused row in T[B′].

Step 2. For each row of T[B], if edge (u, vi) is not covered (i.e., the value of

(u, vi) is 0 in the second part of T[B]) and vi has 1 in the cell of the first part

of T[B′], {u, vi, wi} are covered by a K3 and 0 is set as the value of vi in the

first part of T[B′] (note that u does not exist in B′↑ from Lemma 56).

Step 3. For each row created in Step 1 and Step 2, update the values in the cells

of the first, the second and the third parts.

4. Join nodes
Let B = {v1, v2, . . . , vk } be a join node and B′ = B′′ = {v1, v2, . . . , vk } be its

children. For each pair of a row in T[B′] and a row in T[B′′], create a row in

T[B] according to the following operations. Let X′B+↓ and X′′B+↓ be the partial

solutions corresponding to the row in T[B′] and the row in T[B′′], respectively.

Create a row in T[B], by applying the following operations to all pairs of rows

in T[B′] and T[B′′].

Step 1. For each cell in the first part of the row, store the logical sum of the

values of the corresponding cells of X′B+↓ and X′′B+↓ (the correctness of this

operation is supported by the fact B′↓ ∩ B′′↓ = ∅ proved in Lemma 57).

Step 2. For each cell in the second part of the row, put 1 if one of the values of

the corresponding cells of X′B+↓ and X′′B+↓ have 1, and 0 otherwise.

Step 3. For the cell in the third part of the row, store the sum of the values in
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Figure 12: An example of making T[B] from T[B′], where B = {b, c} (forget node)

and B′ = {b, c, f } (the child of B), on the graph and the tree-decomposition shown in

Fig. 9. Each row corresponds to a partial solution of the K3 edge cover, e.g., the first

row in table (d) shows a partial solution ∅ and the second row shows a partial solution

{{b, c, f }}. Operation (i) refers to wi and w j in Step 1, and Step 1 corresponds to

operations (i) and (ii). Step 2 does not apply to this node. Operation (iii) and (iv) is an

operation included in the update of Step 3, Operation (iii) is the edge that disappeared

in the forget node, Operation (iv) deletes rows that are no longer needed. (i) Since

there is no non-zero cell in the first part of T[B′] in (e), the algorithm does nothing

in (i). (ii) List up all possible cases to cover edges in B. In this case, we consider

the combination of whether the two edges ((b, c) and (c, f )) are covered or not, i.e.,

the first row of (c) means neither (b, c) nor (c, f ) are covered, the second row means

(b, c) and (c, f ) are covered, the third row means (c, f ) is covered but (b, c) is not.

(iii) The value of the column corresponding to vertex c (the second column) is set to

1, because edge (c, f ) and f do not exist in B. (iv) Because the second, the fourth,

the fifth, the sixth and the eighth rows of (b) have the same signature and the value of

ω of the second is the smallest, the fourth, the fifth, the sixth and the eighth rows are

deleted. Consequently, the table of (a) is obtained.62



the cells of the third part of X′B+↓ and X′′B+↓ .
After Steps 1 to 3, apply the following operations.

Step 4. For each vi, if both of the corresponding cells of T[B′] and T[B′′] are 1

(and the corresponding cell in T[B] is 0 as a result of the logical summation),

then increase the value of the row in the third part of T[B] by 1.　

Refinement Stage
After finishing creating columns of T[B] by the above operations, if there are two

or more partial solutions (rows) that have the same signature in T[B], then leave only

one partial solution that has the minimumω among them (i.e., delete the others). The

algorithm finally outputs the minimum size of K3 edge cover in wide sense and its

covering.

We prove the correctness and the computation time as follows.

Lemma 58. If T[B] includes a partial solution of an optimal solution, then at least

one of the kept solutions remains after Refinement Stage.

Proof: Assume that a partial solution of an optimal solution X∗ was deleted in

Refinement Stage of node B. We denote the deleted optimal partial solution by X∗B+↓ .
A partial solution XB+↓

that has the same signature must remain. From the rule of

Refinement Stage,

|XB+↓
| ≤ |X∗B+↓ |. (26)

By regardingX∗ andX asX′ andX, respectively, of Lemma 55,X′′ constructed in the

proof of Lemma 55 is also a solution. From (26), |X′′| = |X∗ | − |X∗B+↓ |+ |XB+↓
| ≤ |X∗ |.

Thus X′′ is also an optimal solution. XB+↓
can be regarded as a partial solution of

X′′. □

Lemma 59. For any bag B, the partial solution stored in T[B] contains the signature

of an optimal partial solution.

Proof: This can be easily proved by induction. In the leaf node, it is clearly trivial.

We assume that at the child nodes, the optimal solution is contained. The algorithm

makes all possible combinations at the parent node (introduce, forget, join). Hence,

the optimal solution is contained in it. □

Now we establish the proof of Theorem 4 as follows.

Proof of Theorem 4: From Lemma 59, since an optimal solution exists in the solution
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stored in the root node, the algorithm correctly gives the optimal solution. Thus we

estimate the computation time. First we calculate the number of columns in the table

T[B] of a bag B. The number of columns in the first part, which is equal to the number

of the vertices in the bag, is at most t + 1, the number of columns in the second part,

which is equal to the number of edges in the bag, is at most
(
t+1
2

)
= t(t+1)/2 and there

is another column for the third part. Thus the number of columns of a table is at most

t + 1+ t(t + 1)/2+ 1 = O(t2). Next, we calculate the number of rows. The maximum

number of rows in a table after finishing Refinement Stage is equal to the maximum

possible variations of signatures. Since there are at most 2t+1 variations for the first

part and 2t(t+1)/2 variations for the second part, the total number of possible variations

is at most 2t+12t(t+1)/2 = 2(t+1)(t+2)/2, which is an upper bound of the number of rows

of a table after finishing the Refinement Stage. However, in Enumerating Stage, more

rows can be created. In an introduce or forget node, we may create at most 8 rows for

each row of the table of the child node. Thus a total of 8 · 2(t+1)(t+2)/2 rows may be

created in Enumerating Stage of an introduce or forget node. In a join node, at most

(2(t+1)(t+2)/2)2 = 2(t+1)(t+2) rows are created in Enumerating Stage. By comparing

8 · 2(t+1)(t+2)/2 and 2(t+1)(t+2), it follows that the number of rows are O(2(t+1)(t+2)).

In Refinement Stage we compare all pairs of rows. Hence we compare O((2(t+1)(t+2))2) =

O(22(t+1)(t+2)) rows in a node. Comparing one pair of rows requires O(t2) time, since

the number of columns is O(t2). Therefore the computation time required in a node

is O(22(t+1)(t+2)t2).

Finally, since the number of nodes of the tree is O(n), it follows that the total

computation time is O(22(t+1)(t+2)t2n). □

64



Chapter 6 Conclusion
We worked on two techniques. First, we created a general framework for sublinear

progressive algorithms. By proving the SPA Theorem, we showed that a sublinear pro-

gressive algorithm can be constructed from any problem that has both a constant-time

algorithm and an exact algorithm. This made it possible to convert any constant-time

algorithm into a sublinear progressive algorithm without losing the computation time

in the big-O sense. This is the first method to convert a sublinear-time algorithm

into a progressive algorithm, and the first research that shows a general construction

method for progressive algorithms. Furthermore, we clarified the general relation-

ship between approximation parameter, fault probability, and computation time in

constant-time algorithms. We have developed a theoretical basis for a new algorithm

with a high affinity for large-scale data.

Second, we constructed an FPT algorithm for a combinatorial optimization prob-

lem that has important applications in the design of experiments. We considered

the problem including the “spilling-out” corresponding to the combination of “don’t

care” in comparative experiments. We call this problem the Kk edge cover prob-

lem in a wide sense. We found that the K3 edge cover problem in a wide sense is

NP-complete even for planar and cubic graphs. We also showed FPT algorithms for

several parameters: one is an O( |E | |V | + 2k |E |)-time algorithm and the other is an

O(22(t+1)(t+2)t2n)-time algorithm, where k is the number of 3-cliques and t is the

tree-width (under the assumption that a tree-decomposition of width t is given). If

k ≥ 4, a k-clique can cover the non-adjacent edges. A set of four vertices {a, b, c, d}
can be covered by a 4-clique even if the induced subgraph by them is not a clique.

Therefore, the result for k = 3 cannot be simply extended to k ≥ 4.

In recent years, the rapid increase in data size has greatly exceeded the rate of

evolution of hardware. We are sometimes faced with the problem that large-scale

problems are difficult to solve by using the traditional algorithms. By addressing our

two problems, we may make waves in creating fast algorithms for the sublinear com-

putation paradigm. Linear and sublinear-time algorithms that break the traditional

notion of “efficient” are likely to become increasingly important in the near future.

Our target is to expand this research and develop new algorithms for big data that will
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support innovation in the big data era.

66



References
[1] Faisal Abu-khzam, Rebecca Collins, Michael Fellows, Michael Langston,

W. Suters, and Christopher Symons. Kernelization algorithms for the ver-

tex cover problem: Theory and experiments. In Proc. of the 6th Workshop on

Algorithm Engineering and Experiments (ALENEX) and the First Workshop

on Analytic Algorithmics and Combinatorics (ANALCO), pp. 62–69, New

Orleans, LA, USA, Jan 2004.

[2] Faisal Abu-khzam, Michael Langston, Pushkar Shanbhag, and Christopher

Symons. Scalable Parallel Algorithms for FPT Problems. Algorithmica,

Vol. 45, pp. 269–284, Jul 2006.

[3] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Carnegie Mellon

University, Pittsburgh, PA 15213, USA, May 2005.

[4] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting

computation. In Proc. of the 35th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL 2008), pp. 309–322, NY,

USA, Jan 2008.

[5] Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Nie-

dermeier. Fixed parameter algorithms for dominating set and related problems

on planar graphs. Algorithmica, Vol. 33, pp. 461–493, Aug 2002.

[6] Jochen Alber, Frederic Dorn, and Rolf Niedermeier. Experimental evaluation

of a tree decomposition-based algorithm for vertex cover on planar graphs.

Discrete Applied Mathematics, Vol. 145, No. 2, pp. 219–231, Jan 2005.

[7] Jochen Alber, Henning Fernau, and Rolf Niedermeier. Parameterized com-

plexity: exponential speed-up for planar graph problems. Journal of Algo-

rithms, Vol. 52, No. 1, pp. 26–56, Jul 2004.

[8] Sander P. A. Alewijnse, Timur M. Bagautdinov, Mark de Berg, Quirijn W.

Bouts, Alex P. Ten Brink, Kevin Buchin, and Michel A. Westenberg. Pro-

gressive geometric algorithms. In Proc. of the 30th Annual Symposium on

Computational Geometry (SoCG 2014), Vol. 6, pp. 72–92, Jun 2014.

[9] Noga Alon, Richard A. Duke, Ralph H. Lefmann, Vojtěch Rödl, and Raphael

Yuster. The algorithmic aspects of the regularity lemma. Journal of Algo-

67



rithms, Vol. 16, No. 1, pp. 80–109, Jan 1994.

[10] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient

testing of large graphs. Combinatorica, Vol. 20, pp. 451–476, Apr 2000. In

Proc. of the 40th Annual Symposium on Foundations of Computer Science

(FOCS 1999), New York, NY, USA, pp. 656–666, Oct 1999.

[11] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial

characterization of the testable graph properties: It’s all about regularity. SIAM

Journal on Computing, Vol. 39, pp. 143–167, Jan 2009. In Proc. of the 38th

Annual ACM Symposium on Theory of Computing (STOC 2006), Seattle, WA,

USA, pp.251–260, May 2006.

[12] Noga Alon and Asaf Shapira. A characterization of the (natural) graph proper-

ties testable with one-sided error. SIAM Journal on Computing, Vol. 37, No. 6,

pp. 1703–1727, Mar 2008. In Proc. of the 46th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, pp.

429–438, Oct 2005.

[13] Noga Alon and Asaf Shapira. Every monotone graph property is testable.

SIAM Journal on Computing, Vol. 38, No. 2, pp. 505–522, Apr 2008. In Proc.

of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005),

Baltimore, MD, USA, pp. 128–138, May 2005.

[14] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of

finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods,

Vol. 8, No. 2, pp. 277–284, Apr 1987.

[15] Jasine Babu, Areej Khoury, and Ilan Newman. Every property of outerplanar

graphs is testable. In Proc. of the 19th International Workshop on Approxima-

tion Algorithms for Combinatorial Optimization Problems (APPROX 2016),

and the 20th International Workshop on Randomization and Computation

(RANDOM 2016), Vol. 60, pp. 21:1–21:19, Sep 2016.

[16] Zongwen Bai, Jianhua Tu, and Yongtang Shi. An improved algorithm for the

vertex cover P3 problem on graphs of bounded treewidth. Discrete Mathemat-

ics & Theoretical Computer Science, Vol. 21, No. 4, Nov 2019.

[17] R. Balasubramanian, Michael R. Fellows, and Venkatesh Raman. An improved

fixed-parameter algorithm for vertex cover. Information Processing Letters,

68



Vol. 65, No. 3, pp. 163–168, Feb 1998.

[18] Nicolas Barnier and Pascal Brisset. Solving the Kirkman’s schoolgirl problem

in a few seconds. Constraints, Vol. 10, No. 1, pp. 7–21, Jan 2005. In Proc.

of the 8th International Conference on Principles and Practice of Constraint

Programming (2002), Ithaca, NY, USA, pp. 477–491, Sep 2002.
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