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Abstract

The number of terminals has increased rapidly with the development of wireless technology.
In future wireless communications, massive numbers of terminals will communicate with
each other using finite frequency bands. However, the quality of communication in such an
environment degrades because of various factors, such as packet collision and uncertainty of
radio propagation characteristics. To guarantee the reliability of each wireless system, it is
necessary to determine the communication parameters according to the transmission timing
of a packet and surrounding radio propagation characteristics appropriately.

Several researchers have studied radio-propagation estimation to improve communication
reliability. It has been reported that communication quality can be significantly improved by
estimating radio propagation with high accuracy. Radio maps are used in various wireless
systems as a radio propagation estimation method. Based on actual measurements, the radio
map accumulates comprehensive statistical data of the radio environment, such as the average
received signal power and the frequency band occupancy. The average received signal power
is often used as typical information in radio map construction. The constructed radio map
is accumulated in a database, spectrum database. This map enabled us to estimate the path
loss and shadowing at each position skillfully. However, conventional radio maps store the
average received signal power in each location. In such a simple accumulation, the amount
of statistical data may be enormous if the communication area is wide. Consequently, the
registered data size of the radio map increases. We considered reducing the data size as the
first primary task in our dissertation. Conventional studies assume that massive received
signal power samples are obtained to estimate the average power in each location accurately.
It is difficult to collect such a large number of samples owing to the enormous measurement
times. The minimum number of required samples should be utilized to construct the radio
map efficiently. Thus, we considered the determination of the minimum required sample size
for calculating the average received signal power value as the second primary task.

Conventional radio maps have primarily been constructed for fixed transmitter locations.
In this environment, the average received signal power exhibits time-invariant characteristics.
Assuming this characteristic, many researchers have created radio maps using mainly spatial
interpolation. However, if the location of a transmitter varies with time, the received signal
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power exhibits time-variant characteristics. In a time-variant environment, the average
received signal power values before and after the movement of the transmitter may be
significantly different. Thus, it is necessary to update the radio map based on something
logical. We considered updating the radio map as the first application task in our dissertation.

In addition, if multiple transmitters operating at the same frequency exist near the com-
munication area, a target signal may not be obtained depending on the signal-to-interference-
plus-noise ratio owing to inter-transmitter interference. Although spatial interpolation can
be used to estimate the missing data, it estimates the missing data inside the known data. If
not all target signals can cannot be observed, the spatial interpolation may not be applicable;
thus, a novel spatial extrapolation method is required, which is the second application task in
our dissertation.

Finally, conventional radio maps cannot be used in a wireless system in which both the
transmitter and receiver move dynamically. The system is known as an ad-hoc network. To
promote the utilization of radio maps in various systems, it is necessary to apply the radio
map to ad-hoc networks, in addition to the fixed transmitter environment. We considered
the construction of radio maps in a dynamic environment as the third application task in our
dissertation.

This dissertation discusses radio map construction for solving the aforementioned tasks:
reducing the registered data size, determining the required sample size, updating the radio
map, extrapolating the missing data, and constructing radio maps in ad-hoc networks. Al-
though massive received signal power samples are required to solve each task perfectly, it is
extremely difficult to obtain such massive samples owing to various issues, such as enormous
measurement times. To solve the tasks efficiently using only limited samples, we propose
several radio-map construction methods based on statistical inference. Statistical inference
represents the population as various values (e.g., the mean) that are calculated using several
samples. Because of statistical inference, radio maps can be skillfully created with low
registered data sizes by considering several factors, such as the updating and extrapolation of
the average received signal power.

In Chapter 2, we explain the main conventional study and the tasks for the practical
realization of the radio maps. Subsequently, statistical inference is introduced to solve the
the tasks. Finally, the organization of the dissertation is presented.

Chapter 3 proposes a shadowing classifier to reduce the registered data size of the radio
map. The shadowing classifier was constructed by quantizing the measured shadowing
values by a certain size. Thereafter, similar shadowing values were unified into a single
value using the constructed classifier. The emulation results indicate that the proposed
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shadowing classifier can reduce the registered data size of the radio map while maintaining
high estimation accuracy.

Chapter 4 formulates the minimum required sample size to estimate the average received
signal power. Sample size was defined as the number of instantaneous received signal power
samples used to derive the average power. Here, three statistical methods: the confidence
interval, central limit theorem, and t-test, are used to determine the sample size. The
simulation results confirmed that the average received signal power could be accurately
calculated using statistical methods.

Subsequently, Chapter 5 proposes a method for updating a radio map based on statistical
hypothesis testing. This chapter assumes that the location of a transmitter varies according to
the elapsed time. To update the radio map in such an environment, it is necessary to infer the
significant difference between the two average received signal power values before and after
transmitter movement. Therefore, we used the Welch’s t-test, which is an improved version
of the t-test. The proposed method updates the radio map if a significant difference is detected
using the Welch’s t-test. The first simulation results clarify the relationship between statistical
power and sample size used in testing. The second results indicate that the proposed method
can accurately update the radio map compared to the conventional updating methods.

In Chapter 6, an empirical extrapolation method is proposed to compensate for the
missing received signal power values in a multiple-transmitter environment. The proposed
method first estimates the empirical cumulative distribution function (CDF) using measured
datasets. Thereafter, the histogram of the empirical CDF is compensated by considering the
number of missing data. Finally, the median received signal power is extrapolated using the
compensated empirical CDF. We used the 3.5GHz band datasets to verify the effectiveness
of the proposed method. The emulation results indicate that the missing received signal
power values can be accurately extrapolated using the proposed method compared with the
conventional interpolation and extrapolation methods.

Chapter 7 applies a radio map to ad-hoc networks, where the proposed method first
collects the received signal power samples in each transmitter and receiver pair. Subsequently,
the radio map was constructed for each transmission position by averaging the datasets. To
confirm the usefulness of the proposed method, we conducted a measurement campaign for
vehicle-to-vehicle communications in Japan and the United States. The emulation results
indicate that the average received signal power can be skillfully estimated using the radio
maps compared with conventional path loss models. Additionally, the packet delivery rate
was derived in real environments through performance evaluation.

Finally, Chapter 8 concludes the dissertation. We summarize the research content of each
chapter and explain the future works of our dissertation.
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Chapter 1

Introduction

Here, we introduce our dissertation. The following sections first explain the allocation of
frequency bands and its problems. Thereafter, the radio propagation characteristics and their
estimation methods are described. Moreover, a radio map that accumulates the statistical
information of radio propagation characteristics, such as the average received signal power
values, is introduced. Finally, a spectrum database that stores the constructed radio maps is
presented.

1.1 Allocation of Frequency Bands and Crucial Problems
in Wireless Communications

With the rapid development of wireless technology, the number of wireless devices such as
smartphones and tablets is increasing. Fig. 1.1 shows the number of devices in the entire
world, as estimated by Cisco [1]. These results demonstrate that the number of wireless
devices increases linearly by a few billion units every year. If the number of devices
continues to increase, a massive number of devices will communicate with each other in
various environments. Currently, wireless communication is essential in daily life.

Unfortunately, the available frequency bands are finite in wireless communication. The
ministry of internal affairs and communications (MIC) published the spectrum charts that
represent the current frequency allocation status in Japan [3]. Moreover, national telecom-
munications and information administration presents the frequency allocation chart of the
United States [4]. Both charts show that most frequency bands have already been allocated to
existing systems. In particular, because the frequency band between 30 [MHz] and 3 [GHz]
is frequently used in wireless communication systems, very few bands are available in this
range. In general, frequency bands can be classified into licensed and unlicensed. Licensed



2 Introduction

2018 2019 2020 2021 2022 2023

18

20

22

24

26

28

30

Year

B
il
li
o

n
s
 o

f 
d

e
v
ic

e
s

Fig. 1.1 The number of devices in the entire world estimated by Cisco [1].

bands are exclusively allocated to a specific wireless system, that is, a primary user (PU).
However, unlicensed bands are often used in multiple wireless systems. For instance, the
920 MHz band is assigned to a low-power wide area [5], such as LoRa and Sigfox. In
addition, 2.4GHz and 5GHz bands are allocated to wireless local area networks (WLANs)
[6]. Because the unlicensed bands are much fewer than the licensed bands, current wireless
systems need to exclusively use the licensed bands. Owing to this exclusive usage, the
shortage of available frequency bands is an extreme problem in wireless communication. In
this dissertation, we considered the use of the licensed bands.

Licensed bands are not always used by PUs. For instance, [7] showed that television
networks contain temporally and spatially unused bands. Fig. 1.2 shows an overview of the
two-dimensional spatial distribution of usage of licensed bands. Each PU uses a licensed
band within a gray-colored two-dimensional space. Moreover, licensed bands are not used
in other areas, which are referred to as white spaces. If a user other than PUs, a secondary
user (SU), can utilize the licensed band within the white space, the utilization efficiency
of the spatial frequency can be improved. The secondary usage of white space is known
as spectrum-sharing [8]. In spectrum-sharing, the SU must avoid interference with the PU.
Here, interference is defined as the signal strength of the SU received by the PU from the
SU. Although the SU can utilize a larger white space by increasing its transmission power, it
introduces more harmful interference to the PU. The interference strength depends on various
radio propagation characteristics such as path loss. The SU should accurately estimate the
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Fig. 1.2 Spatial unused space of licensed bands.

radio propagation characteristics in advance to enhance the frequency utilization efficiency
while satisfying the interference avoidance constraints.

1.2 Relation Between Frequency Utilization Efficiency and
Radio Propagation Estimation

Here, we first explain radio propagation characteristics. Thereafter, three typical radio
propagation factors are presented.

• Path loss: This is the distance-dependent radio propagation characteristic. The path loss
is calculated deterministically according to several parameters, such as the Euclidean
distance between the transmission and reception positions. Several path loss mod-
els, including theoretical-based and empirical-based methods, have been constructed
[9]. The theoretical method is based on geometric analysis, such as calculation of
the effective area of a reception antenna. Moreover, massive observation data were
statistically processed to create a path loss model using the empirical method. Each
method can roughly estimate the global radio propagation characteristics. Thus, path
loss is a fundamental factor in the radio propagation field.

• Shadowing: This phenomenon occurs when the propagation path is obstructed by
structures around a transmitter and a receiver. Its occurrence depends on geographical
conditions, such as the number of structures. As a typical value, [10] described that
the shadowing value may vary every few meters up to several hundreds of meters.
Because it is difficult to investigate the shadowing values for all types of structures, a
measurement campaign was conducted in several representative environments. The
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results indicate that the shadowing is empirically modeled as a log-normal distribution
with a logarithmic mean of 0 [dB]. The standard deviation is determined based on the
communication environment. This is generally approximately 4-13 [dB].

• Multipath fading: This is the instantaneous fluctuation of the received signal power
owing to the scatters around a receiver. If there are several scatters in the communi-
cation area, multiple signals reach the receiver with a time lag. Under this condition,
the received signal power fluctuates significantly by approximately 20–30 [dB] at the
receiver. Because the fluctuation occurs for approximately milliseconds, it is difficult
to estimate the multipath fading realizations perfectly.

In the radio propagation field, the received signal power is typically estimated by considering
the above three factors. Path loss and shadowing can be accurately determined according to
the relative positions of the transmission and reception positions.

In addition, the relationship between the spatial frequency utilization efficiency and radio
propagation estimation is described in [11]. In [11], spectrum sharing between a single PU
and a single SU was considered. The SU determines its transmission power such that the
desired signal-to-interference power ratio (SIR) at the coverage edge of the PU is satisfied.
Two methods were considered for the transmission power design. The first method estimates
the path loss and shadowing at the coverage edge of the PU. The second method calculates
only the path loss. Here, it is assumed that the path loss and shadowing of the SU are
known. Each method determines the transmission power of the SU such that the desired
SIR is probabilistically satisfied. The simulation results indicated that the first method
could increase the transmission power of the SU by 12 [dB] while accurately guaranteeing
the desired SIR, as compared with the second method. If the transmission power of the
SU increases, the SU can use a larger white space; thus, the spatial frequency utilization
efficiency can be improved. Because the first method can skillfully estimate the white space by
considering path loss and shadowing, the transmission power of the SU can be increased. In
addition to the transmission power evaluation, the root mean squared error (RMSE) between
the true received signal power of the PU and the estimated power was calculated. The
evaluation results indicated that the RMSE is decreased small by estimating the shadowing
in addition to the path loss. In summary, the spatial frequency utilization efficiency can
be enhanced by accurately estimating radio propagation characteristics. Therefore, this
dissertation aims to estimate the radio propagation skillfully.
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Fig. 1.3 Examples of the mean path loss values.

1.3 Radio Propagation Estimation Methods and the Focus
of this Dissertation

This section explains the radio-propagation estimation methods. First, path-loss-based
methods and their problems are shown using existing path-loss models. Subsequently, the
modeling of the shadowing and the multipath fading is described. Finally, a measurement-
based method utilizing actual observational data is explained.

1.3.1 Path Loss-Based Methods

Conventional studies have estimated the received signal power using path loss models, such
as the Okumura–Hata model [12], ITU-R P.1411 model [13], and two-ray model [14]. As
the first problem of path-loss-based methods, the accuracy of the calculated path loss value
significantly depends on the path loss model used. Fig. 1.3 shows the examples of the mean
path loss values in several models. In the figure, the horizontal axis denotes the Euclidean
distance between the transmission and the reception positions, and the vertical axis represents
the mean path loss value in each model. Here, the center frequency was 760 [MHz], and
the antenna heights above the ground level of the transmitter and receiver were 1.615 [m].
As examples of path-loss-based methods, the Okumura–Hata, ITU-R P.1411, and two-ray
models are used. These results indicate that the mean path loss differs significantly depending
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on the path loss model. For instance, the difference between the Okumura–Hata and ITU-R
P.1411 models was approximately 20 [dB]. If the SU designs its transmission power based
on the overestimated path-loss value, the interference power is underestimated compared to
the actual power. Consequently, harmful interference may occur at the PU. Therefore, an
appropriate path loss model should be used to estimate the mean path loss with high accuracy.
Thus, each system must understand the principles of each path loss model in advance.

As the second problem of path-loss models, the estimation accuracy of the received signal
power may be low owing to the shadowing and multipath fading in a specific environment.
[9] reported that the estimation accuracy of the received signal power may be at best 8 [dB]
in any path loss model.

1.3.2 Modeling of Shadowing and Multipath Fading Based on Existing
Probability Distribution

Shadowing and multipath fading fluctuate locally depending on geographical conditions,
such as the number of buildings. It is difficult to obtain all realizations of these two factors
in various environments. Thus, shadowing and multipath fading were modeled using the
existing probability distributions. For instance, shadowing is empirically modeled as a
log-normal distribution [15]. Furthermore, multipath fading is theoretically modeled as a
Rayleigh distribution and a Nakagami–Rice distribution. Even if these models are used
to estimate the shadowing and multipath fading, instantaneous realization at an arbitrary
position may not be accurately estimated because the probability distribution only represents
the histogram of realizations.

1.3.3 Measurement-Based Method

The path loss-based methods and existing probability distributions can not estimate a shad-
owing and fading realizations in each location; thus, the SU must suppress its transmission
power excessively to avoid interference with the PU. This suppression may deteriorate the
efficiency of spatial frequency utilization. The SU should accurately estimate not only the
path loss but also the shadowing and the fading in each location.

Measurement-based methods have attracted attention for improving the estimation ac-
curacy of the received signal power [16, 17]. This method collects radio environment
information such as the received signal power from actual observations in a realistic envi-
ronment. Thereafter, the observational data are processed using statistical methods, and
representative values, such as the mean and median, are calculated. The representative values
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were used to estimate the received signal power at an arbitrary position. Actual observa-
tion data can include the shadowing effects owing to various structures. This shadowing
estimation is the most advantage of the measurement-based methods compared to the path
loss-based methods. A well-known tool that accumulates representative values is the radio
(environment) map [18–22]. This dissertation treats the radio map as a radio-propagation
estimation method. The next section provides an overview of the radio map.

1.4 Radio Map

The definition of the radio map varies depending on the researchers and estimation target. As
described in Sect. 1.2, this dissertation aims to estimate the radio propagation characteristics
accurately. Therefore, we assume that the radio map accumulates the average received
signal power values as the representative values. The following sections first explain the
construction and utilization of the radio map. Subsequently, the assumptions in the radio
map construction are presented.

1.4.1 Crowdsourcing

During the construction of the radio map, instantaneous received signal power samples are
required to calculate the average values. The spectrum analyzer enables precise observation of
the instantaneous received signal power because of its high observation capability. However,
the production cost of the spectrum analyzer is extremely high (e.g., a few million); that
is, the spectrum analyzer has not yet become popular among ordinary people. Therefore, a
new measurement device is required to obtain the received signal power samples at a low
production cost.

Many researchers have employed smartphones as the measurement device [23]. Although
smartphones are not measurement devices for observing the received signal power, they can
be useful because of the following reasons:

• The prices of smartphones are lower compared to those of the spectrum analyzers.

• Many ordinary people have used smartphones in their daily lives for various purposes.
Thus, massive received signal power samples can be obtained if smartphones are used
as the measurement devices.

Owing to the above reasons, smartphones may be utilized for radio map construction.
This method is called crowdsourcing [24–28]. In crowdsourcing, a sensing program is
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Fig. 1.4 Construction of radio map.

implemented on a smartphone to observe the received signal power. Although crowdsourcing-
assisted radio map construction has not been realized owing to several issues, we believe that
this method will be used in future wireless communications. Several issues are discussed in
Chapter 8.

1.4.2 Measurements

Fig. 1.4 shows the crowdsourcing-assisted radio map construction. We consider the downlink
communications in a fixed transmitter, such as the cellular systems. A transmitter exists in
the communication area and it sends a signal, including own identification to each location.
Mobile terminals, such as smartphones, receive the transmitted signals in each position
and record instantaneous received signal power values in association with the location
information. This dissertation considers that the location information can be obtained from
Global Positioning System (GPS). Mobile terminals that implemented the sensing program
enable us to record the location information easily; however, the measurement accuracy is
low owing to simple specifications. Thus, the measured latitude and longitude values should
be corrected using some method, such as the Quasi-Zenith satellite system [29].



1.4 Radio Map 9

In addition to the instantaneous received signal power and location information, center
frequency, the reception time, and transmitter identification were recorded at each terminal.
At the end of the day, each terminal reports the measured dataset to the database. The database
accumulates the reported datasets on a database server, such as MySQL. The registration
contents of the database server are explained in Sect. 3.2. After accumulating the reported
datasets, the database statistically processed these datasets to create a radio map.

1.4.3 Mesh Definitions

As described at the beginning of this chapter, the task of the radio map is to estimate the
average received signal power. Because the instantaneous received signal power contains
a multipath fading factor, the average received signal power may not be accurately known.
The database first calculates a mesh based on the latitude and longitude to remove the fading
effects. Subsequently, the average received signal power is derived using the instantaneous
received signal power samples of each mesh. A mesh is an equally divided geographical
space. As an alternative expression, the grid is well known by several researchers. This
dissertation uses the expression ‘mesh’.

A mesh code is often used in radio map construction to identify each mesh. [30] defined
the mesh code as an extension of the geographic information system, which is based on grid
square code defined by the Japanese Industrial Standard X 0410 standard [2]. Table 1.1 lists
the definitions of mesh codes. The primary mesh code is a 4-digit number calculated based
on the integer parts of the latitude and longitude as,

1st_code = ⌊L1×1.5⌋×100+ (L2−100), (1.1)

where L1 [deg] and L2 [deg] are the latitude and longitude, respectively. The secondary mesh
code is a 2-digit number obtained by equally dividing the primary mesh into the latitude
and longitude directions, that is, dividing the primary mesh into 64 secondary meshes. The
third mesh code is a 2-digit number obtained by equally dividing the secondary mesh in
the latitude and longitude directions, that is, the secondary mesh is divided into 100 tertiary
meshes. The quaternary and quinary mesh codes are two-digit numbers obtained by dividing
the previous mesh into 100 equal parts. Each mesh code is linked to a hyphen and managed
in the database. For instance, the quinary mesh can be converted to “5538-23-54-15-76" as
shown in Fig. 1.5.
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Table 1.1 Definitions of the mesh codes [2].

Mesh type Descriptions Approximate size of one side
Primary It consist of each longi-

tude degrees, even lati-
tude degrees, and three
equally divided even
latitude degrees, based
on longitude 100 de-
grees east and latitude
0 degrees north.

80 [km]

Secondary An area formed by
eight equally divided
primary mesh sections
in the latitude and lon-
gitude directions.

10 [km]

Tertiary An area formed by
ten equally divided sec-
ondary mesh sections
in the latitude and lon-
gitude directions.

1 [km]

1/10 subdivided mesh An area formed by ten
equally divided tertiary
mesh sections in the lat-
itude and longitude di-
rections.

100 [m]

Ten m mesh An area formed by 10
equally divided mesh
sections in the lati-
tude and longitude di-
rections.

10 [m]
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Fig. 1.5 Overview of meshes.
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Fig. 1.6 Image of the radio map.

1.4.4 Statistical Processing on Database

The database first assigns a mesh code to the instantaneous received signal power. During
this process, the mesh size is determined by the manager of the database. Subsequently, the
average received signal power is derived for each divided mesh according to the following
equation:

P̄m =
1

Nm

Nm−1∑
i=0

Pm,i [mW], (1.2)

where P̄m denotes the average received signal power in the m-th mesh, Pm,i [mW] denotes
the i-th instantaneous received signal power in the m-th mesh, and Nm denotes the number of
instantaneous samples in the m-th mesh.

In general, the average value is almost equivalent to the population mean value by
increasing Nm owing to the law of large numbers. However, if there are outliers in a small
number of samples, the estimation accuracy of the average value may degrade. This is
because the effect of outliers is highly sensitive in the milliwatt unit. There are several
methods for eliminating the impact of outliers using statistical processing. First, we can
use the median value because it is unaffected by outliers. Second, the effect of outliers was
suppressed by calculating the average value in the logarithmic domain. This is because the
number of digits can be further reduced in the logarithmic domain than in the milliwatt
domain.

Fig. 1.6 shows the image of the radio map construction. The black mesh denotes the
transmission mesh where the transmitter is located. The transmission mesh can be derived
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using the location information of the transmitter. The surrounding meshes express the
average received signal power calculated according to Eq. (1.2). The darker meshes around
the transmitter denote the larger average value. Moreover, the average value decreases in the
area edge.

By utilizing the radio map, we can estimate the two radio propagation characteristics:
path loss and shadowing. As described in Sect. 1.2, the path loss is uniquely determined
depending on the Euclidean distance between the transmitter and a receiver. Thus, the
average received signal power contains the path-loss effect in each mesh. Conversely, the
shadowing estimation accuracy varies according to the relationship between the mesh size
and the shadowing correlation distance. The correlation distance is defined such that the
autocorrelation of shadowing is 0.5. [31] reported that the distance is approximately 20 [m]
in an urban area. If the mesh size is smaller than this distance, the shadowing realizations
may be similar in a mesh. Under this condition, the shadowing effect can be estimated
precisely by averaging the instantaneous received signal power samples. Because the number
of meshes increases as the communication area becomes wider or the mesh size becomes
small, the registered data size may be large. Moreover, the estimation accuracy of the average
value may be degraded owing to fluctuations in the path loss and shadowing in a large mesh.
There is a trade-off between the registered data size and estimation accuracy.

1.4.5 Utilization Procedures

Before transmitting a signal, the transmitter accesses the database via a communication line
such as Wi-Fi to obtain the radio map information. The database searches for radio map
information and provides it to the transmitter. The transmitter can understand path loss and
shadowing effects with high accuracy using the radio map. The communication parameters
(e.g., modulation format and transmission power) can be appropriately determined according
to the average received signal power. For instance, if the average value is smaller compared
to the desired received signal power value, the transmitter uses lower modulation formats to
guarantee communication quality. Additionally, the transmitter can suppress the transmission
power when the average received signal power is large to improve power efficiency.

If mobile terminals need to estimate the average received signal power in downlink
communications, the database provides the radio map information to each terminal. Each
terminal can determine the signal strength using the radio map information.

In spectrum sharing, if the radio map is created for a PU, the database provides the radio
map information to the SU. The SU obtains the average received signal power value in each
mesh from the radio map and calculates the SIR. The SU can appropriately determine its
transmission power based on the permissible SIR. If the calculated SIR is smaller than the
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permissible SIR, the SU must suppress its transmission power to satisfy the permissible SIR.
Conversely, if the calculated SIR is larger than the permissible value, the SU can increase its
own transmission power while guaranteeing the permissible SIR.

1.4.6 Application Examples

Radio maps are typically used to estimate television white space [32, 33]. [17] clarified that
the estimation accuracy of the received signal power over the TV network can be achieved at
3.1–5.0 [dB] by the radio map. These values are superior to 8 [dB], which is the accuracy of
the path loss-based methods [9]. Based on the skillful accuracy, several researchers have used
radio maps for various applications, such as spectrum sharing [11], spectrum sensing [34],
localization [35], determining the location of unmanned aerial vehicle [36], and frequency
allocation [37]. These studies have revealed that the radio map enables us to precisely
estimate the received signal power, as compared to the path loss-based methods.

1.4.7 Conventional Studies of Radio Maps and Main Mathematical
Tool of this Dissertation

In radio map construction, the following assumptions are considered.

• Massive instantaneous received signal power samples are stored in each mesh to
estimate the average value based on the law of large numbers accurately. Many
researchers consider this assumption reasonable in crowdsourcing-assisted radio map
construction because ordinary people can collect many samples.

• The location of the transmitter and geographical conditions, such as the number of
buildings, do not vary before and after the radio map construction. That is, the actual
average value in each mesh is time invariant.

• There are no instantaneous received signal power samples that are less than the noise
floor of mobile terminals. As described in Sect. 1.4.2, only one transmitter sends a
signal. Thus, no instantaneous sample is missing owing to the interference signals
transmitted by other transmitters with the same frequency band.

• The downlink communications are performed between a fixed transmitter and mobile
terminals. Hence, a radio map was not created between terminals.

Several researchers have continuously studied the construction methods of the accurate radio
map by considering that the above assumptions do not hold. There are various methods, such
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as the machine learning (ML) and the Bayesian inference. For instance, [38] has proposed the
neural network-based method to construct radio maps between each terminal. Although this
method can accurately estimate the average received signal power, the estimation accuracy
depends on various hyperparameters, such as the number of epochs.

[39] has proposed the radio map construction using Bayesian inference. Bayesian-based
method estimates population parameters by modeling the prior distribution based on some
prior information. If the prior information, such as the variation of geographical conditions,
can be known in advance, the average received signal power may be accurately estimated by
using Bayesian inference. In the Bayesian inference, the estimation accuracy is significantly
different according to the modeled prior distribution. The inaccurate radio map may be
created owing to the inappropriate prior distribution.

We use statistical inference as the main mathematical tool to simply construct accurate
radio maps. The statistical inference does not require complicated calculation and tuning the
hyperparameters. Additionally, the prior information and modeling of the prior distribution
is not necessary in statistical inference. Motivated by these facts, we will introduce statistical
inference in Sect. 2.3.1, and explain the statistical inference-based radio map construction in
Chapters 3–7.

1.5 Hierarchical Architecture of Spectrum Database

The constructed radio maps were stored as statistical tools in the spectrum database. The
construction range of the radio map varies according to the size of the area, such as a city or
town. We consider a hierarchical spectrum database [40] to manage the radio maps efficiently
as shown in Fig. 1.7. The spectrum database consists of several hierarchies based on the area
types. In the following section, we describe each database.

1.5.1 Regulation Database

As the first layer, the regulation database is installed using a spectrum regulator, such as
federal communications commission (FCC) and MIC. This database is considered the highest
hierarchy in this dissertation and it summarizes the radio map information reported from
each global database. The FCC and MIC access the regulation database and research radio
map information if the SU requires the secondary use of licensed bands. Using the regulation
database, the average received signal power can be estimated for each local area or global
area. Each institution then provides the radio map information for each area to the SU. The
SU determines its own transmission power based on the procedures described in Sect. 1.4.5.
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Fig. 1.7 Hierarchical architecture of spectrum database.

When the institution needs to know the average received signal power value in a few
days, the manager of the database in each hierarchy sends the mean value to the regulation
database. Each institution provides the required report cycle to the a manager of each
hierarchy database.

1.5.2 Global Database

In the second layer, the constructed radio maps are accumulated in a global database. This
database manages radio map information in each global area, such as the state in the US
and the prefecture in Japan. The map information was uploaded from an area database. The
manager of the global database regularly reports radio-map information to the regulation
database to reflect fluctuations in the average received signal power.

1.5.3 Area and Local Databases

We considered an area database managed in each city or town and a local database to
accumulate more detailed radio map information. In the former database, the radio map
information of each local database is summarized. The latter database stores the measured
datasets observed by the mobile terminals in each location. This database corresponds to a
base station and a roadside unit. Using such a hierarchical architecture, a large number of
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datasets can be efficiently summarized according to the area range. Notably, this dissertation
considered a radio map in the local database.

1.6 Chapter Summary

This chapter introduces this dissertation. A shortage of frequency bands is observed. Subse-
quently, the relation between the frequency utilization efficiency and the radio propagation
estimation is described. Finally, we introduce the radio map and spectrum database.





Chapter 2

Main Conventional Study and Tasks for
Practical Realization of Radio Maps

Here, we describe the main conventional study and the remaining tasks of radio maps.
Subsequently, this chapter introduces statistical inference to solve the remaining tasks.
Finally, the organization of the dissertation is presented.

2.1 Main Conventional Study of Radio Maps

2.1.1 Spatial Interpolation-Based Methods

Conventional radio-map works have mainly studied spatial interpolation [41–46]. Instan-
taneous received signal power samples may not be obtained at several meshes because of
the long measurement cycle of the mobile terminals. Although this issue can be solved by
increasing the number of terminals, enormous production costs may be incurred depending
on the number of terminals.

Therefore, many researchers have continuously discussed the spatial interpolation of
radio maps for a fixed transmitter location (e.g., the cellular system). Spatial interpolation
estimates unknown data using several known data. There are several interpolation methods,
such as the inverse distance weighted (IDW) method [47] and spline interpolation [48]. In
spatial interpolation, an unknown average received signal power value is interpolated by
weighted averaging as follows:

P̂0 =

Ninter−1∑
m=0

wm10 log10(P̄m) [dBm], (2.1)
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where P̂0 is the interpolated average value and wm is the weighting factor of the known
average received signal power in the m-th mesh. Notably, each known average power is a
logarithmic value because the interpolation accuracy may be degraded owing to the outliers
in the milliwatt domain. Spatial interpolation assumes that an unknown value exists within
the known values. That is, the unknown value is larger than the minimum known value and
smaller than the maximum known value. Additionally, spatial interpolation assumes that
the spatial correlation is high among neighborhood meshes. In radio propagation, spatial
correlation means that several received signal power values may be similar in the nearby
meshes. Based on this property, each weight is determined according to the Euclidean
distance between a mesh with an unknown value and that with a known value. The cal-
culation procedures differed among the interpolation methods. For instance, IDW is the
simplest method that uniquely determines a weight based on the reciprocal of the Euclidean
distance. By considering the Euclidean distance, the path-loss effect can be considered in the
interpolation. However, this method does not consider the shadowing effect in the weight
calculation; thus, interpolation accuracy may be degraded in a realistic environment.

2.1.2 Spatial Correlation of Shadowing and Kriging Interpolation

Before explaining interpolation, we describe the spatial correlation of shadowing. Each
weight should be determined by considering the spatial correlation of the shadowing values
at different meshes to improve the interpolation accuracy. Shadowing correlation has been
known for a long time. The exponential decay model is the most famous for shadowing
correlations [31]. The model was constructed experimentally in a real environment. The
autocorrelation of shadowing decays almost exponentially with the moving distance of the
receiver. That is, several shadowing values may be similar in neighborhood meshes. In
such a spatially correlated random field, the unknown average received signal power values
can be precisely estimated using the Kriging interpolation [17]. The Kriging interpolation
determines wm by considering the spatial correlation of shadowing; therefore, the error
between a true and an interpolated value is minimized. Although several methods have
been constructed for the Kriging interpolation, ordinary Kriging is often used because of
its simple modeling of the spatial covariance structure. This method estimates the spatial
covariance structure based only on the Euclidean distance between data points. Using such
an estimation, the path loss effect can be considered for determining each weight. Many
researchers have confirmed that accurate radio maps can be constructed using the Kriging
interpolation [17, 49, 11]. The details of the ordinary Kriging are shown in Sect. 6.5.1.
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2.2 Tasks for Practical Realization of Radio Maps

2.2.1 Primary Tasks

First, we describe the two primary tasks of the radio map. As described in Sect. 1.4.4, the
radio map accumulates the average received signal power in each mesh. In such a simple
structure, the registered data size may be large, according to the mesh size and coverage
of the transmitter. In the crowdsourcing-assisted radio map construction, massive meshes
are stored over a wide area, such as prefectures or states. Conventional studies have not
sufficiently studied this problem; thus, we consider the following content as the first primary
task of the radio map:

• The novel method for reducing the registered data size of the radio map should be
considered without compromising the high estimation accuracy.

As described in Sect. 1.4.7, enormous instantaneous samples are used to calculate the average
received signal power in each mesh skillfully. If the variance in the received signal power
values is small in a mesh, such massive samples may not be necessary. Because several costs,
such as the observation period, may increase to obtain an enormous number of samples,
the number of samples should be kept to the minimum. Hence, the following content is
considered the second primary task of the radio map:

• The minimum required sample size should be determined for accurately estimating the
average received signal power in each mesh.

2.2.2 Application Task 1

As explained in Sect. 1.4.7, conventional works assume that the location of the transmitter
and the geographical conditions do not vary before and after the radio map construction.
Under these conditions, an accurate radio map can be constructed using only an appropriate
spatial interpolation method. Moreover, if the location of the transmitter varies according to
the elapsed time, the average received signal power exhibits time-variant characteristics in
each mesh. As a result, an initial radio map constructed before the transmitter moves may
provide outdated information. Even if conventional interpolation-based methods are used, an
accurate radio map cannot be constructed owing to fluctuations in radio propagation. That is,
the use of spatial interpolation may be limited. Thus, we consider the following content as
the first application task of the radio map:

• A radio map must be updated in the time-variant radio propagation environment. The
necessity of updating should be judged correctly using a logical method.
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2.2.3 Application Task 2

Conventional works assume that only one transmitter exists in the radio map construction
as described in Sect. 1.4.7. Under this assumption, there are no missing received signal
power samples owing to the interference from the other transmitters. Conversely, if multiple
transmitters operating in the same frequency band exist near the communication area, all
instantaneous samples that are less than a certain SIR cannot be obtained. Thus, unknown
samples exist outside the known samples. This missing phenomenon differs from the
assumption of the spatial interpolation. Hence, this dissertation considers the following
content as the second application task of the radio map:

• A novel extrapolation method is necessary to create an accurate radio map. Specifi-
cally, the radio map should be empirically extrapolated without using the parametric
approaches by considering site-specific fluctuations in the radio propagation.

2.2.4 Application Task 3

Finally, the third application task is described here. Conventional studies consider downlink
communications between a fixed transmitter and mobile terminals. With the development
of wireless technology, mobile terminals communicate with each other while dynamically
moving their communication area. Hence, a large number of communication links are created
between multiple transmitters and receivers. Such communication systems are known as
mobile ad-hoc networks (MANETs). Vehicle-to-vehicle (V2V) communication is an example
of MANETs. In MANETs, the instantaneous received signal power may fluctuate more
intensely than in a fixed transmitter environment because of the dynamic movement of
terminals. Because conventional methods do not construct a radio map in MANETs, this
dissertation determines the third application task as follows:

• How to create the radio map in MANETs by considering multiple communication
links?

2.3 Statistical Inference-based Radio Maps Construction

To solve the primary and application tasks, this dissertation utilizes statistical inference.
Statistical inference is a statistic, and its basic principles have been established by Sir Ronald
Aylmer Fisher. The following sections first provide an overview of the statistical inference.
Subsequently, the motivation for using statistical inference is described. Finally, we explain
the relationship between the statistical inference and each task.
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2.3.1 Overview of Statistical Inference

Statistics aims to estimate population characteristics based on samples obtained using various
methods. Descriptive statistics has long been known as one of these methods. The basic
idea of descriptive statistics was proposed by Karl Pearson between the late 1800s and
the 1900s. Descriptive statistics attempt to visualize the features of the obtained samples
by calculating representative values, such as the mean, median, and mode. However, it is
difficult to calculate representative values for all samples for a large population size.

To solve the problem of descriptive statistics, the statistical inference has been considered
by various statisticians. Fig. 2.1 shows the overview of the statistical inference. The left circle
denotes the population with massive samples. As shown in the right circle, several samples
were extracted from the population, and the statistical characteristics of the population were
estimated using the extracted samples. Statistical inference can be divided into statistical
estimation and statistical hypothesis testing (SHT). In statistical estimation, the population
parameters were estimated by calculating representative values using the extracted samples.
Furthermore, the statistical estimation consisted of point and interval estimations. Point
estimation infers a population parameter by calculating only one representative value. In
the interval estimation, the population parameter was estimated within a certain range. SHT
assesses two mutually exclusive hypotheses regarding the properties of a population using the
extracted samples. For instance, hypothesis testing can infer a significant difference between
the two population means. In summary, population characteristics are generally represented
by certain values, such as the mean, in the statistical inference. The population parameter
can be estimated efficiently, with low observation costs, using the statistical inference.

2.3.2 Relation between Statistical Inference and Each Task

Finally, we explain the motivation for using statistical inference to solve each primary and
application task. For the first primary task, we considered reducing the registered data size for
each mesh. As described in Sect. 2.1.2, neighboring meshes may exhibit similar shadowing
values owing to the spatial correlation. Hence, the registered data size can be reduced by
representing similar shadowing values as a single value using the statistical inference.

For the second primary task, we determine the minimum sample size required to estimate
the average power in each mesh accurately. First, the true average received signal power was
calculated using the massive received signal power samples in each mesh. Thereafter, we
calculated the error between the true and estimated power values by changing the sample size
to derive the estimated power. If the permissible error is satisfied for a specific sample size,
we set the sample size to the minimum required size. The observation and emulation times
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Fig. 2.1 Overview of statistical inference.

in this evaluation depend on the number of meshes. Thus, the true average power should
first be represented as the estimated average power calculated using only a few samples. The
required sample size is then determined to satisfy the permissible estimation error. When
only a few samples are used for statistical inference, a large number of samples are not
necessary for each mesh.

In the first application task, if the transmitter moves in the communication area, the path
loss and shadowing may be significantly changed in several meshes. Hence, the movement
of the transmitter can be detected by referring to the variation in the average received signal
power using massive samples in each mesh. If the number of meshes is large, it is difficult to
obtain massive samples in each mesh owing to the increase in the observation time. SHT can
solve this problem because the variation in the true average power can be inferred using only
a few samples.

The second application task aims to extrapolate the missing received signal power
samples in multiple transmitter environments to construct an accurate radio map. In multiple-
transmitter environments, there are no received signal power samples below a certain SIR
owing to interference from the other transmitters; thus, not all missing samples can be
perfectly extrapolated. By knowing the number of missing samples, we can construct a
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histogram of the received signal power values. Once the histogram is created, we use the
median received signal power obtained by statistical inference as the representative value of
the missing samples from the collected histogram.

Additionally, we describe the relationship between the statistical inference and the third
application task. In MANETs, because the transmitter and the receiver move dynamically,
massive received signal power samples are required in each transmitter and receiver pair to
estimate the radio propagation characteristics accurately. This observation is very difficult
because of various costs such as enormous measurement times. As described in Sect. 1.2,
the path loss and the shadowing may be uniquely determined according to the positional
relation between a transmitter and a receiver. Based on this property, we calculate the average
received signal power using several samples for each transmission and reception mesh pair.
Thereafter, the average power is utilized as the representative value for efficiently estimating
radio propagation.

2.4 Organization

Fig. 2.2 shows the overview of each chapter in this dissertation. Chapters. 3 and 4 focus on
the reduction of the registered data size in the database. Chapter 5 considers the situation
that the location of the transmitter varies. In this case, we deal with updating the radio map.
Chapter 6 discusses the extrapolation of the radio map in multiple transmitter environments.
Finally, Chapter 7 applies the radio map to ad-hoc networks. Here, we consider the downlink
communications in Chapters 3, 4, 5, and 6. Notably, as described in Sect. 2.1, most conven-
tional studies of the radio map only consider the spatial interpolation in the fixed transmitter
location. Thus, the novelties of our researches are shown in the following by the italic fonts.

Chapter 3: Shadowing Classifier for Radio Map

To reduce the registered data size of the radio map, this chapter proposes a shadowing
classifier. The classifier was constructed by quantizing shadowing realizations. Subsequently,
a quantized value is assigned based on the proposed objective function. The proposed
classifier can unify similar shadowing realizations into a single value. The emulation results
using the measured datasets show that the proposed method can achieve a high estimation
accuracy with a small registered data size. The novelty of this chapter is to propose the
shadowing classifier for creating the low storage radio map that has not been considered
in most conventional works. In particular, the proposed classifier can classify shadowing
values based on a new objective function that differs from conventional clustering methods,
such as k-means++.
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Fig. 2.2 Overview of each chapter in this dissertation.

Chapter 4: Sample Size Formulation using Statistical Inference for Radio Map

Here, we formulate the minimum required sample size to calculate the average received
signal power in the radio map accurately. We utilize three statistical methods: the confidence
interval, central limit theorem (CLT), and t-test. The simulation results indicate that the
proposed formulation can significantly reduce the sample size for calculating the average
power while estimating radio propagation with high accuracy. The main contribution of
this research is to formulate the required sample size for accurately estimating the average
received signal power. Most conventional researchers have constructed radio maps based on
spatial interpolation by assuming the law of large numbers for each average power value.
That is, it was assumed that a large number of samples could be obtained. We do not consider
this assumption in this chapter.

Chapter 5: Radio Map Updating using the Welch’s t-test

This chapter proposes a hypothesis-testing-based method as one of the solutions for radio
map updating. Based on our investigations, we used the Welch’s t-test to infer a significant
difference between the two mean values. The proposed method first models the measurements
as the time-series data for hypothesis testing. Thereafter, a theoretical analysis of the Welch’s
t-test was conducted to formulate statistical power. The relationship between the sample
size and statistical power can be determined via computer simulations. Additionally, we
performed radio map updating using the Welch’s t-test in the simulation. The results indicate
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that the radio map can be skillfully updated, even if the location of the transmitter varies.
The conventional works of the radio map have considered spatial interpolation in the static
environment where the transmitter is fixed. Thus, the main novelty of this chapter is the skillful
creation of a radio map based on the update of the average power, even if the transmitter
moves. This update cannot be realized using conventional interpolation-based methods.

Chapter 6: Radio Map Extrapolation under Interference-Limited Observations

Here, we propose the extrapolation of the radio map under interference-limited observations.
Multiple transmitters operating at the same frequency were assumed here. In this situation,
the target received signal power may be missing at several points where interference from the
surrounding transmitters is dominant. To extrapolate the missing data, we first compensated
for the empirical CDF of the target received signal power by considering the number of
missing data. Thereafter, the median value is recalculated using the compensated CDF. The
emulation results based on the measured datasets over 3.5GHz indicate that the extrapolation
accuracy of the proposed method is superior to that of the conventional interpolation and
extrapolation methods. The main contribution of this chapter is to propose the spatial extrap-
olation method because most conventional works have only considered spatial interpolation.
Although the conventional spatial interpolation cannot precisely compensate for missing
data in interference-limited observations, the proposed extrapolation method can accurately
estimate the missing data.

Chapter 7: Crowdsourcing-Assisted Radio Maps for MANETs

We apply the radio map for MANETs in which both the transmitter and receiver move
dynamically. The proposed method accumulates instantaneous received signal power samples
in each transmitter and receiver pair. In the database, these datasets were statistically
processed and a radio map was created for each transmission position. Two types of measured
datasets were used to confirm the effectiveness of the proposed method. The evaluation results
indicate that the average received signal power can be accurately estimated, as compared
to the path loss-based methods, even in MANETs. In addition, we clarified that the packet
loss rate is significantly different according to the communication environment. The usage
of radio maps in MANETs is the main novelty of this chapter because conventional works
have only applied the radio map in the fixed transmitter environment, such as the cellular
systems. Additionally, the effectiveness of radio maps can be clarified through measurement
campaigns rather than simulation results. This clarification is the main contribution of our
study.
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2.5 Chapter Summary

This chapter first explains the main conventional study of radio maps. Conventional methods
continuously use spatial interpolation to create radio maps. After the five remaining tasks of
the radio maps were described, statistical inference was introduced to solve them. Statistical
inference may enable us to solve each task efficiently without observing massive received
signal power samples.



Chapter 3

Shadowing Classifier for Radio Map

The radio map accumulates statistical information of the radio propagation in each mesh.
However, the number of statistical information may be large according to the mesh size and
area range. This chapter considers the reduction of the accumulated data size of the radio
map.

In this chapter, we first explain the background of the proposed method. Subsequently,
the shadowing classifier is proposed to unify similar average received signal power values. By
the proposed classifier, the accumulated data size can be reduced while accurately estimating
the radio propagation. We show the usefulness of the proposed method using the 3.5GHz
band datasets observed in the real environment.

3.1 Background

The conventional radio map stores the average received signal power in each mesh, here, the
average value is represented as a floating-point type. Thus, even if average values are similar
in several meshes, the unique average value is registered in each mesh. As a result, the
accumulated data size becomes large. Although several databases, such as SQL server, can
reduce the registered data size by compressing the accumulated data, the compression-based
method requires to execute the query when terminals access to the database. If the massive
number of terminals use the radio map, the compression time may increase. In several use
case, such as spectrum sharing, terminal may need to obtain radio map information rapidly
for estimating the radio propagation in real time. In such the situation, the compression-based
method may be not used owing to large compression time.

As a simple reduction method of the data size, we can utilize path loss models [50, 51].
Path loss models are divided into an empirical type (e.g., Okumura-Hata model) and a
theoretical type (e.g., the free-space path loss model). Both models use simple parameters,
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such as the communication distance, the center frequency, and the antenna height. By
appropriately selecting these parameters, the median path loss can be estimated with high
accuracy. Especially, the measurement-based path loss model based on the observation
datasets is superior to an empirical model and a theoretical one [52]. When using these path
loss models, the database calculates the communication distance between a transmitter and
a receiver and estimates the median path loss. Hence, the accumulated data size can be
drastically reduced because the local database does not need to register the average received
signal power in each mesh.

However, it has been reported that the estimation accuracy of the radio propagation is
limited around 8 [dB] in the path loss model because of the shadowing deviation [9]. To
estimate the shadowing in addition to the path loss, we need to construct the radio map using
a small mesh size that is less than the correlation distance of the shadowing. Obviously, there
is a trade-off between the estimation accuracy and the mesh size. Under the trade-off, we
should reduce the accumulated data size of the radio map while accurately forecasting the
location-dependent radio propagation.

In radio propagation, the spatial correlation of the shadowing has been empirically
found. [31] has clarified that the correlation value of the shadowing exponentially decreases
depending on the moving distance of the receiver. This phenomenon implies that shadowing
values are similar in several positions because the shadowing realization significantly changes
whether the receiver is blocked by buildings. Based on these characteristics, we aim to unify
the similar shadowing values to a single one by something algorithm for reducing the
accumulated data size.

For the unification of similar shadowing values, we can accumulate each shadowing value
in integer format. This method first truncates the shadowing value after the decimal point and
registers the truncated value in each mesh. Then, we can reduce the accumulated data size by
unifying the same truncated values to a single one. However, this method may not accurately
estimate the detailed shadowing value owing to the accumulation in integer format.

Motivated by these facts, this chapter proposes the shadowing classifier. First, the
proposed method collects the received signal power and reception location via a measurement
campaign. After that, the local database constructs the radio map and the measurement-based
path loss model for a moment using the measured datasets. To construct the shadowing
classifier, we calculate the shadowing value in each mesh from the residual component
between the average received signal power and the median path loss. Next, we generate the
shadowing classifier by quantizing shadowing values with a certain size. The local database
assigns the quantized shadowing value to each mesh. The proposed classifier enables
us to unify similar shadowing values while considering the local variation of the radio
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Table 3.1 Accumulation contents of the conventional radio map for fixed transmitter environ-
ment.

Item Format Size [Byte]
Measurement data and time datetime 8

Latitude L1 double 8
Longitude L2 double 8

Altitude double 8
Center frequency double 8

Average received signal power double 8
Mesh code (10m) text 16

Table 3.2 Accumulation contents of the proposed classifier-based radio map for fixed trans-
mitter environment.

(a) Mesh Table

Item Format Size [Byte]
Measurement data and time datetime 8

Latitude L1 double 8
Longitude L2 double 8

Altitude double 8
Center frequency double 8
Shadowing label int 4
Mesh code (10m) text 16

(b) Shadowing Table

Item Format Size [Byte]
Shadowing label int 4

Quantized shadowing double 8

propagation. As a result, the accumulated data size can be significantly reduced with keeping
the high estimation accuracy. To verify the effectiveness of the proposed classifier, we utilize
measured datasets in cellular communications and vehicle-to-infrastructure communication.
The emulation characteristics reveal that the proposed method is superior to the conventional
radio map in terms of the accumulated data size.

3.2 Accumulation Contents of Radio Map

This section explains the accumulated contents of the radio map. Table 3.1 shows the
accumulation contents of the conventional radio map for fixed transmitter environment. The
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conventional radio map stores several items, such as the measurement date and time, the
average received signal power, and mesh code. Considering the typical mesh size, 10m mesh
code is utilized in my dissertation. It can be seen that the accumulated data size may be large
because the local database registers the average received signal power as the double format.

To overcome this issue, the proposed method stores the shadowing label in integer format.
Table 3.2 represents the accumulation contents of the proposed classifier-based radio map.
The proposed method utilizes two tables; the mesh table and the shadowing one. The former
table stores the shadowing label instead of the average received signal power as shown in
Table 3.2(a). The shadowing label is used to identify the quantized shadowing value and these
items are stored in the shadowing table represented in Table 3.2(b). Thus, the accumulated
data size depends on the number of quantized shadowing values. It is necessary to quantize
the shadowing more finely for accurately estimating the radio propagation; however, the
accumulated data size is large. This trade-off is very important in the proposed classifier.

In an actual communication, the transmitter sends latitude and longitude of a location
that exists the receiver to the local database. The local database finds the reception mesh
corresponds to the reported reception latitude and longitude, and grasps the shadowing label
accumulated in the mesh table. Then, the quantized shadowing related to the shadowing
label is provided to the transmitter. Finally, the local database calculates the median path
loss estimated via the linear regression and sends the value to the transmitter. The transmitter
estimates the average received signal power from the sum of the median path loss and the
quantized shadowing. Note that the estimation procedures of the median path loss will be
shown in Sect. 3.3.2.

3.3 Shadowing Classifier

This section shows the overview of the shadowing classifier. We first explain the radio
propagation model assumed in the proposed classifier-based radio map. Next, the generation
procedures of the shadowing classifier and classification method of the quantized shadowing
are represented.

3.3.1 Radio Propagation Model of Shadowing Classifier

We aim to reduce the accumulated data size while estimating the location-dependent radio
propagation characteristics. Thus, the local database requires to quantize the shadowing with
high accuracy and assign the quantized value to each mesh. The proposed classifier first
generates K quantized shadowing values using the average received signal power and median
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path loss. We define the k-th propagation model (k = 0,1, · · · ,K −1) as follows:

P̂c,k(dm) = B−10Clog10(dm)+ ŝk [dBm], (3.1)

where P̂c,k is the k-th propagation model in the proposed classifier, dm [m] is the link distance
between a transmitter and the m-th mesh, B [dBm] is the path loss offset that depends on
the transmission power and antenna effects, C is the path loss index, and ŝk [dB] is the k-th
quantized shadowing value.

This propagation model consists of two factors: the path loss and the shadowing. In the
proposed method, the local database constructs K models and stores it as the shadowing
classifier. In the classifier-based radio map construction, the propagation model is assigned
to each mesh based on the objective function. Each model has a different shadowing value
that is why the proposed method is called a shadowing classifier. To generate the shadowing
classifier, we need to calculate parameters B, C, and ŝk.

3.3.2 Estimation of B and C

We first explain the path loss estimation. In this dissertation, linear regression is utilized
to estimate the path loss parameters. As the first step of the path loss estimation, the local
database derives the average received signal power in each mesh using observation datasets.
After calculating the link distance dm, the local database generates the scatter plot as the
horizontal axis being log10(dm) and the vertical axis being the average received signal power.
Finally, we can obtain the estimated parameters B and C by fitting the average received signal
power values to the first and second terms of Eq. (3.1).

The estimation accuracy of the path loss parameters depends on the number of meshes
having observation datasets. The linear regression may not accurately derive the path loss
parameters if there are few meshes. Thus, it is important to observe radio environment
information in many positions.

If B and C are different in each mesh, the accumulated data size is large. Thus, we
assume that B and C are constant values in all meshes. When it is necessary to consider
the anisotropy of the path loss, we can compensate for the fluctuation of path loss by finer
quantization of the shadowing value.

3.3.3 Estimation of ŝk

This subsection represents the modeling method of ŝk. We assume that M meshes (m =
0,1, · · · ,M − 1) are created by the local database using the mesh definitions. The local
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database first estimates a non-quantized shadowing sm in the m-th mesh as follows:

sm = 10log10(P̄m)− P̂(dm) [dB], (3.2)

where P̂(dm) = B−10Clog10(dm) [dBm] is the median path loss in the m-th mesh. The local
database calculates the above equation for each mesh and generates the shadowing vector
sss = (s0, s1, · · · , sM−1).

The local database then finds the maximum shadowing smax = max(sss) [dB] and the
minimum shadowing smin =min(sss) [dB], where max(sss) and min(sss) find the maximum and
minimum values from the vector sss. After that, the quantization is performed between
[smin, smax] using a quantization size wc [dB]. We can express the k-th quantized shadowing
value ŝk as follows,

ŝk = smin+wck [dB]. (3.3)

3.3.4 Classification

The proposed classifier assigns the k-th propagation model to a mesh. It is assumed that Nm

instantaneous received signal power samples PPPm = (Pm,0,Pm,1, · · · ,Pm,Nm−1) are accumulated
in the mesh, here, PPPm is the instantaneous received signal power vector in the m-th mesh. We
are familiar that there is generally a high spatial correlation of the shadowing within the small
scale mesh; however, the shadowing value may be significantly different in several meshes
if the geographical conditions, such as the number of buildings, notably vary. Considering
this property, we use the RMSE as the objective function for accurately classifying the
propagation model. The local database stores the shadowing label km in the m-th mesh based
on the following function:

km = arg min
k=0,1,··· ,K−1

√√√√
1

Nm

Nm−1∑
j=0

[
Pm, j,dB− P̂c,k(dm)

]2
, (3.4)

where Pm, j,dB = 10log10(Pm, j) [dBm]. This function enables us to accurately classify the
quantized shadowing value in each mesh considering the instantaneous fluctuation of the
received signal power. The local database accumulates the shadowing label k and quantized
shadowing value on the shadowing table.

Fig. 3.1 shows the concept of the shadowing classifier. The local database has the shad-
owing classifier that consists of K propagation models. The black circle is an instantaneous
received signal power in a mesh. Each colored line represents the average received signal
power estimated by the shadowing classifier. Based on the objective function, we find the
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Fig. 3.1 Concept of the shadowing classifier.

propagation model having minimum RMSE. In this example, the RMSE can be minimized
using the model P̂c,1; thus, the local database assigns this model to the mesh.

The originality of the proposed classifier is to classify propagation models by considering
the instantaneous fluctuation of the received signal power. Conventional clustering methods
that are described in the next section classify observation data based on the mean values; that
is, the instantaneous fluctuation is not considered.

3.4 Comparison Methods of Shadowing Classification

If the shadowing exhibits high spatial correlation, the neighboring meshes may show the
similar shadowing values. Based on this observation, we can utilize k-means++ [53] to unify
similar shadowing values since it is assumed that several measurements are concentrically
dense. This assumption matches the shadowing distribution on the two-dimensional meshes
because of the spatial correlation.

Next, it is well known that the shadowing distribution is modeled as the log-normal
distribution based on the empirical rule of thumb. Therefore, we utilize Gaussian Mixture
Model (GMM) to cluster the shadowing values. This model assumes that an observation
value follows the normal distribution; that is, the assumption is suitable in the shadowing
classification.

To utilize the clustering algorithms, we first define the input data vector of the m-th mesh
as follows:

xxxm = (xm,ym, sm), (3.5)

where (xm,ym) is the two-dimensional coordinates of the m-th mesh. These values are derived
using the 10m mesh code.
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(xm,ym) and sm are the two-dimensional coordinates and logarithmic values; that is, these
values are different scales. If the clustering is performed using these different scales, the
accuracy of the clustering is degraded. Hence, we standardize each input data and multiply
the weight before the classification. As the first step of the standardization, the local database
first estimates the mean and standard deviation of each input data. After that, each mean
value is subtracted from each value and divided by the standard deviation. These procedures
are well known as the general standardization method in statistics. Note that B and C are
constant in the k-means++ and GMM.

3.4.1 K-means++

The k-means may not accurately classify observation values if an Euclidean distance is short
between initial centroids. K-means++ can solve this issue by determining initial centroids
so that a Euclidean distance between each centroid is long. This method clusters each input
data by calculating the following function E:

E =
K−1∑
k=0

M−1∑
m=0

umkde(xxxm,µµµk), (3.6)

where k is the cluster label that corresponds to the shadowing label. K is the number of
clusters and this is the same value as the number of quantized shadowing values in the
proposed classifier. umk is the binary variable; that is, the value is 1 if xxxm is included in k-th
cluster; otherwise, 0. µµµk is defined as the centroid vector of the k-th cluster. de(xxxm,µµµk) is
an Euclidean distance between xxxm and µµµk. k-means++ allocates the cluster label so that an
input data vector belongs to the nearest cluster.

In the conventional k-means, the accuracy of the clustering degrades if the euclidean
distance between initial centroids is too small. To overcome this issue, k-means++ selects
each initial centroid as follows:

i). xxxm is randomly selected as the first centroid µµµ1 from the M input data vectors.

ii). The local database selects xxx′m as another centroid µµµk from the M input data vectors
based on the following probability:

min
0≤k≤K−1

de(xxx′m,µµµk)∑M−1
m=0 min

0≤ j≤K−1
de(xxxm,µµµ j)

. (3.7)

iii). ii). is performed until K centroids are selected.
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Using Eq. (3.7), the Euclidean distance may be large between centroids because a new
centroid is selected relatively far from the existing centroids.

The shadowing values are classified into K clusters by k-means++. After linking the
mesh index m and the cluster index k, the local database calculates the average shadowing
value in each cluster. We accumulate the average value as ŝk with the mesh index m. However,
the performance of k-means++ may be low if several shadowing values are notably different
from the mean values; that is, the outliers deteriorate the clustering accuracy. This is because
k-means++ updates each centroid by calculating the mean value of input data.

3.4.2 GMM

GMM consists of the linear combination of several normal distributions. We can utilize this
distribution as the clustering by estimating which normal distribution each data belongs to.
We define the probability density function (PDF) of D-dimension normal distribution as
follows:

pnormal(XXX) =
1

(2π)D/2|ΣΣΣ|1/2
exp

(
−

1
2

(XXX−µµµ)TΣΣΣ−1(XXX−µµµ)
)
, (3.8)

where XXX = (X1, · · · ,XD) denotes the random variable vector, here, Xi the i-th random variable
that follows the single normal distribution. µµµ and ΣΣΣ are the mean vector and covariance
matrix of D-dimension normal distribution, respectively. The PDF of GMM is given by

pgmm(XXX) =
K−1∑
k=0

πk pnormal(XXX|µµµk,ΣΣΣk), (3.9)

where πk, µµµk, and ΣΣΣk are the mixture coefficient, the mean vector, and the covariance matrix
of the k-th normal distribution, respectively. Next, we define the log-likelihood function of
GMM as follows:

log pgmm(χχχ) = log
Ngmm−1∏

i=0

pgmm(XXXi) =
Ngmm−1∑

i=0

log
K−1∑
k=0

πk pnormal(XXXi|µµµk,ΣΣΣk), (3.10)

where XXXi (i= 0, · · · ,Ngmm−1) is the i-th data vector that follows GMM, χχχ= {XXX0,XXX1, · · · ,XXXNgmm−1}

and Ngmm is the number of data.
To maximize the above log-likelihood function, we use expectation-maximization (EM)

algorithm and the latent variable zk. zk is 1 if XXXi is subject to the k-th normal model; otherwise,
0. The procedures of EM algorithm are defined as follows:



38 Shadowing Classifier for Radio Map

i). We calculate the posterior distribution of zk as follows (E-step):

ζ(tem)
k (XXXi) =

π(tem)
k pnormal

[
XXXi|θθθ

(tem−1)
k

]
∑K−1

j=0 π
(tem)
j pnormal

[
XXXi|θθθ

(tem−1)
j

] , (3.11)

where tem is the iteration index, ζ(tem)
k is the posterior distribution of zk in the tem-th

iteration, and θθθ(tem)
k = (µµµk,ΣΣΣk), respectively.

ii). Based on ζ(tem)
k (XXXi), the following calculations are performed (M-step):

π(tem)
k =

1
Ngmm

Ngmm−1∑
i=0

ζ(tem)
k (XXXi), (3.12)

µµµ(tem)
k =

∑Ngmm−1
i=0 ζ(tem)

k (XXXi)XXXi∑Ngmm−1
i=0 ζ(tem)

k (XXXi)
, (3.13)

ΣΣΣ
(tem)
k =

∑Ngmm−1
i=0 ζ(tem)

k (XXXi)
[
XXXi−µµµ

(tem)
k

] [
XXXi−µµµ

(tem)
k

]T

∑Ngmm−1
i=0 ζ(tem)

k (XXXi)
. (3.14)

The above steps are repeated while the following evaluation function Q converges:

Q =
Ngmm−1∑

i=0

K−1∑
j=0

ζ(tem)
k (XXXi) logπ(tem)

j pnormal
[
XXXi|θθθ

(tem)
j

]
. (3.15)

3.5 Emulation Setups of Shadowing Classification

This section describes the emulation setups for evaluating the effectiveness of the proposed
classifier. We first show the measurement campaign of the 3.5GHz band datasets. Then, the
700MHz band datasets are explained.

3.5.1 Overview of Measurement for 3.5GHz Band

To obtain radio environment information of a cellular communication at an urban area, the
measurement campaign was conducted in Kudanshita Chiyoda-ku in Tokyo, Japan. In the
campaign, experimenters placed the transmission antenna in the area shown in Fig. 3.2. The
transmitter sent the continuous wave to each location. The height of the transmitter above
ground level was 17.5 [m]. The receiver fixed the antenna on the cart and traveled the area
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Fig. 3.2 Observation area (3.5GHz band).

Table 3.3 Observation parameters (3.5GHz band)© 2020 IEEE

Center frequency [GHz] 3.5
Transmission power [dBm] 29

Transmission antenna Omnidirectional
Reception antenna Omnidirectional

at 4 [km/h]. The height of the receiver above ground level is 1.5 [m]. The received time,
reception location, and received signal power were measured and stored at every 0.15 [ms].
We present the observation parameters in Table 3.3. The 3.5GHz band has been assigned in
the 5G systems. Considering the usage of the radio map in the 5G, we use a 3.5GHz as the
center frequency in this emulation. The number of measured samples was 100423.

3.5.2 Overview of Measurement for 700MHz Band

Next, the observation data of a road-to-vehicle communication system [54] were utilized.
We conducted the measurement campaign in Odaiba Minato-ku in Tokyo, Japan. This area is
a typical suburban area and the road side unit is installed on the red square shown in Fig. 3.3
by Toyota Motor Corporation. We prepared three vehicles to measure the beacon signal
transmitted from the road side unit. The measurement device was the spectrum analyzer
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Fig. 3.3 Observation area (700MHz band).

and the observation program was implemented by the Python script. The spectrum analyzer
enabled us to observe the received position and the received signal power in each position.
Table 3.4 are the observation parameters in 700MHz band datasets. The number of datasets
was 3775456.

3.6 Emulation Results of Shadowing Classification

We present the emulation results for the two kinds of datasets. First, the examples of the
shadowing classification are explained. After depicting the outliers of the average received
signal power, we evaluate the accumulated data size of the radio map. Each weight for
(xm,ym) and sm is 0.1 and 0.9.
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Table 3.4 Observation parameters (700MHz band)© 2020 IEEE

Communication standard STD-T109 [55]
Center frequency [MHz] 760
Transmission power [dBm] 19.54
Modulation format QPSK/OFDM
The number of subcarriers 52
Bandwidth [MHz] 9
Spectrum analyzer RSA306@Tektronix

3.6.1 Examples of Shadowing Classification

Fig. 3.4 is the example of radio map and shadowing classification of the 3.5GHz band datasets.
The mesh size is 10 [m] and the number of meshes is 2060. Additionally, wc = 0.2 [dB] and
K = 217. First, the average received signal power in each mesh is illustrated in Fig. 3.4(a).
The others show the shadowing classification in each method as presented in Figs. 3.4(b),
3.4(c), and 3.4(d). We can see that each method accurately classifies similar shadowing
values, especially it is well performed in the black dotted frame. This is because shadowing
values are similar owing to dense structures in the area.

Next, we illustrate shadowing classification of the 700MHz band in Fig. 3.5. Each map
consists of 2280 meshes. The classification is performed in wc = 0.5 [dB] and K = 49. As
represented in Fig. 3.5(a), there is a large difference between average received signal power
values in the black dotted area; thus, the outliers exist in the measurement datasets. Fig. 3.5(c)
shows that k-means++ incorrectly classifies shadowing value to 0 [dB] in the black dotted
area despite the average received signal power is small in several meshes. A few structures
only exist in this area; thus, the shadowing values are around 0 [dB] in most meshes. Since
k-means++ updates each centroid using mean value, many shadowing values are clustered
to 0 [dB]. Meanwhile, the proposed classifier can accurately classify shadowing values in
the black dotted area as shown in Fig. 3.5(b). We assigned the shadowing label based on
Eq. (3.4); that is, the classification is not affected by outliers in surrounding meshes. This is
the advantage of our proposed method.
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Fig. 3.4 Examples of shadowing classification (3.5GHz band).
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Fig. 3.5 Examples of shadowing classification (700MHz band).
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3.6.2 Statistical Analysis Using Box Plot

As described in the previous section, the shadowing classification is very sensitive to the
outliers of the average received signal power. This section evaluates the outliers using a box
plot. In this dissertation, we utilize an interquartile range (IQR) to find the outliers [56]. The
IQR infers the P̄m as the outlier if either of the following formulas is satisfied:

P̄m > q3+ [1.5× (q3−q1)], (3.16)

P̄m < q1− [1.5× (q3−q1)], (3.17)

where q1 [dBm] and q3 [dBm] are the first quartile and the third quartile of the average
received signal power, respectively. In this method, these occurrence probabilities of outliers
are almost equivalent to upper and lower probabilities of the standard normal distribution
using 3σnormal, here, σnormal is a standard deviation.

Figs. 3.6 and 3.7 illustrate the outliers of the average received signal power using box
plots. The horizontal axis is the communication distance between the transmitter and a mesh
by 100 [m] interval. Additionally, we define the vertical axis as the average received signal
power of the meshes where the communication distance is the range shown by the horizontal
axis. In the box plot, the length of a box is the difference between q3 and q1; that is, the
box contains half of the total data. Furthermore, the yellow line is the median. We show an
outlier as a black circle.

Our analyses clarify that there are more outliers in the 700MHz band dataset compared
with the 3.5GHz band. In the southern area shown in Fig. 3.3, another road side unit is
installed; hence, the received signal power notably fluctuates because of the interference
signals from another road side unit. We find 20 and 121 outliers in Figs. 3.6 and 3.7,
respectively.
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Fig. 3.6 Box plot of the average received signal power (3.5GHz band)© 2020 IEEE.
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Fig. 3.7 Box plot of the average received signal power (700MHz band)© 2020 IEEE.
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3.6.3 Estimation Accuracy of Shadowing Classifier

This section evaluates the RMSE using the following function e1:

e1 =

√√√√
1

Neva

M−1∑
m=0

Nm−1∑
j=0

(Pm, j,dB− P̄m)2 [dB], (3.18)

where e1 is the RMSE between the instantaneous received signal power and the average
received signal power estimated by each method in each mesh. Neva is the number of
instantaneous received signal power samples in all meshes.

We present the RMSE of each dataset in Figs. 3.8 and 3.9. Considering the more accurate
performance, the conventional radio map stores the median received signal power in each
mesh instead of the mean value. Fig. 3.8 reveals that the estimation accuracy are different
between the proposed classifier and k-means++ according to K. The proposed method
estimates ŝk based on the quantization size wc and the number of propagation models K is
small in an increase of wc. Hence, the RMSE is slightly degraded in the proposed classifier
using small K owing to the quantization error. Meanwhile, k-measn++ can preciously
estimate the radio propagation even in the small K. GMM may inaccurately calculate
the average received signal power compared to the others. The geographical shape of the
observation area shown in Fig. 3.2 is close to the square. Since GMM assumes the cluster
shape as the elliptical, several shadowing values may be incorrectly clustered. Finally, we
evaluate the RMSE of the measurement-based path loss model denoted by the black dotted
line. The result shows that the RMSE is very poor because of the shadowing.

Fig. 3.9 is the RMSE of the 700MHz band dataset. These values show that the proposed
classifier can realize the best performance compared to the others. Note that the error
performance of the conventional radio map is a little poor. In the 700MHz band campaign,
there is a large difference between the number of samples in several meshes. Due to the
difference, the biased training and test data may be created in the cross-validation; therefore,
the RMSE of the radio map is slightly degraded. Next, we explain the performance of k-
means++ and GMM. Both methods cannot accurately estimate the radio propagation because
there are many outliers in this area; that is, each cluster is inaccurately updated. Finally,
the measurement-based path loss model can unexpectedly estimate the average received
signal power with high accuracy. This is because the standard deviation of the shadowing is
4.69 [dB] that is smaller than the typical value (e.g., 8 [dB] in an urban area).

[57] has described that the RMSE may be around 4 [dB] if the path loss and shadowing
can be perfectly estimated using the radio map. From Figs. 3.8 and 3.9, we can confirm that
the proposed classifier reaches the performance limitation of the radio map. Although the
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Fig. 3.8 RMSE of 3.5GHz datasets.

remained error occurs owing to the multipath fading, the radio map and classifier cannot
estimate such an instantaneous fluctuation.

From Figs 3.8 and 3.9, we can confirm that the estimation accuracy of the k-means++
can be improved in an increase of K. In both figures, the average RMSE can be converged
when K is around 25. Since the 3.5GHz band datasets were obtained in urban areas, the
standard deviation of the shadowing was around 8 [dB]. This value is generally large in radio
propagation. In other words, the estimation error may be small if K is around 25 in most
environments, such as suburban.

3.6.4 Accumulated Data Size of Shadowing Classifier

Finally, this section calculates the accumulated data size of the radio map. We utilize
the accumulation contents shown in Tables 3.1 and 3.2 for the conventional radio map
and shadowing classifier, respectively. Note that the measurement data and time, latitude,
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longitude, altitude, and center frequency are not considered in the accumulated data size
since these items are registered in both conventional and proposed methods. Additionally, the
first code of the reception mesh is the same value in the two communication areas; thus, this
item is accumulated only 5 [Byte] in each method. The proposed classifier needs to calculate
the path loss based on the parameters B, C, and communication distance. Considering this
calculation, the proposed method uses the single table as shown in Table 3.5. L1 and L2 of
the transmitter are utilized to derive the communication distance. From these tables, we can
define the accumulated data size of the proposed classifier and the comparison methods as
follows:

a1 = (M×15)+ (K ×12)+37 [Byte], (3.19)

where a1 is the accumulated data size in the proposed classifier and conventional clustering
methods. Meanwhile, the accumulated data size of the conventional radio map a2 is given by

a2 = M×19+5 [Byte]. (3.20)
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Table 3.5 Single table.

Item Format Size [Byte]
Path loss parameters B and C double 16

L1 and L2 of transmitter double 16
First code of reception mesh text 5

In the 3.5GHz band dataset, we found M = 2060 and K = 217; thus, a1 = 33541 [Byte]
and a2 = 39145 [Byte]. The rate between these values is 33541/39145 = 0.8568; that is,
14.32 [%] reduction can be realized via the proposed method.

In the 700MHz band dataset, using M = 2280 and K = 49, a1 = 34825 [Byte] and
a2 = 43325 [Byte] can be derived and the rate is 34825/43325 = 0.8038. We can confirm that
the number of accumulated data size is reduced about 19.62 [%].

3.6.5 Power Control

To clarify the improvement of communication efficiency, this section performs a power
control. The transmission power is determined so that the desired outage probability is
guaranteed. The outage event means that the instantaneous received power becomes smaller
than the desired power value. The procedures of the power control are shown as follows:

i). The local database creates the radio map and shadowing classifier by processing the
measured datasets in each 10m mesh.

ii). The multipath fading is calculated from the difference between an instantaneous power
value and the average power value in each mesh.

iii). The local database estimates the empirical CDF of the multipath fading. This section
assumes that the shape of the CDF is the same in all meshes.

iv). The percentage point that the lower-tail probability is the desired outage value is
calculated from the empirical CDF.

v). The local database decreases the transmission power by the difference between the
percentage point and the desired power value.

vi). The power control is performed in each mesh and the average outage probability is
derived.

The performance evaluation was conducted using 3.5GHz band datasets. The desired power
value is -130 [dBm], the number of shadowing models is 217, and the maximum transmit
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Fig. 3.10 The average outage probability.

power is 28.8 [dBm]. The average outage probability and average transmission power are
shown Figs. 3.10 and 3.11, respectively. Each horizontal axis denotes the desired outage
probability. The vertical axes denote the average outage probability and the average transmis-
sion power in Figs. 3.10 and 3.11, respectively. The green dotted line is the desired outage
probability; that is, this line express the true value. Therefore, if the power control can be
precisely performed, an obtained outage probability is approximately equivalent to the true
value. As the comparison method, we used the measurement-based path loss model. This
method estimates the average power in each mesh by considering only the path loss effect.
Suzuki distribution is used as the mixture distribution of the shadowing and fading with a
standard deviation of 8 [dB].

Fig. 3.10 reveals that the proposed classifier and conventional radio map can skillfully
guarantee the desired outage probability compared to the path loss-based method. Because
the proposed classifier and the radio map can accurately estimate the shadowing in addition
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to the path loss, the percentage point may be correctly derived. Consequently, the desired
outage probability can be guaranteed. The path loss-based method may inaccurately the
percentage point owing to the shadowing deviation.

Finally, Fig. 3.11 clarifies that the average transmission power can be lower than the
maximum transmit power and the path loss-based method. From these results, we consider
that the proposed classifier and the radio map can satisfy the desired communication quality
while the power efficiency can be improved.

3.7 Chapter Summary

This chapter discussed the shadowing classification of the radio map to reduce the accumu-
lated data size. We have proposed the shadowing classifier that unifies similar shadowing
values to a representative value based on the objective function. The proposed classifier is
generated by quantizing the measured shadowing value with the size wc. As comparisons,
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this chapter has explained two conventional clustering methods: k-means++ and GMM. The
emulation results have clarified that it is necessary to adaptively utilize the proposed classifier
and k-means++ according to whether the average received signal power values have outliers.
Furthermore, the classification-based methods have enabled us to reduce the accumulated
data size while accurately estimating the radio environment.



Chapter 4

Sample Size Formulation using
Statistical Inference for Radio Map

Chapter 3 discussed the reduction of the accumulated data size in terms of the average
received signal power in each mesh. The shadowing classifier and conventional clustering
methods enable us to construct the low storage radio map while keeping the high estimation
accuracy.

However, the proposed method focused on the classification of mean values only. Mean-
while, to accurately calculate the mean value, the local database should accumulate enough
received signal power samples via crowdsourcing. In statistics, the required sample size
depends on the variance of a population. Of course, the sample mean may become equivalent
to the true mean using unlimited samples. Needless to say, it is the law of large numbers.
However, the observation time and measurement cost may be enormous to realize the law of
large numbers in all meshes when the area range is too large. Here, a crucial question arises:

• How many samples does it need to estimate the average received signal power with the
desired accuracy?

To resolve this question, we formulate the required sample size to estimate the average
received signal power for the radio map. This chapter presents three statistical methods:
interval estimation, CLT, and t-test. These are venerable methods in statistics because of
their simplicity.

This chapter first explains the detailed background of this study. Then, we formulate the
required sample size based on the three statistical methods. To verify the usefulness of the
statistical methods, computer simulations are utilized. The simulation results show that the
average received signal power can be accurately estimated using minimum required samples.
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4.1 Background

Crowdsourcing enables us to efficiently construct a radio map since a huge number of mobile
terminals may observe radio environment information in various environments. Motivated by
this fact, many researchers have continuously created radio maps assuming crowdsourcing.

However, conventional works do not consider the required sample size to accurately
estimate the average received signal power in the radio map construction. We think the
biggest reason is the abuse of the law of large numbers. Many researchers have believed
that a huge number of samples can be obtained using crowdsourcing. Under this condition,
the mean value may be calculated with high accuracy because of the law of large numbers.
Actually, the law of large numbers is a very powerful law since we can improve the estimation
accuracy of the first moment by only increasing the number of samples. However, this law
should not be applied to crowdsourcing because ordinary people may need to observe the
radio environment for a long time to collect a huge number of samples. To realize realistic
crowdsourcing, it is necessary to collect the minimum required samples to estimate the
average received signal power with high accuracy.

Focusing on the spatial correlation of the shadowing, an unknown received signal power
can be estimated via spatial interpolation (e.g. kriging [11]). If the spatial interpolation is
applied to the radio map construction, the radio environment observation is not necessary in
several meshes having high correlation. As a result, the required sample size can be reduced.
However, since the spatial correlation characteristics may be greatly different depending
on the geographical conditions, such as the number of buildings, it is hard to appropriately
determine the parameters of kriging (e.g., variogram model) for accurately considering these
correlation characteristics [58].

To determine the required sample size, there are several methods in ML. For instance,
the Vapnik–Chervonenkis dimension can be utilized. This method calculates the complexity
of the learning method [59] and includes the sample size used in learning. Thus, the required
sample size can be derived by giving the permissible learning error and complexity of the
learning method. However, since the required sample size strongly depends on the complexity
of the learning method, it is necessary to recalculate the sample size if the learning method
used for estimation changes. As an alternative method, the amount of training data for
constructing an accurate model is required ten times more than the number of parameters in
the model [60]. However, this rule is based on the rule of thumb; thus, it is not an absolute and
accurate index. The general method for determining the required sample size is necessary.

In this chapter, we consider three statistical methods for determining the required sample
size to estimate the average received signal power. The first method is interval estimation that
is used to estimate the confidence interval of the sample mean. This dissertation formulates
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the sample size based on this confidence interval. Second, we use CLT. This method
determines the required samples size so that the variance of the average received signal
power is less than the desired value. Finally, the t-test in hypothesis testing is utilized. The
simulation results reveal that the proposed methods can estimate the average received signal
power with the desired accuracy while notably reducing the number of required sample sizes.

4.2 System Model

We assume that the radio map is created by crowdsourcing-based measurements as described
in Sect. 1.4.2. To utilize three statistical methods described later, it is assumed that the
initial radio map is generated by using enough instantaneous samples (e.g., one thousand)
in each mesh. After the initial radio map is constructed, each mobile terminal observes the
received signal power again and reports instantaneous samples to the local database. The
local database randomly picks up samples in each mesh based on the required sample size
determined in advance. Then, the average received signal power is recalculated using the
picked samples. After that, when the observation data are reported from mobile terminals,
the local database stores only required samples. The determination methods of this minimum
required sample size will be described in Section 4.3.

In the actual measurement, the recorded received position information may include an
observation error of 2-3 [m] due to the limitation of the GPS [61]. To suppress this error in
the radio map construction, the local database sets the mesh size larger than the GPS error.

Furthermore, it is assumed that the measurement error of the instantaneous received signal
power owing to the individual differences between mobile terminals [62] can be compensated
by using the calibration process [62]. From [62], it can be found that the measurement error
can be accurately calibrated by constructing the error model based on the linear regression.
Although we need to consider the novel calibration method to accurately compensate for the
measurement errors, the task is left as future work.

Intuitively, the instantaneous samples should be more accumulated in the meshes having
low signal-to-noise ratio (SNR) because these samples may notably be missing. However, in
such meshes, the average received signal power should be estimated using the extrapolation
[63–65] to construct the accurate radio map. In general, radio propagation extrapolation is
very difficult in such a noise-limited system because all measurement datasets are missing
below the noise floor. Although Chapter 6 proposes the extrapolation method to estimate
missing data, the extrapolation method can be performed well only in an interference-limited
observations. Thus, we need to propose a novel extrapolation method for the noise-limited
system before the formulation of the required sample size. Hence, the noise floor of the
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terminal is assumed to be lower compared to the average received signal power in each
location.

Moreover, this chapter assumes that geographical features, such as the transmitter position
and the number of structures, are not changed. If geographical features vary, we need to
update the average received signal power using hypothesis testing before the required sample
size is calculated. This will be discussed in Chapter 5.

4.3 Formulation of Required Sample Size

We mathematically derive the required sample size for estimating the average received
signal power. In the following, we mainly design the proposed methods based on statistical
inference. Statistical inference is generally divided into the estimation and the test. The
proposed methods consist of both approaches.

4.3.1 Interval Estimation-based Method

As the estimation method for a population mean, the interval estimation [66] is well known
in statistics. The interval estimation is classified into parametric approach (e.g., the Student’s
t-distribution-based method [66]) and non-parametric approach (e.g., the bootstrap-based
method [67]). In the bootstrap method, the population mean can be estimated based on the
repetition of random sampling from the obtained samples. However, the required sample size
cannot be theoretically derived from the confidence interval. This implies that the required
sample size strongly depends on the shape of the probability distribution of the population.

Meanwhile, the required sample size is theoretically derived in the Student’s t-distribution.
Here, it is assumed that the population follows the normal distribution with mean µnormal

and variance σ2
normal. In this method, the confidence interval for 100(1−α) [%] of µnormal is

represented as follows:

x̄normal−T α
2

snormal
√

nnormal
< µnormal < x̄normal+T α

2

snormal
√

nnormal
, (4.1)

where x̄normal is the sample mean, s2
normal is the unbiased variance, ±T α

2
is the upper and

lower critical values that are 100α2 [%] points of t-value, 100(1−α) [%] is the confidence
coefficient, α is the significance level, and nnormal is the sample size. From this equation,
if the sample mean x̄normal is included in the desired confidence interval Id, the following
inequality must be satisfied,

Id ≥ 2T α
2

snormal
√

nnormal
. (4.2)
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The right term in Eq. (4.2) is derived by subtracting the first term from the third term in
Eq. (4.1) that is the estimated confidence interval of x̄normal. If x̄normal is included in the right
term in Eq. (4.2), the desired confidence interval Id should be equivalent or larger than the
right term in Eq. (4.2). From this equation, the minimum required sample size nnormal,min can
be theoretically derived by solving the Eq. (4.2) for nnormal and its definition is

nnormal,min ≜ nnormal ≥


(2T α

2
snormal

Id

)2 . (4.3)

Because nnormal,min must be calculated as an integer, the ceiling function is used. This
equation means that if Id is narrow or s2

normal is large, nnormal,min becomes large. To calculate
nnormal,min, Id and α are required to give in advance. Here, T α

2
can be calculated based on

t-distribution tables. Additionally, s2
normal should be calculated using enough sample size for

accurately estimating the population variance.
The local database calculates Eq. (4.3) in each mesh and randomly extracts the instanta-

neous samples from the reported samples for nnormal,min. Note that if the sample size of the
reported data is smaller than nnormal,min in the m-th mesh, the aforementioned operation is not
performed. In that case, the operation is performed when the number of newly accumulated
samples becomes larger than nnormal,min. Here, s2

normal is calculated by referring to an initial
radio map constructed using enough samples. Here, snormal and Id are derived as the decibel
domain rather than the milliwatt domain. If the milliwatt is used, the mean value may be
inaccurately estimated due to the outliers.

Although nnormal,min can be calculated using the CLT described later, the interval estima-
tion is utilized in this dissertation. If the interval estimation is used, it can be derived not
only nnormal,min but also the confidence interval. The deviation range of the sample mean can
be found by using the confidence interval. Meanwhile, this interval may not be accurately
derived in the CLT if the sample size is small.

4.3.2 CLT-based Method

In the interval estimation using the Student’s t distribution, it is assumed that the population
follows the normal distribution. Thus, the Student’s t distribution may not be appropriate if
the instantaneous received signal power does not follow the log-normal distribution. Here,
it is well known that the probability distribution of the sample mean follows the normal

distribution with mean µtrue and variance σ2
true

nclt
in any probability distribution by increasing

nclt. Here, µtrue, σ2
true, and nclt are the population mean, population variance, and the sample

size, respectively. By considering the variance as a desired standard deviation of the sample
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mean, it can be defined as follows:

σd ≜
σtrue
√

nclt
, (4.4)

where σd is the desired standard deviation of the sample mean. From this equation, the
minimum required sample size for satisfying σd can be formulated as follows:

nclt =

 s2
clt

σ2
d

 . (4.5)

In the realistic environment, σ2
true may not be known in most cases. Thus, the unbiased

variance s2
clt is used instead of σ2

true. This value should be estimated using enough samples.
The local database calculates Eq. (4.5) in each mesh and randomly extracts the instanta-

neous samples from the reported samples for nclt. If the sample size of the uploaded samples
is smaller than nclt in m-th mesh, the aforementioned operation is not performed. Here, s2

clt is
calculated using an initial radio map constructed using enough samples. Note that σd and
sclt are given as the logarithmic values.

4.3.3 Normality Test Using Shapiro–Wilk Test

To use the two statistical methods, it is necessary to infer the normality of the obtained
samples. Here, normality test methods have been proposed in statistics, and the accuracy of
statistical power for these methods has been conducted [68]. From [68], it can be found that
the Shapiro–Wilk test is the most powerful test if the number of samples used in testing is
large. Thus, we utilize this test. The statistic of the m-th mesh in Shapiro–Wilk test is defined
as follows:

S m =

[∑Nm−1
i=0 ciP(m,i,dB)

]2(∑Nm−1
i=0 Pm,i,dB− P̄m

)2 , (4.6)

where S m is the statistic of the m-th mesh in Shapiro–Wilk test, ci is the i-th tabulated
coefficient [69], and P(m,0,dB) ≤ P(m,1,dB) ≤ · · · ≤ P(m,Nm−1,dB) are the ordered values of the
samples (Pm,0,dB,Pm,1,dB, · · · ,Pm,Nm−1,dB). S m is always 0 < S m ≤ 1 and the small S m indi-
cates abnormality. In this paper, the abnormality means that the obtained samples do not
follow the log-normal distribution.

In this dissertation, Shapiro–Wilk test is performed using the initial radio map constructed
using enough samples. Subsequently, nnormal,min is calculated in each mesh inferred as the
normality. Meanwhile, nclt is calculated in each mesh that not be inferred for normality.
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4.3.4 T -Test-based Method

In the interval estimation, nnormal,min is calculated more because it is determined in proportion
to four times the variance s2

normal. Here, the required sample size of t-test [70] can be utilized
for solving this problem and its definition is given by

nt =

2s2
t (Z1−α2

+Z1−β)2

∆2

 , (4.7)

where nt and s2
t are the minimum required sample size and the unbiased variance using

t-test-based hypothesis testing, respectively. ∆ = µ1−µ2 is the difference between mean µ1

and mean µ2. Additionally, Z1−α2
and Z1−β are the 100(1− α

2 ) and 100(1−β) percentiles of
the standard normal distribution, respectively. These values can be obtained using z-tables. β
is the type II error. If nt is too small, the significant difference between µ1 and µ2 may not be
inferred despite µ1 and µ2 are not equivalent. When the t-test is performed multiple times,
the miss testing may occur with a certain probability. This probability corresponds to the β.

From Eq. (4.7), it can be found that if ∆ is small or s2
t is large, many samples are required.

Additionally, the required sample size can notably be reduced compared to Eq. (4.3) since
nt is determined in proportion to two times the variance s2

t . In hypothesis testing, nt is
often calculated as 1−β = 0.8 or 0.9 to infer the significant difference between µ1 and µ2.
Meanwhile, in this paper, this significant difference should not be inferred to create an
accurate radio map using the minimum required sample size. Thus, by setting smaller ∆ and
larger β, the minimum required sample size can be derived. Here, ∆ is considered as the
permissible difference between two means, and its value is required to be given in advance.

Eq. (4.7) is calculated for each mesh in the local database. Then, the cloud server
randomly extracts the instantaneous samples from the reported samples for nt. Note that if
the sample size of the uploaded data is smaller than nt in the m-th mesh, the aforementioned
operation is not performed. Here, st and ∆ are calculated in the decibel domain rather than
the milliwatt domain. Additionally, st is estimated based on the initial radio map constructed
using enough samples. Note that nt is derived in all meshes regardless of the normality and
abnormality. This is because t-test has the robustness [71] that the population does not need
to follow the normal distribution.

Although the t-test is usually used in SHT, we attempt to utilize the t-test to calculate the
required sample size in the radio map construction. Most researchers have not applied the
t-test to the sample size determination; that is, the utilization of the t-test is the originality.
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4.4 Computer simulation

Computer simulations are used to evaluate the effectiveness of our formulations. In the
following, the simulation setups are shown.

4.4.1 Radio Propagation Model

In this simulation, the radio propagation model in the m-th mesh is defined as follow:

P(dm) = PTx−Lfspl(d0)−10Clog10

(
dm

d0

)
+W +F, (4.8)

where P(dm) [dBm] is the instantaneous received signal power in the m-th mesh, PTx [dBm]
is the transmit power of the transmitter, d0 [m] is the reference distance, W [dB] is the
shadowing value, and F [dB] is the small-scale fading. Additionally, we define Lfspl [dB] as
the free-space path loss as follows:

Lfspl(d0) = 10log10

(
4πd0

λ

)2

, (4.9)

where λ [m] is a wavelength.
In this simulation, we consider spatially-correlated shadowing. It is well known that the

spatial correlation model of the shadowing is represented as the exponential decay model
[31] and its definition is given by:

ρi, j = exp
(
−
δi, j

dcor
ln2

)
, (4.10)

where ρi, j and δi, j [m] are the shadowing correlation and distance between two terminals i
and j, respectively. dcor [m] is the correlation distance, defined as a point on ρi, j = 0.5. The
correlation distance of approximately 20 [m] is experimentally determined in an urban area
[31]. Under spatial correlation shadowing, the probability distribution is modeled as the
multivariate normal distribution [72] as follows:

fs =
1√

(2π)DΣΣΣs
exp

(
−

1
2

(⃗r− p⃗)TΣΣΣ−1
s (⃗r− p⃗)

)
, (4.11)

where fs is the PDF of the multivariate normal distribution, r⃗ = (r0, · · · ,rD−1)T is the vector of
the average received signal power values, p⃗ = (p0, · · · , pD−1)T is the median path loss vector,
and D corresponds to the number of meshes. ΣΣΣs denotes the D×D shadowing covariance
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Table 4.1 The common simulation parameters

Communication area [m2] 200×200
Mesh size [m2] 10×10
The number of meshes D 400
The number of samples nget 10
The number of terminals H 40
Frequency [MHz] 3500
Transmit power PTx [dBm] 29
Reference distance d0 [m] 10
Path loss index C 3.5
Standard deviation of W 8
Correlation distance dcor [m] 20
Confidence coefficient (1−α) 0.9, 0.99
Desired confidence interval Id [dB] 2
Desired standard deviation σd [dB] 0.5, 1.0, 1.5
Significance level of Shapiro–Wilk test 0.05
Permissible difference ∆ [dB] 1
Type II error β 0.9
Significance level of t-test α 0.1, 0.01

matrix, as follows:

ΣΣΣs =


σ2

1,s . . . ρ1,Dσ1,sσD,s
...

. . .
...

ρD,1σD,sσ1,s . . . σ2
D,s

 , (4.12)

where σi,s [dB] is the standard deviation of the shadowing from the transmitter to the i-th
terminal. In this simulation, W is obtained by calculating the random values that follow the
multivariate normal distribution. Here, by using the smaller mesh size than dcor, the deviation
of W can be almost negligible in each mesh [73]. Thus, the mesh size is set to 10 [m] in this
simulation.

Finally, the small-scale fading models are described. In the proposed methods, the
minimum required sample size strongly depends on the variance of the received signal power.
Thus, it is necessary to create various fading realizations in each mesh. In this simulation, the
Rayleigh and Nakagami–Rice fading are utilized. The rice factor R is randomly determined
in each mesh, and random samples are obtained based on the assigned rice factor.

4.4.2 Simulation Procedures

The simulation procedures are described as follows:
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i). The log-normal shadowing or Rayleigh or Nakagami–Rice fading are randomly as-
signed in each mesh. Here, in the realistic environment, the shadowing deviation
occurs even in the line-of-sight (LOS) environment with the small standard deviation
[74]. To consider the shadowing effect, the log-normal shadowing is utilized in this
simulation. The standard deviation of log-normal shadowing is determined from [1,3]
based on the measurement results [74]. Additionally, rice factor R is determined from
[0,10] [74]. Note that the units of these values are decibels.

ii). The initial radio map is generated by averaging 1,000 instantaneous samples in each
mesh. Subsequently, the Shapiro–Wilk test is performed in each mesh. According
to the testing results, nnormal,min or nclt are calculated in each mesh. Note that nt is
calculated in all meshes regardless of the normality and abnormality.

iii). H terminals are randomly placed in communication area and each terminal observes
nget instantaneous samples represented in Eq. (4.8).

iv). The local database randomly extracts instantaneous samples for the number calculated
in ii) from nget samples and calculates the average received signal power in each mesh.
Then, we evaluate whether the calculated mean value is within Id. In this dissertation,
this evaluation index is defined as degree of confidence.

v). Procedures iii)-iv) are performed 1,000 times and the average received signal power
samples are accumulated in each mesh. Subsequently, we calculate the standard
deviation of the average received signal power in the meshes that not are inferred as
normality to evaluate the usefulness of CLT.

vi). Procedure v) is performed 100 times and the average degree of confidence and average
standard deviation are derived.

The common simulation parameters are shown in Table 4.1. In this simulation, (1−α) is the
typical value in statistics.

4.5 Simulation Results

This section presents the simulation results. First, we show the example of the radio map
based on our formulations. Then, the average degree of confidence and average standard
deviation of the average received signal power samples are described. Finally, this section
illustrates the RMSE and accumulated data size of the instantaneous samples.
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4.5.1 Example of Radio Maps

The example of the radio maps are presented in Fig. 4.1. Here, Fig. 4.1(a) is constructed by
averaging 10,000 instantaneous samples for each mesh. Note that (1−α)= 0.99,σd = 0.5[dB],
and significance level of t-test is 0.01, respectively. Additionally, as simple comparisons,
the two methods are evaluated; w/o deletion and forgetting factor. In the former method,
the local database constructs the radio map without deleting the instantaneous samples.
In Fig. 4.1(d), the average sample size in a mesh is 1,000. Meanwhile, in the forgetting
factor-based method, the local database randomly extracts the instantaneous samples for
100η [%] from nget samples. In the following simulation, the forgetting factor η is 0.1.

From these maps, it can be confirmed that the proposed methods represented in Figs. 4.1(b)
and 4.1(c) can accurately estimate the radio environment in most meshes. However, in the
forgetting factor-based method, the average received signal power is different from the True
map in several meshes (e.g., the area within the red dotted frame). This is because the
obtained samples are notably deleted owing to smaller η.
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[dBm]

(a) True map.

[dBm]

(b) Interval estimation and CLT.

[dBm]

(c) t-test.

[dBm]

(d) w/o deletion.

[dBm]

(e) Forgetting factor.

Fig. 4.1 Example of radio maps using minimum required sample sizes.
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4.5.2 Degree of Confidence and Standard Deviation

In this section, the average degree of confidence and average standard deviation of sample
means are described. The average degree of confidence is depicted in Fig. 4.2 using the box
plot. These box plots are created in the meshes that are inferred as normality in Shapiro–
Wilk test. In this figure, the horizontal axis is the confidence coefficient. The vertical axis
means the probability that the sample mean using nnormal,min samples is within the desired
confidence interval Id. Here, the upper and lower confidence values are calculated by adding
and subtracting Id/2[dB] from the initial average received signal power in each mesh. The
initial average received signal power corresponds to the average value in the initial radio
map. In the box plot, the yellow line and white circle represent the median value and outliers,
respectively. Note that the outliers are calculated using IQR. Additionally, the red, black,
and purple dotted lines denote each target confidence coefficient. Hence, each median value
should be nearly equivalent to each target value. From these results, it can be found that
the average received signal power can be included within ID by increasing the confidence
coefficient. This is because the required samples become large in an increase of confidence
coefficient. Meanwhile, in the small confidence coefficient, the average degree of confidence
is greatly different from the target value because of too small samples.
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Next, the average standard deviation of sample means is plotted in Fig. 4.3. These
box plots are generated in the meshes that are inferred as abnormality. In this figure, the
horizontal and vertical axes are the σd and the average standard deviation of the sample
means, respectively. Here, the red, black, and purple dotted lines denote the desired standard
deviations, respectively. It can be seen that each median is almost equivalent to the desired
value. Meanwhile, the outliers become large in increase of σd because nclt is small owing to
the large σd.

4.5.3 Estimation Accuracy and Accumulated Data Size

Finally, we evaluate the RMSE of the average received signal power and accumulated data
size. The RMSE is defined as follows:

e2 =

√√√
1
D

D−1∑
m=0

(P̄true,m− P̄req,m)2 [dB], (4.13)

where e2 is the RMSE, P̄true,m [dBm] is the true average received signal power in the m-th
mesh that corresponds to Fig. 4.1(a). P̄req,m [dBm] is the estimated average received signal
power using minimum required sample size in the m-th mesh.
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The average RMSE is shown in Fig. 4.4. Here, as a simple comparison, the constant
sample size-based method is described represented as ’Constant 100’. This method estimates
the mean value of the received signal power using 100 samples in each mesh. Note that
σd = 0.5[dB]. Here, the significance level of t-test corresponds to 1− (1−α). From these
results, it can be found that the interval estimation and CLT-based method is superior to
t-test in smaller confidence coefficient because nt tends to be calculated smaller compared to
nnormal,min. Meanwhile, the forgetting factor-based method cannot accurately estimate the
radio environment due to the excessive deletion of samples. Although the average RMSE
is small in Constant 100 comparing with the proposed methods, the accumulated data size
described later is large.

The accumulated data size per mesh is defined considering the instantaneous samples
and a 10m mesh code [54]. The 10m mesh code is represented as 16 [Byte] text type [54].
Additionally, the instantaneous received signal power can be accumulated as 8 [Byte] floating-
point type [54]. Thus, the accumulated data size rm [Byte] in the m-th mesh is calculated as
follows:

rm = 16+8Nm. (4.14)

The average accumulated data size per mesh is shown in Fig. 4.5. Although the data
size of w/o deletion is 8016 [Byte], it is not plotted in Fig. 4.5 by considering the visibility.
It can be found that the accumulated data size of the proposed methods can be reduced by
about 93[%]− 99[%] compared with the w/o deletion that is the conventional radio map
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construction. In the proposed methods, t-test can reduce the accumulated data size compared
with the interval estimation and CLT. However, the average RMSE of t-test in (1−α) = 0.90
is noticeably poor from Fig. 4.4. Thus, we argue that the t-test should be utilized in large
1−α. Meanwhile, the interval estimation and CLT can reduce the accumulated data size
while the high estimation accuracy is kept in small 1−α.

4.6 Chapter Summary

This chapter has proposed the methods for determining the required sample size to reduce the
registered data size. We have utilized three statistical methods: the confidence interval, CLT,
and t-test to formulate sample size. The simulation results have revealed that the proposed
methods can notably reduce the registered data size while the estimation accuracy keeps.



Chapter 5

Radio Map Updating using the Welch’s
t-test

Chapters. 2, 3, and 4 discuss the conventional radio map that is applied to television white
space. In this system, a transmitter does not move from an initial location and the average
received signal power is the constant value over the time domain. Meanwhile, the private
5G that provides the communication services by the non-public operator has been attracted
attention to flexibly use finite spectrum resources. However, the location of the transmitter
may vary in the private 5G; thus, the conventional radio map does not enable us to accurately
estimate location-dependent radio propagation. In this chapter, we propose the dynamic radio
map using SHT. The proposed method infers a significant difference between two average
power values based on Welch’s t-test. Then, the local database updates the information of
the radio map according to the testing outcomes. The evaluation results clarify that the radio
map can precisely be updated and estimate the average power via the proposed method.

5.1 Background

5G has been actively discussed worldwide. 5G is the new wireless communication system for
achieving high transmission capacity, low delay, and efficient spectrum utilization. Focused
on these previously capabilities, the private 5G has been discussed as a novel concept of
wireless systems by many researchers in industry, academia, and government [75, 76]. For
example, the local 5G and industrial 5G are considered in Japan and Europe, respectively. In
this system, multiple transmitters are deployed by non-public operators in a local area, such as
a factory to provide the wireless services. However, each non-public operator must share the
same frequency band within the small coverage; thus, the inter-transmitter interference should
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be appropriately coordinated to guarantee the communication quality of each transmitter. To
meet this constraint, it is necessary to accurately understand surrounding radio propagation
characteristics, such as path loss, shadowing, and multipath fading.

To estimate the radio propagation, we can utilize the radio map described Chapters. 2, 3,
4. As a utilization example of the radio map in the inter-transmitter interference management,
an interferer adjusts the transmission power such that a desired SIR at the other cell edge
is satisfied. When the interferer does not know any radio propagation characteristics, the
interferer must excessively decrease its transmission power to avoid the inter-transmitter
interference. By contrast, if the radio propagation characteristics, including the path loss
and shadowing, are known by the radio map, it is not necessary to suppress the transmission
power in the interferer. As the effectiveness of the radio map in the spectrum sharing, several
researchers have reported that the accurate radio map has the potential to realize the efficient
spectrum sharing in 5G systems [18–20]. Additionally, the achievable performance of the
radio map using channel state information has been revealed [77, 8, 78]. In summary, we
need to create a precise radio map in 5G systems, including private 5G systems, to efficiently
utilize the finite spectrum resources. Most researchers have mainly utilized radio maps for
television white space [79–81]. These systems assume that the transmitter does not move in
an initial location and the average received signal power is constant over the time domain.
Under the environment, we can precisely estimate the path loss and shadowing using the
initially constructed radio map even if the average power is not updated.

However, the assumption may not be applied to a private 5G system. This chapter
considers that a private 5G is deployed in a factory and a construction site to keep watch the
construction progress. In this case, the worker may change the manufacturing configurations
depending on the product and the working progress. This change may occur from week to
week or month to month [82]; thus, it is necessary to move the transmitter of the private 5G
system to keep watch the reconstructed production line. Under this environment, the received
signal power values may dynamically change due to the movement of the transmitter. As a
result, the initially constructed radio map may not accurately estimate radio propagation. In
the case of private 5G, a spectrum should be spatially shared among multiple uncoordinated
transmitters while inter-transmitter interference is avoided under constraints of changes in
the transmitter positions.

Related works have been studied for Wi-Fi and millimeter-wave communications. For the
radio map updating, [83, 84] utilize media access control (MAC) address of each access point
(AP) in Wi-Fi positioning systems. However, these works cannot update the radio map if a
single transmitter moves. This is because the radio map is updated based on whether new APs
are installed or existing APs are removed. Another method is proposed for millimeter-wave
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communication systems [85]. The updating rate is determined by referring to the coherence
duration; thus, the radio map may be unnecessarily updated since the coherence duration
is often given in the order of milliseconds. Additionally, [86] has proposed the real-time
updating method of the radio map. This method enables us to detect instantaneous variations
of received signal power by always collecting radio environment information. However,
several costs increase significantly according to the range of the communication area. For
instance, the observation time of the radio environment is considered. In summary, although
several researchers have proposed radio map updating methods, there are some problems. In
a private 5G system in the industrial scenario, the transmitter may move every a few days or
weeks to monitor the production progress [87]. Thus, we need to update the radio map by
considering this duration.

Several researchers have continuously discussed the utilization of ML to efficiently create
a radio map [88]. However, it is necessary to prepare a large training dataset in the ML.
Thus, we need to observe the radio environment repeatedly while changing the transmission
location in cellular systems. As a result, we cannot use ML in the cellular systems. The main
issue is to appropriately judge whether the radio map must be updated based on only real-time
datasets. The other method of updating has been proposed by Mo et al. [89]. This work
utilizes kernel principal component analysis (KPCA), that is, the features of the received
signal power values are extracted. However, this method cannot be used if the inverse matrix
cannot be calculated. This phenomenon occurs when the sample size of the measured data is
smaller than the number of dimensions in KPCA.

The radio map can be simply updated by constantly calculating the average power using
the measurement data reported from mobile terminals. The local database requires to provide
the updated radio map to all mobile terminals. If the number of mobile terminals increases,
the provision time of the radio map ma be long. Thus, the constant updating is inappropriate
in crowdsourcing-assisted radio map construction.

We can use hypothesis testing [90, 91] to solve the main task. Hypothesis testing is
divided into Bayesian hypothesis testing (BHT) [92–95] and SHT [71, 96–98]. The prior
distribution is needed to use BHT; however, it may not be appropriately modeled since the
radio propagation is complicated in a real environment owing to path loss, shadowing, and
multipath fading.

SHT consists of parametric and non-parametric tests. The validity of the hypothesis
cannot be properly inferred in non-parametric testing if heteroscedasticity exists between
the two populations [99]. The variances between two datasets over the time domain may be
unknown in a realistic environment. Here, the robustness of the t-test has been reported by
[71]. The normality assumption for the population distribution is not required in the t-test
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even if a small number of samples (e.g., 100) is used. However, homoscedasticity is assumed
between the two populations in the general t-test.

Motivated by the tasks, this chapter proposes a radio map updating method based on
Welch’s t-test [100]. The local database infers a significant difference between the two
average values using Welch’s t-test and updates the statistical information according to the
inferred outcomes. The major contributions of this chapter are presented as follows:

• The existing updating methods of the radio map, such as a BHT, a non-parametric
method, and ML, were investigated. From the surveys, it can be found that the radio
map should be updated only if the surrounding environment changes rather than the
real-time updating. Additionally, we may not determine the prior distribution of
the mean power due to the complicated radio propagation. Finally, robustness for
heteroscedasticity is needed when hypothesis testing is utilized. Considering these
factors, Welch’s t-test is used to update the radio map in cellular systems. Through the
simulation results, we can confirm that the radio map can be accurately updated via
the proposed method even in a small number of samples.

• The usefulness of the proposal is verified using the observation datasets in the real
environment. It reveals that the proposed method enables us to precisely estimate the
radio propagation compared to the two updating methods: a unique averaging and
forgetting factor.

5.2 System Model

The local database first creates an initial radio map based on crowdsourcing as shown in
Sect. 1.4.2.

The radio map is assumed to be updated based on a simple algorithm. Here, we consider
an outdoor smart factory as the private 5G. In this system, a transmitter and mobile terminals
are deployed in the factory. Mobile terminals observe the radio environment, such as
instantaneous received signal power, at each position and upload the measured data to the
local database. Then, a radio map is created by deriving the mean power in the local database.

As described in Sect. ??, an instantaneous power may fluctuate depending on the individ-
ual differences between mobile terminals [62] in the real environment. However, this chapter
mainly evaluates the accuracy of the radio map updating; thus, the fluctuation of the received
signal power is not considered in this chapter. To generate an accurate radio map further, the
calibration technique will be utilized.
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Here, in this chapter, the transmitter is assumed to be moved depending on the man-
ufacturing process. Thus, the movement cycle of the transmitter is every a few days or
weeks [87]; that is, the transmitter slowly varies in the communication area. Moreover, this
chapter assumes that the location information of the transmitter is unknown because we aim
to update the radio map based on the hypothesis testing without the location information of
the transmitter.

For readability, we define that a phase 0 and phase 1 are the environments before and
after the location of the transmitter is varied.

If the number of samples becomes nini in the m-th mesh, the mean power is calculated in
phase 0 for the m-th mesh. After the local database generates the initial radio map, the radio
environment is repeatedly observed by the mobile terminals in the same communication area.
Then, mobile terminals upload the observed samples to the local database. If the average
value is calculated of the m-th mesh in phase 0, the new uploaded samples are considered
as time-series data RRRm of the m-th mesh. Then, the local database divides RRRm such that the
sample size in each dataset is nnew if the number of new samples is larger than nnew. Thus,
we define RRRm and RRRm,T+τ as follows:

RRRm = (RRRm,T ,RRRm,T+1, · · · ,RRRm,T+Ns−1), (5.1)

RRRm,T+τ = (Pm,T+τ,0, · · · ,Pm,T+τ,nnew−1), (5.2)

where T is an arbitrary time and τ (τ = 0, · · · ,Ns−1) is the time index in each dataset. Ns is
the number of datasets and Pm,T+τ, j [dBm] is the j-th instantaneous received signal power of
the τ-th time in the m-th mesh.

This chapter assumes that the transmitter moves over a period of a few weeks and the
mobile terminals observe the radio environment every a few days. Then, the observed
contents are uploaded to the local database after the observations because the radio map
should be updated more frequently than the transmitter’s movement.

5.3 Proposed Method

This section first summarizes statistical testing and Welch’s t-test. After that, we propose the
method for updating the radio map using hypothesis testing.
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Fig. 5.1 The updating of the radio map.

5.3.1 Hypothesis Testing

In cellular systems, a large number of training datasets may not be obtained because it is
difficult to repeatedly vary in the transmission location and observations. In addition, the prior
distribution may not be accurately modeled because of the complicated radio propagation in
the time domain. Thus, the radio map should be updated by determining whether the average
received signal power significantly changes using only real-time datasets. To resolve this task,
Welch’s t-test is utilized. This method is established by improving the t-test. This testing
method enables us to properly investigate the significant difference between two average
values, regardless of the heteroscedasticity and homoscedasticity. Furthermore, Welch’s
t-test is superior to the general t-test and non-parametric testing [101]. Fig. 5.1 presents the
concept of the proposed updating method. The local database infers the significant difference
of the two average power values using Welch’s t-test. A new mean value is stored in the
mesh if the local database detects the significant difference.

5.3.2 Welch’s t-Test

We define WWW0 and WWW1 as the datasets, each obtained from a log-normal distribution. For each
dataset, the sample mean values are given as X̄w and Ȳw. Moreover, the unbiased sample
variances are represented as S 2

0,w and S 2
1,w. The sample sizes of two datasets are nini and

nnew, respectively. As a first step, we define two hypotheses: a null hypothesis H0 and an
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alternative hypothesis H1, as follows:

H0 : µ0,w = µ1,w, (5.3)

H1 : µ0,w , µ1,w, (5.4)

where µ0,w [dBm] and µ1,w [dBm] denote population means of each log-normal distribution.
Next, the two variables: a t-value and a degree of freedom v, are represented as,

t =
X̄w− Ȳw√
S 2

0,w
nini
+

S 2
1,w

nnew

, (5.5)

v =

(
S 2

0,w
nini
+

S 2
1,w

nnew

)2

 S 2
0,w

nini

2

nini−1 +

 S 2
1,w

nnew

2

nnew−1

. (5.6)

We can utilize the t-value to understand the difference between two average values. The t
value is determined according to the difference between µ0,w and µ1,w. The degree of freedom
v means the variance of the Student’s t distribution. Next, the probability distribution of the
t-value named as the Student’s t distribution is defined as follows:

f (t,v) =
Γ
(

v+1
2

)
√
πvΓ

(
v
2

) (1+ t2

v

)− v+1
2

, (5.7)

where Γ(·) denotes the gamma function. Here, it is necessary to calculate v as an integer;
thus, we round off v if it is a decimal.

Next, a p-value is introduced to infer the significant difference. This value can be obtained
by calculating the probability that the random variable X∼ f (t,v) becomes higher or lower
than the t-value. In other words, the p-value is equivalent to the tail region of the Student’s
t distribution. We calculate the p-value by considering a two-sided test. This method
considers a rejection region in both tails of the Student’s t distribution. In statistics, we can
usually utilize a one-sided test only if the variation of the population mean can be calculated
deterministically. However, the variation of the average received signal power value may not
be known in advance because the location of the transmitter after the movement is not known.
Additionally, in most cases, it is statistically recommended to use the two-sided test rather
than the one-sided test. In the two-sided test, the alternative hypothesis H1 is adopted if the
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two-tailed p-value is below the significance level α. The conditional inequality is given by∫ −t

−∞

f (ω,v) dω+
∫ +∞

+t
f (ω,v) dω < α, (5.8)

where ω denotes the integral variable. The left hand side in the above equation is the two-
tailed p-value. If there is a large difference between µ0,w and µ1,w, the p-value becomes to 0.
As a result, we tend to accept the alternative hypothesis.

5.3.3 Updating Procedures Using Welch’s t-Test

We define that WWW0,m denotes a dataset of an instantaneous power samples of the m-th mesh
in phase 0. The function is defined as follows:

WWW0,m = (P0,m,0,P0,m,1, · · · ,P0,m,nini−1), (5.9)

where P0,m, j [dBm] is defined as the j-th instantaneous power of the m-th mesh in phase 0.
The dataset for phase 1 is described. The mobile terminals upload the newly measured

datasets to the local database after the measurement; thus, several datasets are obtained on
each mesh. Here, the p-value of Welch’s t-test becomes too small if the number of samples is
too large. As a result, we may incorrectly adopt the alternative hypothesis H1 due to the small
p-value. To solve this issue, the hypothesis testing is conducted in each RRRm,T+τ expressed in
Eq. (5.2) after the observation. Here, WWW1,m,T+τ is represented as RRRm,T+τ of the m-th mesh in
phase 1. Moreover, we define X̄m [dBm] and Ȳm,T+τ [dBm] as the mean values of WWW0,m and
WWW1,m,T+τ, respectively. Each value can be defined as:

X̄m =
1

nini

nini−1∑
j=0

P0,m, j, (5.10)

Ȳm,T+τ =
1

nnew

nnew−1∑
j=0

Pm,T+τ, j. (5.11)

The local database calculates these values in the decibel domain instead of the milliwatt
domain since H1 may not be properly accepted due to the outliers.

Next, the unbiased sample variances of WWW0,m and WWW1,m,T+τ are introduced. These values
are expressed as follows:

S 2
0,m =

nini−1∑
j=0

(P0,m, j− X̄m)2

(nini−1)
, (5.12)



5.3 Proposed Method 77

S 2
1,m,T+τ =

nnew−1∑
j=0

(Pm,T+τ, j− Ȳm,T+τ)2

(nnew−1)
. (5.13)

Then, two important values: the t-value and degree of freedom are calculated as:

tm,T+τ =
X̄m− Ȳm,T+τ√

S 2
0,m

nini
+

S 2
1,m,T+τ
nnew

, (5.14)

vm,T+τ =

(
S 2

0,m
nini
+

S 2
1,m,T+τ
nnew

)2

 S 2
0,m

nini

2

nini−1 +

 S 2
1,m,T+τ
nnew

2

nnew−1

, (5.15)

where tm,T+τ is defined as the t-value of the m-th mesh at the k-th time. Additionally, vm,T+τ

denotes the degree of freedom of the m-th mesh at the k-th time. Here, tm,T+τ follows the
Student’s t distribution. Finally, the local database derives the two-tailed p-value using
Eq. (5.8).

Hypothesis testing is performed based on Eqs. (5.14), (5.15), and (5.8) in each mesh.
Then, the local database judges the movement of the transmitter according to the tested
results. If adopting H1 in the m-th mesh, the local database accumulates the new mean value
Ȳm,T+τ in the m-th mesh. Meanwhile, Ȳm,T+τ is not registered if H1 is not adopted in the m-th
mesh.

Although the radio map may be updated based on the threshold of the moving distance,
this dissertation utilizes the significant difference between the two average values. This is
because the fluctuation of the average value is notably different depending on the center
frequency even if the moving distance is constant. Thus, it is difficult to determine the
threshold of the moving distance for updating the radio map. As another criterion for
updating the radio map, the spatial correlation of the shadowing may be used. Intuitively,
the significant difference between two average power values may be small if the correlation
coefficient is large. However, the shadowing value may be locally fluctuated according to the
geographical conditions in a realistic environment even if the correlation coefficient is large.
Thus, this dissertation infers the significant difference between two mean values in each
mesh. Note that if the movement of the transmitter can be known by prior information, the
radio map can be updated based on the prior information. Meanwhile, this chapter assumes
that the location of the transmitter is unknown; thus, we must statistically update the radio
map using a mathematical method, such as hypothesis testing.
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If the number of RRRm,T+Ns−1 is not nnew, the local database does not perform hypothesis
testing using RRRm,T+Ns−1. In statistics, hypothesis testing is sensitive to v that is determined
according to the number of samples nnew.

Our scheme calculates Eqs. (5.10)–(5.13) to get S 2
0,m and S 2

1,m,T+τ. By substituting
Eq. (5.10) into Eq. (5.12), it can be found that S 2

0,m is calculated in the complexity of O(n2
ini).

Similarly, S 2
1,m,T+τ is derived in the complexity of O(n2

new). Thus, our scheme has the
complexity of O(n2

ini+n2
new).

Although we assume that two datasets WWW0 and WWW1 follow the log-normal distributions,
Welch’s t-test can be utilized even if each dataset is not obtained from the log-normal
distribution because of the robustness of the t-test [71].

The proposed method updates the average received signal power in each mesh rather
than the radio propagation model. If the local database updates the radio propagation model
that was shown in Chapter 3, we need to consider a new method for inferring the significant
variation of the radio propagation parameters, such as the path loss index. This task will be
solved in our future work.

5.4 Statistical Power Analysis of Welch’s t-Test

This chapter theoretically analyzes the statistical power of Welch’s t-test for quantitative
evaluation. In the following, we model the PDF of the t-value. Then, the statistical power is
formulated. Finally, the simulation results of the statistical power are shown.

5.4.1 Theoretical Analysis of Statistical Power

It is well known that the statistical power [90] denotes the probability that the null hypothesis
H0 can be correctly rejected when it is false. Hence, the CDF of the test statistic can be
utilized to derive the statistical power. The large statistical power means that significant
difference tends to be inferred correctly.

This chapter assumes that two datasets, AAA0 and AAA1, are obtained. We define each dataset
as:

AAA0 = (P0,0,P1,0, · · · ,Pnini−1,0), (5.16)

AAA1 = (P0,1,P1,1, · · · ,Pnnew−1,1), (5.17)

where Pi,0 [dBm] and Pi,1 [dBm] denote the i-th instantaneous received signal power in
AAA0 and AAA1, respectively. As the simple radio propagation, we consider that each signal
experiences a log-normal shadowing; thus, the probability distributions of AAA0 and AAA1 are
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given as the the log-normal distributions fLN
(
µ0,w,σ

2
0,w

)
and fLN

(
µ1,w,σ

2
1,w

)
, respectively.

Here, the standard deviations are defined as σ0,w [dB] and σ1,w [dB], respectively.
If H1 is correct, we first model t-value T0 as follows

T0 =
X̄− Ȳ −δ√

S 2
0

nini
+

S 2
1

nnew

, (5.18)

where we define the sample means as X̄ [dBm] and Ȳ [dBm], respectively. δ= µ0,w−µ1,w [dB].
Additionally, the unbiased sample variances are expressed as S 2

0 and S 2
1, respectively. Each

sample mean is calculated as,

X̄ =
1

nini

nini−1∑
i=0

Pi,0, (5.19)

Ȳ =
1

nnew

nnew−1∑
i=0

Pi,1. (5.20)

Additionally, S 2
0 and S 2

1 are given by

S 2
0 =

nini−1∑
i=0

(Pi,0− X̄)2

nini−1
, (5.21)

S 2
1 =

nnew−1∑
i=0

(Pi,1− Ȳ)2

nnew−1
. (5.22)

Next, Eq. (5.18) is transformed as:

T0 =

X̄−Ȳ−δ√
σ2

0,w
nini
+
σ2

1,w
nnew

+ δ√
σ2

0,w
nini
+
σ2

1,w
nnew√√√√√√

dw

S 2
0

nini
+

S 2
1

nnew
σ2

0,w
nini

+
σ2

1,w
nnew

dw

=

X̄−Ȳ−δ√
σ2

0,w
nini
+
σ2

1,w
nnew

+ δ√
σ2

0,w
nini
+
σ2

1,w
nnew√

Ω
dw

, (5.23)

where we define dw as a fixed number. This value is used in the non-central t distribution as
the degree of freedom. Furthermore, Ω is defined as:

Ω = dw

S 2
0

nini
+

S 2
1

nnew

σ2
0,w

nini
+
σ2

1,w
nnew

. (5.24)
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It can be easily found that X̄ and Ȳ follow the log-normal distribution fLN
(
µ0,w,σ

2
0,w/nini

)
,

fLN
(
µ1,w,σ

2
1,w/nnew

)
, respectively. Furthermore, δ = µ0,w−µ1,w; hence, the first term of the

numerator follows the log-normal distribution with the mean of 0 [dB] and the standard
deviation of 1 [dB]. To formulate the statistical power, we need to show that the PDF of T0

can be modeled as the non-central t distribution. In statistics, it is well known that if the PDF
of Ω can be modeled as the Chi-squared distribution with dw degree of freedom in Eq. (5.23),
the non-central t distribution can be derived.

However, the probability distribution of Ω may not be theoretically formulated because
this value is expressed by linearly combining the unbiased sample variances. Hence, we use
the Welch–Satterthwaite equation [102] to approximately formulate the PDF of Ω by the
Chi-squared distribution. The linear combination variable Φ is first defined as follows:

Φ =

L−1∑
i=0

kis2
i , (5.25)

where s2
i is a sample variable. The degree of freedom of s2

i is expressed as vi. ki is a positive
number. L denotes the number of sample variables. Next, we can approximately derive the
effective degree of freedom v̂ as,

v̂ ≈

L−1∑
i=0

kis2
i


2

L−1∑
i=0

(kis2
i )2

vi

. (5.26)

The effective degree of freedom d̂w of Welch’s t-test is derived by substituting k0 =
c

nini
,

k1 =
c

nnew
, v0 = nini−1, v1 = nnew−1, c = dw

(
σ2

0,w
nini
+
σ2

1,w
nnew

)
, s2

0 = S 2
0, and s2

1 = S 2
1 to Eq. (5.26).

The value can be modeled as,

d̂w ≈

(
S 2

0
nini
+

S 2
1

nnew

)2

(
S 2

0
nini

)2

nini−1 +

(
S 2

1
nnew

)2

nnew−1

. (5.27)

The above derivations are based on [102]. We may not utilize this method if ki has a negative
value; however, because c, nini, and nnew are positive values, we do not have to consider this
problem.

Using Welch–Satterthwaite equation, we can model the probability distribution of T0

as non-central t distribution. Because this chapter used a two-sided test, the CDF of the
non-central t distribution is calculated by considering two tails. Thus, we can express the
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statistical power πw(nini,nnew, δ) as,

πw(nini,nnew, δ) = 1−Pr
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(
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2
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)
,

(5.28)

where we express the CDF of the non-central t distribution as Gd̂w,λw
(·). d̂w denotes the

effective degree of freedom. λw is the non-centrality parameter. t
α
2

d̂w
is t-value based on d̂w.

Here, Gd̂w,λw
(·) is represented as,

Gd̂w,λw
(t′) =

Fd̂w,λw
(t′) (t′ ≥ 0)

1−Fd̂w,−λw
(t′) (t′ < 0),

(5.29)

where we define the random variable that follows the non-central t distribution as t′. λw and
Fd̂w,λw

(t′) are given by

λw =
δ√

σ2
0,w

nini
+
σ2

1,w
nnew

, (5.30)

Fd̂w,λw
(t′) = Ψ(−λw)+

1
2
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ψ jI
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,
d̂w

2

)
+ω jI

(
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1
2
,
d̂w

2

)]
, (5.31)

where the CDF of the standard normal distribution is expressed asΨ(·). Additionally, we
define the regularized incomplete beta function as I. Furthermore, ψ j and ω j are defined as

ψ j =
1
j!

exp
(
−
λ2

w

2

)(
λ2

w

2

) j

, (5.32)

ω j =
λw

√
2Γ

(
j+ 3

2

) exp
(
−
λ2

w

2

)(
λ2

w

2

) j

. (5.33)

We can utilize the above distribution in Welch’s t-test if the PDFs of AAA0 and AAA1 are represented
as the log-normal distributions. The shadowing empirically follows the log-normal distribu-
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Fig. 5.2 Theoretical and simulated statistical power.

tion in the real environment. Considering this fact, the t distribution and the non-central t
distribution can be used in the radio map construction.

5.4.2 Numerical Results of Statistical Power

This subsection presents the numerical results of the theoretical statistical power. In this
simulation, nini random samples are created from fLN(µ0,w,σ

2
0,w). Next, nnew random samples

are generated from fLN(µ1,w,σ
2
1,w). Then, Welch’s t-test is used and the number of times that

H1 : µ0,w , µ1,w is adopted is counted. This trial is repeated 10,000 times and the simulated
statistical power is evaluated.

Fig. 5.2 presents numerical results of the statistical power where µ0,w = −80.0 [dBm],
σ0,w = σ1,w = 8 [dB], and nini = 50. The theoretical value is calculated using πw(nini,nnew, δ).
Note that α is 0.01. We can confirm that the simulation values are almost equivalent to the
theoretical values. In the small sample size, the difference is slightly large owing to the
deviation of sample means. Additionally, a large difference between µ0,w and µ1,w means
that the significant difference can be correctly inferred even if the sample size is small.

5.5 Comparative Methods

This section presents several comparisons to verify the accuracy of updating the radio map.
We first present a unique averaging-based method. Next, a forgetting factor is utilized to
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update the radio map. Finally, as the non-parametric method, this chapter uses the Mann–
Whitney U test.

5.5.1 Unique Averaging-Based Method

As the simple updating of the radio map, we can use a method that the average power is
uniquely calculated in each mesh [17, 32]. The calculation equation of this method is defined
as follows:

P̄uni,m =
1

nuni,m

nini−1∑
i=0

P0,m,i+

Ns−1∑
τ=0

nnew−1∑
j=0

Pm,T+τ, j

 , (5.34)

where the updated value is defined as P̄uni,m [dBm]. This is derived based on the samples in
phase 0 and phase 1 in the m-th mesh. nuni,m denotes the sample size of the received signal
power accumulated in the m-th mesh in phases 0 and 1. After the measurements, the average
value is derived in each mesh using Eq. (5.34); however, this method does not consider the
movement of the transmitter. Hence, the mean value may not be accurately calculated due to
the unique averaging; meanwhile, the radio map can be constructed with a small number of
updates.

5.5.2 Forgetting Factor-Based Method

We utilize forgetting factor [103, 104] as the second comparison method. This method
updates the average power based on the following equation:

P̄forget,m,T+τ = ηforget(P̄forget,m,T+τ−1)+ (1−ηforget)(Ȳm,T+τ) [dBm], (5.35)

where the updated value at time T +τ of the m-th mesh is defined as P̄forget,m,T+τ. Moreover,
P̄forget,m,T+τ−1 [dBm] is the average power at time T + τ− 1. Additionally, the forgetting
factor is given as ηforget. If using a smaller ηforget, the new value can be calculated using a
larger weight. Meanwhile, the radio map may be created with large number of updates since
it is necessary to continuously update the average value Ns times on the m-th mesh.

P̄forget,m,T+τ−1 is defined as X̄m to update the radio map in τ = 0. Furthermore, the local
database does not perform the aforementioned calculation if the sample size of RRRm,T+Ns−1

is not nnew. The mean value may not be accurately derived in such the case owing to the
multipath fading; thus, we consider the sample size of RRRm,T+Ns−1.
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5.5.3 Mann–Whitney U Test-Based Method

Finally, the Mann–Whitney U test [105], a non-parametric testing method, is explained. In a
realistic environment, it is difficult to model the received signal power as a typical probabilistic
distribution because of complicated radio propagation properties. Mann–Whitney U test
enables us to test the difference between two average power values based on the median
values. Additionally, this method does not have to assume a certain distribution; thus, we
utilize this method as a comparison. Several researchers have used this test in recent years
[105–107].

The statistical power of the Mann–Whitney U test is poorer than the one of Welch’s
t-test [108]. Thus, we may not appropriately infer the difference between two average power
values even if the difference is very large.

5.6 Simulation Descriptions

This section describes computer simulations to evaluate the accuracy of the proposed method.
In the following, the instantaneous propagation model is explained. Then, we present the
simulation procedures.

5.6.1 Instantaneous Model

The instantaneous received signal power values in phases 0 and 1 are derived as follows:

P0(xxxTx, xxxRx) = PTx−Lfspl(d0)−10Clog10

(
∥xxxTx− xxxRx∥

d0

)
+W0,s+F0, (5.36)

P1(xxx′Tx, xxxRx) = PTx−Lfspl(d0)−10Clog10

(
∥xxx′Tx− xxxRx∥

d0

)
+W1,s+F1, (5.37)

where P0(xxxTx, xxxRx) [dBm] is an instantaneous received signal power value in phase 0. Addi-
tionally, P1(xxx′Tx, xxxRx) [dBm] denotes an instantaneous received signal power value in phase 1.
xxxTx and xxx′Tx are the transmitter positions in phase 0 and phase 1, respectively, xxxRx is the
position of a terminal, W0,s [dB] and W1,s [dB] denote the shadowing values in phase 0 and
phase 1, respectively. This dissertation assumes that these values follow the log-normal
shadowing. Furthermore, we express the multipath fading in phase 0 and phase 1 as F0 [dB]
and F1 [dB], respectively.

In this simulation, the shadowing has a spatial correlation. Each shadowing correlation
of W0,s and W1,s is assumed to follow Eq. (4.10).
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Table 5.1 The common simulation parameters

Communication area [m2] 400×400
Mesh size [m2] 10×10
The number of terminals H 20
The number of samples nini 10
Transmit power PTx [dBm] 29
Path loss coefficient C 4.5
Reference distance d0 [m] 10
Shadowing σi,s [dB] 8
F0 and F1 i.i.d. Rayleigh fading
Frequency [MHz] 3500
Average noise level [dBm] -140
Forgetting factor ηforget 0.1
Significance level α 0.01

The fading values are modeled as independent and identically distributed (i.i.d.) Rayleigh
distributions.

5.6.2 Simulation Procedures

The simulations are performed as follows:

i). The local database creates the initial radio map in phase 0 using instantaneous power
sample defined by Eq. (5.36).

ii). The radio environment is observed by H mobile terminals in the communication area.
Here, whether the transmitter moves or does not move is randomly selected.

iii). Hypothesis testing is performed based on Eqs. (5.14), (5.15), and (5.8) to infer whether
or not the transmitter has moved.

iv). The local database updates the mean value in a mesh that Eq. (5.8) is met.

We repeated Step (i) 1,000 times, and Step (ii) to (iv) were performed 1,000 times each time
Step (i) was performed. After that, the estimation accuracy of constructed radio maps was
verified. Table 5.1 shows the common simulation parameters.

Here, the positional relation of the surrounding buildings is assumed not to be varied
during the measurement and after the creation of a radio map. This chapter aims to verify
the hypothesis testing-based updating method of the radio map when the transmitter moves.
Thus, we consider such an assumption for the surrounding buildings.

The significance level α is 0.01. This is because it is a typical α in hypothesis testing.
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5.7 Simulation results

This section visualizes the updated radio maps. After that, the error characteristics of the
radio maps are described. Finally, Type I error and Type II error are shown.

5.7.1 Example of Radio Maps

Fig. 5.3 shows an example of updated radio maps; Figs. 5.3(a) and 5.3(b) express the true radio
maps. The sample size of each mesh is 10,000 in these maps. We use nnew = 50 and dcor =

20 [m]. The transmitter moved 300 [m] to the left direction in the phase 1. By comparing with
Figs. 5.3(b), 5.3(d), and 5.3(f), we can see that the radio map can be appropriately updated in
each testing method. However, in Figs. 5.3(b) and 5.3(f), the large error can be confirmed
for some meshes in the upper left of the area. This is because the Mann–Whitney U test
may not accurately infer the significant difference compared to Welch’s t-test even if the
transmitter moves large distance. Hence, Welch’s t-test is superior to the Mann–Whitney U
test to update the radio map.

Meanwhile, it can be found that the accuracy of the updated radio maps is very degraded
in the two comparison methods from Figs. 5.3(g) and 4.1(e) because the movement of the
transmitter is not considered in these methods.
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Fig. 5.3 Example of updated radio maps.
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5.7.2 Estimation Accuracy

This subsection evaluates the estimation accuracy of the radio maps based on mean absolute
error (MAE). The MAEs in the phase 0 and phase 1 are given by

e0,MAE =
1

D0

D0−1∑
m=0

|P̄0,true,m− P̄0,m| [dB], (5.38)

e1,MAE =
1

D1

D1−1∑
m=0

|P̄1,true,m− P̄1,m| [dB], (5.39)

where we define the true mean value of the m-th mesh in phase 0 as P̄0,true,m [dBm]. Similarly,
P̄1,true,m [dBm] is defined as the true mean value of the m-th mesh in phase 1, respectively.
Moreover, an initial mean value of the m-th mesh is expressed as P̄0,m [dBm] and an updated
mean value of the m-th mesh is defined as P̄1,m [dBm]. Additionally, D0 is the number of
meshes that H0 is adopted on either Welch’s t-test or the Mann–Whitney U test. D1 is the
number of meshes that H1 is accepted on either Welch’s t-test or the Mann–Whitney U test.
The main purpose of this chapter is to verify the effectiveness of the hypothesis testing-based
updating method; hence, we need to evaluate the accuracy in the meshes that each hypothesis
is accepted on either Welch’s t-test or the Mann–Whitney U test. Thus, D0 and D1 are
defined separately.

If we use RMSE for the performance evaluation, the dynamic range wastefully increases
because of the sum of squares of errors. Therefore, this chapter utilizes the MAE. The RMSE
is nonlinearly calculated; meanwhile, the MAE is linearly derived using the absolute error.
By this calculation, we can suppress the impacts of outliers.

The error characteristics are shown in Fig. 5.4 with dcor = 20 [m]. Here, the location of the
transmitter is randomly changed in the area for each step (a). We can understand that Welch’s
t-test accurately estimates radio environment with the accuracy as the Mann–Whitney U
test. This is because the transmitter may move too short distances. Here, the errors of these
methods are 0 [dB] in phase 0 since those methods have the initial and updated radio maps
separately. Obviously, the performances of the comparison methods are degraded compared
to the hypothesis testing-based methods since the movement of the transmitter is not detected.

Fig. 5.5 shows the estimation accuracy versus the correlation distance dcor. The transmitter
randomly moved in each step (a). Note that nnew is 50. As can be seen, the error characteristics
of the hypothesis testing-based methods are superior to the comparative methods regardless
of dcor.
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Fig. 5.4 Estimation accuracy versus the number of samples nnew.

Next, we show the estimation accuracy versus the movement distance of the transmitter
in Fig. 5.6. The transmitter randomly moved according to the value of the horizontal axis.
Note that nnew = 50 and dcor = 20 [m] were utilized. We can argue that hypothesis testing-
based methods more elaborately estimates the radio environment than the other methods.
Moreover, Welch’s t-test can improve the radio propagation estimation compared to the
Mann–Whitney U test. This is because Mann–Whitney U test may not correctly infer the
alternative hypothesis if the transmitter moves a large distance; therefore, the average MAE
is slightly degraded.

Finally, Fig. 5.7 depicts the estimation accuracy versus the forgetting factor. The transmit-
ter randomly moved 200 [m] in the communication area. Here, nnew = 50 and dcor = 20 [m]
were used. The results show that the forgetting factor-based method cannot skillfully up-
date the radio map. Although e0,MAE can be slightly small as the forgetting factor is 0.9,
e1,MAE becomes large owing to large factor value. Thus, there is a trade-off in the forgetting
factor-based method. In the simulation, whether the transmitter moves or does not move is
randomly selected. Thus, the estimation accuracy may not be improved even if the forgetting
factor is changed. We conclude that if the estimation errors of the radio maps are guaranteed
in both phases 0 and 1, the forgetting factor should be 0.5–0.7. Meanwhile, the factor value
must be properly selected according to the importance of the new and old measurement data.
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Fig. 5.5 Estimation accuracy versus the correlation distance dcor.

100 150 200 250 300
0

2

4

6

8

10

12

14

16

Moving distance of transmitter [m]

A
v
e
ra

g
e
 M

A
E

 [
d
B

]

Unique averaging (e0,MAE) Unique averaging (e1,MAE)

Forgetting factor (e0,MAE) Forgetting factor (e1,MAE)

Welch (e0,MAE) Welch (e1,MAE)

Mann-Whitney (e0,MAE) Mann-Whitney (e1,MAE)

200 250 300
1.65

1.70

1.75

1.80

1.85

Fig. 5.6 Estimation accuracy versus moving distance of the transmitter.
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Fig. 5.7 Estimation accuracy versus forgetting factor.
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Fig. 5.8 Estimation accuracy over a frequency-selective fading channel.

5.7.3 Performance Evaluation over Frequency-Selective Fading Chan-
nel

The instantaneous power may be different according to the bandwidth. Here, a strong
correlation exists between the mean power over the frequency domain [109, 110]. These
facts may indicate that the estimation accuracy of the mean power (and that of the proposed
method) may not be affected by the bandwidth.

Meanwhile, the instantaneous power fluctuates depending on the bandwidth; therefore,
the frequency-selectivity should be considered in the performance evaluation. In the 3rd
generation partnership project long-term evolution [111], the signal can be transmitted on
multiple resource blocks (RBs) using orthogonal frequency division multiplexing (OFDM).
The bandwidth of one RB is 1.4 [MHz]. This subsection assumes that each RB experiences
i.i.d. Rayleigh fading.

The estimation accuracy is illustrated in Fig. 5.8. In this simulation, the frequency
selectivity is strong in an increase of the number of RBs. We can argue that the performance
of the proposed method is suitable even in the frequency-selective channel. The deviation of
the multipath fading is smaller than the difference of the path loss and shadowing; hence,
the high estimation accuracy may be realized in the proposed method even if the bandwidth
changes.
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Fig. 5.9 Accuracy of testing versus n1.
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Fig. 5.10 Accuracy of testing versus dcor © 2020 IEEE.

5.7.4 Accuracy of Testing

This subsection describes Type I and II errors to confirm whether the radio map can be
correctly updated by the proposed method. In this dissertation, Type I error is defined as the
ratio of meshes that the local database incorrectly updated the mean value, out of all 1,600
meshes when the transmitter does not move. Meanwhile, Type II error denotes the ratio of
meshes that the local database does not correctly update the mean value, out of all 1,600
meshes when the location of the transmitter has been varied. Moreover, the accuracy and
statistical power were calculated by subtracting the Type I and II errors from 1.

Fig. 5.9 is the accuracy of the testing in the proposed method. The location of the
transmitter was randomly varied in each step (a), and dcor is 20 [m]. As can be seen from
the figure, the hypothesis can be correctly inferred in many meshes when the location of the
transmitter is not varied. Meanwhile, the Type II error is degraded compared with the Type I
error because the radio map may not properly be updated when the movement distance of
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Fig. 5.11 Accuracy of testing versus moving distance of the transmitter© 2020 IEEE.

the transmitter is too small; that is, the significant difference is small between the two mean
values. However, the estimation accuracy in such environments is significantly suitable as
shown in Fig. 5.6.

Fig. 5.10 visualizes the accuracy of testing versus dcor as nnew is 50. Here, the location of
the transmitter was randomly changed in each step (a). This figure clarifies that the hypothesis
can correctly be inferred in the proposed testing method regardless of the value of dcor.

Finally, the accuracy of the testing versus the movement distance of the transmitter is
presented in Fig. 5.11 as nnew = 50 and dcor = 20 [m]. The results mean that the mean value
can be updated with high accuracy in most meshes via the proposed method. Especially, the
proposed method can improve the Type II error as the movement distance of the transmitter
becomes large since the path loss greatly changes between phases 0 and 1. As a result, a
difference of the mean values can be found; that is, the alternative hypothesis H1 is accepted.

5.8 Performance Verification Using Measured Datasets

Finally, the performance verification was conducted of the radio map updating by utilizing
measured samples that were obtained in our early work [112]. We had conducted the V2V
communications to get the samples. These samples are not observed in cellular systems;
however, we can utilize these samples to verify the effectiveness of our method since i) V2V
communications uses OFDM and ii) we created several radio maps in each location.

The experiment was carried out in California Path, UC Berkeley, USA, and observations
were conducted over two days in July 2018. As the experimental methods, after we prepared
three vehicles implemented an onboard unit, each vehicle communicated with each other
based on IEEE 802.11p standard. Fig. 5.12 is the observation route. The three vehicles
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recorded the received signal power in each position while moving on the red line for 6 hours.
The location information of a transmission vehicle can be obtained from a transmission
packet, and the reception position can be recorded using the GPS module. The experiment
parameters are summarized in Table 5.2. 15,280,657 samples could be obtained in the
campaign.

In V2V communications, since the position of each vehicle changes dynamically, many
pairs of transmission and reception locations were created. If we had used all the samples in
the emulation, the effectiveness of the proposed method may not be clearly shown because
there are several datasets having a small difference in the path loss. Considering this fact,
two locations (points 1 and 2) were selected to properly perform the emulation, as shown in
Fig. 5.12. It is assumed that the transmitter moves from point 1 to point 2. The emulation
procedures are presented as follows.

i). The local database calculated the actual average value in each 5 [m] mesh for each
point.
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Table 5.2 The experiment parameters

Onboard unit MK5 OBU (Cohda Wireless)
Communication standard IEEE 802.11p
Antenna Omnidirectional
Frequency [MHz] 5890
Transmit power [dBm] 24
Modulation method BPSK, QPSK, 16QAM
Coding rate 1/2
Transmission rate [packets/s] 200
Packet size [bytes] 100, 400

ii). We randomly selected nini instantaneous samples in each 5 [m] mesh when the trans-
mitter locates in the point 1.

iii). Either point 1 or point 2 is randomly picked up as the position of the transmitter. Then,
we virtually installed the receiver.

iv). The receiver collects nmew samples when the transmitter locates in the position deter-
mined in (iii).

v). The radio map is updated based on Welch’s t-test in each mesh. An average value
calculated from nnew is registered if there is a significant difference between the two
mean values.

After two datasets were created by dividing the measured samples, we utilized the first dataset
as the true mean value samples. Meanwhile, the other was used to perform hypothesis testing.
Procedures (iii) to (v) were repeated 1,000 times and these trials were conducted 100 times.
After that, the performance of the proposed method was verified using the following MAEs:

e′1,MAE =
1
D′

D′−1∑
m=0

|P̄′1,true,m− P̄′1,m| [dB], (5.40)

e′2,MAE =
1
D′

D′−1∑
m=0

|P̄′2,true,m− P̄′2,m| [dB], (5.41)

where P̄′1,true,m [dBm] and P̄′2,true,m [dBm] denote the true mean values of the m-th mesh at
positions 1 and 2, respectively. These values are calculated by averaging instantaneous
samples in each 5 [m] mesh for each transmission point. P̄′1,m [dBm] and P̄′2,m [dBm] denote
the initial and updated mean values of the m-th mesh, respectively. D′ is defined as the
number of meshes.
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Fig. 5.13 The average MAE in real environment.

Fig. 5.13 depicts the emulation results. We can found that the movement of the transmitter
can be properly detected via the hypothesis testing-based methods in a real environment. In
this emulation, the communication distance is relatively shorter than in the cellular networks;
thus, there may be no significant difference between the two mean values because of the
small fluctuation in the path loss. As a result, the estimation accuracy of Welch’s t-test is
almost equivalent to those of the Mann–Whitney U test. Meanwhile, the comparison methods
cannot precisely estimate the mean power comparing with the testing-based methods.

Furthermore, Fig. 5.14 shows the average MAE of hypothesis testing-based methods.
These results mean that Welch’s t-test can improve the estimation accuracy comparing with
the Mann–Whitney U test in nnew = 20. The statistical power is poor in the Mann–Whitney
U test; thus, such the result may be obtained. On the other hand, Welch’s t-test is slightly
inaccurate in nnew = 10 since the sample mean is notably fluctuated due to the small sample
size. It can be seen that the accuracy is the same in each other at nnew = 30 since the statistical
power can be enhanced in the Mann–Whitney U test by increasing nnew.
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Fig. 5.14 The average MAE of hypothesis testing-based methods.

5.9 Chapter Summary

This chapter has discussed the updating procedures of the radio map by considering the
movement of the transmitter. From the surveys, we have clarified the main technical challenge,
that is, the radio map must be reconstructed using only real-time measurements in cellular
systems based on whether the transmitter has moved. To resolve this task, we have proposed
the radio map updating method based on Welch’s t-test. This testing has three advantages:
i) the updating in real-time, ii) no assumptions for modeling the prior distribution, and iii)
robustness for heteroscedasticity. Our method has enabled us to test the difference between
two average power values in phases 0 and 1. Through our verification, we have clarified that
our method could correctly detect whether the transmitter has moved, and update the radio
map.



Chapter 6

Radio Map Extrapolation under
Interference-Limited Observations

The previous chapters considered the typical situation that a single transmitter locates in the
communication area. Additionally, we assume that all target signals can be obtained in each
mesh. However, if multiple transmitters operating at the same frequency exist in the area,
several target signals may be missing due to interference from neighborhood transmitters. As
a result, the average received signal power may be overestimated owing to the missing data
having low signal-to-interference-plus-noise ratio (SINR).

This chapter discusses the extrapolation of the missing data in multiple-transmitter en-
vironments. In the proposed method, the empirical CDF of the received signal power is
compensated by considering the number of missing data in each mesh. Then, we extrapolate
the median received signal power from the compensated empirical CDF. Through the perfor-
mance verification with the 3.5 GHz band datasets, we elucidate that the radio map can be
accurately extrapolated via the proposed method than applying a non-compensation and with
the multiple imputation (MI) and Kriging-based methods.

6.1 Background

Many researchers have discussed the effectiveness of the radio map in a wireless system
where a target transmitter is located in a communication area. So far, the estimation accuracy
of the radio map and performance of the spectrum sharing has been continuously evaluated.
As a example of such an evaluation subject, television white spaces are well known [79–81].
In the fixed transmitter environment, the received signal power is determined according to
the probabilistic radio propagation characteristics between the transmitter and a reception
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position. Generally, by increasing the number of samples, the location-dependent radio
propagation characteristics can be skillfully estimated thanks to the law of large numbers.
Moreover, we can roughly know the multipath fading property by creating an empirical CDF.
To reveal these facts, many researchers have implicitly assumed that the received signal
power can be successfully obtained; that is, no missing data exists in the radio environment
observations.

Meanwhile, the radio map enables us to enhance communication efficiency in multiple-
transmitter environments. For instance, systems with multiple APs [21, 22, 113, 114] and
in private networks [115, 116] are considered. To create radio maps in multiple-transmitter
environments, the mobile terminal records the received signal power from each transmitter
in association with the transmitter ID. Subsequently, the local database creates a radio map
by averaging the received signal power samples for each transmitter ID. However, the radio
map may not be precisely generated if there are several transmitters operating at the same
frequency band. In such an environment, severe interference-limited observation may occur;
thus, the received signal power from the target transmitter (hereafter, referred to as target
power) may be missing. Especially, it may be difficult to obtain low SIR data even in areas
where high SNR data can be measured. As a result, the average target power is overestimated
compared to the actual value. [117] has reported such phenomenon as the survivorship bias.

For an example of the radio propagation estimation in the survivorship bias, Achtzehn et
al. [118] has reported that the received signal power is overestimated 4 [dB] in a multiple-
transmitter environment than in a single-transmitter environment in an urban area. If we
simply utilize radio maps in such a situation, the coverage area is overestimated; that is,
various performances, such as the transmission power efficiency and spectrum sharing, may
be insufficient. As a promising technique for the compensation of the missing data, spatial
interpolation is well known. However, spatial interpolation assumes that the absent data
occurs inside of the known data range. In a survivorship bias environment, all data below a
certain threshold are missing; that is, the absent data occurs outside of the known data range.
This observation motivates us to extrapolate the missing target power in dense transmitter
environments to create an accurate radio map.

As related studies, the generating methods of radio maps has been shown in [21, 22,
113, 114] by considering indoor multiple-transmitter environments. However, because the
aggregate interference signal power is very small because of the walls and obstacles in indoor
environments, there are no severe interference-limited observations. As the other method, a
radio map is studied in multiple-transmitter environments where different frequency bands
are used in each transmitter [119]. Although multiple transmitters are considered, the
interference-limited observations do not occur in such a situation.
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In this chapter, we propose an empirical CDF-based radio map extrapolation method. As
the first step of the extrapolation, the target power samples measured by mobile terminals are
uploaded to the local database. The local database compensates for the empirical CDF of the
target power by considering the number of missing data. Finally, the median target power is
extrapolated from the compensated empirical CDF. Through the performance verification
based on the 3.5 GH datasets in a real environment, we can reveal the radio map can be
skillfully extrapolated via the proposed method compared to a non-compensated radio map,
MI and kriging-based methods without.

The following contents are the major contributions of this chapter.

• Conventional compensation methods of the missing data are comprehensively surveyed.
In summary, parametric methods (e.g., truncated normal distribution, left-truncated
exponential distribution, and Tobit model), an interpolation method (e.g. Kriging), and
an extrapolation method (e.g., MI method) are investigated. By referring to these meth-
ods, we can first reveal that the parametric and typical extrapolation methods model the
missing as certain distributions. Second, the interference-limited observations are not
considered in the traditional interpolation method. Considering these motivations, we
propose a novel empirical extrapolation method for interference-limited observations.

• It is confirmed that the proposed method elaborately extrapolates missing target power
by a factor of approximately 1–8 [dB] compared with that obtained using the conven-
tional methods.

6.2 Related works

6.2.1 Theoretical Analysis for Interference-Limited Observations

The theoretical analysis of the SIR in typical fading models (e.g., the Nakagami-m fading)
has been conducted by modeling the probability distribution of the SIR [120–124]. As the
major contributions, these works have evaluated the outage probability of the SIR. Although
the outage probability can be theoretically modeled via these results, an accurate radio map
is assumed to be constructed for each transmitter without missing data, even for interference-
limited observations.

6.2.2 Compensation for Noise-Limited Observations

Several researchers have used the truncated normal distribution [63, 64], left-truncated
exponential distribution [65], and Tobit model [125] to compensate for the missing data in
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wireless systems. In these methods, the PDF of the missing data is modeled as an existing
distribution, and the radio propagation parameters are estimated using the log-likelihood
function. However, the target power is assumed to be missing if it is below the noise floor
in noise-limited observations. Meanwhile, it is difficult to determine the threshold that the
target power is missing owing to the stochastic fluctuation of the SIR in interference-limited
observations. Consequently, the radio map may not be extrapolated by these methods in
interference-limited observations.

6.3 System Model

This section explains the system model. The measured model in interference-limited ob-
servations is first shown. Then, we define the criterion for missing data and the mesh
definitions.

6.3.1 Measured Model and Statistical Processing

Fig. 6.1 presents the assumed system in this chapter. There is a target transmitter in the
communication area and sends the signal to a receiver. Here, the transmission power and
center frequency are PTx [dBm], and f0 [Hz], respectively. It is assumed the target transmitter
communicates in certain coverage that is determined based on the permissible SNR. In the
surrounding coverage, S I interfering transmitters are installed, and each transmitter sends a
signal to each position as the transmission power is PTx,s [dBm](s = 0,2, · · · ,S I−1).

The target power samplers are measured by mobile terminals in each location and the
observation data are uploaded to the local database. As the first statistical processing, M
meshes are created to generate the radio map of the target transmitter; that is, the multipath
fading effects are eliminated by averaging target power samples in each location. The local
database stores this information as statistical data. Moreover, the measurement-based path
loss model is estimated. The estimation procedures are based on sect. 3.3.2.

However, in dense transmitter environments, the performance of the statistical data may
be insufficient because of survivorship bias; hence, the local database needs to extrapolate
the missing target power in each mesh. To compensate for the empirical CDF of the target
power, it is assumed that the location information of each transmitter and mobile terminal, the
transmission cycle of the target transmitter, and the reception time of each mobile terminal
are known.
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Fig. 6.1 The system model in interference-limited observations.

6.3.2 Criterion for Missing Data Based on Instantaneous SINR

In interference-limited observation, a target power may be probabilistically missing according
to the ration of the target power and an aggregate interference power. In such a condition, the
criterion for the missing data can be modeled using the SINR. Hence, it is assumed that the
target power and ID of the target transmitter are obtained in each terminal if the following
inequality is held:

γg,m ≥ γth, (6.1)

where γth [dB] is the SINR threshold. Additionally, γg,m [dB] is the instantaneous SINR for
the g-th instantaneous target power in the m-th mesh, which is given by

γg,m = Qg,m−

[
10log10

(
10

Isum,m
10 +10

N0
10

)]
, (6.2)

where Qg,m [dBm](g = 0,1, · · · ,G−1) is the g-th instantaneous target power in the m-th mesh,
G is the number of target power data before the interference occurs, and N0 [dBm] is the
noise floor of the mobile terminal. Isum,m [dBm] is the aggregate interference power in the
m-th mesh, as explained later. In this chapter, we assume that the number of missing data in
each mesh can be calculated by referring to the transmission interval of the target transmitter.
Furthermore, the latitude and longitude in each reception location are assumed to be obtained
from the GPS module implemented in the mobile terminal even if (6.1) is not held. After the
measurement, the observed data are uploaded to the local database.

This chapter defines that target power below γth is a missing data. As a result, missing
data occur outside of the known data range; thus, the spatial interpolations cannot be used in
interference-limited observations.
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It may be considered that Isum,m is large compared to N0 because many interfering
transmitters exist in a small area. Thus, the instantaneous SINR can be approximately
modeled as follows:

γ′g,m ≈ Qg,m− Isum,m, (6.3)

where γ′g,m [dB] is the approximate SINR for the g-th instantaneous target power in the m-th
mesh. Although the approximate SINR can be used as the criterion for the missing data, we
use the SINR criterion expressed in (6.2).

6.3.3 Mesh Definitions

As described in the previous section, the target power is probabilistically missing depending
on the instantaneous SINR. Under this environment, the mesh can be categorized as follows:

a). Non-missing mesh: There are no missing data in the mesh. Extrapolation was not
necessary for this mesh.

b). Partially-missing mesh: We define that nloss, j target power data in the j-th partially-
missing mesh are missing owing to aggregate interference. Meanwhile, this dis-
sertation defines that the j-th mesh has n j instantaneous target power data QQQ j =

(Q0,Q1, · · · ,Qn j−1), where Qk [dBm](k = 0,1, · · · ,n j−1) is the k-th instantaneous tar-
get power.

c). Complete-missing mesh: It is defined that all nloss,u target power data are missing in
the u-th complete-missing. The extrapolation is required in this mesh.

6.4 Proposed method

This section explains two extrapolation methods based on the compensation of the empirical
CDF. The following subsections present the extrapolation procedures for the partially-missing
mesh and complete-missing mesh.

6.4.1 Extrapolation Method for Partially-Missing Mesh

If Eq. (6.3) is satisfied, the noise floor may be smaller than an aggregate interference power
in each mesh. In other words, there may be no missing data below the noise floor. Thus,
the range that target power is missing can be represented as [N0,qmin, j], where qmin, j [dBm]
is the minimum instantaneous target power in the j-th partially-missing mesh. The local
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database compensates for the histogram of the target power in [N0,qmin, j] by considering
nloss, j. The detailed procedures are summarized as follows:

i). The local database divides [N0,qmin, j] into B j bins based on a class width w [dB],
where qmin, j is divisible by w and less than pmin, j.

ii). The histogram is compensated in each bin by adding the number of data by 1 from
qmin, j. When the number of added data becomes nloss, j, the local database finishes the
compensation. Thus, nloss, j must be satisfied by the following constraint:

nloss, j =

B j−1∑
i=0

Ri, (6.4)

where Ri is the number of added data points in the i-th bin. If the histogram in
[N0,qmin, j] has been compensated once, and the number of added data points does
not become nloss, j, the histogram is compensated from qmin, j again until the above
constraint holds. Fig. 6.2 shows the overview of the extrapolation as B j is 4. The gray
object in the histogram is the data points added by compensation. If the number of gray
object becomes nloss, j, the compensation finishes. QQQpart, j = (Q0,Q1, · · · ,Qn j−1+nloss, j) is
defined as the compensated target power vector for the j-th partially-missing mesh.

iii). It can be finally obtained the empirical CDF of QQQpart, j as follows,

F̂ j(Qth) =
1

n j+nloss, j−1

n j+nloss, j−1∑
k=0

χ(Qk), (6.5)

where F̂ j(Qth) is the empirical CDF of the j-th partially-missing mesh. Qth [dBm]
is an arbitrary instantaneous target power for calculating empirical CDF. Moreover,
χ(Qk) is an indicator function given by

χ(Qk) =

1 if (Qk ≤ Qth)

0 otherwise.
(6.6)

iv). The median target power is extrapolated in the j-th partially-missing mesh using the
median of F̂ j(Qth), where its value is defined as Qmed, j [dBm] and is registered in the
local database.

The above calculation is conducted in all partially-missing meshes.
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Fig. 6.2 Extrapolation for partially-missing mesh.

Conventional extrapolation methods, such as the truncated normal distribution and MI,
assume that the missing target power follows existing probability distributions. Meanwhile,
the proposed method can empirically extrapolate the missing target power by compensating
for the histogram of the target power with consideration for the number of missing data. The
empirical extrapolation is the most advantage of the proposed method.

6.4.2 Extrapolation for Complete-Missing Mesh

The extrapolation method for the u-th complete-missing mesh is explained. In the complete-
missing mesh, all instantaneous target power data are missing; thus, we cannot find qmin, j.
Thus, the preprocessing is performed as follows:

i). The local database calculates the logarithmic distance log10(du) between the target
transmitter and the u-th complete-missing mesh.

ii). The non-missing meshes and partially-missing meshes that have the almost same
distance as log10(du) are picked up. If the Dth-th decimal place or higher is equivalent
between log10(du) and a mesh, the local database extracts the non-missing mesh and
partially-missing mesh.

iii). Finally, the minimum target power is got from the picked non-missing and partially-
missing meshes. We define the power as qmin,u [dBm] for the u-th complete-missing
mesh.

Then, the extrapolation is performed as follows:

i). The same procedures shown in Sect. 6.4.1 i). and ii) are conducted with qmin,u.
QQQcomplete,u = (Q0,Q1, · · · ,Qnloss,u−1) is defined as the compensated target power vector
for the u-th complete missing mesh.
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Fig. 6.3 Extrapolation for complete-missing mesh.

ii). The local database estimates the empirical CDF of QQQcomplete,u as follows,

F̂u(Qth) =
1

nloss,u−1

nloss,u−1∑
i=0

χ(Qi), (6.7)

where F̂u(Qth) is the empirical CDF of QQQcomplete,u.

iii). The database server extrapolates the median target power of the u-th complete-missing
mesh using F̂u(Qth). The value is represented as Qmed,u [dBm] and is registered on the
local database.

The concept of the extrapolation for the complete-missing mesh is shown in Fig. 6.3
represents. In this figure, the u-th mesh is defined as a complete-missing mesh. Additionally,
the a-th and b-th meshes denote non-missing and partially-missing, respectively. The three
meshes are at approximately the same distance log10(du). Thus, qmin,u is obtained from the
a-th and the b-th meshes.

6.5 Conventional Compensation Methods

Two conventional compensation methods are presented in this section: an interpolation
method and an extrapolation method.

6.5.1 Spatial Interpolation

Several researchers have utilized Kriging for radio map compensation [11, 58]. In this method,
the unobserved received signal power for the u-th complete-missing mesh is interpolated as
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follows:

Q̄u,k =

O∑
o=1

ωoQ̄o,dB, (6.8)

where Q̄u,k [dBm] denotes the interpolated average received signal power in the u-th complete-
missing mesh. Q̄o,dB [dBm] is the known average value in the o-th mesh, and O is the number
of meshes with known average value. To perform Kriging, the local database needs to derive
ωo, which is the weight considering the spatial-covariance structure of the random field.
Kriging methods consist of several types according to ωo. This chapter uses the ordinary
Kriging method because of its simplicity; that is, prior knowledge of the expectation of the
received signal power is not necessary.

In the ordinary Kriging, the weights are derived so that the variance of the estimation
error is minimized while satisfying the weight constraint as follows:

min σ2 = E[(Q̄u,k−Qu,true)2],

s.t.
O∑

o=1

ωo = 1,
(6.9)

where σ2 denotes the variance of the estimation error, and Qu,true [dBm] is the true average
received signal power in the u-th complete-missing mesh. Based on the Lagrange multiplier
method, we can express the objective function ψLag(ωo,µLag) as:

ψLag(ωo,µLag) = σ2−2µLag

 O∑
o=1

ωo−1

 , (6.10)

where µLag is the Lagrange multiplier. Here, σ2 can be represented using the semivariogram
ξ as follows:

σ2 = −ξ(d0,0)−
O∑

l=1

O∑
j=1

ωlω jξ(dl, j)+2
O∑

l=1

ωlξ(dl,0), (6.11)

where dl, j [m] denotes the distance between the l-th mesh and the j-th mesh. Because the
empirical model of the shadowing correlation is well known as the exponential decay [31],
we used the exponential semivariogram model for ξ. The definition is defined as follows:

ξ(dl, j) = θ2
n + θ

2
sl

[
1− exp

(
−

dl, j

θr

)]
, (6.12)

where θ2
n, θ2

sl, and θr are the nugget, sill, and range, respectively. The local database estimates
these parameters by nonlinearly fitting the measured data into (6.12). Finally, we can express
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the simultaneous equations by calculating the partial derivatives in (6.11) as follows:

ξ(d1,1) · · · ξ(d1,O) 1
ξ(d2,1) · · · ξ(d2,O) 1
...

...
...

...

ξ(dO,1) · · · ξ(dO,O) 1
1 · · · 1 0





ω1

ω2
...

ωO

µLag


=



ξ(d1,0)
ξ(d2,0)
...

ξ(dO,0)
1


. (6.13)

By solving the simultaneous equations, the weights that minimize σ2 can be derived.

6.5.2 Spatial Extrapolation

As another compensation method, several researchers have utilized an extrapolation method
[126, 127]. This method assumes that the missing data exists outside of the known data. In
the interference-limited observations, no received signal power samples may be observed in
the coverage area where the distance from the transmitter is above a certain distance. Thus,
the phenomenon matches the assumption of extrapolation. Extrapolation mainly consists
of two types: single imputation (SI) method [126] and MI method [127]. A representative
value of the known data is imputed to the missing points in the SI method. For instance, a
mean imputation [128], median imputation [129], and hot-deck imputation [130] have been
proposed. However, the extrapolation accuracy may be degraded if the statistical properties
are greatly different between the known and missing data.

Meanwhile, a posterior probability distribution of the missing data is modeled in the MI
method. Then, V representative values are calculated by obtaining V datasets that follow the
modeled distribution. Finally, these values are unified to a single value based on statistical
processing, such as averaging and linear regression. The single value is utilized as the
extrapolated value. If the posterior distribution can be appropriately modeled, the MI method
enables us to roughly extrapolate the missing data. [127] has argued that the MI method
is superior to the SI method. However, in an actual environment, the MI method may not
accurately perform owing to the complicated radio propagation characteristics.

6.6 Emulation Setups

Emulation-based performance evaluation was conducted using a 3.5 GHz dataset measured
over an actual cellular system. The detailed contents of this dataset are described in Sect. 3.5.1.
In this emulation, this dataset is utilized as the target power. To create the interference-limited
observation, we virtually deployed multiple interfering transmitters around the measurement
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Table 6.1 The emulation parameters for the interfering transmitters

The number of interfering transmitters S I 1–7
Transmission power PTx,s [dBm] 40
Path loss index CI 4.5
Reference distance d0 [m] 10

area. Thus, the interference power was calculated over the computer simulation. Meanwhile,
the average target power was calculated in each 10m mesh using 100423 observed samples.
In the following, we describe the radio propagation model of the interfering transmitter and
the installation location of those.

6.6.1 Radio Propagation Model for Interfering Transmitter

The simple radio propagation model for the interfering transmitter is modeled as follows:

Is,m = PTx,s−Lfspl(d0)−10CIlog10

(
ds,m

d0

)
, (6.14)

where Is,m [dBm] is the instantaneous interference power in the m-th mesh from the s-th
interfering transmitter. CI is the path loss index for an interfering transmitter. ds,m [m] is
the link distance between the s-th interfering transmitter and the m-th mesh. The aggregate
interference power is expressed as,

Isum,m = 10log10

S I−1∑
s=0

10
Is,m
10

 . (6.15)

Although the actual aggregate interference power may fluctuate owing to the phase rotation
of each interference signal, this chapter defines Is,m by considering only the path loss effect.
Because the interference power is considered depending on the Euclidean distance, the effect
of the phase rotation is assumed to be eliminated.

Fig. 6.4 presents the locations of the interfering transmitters. The orange square and
frame are the location and coverage of the target transmitter, respectively. The seven yellow
squares are the locations of the interfering transmitters. The emulation parameters for the
interfering transmitters are listed in Table 6.1.
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Fig. 6.4 The installation location of the interfering transmitters.

6.7 Emulation Results

Next, we explain the examples of radio maps, the measurement-based path loss model, and
its accuracy. In the following, Dth = 3 is utilized.

6.7.1 Example of Radio Maps

Fig. 6.5 illustrates an example of constructed radio maps as the mesh size is 10 [m], γth =

7[dB], S I = 4, and w = 0.5[dB]. Fig. 6.5(a) denotes the average target power described in
Sect. 6.6; that is, a true map without interference is created. Fig. 6.5(b) is the radio map with
the interference-limited observations. As can be seen from it, there are many missing data.
Figs. 6.5(c), 6.5(d), 6.5(e), and 6.5(f) present the extrapolated maps.

The missing data can be precisely extrapolated via the proposed method from Figs. 6.5(a),
6.5(b) and 6.5(c). However, in the severe interference area surrounded by the black dotted
frame, the extrapolation performance is low. In this area, because qmin,u may be overestimated,
the empirical CDF is inaccurately compensated. As a result, the extrapolation performance
is insufficient. Moreover, the proposed method cannot extrapolate several target power in the
area edge because there are few meshes that satisfy the conditions explained in Sect. 6.4.2-ii).
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In the MI method, a target power is randomly obtained from the multivariate normal
distribution in each complete-missing mesh. The results show that the target power cannot
be accurately extrapolated in many meshes owing to the random sampling.

Finally, we use Kriging in the interference-limited observations as O is 8. Fig. 6.5(e) is
created by applying the Kriging to the complete-missing meshes in Fig. 6.5(b). Meanwhile,
Fig. 6.5(f) is constructed by compensating the empirical CDFs in the partially-missing meshes
using the proposed method before the Kriging is applied. Note that the extrapolation cannot
be performed in the non-colored meshes because there are no known target power data
around the complete-missing mesh. These results clarify that the extrapolation performance
is degraded in Kriging without median compensation. Additionally, Kriging with median
compensation may inaccurately extrapolate the radio map in the coverage edge because of
the severe missing in the target power data.
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Fig. 6.5 Example of extrapolated radio maps.
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Fig. 6.6 An example of the path loss estimation (γth = 7[dB]).

6.7.2 Measurement-Based Path Loss Model

This subsection explains the measurement-based path loss model. We estimated the path loss
model based on the procedures explained in Sect. 3.3.2.

Fig. 6.6 presents an example of the estimated path loss models. Each colored circle is the
average target power in each mesh. An estimated path loss model is shown as a solid line.
In this evaluation, γth = 7[dB], S I = 4, and w = 0.5[dB]. The black solid line denotes the
true path loss model without interference-limited observations. Next. the estimated path loss
model with interference-limited observations is represented as the purple solid line. It can be
confirmed that the proposed method enables us to elaborately estimate the path loss model
compared to the conventional methods, which cannot derive the path loss model compared
with the true model owing to the missing of lower SINR data.

6.7.3 Estimation Accuracy

Finally, this section evaluates the estimation accuracy based on a signed mean error (SME)
esme [dB], which is defined as follows:

esme =
1
NI

NI−1∑
m=0

(P̄true,m− P̄dB,m), (6.16)
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Fig. 6.7 The average SME.

where P̄dB,m [dBm] denotes the median path loss value estimated using the measurement-
based path loss model in the m-th mesh. NI is the number of 10m meshes used in the
evaluation. After dividing 100423 samples into three groups, we calculated the average esme

based on the cross-validation. The SME is used instead of the RMSE because it is necessary
to evaluate whether the missing data containing a lower SINR are accurately extrapolated.

Fig. 6.7 depicts the average SME as S I = 4 and w = 0.5[dB]. In the MI method, a target
power is randomly obtained in each complete-missing mesh and path loss parameters B
and C. This operation is repeated by 20 times. Then, the parameters B and C are averaged
and median path loss value is estimated. We can confirm that the median path loss can be
precisely extrapolated in the proposed method compared to the other methods. Furthermore,
the radio environment can be estimated with a certain degree of accuracy using Kriging
with compensation; however, its performance is lower than the proposed method. The
performances of the others are not skillful because the estimation accuracy of the path loss
models is inaccurate.

Next, Fig. 6.8 shows the average SME versus the number of interfering transmitters as
γth is 5 [dB] and w is 0.5 [dB]. The more accurate estimation can be realized via the proposed
method; meanwhile, the others cannot improve the estimation error. If S I is 5 or more, the
estimation accuracy is degraded because of the severe aggregate interference power.

Finally, Fig. 6.9 depicts the error characteristics versus the class width w for S I = 4 and
γth = 7[dB]. It can be seen that the performance of the proposed method degrades with
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Fig. 6.8 The average SME versus S I.

an increase in w. The proposed method repeatedly compensates for the empirical CDF by
increasing the histogram. If w is large, the lower SINR data are excessively compensated;
hence, the path loss index is larger than the true value. Furthermore, the estimation accuracy
decreases in the smaller w because the lower SINR data cannot be accurately compensated
for. Thus, we argue that w should be selected as approximately 0.5 [dB] to stably estimate
the median path loss.

6.8 Chapter Summary

This chapter has proposed radio map extrapolation methods for interference-limited obser-
vation. In the conventional methods, there are several drawbacks, such as modeling of the
specific distribution, where the compensation of missing data is not considered. To resolve
these problems, a novel extrapolation method for the radio map has been presented. The
proposed method compensates for the empirical CDF by adding the number of missing data
in each bin. This idea is an advantage compared to the other methods. The emulation results
have revealed that the more precise extrapolation can be realized via the proposed method
compared to the MI method and Kriging-based methods.
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Chapter 7

Crowdsourcing-Assisted Radio Maps for
MANETs

The previous chapters have focused on a wireless system where the location of a transmitter
is fixed or is slowly varied. In such systems, we can estimate the average received signal
power precisely by only processing the measured data in each received position.

With the development of wireless technology, MANETs, such as V2V communications
and device-to-device (D2D) communications, are attracting attention. In these systems, both
a transmitter and a receiver communicate with each other while dynamically moving within
a communication area.

This chapter applies a radio map to MANETs to enhance the radio propagation estima-
tion. We first explain the detailed motivation of the radio map construction for MANETs.
Subsequently, the creation procedures of radio maps are presented. Finally, the performance
evaluation of radio maps using measured datasets is described.

7.1 Background

The number of mobile terminals has drastically increased thanks to the rapid development
of wireless technology, such as the Internet of things, and various wireless systems are
connected to the Internet. Especially, as one of the wireless systems, V2V [131] and D2D
communications [132] are well known and are called as MANETs in several researchers
[133]. These applications enable us to exchange various data, such as the surrounding
emergency information, in real-time manner. By sharing diverse data between terminals,
each terminal can appropriately determine the modulation format and transmission timing
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based on the surrounding environment. MANETs have the potential to enhance the reliability
of each application (e.g., autonomous driving systems).

As one of the issues in MANETs, the degradation of communication reliability is consid-
ered. Although the location of a transmitter is fixed in the conventional downlink communi-
cations (e.g., the cellular networks), both a transmitter and a receiver dynamically move in
MANETs. As a result, an any-to-any communication link is innumerably created in various
environments. In other words, the radio propagation characteristics significantly change
along with the movement of terminals. Additionally, due to the shortage of unused spectrum,
it is difficult for each terminal to use a new spectrum. Under this environment, the packet col-
lision and loss due to the hidden node problem and uncertainty of radio propagation become
severe problems. To enhance the communication quality in overall wireless networks, each
system must estimate the radio propagation characteristics with high accuracy and determine
their parameters while considering the movement of terminals.

Many researchers have continuously used empirical propagation models to estimate radio
propagation because various measured datasets had been used to construct these models.
By appropriately determining parameters, such as the center frequency and antenna height,
the median path loss value can be calculated with a certain degree of accuracy. However,
because empirical models do not consider probabilistic radio propagation (i.e., the shadowing
and multipath fading), the more accurate estimation may not be realized in these models.
Especially, in the MANETs, since the surrounding environment dynamically changes, the
estimation accuracy may be lower than in the conventional wireless systems.

To estimate such the probabilistic component, there are several probability distributions,
for instance, the Gaussian distribution. However, these distributions are based on the rule
of thumb and theoretical derivation; hence, the site-specific fluctuation of the received
signal power may not be estimated. Furthermore, some composite models of shadowing
and multipath fading have been established; however, the probability distributions are very
complicated. Additionally, it is necessary to properly use the probability distributions
according to the surrounding radio propagation characteristics [134–138].

Although a radio map can be utilized to estimate the path loss and shadowing in each
location, it has been only applied to the systems that the location of the transmitter is not
changed. Therefore, the conventional radio map cannot estimate the location-dependent
radio propagation component in MANETs owing to the movement of both a transmitter and
a receiver.

Here, when an arbitrary communication link is given, it can be considered that the path
loss and shadowing components are static in the reception position. Focusing on this property,
if a radio map is constructed in each transmission position, we can estimate the location-
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dependent radio propagation even in MANETs. Similar work has been conducted in [139].
In this dissertation, mobile terminals share measured datasets using training symbols with
each other. After that, the Kriged Kalman filtering is used to estimate the radio propagation
in each environment. However, this dissertation has only clarified the simulation results.
Additionally, multipath fading is assumed to be removed perfectly in each receiver.

This chapter proposes the construction of radio maps for MANETs. The proposed
method gathers the received signal power samples by communicating between transmitters
and receivers in a realistic environment; hence, the concept of crowdsourcing is extended to
the MANETs to create radio maps. Using crowdsourcing, enormous received signal power
samples can be collected in various locations. In IEEE 802.11p that is the traditional standard
of the V2V, a beacon signal is sent with the transmitter position by a transmission vehicle
to support traffic safety. The reception vehicle can obtain both transmission and reception
position by utilizing the GPS in addition to the received signal power. After the observations,
the local database processes the reported samples in each transmission / reception location
and generates a radio map in each transmission position. By this processing, we can get radio
maps even in MANETs.

To verify the usefulness of the proposed scheme, V2V communications had been con-
ducted in two environments. Subsequently, a radio map was generated in each transmission
position on the MySQL server. Emulation results make it clear that the proposed method can
skillfully estimate the average received signal power in each position comparing with the
empirical and theoretical propagation models. Furthermore, the power control in the unicast
system is performed based on the proposed map and empirical CDF of the multipath fading
to show the effectiveness of the proposed method more clearly. The verification results clarify
that the transmission power can be reduced while the permissible communication quality can
be kept.

Note that a spatial interpolation is utilized for the radio maps construction in this chapter
because the main purpose of this chapter is to show the usefulness of the radio maps; that
is, whether the location-dependent radio propagation can be estimated in each transmission
/ reception mesh. The measurement-based path loss model may interpolate the average
received signal power. This is discussed in Sect.7.4.

7.2 Concept of Radio Maps for MANETs

This section explains the concept of radio maps for MANETs. In the following, the data
gathering and statistical processing for constructing radio maps are shown. Subsequently, the
remained tasks and utilization of radio maps are presented.
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Fig. 7.1 Concept of radio maps for MANETs.

7.2.1 Data Gathering and Statistical Processing

The concept of radio maps for MANETs is presented in Fig. 7.1. The communication area is
divided into two-dimensional meshes. By regarding each mesh as a transmission location,
the radio maps are created for each transmission mesh: NTx maps are accumulated at the
maximum when the number of meshes is NTx in the area. Although there are various methods
to construct a radio map (e.g., empirical propagation models and ray tracing), this chapter
creates a radio map using measured datasets. A radio map enables us to get statistical radio
propagation characteristics thanks to its measured data; hence, the mean characteristics of
radio propagation can be conjectured more clearly than the conventional path loss models.

Fig.7.2 shows the data gathering in MANETs. A packet is sent to the surrounding
receivers by a transmitter. Here, it is assumed that the transmitter includes its location
information and ID in a packet based on the IEEE 802.11p for supporting traffic safety. At
each receiver, in addition to these data, the reception location, instantaneous power, datetime,
center frequency and reception ID are recorded in their storage. Each receiver uploads the
recorded data to the local database. In the actual case, we have to avoid upload congestion;
thus, the recorded data are uploaded via a WLAN at time when the network is not congested.
After massive datasets can be gathered in the local database, the radio maps are generated by
processing the datasets.

A conventional radio map is created for a fixed transmitter; that is, most researchers have
not attempted to generate multiple radio maps in MANETs. Therefore, the construction of a
radio map in each transmitter location is the originality of our research.
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Fig. 7.2 Data gathering in MANETs.

7.2.2 Remained Tasks for Radio Maps

If the new datasets are reported from receivers after the creation of a radio map, those
data are used again to calculate a mean value. This is because the location-dependent radio
propagation, i.e., the average received signal power, is generally static over time domain when
the surrounding structures do not vary. In such an environment, the effects of multipath fading
may be mitigated, as the number of samples increases. Meanwhile, if surrounding structures
vary in the realistic situation, the average received signal power significantly changes. As
one of the solutions to this problem, we may use the updating method of the radio map based
on Welch’s t-test described in Chapter 5. As the testing procedures, distributed receivers
observe received signal power samples in each location. After collecting these samples, the
local database infers the significant difference between an initially estimated mean and newly
calculated mean values in each transmission / reception location. If a significant difference is
detected, the new value is registered in the mesh that corresponds to the reception location.
Although the performance evaluation should be conducted using computer simulation and
measured datasets, we have not verified the effectiveness yet. Thus, this task will be solved
in our future work.

7.2.3 Utilization of Radio Maps

After the radio maps are created, the transmitter can adaptively determine the communication
parameters based on the average received signal power in each mesh. When the transmitter
sends a query with its position information, the local database gives a radio map that
corresponds to the location of the transmitter. The average received signal power can be
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Table 7.1 The measurement conditions in V2V communications

Measurement time 9:00–18:00
LOS environment Straight road
Non-line-of-sight (NLOS) environment Intersections

grasped precisely in each location using the radio map. For example, if the average received
signal power in the radio map is low compared to the desired value, the transmitter can
suppress the deterioration of the communication quality using high transmit power, low order
modulation formats, and ad hoc communications. Meanwhile, if an estimated value is larger
than the permissible value, the communication quality can be improved further by choosing
the high order modulation formats and a high coding rate. The performance evaluation of the
communication quality is discussed in Sect. 7.4.4.

7.3 Measurement Campaign in 700MHz Band

To obtain radio maps for MANETs, V2V communications have been carried out in Chofu
City and Mitaka City, in Tokyo, Japan. These areas are typical suburbans. The measurement
campaign had been conducted in January 2017 for 3 days. Table 7.1 shows the measurement
conditions in V2V communications. The measurement setups are the same in [28].

7.3.1 Measurement Equipment

Fig. 7.3 shows an observation vehicle used in measurement campaign. To gather radio
environment, we prepared three vehicles implemented in-vehicle devices. In the experiment,
a transmission vehicle sent a packet to reception vehicles while moving the route presented
by the red line in Fig.7.4. Each vehicle traveled the route at 40[km/h] by considering the
average speed limit in the area. As the communication standard, ARIB STD-T109 [55]
is utilized. The standard is established in Japan according to IEEE 802.11p. The center
frequency is 760 [MHz] and the modulation format is OFDM.

A transmitter sent a beacon signal using the onboard device every 100 [ms]. The others
vehicle observed the instantaneous power, datetime of the reception, transmission and
reception IDs, and location information of both transmission and reception vehicles. The
location information of a transmitter was included in the transmission packet. Additionally,
the GPS module was implemented to each vehicle to obtain the location information of a
receiver and the datetime. The GPS type was Garmin GPS 18x. The location information
was obtained once per second. The positioning accuracy is 95 [%] within 15 [m].
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Fig. 7.3 Observation vehicle.

Table 7.2 On-vehicle device parameters

Standard ARIB STD-T109
Modulation format OFDM/QPSK(1/2)
Transmit power [dBm] 19.2
Frequency [MHz] 760
Header size [Byte] 61
Payload size [Byte] 77

Table 7.2 presents the specifications of the onborad device. 232 [µs] was necessary to send
one packet. 200 [ms] was needed for updating the location information; thus, the information
was updated every two messages in each vehicle. The antenna type was the monopole in all
vehicles. Table 7.3 shows the antenna characteristics.

7.3.2 Statistical Processing on Local Database

Tables 7.4 and 7.5 present the registration elements in the database server. A mesh code is
separately accumulated in each transmitting and receiving vehicle according to the mesh size.
Transmitter and Receiver IDs are utilized to delete unnecessary datasets. A radio map was
generated using the average received signal power in each transmission mesh. At that time,
transmission and reception mesh codes were utilized to identify the location information.

We constructed radio maps on the local database. The construction environment of the
database was Cent OS 7 and MySQL 5.7. Hypertext preprocessor (PHP) programs were
used to process the measured datasets. The creation procedures of a radio map are defined as
follows:

i). The measurement samples are uploaded to the local database.
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Fig. 7.4 Measurement route.

ii). The MySQL server stores the uploaded samples in the table.

iii). The local database statistically processes the datasets. In this chapter, the average
received signal power is calculated in each reception mesh by fixing a transmission
mesh. Then, the local database stores the average value in the statistical table.

iv). When the terminal accesses a server, the local database searches the average value by
referring to the MySQL server.

v). A radio map information can be used to estimate the radio propagation.

In the experiments, the observation dataset is recorded into comma-separated values
(CSV) file in each receiving vehicle when a transmitted packet is successfully decoded. The
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Table 7.3 Antenna characteristics

Type Monopole antenna
Frequency range [MHz] 755-765

Absolute gain [dBi] 2.15
Element length [mm] 110

CSV is reported to MySQL server via each receiving vehicle. The local database accumulates
the instantaneous received signal power samples with transmission and reception mesh codes,
and statistically processes these samples.

The local PC downloads a radio map in an arbitrary transmission mesh. If we observe
new samples after the construction of a radio map, those samples are additionally registered
to the MySQL server. Then, the local database calculates the average received signal power
in each reception mesh for fixed transmission mesh.
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Table 7.4 Registration contents in MANETs

Element Type Size [Byte]
Measurement datetime datetime 8
Transmission latitude [deg] double 8
Transmission longitude [deg] double 8
Reception latitude [deg] double 8
Reception longitude [deg] double 8
Altitude [m] double 8
Center frequency [Hz] double 8
Instantaneous received signal power [mW] double 8
Packet ID integer 4
Transmitter ID char 17
Receiver ID char 17
Transmission mesh code (First) char 4
Transmission mesh code (Second) char 2
Transmission mesh code (Third) char 2
Transmission mesh code (1/10) char 2
Transmission mesh code (10m) char 2
Transmission mesh code (5m) char 3
Transmission mesh code (2m) char 3
Transmission mesh code (1m) char 3
Reception mesh code (First) char 4
Reception mesh code (Second) char 2
Reception mesh code (Third) char 2
Reception mesh code (1/10) char 2
Reception mesh code (10m) char 2
Reception mesh code (5m) char 3
Reception mesh code (2m) char 3
Reception mesh code (1m) char 3
Saved date datetime 8
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Table 7.5 Statistical contents in MANETs

Element Type Size [Byte]
Target start date datetime 8
Target end date datetime 8
Transmission mesh code char 20
Reception mesh code char 20
Transmission southwest latitude [deg] double 8
Transmission southwest longitude [deg] double 8
Transmission northeast latitude [deg] double 8
Transmission northeast longitude [deg] double 8
Reception southwest latitude [deg] double 8
Reception southwest longitude [deg] double 8
Reception northeast latitude [deg] double 8
Reception northeast longitude [deg] double 8
Averaged received signal power [dBm] double 8
Saved date datetime 8
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Fig. 7.5 Examples of radio maps in V2V communications.

7.4 Evaluation Results

This section presents the evaluation results. After an example of several radio maps is
depicted, the RMSE is calculated to verify the accuracy of the radio maps.

7.4.1 Example of Radio Maps in LOS and NLOS

Figs 7.5(b) and 7.5(c) are examples of the constructed radio maps in Fig. 7.5(a). The local
database processed the measured datasets with a 10 m-squared mesh. In Fig. 7.5(a), the
red and yellow objects denote the transmission positions in NLOS and LOS environments,
respectively. Each black circle in Figs. 7.5(b) and 7.5(c) corresponds to each transmission
position. These maps clarify that the average received signal power values are different
owing to the structure surrounded by the red dotted frame in Fig. 7.5(a). For instance, on
the north side of the area, it can be found that there is a difference around 20 [dB] between
average values. In Fig. 7.5(b), since the structure exists in front of the transmission position,
the NLOS can be created in the environment. Meanwhile, there is LOS in Fig. 7.5(c); that is,
the shadowing may not be dominant in the environment.

These results reveal that the radio maps can skillfully estimate the path loss and shadowing
in each location. Here, because the receiving vehicles could not observe the received signal
power in several positions, there are missing data in some meshes. In realistic communication,
we may obtain enormous received signal power samples via crowdsourcing; hence, the
number of missing data will be decreased.

Additionally, this subsection presents the load for creating radio maps. The evaluation
environment is PHP 7.0.12 in Cent OS 7 with Intel(R) Xeon(R) CPU E5-2407 @ 2.20 GHz.



7.4 Evaluation Results 131

Table 7.6 Processing load in the local database

Day Number of samples Number of 10m meshes Processing time [s] Average time per mesh [s]
All days 2839101 69158 24.0 0.00036

Days 1 and 2 1940364 53096 17.0 0.00033
Day 3 898691 37786 10.0 0.00028

Table 7.6 shows an example of the processing load on the local database. The first row of the
Table 7.6 is all datasets in this measurement campaign.

7.4.2 Propagation Analysis

This subsection estimates the statistical characteristics of the shadowing in the measurement
area to confirm that whether the estimated properties match with the typical examples. The
local database first averages all datasets in each 10m mesh. Next, the communication distance
between a transmitter and a receiver was calculated to estimate the path loss. Finally, the
scatter diagram was created using the average received signal power and the communication
distance.

In the experiment, the noise floor in a receiver was about -96.0 [dBm]. To suppress the
underestimation of the average value owing to the noise floor, the maximum distance was
limited to 100 [m] in the evaluation. If the datasets over a long communication distance are
processed, the average received signal power is inaccurately estimated because of missing
data below the noise floor.

This subsection defines the path loss model Lloss as follows:

Lloss(dl, j) =

 α1log10(dl, j)+β1 (dl, j ≤ Rb)
α2log10(dl, j)+β2 (dl, j > Rb)

[dB], (7.1)

where α1,α2 are the path loss coefficients. β1 [dB] and β2 [dB] denote the effects of the
transmit power and antenna. Rb [m] is the distance from a transmitter to the break point. It is
defined in [13] and its equation is given by

Rb =
4hTxhRx

λ
[m], (7.2)

where hTx [m] and hRx [m] are heights of a transmitter and a receiver. These values are
1.485 [m], respectively. The local database estimated α1,α2 and β1,β2 by applying the
least-squares method to the scatter diagram. As a result, the following characteristics were
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obtained:

Lloss(dl, j) =

 −5.4919log10(dl, j)−30.1360 (dl, j ≤ Rb)
−31.925log10(dl, j)+7.9852 (dl, j > Rb)

[dB], (7.3)

From these value, we can find that the path loss coefficient is 3.1925 for dl, j > Rb. The local
database estimated the shadowing components by calculating the difference between the path
loss from the average received power in each mesh. The estimated PDF of the shadowing is
depicted in Fig. 7.6. This figure clarifies that the shape of the PDF may be equivalent to the
log-normal distribution. Additionally, we confirmed that the mean is 0.0005198 [dB] and the
standard deviation is 3.776 [dB]. A good matching can be found because these are the typical
values in suburban areas [15, 140, 31].

7.4.3 Estimation Accuracy

The estimation accuracy of radio maps is verified. The datasets of day 1 and day 2 were
used to create radio maps. Then, the local database statistically processed these datasets
using several mesh scales, and estimated the average power in each reception mesh. Finally,
we utilized the datasets of day 3 as the actual received signal power value. The RMSE was
derived by calculating the difference between the estimated and actual values.
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As the comparative method, this subsection uses various path loss models. First, the
measurement-based path loss model was estimated using the datasets of day 1 and day 2.
Several complicated methods have been established; however, the accuracy may be poor
[9]. Hence, we use the measurement-based method in path loss estimation. The path loss
model was estimated based on the same procedures described in Sect. 3.3.2. To improve the
estimation accuracy of the path loss, the break point was considered. This method estimated
the path loss model before and after the break point separately. We could obtain the path loss
models as follows:

Lloss(dl, j) =

 −8.5478log10(dl, j)−25.795 (dl, j ≤ Rb)
−43.364log10(dl, j)+27.312 (dl, j > Rb)

[dB], (7.4)

The above parameters are different from Eq. (7.3) since Eq. (7.3) is calculated by utilizing
all measured datasets. Meanwhile, Eq.(7.4) is estimated using datasets of the days 1 and 2.

The measurement-based path loss method estimated the average received signal power
by subtracting the path loss from the transmit power. Then, the RMSE was derived by
calculating the difference between the estimated and actual powers. The datasets of day 3
were treated as actual powers.

Moreover, the ITU-R P.1411 [13] was used to evaluate the estimation accuracy when a
theoretical model is considered. The propagation model of the ITU-R P.1411 is given by

LITU(dl, j) = Lb+6+


20log10

(
dl, j
Rb

)
(dl, j ≤ Rb)

40log10

(
dl, j
Rb

)
(dl, j > Rb)

[dB], (7.5)

where Lb [dB] is defined as the propagation loss from a transmitter to the break point. The
equation is defined as,

Lb =

∣∣∣∣∣∣20log10

(
λ2

8πhTxhRx

)∣∣∣∣∣∣ , (7.6)

The local database calculated the average received signal power by subtracting the derived
propagation loss from the transmit power. Then, the estimation accuracy was evaluated.

Furthermore, the two-ray path loss model [14] and Okumura–Hata model [12] were
utilized. The former considers the direct and reflection waves. This assumption matches
with the V2V communications in the LOS environment. Meanwhile, the latter is the famous
empirical model.

Fig. 7.7 depicts the estimation accuracy of each method. From this figure, it can be
confirmed that the fitted path loss model could estimate the radio propagation with the error
of 5.546 [dB]. Meanwhile, the proposed maps were superior to the path loss model. The
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Fig. 7.7 Mesh size versus RMSE.

RMSEs are around 4.2–4.5 [dB] in the proposed method. When we consider the standard
deviation of the shadowing and the effect of the small-scale fading, the proposed method
can achieve the small RMSEs. Additionally, the proposed radio maps can perfectly estimate
the path loss and shadowing in each mesh because the smallest RMSE of the radio map
is empirically around 4 [dB] [57]. On the other hand, in the comparatives, the estimation
accuracy is poor in each method. These results reveal that the proposed maps enable us to
skillfully estimate the radio propagation even in MANETs. The communication efficiency
will be improved by appropriately designing parameters based on the radio maps.

Note that the missing data can be estimated using the fitted path loss model. Hence, the
error characteristics mean the performance of the fitted path loss-aided interpolation.

7.4.4 Evaluation of Communication Efficiency

Finally, the communication efficiency is evaluated when the radio maps are used. In the
unicast V2V communication, the interference may occur at surrounding vehicles except
for the destination if a packet is sent with high transmission power. Thus, it is necessary
to properly determine the transmission power to avoid interference. Thus, simple power
control is conducted in this subsection. In the proposed power control, the transmission
power is determined so that the permissible outage probability is guaranteed. Here, the
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outage probability is defined that the instantaneous received signal power is less than the
desired power. We show the procedures of the power control as follows:

i). The local database creates the radio maps as mesh size is 10m using the datasets of
day 1 and day 2.

ii). We calculate the empirical CDF of the multipath fading by calculating the difference
between instantaneous received signal power and the average received signal power
that contains the path loss and shadowing. The shape of the CDF is assumed to be
static in the evaluation area.

iii). The datasets of day 3 are utilized as actual received signal power values. The instanta-
neous received signal power is calculated in each mesh using the estimated statistical
information.

iv). The power control is performed using the estimated average values and the empirical
CDF of the multipath fading so that the permissible outage probability is guaranteed.

v). We apply this power control to measured instantaneous datasets of day 3.

The power control is evaluated in the area shown in Fig. 7.5. As a comparative, the
empirical path loss model is used. This method calculates the average received signal power
using the measurement-based path loss model fitted to Eq.(7.1). We obtained the following
path loss models via the linear regression:

Lloss(dl, j) =

 −9.6183log10(dl, j)−24.335 (dl, j ≤ Rb)
−43.470log10(dl, j)+26.699 (dl, j > Rb)

[dB]. (7.7)

The above parameters are different from both Eqs. (7.3) and (7.4) since Eq. (7.7) is
calculated using datasets in Fig. 7.5. Meanwhile, we calculate both Eqs. (7.3) and (7.4)
based on the datasets in all areas.

The power control was conducted as the permissible outage probability is from 0.1
to 0.2 and the desired received signal power is -82.0 [dBm]. Fig. 7.8 presents the outage
characteristics. The estimation accuracy of the radio propagation may be poor when the path
loss-based method is applied. Thus, the outage probability is smaller than the permissible
value owing to the inaccurate determination of the transmission power. Meanwhile, the
proposed method can skillfully guarantee the permissible outage value compared to the path
loss-based method. However, it can be found that the slight increase of the outage probability
occurs even in the proposed method. We consider the reasons as follows:
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Fig. 7.8 Outage probability characteristics after power control.

• The estimation accuracy of the empirical CDF may be slightly degraded in the tail
area. Although the CDF in the tail area should be estimated with high accuracy to
improve the packet delivery ratio, the acquisition of such information may be very
difficult because of the limited datasets.

• The maximum transmission power is limited around 19.2 [dBm]; that is, several
samples having low SNR may be missing.

To accurately guarantee permissible outage probability in such the constraints, the mar-
gin should be added to the transmission power. We illustrate the outage probability and
the average transmission power with margins as the red dotted lines in Figs. 7.8 and 7.8,
respectively.

These results reveal that the permissible outage probability can be guaranteed with the
small margin in the proposed method. Additionally, the average transmission power is
low compared to the path loss-based method even if the margin is added. In summary, the
proposed method can improve communication efficiency in V2V communications. This fact
will enhance spectral efficiency.
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Antenna

Fig. 7.10 An observation vehicle.

7.5 Measurement Campaign in 5.8GHz Band

In the previous campaign, since the number of datasets was small in several meshes, the
packet delivery rate (PDR) could not be accurately derived. To solve this task, we had
conducted the measurement campaign of V2V communications as described in Sect. 5.8.

We prepared an observation vehicle as shown in Fig. 7.10 and mounted an on-board
unit on the vehicle. In the experiment, three vehicles communicated with each other and
observed the radio environment on the route shown in Fig. 7.11. The observation routes
consisted of two test courses, and the measurement campaign was performed for 6 hours in
each route. There are many buildings on the southern route and only a few on the northern
route. Therefore, we can compare the radio environment between NLOS and LOS. To obtain
enough datasets, two vehicles traveled one lap on the measurement course at 20 [km/h] and
0.2 [km/h], respectively. The other vehicle kept moving on the course at 20 [km/h].

The communication method is based on dedicated short range communication and the
center frequency is 5890 [MHz]. An in-vehicle device is connected to the laptop PC via an
Ethernet cable and the beacon signal is transmitted and received by executing shell scripts in
Ubuntu 16.04. Each vehicle observes the transmitted and received time, the received signal
power, packet ID, the transmitted and received position and so on. After the execution of
the shell scripts, these measurement datasets are recorded to the transmission and reception
log-file. Note that the MAC address is set to each in-vehicle device and recorded to the
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Fig. 7.11 The observation routes in California Path.

reception log file. The number of measurement datasets are 15,280,657 and 14,760,806 in
NLOS and LOS, respectively and these datasets are statistically processed in MySQL server.

7.6 Measurement Results in California Path

This section presents the measurement results in the California path. Examples of radio maps
are first explained. Then, the scatter plots of the average received signal power are shown.
Finally, we describe the PDR characteristics.
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Fig. 7.12 Example of radio maps in California path.

7.6.1 Example of Radio Maps in NLOS and LOS

Fig. 7.12 shows the example of radio maps in NLOS and LOS, respectively. In these maps, a
black circle denotes the transmitter location corresponding to the black square in Fig. 7.11.
Here, the mesh size is 5 [m]. We show the four radio maps to explain difference of the
structure-dependent radio propagation. In Figs. 7.12(a) and 7.12(b), the received signal
power is fluctuated by changing the transmitter location. For example, in the west area
represented the dotted line, around 20 [dB] difference can be confirmed. The main factor of
the difference is shadowing. In Fig. 7.12(a), since the structures are presented between the
transmitter mesh and the dotted line area, the received signal power is relatively lower by the
shadowing. On the other hand, the structures are not presented in Fig. 7.12(b): the shadowing
does not occur in this area. Next, we explain the radio maps in LOS. As can be seen from
Figs. 7.12(c) and 7.12(d), the difference of the received signal power in each mesh is small.
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Fig. 7.13 Scatter plot in NLOS.

7.6.2 Scatter Plots of Average Received Signal Power

Next, the detailed fluctuation of the average received signal power is described. Figs. 7.13
and 7.14 show the scatter plots in NLOS and LOS environments, respectively. In these
figures, the average received signal power values are plotted in each transmitter location
shown in Fig. 7.11. From Fig. 7.13, we can confirm that the average received signal power is
different around 20–25 [dB] in a received position on NLOS. This phenomenon is shadowing
in the measurement route. Meanwhile, the significant difference is not observed in the LOS
environment from Fig. 7.14.

7.6.3 RMSE Characteristics

This subsection shows the RMSE of the proposed radio maps to confirm the estimation
accuracy of the average received signal power. Each measured data in NLOS and LOS
environments were divided into three groups and two datasets are used to create radio
maps. The other dataset is used as the test data. The RMSE was derived by calculating the
difference between the estimated and actual values. The worst RMSE is derived based on the
cross-validation.
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Fig. 7.14 Scatter plot in LOS.

Fig. 7.15 shows the RMSE in the 5.8GHz band datasets. The solid and the dotted lines
denote the RMSEs in NLOS and LOS environments, respectively. The red line prensents
the RMSE of the proposed radio maps. Meanwhile, the black line is the RMSE of the fitted
path loss model. In the path loss estimation, the logarithmic distance between a transmission
position and a reception position was first calculated. Next, the scatter diagram was created
as the horizontal axis is the logarithmic distance and the vertical axis is the average power in
each mesh. Finally, the path loss parameters B and C were estimated using the least squared
method.

The results mean that the proposed radio maps can accurately estimate the received signal
power compared to the fitted path loss model. Since the fitted path loss model cannot consider
the shadowing deviation in each mesh, the RMSE is larger than the proposed radio maps.
We can confirm that the RMSEs become large by increasing the mesh size in both methods.
This is because the estimation accuracy of the average power in each mesh may be degraded
owing to the fluctuation of an instantaneous power.

7.6.4 PDR Characteristics

Finally, this section describes the PDR characteristics in NLOS and LOS environments.
For calculating PDR in each 5m-mesh, we count the number of transmitted and received
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Fig. 7.15 RMSE characteristics in 5.8GHz.

packets in each transmitter / receiver mesh from the log-files. Note that the corresponding
transmission and reception log-files are linked by using packet ID, MAC address, and the
transmission / reception time.

Fig. 7.16 shows the PDR in each 5m-mesh. A red circle denotes the transmitter location
corresponding to the black circle in Fig. 7.12. In NLOS, it can be found that the PDR is
relatively lower in the south area representing the dotted line. This is because the shadowing
occurs due to the structures. On the other hand, in LOS, the PDR is higher in all meshes, and
the minimum PDR is around 90.0 [%]. From these results, we can confirm that radio maps and
PDR maps can be used for accurately estimating the structure-dependent radio environment.
It is expected that the proposed database can drastically improve the communication efficiency
of V2V communications. Note that in V2V communications, since both of a transmitter and
a receiver dynamically move, it is difficult to construct the radio maps and PDR maps in each
transmission / reception position. However, from the PDR maps in LOS, it can be found that
the radio environment is stable in all meshes. Therefore, in future V2V communications, we
generate the radio maps and PDR maps in some meshes such as NLOS environments.
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Fig. 7.16 Example of PDR in California path.

7.7 Chapter Summary

This chapter has proposed radio maps for MANETs. The evaluation results showed that the
radio maps can accurately estimate the radio propagation fluctuations compared to some
path loss models including the measurement-based path loss model and ITU-R P.1411.
Additionally, the transmission power can be significantly decreased via the proposed power
control method. Furthermore, the PDR characteristics have been clarified in NLOS and LOS
environments. The measurement results have shown that the PDR is notably degraded in
NLOS where there are structures near the transmitter and the receiver. We conclude that the
measurement-based radio maps and PDR maps can be used for estimating radio propagation
characteristics in not only conventional applications where the transmitter is fixed, but also
MANETs.



Chapter 8

Conclusions and Future Works

This chapter concludes our dissertation. After summarizing the research contents of each
chapter, we explain our future works.

8.1 Conclusions

This dissertation dealt with several issues of the radio map construction based on statistical
inference. To expand the utilization of the radio map, we considered novel methods for
constructing the radio map. The research contents are summarized as follows.

Chapter 1 explained the background of our research. The relation between the communi-
cation quality and radio propagation estimation was first shown. Then, the radio map and its
remaining tasks are summarized.

Chapter 2 introduced the concept of the spectrum database and the radio map. The
hierarchical architecture of the spectrum database was first presented. Then, crowdsourcing-
assisted radio map construction and its problem were explained. Finally, the mesh definitions
and utilization procedures of the radio map were introduced.

In chapter 3, the shadowing classifier was proposed to reduce the registered data size of
the radio map. This classifier was created by quantizing the measured shadowing values by
a certain step width. After that, the quantized shadowing value was assigned to multiple
meshes that have similar shadowing components based on the proposed objective function.
We conducted the emulation using the two measured datasets that were obtained in the actual
cellular systems and V2V communications. The evaluation results clarified that the proposed
classifier could reduce the registered data size while keeping the high estimation accuracy
even if there were outliers of the average received signal power. Meanwhile, two conventional
clustering methods: k-means++ and GMM could not skillfully classify the shadowing values
owing to the outliers.
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Additionally, motivated by the reduction of instantaneous sample size, Chapter 4 formu-
lated the minimum required sample size for estimating the average received signal power.
This chapter used three statistical methods: the confidence interval, the CLT, and t-test
to calculate the sample size. The simulation results showed that the radio map could be
accurately constructed with a small number of samples compared to the conventional method
that was without consideration of the required sample size.

Next, Chapter 5 proposed the hypothesis testing-based updating method of the radio
map. Based on our investigations for the radio map updating, we used Welch’s t-test that is
an improved method of the t-test. The proposed method inferred the significant difference
between two mean values before and after the movement of the transmitter. Then, the
radio map was updated if a significant difference was detected. The simulation results
revealed that the proposed method enabled us to correctly update the radio map compared to
conventional updating methods that were the unique averaging and forgetting factor-based
methods. Additionally, we clarified that Welch’s t-test was superior to the Mann–Whitney
U-test in terms of the statistical power.

Considering interference-limited observations in multiple transmitters environment, Chap-
ter 6 proposed the novel extrapolation method based on the compensation of the empirical
CDF. The empirical CDF was first estimated using the measured target power samples. Then,
the proposed method compensated for the empirical CDF by taking into account the number
of missing data. Finally, the median target power was extrapolated using the compensated
empirical CDF. The emulation results revealed that the radio map could be extrapolated with
high accuracy compared with conventional interpolation and extrapolation methods.

Finally, Chapter 7 applied the radio map to MANETs. This scheme first collected received
signal power samples in each pair of a transmitter and a receiver. By averaging these samples,
a radio map could be created in each transmission position. To verify the usefulness of the
application, we had conducted two measurement campaigns in Japan and the United States
of America. The experimental results clarified that the proposed application could accurately
estimate the location-dependent radio propagation even in MANETs. Additionally, the PDR
characteristics were studied in the LOS and NLOS environments. The results showed that
the PDR was notably reduced in the NLOS environment.

This dissertation constructs the radio maps over 3.5 [GHz] and 760 [MHz]. For using
radio maps in various systems, we need to evaluate the accuracy of radio maps over several
frequencies. Here, [109, 110, 45] have described that the average received signal power
indicates a strong correlation over the frequency domain even if the two measurement signals
are separated over hundred MHz in cellular systems. These results imply that the radio map
may be accurately created over various frequencies.
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8.2 Status of Our Research and Future Outlook

In wireless communications, radio propagation estimation has been eagerly studied for a
long time by many researchers. As one of the methods for estimating radio propagation, a
radio map is well known by several researchers. So far, the effectiveness of the radio map
has been evaluated in a typical wireless system that a transmitter is singly located in a fixed
position. The estimation of television white spaces is a typical utilization example of the
radio map. As the construction method of the radio map, most conventional works have only
considered the spatial interpolation in the fixed transmitter environment.

However, the situation where a transmitter is fixed is very limited in realistic wireless
communications. With the rapid development of wireless technology in past decades, various
systems have appeared, such as the MANETs, the private 5G, and WLANs. Unfortunately,
the radio map cannot be applied or the accuracy of the map may be degraded in such systems
because of the following reasons: i) the incompatibility for the dynamic movement of
both transmitter and receiver, ii) no updating methods for the map in the private 5G with
the movement of a transmitter, and iii) no extrapolation schemes in interference-limited
observations (i.e., dense APs environment). Additionally, the increase of the registered
data size has not been considered in conventional radio maps. As a result, the continuous
development of wireless communications may be disturbed owing to the inaccuracy of the
radio propagation estimation. For future wireless systems, it is necessary to estimate radio
propagation more accurately and to properly determine communication parameters according
to the estimation results. Motivated by the facts, the purpose of our research has been
determined to expand the use of the radio map for drastically improving the communication
efficiency in any system.

Thus, we have comprehensively attempted to solve these problems from both theoretical
and experimental aspects. In our dissertation, all proposed methods are based on various
statistical inferences rather than deterministic methods. Such statistical methods enable
us to probabilistically consider the uncertainty of radio propagation. Especially, in the
radio map construction, by the proposed statistical inference methods, the updating and
extrapolation can be realized in addition to the spatial interpolation. We consider that the
updating and extrapolation of the radio map are the main contributions of our dissertation in
the academic viewpoints. The accurate radio maps can be created in various wireless systems
other than the cellular networks by the proposed statistical inference-based methods. As a
result, more wireless systems can communicate with each other in various environments
while efficiently utilizing finite spectrum resources. In the future, we believe that the radio
map may significantly change the design of wireless communications, such as interference
management in spectrum sharing.
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8.3 Future Works

Statistical inference methods could enhance the accuracy of the radio map. However, there
are several remaining tasks to more accurately generate the radio map. The remaining tasks
are summarized as follows.

The Calibration of Received Signal Power in Crowdsourcing

There are several problems to realize crowdsourcing-assisted radio map construction. First,
the measurement accuracy of smartphones is very low compared to the spectrum analyzer.
Especially, the instantaneous received signal power may sometimes fluctuate around 10 [dB]
depending on the types of smartphones [23]. This is the most difficult task in crowdsourcing.
Hence, many researchers have considered the solution of this task and one of the famous
solutions is the calibration [23, 62]. As a simple calibration, the offset between smartphones
and the spectrum analyzer is estimated using linear regression. If there is a constant offset,
the measurement error of smartphones can be easily calibrated. However, the offset strongly
depends on the types of smartphones. Thus, to construct an accurate radio map, it is necessary
to estimate various offsets by considering many types of smartphones in real environments.
Additionally, the offset significantly fluctuates according to how each observer holds their
smartphone. For example, the smartphone is held in hand or in the bag. Although we must
know these measurement situations using external information, the detailed method has not
been established in the radio map construction. Since these tasks are very challenging, we
consider the problems as future works.

Radio Map Extrapolation Under Noise-Limited Observations

We proposed the extrapolation method for the radio map in Chapter 6. However, this method
could be accurately performed if the noise floor of a mobile terminal is smaller enough than
the aggregate interference power in each position. If not, the number of missing data may
increase; thus, such a situation can be considered as noise-limited observations. Under the
environment, the radio map may be inaccurately extrapolated by the proposed method. In
the spectrum sharing, a secondary user must determine their transmission power so that
the interference power is lower than the noise floor of a primary receiver. For instance,
the threshold is 10 [dB]. To this end, the radio propagation below the noise floor should be
extrapolated.
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Optimization of Mesh Size

As described in Sect. 1.4.3, the typical mesh size is 10 [m] in an urban area considering the
correlation distance of the shadowing. However, the correlation distance may be different
according to the geographic conditions, such as the number of structures. There is a trade-off
between the mesh size and the estimation accuracy of the radio propagation. Hence, it is
necessary to optimize the mesh size by taking into account the estimation accuracy.

8.3.1 Privacy Protection in Crowdsourcing

The privacy protection of ordinary people has been considered in several works [141, 142].
Ordinary people participating in crowdsourcing send their location information and terminal
identification to the local database. However, several researchers have been concerned that
persons do not want to be known about these individual data considering privacy protection.
This problem is also discussed in the connected car-based V2V communications [143]. If
private information is abused, who is responsible for it? To solve this problem, we consider
that legal development is required for crowdsourcing. Maybe, it will take a long time. All
researchers should pay attention to this field.

8.3.2 Investigation of Correlation Characteristics over Frequency Do-
main in MANETs

Although the shadowing correlation over the frequency domain has been confirmed in cellular
systems, the correlation characteristics in MANETs have not been clarified yet. In future, we
need to investigate the shadowing correlation over various frequencies via experiments and
related works.
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