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論文要旨

本研究は，スピーカアレイを用いた 2次元音場制御に関する研究である。音場制
御とは空間において音の波面全体を制御する技術であり，音場再現，指向性制御や
空間騒音制御などに応用される。特に音場再現では，高臨場感音響再生技術の一環
として，現実空間と距離の離れた別の空間のユーザが擬似的に重なり，その場にい
るかのような聴覚体験を提示することが可能になる。これらの音場制御技術の発展
に伴って，立体テレビ，立体コミュニケーションシステムやバーチャルライブなど
の実現が期待できる。
これまで多くのスピーカアレイを用いた音場制御手法が提案されているが，特に

理論的解析や形状のわかりやすさから直線や円といった基本的なアレイ形状が多く
用いられてきた。一方，素子配置が決まっているシステムや素子配置の設計を含め
たプロジェクトに適している最適化手法は，性能を最大限に引き出すことができる
が，一般家庭での実装が困難で，汎用性に欠けている。そこで，シンプルではない
スピーカ配置においても解析的な制御を可能とするスピーカアレイの形状に着目し
た研究を行う。
本研究では，音場制御システムの基本要素の 1つであるスピーカアレイの音響的

特性に着目し，新たなスピーカアレイの形状を提案することによって，制御の多様
性を増やし，制御性能を向上させることを試みる。本来，考慮すべきアレイ形状は
無限にあるが，本論文においてはまず 2つのアレイ形状に注目する。従来の円形ス
ピーカアレイを変形させることによって，複数の円形アレイを用いた再生モデルで
ある複数剛円スピーカアレイおよび円形アレイを扁平させたような形状である楕円
スピーカアレイを提案する。複数剛円スピーカアレイに対し，アレイ中心のずれや
無限に往来する散乱作用を考慮した解析的制御手法を提案する。楕円スピーカアレ
イに対し，楕円座標系およびその波動関数解を用いた新な解析的音場制御手法を提
案する。計算機シミュレーションの結果により制御手法は有効であることがわかっ
た。複数の場面において，提案アレイは従来のアレイ形状より良い結果を得られ，
アレイ形状の提案による制御性能向上の可能性を示した。また，アレイ形状の特徴
が音場制御の性能に与える影響について調べた。





ABSTRACT

This study discusses two-dimensional spatial control using loudspeaker arrays. Spatial
control is a technique for the spatial processing of sound waves in a confined space. Sound
field reproduction, directivity control, and spatial active noise control are applications
of spatial control. In particular, sound field reproduction, which replicates the sound
experience in space, is extremely important for 3D audio systems. Further development
of this technique would allow 3D television, 3D communication systems, and virtual live
concerts to be realised.

A variety of methods on spatial control, using loudspeakers, have been proposed.
Basic array shapes, e.g., linear or circular loudspeaker arrays, have been the special
focus of these studies. The optimised methods are applied to specific array geometries to
maximise performance. However, it is difficult to apply these methods to general audio
systems with the performances differing from place to place. In this study, analytical
methods controlling complex array geometries are discussed.

The focus is on the acoustical properties of the loudspeaker array, which is the basic
component of a spatial control system. This study suggests a novel approach on enhanc-
ing the spatial control technique: proposing new array geometries that have analytical
solution to diversify the control. Although there are a multitude of array geometries
that can be taken into consideration, this study focuses on two array models as the first
attempt on the approach. The conventional circular array is modified to consider the
two models: the multiple rigid circular arrays model which sets up multiple conventional
arrays as one model and the elliptical array model which can be considered a flattened
conventional array. Analytical control methods are proposed for both array models, ei-
ther considered the centre-shifted arrays with multiple scattering effect, or introduced a
novel spatial control theory based on elliptical coordinate system. The results reveal the
validity of the proposed methods. The proposed arrays outperform conventional arrays
in several situations, showing a possibility of the approach on proposing analytical con-
trollable arrays. In addition, the influence of several array features on spatial control is
investigated, giving a further prospect on designing a high performance array geometry.
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Chapter 1

Introduction

1.1 Background

Acoustic spatial control, which is also referred to as sound field control, is a
technique that processes the sound field and is widely applied in the audio indus-
try. With the recent development of new-generation network communication and
electronic devices, applications of the spatial control technique, such as sound
field reproduction, beamforming, and spatial noise control, have witnessed rapid
growth.

Sound field reproduction, the best-known application of spatial control, aims
to present the listener with the experience of a space of sound from somewhere
else in the world, or even a fully virtual space. The basic idea of sound field
reproduction was proposed based on Huygens’ principle back in 1968 [1]. Subse-
quently, methods including wave field synthesis [2, 3] and Ambisonics [4, 5] were
proposed. Over the decades, an enormous number of studies on sound field repro-
duction have been carried out, significantly improving both the versatility and
practicability of the technique. Sound field reproduction is an important tech-
nique in immersive audio or 3D audio, with great potential for next-generation
audio systems. It is expected to present people with a ‘realistic’ virtual world
using 3D video techniques.

Beamforming is another important technique in array signal processing studies
[6–10]. It is widely applied to antenna arrays, sensor arrays, and microphone
arrays. In acoustics studies, the applications of beamforming include speech
enhancement, source tracking, and acoustic imaging (even including medical use),
among others. As for the reproduction part, the technique is also applied to
loudspeaker arrays for controlling radiation patterns or directivity. Thus, it is also
referred to as directivity control [11–15]. Applications including broadcasting,
private audio zone, binaural reproduction have been discussed in this field of
study. A recent study even reported that the acoustic force of a beam can be
used to lift objects [16].

Another important application of spatial control is spatial noise control. Un-
like the traditional noise control technique that cancels noise at specific positions,
spatial noise control suppresses noise over a space region to generate a quiet area.
The development of modern vehicles has rapidly increased the need for this ap-
plication. However, cancelling noise over a large area remains challenging using
existing techniques.

In this study, aiming for a perceptual reproduction, sound field reproduction
is discussed as the main topic. As radiation patterns affect the sound field, the
discussion also includes beamforming. Note that noise control over space can be
considered as sound field reproduction, reproducing a phase-inverted noise field.
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Figure 1.1: Sound field reproduction using a linear loudspeaker array.

It is possible to infer the performance of noise control over space through the
results of sound field reproduction implicitly.

Methods for perceptual reproduction can be categorised as perception-based
methods and physics-based methods. Stereophonic, periphonic, and binaural
reproduction are examples of perception-based methods, and the sound field re-
production is an example of a physics-based method.

The conventional perception-based reproduction methods including stereo-
phonic [17] and periphonic [18, 19] provide ideal perception in a limited sweet-
spot. Another reproduction method called binaural audio, which is generally im-
plemented by headphones, is not influenced by the listening position. In general,
the perceptual sound does not react to the movement of a listener himself/herself,
which results in an additional problem of lateralisation [20, 21]. Perception-
based methods feature a better perceptual experience, while retaining sensitivity
changes of the system. However, perception-based methods sometimes require
specific settings or operations by professional engineers.

Various sound field reproduction methods have been proposed to implement a
realistic perceptual environment using a set of loudspeakers, i.e., the loudspeaker
array [3, 22]. Figure 1.1 shows an example of sound field reproduction using
a linear loudspeaker array. The methods literally reproduce a sound field, i.e.,
reproduce/control the sound wave over a space region. Using this technique,
it is possible to obtain ideal perception over the space region, meaning that
the listening position is not limited to a sweet-spot. Furthermore, the problem
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of binaural audio is solved; the sound field is physically reproduced; and the
listener acquires the proper perception corresponding to the listener’s position.
This sound reproduction provides the listener with a realistic and immersive
perceptual experience. In addition, in contrast to perception-based methods,
physics-based methods are rather robust to system changes.

In this study, physics-based methods are employed for a wider listening area
and a robust performance over systems. The methods are also highly compatible
with beamforming.

The signal-processing part of physics-based methods can be divided into nu-
merical approaches [23–25] and analytical approaches [26–29]. The numerical
approaches can be applied to variable types of arrays and rooms. They can also
provide optimised performance in specific reproduction scenarios. However, the
performance over space is not predicable and further analysis of the results does
not provide any additional clarification. In contrast, the analytical approaches
are usually designed for a specific type of array, even without considering room
reverberation. The results of analytical approaches are promising and can be
explained by theories. Carrying out an analysis of its results is easy and further
development of the methods is to be expected.

In addition to signal-processing methods, array geometry is also extremely
important, especially for the analytical approach. Conventional studies on spatial
control most often use the linear loudspeaker array (LLA), circular loudspeaker
array (CLA), or spherical loudspeaker array [27,28]. As only the two-dimensional
sound field is discussed in this study, further discussions on spherical arrays are
excluded. In addition, irregular-shape arrays such as room-shape rectangular
arrays are introduced for practical applications.

LLA [30–32] is the simplest array model with loudspeakers most often uni-
formly placed in a straight line. The original LLA concept is an infinite-length
array because an infinite line can divide a two-dimensional space into two to
satisfy the Kirchhoff-Helmholtz integral equation. However, in practical appli-
cations, common LLAs are usually finite-length arrays. This mismatch in the
precondition further introduces errors in reproduction systems, which have a
great influence on the performance at low frequencies. Moreover, LLAs exhibit
direction dependent performance. Generally, sound field reproduction studies are
applied in the direction perpendicular to the LLA, referred to as the board-side
direction. Beamforming studies are more likely to be applied in the direction of
the LLA, i.e., the direction of the line along which the loudspeakers are located,
referred to as the end-fire direction). Note that the LLA has mirror symmetry
such that the reproduced fields on both sides of the array are always the same.

CLA [33–36] is also one of the most common arrays used in two-dimensional
spatial control. The CLA, benefits from rotation symmetry, having a robust
performance over directions. In addition, an excellent property of CLA is that
the circle is a basic shape in polar coordinates - one of the orthogonal coordinate
systems. With the method introduced later in Chapter 2, the signal of CLA can
be expanded in a series of harmonic modes. Furthermore, signal processing can
be done in the wave domain (also explained in Chapter 2) to get an analytical
solution. Although CLA is an ideal array geometry, using CLAs, in most common
rectangular rooms, is rather inefficient because there will be spare side spaces.

In practical applications, irregular arrays such as room-shape arrays are more
frequently used. (For three-dimensional studies, a cuboid array [19] and barrel-
shape array [37] were also introduced). Algorithms for selecting the optimal
array geometry have also been proposed [38, 39]. These irregular arrays, espe-
cially the optimal arrays, can provide ideal results for certain environments and
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Figure 1.2: Infinite reflections exist between rigid baffles.

applications. However, the “optimal” array geometry needs to be designed for
every environment. In addition, general analytical methods cannot support these
irregular arrays, thus it can be difficult to perform further analyses.

The main issue with the current spatial control studies is a trade-off between
the flexibility of loudspeaker arrangement and the method analyticity. Possi-
bilities on array geometries for a flexible loudspeaker arrangement are given by
numerical methods. In contrast, analytical methods provide predictable results,
i.e., one can analyse how the performance of a system would be and how to make
further improvements, and are also versatile for implementations, i.e., one can
make implementations that have acceptable performance with theoretical data.
The last few decades have been a witness to various discussions on the opti-
mal balance of this trade-off in certain applications. However, addressing this
trade-off remains an issue.

1.2 Motivation

The goal of this study is to introduce new analytically controllable array geome-
tries to spatial control as an attempt for breaking through the trade-off. As the
general goal of spatial control is to reproduce a complex sound field that con-
tains multiple sources, directional sources, reflections etc., using a complex array
geometry diversifies the sound field and may be more efficient than using basic
and mathematically “perfect” array geometries, such as circular. However, as
explained above, complex array geometries are lacking for analytical methods.
To achieve predictable results and high implementation versatility, this study ap-
proaches new complex geometries that can be solved with analytical methods.
As the first attempt on diversifying the sound field, two new array geometries
are considered in this study: multiple CLAs (MCLA) and elliptical loudspeaker
array (ELA).

In the first attempt to use MCLA, the array geometry is diversified by in-
cluding multiple conventional CLAs. The model increases the flexibility on loud-
speaker arrangement in space. Furthermore, all CLAs are considered to be acous-
tically rigid. It leads to infinite reflections between the CLAs (Fig. 1.2). This
mutual interaction phenomenon is called the multiple scattering effect, which
has been frequently discussed in underwater acoustics [40] and noise absorp-
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CLA LLA Irregular Array MCLA ELA

Sound Field Diversity △ △ ⊚ ⊚ ⃝
Reflections − − △ ⃝ −
Asymmetric × △ ⃝ ⃝ ⃝

Arrangement Flexibility × × ⊚ ⃝ ⃝
Method Analyticity ⃝ ⃝ × ⃝ ⃝
Predicable Results ⃝ ⃝ × ⃝ ⃝

Implementation Versatility ⃝ ⃝ × ⃝ ⃝
Derivation Simplicity ⊚ ⊚ − △ ⃝
Number of Parameters ⊚ ⊚ − △ ⃝

Table 1.1: Features of array models mentioned in this study.

tion [41, 42]. In this study, the analytical control of MCLA is proposed, taking
both the centre-shifting of the CLAs and multiple scattering effect into consider-
ation.

In the second attempt, ELA is proposed. The general idea of the ELA model
is to diversify the sound field by introducing asymmetry. More importantly,
the elliptical coordinate system is one of the few two-dimensional orthogonal
coordinate systems, meaning that there is another expansion for the signals of an
ELA and an analytical method for ELA exists. Note that the elliptical arrays,
including loudspeaker and microphone arrays, are rarely discussed in conventional
studies. The analytical method proposed in this study is a novel method based
on the spatial Fourier transform (later explained in Chapter 2) in an elliptical
coordinate system. In addition, while the MCLA model has a high number of
parameters and as such are difficult to determine, the ELA does not exhibit the
multiple scattering effect and has fewer number of parameters. The features of
the conventional and proposed array models are summarised in Table 1.1.

This study is distinct in proposing new array geometries and their analytical
controlling methods simultaneously. The literature on spatial control (especially
sound field reproduction) has two main types of studies: analytical studies that
use simple array geometries and numerical studies that focus on optimal solutions.
The analytical methods provide general solutions for a wide range of systems
and are thus considered versatile, whereas the numerical methods considerably
improve the total performance. This study, however, aims to find a generally
well-conditioned solution (i.e., a system with improved physical characteristics)
that can be controlled with analytical methods. In other words, the study is
in between the two types of conventional studies and is focused on developing
a new direction on approaching the general ideal method. This relationship is
illustrated in Fig. 1.3.

1.3 Outline of Thesis

The thesis is structured as follows.
In Chapter 1, the background, motivation, and contribution of this study are

introduced.
In Chapter 2, the fundamentals of spatial control, the conventional meth-

ods, are explained. Subsequently, the evaluation methods used in this study are
introduced along with examples.

Chapters 3 and 4 discuss the two new array geometries, MCLA and ELA,
respectively. In Chapter 3, the MCLA model is proposed. Initially, the multiple
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Figure 1.3: Methods of sound field reproduction [26,37,38,43–45]

scattering effect and the accompanying calculations are introduced. Then a spa-
tial control method that considers the multiple scattering effect is proposed. The
performance of MCLA is discussed with respect to interior sound field reproduc-
tion, exterior sound field reproduction, and beamforming.

In Chapter 4, the ELA model is proposed. The elliptical coordinate system
and the eigenfunctions of the Helmholtz equation, referred to as Mathieu func-
tions, are introduced. A method based on the Mathieu function is then proposed
for sound field reproduction using ELA. In line with the previous chapter, the
performance of ELA is discussed with respect to interior sound field reproduc-
tion, exterior sound field reproduction, and beamforming. Finally, the results of
ELA, CLA, MCLA, and LLA are compared.

In Chapter 5, the proposed method for ELA in the previous chapter is fur-
ther extended and generalised. The general method can be implemented with
arbitrary-shape arrays. The performance is verified with an irregular (rectan-
gular) loudspeaker array for interior sound field reproduction and with CLA for
exterior sound field reproduction.

Finally in Chapter 6, the results are summarised prior to concluding the study.
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Chapter 2

Fundamentals of Spatial Control

In this chapter, the fundamentals of spatial control are introduced. The basic
theories of sound field reproduction, which is one of the most important tech-
niques of spatial control, are explained. Applications including both interior and
exterior sound field reproduction and beamforming are covered through CLA
examples.

2.1 Wave Equation and Kirchhoff-Helmholtz Integral Equation

The sound field reproduction technique was originally based on Huygen’s principle
which states that the wave of a primary source can be reconstructed by secondary
sources located on the wavefront. The theory can be expressed in a mathematical
model, the Kirchhoff-Helmholtz integral equation, which indicates that the sound
field can be synthesised by secondary sources on the boundary.

Consider the wave equation in two-dimensional space [46,47] where the sound
pressure p(x, t) as a function of position x = (x, y) and time t satisfies

∇2p(x, t)− 1

c2
∂2p(x, t)

∂t2
= 0. (2.1)

Here c ≈ 340 m/s denotes the speed of sound in air. Laplace operator ∇2 in the
two-dimensional Cartesian coordinate system is

∇2 =
∂2

∂x2
+

∂2

∂y2
. (2.2)

We can obtain the wave equation in the frequency domain by applying a
temporal Fourier transform to (2.1). This well-known equation is named the
homogeneous Helmholtz equation [46,47].

∇2p(x, ω) + k2p(x, ω) = 0, (2.3)

where ω denotes angular frequency, and k ≜ ω/c denotes the wave number. The
sound pressure in the frequency domain p(x, ω) is the Fourier transform of the
sound pressure in the time domain:

p(x, ω) =

∫ ∞

−∞
p(x, t)e−jωtdt. (2.4)

The imaginary unit j =
√
−1.

As shown in Fig. 2.1, within a two-dimensional space Ω and its boundary ∂Ω,
consider the partial derivative of a scalar function f as pointing outward from
the boundary.

∂f

∂n
=
∂f

∂x
+
∂f

∂y
= ∇f · n, (2.5)
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Figure 2.1: A two-dimensional space Ω and its boundary ∂Ω.

where n denotes the unit normal vector. Then, the Green’s theorem can be
expressed as [46],∫∫

Ω
(f∇2g − g∇2f)dΩ =

∫
∂Ω

(
f
∂g

∂n
− g

∂f

∂n

)
dx, (2.6)

where f and g are continuous and finite functions.
Here, with a coordinate x = (x, y) located on the boundary ∂Ω, it is assumed

that the two functions f(x, ω) and g(x, ω) satisfy the homogeneous Helmholtz
equation:

∇2f(x, ω) + k2f(x, ω) = 0 (2.7)

∇2g(x, ω) + k2g(x, ω) = 0. (2.8)

The following equation establishes:

f(x, ω)∇2g(x, ω)− g(x, ω)∇2f(x, ω)

=f(x, ω)(−k2g(x, ω))− g(x, ω)(−k2f(x, ω))
=0. (2.9)

Therefore, the left side of (2.6) becomes 0,∫
∂Ω

(
f(x, ω)

∂g(x, ω)

∂n
− g(x, ω)

∂f(x, ω)

∂n

)
dx = 0. (2.10)

Equation (2.10) represents a field where no sources exist.
The next representation is that of a field with a monopole source. Here, a

monopole source can be considered as a singular point of g(x, ω) in the space Ω.
Denote the singular point x′ with the continuous f(x, ω); the singularity yields
g(x, ω) as a solution of the inhomogeneous Helmholtz equation [46]:

∇2g(x, ω) + k2g(x, ω) = −δ(x− x′), (2.11)

δ(x) is the Dirac delta function. One solution of this equation is known as the
two-dimensional free field Green function [46]:

Gopen(x|x′, ω) = − j
4
H

(2)
0 (k|x− x′|), (2.12)
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where H
(2)
ν (z) is the ν-th order Hankel function of the second kind. In this study,

(2.12) is referred to as the transfer function instead of the Green function.
Further consider the interior half space Ω◁, when g(x, ω) in Green’s theorem

is substituted by Gopen(x|x′, ω) , the functions on the closed boundary deter-
mine the wave field. Assume that sources exist outside the boundary ∂Ω only,
the interior sound field is described by the interior Kirchhoff-Helmholtz integral
equation [46]:

p(x, ω) =

∫
∂Ω

(
G(x|x′, ω)

∂p(x, ω)

∂n
− p(x, ω)

∂G(x|x′, ω)

∂n

)
dx. (2.13)

The full statement of the interior Kirchhoff-Helmholtz integral equation is:

ϵp(x, ω) =

∫
∂Ω

(
G(x|x′, ω)

∂p(x, ω)

∂n
− p(x, ω)

∂G(x|x′, ω)

∂n

)
dx. (2.14)

ϵ =


1 x′ inside Ω
1
2 x′ on ∂Ω

0 x′ outside Ω

(2.15)

Similarly, consider the exterior half space, assuming that sources exist in-
side the boundary ∂Ω only, the exterior sound field is described by the exterior
Kirchhoff-Helmholtz integral equation [46]:

ϵp(x, ω) =

∫
∂Ω

(
G(x|x′, ω)

∂p(x, ω)

∂n
− p(x, ω)

∂G(x|x′, ω)

∂n

)
dx. (2.16)

ϵ =


1 x′ outside Ω
1
2 x′ on ∂Ω

0 x′ inside Ω

(2.17)

The Kirchhoff-Helmholtz integral equation, which describes a sound field by
the integral on a closed boundary, implicitly explains that a sound field can
be synthesised by components on the boundary. Hence, by dividing the two-
dimensional sound field with closed boundaries such as an infinite line or a circle,
as in Fig. 2.2, the sound field recording/reproduction can be achieved by using
microphone arrays and loudspeaker arrays.

2.2 Spatial Fourier Transform

For certain array geometries, an analytical approach can be employed for spatial
control by transforming sound fields into a wave domain. The concept of the
transformation is introduced in this section.

As explained in (2.4), a temporal Fourier transform can transform a time
domain function into a frequency domain function. A similar transform applied to
a space domain function is referred to as the spatial Fourier transform [46,48]. As
the spatial Fourier transform has multiple representations, it has target domains
such as the wavenumber domain (in Cartesian coordinates), circular harmonic
domain (in polar coordinates), etc. For simplicity, they are all referred to as the
wave domain in this paper.
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Figure 2.2: A closed boundary divides a two-dimensional space into two.

2.2.1 In Cartesian Coordinate System

Considering a function f of a one-dimensional space variable x, a spatial Fourier
transform can be applied as:

f̃(kx) =

∫ ∞

−∞
f(x)ejkxxdx, (2.18)

and its inverse transform is given as

f(x) =
1

2π

∫ ∞

−∞
f̃(kx)e

−jkxxdkx. (2.19)

kx is the wavenumber of the x direction.
In a two-dimensional Cartesian coordinate system, a solution of the Helmholtz

equation (2.3) is expressed as:

p(x, ω) = p̃(kx)e
−jkxxe−jkyy. (2.20)

The solution represents a single-frequency plane wave progressing in a certain di-
rection. Here, for each angular frequency ω, the following equation is established.

k2 = k2x + k2y. (2.21)

Note that ky =
√
k2 − k2x indicates that ky is determined by kx. Hence, p̃(kx) is

a function of kx only.
Then, a wave can be described as a sum of plane waves arriving from all

directions:
p(x, ω) =

∑
kx

p̃(kx)e
−jkxxe−jkyy. (2.22)

This equation is referred to as the plane wave decomposition of a sound field.
Assuming kx is continuous in R, the sound pressure on the x-axis (y = 0) is then

p(x, 0, ω) =
1

2π

∫ ∞

−∞
p̃(kx)e

−jkxxdkx. (2.23)

This equation is in the form of the spatial inverse Fourier transform.
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Figure 2.3: Polar coordinate system.

2.2.2 In Polar Coordinate System

In a two-dimensional polar coordinate system, there is another representation of
the spatial Fourier transform. Defining a polar coordinate system as in Fig. 2.3,
the coordinates r = (r, ϕ) include distance r from the origin and rotation angle ϕ
from the x-axis of the Cartesian coordinate system. Then, the polar coordinates
(r, ϕ) can be transformed to the Cartesian coordinates (x, y) by{

x = r cosϕ

y = r sinϕ
, (2.24)

where r =
√
x2 + y2

ϕ = sgn y arccos x√
x2+y2

, (2.25)

and

sgn y =


−1 y < 0

0 y = 0

1 y > 0

, (2.26)

is the signum function.
The Fourier series and its coefficients with respect to the space variable ϕ in

the polar coordinate system are defined as follows.

f(r, ϕ) =
∞∑

ν=−∞
f̊ν(r)e

jνϕ, (2.27)

f̊ν(r) =
1

2π

∫ 2π

0
f(r, ϕ)e−jνϕdϕ. (2.28)

They correspond to the inverse Fourier transform and the Fourier transform of
the rotation direction, respectively. Here, ν denotes the order, which is also
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Figure 2.4: Circular harmonic modes with respect to orders, calculated by
Jν(kr)e

jνϕ. All waves are at 1000Hz.

referred to as ‘mode’ as it is related to the resonance modes on a circular plate.
The basis ejνϕ has the following orthogonality∫ 2π

0
ejνϕe−jν′ϕdϕ = 2πδνν′ , (2.29)

and completeness
∞∑

ν=−∞
ejνϕe−jνϕ′

= δ(ϕ− ϕ′), (2.30)

is extremely important in describing the radiation patterns of sound. δij is the
Kronecker delta. The basis is referred to as circular harmonics. The zeroth and
the first order circular harmonics describe a monopole and dipoles, respectively.
Figure 2.4 displays circular harmonics up to the fourth order. The series in
(2.27), which is an expansion of circular harmonics, is referred to as the Circular
Harmonic Expansion (CHE). The spatial Fourier transform can be applied within
other coordinate systems, as well. A spatial Fourier transform in the elliptical
coordinate system is introduced for the proposed method in Chapter 4.

2.3 Sound Field Representation in Polar Coordinate System

Similar to the time-domain frequency-domain transform described in the previ-
ous subsection, any sound pressure that is a function of space variables can be
transferred to or from a wave domain by the spatial Fourier transform and its
inverse [46,48]. The set of sound pressures is referred to as a sound field.

Consider the Helmholtz equation in a polar coordinate system. The Laplace
operator ∇2 in the polar coordinate system is

∇2 =
∂2

∂r2
+

1

r

∂2

∂r
+

1

r2
∂2

∂ϕ2
. (2.31)

Therefore, the Helmholtz equation can be rewritten as(
∂2

∂r2
+

1

r

∂2

∂r
+

1

r2
∂2

∂ϕ2

)
p(r, ϕ, ω) + k2p(r, ϕ, ω) = 0. (2.32)

One solution of the wave function can be derived as

p(r, ϕ, ω) =
∞∑

ν=−∞
p̊ν(r, k)e

jνϕ, (2.33)

[46], which is the CHE of the sound field.
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Any sound pressure p(r, ϕ, ω) in a two-dimensional sound field can be de-
scribed as a summation of an interior sound field p◁(r, ϕ, ω) (with sources ra-
diating inward) and an exterior sound field p▷(r, ϕ, ω) (with sources radiating
outward):

p(r, ϕ, ω) = p◁(r, ϕ, ω) + p▷(r, ϕ, ω). (2.34)

The CHE can be applied to both interior and exterior sound fields. The general
equations are given below [46]:

p◁(r, ϕ, ω) =
∞∑

ν=−∞
p̆◁ν(k)Jν(kr)e

jνϕ, (2.35)

p▷(r, ϕ, ω) =
∞∑

ν=−∞
p̆▷ν(k)H

(2)
ν (kr)ejνϕ, (2.36)

where p̆◁ν(k) and p̆▷ν(k) are sound field coefficients of the interior and exterior
fields, respectively; Jν(z) denotes the ν-th order Bessel function. The expansion
of the Bessel and Hankel functions separates the radius variable r from the sound
field coefficient and the latter represents sound field features, independent of the
observation position.

Then, consider a sound field observed in a circle of radius r. Let p̊ν(r, k) be
the ν-th order CHE coefficient of the sound field. Assuming all sources are inside
the circle, the sound field outside the circle degenerates to an exterior-only field
as in (2.36). In the exterior field, the following equation applies [46].

p̊ν(r
▷, k) =

H
(2)
ν (kr▷)

H
(2)
ν (kr)

p̊ν(r, k). (2.37)

Here, (r▷, ϕ▷) is any point outside the circle thus r▷ > r. The equation states that
the CHE coefficient at radius r determines the CHE coefficient outside the circle.
It indicates that the exterior sound field p(r▷, ϕ▷, ω) can be expressed using the
CHE coefficient p̊ν(r, k). Conversely, assuming all sources are outside the circle,
an interior-only field (2.35) is given by,

p̊ν(r
◁, k) =

H
(2)
ν (kr◁)

H
(2)
ν (kr)

p̊ν(r, k), (2.38)

as demonstrated in [46]. (r◁, ϕ◁) is any point inside the circle and r◁ < r. Hence
the interior field p(r◁, ϕ◁, ω) can also be expressed using the CHE coefficient.

2.4 Approaches of Sound Field Reproduction

2.4.1 Traditional Wave Field Synthesis

With the Kirchhoff-Helmholtz integral equation (2.13) explained above, a sound/

wave field can be synthesised by the components on the boundary. As ∂G(x|x′,ω)
∂n

in the right side of (2.13) is the transfer function of the dipole sources, both
monopole and dipole sources are required to determine a sound field. Here, the
gradient of sound pressure ∂P (x,ω)

∂n should be expressed in special units such as
adjacent microphone pairs or directional microphones. Overall, such a spatial
control technique is difficult to realise.

One solution to the problem is to use a linear boundary. By defining a half
space with an infinite linear boundary, the Rayleigh integral equation can replace
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Figure 2.5: The boundary ∂Ω divides the two-dimensional space into interior Ω◁

and exterior Ω▷.

the Kirchhoff-Helmholtz integral equation. With a Neumann boundary condition,
the Rayleigh I integral describes the sound field with the monopole terms only:

p(x, ω) = −2

∫
∂Ω
G(x|x′, ω)

∂p(x, ω)

∂n
dx, (2.39)

indicates that a sound field can be synthesised by reproducing doubled sound
pressure gradient with continuous monopole sources on the boundary. In contrast,
with a Dirichlet boundary condition, the Rayleigh II integral describes the sound
field with dipole terms only:

p(x, ω) = 2

∫
∂Ω
p(x, ω)

∂G(x|x′, ω)

∂n
dx, (2.40)

indicates that a sound field can be synthesised by reproducing doubled sound
pressure with continuous dipole sources on the boundary [22, 49]. Note that the
∂n in the Rayleigh integral equations is towards the target half space.

The spatial control method based on the Rayleigh integral equations is one
of the best-known approaches, known as wave field synthesis [3,44,49–54]. Wave
field synthesis uses linear (or planar for three-dimensional methods) loudspeaker
arrays as monopole sources. Driving functions are obtained by further approx-
imations. However, this method also requires that the gradients be recorded
[30,55,56] unless the target primary field is known a priori.

2.4.2 Simple Source Approach

The spatial control method can be further simplified by driving monopole sources
with the observed sound pressure [24, 57]. This method has a simple source
formulation.

As shown in Fig. 2.5, the boundary ∂Ω divides a two-dimensional space into
interior space Ω◁ and exterior space Ω▷. With p▷(x, ω) denoting the exterior
sound field and assuming that sources exist in the interior space only, a Kirchhoff-
Helmholtz integral equation can be formulated. Similarly, with p◁(x) denoting
the interior sound field and assuming that sources exist in exterior space only,
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another Kirchhoff-Helmholtz integral equation can be formulated. Here, it is as-
sumed that the exterior field p▷(x, ω) satisfies the Sommerfeld radiation condition

lim
r→∞

r

(
∂p(x, ω)

∂r
− jkp(x, ω)

)
= 0, (2.41)

where r = |x| and ∂r point towards the direction of x [46].
Next, assuming the sound pressure is continuous across both sides of the

boundary, p▷ = p◁ on the boundary. Furthermore, assuming that ∂p▷

∂n ̸= ∂p◁

∂n on
∂Ω, the following equation is established.

p▷(x, ω) (x ∈ Ω▷)
p▷ = p◁ (x ∈ ∂Ω)
p◁(x, ω) (x ∈ Ω◁)

 =

∫
∂Ω

(
∂p▷(x, ω)

∂n
− ∂p◁(x, ω)

∂n

)
G(x|x′, ω)dx. (2.42)

Here, define

u(x′, ω) ≜ ∂p▷(x, ω)

∂n
− ∂p◁(x, ω)

∂n
, (2.43)

the sound field p(x, ω) can be described as:

p(x, ω) =

∫
∂Ω
u(x′, ω)G(x|x′, ω)dx. (2.44)

Then, assuming that u(x) is a secondary source distribution located on the
boundary ∂Ω, (2.44) states that the sound field can be described by the monopole
sources located on the boundary. The theory above, known as the simple source
approach [46], implies that spatial control can be achieved by controlling the
sound pressure on the boundary of the sound field. Note that the theory can be
implemented only if the sources and the controlling area are in the opposite side
of the boundary, i.e., interior field control with exterior sources or exterior field
control with interior sources.

2.5 Sound Field Reproduction Methods

2.5.1 Inverse Filter Based Method (A Numerical Approach)

The basic numerical approach introduced for sound field reproduction is based
on the simple source approach and an inverse filter [24,57].

Instead of using continuous secondary sources, the primary sound field p(x, ω)
is reproduced by a discrete loudspeaker array on the boundary of the sound field.
With L loudspeakers, the secondary sound field p̂(x, ω) can be described as

p̂(x, ω) =

L∑
l=1

G(x|x′
l, ω)dl(ω), (2.45)

where x′
l and dl(ω) denote the coordinates and the driving signal of the l-th

loudspeaker, respectively.
The primary field, which is observed atM observation points (or microphones)

{x1,x2, . . . ,xM}, can be expressed as a vector:

pω =
[
p(x1, ω), p(x2, ω), . . . , p(xM, ω)

]T
. (2.46)

The sound field can be reproduced when p̂(xm, ω) matches p(xm, ω) at every m ∈
[1,M]. Therefore, the driving signal should minimise the following reproduction
error:

ε(ω) = ||Gωdω − pω||22. (2.47)
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Here,

Gω =


G(x1|x′

1, ω) G(x1|x′
2, ω) . . . G(x1|x′

L, ω)
G(x2|x′

1, ω) G(x2|x′
2, ω) . . . G(x2|x′

L, ω)
...

...
. . .

...
G(xM|x′

1, ω) G(xM|x′
2, ω) . . . G(xM|x′

L, ω)

 , (2.48)

dω = (d1(ω), d2(ω), . . . , dL(ω))
T. (2.49)

are the matrix and vector of transfer functions and driving signals.
When L = M, the solution can be obtained using the inverse matrix of Gω.

When L ̸= M, the problem is solved by employing a least squares method with a
pseudo inverse matrix G†

ω:
dω = G†

ωpω, (2.50)

where
G†

ω = GH
ω (G

H
ωGω)

−1, (2.51)

(·)H denotes the Hermitian matrix and (·)−1 denotes the inverse matrix. Further-
more, because the inverse matrix of GH

ωGω often diverges, in general, the least
squares method is employed with a regularisation. The least squares method
with a Tikhonov regularisation expresses the driving function as:

dω = (GH
ωGω + λIL)

−1GH
ωpω, (2.52)

where λ is the regularisation parameter.
If the primary field is an impulse, the driving function is an inverse filter of the

transfer function. Thus, the method is the so-called inverse-filter-based method.
Because the method derives the driving function by matching the sound pressure
at observation points, it is also referred to as the pressure-matching method [15].

2.5.2 Wave Domain Method (An Analytical Approach)

An analytical approach is introduced whereby sound fields are transformed into
the wave domain and the driving function is derived in the wave domain. This
method is referred to as the wave domain method. Compared with the numerical
approach, this approach can derive the driving function analytically without using
an inverse matrix. Note that one of the most popular applications based on the
wave domain method is Ambisonics, which includes the traditional first-order
Ambisonics as well as higher-order Ambisonics [5, 29,33,58,59].

In this study, the comparisons are carried out for circular arrays. A wave
domain method based on CHE in (2.27) is introduced in this section. The CHE-
based method defines a circular boundary and derives the driving function by
matching the CHE coefficients of the primary and secondary fields in the wave
domain. Following the Kirchhoff-Helmholtz integral equation, with a circular
boundary, the field in either the interior or the exterior of the circle can be
controlled. Here, for both interior and exterior fields, a general spatial control
method based on CHE is introduced, as presented below.

Consider a secondary sound field with continuous sources located on a circle
of radius r0. Let G(r, ϕ|r0, ϕ′, ω) be the transfer function between a source at
(r0, ϕ

′) and an observation point at (r, ϕ), and let dϕ′(ω) be the driving function
of the source, then the sound field can be described as

p̂(r, ϕ, ω) =

∫ 2π

0
G(r, ϕ|r0, ϕ′, ω)dϕ′(ω)r0dϕ

′. (2.53)
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Applying CHE to the transfer function and the driving function,

G(r, ϕ|r0, ϕ′, ω) =
∞∑

ν=−∞
G̊ν(r|r0, k)ejν(ϕ−ϕ′), (2.54)

dϕ′(ω) =
∞∑

ν=−∞
d̊ν(k)e

jνϕ′
. (2.55)

G̊ν(r|r0, k) and d̊ν(k) denote the CHE coefficient of the transfer function
G(r, ϕ|r0, ϕ′, ω) and the driving function dϕ′(ω), respectively. Substituting into
the right side of (2.53),

p̂(r, ϕ, ω) = 2πr0

∞∑
ν=−∞

G̊ν(r|r0, k)d̊ν(k)ejνϕ, (2.56)

is obtained by employing the orthogonality of circular harmonics.
By matching the CHE coefficients of the primary sound field (2.33) and the

secondary sound field (2.56) for the circle of radius r,

p̊ν(r, k) = 2πr0G̊ν(r|r0, k)d̊ν(k). (2.57)

The CHE coefficient of the driving function is derived as

d̊ν(k) =
p̊ν(r, k)

2πr0G̊ν(r|r0, k)
, (2.58)

with the transfer function expanded with the Bessel or Hankel functions as

G(r, ϕ|r0, ϕ′, ω) =

{∑∞
ν=−∞ Ğν(k)H

(2)
ν (kr0)Jν(kr)e

jν(ϕ−ϕ′) r < r0∑∞
ν=−∞ Ğν(k)Jν(kr0)H

(2)
ν (kr)ejν(ϕ−ϕ′) r > r0

, (2.59)

the driving function can be derived as

d̊ν(k) =


p̆ν(k)

2πr0Ğν(k)Jν(kr0)
r < r0

p̆ν(k)

2πr0Ğν(k)H
(2)
ν (kr0)

r > r0
. (2.60)

Note that r is not included in the right side of the equation. Thus, d̊ν(k) is
radius independent once the interior or exterior field is selected. Finally, the
driving function is obtained by substituting (2.58) into (2.55):

dϕ′(ω) =
∞∑

ν=−∞

p̊ν(r, k)

2πr0G̊ν(r|r0, k)
ejνϕ

′
. (2.61)

Now consider the discrete secondary sources that sample the circle, e.g. a
circular loudspeaker array. Let L be the number of sources, then the sound field
is described as

p̂(r, ϕ, ω) =
L∑

l=1

G(r, ϕ|r0, ϕ′l, ω)dl(ω). (2.62)

Reapply discrete CHE [60] to G(r, ϕ|r0, ϕ′l, ω) and dl(ω) to obtain

p̂(r, ϕ, ω) =

L∑
l=1

N∑
ν=−N

G̊ν(r|r0, k)ejν(ϕ−ϕ′
l )

N∑
ν′=−N

d̊ν′(k)e
jν′ϕ′

l . (2.63)
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Here, N is the truncation order of the discrete CHE. The orthogonality of discrete
ejνϕ is derived.

˚̂pν(r, k) = LG̊ν(r|r0, k)d̊ν(k), (2.64)

[60]. By matching the CHE coefficients of the primary and secondary fields up
to the N -th order, the CHE coefficient of the discrete driving function is derived
as

d̊ν(k) =
p̊ν(r, k)

LG̊ν(r|r0, k)
. (2.65)

The discrete driving function is

dl(ω) =

N∑
ν=−N

p̊ν(r, k)

LG̊ν(r|r0, k)
ejνϕ

′
l . (2.66)

A Tikhonov regularisation can also be applied to this method to suppress the
output level of loudspeakers.

In contrast to the pressure-matching method, i.e., the alternative name of
inverse-filter-based method introduced in Sec. 2.4.2, the wave domain method
matches the CHE coefficients of the primary and secondary sound fields for each
mode (i.e. order) to derive the driving function. Therefore, the method is also
referred to as mode-matching method [60].

There is also a wave domain method based on plane wave decomposition. The
method, referred to as spectral division method (SDM), uses a planar or linear
boundary. The method which is usually applied to linear loudspeaker arrays is
explained in Appendix A.

It is also demonstrated that wave domain methods have common solutions
with the wave field synthesis and inverse-filter-based method if certain constraints
and approximations are applied [61,62]. In this paper, the proposals and discus-
sions mainly focus on the wave domain method.

2.6 Applications of Spatial Control

In this study, three important applications of spatial control are discussed: inte-
rior sound field reproduction, exterior sound field reproduction, and beamform-
ing. The basic models and evaluation criteria are introduced in this section.

2.6.1 Interior Sound Field Reproduction

In the case of an array with a closed contour, such as CLA, the theories above
indicate that either the interior sound field or the exterior sound field of the ar-
ray can be reproduced. The majority of conventional studies, including the one
involving the notable Ambisonics, focus on the interior sound field reproduction,
where the target controlling region is literally surrounded by the loudspeaker ar-
ray [5, 28, 29, 63–65]. As an example of this configuration, the listener can sit
at the centre of a room while the loudspeakers are arranged in a few directions
around the listener. As this is also the most common configuration of a surround
sound system, the interior sound field reproduction can be implemented on con-
ventional sound systems. In contrast, the listening area is limited by the scale of
the loudspeaker array. In a normally furnished room, the loudspeaker configura-
tion and reverberation can present additional issues. In this study, the interior
sound field reproduction is discussed only for ideal environments, i.e., large scale
loudspeaker arrays in free fields.
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Figure 2.6: A model of interior sound field reproduction. Control region is the
interior space Ω◁.

In the interior sound field reproduction, the primary sources are located in Ω▷

outside the closed boundary ∂Ω, while the control region is the region Ω◁ inside
∂Ω. A model of the interior sound field reproduction is illustrated in Fig. 2.6.

To evaluate the reproduction results, the most common index is used: the
reproduction error.

Reproduction Error

Let p(x, ω) and p̂(x, ω) be the complex sound pressure of a primary sound field
and a reproduced secondary sound field at an angular frequency of ω, respectively.
The reproduction error is calculated by

ε(x) = 10 log10
|p̂(x, ω)− p(x, ω)|2

|p(x, ω)|2
. (2.67)

The reproduction error is a normalised error which indicates the reproduction
accuracy at each position in space.

In this study, simple comparisons on interior sound field reproduction, e.g.,
the shape of the low-error region, are included. The evaluations are for a single
frequency only.

Example simulation of a CLA

An example on interior sound field reproduction using CLA is presented. The
primary sound field of an arriving plane wave is tested. The wave domain method
of Sec. 2.5.2 was employed for the example. The primary source can be described
as

p̊ν = jνAe−jνϕ// , (2.68)

where A is the amplitude of the primary source. For a plane wave primary source,
the direction of arrival is noted as ϕ//.

Figure 2.7 displays an example on reproducing a plane wave at 1000 Hz where
ϕ// =

π
2 : (a) is the target primary sound field, (b) is the reproduced sound field.
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(a) (b)

Figure 2.7: An example of reproducing the interior sound field of a plane wave.
(a) Primary sound field of a plane wave. (b) Reproduced secondary sound field
by CLA. Red crosses denote loudspeakers.

Figure 2.8: Reproduction error of the reproduced sound field.

In this study, only the real part of the sound field is displayed. The CLA was
an open array that had 180 loudspeakers and a radius of 1.5 m. The sound
field was calculated within a 4 m × 4 m with a grid spacing of 0.04 m interval.
The amplitude of the primary source was A = 1. The wave domain method was
employed for the example without a regularisation. The truncation order of CHE
was 30. Comparing (a) to (b), it is observed that the wavefront of the primary
source is reproduced in the secondary field.

Figure 2.8 displays the reproduction error (2.67) of the example above. The
results clearly demonstrate that the sound field in the control region is reproduced
with high accuracy (errors under -30 dB).
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Figure 2.9: A model of exterior sound field reproduction. The control region is
the exterior space Ω▷.

2.6.2 Exterior Sound Field Reproduction

The exterior sound field reproduction is the opposite of the interior reproduc-
tion in that the target controlling region is the field outside the enclosed area
surrounded by the loudspeaker array. [66, 67]. Therefore, a wide listening area
is guaranteed independent of the scale of the array. In addition, the exterior
sound field reproduction can not ignore reverberation which can produce a natu-
ral sound. Consider reproducing the radiation sound field of a musical instrument
that is recorded in an anechoic room: instead of a “clean” sound, exterior sound
field reproduction will generate the sound of the instrument played in the lis-
tening room. However, regarding the configuration of loudspeakers in exterior
sound field reproduction, the loudspeaker arrays are usually compact and consist
of fewer loudspeakers than in interior sound field reproduction, resulting in lower
reproduction accuracy.

Arrays, especially CLAs, used for exterior sound field reproduction are often
considered to be rigid arrays. There are two reasons for this: One is the forbidden
frequency issue [46] such that the open array used for exterior sound field repro-
duction tends to result in low radiation efficiency. The other is that generally
compact arrays are used for exterior sound field reproduction, making it difficult
to ignore the influence of the loudspeaker enclosure.

An important application of the exterior sound field reproduction is the fo-
cused source reproduction, which is also referred to as virtual source reproduc-
tion [54–56, 58]. Aiming to reproduce a virtual source outside the loudspeaker
array, this application is capable of implementing acoustic holography. Addi-
tionally, the sensation of a source jumping out of the loudspeaker array is an
impressive perceptual event, which is expected in the next generation of immer-
sive audio systems.

In the exterior sound field reproduction, the primary sources are located in Ω◁

inside the closed boundary ∂Ω while the control region is the region Ω▷ outside
∂Ω. The model is illustrated in Fig. 2.9.

In focused source reproduction, the reproduction defines a boundary ∂Ω en-
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Figure 2.10: A model of focused source reproduction. The control region is the
exterior space Ω▷ while the primary sources are outside the loudspeaker array.

closing both the loudspeaker array and the target focused source. Instead of the
whole field outside the loudspeaker array, the control region is reduced to the ex-
terior area of the boundary, which means that there is no perceptual area between
the array and the target source. A model of the focused source reproduction is
shown in Fig. 2.10.

The performance of exterior sound field reproduction was evaluated with re-
spect to three indices.

Reproduction Error

The reproduction error is the same as that of interior sound field reproduction,
calculated by (2.67). The reproduction error is selected as the first index.

Reproduction Error over region

The performance of the exterior sound field was evaluated over the control region
to make further comparisons easier. The reproduction error over a region Λ is
calculated by

εΛ(ω) = 10 log10

∫
Λ |p̂(x, ω)− p(x, ω)|2dx∫

Λ |p(x, ω)|2dx
. (2.69)

As the control region is the infinite exterior field, the calculations are approxi-
mated by using a sample ring region. In this study, the sample ring region was
selected as Λ = {x|0.4 ≤ |x| ≤ 4}.

Maximum Controllable Frequency

The last index for evaluating the performance of exterior sound field reproduction
is the maximum controllable frequency. For most configurations, the performance
is better with lower frequencies than with higher frequencies, as exemplified by
the results of CLA, presented later in this section. Setting a threshold of −15 dB
in this study for reproduction, it is expected that for a specific frequency, the error
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(a) (b)

Figure 2.11: An example on reproducing a focused source. (a) Primary sound
field of the target source. (b) Reproduced secondary sound field by a CLA. Red
crosses denote loudspeakers. Green star denotes the target focused source.

will be higher than the threshold. This is referred to as the maximum controllable
frequency in this paper. Note that the maximum controllable frequency is roughly
related to the frequency at which spatial aliasing occurs.

Example simulation on a CLA

The example is that of an exterior sound field reproduction employing the wave
domain method on a rigid CLA. The primary sound field of a primary source can
be described as

p̊ν = − j
4
AJν(kr⊚)e−jνϕ⊚ , (2.70)

where A is the amplitude of the primary source. As the primary source should
be inside ∂Ω, it is not possible to have a plane wave source for the primary field.
Thus, the cylindrical wave is the primary source with coordinates x⊚ = (r⊚, ϕ⊚).
The transfer function of a rigid CLA (where loudspeakers are mounted to the
surface of a circle baffle) is [B6]:

Grigid(r, ϕ|r0, ϕ′, ω) =
∞∑

ν=−∞
− e−jνϕ′

2πkr0H
(2)′
ν (kr0)

H(2)
ν (kr)ejνϕ, (2.71)

where r0 is the radius of the CLA.
Figure 2.11 displays the example of 1000 Hz. In reproducing the focused

source at (r⊚, ϕ⊚) = (0.3 m, π2 ): (a) is the target primary sound field, (b) is the
reproduced sound field. The CLA was a rigid array of radius 0.15 m consisting
of 30 loudspeakers. The sound field was calculated within a 2 m × 2 m space
with a grid spacing of 0.02 m interval. The amplitude of the primary source
was A = 1. In the example, the wave domain method without regularisation
was employed. Truncation order of CHE was set to ⌈(L − 1)/2⌉ = 14 (which is
the maximum number of orthogonal bases that can be synthesised with L loud-
speakers). Comparing (a) to (b), it is observed that the wavefront of the primary
source is reproduced in the secondary field. However, Fig. 2.11(b) indicates that
there was high level of sound pressure in the area close to the loudspeakers. This
means loudspeakers have high level of input signals, i.e., high filter gain, resulting
in distortions and a decline in performance in practical environments. Therefore,
it is important to avoid such situations.
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Figure 2.12: An example on reproducing a focused source with Tikhonov regu-
larisation.

(a) (b)

Figure 2.13: Reproduction error of the reproduced sound field. (a) Without
regularisation. (b) With regularisation.

To avoid high output levels, Tikhonov regularisation was employed for exterior
sound field reproduction. In this study, the regularisation was applied to all
driving functions that had output level (calculated as 10 log10 |dl(ω)/A|2) higher
than 0 dB to suppress the maximum level to 0 dB. An example of regularised
driving function is illustrated in Fig. 2.12. Compared with the primary sound field
of Fig. 2.11(a) the sound field is not perfectly reproduced whereas the silhouette of
the wavefront is roughly maintained. The sound pressure around the loudspeakers
(or the output level of loudspeakers) is significantly reduced from 53.6 dB to -
0.2 dB.

The reproduction error of the two examples are shown in Fig. 2.13. In contrast
to the high reproduction accuracy in (a), the regularised method produced higher
yet acceptable error in the control region. In (b), the error is lower in the black
striped areas.

The reproduction error over the control region of the regularised example is
shown in Fig. 2.14. The dash-dot line denotes the threshold for reproduction as
−15 dB, the maximum controllable frequency were 1000 Hz.
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Figure 2.14: Reproduction error over a region.
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2.6.3 Beamforming

Beamforming is one of the most important applications of spatial control [11–15,
68–71]. It is highly correlated with sound field reproduction. The exterior sound
field reproduction, especially when the CHE-based method is applied, reproduces
the complex sound pressure on a circle. This, in a wide sense, corresponds to
complex directivity control. Thus, understanding the reproduction of the exterior
sound field of a primary source can be interpreted as reproducing the directivity
of the source, whether it is on or off the centre. Therefore, instead of reproducing
the directivity of a source, controlling the directivity or forming a beam can also
be considered as a kind of sound field reproduction.

Although beamforming and exterior sound field reproduction are similar tech-
niques, they differ in their objectives and methods. Therefore, the discussions on
beamforming are included as part of spatial control. Beamforming is a straight-
forward task when a simple target beam is set. In addition, the conclusions
drawn from beamforming might have more general applicability than focused
source reproduction.

In this study, the Minimum Variance Distortionless Response (MVDR) beam-
former [9, 10, 72] is evaluated for performance on beamforming. The MVDR
beamformer can produce a consistent distortionless output on constraint points
i.e., the look direction, while minimising the radiation power in directions of sup-
pression. The MVDR beamformer is ideal for loudspeakers because it can retain
the frequency response of the input signal.

Let M(sup) be the number of suppression points and M(con) be the number
of constraint points. With L loudspeakers, the method is based on constrained
minimisation:

min
w(ω)

w(ω)HR(ω)w(ω)

subject to C(ω)w(ω) = f , (2.72)

where R(ω) = S(ω)HS(ω), S(ω) is a M(sup) × L transfer function matrix between
the loudspeakers and suppression points; C(ω) is a M(con) × L transfer function
matrix between the loudspeakers and constraint points; and w is a L × 1 filter
vector. The M(con) × 1 constraint vector f are the target sound pressure on the
constraint points. For a general MVDR beamformer, the f is set to 1 for the look
directions and 0 for null directions. The minimisation problem can be solved with
a Lagrange multiplier vector λ and a Lagrangian function:

L(w,λ) = w(ω)HR(ω)w(ω) + λH(C(ω)w(ω)− f) + (w(ω)HC(ω)H − fH)λ.
(2.73)

The partial differential on w(ω)∗ is

∂L(w,λ)
∂w(ω)∗

= R(ω)w(ω) +C(ω)Hλ. (2.74)

The minimum corresponds to the point where this partial differential equals to 0
such that

w(ω) = −R(ω)−1C(ω)Hλ. (2.75)

Substitute the equation into the constraint condition to get

−C(ω)R(ω)−1C(ω)Hλ = f , (2.76)
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thus

λ = −(C(ω)R(ω)−1C(ω)H)−1f . (2.77)

Finally the MVDR filter is derived by

w(ω) = (C(ω)R(ω)−1C(ω)H)−1R(ω)−1C(ω)Hf . (2.78)

In addition, a Tikhonov regularisation can be employed to suppress the am-
plitude of the filters. The filter can be derived as

w(ω) = (C(ω)R(reg)(ω)−1C(ω)H)−1R(reg)(ω)−1C(ω)Hf , (2.79)

where R(reg)(ω) = S(ω)HS(ω) + λIL and λ is the regularisation parameter.
The performance of beamforming is evaluated on four indices. The first one

is the beam pattern evaluated at a single frequency. The other three are the
directivity index (DI), beam width (BW), and side-lobe level (SLL) evaluated
over a range of frequencies.

Beam pattern

Beam pattern refers to the directivity of the beam. It is the most intuitive way to
understand a beam including the beam width, side lobes, etc. The beam pattern
is calculated as

D(ϕ, ω) [dB] = 10 log10
||pϕ(ω)||2

||pφ(ω)||2
, (2.80)

where ||pϕ(ω)||2 is the power in direction ϕ, and φ is the look direction of the
beam. Figure 2.15 displays an example beam pattern of a directional source. The
x-axis in the figure is the relative angle (ϕ− φ). The y-axis represents the beam
pattern.

Directivity Index

Directivity index is defined as the level of enhancement in the look direction of a
directional source over all directions. It is generally used to evaluate the strength
of a beam. A high DI indicates that the source has a strong directivity [12,70,73].
Herein, DI is calculated as,

DI(ω) [dB] = 10 log10
2π||pφ(ω)||2∫ 2π

0 ||pϕ(ω)||2 dϕ
. (2.81)

Beam Width

Beam width is defined as the angle between the half-power (−3 dB) points of
the main lobe and is used to evaluate the narrowness of the main beam. In
transaural [74, 75] and personal audio [71] studies, a narrow main beam can be
beneficial. The BW is displayed in Fig. 2.15 and calculated as,

BW(ω) [degree] = 2

∣∣∣∣∣arg min
ϕ

(
1

2
||pφ(ω)||2 − ||pϕ(ω)||2)− φ

∣∣∣∣∣× 360◦

2π
. (2.82)
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Figure 2.15: An example beam.

Side Lobe Level

The side lobe level describes the maximum level of the side lobe relative to the
main lobe in decibels and is also evaluated at only observation points. The SLL is
displayed in Fig. 2.15 and is calculated using the findpeak function in MATLAB.

SLL(ω) [dB] = 10 log10
||pφ(ω)||2

||pϕ̄(ω)||2
, (2.83)

where ϕ̄ is the second peak of the directivity pϕ.
In summary, higher DI, lower BW and lower SLL represent better perfor-

mance. Moreover, BW and SLL might have trade-offs. Spatial aliasing, which is
not expected in general, offers a high BW along with a high SLL.

Example simulation on a CLA

As an example, beamforming was applied to a rigid CLA. The CLA had L = 30
loudspeakers and a radius of r0 = 0.15 m. The MVDR beamformer was employed.
One-hundred-and-forty-four control points were set uniformly on a circle of radius
2 m: one constraint point in the look direction and 143 suppression points in other
directions. The look direction was φ = π

2 . The constraint vector was f = 1
8π

for all frequencies and included radius-based attenuation. The observation points
were set on the same circle as those of the control points but with an angle interval
of 0.5◦, so there were 720 points in the set. As explained above, attention should
be paid to the output level of the loudspeakers. For beamforming, Tikhonov
regularisation was also applied as explained in the section on analytical methods
to suppress filter gain to under 0 dB.

The beam pattern of the example beam is displayed in Fig. 2.16 for 1000 Hz.
The results indicate that the beam has high energy in the look direction.
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Figure 2.16: Beam pattern at 1000 Hz of the example beam.

Figure 2.17: Directivity index of the example beam.
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Figure 2.18: Beam width of the example beam.

The DI of the example beam is displayed in Fig. 2.17. The DI of the example
increases with frequency, which means that the beam has higher energy focus in
the look direction at high frequencies.

In this study, the BW was calculated only at observation points, meaning that
its results are discontinuous at intervals of 0.5◦. The BW of the example beam is
displayed in Fig. 2.18. The BW decreases with increasing frequency, indicating
that the main beam is narrower at high frequencies.

The SLL of the example beam is displayed in Fig. 2.19. The results demon-
strate that SLL is not significantly affected by frequency. The maximum fre-
quency in the figure, 4000 Hz, is under the aliasing frequency of the CLA (5411 Hz).
The aliasing frequency of the CLA was approximated by cL

4πr0
.
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Figure 2.19: Side lobe level of the example beam.
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2.7 Summary

In this chapter, the theory of spatial control was introduced. The fundamentals
of sound field reproduction were explained from the mathematical and physics
point of view. The spatial Fourier transforms in Cartesian and polar coordinate
systems were also explained. In addition, two major methods were introduced for
sound field reproduction, namely, the inverse-filter-based and the wave domain
methods. Finally, the topics of interior sound field reproduction, exterior sound
field reproduction, and beamforming were introduced, discussed, and evaluated.
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Chapter 3

Multiple rigid circular loudspeaker array

In this chapter, a multiple circular loudspeaker array model [76, 77] is proposed
in an attempt to diversify the spatial control. The array model consists of multi-
ple compact CLAs. For reasons explained in Sec. 2.6.2, all CLAs are considered
rigid. The transfer function of the array is introduced by considering the mul-
tiple scattering effect of the array. Then, a sound field reproduction method is
proposed based on CHE. The performance of MCLA is discussed with respect
to four topics: mode strength, which is a general property of MCLA; interior
sound field reproduction; exterior sound field reproduction with implementation
on focused source reproduction; and beamforming. Finally, a detailed analysis
is carried out on the simplest model, 2CLA, selected for convenience. Note that
MCLAs are named based on the number of CLAs such that in 2CLA, there are
two circular loudspeaker arrays.

3.1 Multiple scattering effect

Unlike a simple scatter, multiple scatters reflect a wave between the scatters
infinitely many times, complicating the derivation of the transfer function for the
multiple rigid circular arrays. The calculation of multiple scattering is introduced
in this section.

A multiple scattering model with parallel cylindrical rigid baffles has been
discussed in previous studies [78]. The scattering properties of this model have
been explored not only in acoustics, but also in studies of electromagnetic waves.
Most studies consider the cylindrical coordinate system with the origin at the
centre of each cylinder.

Letting O be the centre of a sound field, a reference coordinate system is
established with O as the origin. Assuming that there are S scatters, i.e., rigid
baffles, in the sound field, S coordinate systems are established for the scatters.
The origins are set at the centre of each scatter, expressed as Os (s ∈ {1, 2, ..., S}
as an index). The location of centre Os in the reference coordinate system is
described as (Rs,Φs). Thus, any point in the space can be represented by S+ 1
sets of coordinates: x = (r, ϕ) and xs = (rs, ϕs). A configuration of S = 3 is
illustrated in Fig. 3.1.

The wave in a sound field with multiple scatters can be described by the sum of
the direct sound and its reflections. Consider a single reflection, in which a sound
wave scattered by baffle s is an incident wave on scatter r (r ∈ {1, 2, ..., S}, r ̸= s).
The Graf’s addition theorem [79] can be used for this transform. Therefore, any
wave incident on baffle r that had been scattered by (or radiated from) baffle s
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Figure 3.1: A configuration of three scatters.

can be expressed as:

p◁r (rr, ϕr, ω) =
∞∑

µ=−∞

∞∑
ν=−∞

p̆▷ν,s(k)Hν(krs)e
jνϕsHµ−ν(kRr,s)e

j(µ−ν)Φr,sJµ(krr)e
jµϕr .

(3.1)

The opposite situation in which a wave incident on baffle s had been scattered
by (or radiated from) baffle r can be expressed as

p◁s (rs, ϕs, ω) =
∞∑

µ=−∞

∞∑
ν=−∞

p̆▷ν,r(k)Hν(krr)e
jνϕrHµ−ν(kRs,r)e

j(µ−ν)Φs,rJµ(krs)e
jµϕs ,

(3.2)

where (Rr,s,Φr,s) are the coordinates of the centre of baffle r in coordinate system
s and vice versa. Note that rsr = rrs and ejϕsr = −ejϕrs . The field incident on
baffle r is reflected from its surface. The scattered wave (i.e., reflection) can
be derived with the Neumann boundary condition, which requires the particle
velocity on the baffle to be 0 in the normal direction [46]. For circular scatters,
the relation between an incident wave and its reflection is calculated by

p̆▷
′

ν,s(k) = p̆
(scattered)
ν,s (k) = − J ′

ν(kr0,s)

H ′
ν(kr0,s)

p̆◁ν,s(k) (3.3)

where r0,s is the radius of the s-th circular scatter. Thus, it is possible to calculate
all the reflections among all rigid baffles.
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3.2 Transfer function of the multiple rigid circular loudspeaker
array

Let the zero-th reflection p̆▷ν,s (the direct sound) be the radiation of a loudspeaker
in MCLA. Clearly, the transfer function of the loudspeaker is the sum of all
reflections.

The order of the circular harmonic expansion is truncated at N as the error
is sufficiently small. The transfer function of the MCLA model can be expressed
as a matrix product (details on the calculation can be found in [76,78] ), referred
to as the T-matrix method [78]:

G(MCLA)(r, ϕ|r′, ϕ′, ω) = ψT

(
R∑
i=0

Ti

)
γ, (3.4)

where R denotes the number of reflections and T0 := I(2N+1)S. So,

ψ =
[
ψT

1 ,ψ
T
2 , . . . ,ψ

T
S

]T
, (3.5)

γ = [0(s−1)×(2N+1),γ
T
s ,0(S−s)×(2N+1)]

T. (3.6)

T =


0(2N+1)×(2N+1) T12 . . . T1S

T21 0(2N+1)×(2N+1) . . . T2S

...
...

. . .
...

TS1 TS2 . . . 0(2N+1)×(2N+1)

 , (3.7)

With the index s ̸= r ∈ S, we have

γs = [γ−N,s(x
′
s, k), γ−N+1,s(x

′
s, k), . . . , γN,s(x

′
s, k)]

T, (3.8)

ψs = [ψ−N,s(xs, k), ψ−N+1,s(xs, k), . . . , ψN,s(xs, k)]
T, (3.9)

Tsr =


T sr
−N,−N (k) T sr

−N,−N+1(k) . . . T sr
−N,N (k)

T sr
−N+1,−N (k) T sr

−N+1,−N+1(k) . . . T sr
−N+1,N (k)

...
...

. . .
...

T sr
N,−N (k) T sr

N,−N+1(k) . . . T sr
N,N (k)

 , (3.10)

where

γν,s(x
′
s, k) = − e−jνϕ′

s

2πkr0,sH ′
ν(kr0,s)

, (3.11)

ψν,s(xs, k) = Hν(krs)e
jνϕs , (3.12)

T sr
ν,µ(k) = −

J ′
µ(kr0,r)

H ′
µ(kr0,r)

Hν−µ(kRr,s)e
j(ν−µ)Φr,s . (3.13)

Note that r′s = r0,s if the source is on the s-th baffle. Here, ψ and γ contain
position information on the control points and loudspeakers, respectively, and T
is a matrix that transforms a scattered sound into a reflected scattered sound.
For computational convenience, the number of reflections is truncated to a finite
number R.

An example is included to illustrate the necessity of considering the effects of
multiple scattering. Figure 3.2 displays the relative amplitude for each reflection
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Figure 3.2: Relative amplitude of each reflection of a 2CLA. The relative am-
plitude is evaluated from the sound pressure measured by a microphone at
(0m, 2m). The amplitude of the direct sound (R = 0) is set to 0 dB as a reference.
The truncation order is N = 30.

for a 2CLA, with arrays centred at (−0.25m, 0m) and (0.25m, 0m). The radii of
both arrays are 0.15m. The system is driven by a loudspeaker at (−0.1m, 0m).
In this type of setup, the reflections have a pronounced effect. The relative ampli-
tudes of the first and second reflections are −6.9 dB and −13.5 dB, respectively.
Note that, conventionally, the sound field should be reproduced within an error
of −15 dB (about 4%). This indicates the necessity of taking into consideration
multiple scattering, especially for higher frequencies.

3.3 Circular harmonics based sound field reproduction method

With the transfer function above, an inverse-filter-based method can be applied
to the array model [76,80]. Furthermore, an analytical solution for MCLA can be
obtained by applying a wave domain method to the array model [77]. However,
simply applying the wave domain method is difficult as the transfer functions of
loudspeakers on different baffles are expressed in different coordinate systems. In
recent years, studies of multi-zone sound reproduction and higher-order sources
[81,82] have identified methods for controlling the sound in non-concentric circular
areas. There are two main goals in applying these methods:

• To expand the sound field using orthogonal bases, such as Bessel and Hankel
functions.

• To describe the sound field in a reference coordinate system using Graf’s
addition theorem.
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Inspired by such methods, a wave domain method for 2CLA is proposed. The
method matches the sound-field coefficients by transforming the coordinate sys-
tems while taking into account the multiple scattering effect [77].

As in (2.53) and (2.55), the reproduced sound field of S discrete loudspeaker
arrays (with Ls loudspeakers on the s-th array) can be expressed as:

p̂(r, ϕ, ω) =

S∑
s=1

[
Ls∑
l=1

G(MCLA)(rs, ϕs|rl,s, ϕl,s, ω)
Ns∑

ν=−Ns

d̊ν,s(k)e
jνϕl,s

]
, (3.14)

whereG(MCLA)(rs, ϕs|rl,s, ϕl,s, ω) is the transfer function in Sec. 3.1. Here, (rl,s, ϕl,s)
is the position of the l-th loudspeaker in the s-th array. The truncation order for
the circular harmonic expansion is set as Ns = ⌊(Ls − 1)/2⌋. With the orthogo-
nality of ejνϕ, (3.14) can be transformed to:

p̂(r, ϕ, ω) = ψT

(
R∑
i=0

Ti

)
Γ̊d̊ (3.15)

where

Γ̊ =


Γ̊T
1 0(2N2+1)×(2N+1) . . . 0(2NS+1)×(2N+1)

0(2N1+1)×(2N+1) Γ̊T
2 . . . 0(2NS+1)×(2N+1)

...
...

. . .
...

0(2N1+1)×(2N+1) 0(2N2+1)×(2N+1) . . . Γ̊T
S


T

, (3.16)

Γ̊s = Ls

 0(N−Ns)×(2Ns+1)

diag(̊γ−Ns,s(k), γ̊−Ns+1,s(k), . . . , γ̊Ns,s(k))
0(N−Ns)×(2Ns+1)

 , (3.17)

γ̊ν,s(k) = − 1

2πkr0,sH ′
ν(kr0,s)

, (3.18)

d̊ =
[
d̊T
1 , d̊

T
2 , . . . , d̊

T
S

]T
, (3.19)

d̊s = [d̊−Ns,s(k), d̊−Ns+1,s(k), . . . , d̊Ns,s(k)]
T. (3.20)

To derive a relation between the driving functions of each mode and the sound-
field coefficients in the circular harmonic domain, it is necessary to perform a
coordinate transformation. ψν,s, expressed in the coordinate system at the origin
Os can be transformed to the coordinate system at O [33]:

ψν,s(xs, k) =
∞∑

ν′=−∞
(−1)ν−ν′Jν−ν′(kRs)Hν′(kr)e

j(ν−ν′)Φsejν
′ϕ. (3.21)

Here, Graf’s addition theorem [79] has been applied; therefore, the conditions
ν ′max ≫ ν and r > Rs must be satisfied. By truncating ψ in (3.15) for sufficiently
large N , it can be transformed to:

ψ = K̆χ, (3.22)

where
χ = [χ−N (x, k), χ−N+1(x, k), . . . , χN (x, k)]T, (3.23)
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χν(x, k) = Hν(kr)e
jνϕ, (3.24)

K̆ =
[
K̆T

1 , K̆
T
2 , . . . , K̆

T
S

]T
, (3.25)

K̆s =


κ̆0,s(k) κ̆−1,s(k) . . . κ̆−2N,s(k)
κ̆1,s(k) κ̆0,s(k) . . . κ̆−2N+1,s(k)

...
...

. . .
...

κ̆2N,s(k) κ̆2N−1,s(k) . . . κ̆0,s(k)

 , (3.26)

κ̆ν,s(k) = (−1)νJν(kRs)e
jνΦs . (3.27)

Then the reproduced sound field can be transformed to

p̂(r, ϕ, ω) = χTĞd̊, (3.28)

where

Ğ = K̆T

(
R∑
i=0

Ti

)
Γ̊. (3.29)

The desired exterior sound field at the virtual observation points with a limited
order N can be expressed as

p(r, ϕ, ω) =
N∑

ν=−N

p̆νHν(kr)e
jνϕ (3.30)

= χTp̆, (3.31)

where p̆ν is the sound field coefficient [46]:

p̆ = [p̆−N (k), p̆−N+1(k), . . . , p̆N (k)]T. (3.32)

A relation between each mode of the loudspeaker arrays and the sound-field
coefficient can be obtained from (3.29). Thus, the driving function in the circular
harmonic domain is calculated. However, as this relation is not orthogonal, the
driving function cannot be obtained directly. Therefore, a least-squares method
was applied with a Tikhonov regularisation [10] as follows:

d̊ = (ĞHĞ+ λI∑S
s=1(2Ns+1))

−1ĞHp̆, (3.33)

where λ is a regularisation parameter.
As in (2.55), the driving function for the l-th loudspeaker on the s-th array

can be obtained from

dl,s(ω) =

Ns∑
ν=−Ns

d̊ν,s(k)e
jνϕl,s . (3.34)

Intrinsically, this method is similar to methods with higher-order sources [65,
81,83] and higher-order microphones [84–86]. This method is unique in that here
the influence of the multiple scattering between the rigid baffles is taken into
account.
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(a) 500Hz (b) 1000Hz

(c) 2000Hz (d) 4000Hz

Figure 3.3: Mode strength of a rigid 2CLA. The two loudspeaker arrays have rigid
surfaces with radii of 0.15m and are located at (−0.25m, 0m) and (0.25m, 0m),
respectively.

3.4 Mode strength

Here, a general property of MCLA: the mode strength is explored. In conventional
studies, mode strength has been used to evaluate system efficiency. The mode
strength of 2CLA is discussed as an example of MCLA.

In (3.33), the coefficient of the transfer function, Ğ, is the primary factor
affecting reproduction efficiency. Here, the focus is on the power of Ğ, which
represents the mode strength, to determine how array geometry affects sound
field reproduction.

The power of Ğ is shown in Fig. 3.3. The x-axis represents the driving modes
of 2CLA, and the y-axis represents the observation modes for the secondary
sound field. A driving mode is the mode used for driving loudspeakers, whereas
observation mode is the mode of the circle centred at the origin O. The results
demonstrate how an observation mode can be synthesised from the driving modes.
A high mode strength indicates that the driving mode can easily be used to
synthesise the observation mode.

Clearly, driving a single mode of the 2CLA generates multiple modes in the
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(a) 500Hz (b) 1000Hz

(c) 2000Hz (d) 4000Hz

Figure 3.4: Mode strength of a rigid CLA. The loudspeaker array has rigid sur-
faces with a radius of 0.15m and is located at (0m, 0m).

field. In contrast, each mode of CLA is usually related to only one observation
mode, as shown in Fig. 3.4. Thus, two properties of MCLA are obtained:

1. The lower modes of a driving function can be used to synthesise the higher
modes of the field. This indicates that 2CLA has good potential for repro-
ducing complex fields.

2. Conversely, higher driving modes are needed to synthesise lower modes. If
only lower modes are used, there will be errors and the amplitudes will
depend on the frequency. Therefore, 2CLA is less useful in reproducing
simple fields.

The mode strength of an open 2CLA is shown in Fig. 3.5. Comparing it with
Fig. 3.3, it can be seen that the off-centred open array also provides a complex
mode connection, whereas the mode strength is weaker than that of the rigid
2CLA.
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(a) 500Hz (b) 1000Hz

(c) 2000Hz (d) 4000Hz

Figure 3.5: Mode strength of an open 2CLA. The two loudspeaker arrays are open
arrays with radii of 0.15m and are located at (−0.25m, 0m) and (0.25m, 0m),
respectively.
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(a) Reproduced secondary sound field (b) Reproduction error

Figure 3.6: An example of the interior sound field reproduction using an MCLA.
Only the first reflection was considered both in the derivation of the driving
function and calculation of the sound field, i.e. identical to the method in [81].

3.5 Interior sound field reproduction

The idea of using MCLA for interior sound field reproduction was proposed pre-
viously [81, 83, 87, 88] where MCLA is referred to as a higher-order source. As
the comparison on using an MCLA versus a single CLA has been discussed in
previous studies, it is omitted in the thesis apart from referring to it by quoting
the conclusion [81]:

‘Using the higher order sources allows a trade-off between the band-
width of reproduction and the errors that occur above the spatial Nyquist
frequency (i.e., the frequency at which spatial aliasing occurs), by lim-
iting the maximum mode order that is controlled by the array.’

However, the previous studies have not considered the multiple scattering
effect of MCLA. The transfer function of the higher-order source only considered
the first reflection of the rigid baffle the source mounted on. Here, the method
including multiple scattering is revised and the results are presented.

An example of the original method in [81] is shown in Fig. 3.6. A simula-
tion was conducted to reproduce a plane wave at 1000Hz, as was the case in
Fig. 2.7(a). The simulation was carried out with 12 CLAs uniformly located on a
circle of radius 1.5m. Each CLA had 15 loudspeakers uniformly mounted on the
rigid surface. The radii of the CLAs were equally set to 0.15m. The reproduced
secondary sound field is shown in (a). The maximum orders for deriving the
driving functions were set to N = 30 and Ns = ⌈(15−1)/2⌉ = 7. For the original
method, only the first reflection was considered in the simulation: both in the
derivation of the driving function and calculation of the sound field. This means
that the transfer function is matched and that the performance displayed in (b)
is ideal.

However, when the multiple scattering effect in the sound field (where it ac-
tual exists) is considered without changing the driving function, the mismatched
transfer functions result in errors. As shown in Fig. 3.7, the wavefront has lost its
shape and the errors are higher. Up to the twelfth reflection was considered. The
maximum orders were truncated at N = 60 while calculating the sound field.

Then, with the proposed method, the multiple scattering effect is considered
during the derivation of the driving function. The transfer functions matched
again and provided the ideal reproduction of Fig. 3.8.
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(a) Reproduced secondary sound field (b) Reproduction error

Figure 3.7: An example of the interior sound field reproduction using an MCLA.
Only the first reflection was considered during the derivation of the driving func-
tion whereas multiple scattering was included in the calculation of the sound
field.

(a) Reproduced secondary sound field (b) Reproduction error

Figure 3.8: An example of the interior sound field reproduction using an MCLA.
The multiple scattering was included both during derivation of the driving func-
tion and calculation of the sound field.
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CLA 2CLA 3CLA (linear)

3CLA (triangular) 5CLA

Figure 3.9: Contours of five arrays.

3.6 Exterior sound field reproduction

In this section, the effect of MCLA on exterior sound field reproduction is dis-
cussed. The performance is evaluated by implementing focused source reproduc-
tion. The discussion is on five different array configurations: (i) a CLA with 30
loudspeakers as a reference; (ii) a 2CLA with 15 loudspeakers in each array; (iii)
a ‘linear’ 3CLA with 10 loudspeakers in each array; (iv) a ‘triangular’ 3CLA with
10 loudspeakers in each array; and (v) a 5CLA with 6 loudspeakers in each array.
These array contours are shown in Fig. 3.9.

Each CLA was considered rigid, and within each CLA, loudspeakers were
uniformly mounted onto the rigid surface. In all simulations, up to the twelfth
reflection was considered, and the maximum order was truncated at N = 60 in
the calculation of the transfer functions.

In the derivation of the driving function, N was truncated at 30 and Ns was
truncated according to the number of loudspeakers in each CLA. As explained
in Sec. 2.6.2, Tikhonov regularisation was applied to suppress the filter gain to
under 0 dB in all of the simulations above.

3.6.1 Comparison with CLA

To explore the features of MCLA, three groups of arrays were selected for com-
parison:

Group A Group A consists of CLA, 2CLA, and 3CLA (linear). The radii of
all CLAs were set to 0.15m. The inter-array distances (between the
centre of two arrays) for 2CLA and 3CLA were both 0.5m. The
centre of the single CLA was (0m, 0m); the centres of the 2CLA
were (−0.25m, 0m) and (0.25m, 0m); the centres of the 3CLA were
(−0.5m, 0m), (0m, 0m), and (0.5m, 0m). Two kinds of primary sound
field were picked: (i) a focused source at (0m, 0.5m); (ii) twenty ran-
dom focused sources inside a 0.5m circle. For (i), because of the asym-
metricity of the arrays, the rotated (by exchanging the x and y coordi-
nates of the centres) 2CLA and 3CLA were included in the comparison.

Group B Group B consists of CLA, off-centred 2CLA, and off-centred 3CLA
(linear). The radii of all CLAs were set to 0.15m. The inter-array
distances (between the centre of two arrays) for 2CLA and 3CLA were
both 0.5m. The centre of the single CLA was (0m, 0m); the centres of
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the 2CLA were (0m,−0.5m) and (0m, 0m); the centres of the 3CLA
were (0m,−1m), (0m,−0.5m), and (0m, 0m). The target focused
source was set at (0m, 0.5m).

Group C Group C consists of CLA, 3CLA (triangular), and 5CLA . The radius
of the single CLA was set to 0.3m; the radii of the 3CLA were set
to 0.1m; radii of the 5CLA were set to 0.06m. The single CLA was
located at the centre of the sound field; the CLAs of the 3CLA were
uniformly located on a circle of radius 0.2m; the CLAs of the 5CLA
were uniformly located on a circle of radius 0.24m. The target focused
source was set at (0m, 0.5m).

The reason is explained as follows: Group A is selected to simply check the per-
formance when additional CLAs are added. The 2CLA and 3CLA are expected
to outperform the single CLA. Note that specific MCLAs in group A were located
closer to the target source of (i), sound field reproduction would be easier in such
a case. In Group B, on the other hand, the distances between the MCLAs and
the target source are fixed. In Group C, a comparison similar to that of the
interior sound field reproduction was adopted: a “complete” CLA was compared
to distributed MCLAs. All arrays in group C are tangent to a circle with radius
of 0.3m. The array radii were selected to maintain the same loudspeaker interval
for all arrays.

Group A

In Figs. 3.10–3.14, the results of reproducing a focused source at 1000Hz are dis-
played. Figure 3.10(a) is the target primary sound field where a focused source is
set at (0m, 0.5m). Comparing the wavefronts and errors in the figures, it is ob-
served that the MCLAs, especially the rotated ones, outperform the conventional
CLA.

To exclude direction dependence in the results, a simulation with 20 random
target focused sources was conducted. All the virtual sources had amplitudes
randomised between 0 and 1, phases randomised between 0 and 2π, positions
randomised inside a circle of radius 0.5m, and first-order directivities randomised
whereby each directivity was synthesised by a combination of a monopole and a
dipole in a random direction and with a random weight. The total amplitude was
subsequently normalised. The array configuration and other conditions were the
same as above, excluding rotations. The results of reproducing random multiple
focused sources are displayed in Figs. 3.15–3.17. Without direction dependence,
it is observed that MCLAs still outperform the conventional CLA.

Next, the arrays in the frequency band of 200-4000Hz were compared. The
primary field included a focused source at (0m, 0.5m). The error over the control
region was evaluated by (2.69) in the sample ring region:

Λ = {x | ∀ 1 ≤ l ≤ L, 0.1 + max (r⊚, rl) ≤ |x| ≤ 4}, (3.35)

rl is the distance from the origin to the l-th loudspeaker of the MCLA. The results
are shown in Fig. 3.18. The “on x” and “on y” legends denote the MCLA along
the x-axis and along the y-axis, respectively.

With the threshold of reproduction set to −15 dB (the dash-dot line), all
MCLAs displayed higher maximum controllable frequencies than the single CLA.
The rest of the features are summarised as follows:

• 3CLA outperformed 2CLA (further outperformed CLA) for most conditions
with spikes of errors at specific frequencies.
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(a)

(b) (c)

Figure 3.10: Reproducing a focused source using a CLA. (a) Primary sound
field of the target source. (b) Reproduced secondary sound field by CLA. (c)
Reproduction error.

• MCLAs performed better for the “on y” layout. This can be attributed to
the array and focused source being closer to each other as a result of the
layout.

• Apart from the threshold, MCLAs displayed higher error at high frequencies
(above 2000Hz).
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(a) (b)

Figure 3.11: Reproducing a focused source using 2CLA. (a) Reproduced sec-
ondary sound field by 2CLA. (b) Reproduction error.

(a) (b)

Figure 3.12: Reproducing a focused source using a rotated 2CLA. (a) Reproduced
secondary sound field by 2CLA. (b) Reproduction error.

(a) (b)

Figure 3.13: Reproducing a focused source using 3CLA. (a) Reproduced sec-
ondary sound field by 3CLA. (b) Reproduction error.
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(a) (b)

Figure 3.14: Reproducing a focused source using a rotated 3CLA. (a) Reproduced
secondary sound field by 3CLA. (b) Reproduction error.

(a)

(b) (c)

Figure 3.15: Reproducing random focused sources using CLA. (a) Primary sound
field of the target source. (b) Reproduced secondary sound field by CLA. (c)
Reproduction error.
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(a) (b)

Figure 3.16: Reproducing random focused sources using 2CLA. (a) Reproduced
secondary sound field by 2CLA. (b) Reproduction error.

(a) (b)

Figure 3.17: Reproducing random focused sources using 3CLA. (a) Reproduced
secondary sound field by 3CLA. (b) Reproduction error.
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(a)

(b)

Figure 3.18: Reproduction error over a region (Group A).
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(a) (b)

Figure 3.19: Reproducing a focused source using an off-centred 2CLA. (a) Re-
produced secondary sound field by 2CLA. (b) Reproduction error.

(a) (b)

Figure 3.20: Reproducing a focused source using an off-centred 3CLA. (a) Re-
produced secondary sound field by 3CLA. (b) Reproduction error.

Group B

Since the “on y” MCLAs in group A had different array-source distances, an
additional “on y” group was compared with a fixed array-source distance. The
results of reproducing the same focused source in Fig. 3.10(a) are displayed in
Figs. 3.19, 3.20. In the comparisons of Figs. 3.10(b)(c), there is no significant
performance difference between the MCLAs and the single CLA for this layout.

As for the comparison in the frequency band of 200-4000Hz displayed in
Fig. 3.21, the performance of CLA was slightly better than those of the MCLAs.
The MCLAs also displayed more errors at the higher frequencies. The simulation
conditions were identical to those of group A.
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(a)

(b)

Figure 3.21: Reproduction error over a region (Group B).
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(a) (b)

Figure 3.22: Reproducing a focused source using CLA. (a) Reproduced secondary
sound field by CLA. (b) Reproduction error.

(a) (b)

Figure 3.23: Reproducing a focused source using 3CLA. (a) Reproduced sec-
ondary sound field by 3CLA. (b) Reproduction error.

Group C

For the last group, the “complete” CLA was compared with distributed MCLAs.
The results at 1000Hz are displayed in Fig. 3.22–3.24. The performance of
MCLAs on this condition was even worse than that of the single CLA.

Moreover, in the frequency band of 200-4000Hz, the CLA outperformed
MCLAs, as shown in Fig. 3.25. The simulation conditions were identical to those
of group A.

3.6.2 2CLA Properties on Exterior Sound Field Reproduction

As per the results described so far, the performances of 3CLA and 5CLA were
unstable at high frequencies. Therefore, 2CLA was adopted as it is easier to
build than a larger-number-CLA, and is a more practical model than the other
MCLAs. In this part, further discussion on the properties of 2CLA is provided
below.
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(a) (b)

Figure 3.24: Reproducing a focused source using 5CLA. (a) Reproduced sec-
ondary sound field by 5CLA. (b) Reproduction error.

Direction dependence

Considering that 2CLA is an asymmetric model, a simulation was conducted with
variable source directions to explore direction dependence. A 2CLA was set as
in the previous part, with radii of 0.15m and centres located at (−0.25m, 0m)
and (0.25m, 0m). The target source had a fixed radius of 0.5m. Since 2CLA is
symmetrical about the x axis and y axis, source directions between 0◦ and 90◦

were tested in increments of 2.5◦. The sub-region was in the direction of the
source: Λ = {x |OΛ = (cosϕ⊚, sinϕ⊚), |x − OΛ| ≤ 0.2}. All other conditions
were the same as those of the previous simulations. The reproduction errors
in the range of 200-4000Hz are shown in Fig. 3.26(a). The x and y axes in
the figures represent frequency and the source direction, respectively. Colour
indicates reproduction error, where the darker colours represent lower errors.
The relationship between the maximum controllable frequency and the source
direction is shown in (b). The results show a direction dependence such that
2CLA performs better when a lower angle is selected for source direction.

In addition, the direction dependence was tested under conditions similar
to that of group B in the previous part; the centres of the 2CLA were located
at (−0.5m, 0m) and (0m, 0m). The array-source distance was fixed for this
condition. The results are displayed in Fig. 3.27. Here it is observed that there
is no significant direction dependence in the results with the exception of source
directions around 90◦, which displayed a slightly better performance than those
of lower angles.
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(a)

(b)

Figure 3.25: Reproduction error over a region (Group C).
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(a)

(b)

Figure 3.26: Direction dependence of 2CLA on focused source reproduction. (a)
Reproduction error over full region; (b) Maximum controllable frequency.
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(a)

(b)

Figure 3.27: Direction dependence of an off-centred 2CLA on focused source
reproduction. (a) Reproduction error over full region; (b) Maximum controllable
frequency.
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Figure 3.28: The influence of radii and inter-array distance of 2CLA on focused
source reproduction. The target source was located at (0m, 0.5m). Colour shows
the reproduction error over region.

Figure 3.29: The influence of radii and inter-array distance of 2CLA on focused
source reproduction. The target source was located at (0.5m, 0m). Colour shows
the reproduction error over region.

Influence of radii and inter-array distance

Considering the contour of 2CLA, only two characteristics stand out: array radii
r0,1, r0,2 and inter-array distance R1,2 = R2,1. The performance of 2CLA is
significantly affected by these two characteristics. Therefore, simulations were
conducted by changing these two characteristics. The radii and the inter-array
distance were varied independently from 0.05-1m in increments of 0.05m. The
two radii were changed simultaneously (i.e., they were always the same). As
the direction and frequency dependence can be inferred from above, the follow-
ing simulations were conducted with two target sources at 1000Hz, located at
(0m, 0.5m) and (0.5m, 0m). All other conditions were identical to those of the
simulations above.

The results are displayed in Figs. 3.28 and 3.29. The x and y axes in the
figures represent the array radii and inter-array distance, respectively. Colour
shows the reproduction error. As it is impossible for 2CLA to have r0,s ≥ R1,2,
the only valid results are those in the left-top half of each figure. The dotted line
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at r0,s =
cLs
4πf ≈ 0.41m denotes the radius at which spatial aliasing would occur.

For both target sources, the results show that under the “aliasing radius”, the
radius is positively related to performance. Meanwhile, the inter-array distance
affects the performance in a more complicated way: neither a too long (i.e., arrays
are far away from each other) nor a too short (i.e., arrays are adjacent) distance
results in ideal reproduction. A hypothesis to explain the results is: for a short
inter-array distance, the results are primarily affected by the array radii, where
a small radius is unfavourable for the control; for a long inter-array distance, the
2CLA would be considered as separated arrays that are difficult to be controlled
jointly. The right side of the dotted line has high errors, indicating that spatial
aliasing significantly affects performance. The results also show that the sources
at (0.5m, 0m) are better reproduced, which can be attributed to the array-source
distance being closer.

62



Figure 3.30: Beam patterns of MCLAs in group A. The beam pattern is nor-
malised by the power in the look direction. The angle on the horizontal axis is
relative to the look direction.

3.7 Beamforming

Numerical simulations were conducted to assess MCLA for beamforming. MCLA
setup was the same as in the previous section, as shown in Fig. 3.9. In the
calculation of the transfer functions, reflections up to R = 12 were included and
the maximum order was truncated at N = 20.

In all simulations reported in this section, Tikhonov regularisation, introduced
in Sec. 2.6.3, was applied to the MVDR beamformer. The setup consisted of 144
microphones located uniformly on a circle of radius r = 2m centred at (0m, 0m).
A microphone in the target direction was set as the constrained point, and the
other microphones were set as suppression points. The sound pressure f at the
constrained point was set to 1/(4πr) for all frequencies, thereby maintaining a flat
frequency response at the constrained point. The maximum power of the filters
was suppressed to under 0 dB by regularisation. For evaluation, 720 observation
points were set uniformly on the same circle of the microphones.

3.7.1 Comparison with CLA

Simulations were conducted to compare groups A and C, introduced in Sec. 3.6.1.
Group B is excluded from the discussion because there is no array-source distance
in beamforming. In this part, only one look direction at 90◦ is discussed for
simplicity.
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Group A

The beam patterns at 1000Hz are shown in Fig. 3.30. In the results, all MCLAs
displayed a sharper main lobe than the single CLA whereas the 3CLAs have
larger side lobes in the direction opposite to the look direction.

To further investigate, a simulation was conducted in the frequency band of
200-4000Hz with the same condition above, the results of which are displayed in
Fig. 3.31. The results demonstrate that:

• “on x”, MCLAs outperformed the single CLA in DI and BW.

• “on y”, MCLAs outperformed the single CLA in DI and BW under 2000Hz
but the performance deteriorated at higher frequencies.

• “on x”, MCLAs performed better than ”on y” MCLAs.

• 3CLAs outperformed 2CLAs at low frequencies while the performance at
high frequencies was problematic.

• SLL of all arrays were similar at low frequencies while with 3CLAs there
was an earlier rise compared to 2CLAs for “on x” and “on y”.
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(a) DI

(b) BW

(c) SLL

Figure 3.31: DI, BW, and SLL of MCLAs in group A over a frequency band of
200―4000Hz.
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Figure 3.32: Beam patterns of MCLAs in group C. The beam pattern is nor-
malised by the power in the look direction. The angle on the horizontal axis is
relative to the look direction.

Group C

The beam patterns at 1000Hz of group C are presented in Fig. 3.32. The results
indicate that there is no significant difference between the three arrays.

The results for the 200-4000Hz band are displayed in Fig. 3.33. Similar to
the single frequency results, there were no significant differences on beamforming
performance between the three arrays in group C whereas single CLA performed
slightly better. This is in agreement with the group C comparison in Sec. 3.6.1.
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(a) DI

(b) BW

(c) SLL

Figure 3.33: DI, BW, and SLL of MCLAs in group C over a frequency band of
200―4000Hz.
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3.7.2 2CLA Properties on Beamforming

According to the results of the previous part, 2CLA has to be considered as a
practical model for beamforming. The properties of 2CLA are further discussed.

Direction dependence

A simulation was conducted on changing the look direction to explore the asym-
metric aspect of 2CLA. Similar to Sec. 3.6.2, angles between 0◦ and 90◦ were
tested in increments of 2.5◦. All other conditions were the same as those of the
previous simulation; DI, BW, and SLL were evaluated.

The results are presented in Fig. 3.34. The x and y axes in the figures represent
frequency and the look direction, respectively. Colour shows the value of the
indices. DI and BW improved with increasing angle at higher frequencies. There
was little direction dependence at frequencies below 1000Hz. At frequencies
above 2400Hz, SLL clearly displayed direction dependence. In contrast, aliasing
can arise more easily at larger angles (i.e., “on x” 2CLA in the previous part)
than at smaller angles (i.e., “on y” 2CLA). Furthermore, for a highly focused
beam where the effects of side lobes can be ignored, a small look direction angle
can provide high DI and low BW.

68



(a) DI

(b) BW

(c) SLL

Figure 3.34: DI, BW, and SLL of 2CLA for look directions between 0◦ and 90◦.
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Influence of radii and inter-array distance

Next, the influence of array radii r0,1, r0,2 and inter-array distance R1,2 = R2,1 are
discussed. Simulations were conducted with the indicated radii and inter-array
distances ranging from 0.05m to 1m in increments of 0.05m. The two radii were
changed simultaneously, whereas the radii and inter-array distance were changed
independently. The following simulations were conducted with two target sources
at 1000Hz, with look directions at 0◦ and 90◦, excluding direction and frequency
dependence as explained above. All the other conditions were the same as those
of the simulations above.

The results are displayed in Figs. 3.35 and 3.36. Similar to the results in
Sec. 3.6.2, the x and y axes in the figures represent the array radii and inter-
array distance, respectively. The only valid results are those in the left-top half
of each figure. The dotted line at r0,s = cLs

4πf ≈ 0.41m indicates the radius at
which spatial aliasing would occur.

For both look directions, the results show that DI is somehow positively re-
lated to the radii and the inter-array distance. However, there are some excep-
tions. Determining the relationship of DI to radii and the inter-array distance is
not that simple. BW was positively related to the two characteristics but was
affected primarily by the radii in the 0◦ look direction and by the inter-array
distance in the 90◦ look direction. For the 0◦ look direction, SLL was clearly
not affected by the radii shorter than the “aliasing radius”. For larger radii, SLL
increased rapidly with increasing radii, clearly displaying the negative influence
of spatial aliasing. For the 90◦ look direction, however, SLL was high for large
inter-array distances and small radii. The minimum distance between the two cir-
cular baffles is relatively large, and this can be another cause of aliasing because
of not having uniform sampling.
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(a) DI

(b) BW

(c) SLL

Figure 3.35: Radius and distance dependence of DI, BW, and SLL at 1000Hz in
0◦ look direction.
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(a) DI

(b) BW

(c) SLL

Figure 3.36: Radius and distance dependence of DI, BW, and SLL at 1000Hz in
the 90◦ look direction.
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3.8 Summary

In this chapter, an MCLA model and its analytical method for spatial control was
proposed. The method takes into consideration the multiple scattering effect. It
is based on CHE and the addition theorem of cylindrical wave functions. The pro-
posed method allows control of CLAs and their individual harmonic modes. The
mode strength of 2CLA is further demonstrated in comparison to conventional
CLA. The 2CLA exhibits improved controlling efficiency; it has the potential of
reproducing complex sound fields.

Numerical simulations were conducted to discuss interior sound field repro-
duction, exterior sound field reproduction, and beamforming.

As for interior sound field reproduction, the conventional method has not
considered the multiple scattering effect. While real environments have multiple
scattering, the mismatch can cause errors in reproduction. The proposed method
can avoid this error, thus improving reproduction accuracy.

In exterior sound field reproduction, the performance of MCLAs was com-
pared to that of conventional CLAs. Multiple configurations were discussed in
relation to focused source reproduction. The results show that besides the array
shape, the array length (length of the direction perpendicular to the source direc-
tion) and array-source distance (minimum distance between the source and the
loudspeakers) are two key factors affecting reproduction. It is straightforward
to demonstrate that reproduction is easier with shorter array-source distances.
With a fixed array-source distance, a longer array (perpendicular to the source
direction) displays better performance. An increase in multiple scattering (e.g.,
an increased number of CLAs, a closer inter-array distance together with greater
array radii) results in worse performance at high frequencies.

The performance of beamforming was also discussed in comparison with CLAs.
In the absence of a “target source”, the array length becomes the most important
feature. The results show that longer arrays result in better performances at low
frequencies. As for direction dependence, the linear MCLAs performed better
with beams perpendicular to their layout. In contrast to exterior sound field
reproduction, the multiple scattering effect had little influence on beamforming.
The inter-array distance, however, somehow introduced another kind of aliasing
issue.

The results show that the multiple scattering effect has no decisive effect on
performance. However, the discussions in Sec. 3.2 and Sec. 3.5 explained that it
is necessary to take it into consideration. In additional, the comparison between
2CLA and CLA point to the advantages of using an asymmetric array.
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Chapter 4

Elliptical loudspeaker array

The results of MCLA demonstrated the advantage of using an asymmetric array.
In this chapter, another asymmetric array model is proposed without multiple
scatters, namely, the elliptical array. Using elliptical coordinate systems, an an-
alytical sound field reproduction method is proposed for ELA based on Mathieu
functions which are the eigenfunctions of the Helmholtz equation. The perfor-
mance of ELA is also discussed with respect to mode strength, interior sound
field reproduction, exterior sound field reproduction, and beamforming.

4.1 Elliptical coordinate system

In this section, the definition of the elliptical coordinate system is introduced and
the solutions of the Helmholtz equation with Mathieu functions are explained.
An elliptical coordinate system is shown in Fig. 4.1. In this coordinate system,
a coordinate is defined as x = (ξ, η), where η is the angular coordinate and ξ
is the radial coordinate. These coordinates can be transferred to the Cartesian
coordinate system using {

x = a cosh ξ cos η

y = a sinh ξ sin η
, (4.1)

where a represents the distance from the origin to one of the foci located at
F (±a, 0) in the Cartesian coordinate system. Clearly, an ellipse can be easily
expressed as ξ = ξ0 by setting a constant ξ0 in the elliptical coordinate system.

4.2 Wave representation in elliptical coordinates

Consider a homogeneous Helmholtz equation in the elliptical coordinate system.
The Laplace operator in this coordinate system is [89]

∇2 =
1

a2(cosh 2ξ − cos 2η)

(
∂2

∂ξ2
+

∂2

∂η2

)
. (4.2)

The Laplace operator is substituted into the Helmholtz equation and the variables
are separated p(ξ, η, ω) = H(η) · Ξ(ξ), to obtain

∂2H(η)

∂η2
+ [a− 2q cos(2η)]H(η) = 0 (4.3)

∂2Ξ(ξ)

∂ξ2
+ [a− 2q cosh(2ξ)]Ξ(ξ) = 0, (4.4)

where q := k2a2/4.
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𝜉𝜉 = 1

𝜉𝜉 = 3/4

𝜉𝜉 = 1/2

𝜉𝜉 = 1/4

𝐹𝐹2(𝑎𝑎, 0)𝐹𝐹1(−𝑎𝑎, 0)
𝜂𝜂 = 0

𝜂𝜂 = 𝜋𝜋/6

𝜂𝜂 = 𝜋𝜋/3𝜂𝜂 = 𝜋𝜋/2𝜂𝜂 = 2𝜋𝜋/3

𝜂𝜂 = 5𝜋𝜋/6

𝜂𝜂 = 𝜋𝜋

𝜂𝜂 = 7𝜋𝜋/6 𝜂𝜂 = 11𝜋𝜋/6

𝜂𝜂 = 4𝜋𝜋/3 𝜂𝜂 = 3𝜋𝜋/2 𝜂𝜂 = 5𝜋𝜋/3

𝒓𝒓 = (𝜉𝜉, 𝜂𝜂)

𝜉𝜉 = 0

Figure 4.1: Elliptical coordinate system. F1, F2 are the foci of the coordinate
system; the red and blue lines represent the curves of ξ = 1 and η = π/3 ,
respectively; the green star is their intersection at x = (1, π/3).

4.2.1 Mathieu functions

The Mathieu angular function and Mathieu radial function are the eigenfunc-
tions of (4.3) and (4.4), respectively [90–92]. In this study, the Mathieu angular
function and Mathieu radial function of the ζ-th kind are denoted by meν(q, η)

and M
(ζ)
ν (q, ξ), respectively. Here, ν is the order of the function. The Mathieu

angular function meν(q, η) is a solution of Mathieu’s differential equation,

y′′(η) + (λ− 2q cos 2η)y(η) = 0, (4.5)

and can be expanded into the following series [92, p. 111],

meν(q, η) =
∞∑

µ=−∞
ςν2µe

j(ν+2µ)η. (4.6)

Here, the coefficient ςν2µ (q is omitted here) can be obtained with a recurrence
relation:

−qςν2µ+2 + [λ− (ν + 2µ)2]ςν2µ − qςν2µ−2 = 0. (4.7)

The Mathieu radial function of the ζ-th kind M
(ζ)
ν (q, ξ) is a solution of Math-

ieu’s modified differential equation,

− Y ′′(ξ) + (λ− 2q cosh 2ξ)Y (ξ) = 0. (4.8)

The Mathieu radial function is calculated by the following equations [92, p.201]:

M (ζ)
ν (q, ξ) =

{
Mc

(ζ)
ν (q, ξ) ν ≥ 0

(−1)νMs
(ζ)
−ν(q, ξ) ν < 0

, (4.9)
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Figure 4.2: Harmonic modes of Mathieu functions with different orders, calcu-

lated byM
(4)
ν (q, ξ)meν(q, η). The elliptical coordinate system is defined as a = 1.

All waves are at 1000Hz.

Mc(ζ)ν (q, ξ) =


1
ςν0

∑∞
µ=0 j

ν+µςν2µJµ(
√
qe−ξ)B

(ζ)
µ (

√
qeξ) even ν

1
ςν1

∑∞
µ=0 j

ν−1+µςν2µ+1

[
Jµ−1(

√
qe−ξ)B

(ζ)
µ+1(

√
qeξ)

+Jµ+1(
√
qe−ξ)B

(ζ)
µ−1(

√
qeξ)

]
odd ν

,

(4.10)

Ms(ζ)ν (q, ξ) =



1
ςν2

∑∞
µ=0 j

ν−2+µςν2µ+2

[
Jµ(

√
qe−ξ)B

(ζ)
µ+2(

√
qeξ)

−Jµ+2(
√
qe−ξ)B

(ζ)
µ (

√
qeξ)

]
even ν

1
ςν1

∑∞
µ=0 j

ν−1+µςν2µ+1

[
Jµ−1(

√
qe−ξ)B

(ζ)
µ+1(

√
qeξ)

−Jµ+1(
√
qe−ξ)B

(ζ)
µ−1(

√
qeξ)

]
odd ν

.

(4.11)

Here B
(ζ)
ν (·) represents the cylindrical functions, in general and specifically the

Bessel function, the Neumann function, the Hankel function of the first kind, and
the Hankel function of the second kind with ζ = 1, 2, 3, 4, respectively.

In this study, only the Mathieu functions with integer orders are used. Series
calculations on Mathieu functions are approximated by a truncation at sufficiently
large µ. Further information on definitions and properties of Mathieu functions
can be found in [92].

4.2.2 Mathieu function expansion

In this section, a sound field reproduction method is proposed based on Mathieu
function expansion (MFE). The method transforms the sound field into the el-
liptic harmonic domain, and then matches the coefficient of the secondary sound
field to that of the primary sound field. Here, an elliptic loudspeaker array is used
as the secondary sound source with a driving function that can also be expanded
by the Mathieu angular function.

Using the Mathieu angular function and Mathieu radial function, it is possible
to expand a sound field at a single frequency [91]:

p(ξ, η, ω) =

∞∑
ν=−∞

[
p̀◁ν(q)M

(1)
ν (q, ξ)meν(q, η) + p̀▷ν(q)M

(4)
ν (q, ξ)meν(q, η)

]
,

(4.12)

where p(ξ, η, ω) is the sound pressure, p̀◁ν(q) and p̀
▷
ν(q) are the coefficients of the

incident sound field and radiated sound field, respectively. In this study, the
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time dependent term is set to ejωt; therefore, the fourth kind of Mathieu radial
function is used for the radiated sound field.

Note that meν(q, η) has properties similar to the exponential function ejµϕ;

M
(1)
ν (q, ξ) and M

(4)
ν (q, ξ) have properties similar to the Bessel function and Han-

kel function of the second kind, respectively [92]. Hence, the expansion has a
form similar to CHE [46]:

p(r, ϕ, ω) =

∞∑
µ=−∞

[
p̆◁µ(k)Jµ(kr)e

jµϕ + p̆▷µ(k)H
(2)
µ (kr)ejµϕ

]
. (4.13)

Additionally, different orders of Mathieu functions are orthogonal to each other
[92], expressed as ∫ 2π

0
meν(q, η)meν′(q,−η)dη = 2πδνν′ . (4.14)

Thus, MFE refers to (4.12) and the following refers to elliptical harmonic expan-
sion:

p(ξ, η, ω) =

∞∑
ν=−∞

p̌ν(ξ, q)meν(q, η), (4.15)

The harmonic modes of MFE are shown in Fig. 4.2. These harmonic modes clearly
indicate that an MFE-based method is an asymmetric or direction dependent
method. Also, the modes with lower orders have the ability to synthesise sound
fields only on the minor axis of the ellipse.

4.2.3 Rigid elliptical scatter

The transfer function of an open array in elliptical coordinates G(ξ, η|ξ′, η′, ω)
would be the same as in (2.6). However, for a rigid array with an acoustically rigid
surface, the transfer function should be calculated with the Neumann boundary
conditions. Consider a loudspeaker located at (ξ′, η′) outside a rigid elliptic baffle
ξ = ξ0, for any ξ < ξ′ outside the baffle, the sound pressure at (ξ, η) can be divided
into direct sound and scattered sound as displayed in Fig. 4.3. The direct sound
p◁(ξ, η, ω) is a sound propagating inward and the scattered sound p▷(ξ, η, ω) is a
sound propagating outward:

p◁(ξ, η, ω) =

∞∑
ν=−∞

p̀◁ν(q)M
(1)
ν (q, ξ)meν(q, η), (4.16)

p▷(ξ, η, ω) =
∞∑

ν=−∞
p̀▷ν(q)M

(4)
ν (q, ξ)meν(q, η), (4.17)

where direct sound can be obtained from the transfer function in (2.6):

p̀◁ν(q) = − j
4
M (4)

ν (q, ξ′)meν(q,−η′). (4.18)

The Neumann boundary conditions states that the particle velocities on the sur-
face are 0, which implies that the sum of the derivative of the direct sound
pressure and the scattered sound pressure is 0. Applying the Neumann boundary
condition to a rigid surface,

∞∑
ν=−∞

{
p̀◁ν(q)M

(1)′
ν (q, ξ0) + p̀▷ν(q)M

(4)′
ν (q, ξ0)

}
meν(q, η) = 0, (4.19)
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Elliptical Scatter
(Rigid)

Direct Sound

Scattered Sound

𝜉𝜉 = 𝜉𝜉0

𝜉𝜉, 𝜂𝜂

𝜉𝜉′, 𝜂𝜂′

Figure 4.3: A sound field with a rigid elliptical scatter. The sound pressure at
the microphone can be described as a sum of direct sound and scattered sound.

Then, the transfer function can be derived as

G(ELA)(ξ, η|ξ′, η′, ω) =p◁(ξ, η, ω) + p▷(ξ, η, ω)

=

∞∑
ν=−∞

p̀◁ν(q)

[
M (1)

ν (q, ξ)− M
(1)′
ν (q, ξ0)

M
(4)′
ν (q, ξ0)

M (4)
ν (q, ξ)

]
meν(q, η).

(4.20)

Furthermore, for a rigid elliptic microphone array where microphones are mounted
on the rigid surface ξ = ξ0, the Wronskian of the Mathieu function [92] can be
used.

M (1)
ν (q, ξ)M (4)′

ν (q, ξ)−M (1)′
ν (q, ξ)M (4)

ν (q, ξ) = −2j

π
. (4.21)

Finally, reversing the position of the microphone and the loudspeaker gives the
transfer function of a rigid elliptic loudspeaker array:

G(ELA)(ξ, η|ξ0, ηl, ω) = − 1

2π

∞∑
ν=−∞

M
(4)
ν (q, ξ)

M
(4)′
ν (q, ξ0)

meν(q,−ηl)meν(q, η), (4.22)

where (ξ0, ηl) denotes the position of the l-th loudspeaker on the array.

4.3 Mathieu function based sound field reproduction method

Considering an area with a continuous elliptic boundary, a primary sound field
can be expressed by the following equation if the source exists either only inside
(exterior sound field) or only outside (interior sound field) the area:

p(ξ, η, ω) =

{∑∞
ν=−∞ p̀◁ν(q)M

(1)
ν (q, ξ)meν(q, η) interior∑∞

ν=−∞ p̀▷ν(q)M
(4)
ν (q, ξ)meν(q, η) exterior

. (4.23)

Here, the MFE coefficient of the primary sound field p̀ν can be obtained either
analytically by the transfer function in (2.6) or by the expansion of plane wave
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in [91, p.1422]. In addition, a method transforming the conventional circular-
harmonic-expansion coefficient to the MFE coefficient is introduced in Sec. 4.4.

Now consider the secondary sound field by a continuous elliptic source. The
sound field can be expressed as

p̂(ξ, η, ω) =

∫ 2π

0
G(ξ, η|ξ0, ηl, ω)dl(ω)ξ0dηl, (4.24)

where (ξ0, ηl) is the location of the l-th loudspeaker and dl(ω) is the driving signal
of the l-th loudspeaker. In [92] and [91], the transfer function in the elliptical
coordinate system is described as

G(ξ, η|ξ′, η′, ω) =− j

4
H

(2)
0 (k|x− x′|)

=− j

4

∞∑
ν=−∞

M (1)
ν (q, ξ<)M

(4)
ν (q, ξ>)meν(q,−η′)meν(q, η), (4.25)

where |x− x′| denotes the distance between (ξ, η) and (ξ′, η′); ξ< and ξ> denote
the smaller and bigger one in ξ and ξ′, respectively. This equation describes the
sound pressure at (ξ, η) in a 2-dimensional free field, where a monopole source is
placed at (ξ′, η′). Additionally, the following conditions should always be satisfied
such that ξ′ > ξ for interior sound field reproduction and ξ′ < ξ for exterior sound
field reproduction. Applying MFE to the driving functions,

dl(ω) =

∞∑
ν=−∞

ďν(q)meν(q, ηl), (4.26)

where dν(q) is the coefficient of the elliptic harmonic expansion.
Thereafter, the secondary sound field is expressed by substituting (4.25) and

(4.26) into (4.24):

p̂(ξ, η, ω) =

{∑∞
ν=−∞ γ̌◁ν(q)ďν(q)M

(1)
ν (q, ξ)meν(q, η) interior∑∞

ν=−∞ γ̌▷ν(q)ďν(q)M
(4)
ν (q, ξ)meν(q, η) exterior

, (4.27)

where {
γ̌◁ν(q) = − j

2ξ0M
(4)
ν (q, ξ0) interior

γ̌▷ν(q) = − j
2ξ0M

(1)
ν (q, ξ0) exterior

. (4.28)

Here, the orthogonality of the Mathieu angular function is applied in the deriva-
tion of (4.27). Additionally, the exterior sound field of a rigid elliptic loudspeaker
array is given by,

γ̌▷ν(q) = − ξ0

M
(4)′
ν (q, ξ0)

for rigid ELA. (4.29)

Furthermore, as a result of the orthogonality of the Mathieu functions, the
secondary sound field in (4.27) can be matched to the primary sound field in
(4.23) by matching the coefficients in each mode (or order) ν:

ďν(q) =
p̀ν(q)

γ̌ν(q)
. (4.30)

The driving function in the frequency domain can be obtained as in (4.26). In
addition, Tikhonov regularisation can be applied to the method to suppress the
level of driving signals.
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Regarding discretely placed loudspeakers, the secondary sound field can be
expressed as

p̂(ξ, η, ω) =

L∑
l=1

G(ξ, η|ξ0, ηl, ω)dl(ω), (4.31)

where L is the number of loudspeakers. The orthogonality of the Mathieu angular
function for discrete cases is expressed as

L∑
l=1

meν(q, ηl)meν′(q,−ηl) = Lδνν′ . (4.32)

NOTE: This has not been proven. (This is used in the thesis because numer-

ical experiments exhibit little error with this equation.) The coefficient γ̌
(disc)
ν (q)

for the discrete condition in (4.27) then becomes

γ̌(disc)ν (q) =
L

2π
γ̌(cont)ν (q). (4.33)

The coefficient for the continuous condition γ̌
(cont)
ν (q) was given in (4.28) and

(4.29). Finally, the infinite series of order ν is truncated with a maximum order
N . In CHE, order truncation always results in a circular low-error area such that
r ≤ N/k is extrapolated with increasing order [27]. In MFE, due to the difference
between the bases, the truncation order results in an elliptic low-error area. The
truncation error and a proper truncation order are introduced in Sec. 5.2. Note
that another restriction N < ⌊(L− 1)/2⌋ should be satisfied to avoid the spatial
aliasing problem [93].

4.4 Circle-ellipse transformation

The proposed method in Sec. 4.3 reproduces the sound field analytically by
matching the coefficients in MFE. This requires sound field signals recorded by
an uncommon elliptic microphone array. In conventional studies of sound field
reproduction, a 2D sound field is commonly recorded by a circular microphone
array, and then, most often, transformed to the circular harmonic domain. Here,
a method is proposed to transform circular harmonic coefficients to MFE coeffi-
cients. The flow chart of the proposed method is displayed in Fig. 4.4.

In a 2-dimensional polar coordinate system, denoting the coordinates as x =
(r, ϕ), a sound field p(r, ϕ, ω) can be expressed by [46]

p(r, ϕ, ω) =

∞∑
µ=−∞

[p̆◁µ(k)Jµ(kr)e
jµϕ + p̆▷µ(k)H

(2)
µ (kr)ejµϕ]. (4.34)

Here, p̆◁µ(k) and p̆
▷
µ(k) are the µ-th order coefficients of CHE.

Conventional methods for CLAs, such as 2D-HOA [26], synthesise sound fields
by matching the coefficients by orders. Those methods often use a circular mi-
crophone array to record the sound field and assume that the source exists either
inside or outside the array. The sound field observed by the circular microphone
array can be expanded as

p(r, ϕ, ω) =

{∑∞
µ=−∞ p̆◁µ(k)Jµ(kr)e

jµϕ interior∑∞
µ=−∞ p̆▷µ(k)H

(2)
µ (kr)ejµϕ exterior

. (4.35)
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Figure 4.4: A flow chart of the proposed circle-ellipse transformation, with com-
parison to the conventional CHE-based method and the proposed MFE-based
method.

Furthermore, to avoid the forbidden frequency issue of Bessel functions [46], a
rigid circular microphone array can be used to record the interior sound field [94].

Letting elliptical coordinates (ξ, η) share the same location in polar coordi-
nates (r, ϕ), for any r > a (a is the focal distance of the elliptic coordinate
system), the following addition theorem of Mathieu function [92,95] can be used.

B(ζ)
µ (kr)ejµϕ =

∞∑
ν=−∞

τ∗ν,µ(q)M
(ζ)
µ+ν(q, ξ)meµ+ν(q, η), (4.36)

τ∗ν,µ(q) =

{
j−νςµ+ν

−ν , for even ν

0 , for odd ν
. (4.37)

Here, B
(ζ)
ν (z) represents the cylindrical functions with ζ ∈ {1, 2, 3, 4}. ςµ+ν

−ν is
the coefficient used in calculating the Mathieu functions.

Substituting (4.36) into (4.35) to obtain

p(r, ϕ, ω) =

{∑∞
µ=−∞ p̆◁µ(k)Jµ(kr)e

jµϕ interior∑∞
µ=−∞ p̆▷µ(k)H

(2)
µ (kr)ejµϕ exterior

=

{∑∞
µ=−∞ p̆◁µ(k)

∑∞
ν=−∞ τ∗ν,µ(q)M

(1)
µ+ν(q, ξ)meµ+ν(q, η) interior∑∞

µ=−∞ p̆▷µ(k)
∑∞

ν=−∞ τ∗ν,µ(q)M
(4)
µ+ν(q, ξ)meµ+ν(q, η) exterior

=

{∑∞
ν′=−∞ p̀◁ν′(q)M

(1)
ν′ (q, ξ)meν′(q, η) interior∑∞

ν′=−∞ p̀▷ν′(q)M
(4)
ν′ (q, ξ)meν′(q, η) exterior

. (4.38)

Therefore, the sound field coefficient in MFE is transformed to{
p̀◁ν′(q) =

∑∞
µ=−∞ p̆◁µ(k)τ

∗
ν−µ,µ interior

p̀▷ν′(q) =
∑∞

µ=−∞ p̆▷µ(k)τ
∗
ν−µ,µ exterior

. (4.39)
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(a) 500Hz (b) 1000Hz

(c) 2000Hz (d) 4000Hz

Figure 4.5: Mode strength of a rigid ELA. The ELA has a major-axis of 0.8m
and a minor-axis of 0.3m

Note that the calculations should be carried out with a sufficiently large trunca-
tion order M . Finally, substituting the coefficient p̀ν′(q) into (4.30), the driving
function of the elliptic loudspeaker array is obtained.

dl(ω) =
N∑

ν=−N

∑M
µ=−M p̆µ(k)τ

∗
ν−µ,µ

γ̌ν(q)
meν(q, ηl), (4.40)

N is the truncation order for MFE.

4.5 Mode strength

Here, the mode strength of ELA is discussed. The mode strength discussed in this
study is the strength of an ELA mode (MFE mode) with respect to regular sound
field modes (CHE mode). Since there is a mismatch in the observation positions,
analytically deriving the mode strength of an ELA is rather difficult. Here, each
single mode of the ELA is numerically derived for a circular microphone array.
Finally, the mode strength is obtained by applying CHE to the microphone array
signals.

The mode strength of an ELA is shown in Fig. 4.5. The x-axis represents the
driving modes of ELA (in MFE) and the y-axis represents the observation modes
for the secondary sound field. The observation mode is the mode observed on
the circle centred at the origin O and therefore in CHE. A single driving mode
of ELA generates multiple modes in the field, similar to 2CLA in Sec. 3.4. On
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(a) (b)

Figure 4.6: A plane wave with direction of arrival η// = 0 reproduced by an ELA
of 180 loudspeakers.

(a) (b)

Figure 4.7: A plane wave with direction of arrival η// = π/2 reproduced by an
ELA of 180 loudspeakers.

the other hand, the mode strength of 2CLA has the shape of a rhombus while
that for ELA has an “X” shape. Furthermore, with ELA, the driving modes and
observation modes are strictly correlated by parity.

4.6 Interior sound field reproduction

In this section, numerical simulations are carried out on interior sound field re-
production. The circle-ellipse transformation is also included in the simulations.
The difference in the reproducible area of the proposed method and that of the
conventional method are discussed for CLA.

4.6.1 MFE-based method

Interior sound field reproduction was performed using the proposed method in
Sec. 4.3 without regularisation, with an ELA. The array had 180 loudspeakers
located equiangularly in the elliptical coordinate system, which means that ∆η =
π
90) on an ellipse with a major axis of 3m and a minor axis of 2m. The elliptical

coordinate system was defined with a =
√
5/2, where the ellipse can be described

as ξ0 ≈ 0.80. The primary sound field was at 1000Hz (k ≈ 18.48 and q ≈
106.72). Note that the proposed method is direction dependent. Therefore, the
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(a) N = 14 (b) N = 18

(c) N = 22 (d) N = 26

Figure 4.8: Reproduction error in reproducing random plane waves with different
truncation orders.

source was tested on both along the major-axis and minor-axis direction of the
ellipse. The maximum order N was truncated at 30, which is sufficiently large
(N > ⌈2√q cosh ξ0⌉ = 28). For an interior sound field, the coefficients of the
primary field were calculated by [91]

p̀◁ν(q) =

{
jνmeν(q,−η//) plane wave

− j
4M

(4)
ν (q, ξ⊚)meν(q,−η⊚) cylindrical wave

, (4.41)

where η// denotes the direction of arrival of a plane wave in elliptical coordinates;
(ξ⊚, η⊚) denotes the coordinates of a point source.

Figures 4.6 and 4.7 show the results in a 4m × 4m sound field. The target
sound fields were a plane wave arriving from the directions of ϕ// = 0 and π/2
(η// = ϕ// for the specific angles), respectively. Red crosses represent loudspeaker
locations in all figures. The results display an ideal reproduction, validating that
the proposed method can reliably reproduce sound fields with an ELA.

Furthermore, to investigate the influence of truncation order, simulations were
conducted by changing the truncation order to 14, 18, 22, 26 under the same
conditions. The primary field was set to the sum of 30 random (i.e., random
amplitude, random direction, and random phase) plane waves. Figure 4.8 dis-
plays the reproduction error. The results show that the reduction of truncation
order results in an increase in error. Moreover, the truncation order dictates the
shape of the elliptical low-error area. The truncation effect is further discussed
in Sec. 5.2.
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(a) (b)

Figure 4.9: A plane wave with direction of arrival η// = 0 reproduced by an ELA
of 180 loudspeakers and a circular microphone array of 24 microphones.

(a) (b)

Figure 4.10: A plane wave with direction of arrival η// = π/2 reproduced by an
ELA of 180 loudspeakers and a circular microphone array of 24 microphones.

4.6.2 Circle-ellipse transformation

For the circle-ellipse transformation, simulations were only conducted on inte-
rior sound field reproduction because interior sound fields are more commonly
recorded using circular microphone arrays. The conditions of the previous simu-
lation were used except that the primary sound field was recorded by a circular
microphone array. A rigid circular microphone array of radius 0.3m with 24 mi-
crophones was used to record the sound field. The maximum order of CHE was
truncated at ⌊(M − 1)/2⌋ = 11, which corresponds to the maximum number of
orthogonal bases that can be represented with M microphones. The truncation
order of MFE was larger than that of CHE because of the requirements of the
addition theorem [92,95].

Simulations were conducted with plane waves arriving from the major-axis
direction (η// = 0) and the minor-axis direction (η// = π/2), at 1000Hz. Fig-
ures 4.9 and 4.10 display the results of a 4m × 4m sound field. The results show
a circular low-error area which is different than that of the previous method. The
performance of this method has been limited by the truncation order of CHE.

The performances of different truncation orders were compared. To exclude
direction dependence, the primary field was set to the sum of 30 random (i.e., ran-
dom amplitude, random direction, and random phase) plane waves. Figure 4.11
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(a) M = 18 (b) M = 30

(c) M = 42 (d) M = 56

Figure 4.11: Reproduction error in reproducing random plane waves with differ-
ent number of microphones.

displays reproduction error with number of microphones set to M =18, 30, 42,
and 56, meaning that the truncation orders were 8, 14, 20, and 27, respectively.
The results show that the listening area is limited to a smaller circle area at
smaller truncation orders, which corresponds to the results of conventional 2D-
HOA studies [26]. This phenomenon is influenced by the truncation order of
CHE. Furthermore, the truncation order of MFE may not affect the simulation
results because it is restricted to be larger than the truncation order of CHE.
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(a) (b)

Figure 4.12: Focused source reproduced by an “on x” rigid ELA of 30 loudspeak-
ers.

(a) (b)

Figure 4.13: Focused source reproduced by an “on y” rigid ELA of 30 loudspeak-
ers.

4.7 Exterior sound field reproduction

In this section, the numerical simulations conducted on exterior sound field re-
production, which is performed by reproducing focused sources, are discussed.
The results are compared with those of CLA, 2CLA, and LLA. The influence of
changing the shape of the ellipse is also discussed.

4.7.1 Comparison with CLA, 2CLA, and LLA

Comparison with CLA and 2CLA

To test the performance of exterior sound field reproduction, simulations were
conducted on focused source reproduction. The target focused source was set at
(0.5m, 0m), which is the same as in Sec. 3.6.1. Moreover, to avoid the forbidden
frequency issue (in (4.10) and (4.11), the same issue of the Bessel function [46]
also exists for the Mathieu radial function of the first kind), a rigid ELA was used.
There were 30 loudspeakers equiangularly (∆ν = π

15) mounted on the surface of a
rigid elliptical baffle. The lengths of the major axis and the minor axis were 0.8m
and 0.3m, respectively. Note that this ELA has the same “length” and “width” as
those of 2CLA in Sec. 3.6.1 group A. With respect to the comparison in Sec. 3.6.1,
both the “on x” (i.e., major axis located on x-axis) and “on y” (i.e., major axis
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located on y-axis) ELAs were tested. The simulations were conducted at 1000Hz;

using an elliptical coordinate system with a =
√
55
20 , u0 ≈ 0.39 and q ≈ 11.74 were

obtained; the truncation order was set to ⌊L−1
2 ⌋ = 14; the order for calculating

the transfer function was 20. The results of CLA and 2CLA were implemented
with the CHE-based method as presented in Sec. 3.3. Tikhonov regularisation
was applied to all arrays to suppress the driving functions to under 0 dB.

The results for a 2m × 2m sound field are shown in Figs. 4.12 and 4.13.
Comparing the results to Figs. 3.10, 3.11, and 3.12, it is observed that ELA
outperforms single CLA and has a performance close to that of 2CLA.

Next, ELA was compared to CLA and 2CLA in the frequency band of 200-
4000Hz. The primary field included a focused source at (0m, 0.5m). The error
over the control region was evaluated by (2.69) in the sample ring region (3.35).
The results are shown in Fig. 4.14. The performance of ELA was similar to that
of 2CLA with the same “length” and “width” of the array, while both ELA and
2CLA outperformed CLA.

Comparison with CLA, 2CLA, and LLA

Consider that a “flat” ELA has a contour similar to LLA, the performances
of ELA, CLA, 2CLA, and LLA were also compared. The results of LLA were
implemented with SDM (cf. Appendix A). Since LLA can only reproduce a
half field, it is impossible to compare the reproduction error over the full-region.
Instead, a sub-region was selected as:

Λ = {x |OΛ = (0, 1), |x−OΛ| ≤ 0.2}, (4.42)

i.e., a circular region in front of the focused source. The comparisons on re-
production error were carried out on the sub-region in the frequency band of
200-4000Hz. Two LLAs were tested: one with the same length as that of ELA
and 2CLA, namely, 30 loudspeakers uniformly located on a 0.8m line with loud-
speaker interval of approximately 0.03m; another with the same loudspeaker
interval as that of 2CLA, namely, 30 loudspeakers lined up with an interval of
π/50m with an approximate length of 1.82m. An additional CLA of radius 0.4m
was added for comparison with length the same as that of ELA and 2CLA. Other
arrays, target source, and regions were the same as those of the previous simula-
tion. The “on y” configurations were excluded from the comparison. The results
are displayed in Fig. 4.15. The results are summarised as follows:

• The 0.4-m-CLA performed far better than others at low frequencies; how-
ever, the spatial aliasing at approximately 800Hz was the worst among all
arrays. Spatial aliasing is observed at above approximately 2000Hz, making
the performance worse than that of ELA.

• ELA and 2CLA had similar performances as mentioned before; however,
ELA performed better above 2000Hz.

• LLA performed better at high frequencies than low frequencies: an ideal
LLA with infinite length would have better performance at low frequencies
[49].

• Among all arrays, the 0.8-m-LLA had the worst performance; its perfor-
mance at high frequencies was similar to that of ELA.

• The 1.82-m-LLA outperformed 2CLA and ELA at frequencies higher than
approximately 700Hz.
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(a)

(b)

Figure 4.14: Reproduction error over a region :comparison between ELA, CLA,
and 2CLA.
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Figure 4.15: Reproduction error over a sub-region: comparisons between ELA,
CLA, 2CLA, and LLA.
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(a)

(b)

Figure 4.16: Direction dependency of an ELA on focused source reproduction.
(a) Reproduction error over full region; (b) Maximum controllable frequency.

4.7.2 ELA Properties on Exterior Sound Field Reproduction

Direction dependency

As ELA is also asymmetrical, the direction dependency is determined by changing
the source directions. The same ELA as in the previous part is used. The radius
and direction of the target source were the same as in Sec. 3.6.2. All other
conditions were identical to those of the previous simulation. The reproduction
error for the 200-4000Hz range are displayed in Fig. 4.16. The x and y axes in the
figures represent frequency and the source direction, respectively. Colour shows
reproduction error. The relationship between maximum controllable frequency
and source direction is displayed in (b). The results show a direction dependence
such that ELA performs better at a lower angle of the source direction; note that
this is the same for 2CLA.
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Influence on array geometry

To investigate how the array shape influences the performance of exterior sound
field reproduction, i.e., the efficiency of reproducing a sound field, the results
were compared while changing the axis length and/or flattening the array.

The same configurations as in the previous simulations were used, except
that the focused source was at a single position (0m, 0.5m). The simulations
were conducted for a frequency band of 200-4000Hz.

Four aspects of ELA were investigated:

(i) how does the axis length perpendicular to the source direction affect per-
formance (with another axis length fixed);

(ii) how does the axis length in the source direction affect performance (with
another axis length fixed);

(iii) how does flattening affect performance with fixed perimeter of the array;

(iv) how does flattening affect performance with fixed area of the array.

All ELAs included 30 loudspeakers equiangularly located on the surface.
Flattening F is a value that describes how flat an ellipse is: F = 0 denotes

a circle; F → 1 describes an ellipse that is almost a straight line. Flattening is
defined as

F =
A− B
A

, (4.43)

where A, B are the major and the minor axis of the ellipse, respectively.
The axis length in the source direction was fixed at 0.3m in part (i). The axis

length perpendicular to the source direction was varied from 0.01m to 0.5m. Note
that the one with both axes length at 0.3m was a CLA. Figure 4.17(a) display
the reproduction error for a varying axis length. The x and y axes in the figures
represent frequency and axis length, respectively. Colour shows reproduction
error. The relationship between the maximum controllable frequency and the
source direction is displayed in (b). Since the results for CLA were calculated by
CHE-based method, the results had a discontinuity at 0.3m. The results indicate
that for a fixed focused source at (0m, 0.5 m), the axis length perpendicular to
the source direction is roughly positively related to the maximum controllable
frequency; there was a slight fall at high frequencies.

The axis length perpendicular to the source direction was set to 0.3m in
part (ii). The axis length in the source direction was varied from 0.01m to 0.5m.
Note that the one with both axes length at 0.3m was a CLA. Figure 4.18 displays
the results for (a) Reproduction error over the control region and (b) Maximum
controllable frequency.

The results indicate that for a fixed focused source at (0m, 0.5m), the increase
in the axis length in the source direction is roughly positively related to the
maximum controllable frequency; there is little dependency at high frequencies.

In part (iii), the perimeter of the array was set to 3π/5m, which is the same
as that of a CLA with radius 0.3m. The flattening was varied between 0 and
1. Note that the one with F = 0 denotes a CLA. The reproduction error near
F = 0 had a discontinuity, as explained above. The results for varying flattening
are displayed in Fig. 4.19. The y axes in the figures represent the flattening.
The results indicate that for a fixed focused source at (0m, 0.5m), with a fixed
perimeter, flattening is negatively related to the maximum controllable frequency,
meaning that CLA performs the best.
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(a)

(b)

Figure 4.17: Focused source reproduction results on changing the axis length
perpendicular to the source direction. (a) Reproduction error over full region;
(b) Maximum controllable frequency.

In part (iv), the area of the array was set to 9π/100m2, which is the same as
that of a CLA with radius of 0.3m. The flattening was varied between 0 and 1.
Note that the one with F = 0 denotes a CLA. The results for (iv) are displayed
in Fig. 4.20 indicating that for a fixed focused source at (0m, 0.5m), for a fixed
area, the flattening is negatively related to the maximum controllable frequency;
the dependency is less when the perimeter is fixed.
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(a)

(b)

Figure 4.18: Focused source reproduction results on changing the axis length
in the source direction. (a) reproduction error over full region; (b) maximum
controllable frequency.
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(a)

(b)

Figure 4.19: Focused source reproduction results on changing flattening with a
fixed perimeter. (a) Reproduction error over full region; (b) Maximum control-
lable frequency.
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(a)

(b)

Figure 4.20: Focused source reproduction results on changing the flattening with
a fixed area. (a) Reproduction error over full region; (b) Maximum controllable
frequency.

96



Figure 4.21: Beam patterns of ELAs, CLA and 2CLAs. The beam pattern is
normalised by the power in the look direction. The angle on the horizontal axis
is relative to the look direction.

4.8 Beamforming

In this section, ELA performance on beamforming is tested. The performance is
evaluated using DI, BW, and SLL.

For all simulations reported in this section, the MVDR beamformer with
Tikhonov regularisation was employed. Constraint point, suppression points,
observation points, and the sound pressure at the constrained point were set as
in Sec. 3.7.

4.8.1 Comparison with CLA, 2CLA, and LLA

Comparison with CLA and 2CLA

Simulations were conducted to compare the arrays introduced in Sec. 4.7.1. In
this part, only the look direction at 90◦ is discussed for simplicity. The beam
patterns of ELAs, CLA, and 2CLAs at 1000Hz are displayed in Fig. 4.21. The
results of ELAs and 2CLAs of both configurations show negligible difference and
outperform CLA. This is also in agreement with the results of focused source
reproduction.

The results in the frequency band of 200-4000Hz are displayed in Fig. 4.22.
These results also show negligible difference between ELA and 2CLA (both out-
perform the CLA) at frequencies below 1700Hz. For higher frequencies, the “on
x” ELA outperforms “on x” 2CLA with higher DI and lower SLL. In contrast,
the “on y” ELA has lower DI, higher BW with lower SLL than the “on y” 2CLA;
the “on y” configurations display even worse performance than the CLA.
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Comparison with CLA, 2CLA, and LLA

Another comparison was conducted with LLA included. The LLAs were the same
as in Sec. 4.7.1. In this part, the results are discussed for two look directions: 0◦

and 90◦.
The beam patterns at 1000Hz are displayed in Fig. 4.23. Look directions

were set to (a) 0◦; (b) 90◦. The results of ELAs and 2CLAs also show negligible
difference. For both (a) and (b), evaluating the sharpness of the beam, the
1.82-m-LLA and 0.4-m-CLA performed better, ELA and 2CLA were next, and
the 0.8-m-LLA and 0.15-m-CLA were the worst. The LLAs, however, always
exhibited a symmetric beam pattern, meaning that there always is a 0 dB side
lobe except for the look direction of 0◦ (shown in (b)).

To further investigate, a simulation was conducted for the frequency band of
200-4000Hz. The results are shown in Figs. 4.24 and 4.25. For the look direction
of 0◦:

• The 0.4-m-CLA had the best performance, closely followed by the 1.82-m-
LLA; however, both of them had a roll-off at above 2400Hz.

• (As mentioned above) ELA and 2CLA displayed similar performance whereas
2CLA performed better above 1700Hz.

• The 0.15-m-CLA and the 0.8-m-LLA were the worst pair at low frequencies;
however, they outperformed other arrays at above 3000Hz. The CLA was
slightly better than the LLA at high frequencies.

For the look direction of 90◦:

• The 0.4-m-CLA performed best at low frequencies but was overtaken by
ELA and 2CLA at approximately 1400Hz.

• As mentioned above, ELA and 2CLA had similar performance; however,
ELA performed better above 1400Hz.

• The 1.82-m-LLA performance was in between that of 0.15-m-CLA and ELA
while the performance potential increased at high frequencies.

• The 0.8-m-LLA was the worst.

• LLAs had a constant SLL at 0 dB thus limiting the applications.
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(a) DI

(b) BW

(c) SLL

Figure 4.22: DI, BW, and SLL of ELAs, CLA, and 2CLAs over a frequency band
of 200-4000Hz.
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(a) Look direction at 0

(b) Look direction at π/2

Figure 4.23: Beam patterns of ELA, CLAs, 2CLA, and LLAs. The beam pattern
is normalised by the power in the look direction. The angle on the horizontal
axis is relative to the look direction.
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(a) DI

(b) BW

(c) SLL

Figure 4.24: DI, BW, and SLL of ELA, CLAs, 2CLA, and LLAs over a frequency
band of 200-4000Hz. The look direction was 0◦.
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(a) DI

(b) BW

(c) SLL

Figure 4.25: DI, BW, and SLL of ELA, CLAs, 2CLA, and LLAs over a frequency
band of 200-4000Hz. The look direction is 90◦. LLAs have a constant 0 dB SLL.
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4.8.2 ELA Properties on Beamforming

Direction dependency

A simulation was conducted on changing look directions to investigate the asym-
metric aspect of an ELA. The angles between 0◦ and 90◦ were tested at intervals
of 2.5◦ with the ELA in Sec. 4.7.1. Other conditions were the same as in the
previous simulation.

The results presented in Fig. 4.26 show that DI and BW improve with in-
creasing angle at higher frequencies, which is an aspect of 2CLA. There is little
direction dependence at frequencies below 1000Hz. SLL is direction-dependent
above 2400Hz. Comparing with Fig. 3.34, it is observed that the results of ELA
are similar to that of 2CLA, except that 2CLA excites SLL at larger angles.
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(a) DI

(b) BW

(c) SLL

Figure 4.26: DI, BW, and SLL of ELA in look directions between 0◦ and 90◦.
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Influence on array geometry

Similar to Sec. 4.7.2, the performance of ELA was investigated by changing the
axis length or the flattening of the array. The investigation focused on the in-
fluence of four ELA parameters: (i) the axis length perpendicular to the beam
direction; (ii) the axis length in the beam direction; (iii) flattening with fixed
perimeter; (iv) flattening with fixed area. All tests were carried out for the con-
figurations in Sec. 4.7.2.

Simulations were conducted for an MVDR beamformer, the same as the one
in Sec. 3.7. There was a discontinuity in the results near CLA (calculated by
CHE-based method).

The results on (i) are shown in Fig. 4.27. Note that the 0.3m axis length ELA
was a CLA. The results show that on beamforming, the axis length perpendicular
to the beam direction is positively related to DI and BW. The results on SLL
indicate that a “flat” ELA tends to have higher SLL than a “round” ELA.

The results on (ii) are shown in Fig. 4.28. Again, the 0.3m axis length ELA
was a CLA. The results show that on beamforming, the axis length in the beam
direction is positively related to DI and BW at low frequencies and negatively
related at high frequencies (approximately divided at 1500Hz). The results show
negligible dependence between axis length and SLL.

The results on (iii) are displayed in Fig. 4.29. Note that the 0 flattening
ELA was a CLA. The results show little dependence between flattening and
performance below 3000Hz. At higher frequencies, a larger flattening has a higher
DI along with a higher SLL. The results on (iv) are displayed in Fig. 4.30. The 0
flattening ELA was a CLA. The results show little dependence between flattening
and performance in the entire frequency band.
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(a) DI

(b) BW

(c) SLL

Figure 4.27: Beamforming results on changing the axis length perpendicular to
the beam direction.
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(a) DI

(b) BW

(c) SLL

Figure 4.28: Beamforming results on changing the axis length in the beam direc-
tion.
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(a) DI

(b) BW

(c) SLL

Figure 4.29: Beamforming results on changing flattening with fixed perimeter.
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(a) DI

(b) BW

(c) SLL

Figure 4.30: Beamforming results on changing flattening with fixed area.
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4.9 Summary

In this chapter, an ELA model was proposed. Compared with the MCLA model
proposed in the previous chapter, the ELA model has a complete contour, and
therefore, there is no multiple scattering effect. As ELA can be defined in the
elliptical coordinate system, a sound field reproduction method based on the
eigenfunctions of the coordinate system - the Mathieu functions, was proposed.
With the proposed method, the ELA can be controlled through elliptical har-
monic modes. A method was further proposed, adopting MFE for circular-array-
signals, which allows implementation with the most common circular microphone
arrays. The mode strength of an ELA was next investigated. The mode strength
of ELA showed potential in reproducing complex sound fields.

As in the previous chapter, numerical simulations were conducted and dis-
cussed with respect to interior sound field reproduction, exterior sound field re-
production, and beamforming.

For interior sound field reproduction, both the MFE-based method and the
method adopted for circular microphone arrays were validated for sound field
reproduction. With order truncation, the MFE-based method displayed an el-
liptical listening area. However, the order truncation on the circle-ellipse trans-
formation resulted in a circular listening area as with conventional methods for
CLA.

Next, the performance of ELA was discussed on exterior sound field reproduc-
tion. Conventional CLAs, LLAs were compared with the 2CLA proposed in the
previous chapter. The properties of ELA were also investigated in detail. The
results show that the ELA and 2CLA of same “length” and “width” had simi-
lar performances. The results also show that both ELA and 2CLA outperform
conventional arrays. As for the properties of ELA, the direction dependency is
similar to that of 2CLA: ELA performed better in the major-axis direction; the
axis lengths were roughly positively related to performance; the flattening had a
little negative affect on performance. Based on these results, it is hypothesised
that instead of the specific array contour, it is the array scale that primarily
affects performance.

As for beamforming, comparisons were made with 2CLA, CLA, and LLA.
The performances of ELA and 2CLA were similar. The comparison with con-
ventional arrays was similar to the results of exterior sound field reproduction.
The performance of the end-fire LLA was competitive. The ELA showed little
direction dependence on beamforming. As for the influence of ELA parameters,
axis lengths were positively related to performance; flattening was slightly posi-
tively related to performance. The ELA parameters had a more direct influence
on beamforming than on exterior sound field reproduction. This is in agree-
ment with the hypothesis that beamforming is a simplified model of sound field
reproduction.
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Chapter 5

General sound field reproduction method

based on Mathieu function expansion

The MFE-based method proposed in the previous chapter displays asymmetrical
properties. Those properties provide certain advantages in specific situations such
as when listeners are sitting in a line (e.g., on a long sofa). In this chapter, the
method is generalised to a more versatile method for arbitrary-shaped arrays. The
results are discussed with respect to interior and exterior sound field reproduction.

5.1 The general method

For arbitrarily shaped arrays, the MFE-based method can be employed with
minor modifications. The properties of MFE, including the elliptical controlling
area, are advantages when applied to asymmetric arrays.

The secondary field of an arbitrary array can be described as in (4.31). How-
ever, the driving function cannot be simply expanded by the Mathieu angular
function. Therefore, another MFE-based method is proposed that can be ap-
plied to arbitrary arrays. The method proposed in the previous section expands
the driving functions in the wave domain and drives the secondary sources by
mode. Using the same approach of matching the MFE coefficient, the proposed
method drives the secondary sources individually in the frequency domain, as
follows:

By substituting (2.6) into (4.31), we obtain

p̂(ξ, η, ω) =


∑L

l=1

[∑∞
ν=−∞ γ◁ν(xl, q)M

(1)
ν (q, ξ)meν(q, η)

]
dl(ω) interior∑L

l=1

[∑∞
ν=−∞ γ▷ν(xl, q)M

(4)
ν (q, ξ)meν(q, η)

]
dl(ω) exterior

,

(5.1)
where {

γ◁ν(xl, q) = − j
4M

(4)
ν (q, ξl)meν(q,−ηl) interior

γ▷ν(xl, q) = − j
4M

(1)
ν (q, ξl)meν(q,−ηl) exterior

(5.2)

are for open arrays.
By utilising the orthogonality of Mathieu functions, the coefficients of the

secondary sound field in (5.1) are matched to the primary sound field (4.23) with{∑L
l=1 γ

◁
ν(xl, q)dl(ω) = p̀◁ν(q) interior∑L

l=1 γ
▷
ν(xl, q)dl(ω) = p̀▷ν(q) exterior

. (5.3)

Rewriting both sides using vector and matrix expressions, the driving function is
derived using the least-squares method:

d = (ΓHΓ+ λIL)
−1ΓHp̀, (5.4)
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Figure 5.1: Truncation error of plane waves.

where λ is the regularisation parameter,

d = [d1(ω), d2(ω), ..., dL(ω)]
T, (5.5)

Γ = [γ1,γ2, ...,γL], (5.6)

γl =

{
[γ◁−N (xl, q), γ

◁
−N+1(xl, q), ..., γ

◁
N (xl, q)]

T interior

[γ▷−N (xl, q), γ
▷
−N+1(xl, q), ..., γ

▷
N (xl, q)]

T exterior
, (5.7)

p̀ =

{
[p̀◁−N (q), p̀◁−N+1(q), ..., p̀

◁
N (q)]T interior

[p̀▷−N (q), p̀▷−N+1(q), ..., p̀
▷
N (q)]T exterior

. (5.8)

In the elliptical coordinates, the foci lie on the x-axis of the Cartesian coordi-
nate system. This means that the elliptical controlling area has a fixed direction.
To make the method more flexible, a rotation can be applied to the sound field.
By rotating the primary field and the secondary field at the same time, it is
possible to achieve a rotation of the elliptical area.

5.2 Truncation order

In studies based on circular harmonic expansion or spherical harmonic expan-
sion, suitable truncation order for infinite series has been discussed. Generally,
the truncation order is selected by N ≥ ⌈kr⌉ [27] or N ≥ ⌈ ekr2 ⌉ [96] based on the
property of cylindrical functions, especially the Bessel function. As the proposed
method is based on elliptical functions, the truncation order should be recon-
sidered with respect to the truncation error. Here, the truncation error in the
elliptical harmonic expansion is discussed.
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As MFE is asymmetric, the truncation error is also direction dependent.
Hence, the average truncation error over directions is discussed. The normalised
truncation error of plane waves in all directions can be defined as

εN =

∫ 2π
0

∫ 2π
0 |S(η, η′)− ŜN (η, η′)|2dηdη′∫ 2π

0

∫ 2π
0 |S(η, η′)|2dηdv′

, (5.9)

where η′ represents the direction of the plane wave,

S(η, η′) =
∞∑

ν=−∞
jνmeν(q,−η′)M (1)

ν (q, ξ)meν(q, η) (5.10)

represents the plane wave, and

ŜN (η, η′) =
N∑

ν=−N

jνmeν(q,−η′)M (1)
ν (q, ξ)meν(q, η) (5.11)

represents the plane wave truncated at order N . The numerator of (5.9) can be
derived as∫ 2π

0

∫ 2π

0
|S(η, η′)− ŜN (η, η′)|2dηdη′ =

∑
|ν|>N

∑
|ν′|>N

{
(jν

′
)∗jνM

(1)
ν′ (q, ξ)∗M (1)

ν (q, ξ)

×
∫ 2π

0
meν′(q,−η′)∗meν(q,−η′)dη′

×
∫ 2π

0
meν′(q, η)

∗meν(q, η)dη

}
(5.12)

=4π2
∑
|ν|>N

M (1)
ν (q, ξ)2. (5.13)

The orthogonality of the Mathieu function is applied here. Similarly,∫ 2π

0

∫ 2π

0
|S(η, η′)|2dηdη′ = 4π2

∞∑
ν=−∞

M (1)
ν (q, ξ)2. (5.14)

Therefore, rewriting (5.13) as∫ 2π

0

∫ 2π

0
|S(η, η′)− ŜN (η, η′)|2dηdη′ =

∫ 2π

0

∫ 2π

0
|S(η, η′)|2dηdη′

− 4π2
N∑

ν=−N

M (1)
ν (q, ξ)2. (5.15)

Using the property of the plane wave:
∫ 2π
0

∫ 2π
0 |S(η, η′)|2dηdη′ = 4π2, the follow-

ing equation is obtained.

εN = 1−
N∑

ν=−N

M (1)
ν (q, ξ)2. (5.16)

The Mathieu radial functions have the following property:

M (ζ)
ν (q, ξ) ∼ B(ζ)

ν (2
√
q cosh ξ), (5.17)
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(a) Reproduced wavefront of a plane wave
with direction of arrival φ = 0.

(b) Reproduced wavefront of a plane wave
with direction of arrival φ = π/2.

(c) Reproduction error of a plane wave
with direction of arrival φ = 0.

(d) reproduction error of a plane wave
with direction of arrival φ = π/2.

Figure 5.2: Single plane wave reproduced by a rectangular loudspeaker array of
60 loudspeakers.

where ζ ∈ {1, 2, 3, 4} and B
(ζ)
n (·) are cylindrical functions. Considering the re-

lationship N ≥ ⌈kr⌉, a relationship between 2
√
q cosh ξ and the truncation error

for MFE is established. The results displayed in Fig. 5.1 are similar to the trun-
cation error in circular harmonic expansion. This indicates that the order can be
truncated with

N ≥ ⌈2√q cosh ξ⌉. (5.18)

In contrast, the low-error area promised by the maximum order can be obtained
by

ξ ≤ cosh−1 N

2
√
q
. (5.19)

5.3 Interior sound field reproduction

For an arbitrarily shaped array, a rectangular loudspeaker array was configured
to simulate the sound field reproduction scene in a room. The proposed method
was implemented. Sixty loudspeakers were equally spaced at an interval of 0.2m,
on a 4m × 2m rectangle in a two-dimensional free field. The elliptical coordinate
system was defined with a = 1. Simulations were conducted at 1000Hz (k ≈ 18.48
and q ≈ 192.10). Here, the truncation order was set to 20. In addition, a
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(a) Wavefront of primary sound field (b) Reproduction error of the proposed
method.

(c) Reproduction error of the conventional
circular-harmonic-expansion-based method.

(d) Reproduction error of the proposed method
with a π/6 rotation.

Figure 5.3: Random plane waves reproduced by a rectangular loudspeaker array
of 60 loudspeakers.

relatively small L2 regularisation parameter was set as λ = σmax(Γ
HΓ) × 10−6,

where σmax(·) stands for the maximum eigenvalue.
The results of reproducing a single plane wave are shown in Fig. 5.2. The

figure displays the wavefronts and reproduction error in a 5m × 5m sound field.
The proposed method reproduced the sound field in elliptical areas.

Next, the proposed method was compared with the conventional circular-
harmonic-expansion-based method. To avoid directional dependency, a sound
field with 30 random plane waves was tested. The primary sound field is displayed
in Fig. 5.3(a). Comparing the reproduction error of the proposed method and the
conventional method in (b) and (c), the proposed method reproduced the sound
field in a wide elliptical area. This property can benefit some practical scenarios,
e.g., listeners sitting on a long sofa. In addition, an example of rotating the
elliptical area is provided in (d), which can be applicable to specific listening
areas.

5.4 Exterior sound field reproduction

For an example on focused source reproduction, the MFE-based method was
applied to a rectangular array. The array size was 0.8m × 0.4m with 24 loud-
speakers uniformly arranged on the array contour. Note that the array is an open
array. The elliptical coordinate system was defined by a =

√
55/20. An omnidi-
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(a) Wavefront (b) Reproduction error

Figure 5.4: Focused source reproduced by a rectangular loudspeaker array of 24
loudspeakers.

rectional focused-source was reproduced at (0m, 0.4m) and 1000Hz (k ≈ 18.48
and q ≈ 11.74). The MFE order was truncated at 11. The L2 regularisation pa-
rameter was set to λ = σmax(Γ

HΓ)×10−6 as well. Figure 5.4 displays the results.
The figure shows the wavefronts and reproduction error in a 2m × 2m sound
field. Since exterior sound field reproduction matches the coefficient at infinity,
the proposed method has results similar to the circular-harmonic-expansion-based
method. Considering that there would be minor applications only, further dis-
cussion on exterior sound field reproduction using an arbitrarily shaped array is
omitted.

5.5 Summary

In this chapter, a general MFE-based method was proposed for sound field re-
production. The method extended the MFE-based method for ELAs, which was
proposed in the previous chapter, to a method that can be implemented for
arbitrary-shaped arrays. An appropriate truncation order for MFE was further
proposed.

Numerical simulations were conducted on interior sound field reproduction
and exterior sound field reproduction. The method was implemented for rectan-
gular arrays. For interior sound field reproduction, the results showed that the
method inherited the asymmetric properties of the ELA methods. The method
can output an elliptical listening area, which is considered suitable for situations
such as multiple listeners sitting on a long sofa. For exterior sound field repro-
duction, the results showed little difference compared with conventional methods;
the application is limited for exterior sound field reproduction.
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Chapter 6

Conclusion

The objective of this study was to find a system that comes with a flexible
loudspeaker arrangement and available analytical methods so as to diversify the
spatial control technique. In spatial control, the control method as well as the
configuration of the loudspeaker array are both extremely important. Although
it is possible to employ an environment-optimised method, or even an optimised
array geometry to achieve high performance, the methods lack robustness in dif-
ferent environments. In contrast, analytical control methods, which are based
on physical properties, provide predicable results and are versatile for imple-
mentations; however, these methods suffer from limited array geometries. To
provide a system that addresses the trade-off between flexibility of loudspeaker
arrangement and the method analyticity, the study proposed novel complex array
geometries that can be controlled using analytical methods. Aiming at diversify-
ing the sound field, two array models are discussed: multiple circular loudspeaker
array (MCLA) and elliptical loudspeaker array (ELA). MCLA contains multiple
conventional CLAs with their centre shifted, and it introduces a multiple scat-
tering effect to the sound field. An analytical control method is proposed by
shifting coordinate origins with an addition theorem, while taking the multiple
scattering effect into consideration. ELA, in contrast, can be defined in an ellip-
tical coordinate system. Its analytical control method is proposed by using the
wave function in the elliptical coordinate system, namely, the Mathieu function.
Furthermore, this study establishes the MFE (or elliptical harmonic) domain
method, which has been hardly explored in the spatial control literature. Not
only do the proposed arrays increase the flexibility of loudspeaker arrangement,
the overall results show that these arrays outperform the conventional arrays un-
der certain conditions owing to the physics of the design. Examples include the
following: MCLA, which can perform as well as a CLA in the same size, is a
distributed array model and benefits in the loudspeaker setting in space; ELA
can perform an elliptical listening area in interior sound field reproduction, which
would be better for a multiple listener condition. Additionally, as a result of the
comparison of the proposed array geometry with those of conventional arrays,
some key features were established for the design of an ideal array with physical
configuration applicable to general spatial control.

The contents of each chapter are summarised as follows.
In Chapter 1, the background, the motivation, and the structure of the study

were presented.
In Chapter 2, basic theories of spatial control were introduced. Conventional

methods including wave field synthesis, the inverse-filter-based method, and the
wave domain method were explained. The three main topics discussed in this
study, namely, interior sound field reproduction, exterior sound field reproduc-
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tion, and beamforming were introduced along with the evaluation methods used
for later chapters.

In Chapter 3, the MCLA model and its analytical method for spatial con-
trol that considers the multiple scattering effect were proposed. The proposed
method transforms sound field coefficients to different coordinate systems in the
wave domain using the additional theorem of Bessel and Hankel functions. The
analysis of the harmonic mode of 2CLA demonstrated its potential for reproduc-
ing complex sound fields. The results of the numerical simulations demonstrated
that:

• The proposed method solves the issue of the multiple scattering effect error
introduced by conventional interior sound field reproduction methods.

• MCLA and especially 2CLA of the proposed method outperform conven-
tional CLA at low frequencies both for exterior sound field reproduction
and beamforming.

• Instead of the array shape, the array length and array-source distance are
likely to be the two main factors affecting the exterior sound field repro-
duction, whereas the array length is also important in beamforming.

Chapter 3 contributes to spatial control technique an analytical method that
considered multiple scattering effect. The multiple scattering effect has been dis-
cussed frequently in acoustics studies whereas was incorrectly omitted in spatial
control techniques so far. Although the multiple scattering does not exhibit a pos-
itive effect on spatial control, it is necessary to be considered during processing
as it exists in real environments if the CLAs are acoustically rigid. The pro-
posed method not only provides a tool for the investigations on MCLAs, but also
promotes further studies including multiple scattering effect. A recent study on
multiple rigid spherical microphone array [97] can be considered as an example.

In Chapter 4, the ELA model was proposed with an elliptical coordinate
system. MFE was introduced and a novel wave-domain sound field reproduction
method based on MFE was proposed. In addition, another MFE-based method
for conventional circular microphone arrays was proposed. Further study of the
mode strength revealed that ELA has the potential to reproduce complex sound
fields. The results of the numerical simulations were:

• For interior sound field reproduction, the proposed method produces an
elliptical listening area whereas the conventional method produces a circular
listening area.

• For both exterior sound field reproduction and beamforming, the ELA per-
formance is highly similar to that of 2CLA for the same length and width of
the array, implying that the size of the outer contour of an array is more de-
terminative than the array shape. Both proposed array models demonstrate
better control efficiencies compared with conventional CLA and LLA.

• The axis lengths of the ELA have a significant influence on the performance
of exterior sound field reproduction and beamforming, whereas flattening
has little effect if the size of the ELA is fixed.

Overall, the array asymmetricity of ELA produces a direction dependent perfor-
mance; furthermore, extending the length of the array even in one dimension may
help improve the performance.
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Chapter 4 contributes a new theory for spatial control based on elliptical
coordinate system. The use of elliptical coordinate system and eigenfunctions of
Helmholtz equation in the coordinate system (i.e. Mathieu functions) has been
missing so far in the literature of spatial control. Proposed methods provide
analytical solutions on elliptical arrays, which have a great business potential on
car audios, smart speakers, etc. Furthermore, the approach in this chapter also
encourages the use of other orthogonal coordinate systems including a parabolic
coordinate system, bi-polar coordinate system, etc. Recently, a spatial control
method based on the three-dimensional spheroid coordinate systems was reported
[98].

In Chapter 5, a general MFE-based method was proposed for arbitrary-shaped
arrays. In addition, an appropriate truncation order was determined for MFE.
The numerical simulations were carried out on rectangular arrays. For interior
sound field reproduction, the proposed method produces an elliptical listening
area. The method is considered practicable for applications such as home audio
systems.

Chapter 5 further contributes to the development of the possibilities of MFE.
Showing equivalent properties as using an ELA, the proposed general MFE-based
method provides an interface for acquiring the desirable features of MFE on
existing audio systems.

In summary, this study shares a novel approach on enhancing the spatial
control technique. Conventional studies either focus on an optimal system with
specific conditions or retain the use of common basic arrays. The approach in this
work, i.e., to propose new complex array geometries that are analytically con-
trollable, meets halfway in that the proposed systems contain advanced but not
optimised array geometry. However, it is believed that such a system would pro-
vide improved performance in most cases. Throughout this thesis, the possibility
of designing such a system is discussed.

The study is expected to make extensions, e.g., detailed discussion on array
geometry, implementation with three-dimensional-field compensation, or a three-
dimensional theory, to provide an advanced spatial control technique. With the
advanced technique, future applications including 3D communication system, 3D
television, virtual live concert, etc., become possibilities. In addition, this study
can accelerate further development of other irregular arrays that are effective and
versatile. As a reference for designing new arrays, it can be inferred from this
study that a large-scale array can be designed without obvious multiple scattering
effect for spatial control such that the array stretched in one direction features
asymmetry, and stretching in the direction perpendicular to the controlling di-
rection (i.e., the direction of the primary source or the target beam) can result
in advanced performance. The proposed acoustical methods of this study also
share numerous commonalities with studies on other waves, e.g., electromagnetic
waves and are expected to have further utilisation in the study of sensor networks
or antenna at large.
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Appendix A

Spectral Division Method

This appendix explains the theory of the spectral division method (SDM) [43] in
two-dimensional fields, which was implemented for LLAs in Chapter 4.

As explained in Sec. 2.2, a plane wave decomposition can describe sound fields
in the wavenumber domain. Instead of fixing y to 0 as in (2.23), a sound field
can be described as

p(x, y, ω) =
1

2π

∫ ∞

−∞
p̃(kx, y, ω)e

−jkxxdkx. (A.1)

p̃(kx, y, ω) here can be considered as the wave spectrum of p(x, y, ω).
Considering the secondary source distribution to be a continuous infinite-

length linear array on x = 0 and assuming that the sources are monopoles, the
secondary sound field can be described as

p̂(x, ω) =

∫ ∞

−∞
G(x|x0, ω)d(x0, ω)dx0, (A.2)

where G(x|x0, ω) is the Green function in the free field and d(x0, ω) is the driving
function for the source located at x0. As the Green function between x and x0

in (2.12) is determined by the subtraction (x− x0), the transfer function can be
rewritten as:

p̂(x, ω) =

∫ ∞

−∞
G(x− x0, ω)d(x0, ω)dx0. (A.3)

The right side of the equation can then be considered a convolution: a multipli-
cation in the wavenumber domain after a spatial Fourier transform. Thus, we
have

˜̂p(kx, y, ω) = G̃(kx, y, ω)d̃(kx, ω). (A.4)

By matching the spectra of the first and secondary sound field along the line
y = yREF, the d̃(kx, ω) can be obtained by a division:

d̃(kx, ω) =
p̃(kx, yREF, ω)

G̃(kx, yREF, ω)
. (A.5)

This step determines the name of the method: a spectra division. Note that if
no source exists in y ≥ yREF (yREF ≥ 0 is assumed for simplicity), the sound field
in y ≥ yREF is automatically reproduced once the spectra match at y = yREF

(according to the Kirchhoff-Helmholtz integral equation). Finally, the driving
function is obtained by applying a spatial inverse Fourier transform to d̃(kx, ω):

d(x, ω) =
1

2π

∫ ∞

−∞

p̃(kx, y0, ω)

G̃(kx, y0, ω)
e−jkxxdkx. (A.6)
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In practice, the use of a discrete linear array requires discretisation. Thus,
instead of the continuous spatial Fourier transform, a discrete spatial Fourier
transform is applied in the method. With N equally spaced samples at intervals
of ∆x, the discrete spatial Fourier transform can be written as [46]

f̃(2πm/L) ≈ ∆x

N/2−1∑
q=−N/2

f(q∆x)e−j2πmq/N , (A.7)

where m = −N/2, −N/2 + 1, ..., N/2 − 1. The discrete spatial inverse Fourier
transform can be written as [46]

f(q∆x) ≈ 1

N∆x

N/2−1∑
m=−N/2

f̃(2πm/L)ej2πmq/N . (A.8)

Substituting the continuous transforms with the discrete transforms for both first
and secondary sound field, the discretised SDM can be easily obtained (the details
are omitted here).
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Appendix B

Exterior Multi-zone Reproduction

In general, exterior sound field reproduction faces accuracy issues when reproduc-
ing complete exterior fields, especially when reproducing focused sources. The
results in Chapters 2-4 show that the reproduction accuracy is low when repro-
ducing focused sources (compared with the results of interior sound field repro-
duction). The main reason for this difficulty is that reproducing global exterior
fields typically requires higher-order calculations. Boundaries limit interior areas
as well as the number of secondary sources because loudspeakers typically require
a certain volume of air. This limitation reduces the maximum number of orders
that can be reproduced.

The results of focused source reproduction show that the reproduction ac-
curacy is not uniformly distributed over the control region. In addition, fo-
cused source reproduction using wave field synthesis yields a triangular listening
area [44,49]. In contrast, focusing the controlling efforts to a specific sub-region,
instead of the whole control region, should result in higher reproduction accuracy.
In sound field reproduction, the reproduction of selected regions instead of the
full region is a major topic referred to as multi-zone reproduction. However, the
conventional multi-zone reproduction studies were discussed on interior sound
field reproduction only. In this chapter, a CHE-based multi-zone reproduction
method for exterior sound field reproduction is proposed.

B.1 Conventional studies

A well-known technique named multi-zone reproduction has been studied over the
years [99–104]. The original idea of multi-zone reproduction is to present multiple
individual sound fields at the target areas. This can realise private sound zones
where listeners can perceive their private sounds without interference from others.

The multi-zone reproduction methods are proposed for interior sound field re-
production (there are also methods for linear arrays). The methods define multi-
ple small control regions inside a global interior field. While general interior sound
field methods set a target global interior field, the multi-zone reproduction meth-
ods set multiple target fields of small control regions, and then transfer them to a
mixed global field. The methods proposed are based mainly on two approaches:
the inverse-filter-based approach and the wave domain approach (similar to the
conventional sound field reproduction methods introduced in Chapter 2). Note
that the wave domain approach uses an addition theorem to convert the offset
expansion basis (of the small control regions) to the global expansion basis (of
the global interior field).

It has been reported [100,102] that these methods can achieve a high sound-
contrast between the bright-zone, i.e., the listening area and the dark-zone or
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quiet-zone. It has also been reported that the methods can improve the re-
production accuracy of the small control regions because the general methods,
especially the wave domain methods, have subpar performance at positions far
from the centre of the sound field. Multi-zone reproduction methods are expected
to provide high performance at each control region.

B.2 Proposed Method

Inspired by conventional multi-zone reproduction studies [99–103], a ‘multi-zone
reproduction’ method is proposed in this study for exterior sound field repro-
duction. As the main purpose of this chapter is to improve the performance in
specific local areas, the method is introduced as a local exterior sound field repro-
duction technique. The main concept of the method is to sacrifice the size of the
listening area to achieve higher reproduction accuracy. Rather than reproducing
an entire exterior sound field, local interior listening areas are defined. The main
method for multi-zone reproduction is to choose multiple areas and reproduce
an offset sound field, where both the global field and the local fields are interior,
i.e., incident fields. In contrast, in this method, small local areas selected from a
global exterior field are considered as interior fields. This results in differences in
the transformation of the sound field coefficient such that the basis expressed as
a Hankel function is transformed into a basis of Bessel functions.

Figure B.1 presents a basic model of this problem. Multiple local circular
areas are defined inside a global exterior field. In the a-th local area, the primary
field is propagating inward and therefore can be expressed as

p(xa, ω) =
∞∑

ν=−∞
p̆◁ν,a(k)Jν(kra)e

jνϕa , (B.1)

where p̆◁ν,a(k) is the local sound field coefficient in the a-th area. Similarly, the
secondary field, which is also an incident field, can be expanded as

p̂(xa, ω) =
∞∑

ν=−∞

˘̂p◁ν,a(k)Jν(kra)e
jνϕa . (B.2)

However, if the same sound pressure is being observed in the global field, then
the field is propagating outward and thus is described by

p̂(x, ω) =
∞∑

µ=−∞

˘̂p▷µ(k)H
(2)
µ (kr)ejµϕ. (B.3)

Note that the secondary sound field is a reproduced field by secondary sources:

p̂(x, ω) =

L∑
l=1

G(x|xl, ω)dl(ω), (B.4)

which implies that the sound field coefficient of the secondary field is a function
of the driving functions. Let θ be a function of the driving functions and

θµ(d, k) = ˘̂p▷µ(k), (B.5)

where
d = [d1(ω), ..., dL(ω)]

T. (B.6)
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Global exterior field

Secondary source

Local area (𝜄𝜄)

Local area (1)

Local area (𝜄𝜄 + 1)

𝑟𝑟,𝜙𝜙

𝑟𝑟 𝜄𝜄 ,𝜙𝜙 𝜄𝜄

𝐷𝐷 𝜄𝜄 ,Φ 𝜄𝜄

𝐷𝐷 1 ,Φ 1

Primary source

Figure B.1: Model of exterior sound field reproduction. The conventional method
reproduces the sound field outside the blue dotted circle and the proposed method
reproduces the sound field inside the red dotted circle. Stars represent primary
sources and loudspeakers represent secondary sources. The a-th local area is
located at (Ra,Φa). x = (r, ϕ) and xa = (ra, ϕa) are the coordinates of the centre
of the global sound field and the a-th local area, respectively.

Next, Graf’s addition theorem is applied [78].

H(2)
µ (kr)ejµϕ =

∞∑
ν=−∞

Tν,µ,a(k)Jν(kra)e
jνϕa , (B.7)

where
Tν,µ,a(k) = H

(2)
µ−ν(kRa)e

j(µ−ν)Φa , (B.8)

to (B.3), which yields

p̂(xa, ω) =

∞∑
ν=−∞

∞∑
µ=−∞

Tν,µ,a(k)θµ(d, k)Jν(kra)e
jνϕa . (B.9)

The condition of Graf’s addition theorem Ra > ra is initially satisfied in the
proposed model. When comparing (B.9) to (B.2), based on the orthogonality of
the circular harmonics ejνϕ, we have

p̆◁ν,a(k) =
∞∑

µ=−∞
Tν,µ,a(k)θµ(d, k) =

∞∑
µ=−∞

Tν,µ,a(k)˘̂p
▷
µ(k). (B.10)

Multi-zone reproduction studies [100] also use Graf’s addition theorem to divide
sound fields into small regions (from a large interior field into small interior
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fields). By contrast, in the proposed method, the original field is an exterior field,
meaning not only should the field be divided, but also transformed into interior
fields i.e., a transformation from the Hankel function to the Bessel function.

By matching the coefficients in (B.1) and (B.2), similar to the conventional
mode-matching method,

Θd =
[[
TT
1 ,T

T
2 , ...,T

T
A

]T]† [
p̆T
1 , p̆

T
2 , ..., p̆

T
A

]T
, (B.11)

where † is the pseudo-inverse matrix and

Θd = [θ−M (d, k), θ−M+1(d, k), ..., θM (d, k)]T , (B.12)

Ta =


T−Na,−M,a(k) T−Na,−M+1,a(k) . . . T−Na,M,a(k)
T−Na+1,−M,a(k) T−Na+1,−M+1,a(k) . . . T−Na+1,M,a(k)

...
...

. . .
...

TNa,−M,a(k) TNa,−M+1,a(k) . . . TNa,M,a(k)

 , (B.13)

p̆a =
[
p̆◁−Na,a(k), p̆

◁
−Na+1,a(k), ..., p̆

◁
Na,a(k))

]T
. (B.14)

The infinite series are truncated based on the truncation order of the local areas
Na and the truncation order of the global secondary sound field M . Instead of
calculating a pseudo-inverse matrix, a least-squares method with regularisation
can be applied to avoid the singular matrix problem and indirectly control the
gain of the driving function. After all, the driving function d can be derived from
Θd. If the secondary source is a circular loudspeaker array, the driving function
can be easily derived by

dl(ω) =
M∑

µ=−M

θµ(d, k)

LĞµ(k)
ejµϕl , (B.15)

where dl(ω) is the driving function of the l-th loudspeaker, Ğµ(k) is the same one
in (2.59).

B.3 Limitations

Area size

Similar to studies on multi-zone reproduction for interior sound fields [100], the
controllable area is limited by the truncation order Na. The error in the local
areas is sufficiently small if

Na =

⌈
ekRa

2

⌉
(B.16)

is satisfied [96]. Therefore, the size of the control areas can be adjusted by se-
lecting the truncation orders for each area. Additionally, the truncation orders
should satisfy the following condition determined by the flexibility of the sec-
ondary sources:

A∑
a=1

Na ≤M ≤
⌊
L− 1

2

⌋
. (B.17)
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Irreproducible sound fields

In the global exterior sound field reproduction method described in Sec. 2.5.2,
there is a boundary surface that covers the primary and secondary sources. The
control region is the exterior space of the boundary, where the Fresnel-Kirchhoff
integral theorem [49] is satisfied i.e., all sources are on one side of the boundary.
This further signifies that the sound field in the control region is theoretically
reproducible.

In the proposed method, however, the control region is the interior spaces
of the local areas. For each local area, both the primary and secondary sources
are initially located outside the boundary of the area. According to the Fresnel-
Kirchhoff integral theorem, any primary sound field can be reproduced, but there
are still limitations. Secondary sources cannot fully control the sound pressure
at the boundaries of local areas because they are in a limited direction range of
each local area.

˘̂p◁ν,a(k) =

∫ Φa+∆Φ

Φa−∆Φ

∞∑
ν=−∞

Aν(k)e
jνϕdϕ, (B.18)

where ∆Φ < π/2 and Aν(k) does not include directional components. This
indicates that if the p̆◁ν,a(k) includes components in directions outside the range
of the integral in (B.18), then the sound field can be difficult to reproduce using
secondary sources e.g., the primary sound field of a source arriving from (2π−Φa).

B.4 Results

Simulations were conducted on reproducing different primary sound fields in in-
dividual zones (multiple listeners can hear different sounds simultaneously). The
results are discussed in terms of bright-zone/dark-zone reproduction.

Here, three individual primary fields were defined for three local areas centred
at (1 m, 0), (1 m, π/2), and (1 m,−π/2). The truncation order of the fields was
set to four. The primary fields in the local areas are presented in Fig. B.2(a),
where the first field is the field of a focused source located at (0.5 m, π/2); the
second field is a zero field used for generating the dark zone; and the last field is
a field of six random sources with random amplitudes and phases located inside
a circle of radius r = 0.5 m (within the limitations described in Section B.3).
All sources have frequencies of 1000Hz. The local sound field coefficient of the
focused source can be derived as

p̆◁ν,a(k) = − j
4
H(2)

ν (krs,a)e
−jνϕs,a , (B.19)

where (rs,a, ϕs,a) are the coordinates of the source in the a-th coordinate system.
A rigid circular loudspeaker array was used at the centre of the global sound

field as a secondary source. Thirty loudspeakers were equiangularly mounted on
a rigid circular surface with a radius of 0.15m. A focused source at 1000Hz was
placed at (0.5 m, π/2) in the global coordinate system. The truncation order
for both the conventional and proposed methods was M = ⌊(L − 1)/2⌋ = 14.
The two local areas selected were centred at (1 m, 0) and (1 m, π/2), where
the conventional method displays relatively poor and fair reproduction accuracy,
respectively. The truncation orders of the two areas were set to N1 = 3 and
N2 = 5. Both methods were implemented using the least-squares method with
Tikhonov regularisation, which suppresses the gain of the driving function under
0 dB to avoid distortion on the loudspeakers.

126



(a) Primary sound fields (b) Reproduced sound field

(c) Reproduction error of each area (d) SPL

Figure B.2: Results of multi-zone reproduction. The interior areas in the red
dotted circles represent the controlling areas. White crosses indicate the locations
of secondary sources.

Figure. B.2 presents the results for a 3×3 m2 sound field, where (a) is the
target primary sound field, (b) is the reproduced sound field, (c) is the repro-
duction error of (b), and (d) is the sound pressure level (SPL) in the reproduced
sound field. The reproduction error is -37.56 dB in the first area and -35.88 dB
in the third area. The reproduction error of a zero field cannot be calculated,
hence, the SPL of the second area is displayed instead in Fig. B.2(c), showing a
great contrast between the bright and dark zones. These results demonstrate the
validity of the proposed method for exterior multi-zone reproduction.
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Appendix C

Mathieu function based multi-zone

reproduction

In addition, a simple (pseudo) multi-zone reproduction can be achieved by using
the MFE. Considering the harmonic shapes in Fig. 4.2, a simple mode selection
was applied to MFE by using either only the lower orders or all orders except the
lower orders.

The bright zone and the dark zone were generated as displayed in Figs. C.1
(a-b). The sound level in the dark zone was at least 30 dB lower than that of the
bright zone. Although this system can create only a bright zone along the minor
axis and dark zones on both sides, it might still be a practical example as the
same system applied to a circular loudspeaker array requires higher orders in the
circular harmonic expansion based method. In contrast, it is possible to generate
a dark zone along the minor axis by removing the lower orders. Figures C.1
(c-d) display the results associated with this condition. The sound level in the
dark (grey) zone was approximately 10 dB lower than that of the bright zone.
As the centre components of modes with higher orders are much larger than
the side components of modes with lower orders, it is difficult to achieve an
ideal dark zone. Note that this method can reproduce plane waves in the minor
axis direction only, which means that it is not exactly a multi-zone sound field
reproduction method but has the ability to divide the sound field into only two
listening zones. Therefore, it can be applied as a low computational cost method
for ELA.
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(a) Wavefront (b) Sound pressure level

(c) Wavefront (d) Sound pressure level

Figure C.1: Reproduced sound field of an ELA of 180 loudspeakers. The primary
sound field exhibited a 1000 Hz plane wave arriving from ϕ// = π/2. (a-b):
|ν| ≤ 1 were used. (c-d): 7 ≤ |ν| ≤ 30 were used.
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Appendix D

Experimental results in an anechoic chamber

For the CLA and 2CLA models, loudspeaker array prototypes were built and
the measurements were recorded in an anechoic room to assess the performance
in real-world environments. This appendix presents the experimental results on
exterior sound field reproduction and beamforming.

D.1 Loudspeaker array prototypes

Two CLA prototypes, comprising two finite-length cylindrical loudspeaker arrays,
were built using a 3D printer. Both prototypes had a radius of 0.15m, a height
of 0.576m, and were made out of plastic. Fifteen loudspeaker units (T028S23;
Foster Electric Company, Ltd., Japan) were mounted equiangularly on the surface
of each cylinder. The photograph of one prototype is shown in Fig. D.1. The
prototypes consisted of a flat circular loudspeaker array and two (the top and
bottom) transparent cylindrical baffles, which imitated the rigid CLA in two-
dimensional space, i.e., an infinite-length rigid cylindrical array. Note that to
construct the 2CLA model, the two prototypes are set in parallel.

D.2 Results on exterior sound field reproduction

Sound field measurement

In this study, the experimental data were recorded with a sound field measure-
ment device. The device consisted of a double-axes actuator and a linear mi-
crophone array. The actuator can be controlled over a 100-cm-length horizontal
axis and a 50-cm-height vertical axis. With a 48-channel linear microphone array
(width of 94 cm and microphone spacing of 2 cm) mounted on the actuator, the
device could cover a 100 × 94 × 50 cm3 cuboid sound field. Figure D.2 shows
the model of the device.

In the following experiments, a two-dimensional horizontal sound field (i.e., a
100 × 94 cm2 rectangular sound field) was measured. The impulse response of
each loudspeaker was recorded with a 2-sec Log-SS signal [105]. The sampling
frequency was 48000Hz and the length of the impulse responses was 2400 samples.
The spatial resolution over the sound field was 51 × 48 points, which means that
the sound field was measured within a 2 × 2 cm2 grid. Figure D.3 presents a
photograph of a setup of the measurement.

Focused source reproduction using CLA

A CLA (the prototype) was set at the centre of a reference coordinate system. The
sound field in x ∈ [−0.47m, 0.47m], y ∈ [0.4m, 1.4m] was recorded by the device.
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Figure D.1: Photograph of the CLA prototype.

An experiment was conducted for the conventional CHE-based method intro-
duced in Sec. 2.5.2. The primary source was set at x⊚ = (r⊚, ϕ⊚) = (0.5m, π/2).
The target primary sound field is displayed in Fig. D.4, which was theoretically
calculated for a two-dimensional free field.

In Fig. D.5, the reproduced sound field of the CLA is displayed: (a) the theo-
retical results in a two-dimensional free field and (b) the experimental results of
the prototype in the anechoic room. The theoretical simulation was implemented
on a CLA with 15 loudspeakers mounted on a 0.15m radius circular baffle. By
comparing Fig. D.5 to the target field in Fig. D.4, it is demonstrated that the
CLA reproduced the sound field with obvious errors, both under theoretical and
experimental conditions.

Focused source reproduction using 2CLA

Then, an experiment was conducted by using the proposed 2CLA model. In
the experiment, the 2CLA was constructed by two CLA prototypes. The 2CLA
was placed at (0.25m, 0) and (0.25m, π). The same part of the sound field was
recorded by the device. The proposed method in Sec. 3.3 was implemented for
the experiment, reproducing the primary source of the previous experiment.

In Fig. D.6 the reproduced sound field of the 2CLA is displayed: (a) the the-
oretical results and (b) the experimental results. The theoretical simulation was
implemented on a 2CLA model with the same settings of the prototype. Com-
parisons with the target field and the results of the CLA indicate that 2CLA has
improved reproduction (the 2CLA reproduced a focus-like point while the CLA
did not). The results of the experiment are similar to the theoretical one, which
means that the proposed method can be implemented in real three-dimensional
environments. However, it should be noted that mismatches in three-dimensional
attenuation can result in errors, in particular amplitude errors.
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Figure D.2: The model of the sound field measurement device.

Figure D.3: Photograph of sound field measurement setup.

Local sound field reproduction using CLA

Experiments were also conducted on local sound field reproduction method of
Sec. B.2. A CLA (the prototype) was set at the centre of the sound field. The
sound field in x ∈ [−0.47m, 0.47m], y ∈ [0.4m, 1.4m] was recorded by the device.

The primary sound field was the same as that of Fig. D.4. One local area was
set at (1m, π/2) and the primary source was located at (0.5m, π/2). Figure D.7
presents (a) the theoretical simulation results for a two-dimensional field and
(b) the results of our experiments. Both theoretical and experimental results
indicate that the proposed local sound field reproduction method reproduces
sound fields with higher accuracy (as indicated by the curvature of the wavefront)
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Figure D.4: Theoretical two-dimensional primary sound field of a source located
at (0.5m, π/2).

(a) Theoretical results (b) Experimental results

Figure D.5: Focused source reproduced by a CLA using the conventional CHE-
based method.

than the global sound field reproduction method of Fig. D.5. The theoretical
and experimental results matched with minor errors for the local sound field
reproduction method.

D.3 Results on beamforming

In beamforming, the impulse response of the prototype was recorded in an ane-
choic chamber. Instead of the entire sound field, the directivity pattern on a
circular boundary was measured. The setup consisted of 48 microphones over a
120◦ curve of a 1.5m radius circle at the centre of the sound field. The micro-
phones were set at every 2.5◦, and the measurements were repeated three times
to cover a full circle. The centres of the two cylinders were set at (0.25m, 0) and
(0.25m, π). The loudspeakers and the microphones were set to the same height.
Fig. D.8 shows a photograph taken during the measurements. Note that 2CLA
was rotated about the centre of the sound field to finish the recording of the
measurements, thereby creating the possibility of spatial errors. Furthermore,
despite performing a simple calibration of the microphone amplifiers, the results
may still contain errors.

After the measurements, the transfer functions of single frequencies were ex-
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(a) Theoretical results (b) Experimental results

Figure D.6: Focused source reproduced by a 2CLA using the proposed method.

(a) Theoretical results (b) Experimental results

Figure D.7: Focused source reproduced by a CLA using the local sound field
reproduction method. The red dotted circles represent the control areas of the
proposed method.

tracted from the impulse response and another simulation was conducted on the
experimental data. In this simulation, the filters were calculated using the real
transfer functions of the prototype. The MVDR beamformer with Tikhonov reg-
ularisation was used. The 48× 3 = 144 microphones were set as the constrained
point and the suppression points. The sound pressure of the constrained point
and the filter suppression were set as in Sec. 3.7, while the radius r was 1.5m. To
compare with the results of the theoretical transfer functions, the transfer func-
tions of the prototype were normalised by the maximum values and divided by
4π(r−0.4m) for distance attenuation (where r−0.4m is the distance between the
microphone and the closest loudspeaker). The theoretical results were obtained
under the same simulation conditions as those of the two-dimensional theoretical
transfer functions. Simulations were performed at 500Hz, 1000Hz, 2000Hz, and
4000Hz in the 0◦ and 90◦ look directions.

The directivity patterns for the experimental and theoretical results are dis-
played in Figs. D.9 and D.10. In Fig. D.9, there are some errors near 0◦ at 500Hz
and 1000Hz, attributed to possible spatial errors resulting from multiple mea-
surements. Overall, the performance of the prototype matches the theoretical
one approximately, despite finite cylinder length and mismatched attenuation.
The results indicate that the proposed method can deliver desirable beams with
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Figure D.8: A photograph of the directivity measurement.

a quasi-2CLA system in three-dimensional sound fields.
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Figure D.9: Beam patterns of experimental data in the 0◦ look direction. EXPT:
experimental results using impulse responses of the prototype; THEO: theoretical
results using transfer functions of 2CLA. The angle on the horizontal axis is
relative to the look direction.

Figure D.10: Beam patterns of experimental data in 90◦ look direction. EXPT:
experimental results using impulse responses of the prototype; THEO: theoretical
results using transfer functions of 2CLA. The angle on the horizontal axis is
relative to the look direction.
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