
Vol.:(0123456789)1 3

Artificial Life and Robotics (2021) 26:149–154 
https://doi.org/10.1007/s10015-020-00635-1

ORIGINAL ARTICLE

OpenPLC based control system testbed for PLC whitelisting system

Shintaro Fujita1 · Kosuke Hata1 · Akinori Mochizuki1 · Kenji Sawada1 · Seiichi Shin1 · Shu Hosokawa2

Received: 1 July 2020 / Accepted: 12 August 2020 / Published online: 6 September 2020 
© International Society of Artificial Life and Robotics (ISAROB) 2020

Abstract
This paper proposes a security testbed system for industrial control systems. In control systems, controllers are final for-
tresses to continue the operation of field systems. Then, we need countermeasures of controllers. The whitelisting function 
is efficient in controller security. The whitelisting function registers normal operations in a list and detects unregistered 
operations as abnormal. We need a testbed system to check whether the whitelist function does not affect other functions of 
the controller. The industrial controller and its engineering tool are relatively expensive, and are customized with respect 
to controller vendors. To enhance the whitelist development, this study proposes a testbed system using OpenPLC which 
is an open-source software. This system is independent of controller vendors and is applicable for controller programming 
languages. We implement a whitelist based anomaly detection method for the testbed system and validate that the anomaly 
detection method operates correctly.

Keywords PLC · Security · Testbed · Whitelist

1 Introduction

Control systems face a lot of cyber-attacks [1], such as 
Stuxnet, WannaCry, CrashOverride, Bad Rabbit. The typi-
cal control system consists of SCADA (Supervisory Control 
And Data Acquisition), network switches, controllers, and 
field devices. Initially, it is supposed that malicious attack-
ers target SCADA and penetrate its vulnerabilities because 
Windows OS is introduced to SCADA, and its version often 
remains old. However, recent malware directly targets con-
trollers. Controllers are the final fortresses of control sys-
tems. Even if SCADAs stop suddenly, controllers themselves 
continue the operation of the field device. If controllers stop, 
control systems cannot be operated by SCADAs. Therefore, 
we need countermeasures focusing on controllers [2].

The main functions of the controller are operating field 
devices and communicating with other devices. System 
resources for the security function are not high, and then 
we cannot apply common antivirus software to control-
lers directly. Standard antivirus software is based on the 
blacklisting system in which anomaly behaviors caused by 
malware/worms are listed, and actions of application com-
mands are always checked. This system load of blacklist 
checking is very high for controllers. Further, the backlisting 
system requires frequent updates of pattern files to main-
tain its defensive strength. Therefore, it is supposed that the 
whitelisting system is familiar with control systems rather 
than the blacklisting system [3]. The whitelisting system 
registers the normal application/network commands and 
usual network information (IP, MAC address) and accepts/
approves only commands/information on the list. Its sys-
tem load is lower than that of the blacklisting system. The 
list updates timing is restricted to the system maintenance 
changing the control system operation.

Motivated by the above, the current authors study a 
whitelisting system of the controller, mainly, PLC (Pro-
grammable Logic Controller). PLCs are commonly used in 
ICSs (Industrial Control Systems), so enhancing the secu-
rity functions of PLC leads to improving those of ICSs. 
Further, our proposed whitelist of PLC [4] is expressed by 
LD (Ladder Diagram), which is one of the most presently 

This work was presented in part at the 23th International 
Symposium on Artificial Life and Robotics (Beppu, Oita, January 
21–23, 2018).

 * Kenji Sawada 
 knj.sawada@uec.ac.jp

1 The University of Electro-Communications, 1-5-1, 
chofugaoka, Chofu-shi, Tokyo, Japan

2 Control System Security Center, 3-4-1, sakuragi, Tagajo-shi, 
Miyagi, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-020-00635-1&domain=pdf


150 Artificial Life and Robotics (2021) 26:149–154

1 3

available PLC programming languages. Using LD, our 
whitelisting function does not need to change the firmware 
of PLC and then is applicable for various PLCs.

On the other hand, to develop a whitelisting function 
of PLC, we need a testbed system using PLC to check 
whether the whitelist function does not affect other func-
tions of PLC. PLC and its engineering tool are relatively 
expensive are customized with respect to PLC vendors. 
To enhance the whitelist development, this study proposes 
a testbed system using OpenPLC which an open source 
software [5, 6]. The proposed testbed is independent of 
PLC vendors and is applicable for PLC programming 
languages including LD. The proposed testbed provides 
a space-saving and low-cost environment for ICS security 
research. We implement a whitelist based anomaly detec-
tion method for the testbed system. This research validates 
that the anomaly detection method for PLC operates cor-
rectly. This paper reports that the testbed system is useful 
for control system security.

2  Control system

Figure 1 shows a typical control system architecture in 
critical infrastructures and industrial systems. Control sys-
tems are composed of computers such as HMI (Human 
Machine Interface) and Engineering Computer, network 
switches, controllers such as PLC, and DCS (Distributed 
Control System), and field devices such as sensor and actu-
ator. Also, Remote Computer connecting with the internet 
manages and monitors the control system.

Cyber-attacks on control systems include the follow-
ing connection of unauthorized terminals to the network, 
cyber-virus infections, attacker intrusions. A cyber-attack 
is the equivalent of sending unauthorized packets or 
instructions over a network switch. Therefore, at least, the 
testbed for PLC security measures needs a PLC and a field 
device, as well as an HMI and a network switch.

3  OpenPLC

OpenPLC [5, 6] is an open-source software developed by 
Thiago Rodrigues Alves. The computer with OpenPLC 
and I/O device simulates PLC functions.

OpenPLC supports Microsoft Windows and Linux as 
computer OS. OpenPLC operates on computers as a WEB 
application using Node.js [7]. The implementation of PLC 
control programming is realized by uploading ST (Struc-
tured Text) through the OpenPLC.

OpenPLC recommends PLC Editor as a developing 
environment, PLC Editor supports five PLC languages 
such as LD, ST, FBD, IL and SFC. The languages except 
for ST are translated to ST on OpenPLC.

As shown in Fig. 2, OpenPLC realizes a PLC device 
with a computer and I/O device. I/O devices control field 
devices according to the computer commands. OpenPLC 
supports the following I/O devices: Raspberry Pi [8], 
Arduino and compatible boards [9], UniPi Industrial Plat-
form [10], Modbus Slave Devices [11], ESP8266 [12] and 
PiXtend [13]. 

4  Whitelisting function

The whitelisting system registers normal operations on 
the list and rejects the operations which are not registered 
on the list. In control systems, normal operations of com-
munication commands and execution orders of actuator 
and sensor depend on their blueprints. Then, the whitelist-
ing system detects zero-day attacks that deviate from the 
blueprints. Also, its system load is lower than that of the 
blacklisting system [3].

The previous research of the current authors imple-
ments this whitelisting function to PLC, as a PLC anom-
aly detection method [4]. This method registers execu-
tion orders of actuators and sensors on the list. The list is 
modeled by Petri Net [14] and its state transition and state 
constraint rules of the model are converted to LD. If the 
rules are not satisfied, the method detects anomaly execu-
tive orders. Almost PLCs can implement LD, so we can 
apply the whitelisting function to almost PLCs without 
updating firmware and improving hardware.Fig. 1  Industrial control system

Fig. 2  OpenPLC system



151Artificial Life and Robotics (2021) 26:149–154 

1 3

The following is an overview of Petri Net based PLC anom-
aly detection method. Petri Net is a directed bipartite graph 
with a Place and a Transition. Places may contain tokens, a 
number of Tokens in Places, and transitions of Tokes express 
states and state changes of Petri Net. The operation of the Tran-
sition causes the Token to transition. This action is called fire. 
Figure 3 shows an example of Petri Net operation. When T1 
is fired, the Token moves from P1 to P2.

First, we model the normal sequence of operation of the 
control system using Petri Net. We take the case of Petri Net 
with n Places and m Transitions. The model is represented 
by the state equation:

where x[k] ∈ ℕ
n is the state vector, u[k] ∈ ℕ

m is the input 
vector and B ∈ ℤ

n×m is the connection matrix. Also, for each 
element x

i
∈ ℕ of the state vector x[k] , the possible values 

to be taken are restricted by:

This N
i
 is a natural number that is determined for each 

element depending on the target to be modeled. The whitelist 
detects the behavior that does not satisfy Eq. (2) as an anom-
aly. Consider Fig. 3, n = 2 , m = 1 , B = [ −1 1 ]T .

5  Testbed structure

Figure 4 shows the proposed testbed system. We set two 
laptops. One is for OpenPLC, and the other is for HMI and 
Cracker PC. The two are connected by Modbus/TCP, which 
is an open industrial protocol. Figure 5 shows an I/O device 
made by Arduino MEGA 2560. Figure 6 shows the robot 
arm.

Arduino MEGA 2560 connects with the robot arm and 
the control panel. As shown in Fig. 7, the panel has three 
switches (SW1, SW2 and SW3) and one LED. SW1 is the 
power button of the robot arm, SW2 is the stop-start switch 
of the arm operation, and SW3 is the reset switch of the arm 
operation.

This paper supposes that the cracker PC attacks the PLC 
(the OpenPLC computer) through the network. The sys-
tem simulates the component conveyer system in factory 

(1)x[k + 1] = x[k] + Bu[k],

(2)0 ≤ x
i
≤ N

i
.

Fig. 3  Petri Net operation example

Fig. 4  Testbed system

Fig. 5  Arduino MEGA 2560 and circuit

Fig. 6  Robot arm

Fig. 7  Control panel circuit



152 Artificial Life and Robotics (2021) 26:149–154

1 3

automation, and the robot arm coveys block type components. 
This system has four functions: the start-up of the arm, the 
block conveyer, the stop of the arm, the reset to the initial arm 
position. The attacking target is the block conveyer, and the 
whitelisting function is designed for the block conveyer in the 
testbed. The conveyer procedure is as follows:

1. The arm moves to the front of the block.
2. The arm moves to the grasping position.
3. The arm grasps the block.
4. The arm uplifts the block.
5. The arm conveys the block to the releasing position.
6. The arm releases the block.

Also, the Robot arm drives via 6 servo motors: base, shoul-
der, elbow, wrist_ver, wrist_rot, gripper. Table 1 shows the 
target angles of each motor according to the above conveyer 
procedure.

Figure 8 shows the LD which controls the target angle of 
the base motor. The MUX block controls the angle of the robot 
arm in the block conveyer function. The MUX selects inputs 
IN n(n = 0, 1, 2, 3, 4, 5) and outputs the corresponding angle 
value depending on variable K of each motor according to the 
above conveyer procedure. When K is 0, MUX selects IN0 and 
outputs 30, and then the target angle of the base motor is set 
to 30°. When the six motors reach the target angles, the value 
of K is incremented. When K is 5, the next value of K is 0. For 
the six servo motors, the change of K is equal to the change of 
target angle and then is repeated. That is, we suppose that the 
normal operation of the robot arm is the repeat of this convey 
procedure. The parts other than the MUX block in Fig. 8 are 
the LD program for changing functions or initializing the servo 
motors by operating the switches (SW1, SW2 and SW3).

6  Experimental verification

6.1  Implementation of whitelist

The Petri Net model of the normal operation of the testbed 
is shown in Fig. 9. This model is based on the anomaly 
detection method proposed in [4]. The number of Tokens 
in Places is constrained by Eq.  (2). This constraint is 

different for each structure of the Petri Net model and each 
Place. In the model shown in Fig. 8, the initial state is P1 
and the constraint is given by.

Steps 1–6 in Table 1 correspond to Places P1–P6. Each 
Transition Tn(n = 1, 2, 3, 4, 5, 6) fires and K is incremented 
when the angle of each motor of the robot arm matches 
the target angle.

(3)0 ≤ x
i
≤ 1(i = 1, 2, 3, 4, 5, 6).

Table 1  Target angles for each 
conveyer step

Step Base Shoulder Elbow Wrist_ver Wrist_rot Gripper

1 30 90 180 180 0 10
2 0 90 180 180 0 10
3 0 90 180 180 0 60
4 90 30 150 135 45 60
5 180 120 180 60 90 60
6 180 120 180 60 90 10

Fig. 8  LD of the base servo motor

Fig. 9  Petri Net model of the robot arm



153Artificial Life and Robotics (2021) 26:149–154 

1 3

Following the method in Ref. [4], we transform the 
Petri Net model in Fig. 9 into an LD. This transforma-
tion generates two LDs, one for token movement and one 
for anomaly detection. We explain the behavior of each 
LD, taking as an example, the change focused on P1 in 
Fig. 9. We use FB (Function Block) on the LD to imple-
ment whitelist functions into the PLC. The operations for 
each FB on the LD are shown in Table 2.

First, Fig. 10 shows an LD for the token movement. 
This LD stores the number of tokens held by P1 in the 
variable x . When T6 fires, K = 0 , the upper LD operates 
and x is incremented. When T1 fires, K = 1 , the lower LD 
works, and x is decremented. In this way, the token move-
ment in the Petri Net is programmed.

Next, Fig. 11 shows the LD for anomaly detection. This 
LD determines whether the number of tokens held by P1 
satisfies Eq. (3). If x does not satisfy Eq. (3), the whitelist 
detects an anomaly. Figure 12 shows the LD for lighting 
the LED. The variable LED in Fig. 12 becomes the output 
of the Arduino pin 23. 

6.2  Experimental verification

We verified the validity of the anomaly detection method 
carrying out the simulated attack on the proposed testbed. 
We assumed that an unknown device connects with the con-
trol network and attacks the PLC. The cracker changes the 

value of K taking over Modbus/TCP commands and aims to 
disturb the convey procedure. Figure 13 shows the screen of 
the HMI in the experimental result. The screen shows seven 
graphs. The first six graphs are time responses for six servo 
motors. The last one is the ON/OFF graph of the LED.

Table 2  Operation of each FB

FB Operation
EQ Outputs True when IN1 and IN2 are equal
R_TRIG Detects the rising edge of CLK
ADD Outputs “IN1 + IN2” when EN is True
SUB Outputs “IN1 − IN2” when EN is True
LT Outputs True when “IN1 < IN2”
GT Outputs True when “IN1 > IN2”

Fig. 10  LD of the Petri Net model

Fig. 11  LD of anomaly detection

Fig. 12  LD that lights the LED

Fig. 13  HMI screen



154 Artificial Life and Robotics (2021) 26:149–154

1 3

In the verification, we assume the following fail-safe sce-
nario. The simulated attack interferes with the normal opera-
tion of the testbed. The operator finds an abnormality by the 
whitelist and operates SW1 and SW2 to stop the robot arm 
safely. After stopping, the operator investigates the cause of 
the abnormality.

In the normal operation, we see that each servo motor 
reach target angles repeatedly. When the time is 125 s, the 
cracker attacks the PLC, and all motors fluctuate. At the 
same time, the LED changes from OFF to ON as shown in 
Fig. 14. The whitelisting function focuses on the executive 
orders of field devices. It is difficult to detect the attacks 
which disturb the executive orders. For example, the pro-
posed method does not detect an attack that changes not the 
executive orders but the execution time. If the execution time 
becomes short, servo motors do not reach target angles, and 
then the robot arm does not convey the blocks. To detect 
such the attack, we need to apply time conditions for the 
whitelisting function. This is our future work.

While the simulation-based testbed [15] can only represent 
the system controller and plant, our testbed is more realistic 
by considering the HMI and the network switches. In addi-
tion, compared to testbeds using actual devices [16], the use 
of open-source software makes it possible to build testbeds 
at a lower cost and to develop vendor-independent security 
countermeasures. The above two testbeds are famous testbeds 
for ICS security: chemical plant [15] and a water treatment 
plant [16].

7  Conclusions

This paper has proposed a testbed using OpenPLC for control 
system security. We have verified the validity of the proposed 
whitelisting function using the testbed. By including the HMI 

and the network switch in the PLC testbed construction, it was 
possible to simulate cyber-attacks of illegal commands to the 
PLC. In addition, using OpenPLC, an open-source software, ven-
dor-independent security verification is possible. Our future work 
is to develop a connection method between the computers with 
OpenPLC because OpenPLC has no connection with others. By 
solving this problem, we try to build a large-scale testbed system.

Acknowledgements This work was supported by Council for Science, 
Technology and Innovation (CSTI), Cross-ministerial Strategic Innova-
tion Promotion Program (SIP), “Cyber-Security for Critical Infrastruc-
ture” (funding agency: NEDO).

References

 1. Liang G (2017) The 2015 ukraine blackout: implications for false 
data injection attacks. IEEE Trans Power Syst 2017:3317–3318

 2. Sasaki T, Sawada K, Shin S, Hosokawa S (2015) Model based fallback 
control for networked control system via switched Lyapunov function. 
In: IECON 2015—41st annual conference of the IEEE, 2000/2005

 3. Kim D, Lee J (2020) Blacklist vs. whitelist-based ransomware solu-
tions. IEEE Consum Electron Mag 9:22–28

 4. Mochizuki A, Sawada K, Shin S, Hosokawa S (2017) On experimen-
tal verification of model based white list for PLC anomaly detection. 
In: ASCC 2017, pp 1766–1771

 5. Alves TR, Buratto M, De Souza FM, Rodrigues TV (2014) Open-
PLC: an open source alternative to automation. In: IEEE global 
humanitarian technology (GHTC 2014)

 6. https ://openp lcpro ject.com (accessed 2020-09-04)
 7. https ://nodej s.org/en/ (accessed 2020-09-04)
 8. https ://www.raspb erryp i.org/ (accessed 2020-09-04)
 9. https ://www.ardui no.cc/ (accessed 2020-09-04)
 10. https ://www.unipi .techn ology / (accessed 2020-09-04)
 11. https ://www.modbu stool s.com/modbu s_slave .html  (accessed 

2020-09-04)
 12. https ://bbs.espre ssif.com/viewt opic.php?f=67&t=225/ (accessed 

2020-09)
 13. http://www.pixte nd.de/ (accessed 2020-09-04)
 14. Murata T (1989) Petri nets: properties, analysis and applications. 

Proc IEEE 77(4):541–580
 15. Martin-Villalba C, Urquia A, Shao G (2018) Implementations of 

the tennessee eastman process in modelica. IFAC PapersOnLine 
51(2):619–624

 16. Mathur AP, Tippenhauer NO (2016) SWaT: a water treatment test-
bed for research and training on ICS security. In: 2016 international 
workshop on cyber-physical systems for smart water networks 
(CySWater), pp 31–36

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Fig. 14  Anomaly detection

https://openplcproject.com
https://nodejs.org/en/
https://www.raspberrypi.org/
https://www.arduino.cc/
https://www.unipi.technology/
https://www.modbustools.com/modbus_slave.html
https://bbs.espressif.com/viewtopic.php?f=67&t=225/
http://www.pixtend.de/

	OpenPLC based control system testbed for PLC whitelisting system
	Abstract
	1 Introduction
	2 Control system
	3 OpenPLC
	4 Whitelisting function
	5 Testbed structure
	6 Experimental verification
	6.1 Implementation of whitelist
	6.2 Experimental verification

	7 Conclusions
	Acknowledgements 
	References




