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ABSTRACT

Since the development of deep learning methods, many researchers have focused on image qual-

ity improvement using convolutional neural networks. They proved its effectivity in noise reduc-

tion, single-image super-resolution, and segmentation. In this study, we apply stacked U-Net, a

deep learning method, for X-ray computed tomography image reconstruction to generate high-

quality images in a short time with a small number of projections. It is not easy to create highly

accuratemodels becausemedical images have few training images due to patients’ privacy issues.

Thus, we utilize various images from the ImageNet, a widely known visual database. Results

show that a cross-sectional image with a peak signal-to-noise ratio of 27.93 db and a structural

similarity of 0.886 is recovered for a 512 × 512 image using 360-degree rotation, 512 detectors,
and 64 projections, with a processing time of 0.11 s on the GPU. Therefore, the proposed method

has a shorter reconstruction time and better image quality than the existing methods.

1. Introduction
In this study, we propose a method for X-ray computed tomography (CT) image reconstruction that is faster than

the existing methods. X-ray CT image reconstruction is the process of reconstructing a cross-sectional image from

a sinogram image captured by proton irradiation of X-ray detectors at various angles into the object. Projection is

the process of irradiating objects with X rays produced by a generator and capturing them with a detector on the

opposite side. An object is projected at various angles, and a sequence of images obtained at each angle is combined

for composing a sinogram. The number of detectors and the projection angle can characterize the sinogram image’s

coordinate. The intensity of X rays captured by the detector may be attenuated to a particular extent depending on the

object’s nature. The particular extent of attenuation depends on the specific characteristics of an object in an X-ray’s

path. Suppose a bone or another obstacle is in the path; in that case, the intensity of X ray registered by the detector

will deteriorate accordingly. The detector measures the overall result of X-ray absorption for an object in the X-ray’s

path. Based on the sinogram image obtained from this procedure, a cross-sectional image representing a distribution

of a target object is derived through X-ray CT image reconstruction.

There are twomainmethods for X-ray CT image reconstruction: direct method and iterative reconstructionmethod.

The direct method corresponds to the filtered back-projection (FBP) method (Kak and Slaney, 2001), whereas the

iterative reconstruction method is based on the simultaneous algebraic reconstruction technique (SART) (Andersen,

1984, 1989) and maximum-likelihood expectation-maximization algorithm (Dempster et al., 1977). The direct method

and iterative reconstruction method are different in terms of computational cost, noise, and artifacts.

The direct method has a low computational cost; however, if there is an insufficient number of projections in

reconstruction, the resulting image’s noise and artifacts will increase. The FBP method underlying the direct method

is an analytical method combining filter calculations and Fourier inverse transformations. It is utilized in various CT

devices. However, when the FBB method is applied to the results of a projection below the Nyquist frequency, the

reconstructed cross-sectional image is markedly artifactual and noisy. For example, an obese patient’s CT image is

affected by high noise. The calcifications or stents cause blooming artifacts, and the metallic implants or bone structure

cause streak artifacts (Geyer et al., 2015).

The iterative reconstruction method can achieve low noise and artifacts results, but its computational cost is rela-

tively high. The iterative reconstruction method is based on an algebraic method, implying iteratively modifying an

initial value in approaching the problem’s solution. This method can reduce artifacts and noise even in the cases below
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Computed Tomography Image Reconstruction using Stacked U-Net

the Nyquist frequency because it considers the cross-sectional image’s sparseness. However, this method needs to

perform the iterative operation, resulting in high computational cost.

In the medical field, the number of projections should be reduced as much as possible to limit X rays’ influence

on a patient. Therefore, to address this problem, the possibility of developing an iterative approximation method has

been investigated in recent years. Studies were conducted to reduce the computational cost and time of reconstruction

to adapt for clinical use (Hudson and Larkin, 1994; Kim et al., 2015). The time required for reconstruction by the

iterative reconstruction method ranges from 10 to 90 min. This cannot be used for emergent indications. However,

noise reduction can be applied to patients considered challenging to treat, such as obese patients. By further reducing

the radiation dose, we can expect to apply it to screening tests and other applications, such as lung cancer, colon cancer,

and pediatric imaging (Geyer et al., 2015). Screening for COVID-19 can also reduce the patients’ burden.

The advancement of deep learning methods has induced a considerable number of research works focusing on im-

age quality improvement using convolutional neural networks (CNNs) (LeCun et al., 1989; Krizhevsky et al., 2017) to

noise reduction (Lefkimmiatis, 2017), single-image super-resolution (Lai et al., 2017), and segmentation (Ronneberger

et al., 2015).

In reconstruction, deep learning methods can recover cross-sectional images from a sinogram image. Yang et al.

(2016) proposed a method that can achieve better results than the existing methods by replacing each step of sequential

reconstruction in magnetic resonance imaging (MRI) using the alternating direction method of multipliers (Boyd et al.,

2010) based on a deep learning method. Yang et al. (2018) applied generic adversarial network (GAN) (Mirza and

Osindero, 2014) forMRI reconstruction. They demonstrated that it was possible to recover the data in a short processing

time of 5 ms by training the model on a dataset, including 16,095 images. Zhu et al. (2019) proposed a model that

combines a network to extract disease ROIs and a GAN and performs super-resolution on MRI images. Using ROIs

can obtain faster convergence of super-resolution images of the lesion. The output of high-resolution images from the

trained model was surprisingly fast, at 0.22–0.33 ms per image. They also proposed a mean opinion score, a subjective

evaluation criterion by medical professionals. Using VGG loss as the evaluation function and adding low-resolution

output to the generator output, they obtained results that surpassed the existing methods (Zhu, Jin; Guang, Yang; Pedro,

Ferreira; Andrew, Scott, Sonia, Nielles-Vallespin; Jennifer, Keegan; Dudley and Pietro, Lio; David, 2019; Zhu et al.,

2019; Yu et al., 2017). To reconstruct CT images, Jin et al. (2017) combined the FBPmethod with U-Net (Ronneberger

et al., 2015) and residual learning (Kim et al., 2016; He et al., 2016). Similarly, Zhang et al. (2018) combined DenseNet

with FBP (DD-Net). This method can reduce the amount of noise and artifacts generated by the FBPmethod, achieving

better results than the existing methods.

U-Net is a CNNmodel with the same size of image input and output. The high-resolution features in this method are

passed to the later stage by skip connection. Then, U-Net extracts the low-resolution features by repeatedly performing

convolutional operations on high-resolution images and reducing the convolved images. The extracted low-resolution

features are iteratively enhanced to produce a high-resolution image finally.

Several related studies have improved the U-Net’s initial version. Sevastopolsky et al. (2019) showed that stacked

U-Net and Res-U-Net in 15 stacks is better than U-Net alone in the segmentation task. Shah et al. (2018) let stacked

U-Net to learn the classification task, showing that they could get results comparable with the existing methods. They

further applied transfer learning to the model, obtaining results comparable to the existing methods in the segmentation

task. Furthermore, Jegou et al. (2017) adapted DenseBlok as a layer structure, and they stacked the hourglass network

similar to U-Net (Newell et al., 2016).

In this study, we aim to develop a reconstruction method for CT images by requiring a small number of projec-

tions, providing consistent image quality and faster processing speed compared with the existing iterative reconstruc-

tion methods. In the proposed method, we use deep learning as technology and employ stacked U-Net as a model

architecture.

Generally, medical images are not easy to collect for training datasets because of patient privacy protection. Ob-

taining an actual cross-sectional image by CT is impossible because the patient’s body cannot be invaded. The only

possible option is using the results of cross-sectional image reconstruction through the existing methods.

Non-sparse sinograms reconstructed by FBP are used as the training data in FBP U-Net. However, during FBP

reconstruction, noise caused by quantization errors affects the training data. Thus, the learned model is employed to

reproduce the FBP method’s results that are different from the actual cross-sectional image.

Here, we use ImageNet (Krizhevsky et al., 2017) for training. ImageNet is a dataset of natural images not captured

by a medical device. From this dataset, we use 28,463 images as a training dataset. The model is trained using 300

iterations for 90 h.
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Computed Tomography Image Reconstruction using Stacked U-Net

From a simulation with 360-degree rotation, 512 detectors, and 64 projections, a cross-sectional image with a peak

signal-to-noise ratio (PSNR) of 27.93 db and a structural similarity (SSIM) (Wang et al., 2004) of 0.886 is reconstructed

in 2.35 s on the CPU and 0.11 s on the GPU.

2. Problem definition
CT image’s projection is defined as follows:

𝒚 = 𝐴𝒙 + 𝒃

where 𝒚 ∈ ℝ𝑁𝑦 is the sinogram image, 𝐴 = 𝑎𝑖𝑗 ∈ ℝ𝑁𝑦×𝑁𝑥 is a projection matrix that expresses the projection of

X rays radiating around an object, 𝒙 ∈ ℝ𝑁𝑥 denotes the cross-sectional image to be restored, and 𝒃 ∈ ℝ𝑁𝑦 refers to

noise.

Calculating 𝐴−1 and removing the effect of noise 𝒃 are required in the reconstructing cross-sectional image 𝒙:

𝒙 = 𝐴−1𝒚 − 𝒃

where 𝐴 generally corresponds to a singular matrix, which is not easy to calculate explicitly.

Therefore, reconstruction of 𝒙 can be expressed as an optimization problem formulated according to the following

equation:

argmin ||𝒚 − 𝐴𝒙||2 + 𝜆𝑛𝑜𝑟𝑚(𝐴)

where 𝜆 > 0. In this expression, the iterative reconstruction method sets the initial value and solves it iteratively.
Here, we utilize a neural net 𝑊 with 𝒚 as the teacher input and 𝒙 as the correct output and reconstruct 𝒙 from 𝒚 by

approximating 𝐴−1.
𝒙 = 𝑊 𝒚

3. Proposed Method
3.1. Structure of stacked U-Net

Figure 1 shows the structure of the stacked U-Net used in this study. The basic structure is the same as that of

U-Net but connected using six stacks (Figure 2).

Figure 1: Structure of the proposed stacked U-Net

The original U-Net performs semantic segmentation of images; thus, the underlying task differs from the recon-

struction. We adopt this model because of its same characteristics that generate images from images.

The definition of stackedU-Net is provided in the literature (Sevastopolsky et al., 2019; Shah et al., 2018). However,

semantic segmentation has been considered as a target task. For classification purposes, the model’s final output is the

𝑛-class output.

In this study, the final output is set to a single channel; thus, the output result is represented as an image; the

intermediate output result is the LekyReLU function result; the final output result is normalized between 0 and 1 by

adopting the sigmoid function.

Shah et al. (2018) discussed that stacked U-Net requires an excessive number of parameters, resulting in increased

memory size that hinders training on a realistic GPU. Therefore, they adjusted the 3 × 3 convolution from 2 to 1 and
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further adapted the scaling process to the 3 × 3 stride 3 convolution by setting the number of layers to three. In this

study, we also reduce the memory size by decreasing the 3 × 3 convolution per layer from 2 to 1 compared with U-Net.

Shah et al. (2018) inputted the images into U-Net by reducing the preprocessing size, showing that three layers are

sufficient. However, we set the layers to five layers because detailed features could not be extracted if the layers are

made shallow. Various layer functions are also considered to improve the estimation accuracy.

We also modify the downscaling process from max pooling to 2 × 2 stride 2 convolution. We change the upscal-

ing process from deconvolution to linear scaling and the activation function from the rectified linear unit (ReLU) to

LekyReLU. We also apply batch normalization to the model.

4. Experimental Results
4.1. Selecting layer functions in 32 × 32 reconstruction

The first experiment is selecting the layer functions to determine the detailed structure of the proposed method

using two stacked models and reconstructing the 32 × 32 images.

For each layer function, the model is trained on 50 epochs. The method is selected according to the evaluation

values. Table 1 shows the experiment results. The evaluation value results at the downscaling process are 0.0107,

0.0099, and 0.0086 for max pooling, linear scaling, and 2 × 2 stride 2 convolution, respectively. Therefore, we adopt

the 2 × 2 stride 2 convolution.

Using convolution in the downscaling process, we assume that deconvolution (Zeiler et al., 2011) would apply to

the upscaling process, considering the symmetry. However, the results of the respective evaluation values are 0.0086

and 0.0107 for linear scaling and deconvolution, respectively. Therefore, we adopt the linear scaling considering the

results of deconvolution.

As a generalization performance improvement method, the proposed method considers enhancing each layer with

a dropout one and tests it accordingly. However, we do not adopt it because the results deteriorated.

Hence, we adopt the batch normalization (Ioffe and Szegedy, 2015) because of its effectiveness. The evaluation

values are 0.0141 and 0.0083 for dropout and batch normalization, respectively.

The evaluation results are 0.0567, 0.0132, and 0.0086 for the sigmoid function, ReLU, and LekyReLU, respectively,

in activation function. The sigmoid function allows achieving acceptable results when the number of stacks is shallow;

however, it could not be restored at the shallow stage and does not converge when the stacks are deepened. We observe

that ReLU (Nair and Hinton, 2010) and LeakyReLU (Maas et al., 2013) converged. However, LeakyReLU achieves

better results, and therefore, we adopt it into the model.

The input and output of U-Net are images. Skip connection is incorporated for each U-Net in each stack because

information losses correspond to each stacked U-Net. We also add the previous U-Net input image to the next U-Net

image and the first input image to all U-Net input images; however, they do not converge.

Concerning optimization methods, we compare Adam (Kingma and Ba, 2015) and AdaBound (Luo et al., 2019).

Convergence results are better in Adam: 0.0142 and 0.0071 for Adabound and Adam, respectively.

We adjust the number of stacks. We also train each model by considering from one to eight U-Net stacks. Table 2

shows the results. The discrepancy between the training and validation losses become severe at epoch 30 for more than

five stacks, resulting in overlearning. Therefore, we adopt four stacks in the 32 × 32 images.

We use the dataset from CIFAR-100 (Krizhevsky and Hinton, 2009), a database of various images, for training.

By generating a sinogram from the dataset, we could obtain an actual cross-sectional image and a sinogram. The

CIFAR-100 contains colored 32 × 32 images; therefore, the images are gray-scaled and clopped in a circle to make

Figure 2: Stacked U-Net
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Table 1
Comparison of the applied methods

Class Method Adoption Validation loss
Downscaling 2 × 2 stride 2 convolution ✓ 0.0086

Max pooling 0.0107
Linear scaling 0.0099

Upscaling 2 × 2 stride 2 deconvolution 0.0107
Linear scaling ✓ 0.0086

Generalization Batch normalization ✓ 0.0083
Dropout 0.0141

Activate function Sigmoid 0.0567
ReLU 0.0132

LeakyReLU ✓ 0.0086
Skip connection Previous U-Net input image to the next U-Net image —

First input image to all U-Net input images —
Optimizer Adam ✓ 0.0071

AdaBound 0.0142

Table 2
Relationship between the number of stacks and evaluation values for the 32 × 32 images

Number of stacks Training loss Validation loss
1 0.0070 0.0073
2 0.0070 0.0072
3 0.0051 0.0053
4 0.0053 0.0054
5 0.0053 0.0301
6 0.0050 0.0173
7 0.0052 0.0232
8 0.0054 0.0479

the conditions aligned with CT images. We use mean squared error as the evaluation value. Figure 3a–3c shows

the resulting image obtained by reconstruction. At that time, the PSNR and SSIM values are 26.82 db and 0.951,

respectively.

4.2. Discussion of reconstruction results in 32 × 32 images
Figure 3c shows that the outline and shadow of an apple are represented correctly; however, its stems are not

reproduced. The PSNR is also low and insufficient for the reconstruction.

The evaluation values at convergence gradually improve with an increased number of stacks (one to four stacks);

however, the evaluation values became worse when that number of stacks is five or more. This can be caused by the

lack of information in the input image being transmitted to the later U-Net when the stacks become deeper. We also

apply skip connection to convey to the back end; however, there is poor convergence. However, there is a possibility of

devising this method, as this reconstruction level is not practical. The amount of information in restoring the original

image into the sinogram image itself as input also decreases because of low-resolution reconstruction, limiting the

restoration of the detailed structure. Therefore, we shift to 512 × 512 images.

4.3. Reconstruction with 512 × 512 images
Based on the study results in the reconstruction of 32 × 32 images, we shift to studying 512 × 512 images. Here,

the model structure varies from three to seven steps, and the number of steps is determined by learning 30 iterations.

We adopt six stacked models, resulting in fast convergence.

We perform a comparison experiment with a small number of projections. The constructed neural net only accepts

input of 512 × 512; therefore, we apply bicubic processing to upscale the sinogram image to a 512 × 512. Suppose that
the number of projections is small; in that case, the sinogram image to be inputted has the size of 64 × 512 (where the
number of projections is 64), which could not be inputted. This issue could be solved by applying bicubic processing
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Computed Tomography Image Reconstruction using Stacked U-Net

(a) Sinogram (b) Ground truth (c) Reconstructed image

Figure 3: Comparison of the 32 × 32 images

and upscaling.

As high-resolution images are required, we utilize 28,463 images from the image database ImageNet (Krizhevsky

et al., 2017) as the training set and 1,537 images as the validation set. We used the Cancer Imaging Archive (Kirk

et al., 2016) (Kirk et al., 2016) as the test set, in which we evaluate 467 images.

An adjustment has been performed for consistency with the images from ImageNet because they have different

resolutions. Hence, as a preprocessing step, we gray-scale all images, clip the center to a square not to change the

aspect ratio, upscale them to 512 × 512 using bicubic processing, and clip them to a circle to obtain the output images

(Figure 4b). A sinogram image (Figure 4a) is generated on the basis of the output image. It is used as the input image.

We experiment with a machine running two CPUs (Intel Xeon E5-2680 v4 at 2.4 GHz), 256 GB of RAM, and four

GPUs (NVIDIA TESLA P100). The model is trained using 300 iterations for 90 h.

Figure 4b and 4c shows an example of an image with the 512 projections restored by the validation set. Figure 4a

depicts the sinogram image that has been inputted to the model, and Figure 4c corresponds to the image outputted by

the model. At this time, the PSNR and SSIM values corresponding to the result provided in Figures 4b and 4c are

32.24 db and 0.963, respectively.

(a) Sinogram (b) Ground truth (c) Reconstructed image

Figure 4: Results of the validation set

4.4. Results in medical images
Table 3 shows the comparison using the proposed method and the existing methods [FPB, SART, total variation

norm (TV-norm), and FBPU-Net in the restoration of medical images. The FBP and SARTmethods employ the iradon

and iradon_sart functions of skimage (der Walt et al., 2014). TV-norm uses the tv1_2d function of proxTV (Alvaro

et al., 2018). Jin et al. (2017) showed that FBP U-Net was trained on 101 epochs for 475 medical images with 512

projections (FBP U-Net512) and 64 projections (FBP U-Net64). DD-Net is evaluated using (Zhang, ????).

We experiment with a machine running Intel Core i3-4130T at 2.90 GHz and 24 GB of RAM. We evaluated the

performance in terms of PSNR, SSIM, and processing time.

Here, we analyze FBP, SART, and TV-norm methods in terms of the processing speed on the CPU. The proposed

method measures the processing time, including the bicubic processing and upscaling. We also estimate the proposed

method’s processing speed and FBP U-Net and DD-Net on the GPU (GeForce GTX 1080).

There is a constant processing time of the proposed method for all projections: 2.35 s (CPU) and 0.11 s (GPU). The

processing times of FBP and SART methods are 0.21 s (CPU) and 2.07 s (GPU). The processing time of FPB-U-Net

is 6.54 s (CPU) and 1.02 s (GPU).

The mean PSNR values of the proposed method, FBP, SART, TV-norm, FBP U-Net512, FBP-Net64, and DD-Net

for 64 projections are 27.93, 21.41, 25.03, 25.43, 19.79, 22.27, and 22.75 db, respectively. The mean SSIM values of
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Table 3
Comparison of the proposed method with the existing methods

Method Number of projections PSNR (db) SSIM processing time(s) (GPU)
Proposed method 512 29.67 0.907 2.35 (0.11)

256 28.43 0.894 2.35 (0.11)
128 28.20 0.891 2.35 (0.11)
64 27.93 0.886 2.35 (0.11)

FBP 512 35.17 0.961 1.71
256 31.93 0.901 0.82
128 26.56 0.734 0.41
64 21.41 0.547 0.21

SART 512 31.07 0.949 16.79
256 29.35 0.926 8.30
128 27.24 0.884 4.11
64 25.03 0.829 2.07

TV-norm 512 30.56 0.910 2.31
256 30.50 0.909 1.49
128 29.86 0.893 1.01
64 25.73 0.750 0.21

FBP 512 26.79 0.858 8.16 (2.70)
U-Net512 256 25.38 0.798 7.24 (1.72)

128 22.93 0.687 6.75 (1.26)
64 19.79 0.581 6.54 (1.04)

FBP 512 23.13 0.733 8.06 (2.70)
U-Net64 256 23.02 0.726 7.14 (1.72)

128 23.01 0.709 6.76 (1.26)
64 22.27 0.666 6.54 (1.02)

DD-Net 512 26.75 0.911 6.49 (2.66)
256 26.58 0.898 5.60 (1.77)
128 25.51 0.832 5.19 (1.36)
64 22.75 0.717 4.99 (1.16)

the proposed method, FBP, SART, TV-norm, FBP U-Net512, FBP-Net64, and DD-Net for 64 projections are 0.886,

0.547, 0.829, 0.750, 0.581, 0.666, and 0.717, respectively. The proposed method is superior to the existing methods

in 64 projections.

Figure 5a–5h shows the reconstructed results in 64 projections. In Figure 5b, the proposed method does not have

any artifacts spreading radially from the center.

Figure 6a–6h shows the upper right-hand details of the cross-sectional images. In the detailed image, the detailed

blood vessels in the original image have disappeared in all methods.

The artifacts disappear in the proposed method and FBP U-Net64. The edges of the large structure are well repre-

sented by the proposed method, and the thick vessels located in the center are also clearly represented.

In FBP U-Net64, the structure of thick blood vessels is the most common. However, the detailed structure of the

large artery’s tip near the lower-left corner of the center is not captured in the proposed method. The FPB and TV-norm

methods provide more details than the proposed method. Table 4 provides the PSNR and SSIM values for the detailed

part.

The PSNR values of the proposed method, FBP, SART, TV-norm, FBP U-Net512 FBP U-Net64 and DD-Net are

30.37, 25.17, 29.34, 29.61, 18.75, 22.92 and 18.03 db, respectively. The SSIM values of the proposed method, FBP,

SART, TV-norm, FBP U-Net512, FBP U-Net64, and DD-Net are 0.896, 0.57, 0.863, 0.816, 0.494, 0.447, and 0.510

respectively. Hence, the proposed method is superior to all methods concerning the detailed part.

The detailed part described above corresponds to the vessel area, and the vital part of the CT image of the vessel is

used to determine whether the plaque is calcified (appears white) or not. In the proposed method, no large structures

are missed or lost in the noise, facilitating distinct classifications.
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(a) Ground truth (b) Proposed method

(c) FBP (d) SART (e) TV-norm

(f) FBP U-Net512 (g) FBP U-Net64 (h) DD-Net

Figure 5: Reconstructed images with 64 projections

Table 4
Comparison of details with 64 projections

Method PSNR (db) SSIM
Proposed method 30.37 0.896
FBP 25.17 0.570
SART 29.34 0.863
TV-norm 29.61 0.816
FBP U-Net512 18.75 0.494
FBP U-Net64 22.92 0.447
DD-Net 18.03 0.510

4.5. Comparison of the accuracy between the proposed method and FBP U-Net when learning with
ImageNet

To compare with the proposed method, we also train the FBP U-Net on the ImageNet data with 64 projections.

Figure 7 represents the results of reconstruction on the medical image. The mean PSNR and SSIM values of the

restored results are 18.99 db and 0.581, respectively. This result is even lower than that of the medical image training.

Figure 5b shows that the proposed method does not provide any artifacts. Figure 7 shows that the whole area is

covered with haze-like artifacts.

4.6. Comparison using segmentation task
It is not easy for medical experts to judge many images, whether they are good or bad. We input the reconstructed

images to a model that has already been trained with the segmentation task; then, we compare the results by evaluating

whether the generated images can be used for medical purposes or not (Seitzer et al., 2018). We use UNet++ (Zhou

et al., 2018) as the model for comparison. We use eighty 512 × 512 images from MedSeg Covid Dataset 1 (MedSeg;
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(a) Ground truth (b) Proposed method

(c) FBP (d) SART (e) TV-norm

(f) FBP U-Net512 (g) FBP U-Net64 (h) DD-Net

Figure 6: Comparison of details with 64 projections

Figure 7: Results of medical images of FBP U-Net trained on the ImageNet with 64 projections

and Jenssen, Håvard Bjørke; Sakinis, 2021) for training and 20 images for validation; a total of 250 epochs are trained.

The trained model has an average Dice score of 0.555 on the validation set. Table 5 provides the average Dice scores

for the segmentation task. The proposed method shows the best results with 64 projections, whereas the TV-norm

shows the best results for the following projections: 128, 256, and 512.

Satoru Mizusawa et al.: Preprint submitted to Elsevier Page 9 of 15

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Computed Tomography Image Reconstruction using Stacked U-Net

Table 5
Comparison using segmentation task

Method Number of projections Dice
Proposed 512 0.556

256 0.545
128 0.540
64 0.546

FBP 512 0.556
256 0.552
128 0.538
64 0.503

SART 512 0.458
256 0.462
128 0.478
64 0.490

TV-norm 512 0.562
256 0.562
128 0.561
64 0.539

FBP 512 0.550
U-Net512 256 0.541

128 0.522
64 0.476

FBP 512 0.543
U-Net64 256 0.544

128 0.543
64 0.533

DD-Net 512 0.514
256 0.502
128 0.478
64 0.437

5. Discussion
The results corresponding to the validation set (Figure 5b) demonstrate that even the grass in the background of

the considered image of a bird is restored appropriately, indicating that the proposed method performs reconstructions

successfully.

However, in the test set, concerning the medical images (Figures 6b and 8), the detailed structure has been lost.

This can be explained using various images instead of medical images. Therefore, there is room for improvement of

the proposed method’s accuracy by adding cross-sectional images to the training dataset.

Figure 8: Results of reconstructing medical images with 512 projections

The results of reconstruction by the proposed method are compared with those by FBP U-Net. Figure 5b represents

that the proposed method relies on a model trained on various images with 512 projections. However, the amount of

noise and artifacts are reduced. Concerning FBP U-Net512, we observe that the noise has not been removed. The

restored results of the model trained by FBP U-Net64 using the images of 64 projections are noised (see Figure 5g).

This difference can be explained by the fact that FBP U-Net512 learns using images with 512 projections. Gen-

erally, FBP U-Net learns how to eliminate noise according to the number of projections. Therefore, FBP U-Net512

Satoru Mizusawa et al.: Preprint submitted to Elsevier Page 10 of 15

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Computed Tomography Image Reconstruction using Stacked U-Net

(a) Stack 1 output (b) Stack 2 output (c) Stack 3 output

(d) Stack 4 output (e) Stack 5 output (f) Final output

Figure 9: Intermediate output corresponding to the validation set with 512 projections

cannot remove noise corresponding to 64 unlearned projection images.

The proposed method can perform reconstruction in 64 projections without any noise, although the model has

learned with 512 projections. This is because the proposed method has learned how to reconstruct itself. Therefore, the

proposed method demonstrates a high generalization performance and does not require relearning the model according

to the number of projections.

In contrast, FPB U-Net requires training the model for each number of projections separately. The same model can

be used in the proposed method even if the number of X rays projected due to modifying the CT equipment settings

has changed. FBP U-Net needs to define a model for each configuration.

The detailed structures are also compared (Figure 6b and 6g). In the figure, the flat area representing the viscera at

the top of the image, the proposed method produces a smooth image with no artifacts. In contrast, for FBP U-Net64,

there are linear artifacts that cannot be removed. In the area at the lower left of the image representing large vessels,

the images are clearly visible in both the proposed method and FBP U-Net64. Concerning large vessels, we have found

that FBP U-Net64 can reconstruct a more detailed structure than the proposed method. Comparing the fine arteries in

the bottom right of the image shows that the vessels have disappeared in the proposed method. In contrast, in the result

corresponding to FBP U-Net, approximately four large noises are visible. The aforementioned difference is expressed

as a discrepancy in PSNR and SSIM between the considered methods.

Figure 9a–9f represents the intermediate output results for each stage for the case with 512 projections in the

validation set. Figure 9a–9c represents the figures on the cone stretched horizontally. Figure 9d shows the shape of the

circle. Figure 9e depicts a clearer shape of the circle. Figure 9f provides the final output image.

In general iterative reconstruction, the shape of a cross-sectional image gradually becomesmore apparent, as shown

in Figure 10.

Figure 10: Reconstruction of a phantom by the SART method

The intermediate image in the proposed method is reconstructed differently compared with the iterative reconstruc-

tion method. The proposed method performs reconstruction in a mode that differs from the conventional model.

In terms of the execution speed using CPU, the proposed method is superior to the SART method in processing

Satoru Mizusawa et al.: Preprint submitted to Elsevier Page 11 of 15

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Computed Tomography Image Reconstruction using Stacked U-Net

time with up to 128 projections; even at 64 projections, the processing times of the proposed method and SART are

2.35 and 2.07 s, respectively.

In GPU, the proposed method outperforms the existing methods in all cases. As GPUs’ hardware architecture is

generally different from that of CPUs, it is necessary to change the algorithms and implementations accordingly to

run processing appropriately (Vlček, 2005). As deep learning combines linear computational processing steps, the

proposed method can run the same GPU model.

The proposedmethod has no artifacts spreading radially from the center and no breakage in image quality, achieving

a high generalization performance with 64 projections. Although we have not utilized images with a reduced number

of projections for training, the proposed method can recover unknown inputs without failures.

Concerning different numbers of projections that have not been considered for learning, we have found that the

proposed method reduces PSNR by approximately 0.30 db even if the number of projections is reduced by half, indi-

cating a high generalization performance for the unknown data. When the number of projections is reduced by half in

the SART method, a decrease in PSNR is equal to 2.0 db, indicating that the proposed method achieves better results

when the number of projections is lower.

Concerning the detailed part of the reconstructed image, we have found that the proposed method outperforms

all considered methods. This can be explained by the fact that the proposed method does not produce any artifacts,

confirming the proposed method’s effectiveness in diagnosis, including determining calcification that requires more

detailed representation in the vascular area.

However, when analyzing the details of an image obtained by the proposed method, the overall image is flat, and

the high-frequency components are not captured.

In contrast, in the FBP method, the detailed structure can be seen in the noise. This is because the proposed method

does not consider medical images for learning and, therefore, does not fully capture the features required to represent

medical images. A performance improvement can be achieved by mixing several medical images with those in the

training dataset.

The proposed method shows the best results with 64 projections in the segmentation task, outperforming the deep

learning methods (FBP UNet-64, FBP UNet-512, and DD-Net) in almost all projections (128, 256, and 512). The best

results are obtained when the TV-norm is between 128 and 512 projections, which can be attributed to the sparsity of

the TV-norm in segmentation, preserving the information of essential regions. The SART method is resistant to noise

and artifacts; however, it produces not good images in segmentation. Hence, the proposed method is superior because

it simultaneously removes noise and artifacts and retains region information. The Dice score of the segmentation task

model is 0.555 because of the lack of learning. Therefore, it is necessary to create a segmentation task model with

higher accuracy in the future.

In deep learning, the larger a training dataset is, the more accurate is the obtained result (Cho et al., 2015; Figueroa

et al., 2012). Therefore, we expect that if the proposedmethod is trained using images with a low number of projections,

the reconstruction accuracy for a smaller number of projections will be improved.

The method itself also has room for improvement in terms of accuracy. Guo et al. (2020) applied Attention block

(Bahdanau et al., 2015) to MRI reconstruction with GAN. When applied to X-ray CT image reconstruction, Attention

focuses on a specific range of pixels and determines their importance. This is incompatible with transforming a sino-

gram image into a cross-sectional image, which requires looking at the entire image to solve. When combined with the

recurrent model, Attention can retain the global context; therefore, the essential information for the recovered pixels

can be selected from the entire image, improving the accuracy. Schlemper et al. (2018) applied DC-CNN (Schlemper

et al., 2018) and stochastic depth (Huang et al., 2016) for MRI reconstruction. They achieved better results than those

existing methods. Stochastic depth cannot be applied to the proposed method because it requires ReLU with positive

output values, which employs LekyReLU. In this experiment, the training time is long, and the results deteriorate when

the number of stacks increases. By applying connection control like stochastic depth, we expect to reduce the training

time and improve accuracy by increasing the number of stacks. Zhu et al. (2019) combined the lesion’s ROI and GAN

to create an accurate model with fast learning convergence. It is not possible to identify the lesion because the pro-

posed method recovers directly from the sinogram. However, there is a possibility that the accuracy can be improved

by identifying lesions and creating ROIs after applying our method and then applying GAN. If the lesion’s ROI can be

recovered directly from the sinogram, the computational cost of the subsequent steps can also be reduced.
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6. Conclusion
Based on the stacked U-Net model, the proposed method can reconstruct a cross-sectional image by adjusting the

layer function and the number of stacks. This method can also reconstruct a projected image requiring a small number

of projections and image quality comparable with the iterative reconstruction method. Moreover, the proposed method

is advantageous in terms of the high processing speed. The proposed method can be directly utilized to reconstruct

the cross-sectional image without medical images. This feature allows avoiding the problem of reproducing the noise

associated with the FBP method, which is a problem of the existing FPB-based U-Net method.

In the proposed method, the processing time for reconstruction is 2.35 s, equivalent to that of the existing method.

However, it is also easier to run on GPU than the existing method (0.11 s). As reconstruction is possible even on a

small number of projections, the input image with a small number of projections can output a cross-sectional image

with fewer artifacts than the existing methods. By reducing the number of projections, we have found that the volume

of X rays can be limited accordingly, and the patients’ burden can be decreased.

However, applying the current model results in a loss of the structure in a detailed view. Therefore, improvement of

the accuracy is a problem to be considered in future-related research. This issue may be observed because of the lack

of appropriate data for training and relevant medical image knowledge incorporated into the model. We will improve

the accuracy by extending the training dataset by including the images with fewer projections, increasing the number

of images considered for training, and mixing medical images with the training images. We will also examine the

effects of the recently proposed structures to improve accuracies, such as Attention and ResBlock, and methods such

as stochastic depth, and improve the model itself.

In this study, the evaluation of images has been performed quantitatively. For applying the proposed method to

the actual medical practice, it is necessary to make the images easy for doctors to diagnose. In the future, we will ask

physicians to evaluate the results and specify the extent to which they can be used in the medical field.

In this study, the results have deteriorated when the number of stacks has been deepened. This may be because an

input image’s features are not transmitted to the output appropriately when the stacks are deep. We consider that it is

necessary to propose a structure in which such an aggravation of the results does not occur. Here, we have demonstrated

that the proposed method can be applied to reconstruct differently using the SART methods. By clarifying how this

method can be used for reconstruction, we will improve the proposed method’s accuracy and existing methods.
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