
修 士 論 文 の 和 文 要 旨

研究科・専攻 大学院 情報理工学研究科 情報ネットワーク工学専攻 博士前期課程

氏 名 HE YI 学籍番号 1831036

論 文 題 目
不確実性のあるカードゲームのソリティアにおける強化学習の効率に関す

るいくつかの事例研究

 要 旨

近年、人工知能研究の分野で強化学習とニューラルネットワーク（NN）を組合せた手法が

多くの成果を上げてきた。さらに、ゲーム領域では囲碁などいくつかのゲーム人工知能の性能

が人間トップレベルの実力に達した。このような方法の他の様々なゲームに対する効果は未だ

知られていなくて、これを明らかにすることは、現在のゲーム領域における重要な課題である

と考えられる。

本研究では、二つの不確実性を伴うカードソリティアゲーム「TriPeaks」と「Russian

Solitaire」を研究対象として選んだ。そして、二つの強化学習方法「Monte-Carlo 法」と「Q-

learning」を用いて人工知能を訓練した。計算機実験を行って勝率を計測し、二つの強化学習方

法それぞれが、これら二つのソリティアゲームにおいてもたらす結果を比較することが本研究

の目標である。

二つの強化学習の開始点となる初期方策は、ゲーム固有の知識をもたない一様ランダム方

策とした。そして、事後状態の価値は NN を用いて近似的に表し、NN は確率的勾配降下法に

基づき学習し、学習は Replay Memory を用いて安定化させた。NN の重みの数は百万程度と

した。また、Russian Solitaire においては、学習を効率化するために、ゲームプレイの無駄な繰

り返しはプレイヤの負けになるということとした。さらに、ソリティアの事後状態から NN の

入力列を生成するエンコーディング方法を二種検討した。

TriPeaks のプレイヤを学習する実験においては、MC 法に基づき 100 万回ゲームをプレイ

すると勝率は約 0.27（ランダムプレイヤの 500 倍）、Q-learning に基づき同回数ゲームをプレ

イすると勝率は約 0.52（ランダムプレイヤの 1000 倍）に達することが明らかとなった。

Russian Solitaire のプレイヤを学習する実験においては、MC 法に基づき 150 万回ゲーム

をプレイすると勝率は約 0.0035（ランダムプレイヤの 1.5 倍）、Q-learning に基づき同回数ゲ

ームをプレイすると勝率は約 0.0047（ランダムプレイヤの 2.1 倍）に達することが明らかとな

った。

Some Case Studies on the Efficiency of
Reinforcement Learning in Card Game

Solitaire with Uncertainty

HE YI

Supervisor: Kunihito Hoki, Takeshi Ito

University of Electro-Communications

Graduate School of Informatics and Engineering

Department of Computer and Network Engineering

March 18, 2021

Contents

1 Introduction 2

2 Background Knowledge 5
2.1 NN . 5

2.1.1 Feedforward NN . 5
2.1.2 Loss Function . 8
2.1.3 Stochastic Gradient Descent and Momentum 9

2.2 MDP . 11
2.3 RL . 14

2.3.1 Policy Evaluation . 15
2.3.2 Policy Improvement . 17
2.3.3 Policy Iteration . 17
2.3.4 Function Approximation 19

3 Related Works 21
3.1 Backgammon . 21
3.2 Atari 2600 . 22
3.3 Game 2048 . 22

4 Experiments 24
4.1 Setup . 24

4.1.1 Rules . 24
4.1.2 Encoding afterstates 27
4.1.3 Architecture of NNs 30
4.1.4 Sampling Training Dataset for RL 32

4.2 Results . 33

5 Conclusion 37

1

Chapter 1

Introduction

Since the field of Artificial Intelligence (AI) research was founded as an aca-
demic discipline in 1956 [1], game AI is continuously used as a measure of
progress of AI throughout its history.

In the middle 50s and early 60s, Arthur Samuel used alpha-beta pruning
on his checkers learning program [2]. This program is widely regarded to be
the world’s first self-learning game-playing program.

Since the development of Arthur Samuel’s checkers program, scientists
have produced multiple examples of game AI programs that have approached
or even surpassed expert human players. A list of some well-known achieve-
ments are described below:

• Chinook is a computer checkers program developed during the years
from 1989 to 2007 at the University of Alberta by a team led by
Jonathan Schaeffer. Chinook is the first computer program to win
the world champion title in a competition against humans in 1994 [3].
By using a parallel alpha-beta search algorithm with all the latest en-
hancements, Chinook won the title after Marion Tinsley withdrawal
due to health concerns.

• TD-Gammon is a computer backgammon program reached the level
of expert human player developed in 1992 by Gerald Tesauro. Backgam-
mon is a stochastic game with dice. TD-Gammon is developed by
using an artificial Neural Network (NN) trained by a form of temporal-
difference (TD) learning, specifically TD-(λ) [4].

2

• Deep Blue is a computer chess program developed by IBM. The devel-
oper team is led by Feng-hsiung Hsu and Murray Campbell. Deep Blue
is developed by using the alpha-beta search algorithm in parallel. In
1997, Deep Blue played against chess world champion Garry Kasparov
in an exhibition match, winning the six-game match 3.5–2.5, becoming
the first computer system to defeat a reigning world champion in a
match under standard chess tournament time controls [5].

• Deep Q-network Atari 2600 Programs are computer programs
developed by DeepMind Technologies. As the origin of the programs’
name, they are developed by using a variant of Q-learning algorithm
with Deep Neural Network (DNNs). The programs play video games
in Atari 2600 series (a collection of single player video games), receive
only raw pixel value and the game score as input, and have exceeded
the level of human in most of games [6].

• AlphaGo is a computer Go program also developed by DeepMind
Technologies. AlphaGo is trained by Reinforcement Learning (RL)
method with NNs. In 2016, AlphaGo played with South Korean pro-
fessional Go player Lee Sedol (ranked 9-dan, one of the best human
experts) and won a match 4-1, drawing public attention [7].

• Pluribus is a computer poker program developed by researchers from
Facebook’s AI Lab and Carnegie Mellon University. The Pluribus’s core
strategy was computed through self-play, using a form of Monte Carlo
Counterfactual Regret (MCCFR) Minimization that samples actions
in the game tree. Pluribus is stronger than top human professionals in
six-player no-limit Texas hold’em poker. This is the first time an AI
program has proven capable of defeating top professionals in any major
benchmark game that has more than two players (or two teams)[8].

From the list, it is clear that methods used to build AI programs are different.
Nowadays, RL methods with NNs becomes one of the most important trend
to solve game problems. However, the efficiency of RL methods with NNs to
a wide variety of games is still unclear.

This study researches the efficiency of RL methods through investigating
performances of different RL methods in card game solitaire. Solitaire, also
called patience or cabale, is any tabletop game which one can play by oneself,
usually with cards (card game solitaire). There are hundreds of solitaires

3

Game
Expected Length of

an Episode
Size of Action Set Win Rate

TriPeaks 47 101 0.487
Russian Solitaire 22 103 0.028

Table 1.1: The nature of card game solitaires with uncertainty. The expected
lengths and win rates were shown on a website [10]. The win rates indicate
the winning percentage of casual players. This website is popular, everyone
can play multiple card game solitaires and 13 billion gameplays were recorded
on the website. Note that this website allows a player multiple cancellations
of decisions, therefore the win rate shown on the website may be higher than
the win rate of an optimal policy (described in Chapter 2).

with different natures [9], and this study focus on card game solitaires with
uncertainty.

This study develops AIs using RL and measures performances in the
domain of card game solitaires with uncertainty through analyzing win rates.
For the purpose of such comparisons, this study deals with two card game
solitaires with different difficulties to win. As a typical example of easy card
game solitaire, TriPeaks is chosen. As a typical example of difficult card
game solitaire, Russian Solitaire is chosen. Table 1.1 shows the nature of
these two solitaires.

In Chapter 2, basic knowledge related to NN and RL are described. In
Chapter 3, some related works of existing game AIs trained by RL are in-
troduced. Chapter 4 describes experimental set and results. In the end, a
conclusion is drawn in Chapter 5.

4

Chapter 2

Background Knowledge

The background knowledge of this study includes NN and RL. NNs are al-
gorithms for function approximation. RL, as introduced in Chapter 1, is
an area of machine learning and nowadays it provides very important and
effective methods to build AIs in games. “Reinforcement learning, like many
topics whose names end with “ing,” such as machine learning and moun-
taineering, is simultaneously a problem, a class of solution methods that
work well on the class of problems, and the field that studies these problems
and their solution methods [11].” This section uses the term RL for the
second meaning, “a class of solution methods.” Subsection 2.1 introduces
NN, this subsection is mainly derived from the book [12]. Subsection 2.2
describes Markov Decision Process (MDP) used in RL. Subsection 2.3 shows
RL methods that are used in this study. Subsection 2.2 and 2.3 are mainly
derived from Sutton’s book [11].

2.1 NN

NNs are computing models inspired by the biological neural networks that
constitute animal brains. A NN is composed of a large number of connected
units (or neurons).

2.1.1 Feedforward NN

Feedforward NNs (FNNs) are called feedforward because there are no paths
within the networks by which a unit’s output can influence its input. Each

5

Figure 2.1: Example of a 4-layer FNN with 3 inputs {x1, x2, x3}, two hidden
layers, and an output y

connection between two nodes represents a weighted value ω ∈ R for the
signal passing through the connection, which is called weight. FNNs are
called networks because they are typically represented by composing together
many different functions. For example, three functions f (1), f (2), and f (3)

connected in a chain to form y = f(x) = f (3)(f (2)(f (1)(x))). In this case,
x = {x1, x2, · · · , xn} is the output of the input layer of the network, f (1)

is called the first layer of the network, f (2) is called the second layer of the
network, and so on. The final layer of the network f (3) is called the output
layer. The length of the chain is called the depth of the network. The other
layers except input layer and output layer are called hidden layers. Figure
2.1 shows an example of FNNs,

The units compute a weighted sum of their input signals and then apply a
nonlinear function (called the activation function) to the sum, to produce
the units’ outputs. Figure 2.2 shows an example of a unit.
In the case of Figure 2.2, the output z is computed as,

u = x1ω1 + x2ω2 + x3ω3 + x4ω4 + b, (2.1)

z = f(u). (2.2)

6

Figure 2.2: Example of a unit with 4 inputs {x1, · · · , x4}, one bias b, and an
output z

Here, b ∈ R is called bias, and f(u) is an activation function. In this study,
I use Rectified Linear (ReL) activation function and sigmoid activation
function. ReL activation function is defined as,

f(x) = max(0, x). (2.3)

A sigmoid activation function is applied to the output layer, converting the
value of the output to a real value between 0 and 1 to represent the probability
of choosing an action. Sigmoid activation function is defined as,

f(x) =
1

1 + e−x
. (2.4)

Assume there is an L-layer FNN (depth is L) with each unit in a layer
connected to all the units in the next layer. The output of the i-th unit in
the l-th layer (input layer is the 0-th layer) is denoted by z

(l)
i . The weight

from the i-th unit in the l-th layer to the j-th unit in the (l + 1)-th layer is

denoted by ω
(l+1)
ji . The bias of the j-th unit in the l-th layer is denoted by

b
(l)
j . The activation function of the l-th layer is denoted by f (l). The output

7

of the j-th unit in the (l + 1)-th layer is computed as,

u
(l+1)
j =

∑
i

z
(l)
i ω

(l+1)
ji + b

(l+1)
j , (2.5)

z
(l+1)
j = f (l+1)

(
u
(l+1)
j

)
. (2.6)

Here, l ∈ {0, 1, 2, · · · , L− 1}, the input of the FNN is x = {x1, · · · , xi, · · · },
and the output of the FNN is y = {y1, · · · , yi, · · · }. So that, z

(0)
j = xj and

z
(L)
j = yj hold.

The NN layer introduced above is also called fully-connected layer. In
addtion, there are other kind of layers used in this study. Convolutional
layer is a kind of layer that employs a mathematical operation called con-
volution. Convolution is a specialized kind of linear operation,

u
(l+1)
i,j,c =

N−1∑
n=0

Kh−1∑
p=0

Kw−1∑
q=0

ω(l+1)
p,q,n,cz

(l)
i+p,j+q,n + b(l+1)

c . (2.7)

Here, c is the index of output channel, (i, j) is the gridpoint of output image
of channel c, N is the number of input channels, Kh × Kw is the size of
convolution kernel, and z

(l)
i,j,n is the value of input image of channel n at

gridpoint (i, j). All output images have the same dimension H ×W and the
number of images, i.e., the number of channels, is C.

2.1.2 Loss Function

In order to use NNs to approximate a target function, we need to use a
training dataset to adjust the weight of NNs. A training dataset D is a set
of n samples of a pair of the input x and the expected output d, that is,

D = {(x1,d1), · · · , (xn,dn)}. (2.8)

For any pair (x,d) ∈ D, the process of updating the weights to approximate
d as the output of the NN is called learning. We denote the output of the NN
as g(x,ω). Loss function is used to evaluate loss, in other word, the differ-
ence between g(x,ω) and d. In this study, we use euclidean loss (L2 norm)
to compute loss. The euclidean loss F corresponding to training dataset D
is defined as,

F (D,ω) =
1

2

∑
(x,d)∈D

‖g(x,ω)− d‖22. (2.9)

8

2.1.3 Stochastic Gradient Descent and Momentum

Stochastic Gradient Descent (SGD) is a widely used optimization algo-
rithm. Above all, we need to understand what is gradient descent. Let’s
take a simple one-dimensional gradient descent as an example. Consider a
continuous differenctiable real-valued function f : R −→ R. For a number
γ > 0 that is small enough, by using a Taylor expansion we obtain that [13],

f(x+ γ) = f(x) + γf ′(x) +O(γ2) ≈ f(x) + γf ′(x), (2.10)

for any x ∈ R. Here, f ′(x) is the first derivative of f(x). Then pick a fixed
step-size parameter η > 0 that satisfies γ = −ηf ′(x). From equation 2.10 we
obtain that,

f (x− ηf ′(x)) ≈ f(x)− ηf ′2(x) ≤ f(x), (2.11)

for any x ∈ R. If η is small enough and f ′(x) 6= 0, we obtain that,

f (x− ηf ′(x)) < f(x). (2.12)

Equation 2.12 means that, if we iteratively update x through update rule

x←− x− ηf ′(x), (2.13)

the value of f(x) might decline. η is usually called the learning rate.
If f is a function of weight vector ω of size m, the gradient of function f

at ω, denote ∇ωf(ω) or ∇f(ω), is defined as,

∇ωf(ω) =

[
∂f(ω)

∂ω1

,
∂f(ω)

∂ω2

, · · · , ∂f(ω)

∂ωm

]>
. (2.14)

Similarly, we can iteratively update ω through update rule

ω ←− ω − η∇ωf(ω). (2.15)

The target function is usually the expectation of the loss functions for
each sample of training dataset. Define f(x,d,ω) as a loss function of a
training sample, so that the function we need to minimize is,

F (D,ω) =
1

|D|
∑

(x,d)∈D

f(x,d,ω). (2.16)

9

The gradient of F (D,ω) is,

∇ωF (D,ω) =
1

|D|
∑

(x,d)∈D

∇ωf(x,d,ω). (2.17)

Obviously, the time complexity for each update by using gradient descent is
O(|D|). Therefore, the computational cost is large if the number of training
samples for each iteration is large. SGD is a method to reduce computational
cost at each iteration.

At each iteration of SGD, a random sample from the training dataset is
picked to update ω through a rule,

ω ←− ω − η∇ωfr(D,ω). (2.18)

Here, r ∈ {1, · · · , |D|} is randomly chosen. In this way, the time complexity
is reduced from O(|D|) to O(1).

The method of picking a set of random samples to update the weight
is called minibatch SGD. The number of picked samples is called the batch
size. The set of picked samples at time step t is denoted as Dt. Loss function
FMB
t (ω) is defined as,

FMB
t (ω) =

1

|Dt|
∑

(x,d)∈Dt

f(x,d,ω). (2.19)

The update rule of minibatch SGD is defined as,

ω ←− ω − η∇ωF
MB
t (ω). (2.20)

The method of momentum is designed to accelerate learning [14]. The
detailed derivation process is written in the book [12].

Given momentum parameter ζ, it is helpful to think of the momentum
hyperparameter in terms of 1

1−ζ . For example, given ζ = 0.9, corresponding
to multiplying the maximum speed by 10 relative to the gradient descent
algorithm.

We often need to compute a large-sized gradient so many times during
learning. Back propagation algorithm is a method to efficiently calculate
gradients, nowadays most of the deep-learning frameworks, including Caffe
which used in this study, have back propagation algorithm built in. The
detailed algorithm derivation process is written in the book [12].

10

2.2 MDP

Before introducing MDP, we need to first understand some important terms:

• Agent is the learner and decision maker.

• Environment is the thing an agent interacts with, comprising every-
thing outside the agent.

• Actions are the agent’s methods which allow it to interact and change
the environment.

• Rewards are signals given to an agent by the environment. Rewards
are numerical values that the agent tries to maximize over time.

• State corresponds to a situation notified by the environment.

• Policy is a strategy which is applied to the agent to decide the next
action based on the current state through entire process.

• Value is the expected sum of long-term rewards.

MDP is named after the Russian mathematician Andrey Markov, it pro-
vides a mathematical framework for modeling decision making process in
situations where outcomes sometime randomly determined and sometime
under the control of the agent.

MDP has a pair of interactive objects, agent and environment, and several
elements:

• S is a set of non-terminal states and called state space.

• S+ is a set of all states, including terminal state.

• A is a set of all actions and called action space.

• A(s) is a set of actions based on state s ∈ S.

• p(s′|s, a) = Pr{St+1 = s′|St = s, At = a} is the state-transition proba-
bility, where s ∈ S, s′ ∈ S+ and a ∈ A(s). Here, St means the state
at time t, At means an action at time t, and Pr{X = x|Y = y} means
conditional probability of the random variable X takes on the value x
given Y takes on the value y. This equation means the probability that
action a in state s at time step t will lead to state s′ at time t+ 1.

11

• r(s, a, s′) = E[Rt+1|St = s, At = a, St+1 = s′] is the expected reward
received immediately after transitioning from state s to state s′ due to
action a. Here, E[X|Y] means expectation of random variable X given
Y holds, and Rt ∈ R ⊂ R means rewards the agent receives at time
step t.

• An episode is a sequence S0A0, S1A1, · · · , St, At that is generated by
the state transition probability and a static initial-state probability.

The state transitions of an MDP should satisfy the Markov property, that
means, the probability to have a next state depends only on the present state
and action.

As we know, the agent’s goal is to maximize the cumulative reward over
time. The cumulative reward following time t (if it is the terminal time,
denote T), in other word the return Gt, is defined as,

Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT (2.21)

=
T−t−1∑
k=0

Rt+k+1, (2.22)

where Rt+1, Rt+2, Rt+3, ..., RT ∈ R ⊂ R mean rewards that the agent receives
after time step t, R is a finite set of rewards, and RT is the reward given by
the environment which is corresponding to a terminal state. The return of
terminal time step GT is equal to 0. Discount rate is omitted in this study.

If the state and action spaces of an MDP are finite, then this MDP is
called a finite MDP. Finite MDPs are particularly important to the theory
of RL. In this study, all MDPs are finite. So that an MDP’s state set S,
action set A(s) and reward set R are finite.

To draw a graph is an efficient way to understand finite MDP. Figure 2.3
shows an example. There is a state node (a large open circle) for each non-
terminal state, a state node (a large open square) for the terminal state, and
an action node (a small solid circle) for each state-action pair. Taking action
a in one of the non-terminal states will lead you along the line from that state
node to the action node corresponding to a, then the environment responds
a transition to the next state’s node by one of the arrows leaving action node
(s, a). Each arrow corresponds to a transition probability, p(s′|s, a), which
is the left number of the arrow’s label, and an expected reward, r(s, a, s′),
which is the right number of the arrow’s label.

12

Figure 2.3: Example of a simple finite MDP

The value of a state s ∈ S under a policy π, called the state-value
function for policy π, denoted vπ(s), is defined as,

vπ(s) = Eπ[Gt|St = s], (2.23)

for all s ∈ S. Here, Eπ[X|Y] means expectation of random variable X, given
Y holds, under policy π. For any policy π and any state s, the following
consistency condition holds between the value of s and the value of its possible
successor states,

vπ(s) =
∑
a∈A(s)

π(a|s)
∑

s′∈S+,r∈R

p(s′, r|s, a)
[
r + vπ(s′)

]
, (2.24)

for all s ∈ S. Here, π(a|s) means probability of taking action a in state s
under stochastic policy π. Equation 2.24 is derived from equation 2.23, and
it is the bellman equation for vπ.

The value of taking action a in state s under a policy π, called the action-
value function for policy π, denoted qπ(s, a), is defined as,

qπ(s, a) = E[Gt|St = s, At = a], (2.25)

for all s ∈ S and a ∈ A(s). Similarly, the bellman equation for qπ is derived
from equation 2.25,

qπ(s, a) =
∑

s′∈S+,r∈R

p(s′, r|s, a)
[
r + qπ(s′, a′)

]
, (2.26)

for all s ∈ S and a ∈ A(s), and it is implicit that a′ ∈ A(s).
Now we want to find optimal policy π∗. We say that a policy π is better

than or equal to a policy π′ if the expected return of π is greater than or equal

13

to that of π′ for all states. There is always at least one policy called optimal
policy which is better than or equal to all the other policies. We denote all
the optimal policies by π∗, they share the same state-value function v∗,
called the optimal state-value function, defined as,

v∗(s) = max
π

vπ(s), (2.27)

for all s ∈ S. Optimal policies also share the same action-value function
q∗, called the optimal action-value function, defined as,

q∗(s, a) = max
π

qπ(s, a), (2.28)

for all s ∈ S and a ∈ A(s).
In an MDP, v∗ or q∗ respectively conform to the bellman optimality

equations,

v∗(s) = max
a

E[Rt+1 + v∗(St+1)|St = s, At = a] (2.29)

= max
a

∑
s′∈S+,r∈R

p(s′, r|s, a)
[
r + v∗(s

′)
]
, (2.30)

for all s ∈ S, or,

q∗(s, a) = E[Rt+1 + max
a′

q∗(St+1, a
′)|St = s, At = a] (2.31)

=
∑

s′∈S+,r∈R

p(s′, r|s, a)
[
r + max

a′
q∗(s

′, a′)
]
, (2.32)

for all s ∈ S and a ∈ A(s). We can easily obtain optimal policies as long as
we have found the optimal value functions v∗ or q∗.

2.3 RL

RL is a framework for solving problems that can be expressed as MDPs. In
RL, Generalized Policy Iteration (GPI) is a widely used idea to solve
the bellman optimality equations. GPI has three steps (policy evaluation,
policy improvement and policy iteration) until the policy converges.

14

2.3.1 Policy Evaluation

Policy evaluation is to predict the state-value function with respect to a given
policy.

When solving MDPs, iterative solution methods are suitable for our pur-
pose. For a sequence of approximate state-value functions v0, v1, v2, ..., each
mapping S+ to R, the initial approximation v0 is chosen arbitrarily. One
method to solve MDPs is to obtain each successive approximation by using
the bellman equation 2.24 as an update rule,

vk+1(s) =
∑
a∈A(s)

π(a|s)
∑

s′∈S+,r∈R

p(s′, r|s, a)
[
r + vk(s

′)
]
, (2.33)

for all s ∈ S. Obviously, vk = vπ is a fixed point, and the sequence {vk}
converges to vπ as k −→ ∞ under the condition of eventual termination is
guaranteed from all states under the policy π.

The prerequisite for this method is that the state-transition probability
p(s′|s, a) is known, but in this study we don’t actually know the probability,
therefore we need to use other methods.

Monte Carlo (MC) Backup and TD Backup are two other methods
for learning the state-value function for a given policy without knowing the
state-transition probability. As we know, state-value function vπ(s) is defined
as equation 2.23. For MC backup method in an MDP, when improving the
state-value estimate of a state V (St), Gt is used as a target value. The
update rule is

V (St)←− V (St) + α
[
Gt − V (St)

]
, (2.34)

where α ∈ (0, 1] is a step-size parameter. Here, “←−” means assignment. Sim-
ilarly, we can get the action-value estimate of a state-action pair Q(St, At).
The update rule is

Q(St, At)←− Q(St, At) + α
[
Gt −Q(St, At)

]
, (2.35)

where α ∈ (0, 1].
As shown in Figure 2.4, in MC method, the action-value estimate of non-

terminal state-action pairs can be obtained when the process reaches the
terminal state.

15

Figure 2.4: Backup diagram of MC method

For TD backup in an MDP, we update the state-value estimate of a state
V (St) by the observed reward Rt+1 and estimate V (St+1) at time t+ 1. The
update rule of the simplest TD method called TD(0) is

V (St)←− V (St) + α
[
Rt+1 + V (St+1)− V (St)

]
, (2.36)

where α ∈ (0, 1]. Similarly, we can get the action-value estimate of a state-
action pair Q(St, At) of TD(0). The update rule is

Q(St, At)←− Q(St, At) + α
[
Rt+1 +Q(St+1, At+1)−Q(St, At)

]
, (2.37)

where α ∈ (0, 1].
Figure 2.5 shows the backup diagram for TD(0). The action-value esti-

mate of the previous state-action pair is updated based on the next state-
action pair.

16

Figure 2.5: Backup diagram of TD(0) method

2.3.2 Policy Improvement

Policy improvement is the process of improving a policy. Policy improvement
is actually the process of traversing each action under each state, computing
values corresponding to each traversed action, and choosing the action that
has the max value as a new policy. The deterministic new policy, π′ (mapping
from S to A), is given by

π′(s) = arg max
a∈A(s)

qπ(s, a), (2.38)

for all s ∈ S. Here, arg maxa f(a) means a value of a at which f(a) takes its
maximal value. π′ is called the greedy policy. The greedy policy takes the
action that looks best after one time step.

Traverse each state and update the policy as above, then the old policy π
is updated to the new policy π′. From Sutton’s book we know vπ(s) ≤ vπ′(s)
for all s ∈ S [11]. That is to say, the value of each state of the new policy is
greater than or equal to that of the old policy. So that the cumulative value
is greater than or equal to before, which means that the policy is improved.

2.3.3 Policy Iteration

When policy π is updated to a better policy π′ through policy improvement,
we can compute vπ′ through policy evaluation and then update to a better
policy π′′. The process can be iterated until reaching the optimal policy. This
iteration is called policy iteration. We can obtain a sequence of monotonously
improving policies and state-value functions,

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ · · · I−→ π∗
E−→ vπ∗ . (2.39)

17

Here “
E−→” means a policy evaluation and “

I−→” means a policy improvement.
Because an MDP has a finite number of deterministic policies, this iteration
must converge to an optimal policy and an optimal state-value function in
limit iterations.

However there is a problem with the above GPI idea, that is, many state-
action pairs may never be visited. This is very serious because we need to
compare all the opportunities and estimate the value of all the actions from
each state, otherwise the policy may be trapped in local optima. To avoid
this problem, the probability of each action being selected should be greater
than 0.

There are two approaches to select each action with a probability greater
than 0, we call them on-policy methods and off-policy methods. As pre-
requisite knowledge, we need to figure out what is target policy and what
is behavior policy. The target policy is the policy to be applied after
learning. In briefly speaking, the target policy is the policy being learned
about. The behavior policy is the policy used to generate behavior, that is,
the policy being used during learning. For on-policy methods, target policy
is used as behavior policy. For off-policy methods target policy and behavior
policy are different.

MC method explained in Subsection 2.3.1 is one of on-policy methods.
For MC method, we optimize action-value function q∗ (equation 2.32) instead
of state-value function, and updated by ε-greedy policy. The agent follows
ε-greedy policy takes actions by greedy policy with a probability of 1− ε or
randomly with a probability of ε. This approach ensures all the states and
actions are explored. If the number of episodes that policy evaluated is large
enough, MC method is convergent.

Q-learning is an off-policy TD(0) method, the update rule is

Q(St, At)←− Q(St, At) + α
[
Rt+1 + max

a
Q(St+1, a)−Q(St, At)

]
. (2.40)

Here α ∈ (0, 1]. Under this condition, the learned action-value function Q is
directly approximates the optimal value function q∗. Q-learning is convergent
if all state-action pairs continue to be updated. Figure 2.6 shows the backup
diagram of Q-learning, and diagram of target policy and behavior policy.

Table 2.1 summarizes RL methods, i.e, MC method, Q-learning, and
Sarsa in terms of behavior policies and backups. The popular RL method
Sarsa is placed in the table although it is not explained in this subsection.

18

Figure 2.6: Backup diagram of Q-learning, and diagram of target policy and
behavior policy

Backup
TD(0) TD(1)

On-policy Sarsa MC method
Off-policy Q-learning —

Table 2.1: Table of RL methods

2.3.4 Function Approximation

So far, our discussion of RL are tabular methods, which are using tables to
store the value functions. However if state and action spaces are very large,
it is difficult to compute and store data. Moreover, in many tasks, “almost
every state encountered will never have been seen before. To make sensible
decisions in such states it is necessary to generalize from previous encounters
with different states that are in some sense similar to the current one [11].”
Here we need to rely on function approximation.

Function approximation is an instance of supervised learning, another
area of machine learning. The idea of function approximation is to use a
proper function (linear function or non-linear function, etc.) to fit the true
value of the value function based on a small number of training samples,
making it applicable to a large number of test samples. The core task of this
idea is to find the optimal parameters of the function.

With function approximation, we write v̂(s,ω) ≈ vπ(s) for the approxi-
mated value of state s given weight vector ω. ω is a column vector with a

19

fixed number of real valued components, ω = (ω1, ω2, · · · , ωn)>. Generally,
v̂ is a function computed by NNs and ω is the vector of connection weights
in all layers. This study is also carried out through NNs.

We summarize MC method and Q-learning in Chapter 2.3.1 and 2.3.3 as
a general tabular expression,

f(X)←− f(X) + α
[
Θ− f(X)

]
. (2.41)

Here, f is an arbitrary function, α ∈ (0, 1], and Θ is the target value. Also,
X and Θ are random variables, i-th observation of X or Θ respectively gives
xi or θi, and E[·] evaluate an expected value. Let us consider a function
approximation f̂(x,ω) ≈ f(x).

Now we would like to update f̂(X,ω) toward target Θ. To achieve this
goal, we introduce a loss function to minimize, as,

E

[[
f̂(X,ω)−Θ

]2]
=
∑
i

[
f̂(xi,ω)− θi

]2
. (2.42)

So that we can obtain the function approximation of update rule 2.41 with
η (0 < η ∈ R and η is small enough) through the similar derivation process
in Subsection 2.1.3, as,

ω ←− ω − η
[
f̂(xi,ω)− θi

]
∇ωf̂(xi,ω). (2.43)

Note that the expected value in equation 2.42 can be defined when the
behavior policy is static.

20

Chapter 3

Related Works

3.1 Backgammon

Backgammon is one of the oldest known board game. It is a two-player turn-
based game with a combination of strategy and uncertainty due to rolling
dice. Although, the dice affects the outcome of a single game, the experts
have good win rate. A lot of reseach on Backgammon have been carried out
by computer scientists.

In 1979, BKG 9.8, a backgammon program developed by Hans Berliner,
beat the world backgammon human champion in a match by a score of 7-
1 [15]. This is the first time in any game a world champion has been defeated
by a computer program though, BKG 9.8 received more favorable dice rolls
in the match.

In 1995, Gerald Tesauro developed a backgammon program called TD-
Gammon by using TD-(λ) method with NNs [4]. Tesauro designed a 3-layer
NN to estimate the afterstate function. The input of NN is the number
of checkers of each point, and the output is the approximation of the value
function of two kinds of winning ways for each player. At the beginning
of learning, the policy is greedy policy with random initial weights of the
NN. TD-Gammon generate a training dataset through self-play, then use the
training dataset to compute the loss function, and update the weight through
back propagation algorithm. TD-Gammon achieves the level of human ex-
perts.

Backgammon and card game solitaires with uncertainty are both turn-
based games with uncertainty. The difference is that backgammon is a

21

two-player game, and card game solitaires with uncertainty are single-player
games.

3.2 Atari 2600

In 2015, DeepMind Technologies developed deep Q-network Atari 2600 AIs.
The AIs is developed by using a variant of Q-learning algorithm with DNNs.
A combination of 3 convolutional layers and 2 fully-connected layers is used
to approximate the action-value function. This agent receives only raw pixel
values and the game score as input. The output is the approximated action
values for a set of actions.

The AI is trained by an off-policy Q-learning, whose target policy is
greedy policy and behavior policy is ε-greedy policy. Moreover, a method
called experience replay is used to stabilize learning. The method is to
store the observed (s, a, r‘, s′) pair to a replay memory, and randomly pick
stored pairs from the replay memory for learning.

This AI has exceeded existing RL AIs in 43 games, and has reached the
level of professional human players in 29 games among 49 games in Atari
2600 series.

Atari 2600 games and card game solitaires are both single-player games.
The expected length of an episode of Atari 2600 games is about 103 and
the size of action set is about 101, either is similar to card game solitaires.
Therefore, it is expected that experience replay is also useful for training AIs
to play card games solitaires.

3.3 Game 2048

Game 2048 is a stochastic single-player game. In 2018, Naoki Kondo and
Kiminori Matsuzaki developed AIs for Game 2048 based on deep CNNs,
achieving an average score of 93 830 [16]. Their experiments showed that the
AIs that are equipped with CNNs reach a close level of state-of-the-art AIs
that are equipped with specialized networks for game 2048.

The researchers incremented the number of convolutional layers from 2
to 9, while keeping the number of weights almost the same. The AIs were
trained by supervised learning with a large number of play records from
existing strong computer players.

22

As a result, they found that the AIs trained by 3 or more convolutional
layers performed much better than the AIs trained by 2 convolutoinal layers,
even they have similar number of weights.

As same as game 2048, card games solitaires are also stochastic single-
player games. Therefore, it is expected that CNNs are also performing well
for card game solitaires with uncertainty.

23

Chapter 4

Experiments

This section introduces setup of training AIs by MC method and Q-learning
to play TriPeaks and Russian Solitaire, and shows performance analysis on
the basis of win rates.

4.1 Setup

Subsection 4.1.1 introduces rules of TriPeaks and Russian Solitaire. Subsec-
tion 4.1.2 explains two encoding methods used in this study. Subsection 4.1.3
shows architecture of NNs. Subsection 4.1.4 describes an algorithm of train-
ing data sampling.

4.1.1 Rules

Tripeaks and Russian Solitaire are played with a standard 52-card deck,
comprising 13 cards each of 4 suits: Spades ♠, Hearts ♥, Diamonds ♦, and
Clubs ♣. The cards in each suit are: Ace (A), 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack
(J), Queen (Q), and King (K). This order is the basic rank from low (Ace)
to high (King). However these two games have very different rules but both
with uncertainty.

The rules of TriPeaks are as following:

• Layout. Figure 4.1 shows the layout of TriPeaks. 28 cards make up
the tableau (3 peaks with 4 tiers). 23 remaining cards build up the
stock. The last card is shown up and discarded in the waste pile.

24

Figure 4.1: Layout of TriPeaks

• Waste pile (also known as foundation). Build up or down by rank.
A King may be played on an Ace and an Ace may be played on a King.

• Tableau (Peaks). A card in the tableau is face up if it’s not over-
lapping, otherwise face down. Face-up cards can be discarded to the
waste pile.

• Stock. A card picked from the stock can be turned face up and the
card is discarded to the waste pile.

• Winning condition. Discard all cards in the tableau.

• Game play. A card of neighbor rank regardless of suit from the
tableau and a card from the stock can be discarded to the waste pile.
This card becomes the new top card of the waste pile. The process is
repeated multiple times and ends until no action can be taken.

The rules of Russian Solitaire are as following:

• Layout. Figure 4.2 shows the layout of Russian Solitaire. 52 cards
make up the tableau (7 piles). 4 waste piles are empty at the beginning.

25

Figure 4.2: Layout of Russian Solitaire

• Waste piles. 4 waste piles all build up by rank with same suits. An
Ace can be moved to any empty waste pile.

• Tableau. A card in the tableau is turned face up if it is not overlapping.
A face-up card in the tableau, no matter how deep it is in a pile, may
be moved to another pile if it is in the same suit and one rank lower
than the top card in the other pile. When a card is moving, all the
cards that covering the moving card are also moving with it as a rigid
body. A king can be moved to an empty pile. A card from the top of
a pile can be discarded to the waste pile.

• Winning condition. Discard all cards in the tableau.

• Game play. A player can either move cards in the tableau or discard a
card from the top of a pile (if the card is in the same suit and one rank
higher than the top card of a waste pile). Once a card is discarded, it
becomes the new top card of the waste pile. The process is repeated
multiple times and ends until no action can be taken.

Note that, for Russian Solitaire in this study, a king is not allowed to be
move to an empty pile if the king is the bottom card. This additional rule is
to avoid infinite loop of king round trip from one to another pile.

26

4.1.2 Encoding afterstates

Consider a set S̃, a map Φ : S × A −→ S̃, a map Q̃ : S̃ −→ R, and a policy π.

If Qπ(s, a) = Q̃
[
Φ(s, a)

]
holds for all (s, a) ∈ S × A, and |S̃| is sufficiently

smaller than |S × A|, then learning Q̃ maybe easier than learning Qπ.
It is known that the concept of afterstate is sometimes useful to compose

these S̃ and Φ [11]. Figure 4.3 shows an example of afterstate. In the case
of the figure, a card is moved from one pile to another, this action discloses
another card.

Two encoding methods are used to encode afterstate to a binary sequence
which is fed into the input layer of NNs. We assume that the standard 52-
card deck is indexed from 0 to 51 in accordance with the order of “A♠,· · · ,
K♠,A♥,· · · ,K♥,A♣,· · · ,K♣,· · · ,A♦,· · · ,K♦”.

Encoding method 1 (E1) encodes the game situation focusing on individ-
ual cards. In this method, the situation formed by one card is represented
by a binary sub-sequence, then the entire situation is represented by com-
bining 52 sub-sequences. i-th sub-sequence represents a location, face up or
down, and existence of card i. To indicate a location from U locations, the
representation uses U binaries (the binary value corresponding to the loca-
tion is set to 1, and the others are set to 0). To indicate face up or down,
the representation uses one binary (face up, 0; face down, 1). To indicate
existence, the representation uses one binary (exist, 0; discarded, 1). For
example, if a solitaire uses 4 locations, then “001000” means a card is at the
third location, and “000010” means a card is face down.

Encoding method 2 (E2) encodes the game situation focusing on individ-
ual locations. In this method, the situation formed by one location is rep-
resented by a binary sub-sequence, then the entire situation is represented
by combining all the sub-sequences. j-th sub-sequence represents the index
of face-up card, the existence of a face-down card, or vacancy of the j-th
location. To indicate the index, 52 binaries are used (the binary value cor-
responding to the index of the card is set to 1, and the others are set to 0).
To indicate the existence of a face-down card, one binary is used (not exist,
0; exist, 1). To indicate vacancy, one binary is used (not vacant, 0; vacant,
1). For example, “0100· · · 00” means 2♠ exists, and “0000· · · 10” means a
face-down card exists in the location.

Table 4.1 shows the number of locations and actions of TriPeaks and Rus-
sian Solitaire. In the case of TriPeaks, the tableau has 28 locations, the stock

27

Game Number of Locations Number of Actions
TriPeaks 52 29
Russian Solitaire 368 2191

Table 4.1: Size of locations and actions of TriPeaks and Russian Solitaire

has 23 locations, and the waste pile has one location. 28 actions correspond
discarding a card from tableau, and one action corresponds discarding a card
from the stock. In the case of Russian Solitaire, each pile of the tableau has
52 locations and each waste pile has one location. A card from any location
of the tableau may be able to move to the top of any other piles, and the top
card of any pile may be able to discard to one of the waste piles.

28

Figure 4.3: Example of afterstate

29

4.1.3 Architecture of NNs

As shown in Figure 4.4, 4-layer NNs are used for training AIs in this study.
The order of the layers is input layer, convolutional layer, and two fully-
connected layers. The input is encoded afterstate and the output is a real
number between 0 and 1 which represent the probability of choosing an
action. Table 4.2∼4.4 shows the details of the layers of each NN. For different
NNs for the same game, the number of weights are kept almost the same.

Figure 4.4: Structure of the NN

Layer Output Dimension
Number of Weights

and Biases
Activation Function

Input 52(C)×1(H)×54(W) — —
Conv1×1 8(C)×1(H)×54(W) 424 ReL
Fc 100 43300 ReL
Fc 1 101 Sigmoid

Table 4.2: Architecture of NNs with E2 for TriPeaks. Conv1×1 stands for
convolution using 1(Kh)×1(Kw) kernel and Fc stands for fully-connected.
The total number of weights and biases is 43 825.

30

Layer Output Dimension
Number of Weights

and Biases
Activation Function

Input 373(C)×1(H)×52(W) — —
Conv1×1 56(C)×1(H)×52(W) 20944 ReL
Fc 600 1747800 ReL
Fc 1 601 Sigmoid

Table 4.3: Architecture of NNs with E1 for Russian Solitaire. Conv1×1
stands for convolution using 1(Kh)×1(Kw) kernel and Fc stands for fully-
connected. The total number of weights and biasess is 1 769 345.

Layer Output Dimension
Number of Weights

and Biases
Activation Function

Input 54(C)×1(H)×368(W) — —
Conv1×1 8(C)×1(H)×368(W) 440 ReL
Fc 600 1767000 ReL
Fc 1 601 Sigmoid

Table 4.4: Architecture of NNs with E2 for Russian Solitaire. Conv1×1
stands for convolution using 1(Kh)×1(Kw) kernel and Fc stands for fully-
connected. The total number of weights and biases is 1 768 041.

31

4.1.4 Sampling Training Dataset for RL

To use SGD, a method for randomly choosing samples is needed. For the
purpose of choosing samples randomly, the experience replay method is used
in this study. Algorithm 1 shows such a method for carrying out RL methods
using replay memory on the basis of the experience replay method. The
algorithm stores a sequence of training samples (line 14), then randomly
selects samples from the replay memory for learning (line 17). This method
greatly improves the stability of learning.

Algorithm 1: Learning with replay memory

1 B ←− batch size;
2 L←− size of replay memory (L is multiple of B);
3 Initialize replay memory Υ to empty;
4 Function gen sample()

5 Initialize gameplay Ξ to empty (Ξ is static and the initialization
is done only once);

6 if Ξ is empty then
7 Generate and store a gameplay to Ξ;
8 end

9 Take one oldest sample ξ from Ξ;
10 return ξ;
11

12 foreach t ∈ {0, 1, · · · } do
13 while |Υ| < L do
14 Store gen sample() to Υ;
15 end
16 Randomly select B samples from Υ to form Dt;
17 Update NN weights using Dt as shown in update rule 2.20;
18 Clear the oldest B samples in Υ;

19 end

To carry out RL using MC method, a sample ξ means (s, a, rT) as shown
in equations 2.35 and 2.43. To carry out RL using Q-learning, a sample ξ

means
[
s, a, r′,maxa Q̂(s′, a,ω)

]
as shown in equations 2.40 and 2.43.

32

4.2 Results

Table 4.5 shows 5 AIs developed in this study, and Table 4.6 shows the win
rates of these AIs playing TriPeaks and Russian Solitaire.

Table 4.7∼4.12 show hyperparameters used during learning. The param-
eter ε and learning rate are adjusted by hand carefully. Each AI is trained
using ε = 1 in the beginning so that the AI can explore more afterstates.
The win rate improves rapidly in the beginning. When the improvement
slows down, the ε decreases linearly during a period of iterations. After a
certain number of iterations, the ε stops decreasing and remains constant,
the learning rate descents at the same time.

Figure 4.5 and Figure 4.6 show the training process. Caffe 1.0 is used for
these training [17]. B is set to 16 and L is set to 500 000. For TriPeaks,
about one million gameplays are used for training each AI. After about 3.4
million iterations, from Figure 4.5, we can see Q2 outperforms MC2. Win
rates of MC1 and Q1 are not available in this experiment, because no win
game observed. This means that E2 outperformed E1.

For Russian Solitaire, about 1.5 million gameplays are used for training
each AI. After about 1 million iterations, from Figure 4.6, we can see Q-
learning outperforms MC method. However we cannot decide which encoding
method is better.

According to the results, we can say that Q-learning is better than MC
method for these two games. But the efficiency of the two encoding methods
is still unclear in the case of Russian Solitaire.

Agent Description
RD Uniform random policy
MC1 Trained by MC method with E1
MC2 Trained by MC method with E2
Q1 Trained by Q-learning with E1
Q2 Trained by Q-learning with E2

Table 4.5: Five AIs

33

Agent Win Rate of TriPeaks Win Rate of Russian Solitaire
RD 0.00051±0.00014 0.00220±0.00030
MC1 — 0.00340±0.00037
MC2 0.27394±0.00282 0.00352±0.00037
Q1 — 0.00443±0.00042
Q2 0.51865±0.00316 0.00494±0.00044

Table 4.6: Win rates of five AIs playing TriPeaks and Russian Solitaire. The
sign ± represent 95% confidence intervals.

Figure 4.5: Training progress of TriPeaks

Iterations ε Learning Rate
1 ∼ 500 000 1 0.1

500 001 ∼ 700 000 1∼0.2 0.1
700 001 ∼ 34 000 000 0.2 0.02

Table 4.7: Hyperparameters of MC2 for TriPeaks. The value of ε during
iterations 500 001 to 700 000 decreases linearly.

34

Iterations ε Learning Rate
1 ∼ 600 000 1 1

600 001 ∼ 800 000 1∼0.1 1
800 001 ∼ 34 000 000 0.1 0.2

Table 4.8: Hyperparameters of Q2 for TriPeaks. The value of ε during iter-
ations 600 001 to 800 000 decreases linearly.

Figure 4.6: Training progress of Russian Solitaire

Iterations ε Learning Rate
1 ∼ 150 000 1 0.01

150 001 ∼ 250 000 1∼0.2 0.01
250 001 ∼ 1 000 000 0.2 0.002

Table 4.9: Hyperparameters of MC1 for Russian Solitaire. The value of ε
during iterations 150 001 to 250 000 decreases linearly.

35

Iterations ε Learning Rate
1 ∼ 350 000 1 0.01

350 001 ∼ 550 000 1∼0.2 0.01
550 001 ∼ 1 000 000 0.2 0.002

Table 4.10: Hyperparameters of MC2 for Russian Solitaire. The value of ε
during iterations 350 001 to 550 000 decreases linearly.

Iterations ε Learning Rate
1 ∼ 500 000 1 0.1

500 001 ∼ 600 000 1∼0.2 0.1
600 001 ∼ 1 000 000 0.2 0.01

Table 4.11: Hyperparameters of Q1 for Russian Solitaire. The value of ε
during iterations 500 001 to 600 000 decreases linearly.

Iterations ε Learning Rate
1 ∼ 300 000 1 0.1

300 001 ∼ 400 000 1∼0.2 0.1
400 001 ∼ 1 000 000 0.2 0.02

Table 4.12: Hyperparameters of Q2 for Russian Solitaire. The value of ε
during iterations 300 001 to 400 000 decreases linearly.

36

Chapter 5

Conclusion

This study developed AIs using RL and measured win rates in the domain of
card game solitaires with uncertainty. The solitaires used in this study were
TriPeaks and Russian Solitaire, and the RL used were MC method and Q-
learning. To represent action-value functions, afterstates were used instead
of states, and NNs were used to approximate the functions. Moreover, a
method called experience replay was used to stabilize learning.

Experimental results showed that in the case of TriPeaks and Russian
Solitaire, off-policy Q-learning outperformed on-policy MC method. In order
to confirm the superiority of Q-learning against MC method for card game
solitaire, more experiments with a wide spectrum of card game solitaires are
required.

In the case of TriPeaks, AI trained by Q-leaning exceeded the level of
casual human players that are allowed multiple cancellations of decisions.
However, no counter-intuitive behavior taken by the AI was found in the
experiments. The reason why the AI exceeded the level is that the AI rarely
makes mistakes in TriPeaks.

In the case of Russian solitaire, all the AIs developed in this work did
not reach the level of such human players, although the number of weights
used in NN is 40 times greater than the number of weights used in the case
of TriPeaks. One reason for this inferiority can be that Russian Solitaire has
a hundred times larger action set than TriPeaks does. If this is the case,
the performance will be improved by enlarging the scale of experiment, e.g.,
enlarging the size of experience replay or the size of NN. Another reason can
be that Russian Solitaire induces casual human players to cancel decisions
more than TriPeaks does, so that the win rate of casual human players can

37

be higher than that of an optimal policy.

38

Bibliography

[1] Kaplan, A., Haenlein, M. Siri, siri, in my hand: Who’s the fairest in the
land? on the interpretations, illustrations, and implications of artificial
intelligence. Business Horizons, 62(1):15–25, 2019.

[2] Samuel, A. L. Some studies in machine learning using the game of check-
ers. IBM Journal of Research and Development, 3(3):210–229, 1959.

[3] Schaeffer, J., Lake, R., Lu, P., Bryant, M. Chinook the world man-
machine checkers champion. AI Magazine, 17(1):21–21, 1996.

[4] Tesauro, G. Temporal difference learning and TD-gammon. Communi-
cations of the ACM, 38(3):58–68, 1995.

[5] Campbell, M., Hoane A. J., Hsu, F.-H. Deep blue. Artificial Intelligence,
134(1-2):57–83, 2002.

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,
G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[7] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap,
T., Hui, F., Sifre, L., Driessche, G., Graepel, T., Hassabis, D. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359,
2017.

[8] Brown, N., Sandholm, T. Superhuman AI for multiplayer poker. Science,
365(6456):885–890, 2019.

39

[9] Morehead, A. H. The complete book of solitaire and patience games.
Read Books Ltd, 2015.

[10] Schultz, R. World of solitaire. 2007. https://worldofsolitaire.com.

[11] Sutton, R. S., Barto, A. G. Reinforcement learning: An introduction.
MIT Press, 2018.

[12] Bengio, Y., Goodfellow, I., Courville, A. Deep learning. MIT Press,
2017.

[13] Aston, Z., Zachary, C. L., Mu, L., Alexander, J. S. Dive into deep
learning. 2020. https://d2l.ai.

[14] Polyak, B. T. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics,
4(5):1–17, 1964.

[15] Berliner, H. J. Backgammon computer program beats world champion.
Artificial Intelligence, 14(2):205–220, 1980.

[16] Kondo, N., Matsuzaki, K. Playing game 2048 with deep convolutional
neural networks trained by supervised learning. Journal of Information
Processing, 27:340–347, 2019.

[17] Jia, Y.-Q. Caffe | Deep Learning Framework. https://caffe.

berkeleyvision.org/.

40

