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 要  旨 

諸科学，産業界のあらゆる分野において複雑な現象を解明するために，大規模なデータの蓄

積が盛んに行われている．近年では，蓄積されるデータの種類も多様になってきており，複数

種類のデータ集合に内在する価値ある特性を発見する分析手法の開発は必要不可欠である．発

見された特性を検討することは，関心がある現象を説明している因子の本質的な関係や因果関

係を解明する一助となる．このような統計的な分析手法の一つに共通成分分析がある．共通成

分分析は，複数種類のデータ集合の共分散構造に着目し，共通した特徴を抽出し，データの潜

在的な線形構造を探索する手法である． 
一方で，機械学習やデータマイニングの分野でテンソル構造を持ったデータに対する分析手

法の研究が注目を集めている．データの持つテンソル構造を考慮しながら分析を行うことで，

データに内在する高次の関係性を正確に抽出できることが多く報告されている．従来の統計的

な分析手法をテンソルデータに適用する場合，テンソル構造を考慮しながら分析を行うことが

できないため，データに内在する特徴を正確に抽出できない問題が生じる．そのため，近年で

は多くの統計的な分析手法がテンソルデータに適用できるように拡張されている． 
本論文では，共通成分分析をテンソルデータに対して拡張したテンソル共通成分分析を提案

する．テンソル共通成分分析は，クロネッカー積に基づくテンソルデータの共分散構造を用い

て，複数種類のテンソルデータの集合に共通した特徴を抽出する手法である．また，テンソル

データに内在する潜在構造を同定するために，新たな推定アルゴリズムを提案し，その収束性

に関する理論解析も行う．本論文では，実データ解析を通して提案手法の有効性および推定ア

ルゴリズムの収束性について検証する．検証の結果，従来の共通成分分析や類似手法に比べて

提案手法の方が内在する特徴を抽出する性能が高いことが確認された．また，提案するアルゴ

リズムの有効性を確認できた． 
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1 Introduction

Various statistical methodologies for extracting useful information from a large

amount of data have been studied over the decades since the appearance of big

data. In the present era, it is important to discover a common structure of multiple

datasets. In an early study, Flury (1984) focused on the structure of the covariance

matrices of multiple datasets and discussed the heterogeneity of the structure. The

author reported that population covariance matrices differ between multiple datasets

in practical applications. Many methodologies have been developed for treating

the heterogeneity between covariance matrices of multiple datasets (see, e.g., Flury

(1986, 1988); Flury and Gautschi (1986); Pourahmadi et al. (2007); Wang et al.

(2011); Park and Konishi (2018)).

Among such methodologies, common component analysis (CCA) (Wang et al.,

2011) is an effective tool for statistics. The central idea of CCA is to reduce the num-

ber of dimensions of data while losing as little information of the multiple datasets

as possible. To reduce the number of dimensions, CCA reconstructs the data with a

few new variables which are linear combinations of the original variables. For con-

sidering the heterogeneity between covariance matrices of multiple datasets, CCA

assumes that there is a different covariance matrix for each dataset. There have

been many papers on various statistical methodologies using multiple covariance

matrices: discriminant analysis (Bensmail and Celeux, 1996), spectral decomposi-

tion (Boik, 2002), and a likelihood ratio test for multiple covariance matrices (Manly

and Rayner, 1987). It should be noted that principal component analysis (PCA)

(Pearson, 1901; Jolliffe, 2002) is a technique similar to CCA. In fact, CCA is a gen-

eralization of PCA; PCA can only be applied to single dataset, whereas CCA can

be applied to multiple datasets.

Meanwhile, in various fields of research, including machine learning and computer
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vision, the main interest has been in tensor data, which has a multidimensional

array structure. In order to apply the conventional statistical methodologies, such

as PCA, to tensor data, a simple approach is to first transform the tensor data into

vector data and then apply the methodology. However, such an approach causes the

following problems:

1. In losing the tensor structure of the data, the approach ignores the higher-order

inherent relationships of the original tensor data.

2. Transforming tensor data to vector data increases the number of features large.

It also has a high computational cost.

To overcome these problems, statistical methodologies for tensor data analyses have

been proposed which take the tensor structure of the data into consideration. Such

methods enable us to accurately extract higher-order inherent relationships in a

tensor dataset. In particular, many existing statistical methodologies have been

extended for tensor data, for example, multilinear PCA (MPCA) (Lu et al., 2008)

and sparse PCA for tensor data analysis (Allen, 2012; Wang et al., 2012; Lai et al.,

2014), as well as others (see Carroll and Chang (1970), Harshman (1970), Kiers

(2000), Badeau and Boyer (2008), and Kolda and Bader (2009)).

In this paper, we extend CCA to tensor data analysis, proposing multilinear com-

mon component analysis (MCCA). MCCA discovers the common structure of mul-

tiple datasets of tensor data while losing as little of the information of the datasets

as possible. To identify the common structure, we estimate a common basis con-

structed as linear combinations of the original variables. For estimating the common

basis, we develop a new estimation algorithm based on the idea of CCA. In develop-

ing the estimation algorithm, two issues must be addressed. One is the convergence

properties of the algorithm. The other is its computational cost. To determine

the convergence properties, we investigated first the relationship between the initial
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values of the parameters and global optimal solution and then the monotonic con-

vergence of the estimation algorithm. These analyses revealed that our proposed

algorithm guarantees convergence of the mode-wise global optimal solution under

some conditions. To analyze the computational efficacy, we calculate the computa-

tional cost of our proposed algorithm and compare it with the computational cost

of MPCA.

The rest of the paper is organized as follows. In Section 2, we present the proper-

ties and the basic calculations of tensors. Next, we briefly review related researches

in Section 3. In Section 4, we formulate the MCCA model by constructing the covari-

ance matrices of tensor data, based on a Kronecker product representation. Then, we

formulate the estimation algorithm for MCCA in Section 5. In Section 6, we present

the theoretical properties for our proposed algorithm and analyze the computational

cost. The efficacy of the MCCA is demonstrated through the results of numerical

experiments in Section 7. Concluding remarks are presented in Section 8. Our imple-

mentation of MCCA is available at https://github.com/yoshikawa-kohei/MCCA.
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2 Preliminaries for Tensors

Interest in tensor data analysis has been increasing in recent years because the

analysis enables us to understand higher-order inherent relationships. In this section,

we introduce notations of tensors and basic methods of calculation in tensor data

analysis.

2.1 Tensors

The tensor is a multidimensional array. Mathematically, an M -th order tensor

is defined by the element of a space which consists of the tensor product of M

vector spaces. The order represents the dimensions of the tensor, also known as a

mode. In particular, the 0-th, 1st, and 2nd order tensors are called scalars, vectors,

and matrices, respectively. Thus, the tensor is often taken as an extension of these

concepts. An example of real tensor data includes color images as 3rd order tensor

data. The color images are composed of width, height, and color, and thus their

order is three. Another example is electroencephalogram data consisting of x-axis,

y-axis, z-axis, and time-axis as 4-th order tensor data.

Let X be an M -th order tensor with dimensions P1, P2, . . . , PM corresponding to

each order . Then, the element of the tensor X at the coordinate (p1, p2, . . . , pM) is

represented as xp1p2...pM
. For example, when M = 3, X becomes a 3rd order tensor

with the dimensions P1, P2, and P3, denoting the element of the tensor xp1p2p3 , as

shown in Figure 1.
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P1

P2

P3

(p1, p2, p3)xp1p2p3

Figure 1: A 3rd order tensor

The concepts of rows and columns for matrices can be extended by considering

a tensor subarray. The subarray is a tensor with a fixed subset of indices. When

the index i corresponding to 1st mode of X ∈ RP1×P2 is fixed, we obtain Xi: =

[xi1, xi2, . . . , xiP2 ]⊤ as the subarray of X . In such case, Xi: represents the i-th row

vector of X . Analogously, when we fix the index j corresponding to 2nd mode of

X , we can obtain the j-th column vector of X as X:j.

Now, for the 3rd order tensor X ∈ RP1×P2×P3 , we consider X:jk, Xi:k, and Xij:,

denoting the subarrays of the tensor X with fixed all indices but one, respectively.

These subarrays can be shown in Figure 2 and are called mode-i fibers. In particular,

the mode-1 and mode-2 fibers correspond to the extension of column vectors and

row vectors, respectively.

Similarly, Xi::，X:j:, X::k denote the subarrays of the tensor X with fixed all indices

but two. These subarrays are illustrated as in Figure 3, and these are called slices.
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(a) Mode-1 fibers : X:jk (b) Mode-2 fibers : Xi:k (c) Mode-3 fibers : Xij:

Figure 2: Fibers of a 3rd order tensor (Kolda and Bader, 2009)

(a) Horizontal slices : Xi:: (b) Lateral slices : X:j: (c) Frontal slices : X::k

Figure 3: Slices of a 3rd order tensor (Kolda and Bader, 2009)

2.2 Inner Product and Norm

For two same size M -th order tensors X ,Y ∈ RP1×P2×···×PM , the inner product is

defined by

⟨X ,Y⟩ =
P1∑

p1=1

P2∑
p2=1
· · ·

PM∑
pM =1

xp1p2...pM
yp1p2...pM

.

Similarly, a norm of tensor is the square root of the sum of the squares of all elements.

For the M -th order tensor X ∈ RP1×P2×···×PM , the norm can be calculated as

∥X∥ =

√√√√√ P1∑
p1=1

P2∑
p2=1
· · ·

PM∑
pM =1

x2
p1p2...pM

.
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By using the notation of inner product, we have ⟨X ,X⟩ = ∥X∥2.

2.3 Unfolding Tensors

Unfolding is an operation of rearranging the elements of a tensor into a matrix

or a vector. In particular, the transformation to matrices and vectors are known as

matricization and vectorization, respectively. The mode-k unfolding from an M -th

order tensor X ∈ RP1×P2×···×PM to a matrix X(k) ∈ RPk×(
∏

j ̸=k
Pj) means mapping the

element of tensor xp1p2...pM
to the element of matrix at the coordinate (pk, l), where

l = 1 +
M∑

t=1,
t̸=k

(pt − 1)Lt with Lt =
t−1∏

m=1,
m̸=k

Pm.

In the example of Kolda and Bader (2009), let the frontal slices of X ∈ R3×4×2 be

X::1 =


1 4 7 10

2 5 8 11

3 6 9 12

, X::2 =


13 16 19 22

14 17 20 23

15 18 21 24

.
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Then, the mode-k unfolded matrices for k = 1, 2, 3 are

X(1) =


1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

,

X(2) =



1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24


,

X(3) =

 1 2 3 4 5 · · · 9 10 11 12

13 14 15 16 17 · · · 21 22 23 24

.

In particular, the unfolding a tensor into a vector is represented as vec(·). In the

above example, the unfolding is performed as follows:

vec(X ) =



1

2
...

24


.

2.4 Tensor Multiplication

For an M -th order tensor X ∈ RP1×P2×···×PM and a matrix A ∈ RQ×Pk , the k-

th mode product is the multiplication of the tensor and the matrix with respect

to k-th mode. The k-th mode product is represented as X ×k A and its size is

P1 × P2 × · · · × Q × Pk+1 × · · · × PM . The element of the tensor (X ×k A) can be
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calculated as follows:

(X ×k A)p1p2...qpk+1...pM
=

Pk∑
pk=1

xp1p2...pM
aqpk

.

Let A(k) ∈ RQk×Pk be a matrix for all k ∈ {1, 2, . . . , M}. Then, the multiplications

of the tensor X and matrices A(k) for k = 1, 2, . . . , M can be represented as

Y = X ×1 A(1) ×2 A(2) · · · ×M A(M).

Moreover, we obtain the following lemma.

Lemma 1. Let X ∈ RP1×P2×···×PM and A(k) ∈ RQk×Pk be an M-th order tensor and

matrices for k = 1, 2, . . . , M , respectively. For any k, we have

Y = X ×1 A(1) ×2 A(2) · · · ×M A(M) ⇐⇒

Y(k) = A(k)X(k)
(
A(M) ⊗ · · · ⊗A(k+1) ⊗A(k−1) ⊗ · · · ⊗A(1)

)⊤
,

where ⊗ denotes the Kronecker product operator.

This lemma reveals the relationships between the tensor multiplications and the

unfolding. Hence, this lemma helps us to reduce the calculations on tensor spaces

to matrix algebra. For the proof of this lemma, see Kolda (2006).
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3 Statistical Dimensionality Reduction Method-

ologies

In this section, we introduce the mathematical formulations of PCA, MPCA, and

CCA and estimation methods for the models.

3.1 Principal Component Analysis

PCA is a well-known traditional statistical methodology for the dimensionality

reduction in multivariate analysis. The main purpose of PCA is to reduce the

dimensions of the dataset while losing as little information of the dataset. For

preserving most of the information, PCA reconstructs the dataset with a few new

variables which are linear combinations of original variables so that the new variables

maximize the variance of the dataset. In this section, we introduce the mathematical

formulation of PCA.

Let X = [x1, . . . , xN ]⊤ be an N×P data matrix, which consists of N independent

observations of the P -dimensional vector xi.

The procedure of PCA consists of two step. First, we project the original variables

from P -dimensional space to R-dimensional space as follows:

y = W⊤x,

where W = [w1, . . . , wR] is a P ×R orthogonal projection matrix, in which R ≤ P .

By projecting the original variables x to y, we obtain projected data matrix Y =

[y1, . . . , yN ]⊤, where yi = W⊤xi for i = 1, . . . , N . Second, we identify the projection

matrix W which maximizes the variance of projected data matrix Y. The sample
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covariance matrix for projected data Y can be calculated as follows:

Λ = 1
n

N∑
i=1

(yi − ȳ)(yi − ȳ)⊤,

where ȳ = 1
n

∑N
i=1 yi is an R-dimensional mean vector. By using the formulation

yi = W⊤xi for i = 1, . . . , N , we have

Λ = W⊤SW,

where S is the sample covariance matrix for the data matrix X calculated as S =
1
N

∑N
i=1 (xi − x̄)(xi − x̄)⊤ in which x̄ = 1

N

∑N
i=1 xi is a P -dimensional mean vector.

Thus, we can obtain the following maximization problem:

max
W

tr
(
W⊤SW

)
, s.t. W⊤W = IR,

where tr(·) denotes the trace of a matrix and IR is an identity matrix of the size

R × R. By solving this maximization problem, we can identify the projection ma-

trix W which maximizes the variance of projected data matrix Y. The maximizer

consists of the R eigenvectors, corresponding to the R largest eigenvalues, obtained

by eigenvalue decomposition of S.

3.2 Multilinear Principal Component Analysis

In this paper, we introduce MPCA (Lu et al., 2008), which has been proposed

as the extension of PCA for tensor data. The purpose of MPCA is also to find the

projection matrices for the dimensionality reduction.

Let
{
Xi ∈ RP1×P2×···×PM , i = 1, 2, . . . , N

}
be an independently obtained M -th or-
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der tensor dataset. Then, we obtain the following projected tensors:

Yi = Xi ×1 W(1) ×2 W(2) · · · ×M W(M), i = 1, 2, . . . , N,

where W(k) ∈ RRk×Pk for all k ∈ {1, 2, . . . , M} are the orthogonal projection ma-

trices. MPCA captures the information of the tensor dataset by the variance like

as PCA. In tensor data analysis, the sample covariance matrix is defined by unfold-

ing the tensors. Let Y(k)
i ∈ RRk×(

∏
j ̸=k

Rj) be the k-th mode unfolded matrix of Yi.

Then, the sample covariance matrix for k-th mode is defined by

Λ(k) = 1
N

N∑
i=1

(
Y(k)

i − Ȳ(k)
)(

Y(k)
i − Ȳ(k)

)⊤
, (3.1)

where Ȳ(k) is the k-th mode unfolded matrix of the mean tensor Ȳ calculated as

Ȳ = 1
N

∑N
i=1 Yi. By applying Lemma 1 to the equation (3.1), we have

Λ(k) = W(k)
{

1
N

N∑
i=1

(
X(k)

i − X̄(k)
)
W(−k)⊤W(−k)

(
X(k)

i − X̄(k)
)⊤

}
W(k)⊤

,

where X(k)
i ∈ RPk×(

∏
j ̸=k

Pj) and X̄(k) are the k-th mode unfolded matrix of Xi and

the mean tensor X̄ calculated as X̄ = 1
N

∑N
i=1Xi, respectively. W(−k) is represented

as the Kronecker product of the projection matrices but W(k):

W(−k) = W(M) ⊗ · · · ⊗W(k+1) ⊗W(k−1) ⊗ · · · ⊗W(1).

To find the projection matrices which maximize the variance, we consider the

following maximization problem.

max
W(k)

tr
[
W(k)

{
1
N

N∑
i=1

(
X(k)

i − X̄(k)
)
W(−k)⊤W(−k)

(
X(k)

i − X̄(k)
)⊤

}
W(k)⊤

]

s.t. W(k)⊤W(k) = IRk
, k = 1, 2, . . . , M, (3.2)
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where IRk
is an identity matrix of the size Rk ×Rk. The estimator W(k) can be ob-

tained by solving this maximization problem for k = 1, 2, . . . , M . However, since the

estimator W(k) depends on the other estimators W(1), . . . , W(k−1), W(k+1), . . . , W(M),

we cannot explicitly solve the maximization problem. Thus, MPCA obtains the es-

timates by iteratively solving the maximization problem for k = 1, 2, . . . , M .

3.3 Common Component Analysis

In this subsection, we briefly review the CCA, which is proposed as an extension

of the PCA.

Suppose that we obtain data matrices X(g) = [x(g)1, . . . x(g)Ng ]⊤ ∈ RNg×P with

Ng observations and P variables for g = 1, . . . G, where x(g)i is the P -dimensional

vector corresponding to the i-th row of X(g) and G is the number of datasets. Then,

the sample covariance matrix in group g is

S(g) = 1
Ng

Ng∑
i=1

(
x(g)i − x̄(g)

)(
x(g)i − x̄(g)

)⊤
, g = 1, . . . , G,

where S(g) ∈ SP
+, in which SP

+ is a set of symmetric positive definite matrices of the

size P × P , and x̄(g) = 1
Ng

∑Ng

i=1 x(g)i is a P -dimensional mean vector in group g.

The main idea of the CCA model is to find the common structure of multiple

datasets by projecting the data onto a common lower-dimensional space with the

same basis as the datasets. Wang et al. (2011) assumed that the covariance matrices

S(g) for g = 1, . . . , G can be decomposed to a product of latent covariance matrices

and an orthogonal matrix for the linear transformation as follows:

S(g) = VΛ(g)V⊤ + E(g), s.t. V⊤V = IR, (3.3)

where Λ(g) ∈ SR
+ is the latent covariance matrix in group g, V ∈ RP ×R is an
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orthogonal matrix for the linear transformation, and E(g) ∈ SP
+ is the error matrix

in group g. E(g) consists of the sum of outer products for independent random

vectors ∑Ng

i=1 e(g)ie⊤
(g)i with mean E

[
e(g)i

]
= 0 and covariance matrix Cov

[
e(g)i

]
(>

O) (i = 1, 2, . . . , Ng). V determines the R-dimensional common subspace of the

multiple datasets. In particular, by assuming R < P , the CCA can discover the

latent structures of the datasets. Wang et al. (2011) referred to the model (3.3) as

common component analysis (CCA).

The parameters V and Λ(g) (g = 1, . . . , G) are estimated by solving the mini-

mization problem

min
V,Λ(g)

g=1,...,G

G∑
g=1

∥∥∥S(g) −VΛ(g)V⊤
∥∥∥2

F
, s.t. V⊤V = IR, (3.4)

where ∥·∥F denotes the Frobenius norm. The estimator of latent covariance matrices

Λ(g) for g = 1, . . . , G can be obtained by solving the minimization problem as

Λ̂(g) = V⊤S(g)V. By using the estimated value Λ̂(g), the minimization problem can

be reformulated as the following maximization problem:

max
V

tr

V⊤
G∑

g=1

(
S(g)VV⊤S(g)

)
V

, s.t. V⊤V = IR, (3.5)

A crucial issue for solving the maximization problem (3.5) is the non-convexity.

Certainly, the maximization problem is non-convex since the problem is defined on

a set of orthogonal matrices, which is a non-convex set. Generally speaking, it is

difficult to find the global optimal solution in non-convex optimization problems,

such as the problem (3.5). To overcome this drawback, Wang et al. (2011) pro-

posed an estimation algorithm in which the estimated parameters are guaranteed to

constitute the global optimal solution under some conditions.
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4 Multilinear Common Component Analysis

In this section, we introduce a mathematical formulation of the MCCA, which is

an extension of the CCA in terms of tensor data analysis. Moreover, we formulate

an optimization problem of MCCA and investigate its convergence properties.

Suppose that we independently obtain M -th order tensor data X(g)i ∈ RP1×P2×···×PM

for i = 1, . . . Ng. We set the datasets of the tensors X(g) = [X(g)1,X(g)2, . . . ,X(g)Ng ] ∈

RP1×P2×···×PM ×Ng for g = 1, . . . , G, where G is the number of datasets. Then, the

sample covariance matrix in group g for the tensor dataset is defined by

S∗
(g) := S(1)

(g) ⊗ S(2)
(g) ⊗ · · · ⊗ S(M)

(g) , (4.1)

where S∗
(g) ∈ SP

+, in which P = ∏M
k=1 Pk, and S(k)

(g) ∈ SPk
+ is the sample covariance

matrix for k-th mode in group g defined by

S(k)
(g) := 1

Ng
∏

j ̸=k Pj

Ng∑
i=1

(
X(k)

(g)i − X̄(k)
(g)

)(
X(k)

(g)i − X̄(k)
(g)

)⊤
. (4.2)

Here, X(k)
(g)i ∈ RPk×(

∏
j ̸=k

Pj) is the k-th mode unfolded matrix of X(g)i and X̄(k)
(g) ∈

RPk×(
∏

j ̸=k
Pj) is the k-th mode unfolded matrix of X̄(g) = 1

Ng

∑Ng

i=1X(g)i. A represen-

tation of the tensor covariance matrix by Kronecker products is often used (Kermoal

et al., 2002; Yu et al., 2004; Werner et al., 2008).

To formulate CCA in terms of tensor data analysis, we consider CCA for the k-th

mode covariance matrix in group g as follows:

S(k)
(g) = V(k)Λ(k)

(g)V
(k)⊤ + E(k)

(g), s.t. V(k)⊤V(k) = IRk
, (4.3)

where Λ(k)
(g) ∈ SRk

+ is the latent k-th mode covariance matrix in group g, V(k) ∈

RPk×Rk is an orthogonal matrix for the linear transformation, and E(k)
(g) ∈ SPk

+ is the

error matrix in group g. E(k)
(g) consists of the sum of outer products for indepen-
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dent random vectors ∑Ng

i=1 e(k)
(g)ie

(k)
(g)i

⊤
with mean E

[
e(k)

(g)i

]
= 0 and covariance matrix

Cov
[
e(k)

(g)i

]
(> O) (i = 1, 2, . . . , Ng). Since S∗

(g) can be decomposed to a Kronecker

product of S(k)
(g) for k = 1, . . . , M in the formula (4.1), we obtain the following model:

S∗
(g) = V∗Λ∗

(g)V∗⊤ + E∗
(g), s.t. V∗⊤V∗ = IR, (4.4)

where R = ∏M
k=1 Rk, V∗ = V(1)⊗V(2)⊗· · ·⊗V(M), Λ∗

(g) = Λ(1)
(g)⊗Λ(2)

(g)⊗· · ·⊗Λ(M)
(g) ,

and E∗
(g) is the error matrix in group g. We refer to this model as multilinear common

component analysis (MCCA).

To find the R-dimensional common subspace between the multiple tensor datasets,

MCCA determines V(1), V(2), . . . , V(M). As with CCA, we obtain the estimate of

Λ∗
(g) for g = 1, . . . , G as Λ̂∗

(g) = V∗⊤S∗
(g)V∗. With respect to V∗, we can obtain the

estimate by solving the following maximization problem, which is similar to (3.5):

max
V∗

tr

V∗⊤
G∑

g=1

(
S∗

(g)V∗V∗⊤S∗
(g)

)
V∗

, s.t. V∗⊤V∗ = IR. (4.5)

However, the number of parameters will be very large when we try to solve this

problem directly. This large number of parameters result in a highly computational

cost. Moreover, it may not be possible to discover the inherent relationships between

the variables in each mode simply by solving the problem (4.5).

To solve the maximization problem efficiently and identify the inherent relation-

ships, the maximization problem (4.5) can be decomposed into the mode-wise max-

imization problems represented in the following lemma.

Lemma 2. An estimate of the parameters V(k) for k = 1, 2, . . . , M in the maximiza-

tion problem (4.5) can be obtained by solving the following maximization problem for
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each mode:

max
V(k)

k=1,2,...,M

G∑
g=1

M∏
k=1

tr
{

V(k)⊤S(k)
(g)V

(k)V(k)⊤S(k)
(g)V

(k)
}

, s.t. V(k)⊤V(k) = IRk
. (4.6)

We provide two lemmas about Kronecker products before we prove Lemma 2.

Lemma 3. For matrices A, B, C, and D such that matrix products AC and BD

can be calculated,

(A⊗B)(C⊗D) = AC⊗BD.

Lemma 4. For square matrices A and B,

tr(A⊗B) = tr(A) tr(B).

These lemmas are known as the mixed-product property and the spectrum prop-

erty, respectively; see Harville (1998) for detailed proofs. Here, we prove Lemma 2

by using the properties of Kronecker products.

Proof of Lemma 2 :

For the maximization problem (4.5), move the summation over index g out of the

tr(·) and replace S∗
(g) and V∗ with S(1)

(g)⊗S(2)
(g)⊗· · ·⊗S(M)

(g) and V(1)⊗V(2)⊗· · ·⊗V(M),

respectively. Then

max
V(k)

k=1,2,...,M

G∑
g=1

tr
{(

V(1) ⊗ · · · ⊗V(M)
)⊤(

S(1)
(g) ⊗ · · · ⊗ S(M)

(g)

)(
V(1) ⊗ · · · ⊗V(M)

)
(
V(1) ⊗ · · · ⊗V(M)

)⊤(
S(1)

(g) ⊗ · · · ⊗ S(M)
(g)

)(
V(1) ⊗ · · · ⊗V(M)

)}
,

s.t. V(k)⊤V(k) = IRk
.

20



By Lemmas 3 and 4, we have

max
V(k)⊤V(k)=IRk

k=1,2,...,M

G∑
g=1

tr
{(

V(1)⊤S(1)
(g)V

(1)V(1)⊤S(1)
(g)V

(1)
)
· · ·

(
V(M)⊤S(M)

(g) V(M)V(M)⊤S(M)
(g) V(M)

)}

= max
V(k)⊤V(k)=IRk

k=1,2,...,M

G∑
g=1

M∏
k=1

tr
{

V(k)⊤S(k)
(g)V

(k)V(k)⊤S(k)
(g)V

(k)
}

.

This leads to the maximization problem in Lemma 2. □

However, we cannot simultaneously solve this maximization problem (4.6) for

V(k), k = 1, 2, . . . , M . Thus, by summarizing the terms unrelated to V(k) in the

maximization problem (4.6), we can obtain the maximization problem for k-th mode:

max
V(k)

fk(V(k)) = max
V(k)

tr
{

V(k)⊤M(V(k))V(k)
}

, s.t. V(k)⊤V(k) = IRk
, (4.7)

where M(V(k)) = ∑G
g=1 w

(−k)
(g) S(k)

(g)V(k)V(k)⊤S(k)
(g), in which w

(−k)
(g) is given by

w
(−k)
(g) =

∏
j ̸=k

tr
{

V(j)⊤S(j)
(g)V

(j)V(j)⊤S(j)
(g)V

(j)
}

.

Although an estimate of V(k) can be obtained by solving the maximization problem

(4.7), this problem is non-convex, since V(k) is assumed to be an orthogonal matrix.

Thus, the maximization problem has several local maxima. However, by choosing

the initial values of parameters in the estimation near the global optimal solution,

we can obtain the global optimal solution. In Section 5, we develop not only an

estimation algorithm but also an initialization method for choosing the initial values

of the parameters near the global optimal solution. The initialization method helps

guarantee the convergence of our algorithm to the mode-wise global optimal solution.
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5 Estimation

Our estimation algorithm consists of two steps: initializing the parameters and

iteratively updating the parameters. The initialization step gives us the initial val-

ues of the parameters near the global optimal solution for each mode. Next, by

iteratively updating the parameters, we can monotonically increase the value of the

objective function (4.7) until convergence.

5.1 Initialization

The first step is to initialize the parameters V(k) for each mode. We define

an objective function f ′
k(V(k)) = tr

{
V(k)⊤M

(
I(k)

)
V(k)

}
for k = 1, . . . , M , where

M
(
I(k)

)
= ∑G

g=1 w
(−k)
(g) S(k)

(g)S
(k)
(g). Next, we adopt a maximizer of f ′

k(V(k)) as initial

values of the parameters V(k). To obtain the maximizer, we need an initial value of

w(k) =
[
w

(−k)
(1) , w

(−k)
(2) , . . . , w

(−k)
(G)

]⊤
. The initial value for w(k) is obtained by solving

the quadratic programming problem

min
w(k)

w(k)⊤
λ

(k)
0 λ

(k)
0

⊤
w(k), s.t. w(k) > 0, w(k)⊤

λ
(k)
1 λ

(k)
1

⊤
w(k) = 1, (5.1)

where

λ
(k)
0 =

 Pk∑
i=Rk+1

λ
(k)
(1)i,

Pk∑
i=Rk+1

λ
(k)
(2)i, . . . ,

Pk∑
i=Rk+1

λ
(k)
(G)i

⊤

,

λ
(k)
1 =

 Pk∑
i=1

λ
(k)
(1)i,

Pk∑
i=1

λ
(k)
(2)i, . . . ,

Pk∑
i=1

λ
(k)
(G)i

⊤

, (5.2)

in which λ
(j)
(g)i is the i-th largest eigenvalue of S(j)

(g)S
(j)
(g).

Using the initial value of w(k), we can obtain the initial value of the parameter V(k)
0

by maximizing f ′
k(V(k)) for each mode. The maximizer consists of Rk eigenvectors,

corresponding to the Rk largest eigenvalues, obtained by eigenvalue decomposition
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of M
(
I(k)

)
. The theoretical justification for this initialization will be discussed in

Section 6.

5.2 Iterative Update of Parameters

The second step is to update parameters V(k) for each mode. We update param-

eters such that the objective function fk(V(k)) is maximized. Let V(k)
s be the value

of V(k) at step s. Then, we solve the surrogate maximization problem

max
V(k)

s+1

tr
{

V(k)
s+1

⊤
M(V(k)

s )V(k)
s+1

}
, s.t. V(k)

s+1
⊤

V(k)
s+1 = IRk

. (5.3)

The solution of (5.3) consists of Rk eigenvectors, corresponding to the Rk largest

eigenvalues, obtained by eigenvalue decomposition of M(V(k)
s ). By iteratively up-

dating the parameters, the objective function fk(V(k)) is monotonically increased,

which allows it to be maximized. The monotonically increasing property will be

discussed in Section 6.

Our estimation procedure comprises the above estimation steps. The procedure

is summarized as Algorithm 1.
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Algorithm 1 Iteratively updating algorithm via eigenvalue decomposition

Input: M -th order tensor dataset
{
X(g) ∈ RP1×P2×···×PM ×Ng , g = 1, 2, . . . , G

}
.

1: Calculate covariance matrix for tensors: S∗
(g) via (4.1) and (4.2).

2: Step 1 Initialization:

3: w(k) ← the solution of quadratic programming problem (5.1), k = 1, 2, . . . , M .

4: V(k)
0 ← Rk eigenvectors obtained by the eigenvalue decomposition of M

(
I(k)

)
,

k = 1, 2, . . . , M .

5: Λ(k)
(g) ← V(k)⊤S(k)

(g)V(k), k = 1, 2, . . . , M ; g = 1, 2, . . . , G.

6: Step 2 Updating parameters:

7: for s = 1, 2, . . . do

8: Update V(k): V(k)
s+1 ← Rk eigenvectors obtained by eigenvalue decomposi-

tion of M
(
V(k)

s

)
, k = 1, 2, . . . , M .

9: Update Λ(k)
(g): Λ(k)

(g) ← V(k)
s+1

⊤
S(k)

(g)V
(k)
s+1, k = 1, 2, . . . , M ; g = 1, 2, . . . , G.

10: return V(k) ∈ RPk×Rk , Λ(k)
(g) ∈ SRk

+ , k = 1, 2, . . . , M ; g = 1, 2, . . . , G.
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6 Theory

This section presents the theoretical and computational analyses for Algorithm 1.

Theoretical analyses consist of two steps. First, we prove that the initial values of

parameters obtained in Section 5.1 are relatively close to the global optimal solution.

If the initial values are close to the global maximum, then we can obtain the global

optimal solution even if the maximization problem is non-convex. Second, we prove

that the iterative updates of the parameters in Section 5.2 monotonically increase

the value of objective function (4.7) by solving the surrogate problem (5.3). From

the monotonically increasing property, the estimated parameters always converge at

a stationary point. The combination of these two results enables us to obtain the

mode-wise global optimal solution. In the computational analysis, we calculate com-

putational cost for MCCA and then compare the cost with conventional methods.

By comparing the costs, we investigate the computational efficacy of MCCA.

6.1 Analysis of Upper and Lower Bounds

The aim of this subsection is to provide the upper and lower bounds of the maxi-

mization problem (4.7). From the bounds, we find that the initial values in Section

5.1 are relatively close to the global optimal solution. As shown in the following

lemma, the objective function for initialization f ′
k(V(k)) gives the upper and lower

bounds for fk(V(k)).

Lemma 5. Consider the maximization problem

max
V(k)

f ′
k(V(k)) = max

V(k)
tr

V(k)⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)S
(k)
(g)

V(k)

.
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Let M (k) = tr
{∑G

g=1 w
(−k)
(g) S(k)

(g)S
(k)
(g)

}
. Then

f ′
k(V(k))2

M (k) ≤ fk(V(k)) ≤ f ′
k(V(k)).

Proof of Lemma 5 :

First, we prove fk(V(k)) ≤ f ′
k(V(k)). For any orthogonal matrix V(k) ∈ RPk×Rk , we

can always find an orthogonal matrix V(k)
⊥ ∈ RPk×(Pk−Rk) that satisfies V(k)⊤V(k)

⊥ =

O. Then the equation V(k)V(k)⊤ + V(k)
⊥ V(k)

⊥
⊤

= IPk
holds. By definition,

fk(V(k)) = tr

V(k)⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)V
(k)V(k)⊤S(k)

(g)

V(k)


≤ tr

V(k)⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)

(
V(k)V(k)⊤ + V(k)

⊥ V(k)
⊥

⊤
)

S(k)
(g)

V(k)


= tr

V(k)⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)S
(k)
(g)

V(k)


= f ′

k(V(k)).

Thus, we have obtained fk(V(k)) ≤ f ′
k(V(k)).

Next, we prove f ′
k(V(k))2

M(k) ≤ fk(V(k)). We define the following block matrices:

A =
[√

w
(−k)
(1) S(k)

(1)

1
2 V(k)V(k)⊤S(k)

(1)

1
2 , . . . ,

√
w

(−k)
(G) S(k)

(G)

1
2 V(k)V(k)⊤S(k)

(G)

1
2

]
,

B =
[√

w
(−k)
(1) S(k)

(1), . . . ,

√
w

(−k)
(G) S(k)

(G)

]

Note that since S(k)
(g) is a symmetric positive definite matrix, S(k)

(g) can be decomposed
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to S(k)
(g)

1
2 S(k)

(g)

1
2 . We calculate the traces of AA, AB, and BB, respectively:

tr (AA) =
G∑

g=1
w

(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)V(k)⊤S(k)

(g)

1
2 S(k)

(g)

1
2 V(k)V(k)⊤S(k)

(g)

1
2
)

=
G∑

g=1
w

(−k)
(g) tr

{
V(k)⊤S(k)

(g)V
(k)V(k)⊤S(k)

(g)V
(k)

}

= tr

V(k)⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)V
(k)V(k)⊤S(k)

(g)

V(k)


= fk(V(k)),

tr (AB) =
G∑

g=1
w

(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)V(k)⊤S(k)

(g)

1
2 S(k)

(g)

)

=
G∑

g=1
w

(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)V(k)⊤S(k)

(g)

1
2 S(k)

(g)

1
2 S(k)

(g)

1
2
)

=
G∑

g=1
w

(−k)
(g) tr

{
V(k)⊤S(k)

(g)S
(k)
(g)V

(k)
}

= tr

V(k)⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)S
(k)
(g)

V(k)


= f ′

k(V(k)),

tr (BB) = tr

 G∑
g=1

w
(−k)
(g) S(k)

(g)S
(k)
(g)

 = M (k).

From the Cauchy–Schwarz inequality, we have

fk(V(k))M (k) = tr (AA) tr (BB) ≥ {tr (AB)}2 = f ′
k(V(k))2.

By dividing both sides of the inequality by M (k), we obtain f ′
k(V(k))2

M(k) ≤ fk(V(k)).

This completes the proof. □

By using Lemma 5, we can obtain the bounds for the global maximum in the

problem (4.7). Before providing the bounds, we define a contraction ratio.
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Definition 1. Let f ′ max
k be the global maximum of f ′

k(V(k)) and M (k) = tr
{
M

(
I(k)

)}
.

Then a contraction ratio of data for k-th mode is defined by

α(k) = f ′ max
k

M (k) =
tr

{
V(k)

0
⊤

M
(
I(k)

)
V(k)

0

}
tr {M (I(k))}

. (6.1)

Note that a contraction ratio α(k) satisfies 0 ≤ α(k) ≤ 1 and α(k) = 1 if and only

if Rk = Pk.

Using f ′ max
k and the contraction ratio α(k), we have the following theorem that

reveals the upper and lower bounds of the global maximum in the problem (4.7).

Theorem 1. Let fmax
k be the global maximum of fk(V(k)). Then

α(k)f ′ max
k ≤ fmax

k ≤ f ′ max
k ,

where α(k) is the contraction ratio defined in (6.1) and f ′ max
k is the global maximum

of f ′
k(V(k)).

Proof of Theorem 1 :

Let f ′ max
k be the global maximum of f ′

k(V(k)) and V(k)
0 = arg max

V(k)
f ′

k(V(k)). From

Lemma 5 and the definition of α(k), we have

α(k)f ′ max
k = f ′

k(V(k)
0 )2

M (k) ≤ fk(V(k)
0 ).

Let fmax
k be the global maximum of fk(V(k)). It then holds that fk(V(k)

0 ) ≤ fmax
k .

Thus

α(k)f ′ max
k ≤ fmax

k .
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Let V(k)
0∗ = arg max

V(k)
fk(V(k)). From Lemma 5, we have

fmax
k = fk(V(k)

0∗ ) ≤ f ′
k(V(k)

0∗ ).

Since f ′
k(V(k)

0∗ ) ≤ f ′ max
k , we have

fmax
k ≤ f ′ max

k .

Hence, we have obtained α(k)f ′ max
k ≤ fmax

k ≤ f ′ max
k . □

This theorem indicates that f ′ max
k → fmax

k when α(k) → 1. Thus, it is important

to obtain an α(k) that is as close as possible to one. Since α(k) depends on V(k)
0 and

w(k), V(k)
0 depends on w(k). From this dependency, if we could set the initial value

of w(k) such that α(k) is as large as possible, then we could obtain an initial value

of V(k)
0 that attains a value near fmax

k . The following theorem shows that we can

compute the initial value of w(k) such that α(k) is maximized.

Theorem 2. Let λ
(k)
0 and λ

(k)
1 be the vectors consisting of eigenvalues defined

in (5.2). For w(k) =
[
w

(−k)
(1) , w

(−k)
(2) , . . . , w

(−k)
(G)

]
(k = 1, 2, . . . , M), suppose that the

estimate ŵ(k) is obtained by solving (5.1) for k = 1, 2, . . . , M . Then ŵ(k) maximizes

α(k).

Proof of Theorem 2 :

By definition, we obtain

α(k) = f ′ max
k

M (k) =
tr

{
V(k)

0
⊤(∑G

g=1 w
(−k)
(g) S(k)

(g)S
(k)
(g)

)
V(k)

0

}
tr

{∑G
g=1 w

(−k)
(g) S(k)

(g)S
(k)
(g)

} .

By using the eigenvalue representation, we can rewrite the numerator of α(k) as
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follows:

f ′ max
k =

G∑
g=1

w
(−k)
(g)

Rk∑
i=1

λ
(k)
(g)i.

On the other hand, the denominator of α(k) can be represented as the sum of eigen-

values as follows:

M (k) =
G∑

g=1
w

(−k)
(g)

Pk∑
i=1

λ
(k)
(g)i.

Thus, we can transform α(k) as follows:

α(k) =
∑G

g=1 w
(−k)
(g)

∑Rk
i=1 λ

(k)
(g)i∑G

g=1 w
(−k)
(g)

∑Pk
i=1 λ

(k)
(g)i

.

When we set

λ
(k)
0 =

 Pk∑
i=Rk+1

λ
(k)
(1)i,

Pk∑
i=Rk+1

λ
(k)
(2)i, . . . ,

Pk∑
i=Rk+1

λ
(k)
(G)i

⊤

,

λ
(k)
1 =

 Pk∑
i=1

λ
(k)
(1)i,

Pk∑
i=1

λ
(k)
(2)i, . . . ,

Pk∑
i=1

λ
(k)
(G)i

⊤

,

w(k) =
[
w

(−k)
(1) , w

(−k)
(2) , . . . , w

(−k)
(G)

]⊤
,

we can reformulate α(k) as

α(k) =

(
λ

(k)
1 − λ

(k)
0

)⊤
w(k)

λ
(k)
1

⊤
w(k)

.

Thus, we obtain the following maximization problem:

max
w(k)

(
λ

(k)
1 − λ

(k)
0

)⊤
w(k)

λ
(k)
1

⊤
w(k)

, s.t. w(k) > 0.

Note that the constraints can be obtained by the definition of w(k). In addition,
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this maximization problem can be reformulated as

max
w(k)

(
λ

(k)
1 − λ

(k)
0

)⊤
w(k)

λ
(k)
1

⊤
w(k)

= max
w(k)

1− λ
(k)
0

⊤
w(k)

λ
(k)
1

⊤
w(k)

= min
w(k)

λ
(k)
0

⊤
w(k)

λ
(k)
1

⊤
w(k)

.

Since λ
(k)
0

⊤
w(k)/λ

(k)
1

⊤
w(k) is non-negative, solving the optimization problem for

the squared function of the objective function maintains generality. Thus, we can

consider the following minimization problem:

min
w(k)

w(k)⊤
λ

(k)
0 λ

(k)
0

⊤
w(k)

w(k)⊤
λ

(k)
1 λ

(k)
1

⊤
w(k)

, s.t. w(k) > 0.

Additionally, from the invariance under multiplication of w(k) by a constant, we

obtain the following objective function of the quadratic programming problem.

min
w(k)

w(k)⊤
λ

(k)
0 λ

(k)
0

⊤
w(k), s.t. w(k) > 0, w(k)⊤

λ
(k)
1 λ

(k)
1

⊤
w(k) = 1.

The proof is complete. □

In fact, α(k) is very close to one with the initial values given in Theorem 2 even

if Rk is small. This resembles the cumulative contribution ratio in PCA.

6.2 Convergence Analysis

We next verify that our proposed procedure for iteratively updating parameters

maximizes the optimization problem (4.7). In Algorithm 1, the parameter V(k)
s+1 can

be obtained by solving the surrogate maximization problem (5.3). The following

Theorem 3 shows that we can monotonically increase the value of the function

fk(V(k)) in (4.7) by Algorithm 1.
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Theorem 3. Let V(k)
s+1 be Rk eigenvectors, corresponding to the Rk largest eigen-

values, obtained by eigenvalue decomposition of M(V(k)
s ). Then

fk(V(k)
s ) ≤ fk(V(k)

s+1).

Proof of Theorem 3 :

We define the following block matrices:

As =
[√

w
(−k)
(1) S(k)

(1)

1
2 V(k)

s V(k)
s

⊤S(k)
(1)

1
2 , . . . ,

√
w

(−k)
(G) S(k)

(G)

1
2 V(k)

s V(k)
s

⊤S(k)
(G)

1
2

]
.

Here, we calculate the traces of AsAs, AsAs+1, and As+1As+1. The calculations of

tr (AsAs) and tr (As+1As+1) are the same as that of tr (AA) by replacing V(k) with

V(k)
s and V(k) with V(k)

s+1, respectively, in Lemma 5. Thus, we obtain

tr (AsAs) = fk(V(k)
s ),

tr (AsAs+1) =
G∑

g=1
w

(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)

s V(k)
s

⊤S(k)
(g)

1
2 S(k)

(g)

1
2 V(k)

s+1V(k)
s+1

⊤
S(k)

(g)

1
2
)

=
G∑

g=1
w

(−k)
(g) tr

{
V(k)

s+1
⊤

S(k)
(g)V

(k)
s V(k)

s

⊤S(k)
(g)V

(k)
s+1

}

= tr

V(k)
s+1

⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)V
(k)
s V(k)

s

⊤S(k)
(g)

V(k)
s+1

,

tr (As+1As+1) = fk(V(k)
s+1).
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Since V(k)
s+1 = arg max

V(k)
tr

{
V(k)⊤(∑G

g=1 w
(−k)
(g) S(k)

(g)V(k)
s V(k)

s

⊤S(k)
(g)

)
V(k)

}
, we have

fk(V(k)
s ) = tr

V(k)
s

⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)V
(k)
s V(k)

s

⊤S(k)
(g)

V(k)
s


≤ tr

V(k)
s+1

⊤
 G∑

g=1
w

(−k)
(g) S(k)

(g)V
(k)
s V(k)

s

⊤S(k)
(g)

V(k)
s+1


= tr (AsAs+1).

From the positivity of both sides of the inequality, it holds that

fk(V(k)
s )2 ≤ [tr (AsAs+1)]2.

In addition, from the Cauchy–Schwarz inequality, we have

fk(V(k)
s )fk(V(k)

s+1) = tr (AsAs) tr (As+1As+1)

≥ [tr (AsAs+1)]2.

Thus,

fk(V(k)
s )fk(V(k)

s+1) ≥ [tr (AsAs+1)]2 ≥ fk(V(k)
s )2.

Thus, we have obtained fk(V(k)
s )2 ≤ fk(V(k)

s )fk(V(k)
s+1). By dividing both sides of

the inequality by fk(V(k)
s ), we obtain the relation fk(V(k)

s ) ≤ fk(V(k)
s+1). □

From Theorem 1, we obtain initial values of the parameters that are near the

global optimal solution. By combining Theorem 1 and Theorem 3, the solution

from Algorithm 1 can be characterized by the following corollary.

Corollary 1. Consider the maximization problem (4.7). Suppose that the initial

value of the parameter is obtained by V(k)
0 = arg max

V(k)
f̃k

′
(V(k)) and the parameter

V(k)
s is repeatedly updated by Algorithm 1. Then the mode-wise global maximum for
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the maximization problem (4.7) is achieved when all the contraction ratios α(k) for

k = 1, 2, . . . , M go to one.

Algorithm 1 does not guarantee the global solution, due to the fundamental prob-

lem of non-convexity, but it is enough for pragmatic purposes. We will investigate

the issue of convergence to global solution through numerical studies in Section 7.3.

6.3 Computational Analysis

First, we analyze the computational cost. To simplify the analysis, we assume

P = arg max
j

Pj for j = 1, 2, . . . , M . This implies that P is the upper bound of Rj

for all j. We then calculate the upper bound of the computational complexity.

The expensive computations of the each iteration in Algorithm 1 consist of three

parts: the formulation of M(V(k)
s ), the eigenvalue decomposition of M(V(k)

s ), and

updating latent covariance matrices Λ(k)
g . These steps are O(GM2P 3), O(P 3), and

O(GMP 3), respectively. The total computational complexity per iteration is then

O(GM2P 3). This indicates that the MCCA algorithm is not limited by the sample

size. In contrast, the MPCA algorithm is affecred by the sample size (Lu et al.,

2008).

Next, we analyze the memory requirement of Algorithm 1. MCCA represents

the original tensor data with fewer parameters by projecting the data onto a lower-

dimensional space. This requires the Pk × Rk projection matrices V(k) for k =

1, 2, . . . , M . MCCA projects the data a the size of N
(∏M

k=1 Pk

)
to N

(∏M
k=1 Rk

)
,

where N = ∑G
g=1 Ng. Thus, the required size for the parameters is ∑M

k=1 PkRk +

N
(∏M

k=1 Rk

)
. MPCA requires the same amount of memory as MCCA. Meanwhile,

CCA and PCA need a projection matrix, which is size R
(∏M

k=1 Pk

)
. The required

size for the parameters is then R
(∏M

k=1 Pk

)
+ NR. It should be noted that MCCA

and MPCA require a large amount of memory when the number of modes in a
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dataset is large, but their memory requirements are much smaller than those of

CCA and PCA.
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7 Experiment

To demonstrate the efficacy of MCCA, we applied MCCA, PCA, CCA, and

MPCA to image compression tasks.

7.1 Experimental Setting

For the experiments, we prepared the following three image datasets:

MNIST dataset consists of data of hand written digits 0, 1, . . . , 9 at image sizes

of 28×28 pixels. The dataset includes a training dataset of 60,000 images and

a test dataset of 10,000 images. We used the first 10 training images of the

dataset for each group. The MNIST dataset (Lecun et al., 1998) is available

at http://yann.lecun.com/exdb/mnist/.

AT&T (ORL) face dataset contains gray-scale facial images of 40 people. The

dataset has 10 images sized 92× 112 pixels for each person. We used images

resized by a factor of 0.5 in order to improve the efficiency of the experi-

ment. The AT&T face dataset is available at https://git-disl.github.

io/GTDLBench/datasets/att_face_dataset/.

Cropped AR database has color facial images of 100 people. These images are

cropped around the face. The size of images is 120 × 165 × 3 pixels. The

dataset contains 26 images in each group, 12 of which are images of people

wearing sunglasses or scarves. We used the cropped facial images of 50 males

which were not wearing sunglasses or scarves. Due to memory limitations,

we resized these images by a factor of 0.25. The AR database (Martinez and

Benavente., 1998; Martinez and Kak, 2001) is available at http://www2.ece.

ohio-state.edu/~aleix/ARdatabase.html.
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The dataset characteristics are summarized in Table 1.

Table 1: Summary of the datasets.

Dataset Group size
Sample size

(/group) Number of dimensions Number of groups

MNIST Small 10 28× 28 = 784 10

AT&T(ORL)

Small

10 46× 56 = 2576

10

Medium 20

Large 40

Cropped AR

Small

14 30× 41× 3 = 7380

10

Medium 25

Large 50

To compress these images, we performed dimensionality reductions by MCCA,

PCA, CCA, and MPCA, as follows. We vectorized the tensor dataset before per-

forming PCA and CCA. In MCCA, the images were compressed and reconstructed

according to the following steps.

1. Prepare the multiple image datasets X(g) ∈ RP1×P2×···×PM ×Ng for g = 1, 2, . . . , G.

2. Compute the covariance matrix of X(g) for g = 1, 2, . . . , G.

3. From these covariance matrices, compute the linear transformation matrices

V(k) ∈ RPk×Rk for k = 1, 2, . . . , M for mapping to the (R1, R2, . . . , RM)-

dimensional latent space.

4. Map the i-th sample X(g)i to X(g)i×1V(1)⊤×2V(2)⊤ · · ·×MV(M)⊤ ∈ RR1×R2×···×RM .

5. Reconstruct i-th sample X̃(g)i = X(g)i×1V(1)⊤V(1)×2V(2)⊤V(2) · · ·×MV(M)⊤V(M).

Meanwhile, PCA and MPCA each require a single dataset. Thus, we aggregated the

datasets as X = [X(1),X(2), . . . ,X(G)] ∈ RP1×P2×···×PM ×
∑G

g=1 Ng and performed PCA

and MPCA for the dataset X .
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7.2 Performance Assessment

For MCCA and MPCA, the reduced dimensions R1 and R2 were chosen as the

same number, and then we fixed R3 as two. All computations were performed

by the software R (ver. 3.6) (R Core Team, 2019). In the initialization of MCCA,

solving the quadratic programming problem was carried out using the function ipop

in the package kernlab. MPCA was implemented as the function mpca in the

package rTensor. The implementations of MCCA, PCA, and CCA are available at

https://github.com/yoshikawa-kohei/MCCA.

To assess their performances, we calculated the reconstruction error rate (RER)

under the same compression ratio (CR). RER is defined by

RER =

∥∥∥X − X̃ ∥∥∥2

∥X∥2 , (7.1)

where X̃ = [X̃(1), X̃(2), . . . , X̃(G)] is the aggregated dataset of reconstructed tensors

X̃(g) = [X̃(g)1, X̃(g)2, . . . , X̃(g)Ng ] for g = 1, 2, . . . , G. In addition, we defined CR as

CR = # {The number of required parameters}
N ·∏M

k=1 Pk

. (7.2)

The number of parameters required for MCCA and MPCA is ∑M
k=1 PkRk+N

(∏M
k=1 Rk

)
,

whereas that for CCA and PCA is R
(∏M

k=1 Pk

)
+ NR.

Figures 4, 5, and 6 plot RER obtained by estimating various reduced dimensions

for the dataset, AT&T(ORL), Cropped AR, and MNIST dataset with each group

size, respectively. Since the trends in Figures 4, 5, and 6 are almost the same, we

will only mention Figure 4.

From Figure 4, we observe that the RER of MCCA is the smallest for any value

of CR. This indicates that the MCCA performs better than the other methods. In

addition, note that CCA performs better than MPCA only for fairly small values
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of CR, even though it is a method for vector data, whereas MPCA performs better

for larger values of CR. This implies the limitations of CCA for vector data.

Next we cobsider group size by comparing (a), (b), and (c) in Figure 4. The

value of CR at the intersection of CCA and MPCA increases with increasing the

group size. This indicates that MPCA has more trouble extracting an appropriate

latent space as the group size increases. Since MPCA does not consider the group

structure, it is not possible to properly estimate the covariance structure when the

group size is large.
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Figure 4: Plots of RER versus CR for the AT&T(ORL) dataset of various group
sizes: (a) Small; (b) Medium; and (c) Large.
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Figure 5: Plots of RER for the Cropped AR dataset for various group sizes: (a)
Small; (b) Medium; and (c) Large.
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Figure 6: Plots of RER for the MNIST dataset.

7.3 Behavior of Contraction Ratio

We examined the behavior of contraction ratio α(k). We performed MCCA on the

AT&T(ORL) dataset with the medium group size and computed α(1) and α(2) with

the various pairs of reduced dimensions (R1, R2) ∈ {1, 2, . . . , 25} × {1, 2, . . . , 25}.

Figure 7 shows the values of α(1) and α(2) for all pairs of R1 and R2. As shown,

α(1) and α(2) were invariant to variations in R2 and R1, respectively. Therefore, to

facilitate visualization of changes in α(k), Figure 8 shows α(1) and α(2) for, respec-

tively, R2 = 1 and R1 = 1. From these, we observe that when both R1 and R2 are

greater than 8, both α(1) and α(2) are close to one.

42



Figure 7: α(1) and α(2) versus pairs of reduced dimensions (R1, R2).
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Figure 8: α(1) and α(2) versus R1 and R2, respectively.

7.4 Efficacy of Solving the Quadratic Programming Prob-

lem

We investigated the usefulness of determining the initial value of w(k) by solving

the quadratic programming problem (5.1). We applied MCCA to the AT&T(ORL)

dataset with the small, medium, and large number of groups. In addition, we
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also used the smaller group size of three. For determining the initial value of

w(k), we consider three methods: solving the quadratic programming problem (5.1)

(MCCA:QP), setting all values of w(k) to one (MCCA:FIX), and setting the values

by random sampling according to the uniform distribution U(0, 1) (MCCA:RANDOM).

We computed the α(k) with the reduced dimensions R1 = R2 (∈ {1, 2, . . . , 10}) for

each of these methods.

To evaluate the performance of these methods, we compared the values of α(k) and

the number of iterations in the estimation. The number of iterations in the estima-

tion is the number of repetitions of lines 7 to 9 in Algorithm 1. For MCCA(RANDOM),

we performed 50 trials and calculated averages of each of these indices.

Figure 9 shows the comparisons of α(1) and α(2) when the initialization was per-

formed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM for AT&T(ORL) dataset

with a group size of 3. It was confirmed that MCCA:QP provides the largest values

of α(1) and α(2). Figure 10 shows that the number of iterations. MCCA:QP gives

the smallest number of iterations for almost all values of the reduced dimensions.

This result indicates that MCCA:QP converges to a solution faster than the other

initialization methods. However, when the reduced dimension is greater than or

equal to 8, the other methods are competitive with MCCA:QP. A lack of difference

in the number of iterations could result from the closeness of the initial values and

the global optimal solution. Note that when the R1 and R2 are greater than or equal

to 8, α(1) and α(2) are sufficiently close to one, based on Figure 9. This indicates

that the initial values are close to the global optimal solution obtained from Theo-

rem 1. Hence, the result shows almost the same numbers of iterations for the three

methods.
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Figure 9: Comparisons of α(1) and α(2) computed by using the initial values obtained
from the initializations MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the
AT&T(ORL) dataset for a group size of 3.
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Figure 10: Comparison of the number of iterations when the initialization was per-
formed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the AT&T(ORL)
dataset for a group size of 3.
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Figures 11 to 16 show comparisons for the AT&T(ORL) dataset with the other

group size. Figure 11, 13, and 15 show results similar those in Figure 9, whereas

Figure 12, 14, and 16 show competitive performances for all reduced dimensions.
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Figure 11: Comparisons of α(1) and α(2) computed using the initial values obtained
from the initializations MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the
AT&T(ORL) dataset for the small group size.
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Figure 12: Comparison of the number of iterations when the initializations were per-
formed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the AT&T(ORL)
dataset for the small group size.
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Figure 13: Comparisons of α(1) and α(2) computed using the initial values obtained
from the initialization of MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the
AT&T(ORL) dataset and the medium group size.
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Figure 14: Comparison of the number of iterations when the initialization was per-
fomed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the AT&T(ORL)
dataset and the medium group size.
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Figure 15: Comparisons of α(1) and α(2) computed using the initial values obtained
from the initializations MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the
AT&T(ORL) dataset for the large group size.
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Figure 16: Comparison of the number of iterations when the initializations were per-
formed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the AT&T(ORL)
dataset for the large group size.
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8 Concluding Remarks

We have developed the multilinear common components analysis (MCCA) by in-

troducing a covariance structure based on the Kronecker product. To efficiently solve

the non-convex optimization problem for MCCA, we have proposed an iteratively

updating algorithm. The proposed algorithm exhibits some superior theoretical

convergence properties. Numerical experiments showed the usefulness of MCCA.

Specifically, MCCA was shown to be competitive among the initialization methods

in terms of number of iterations. As the number of groups increases, the overall

number of samples increases. This may be why all methods required almost the

same number of iterations for small, medium, and large number of groups.

Note that, in this study, we used the Kronecker product representation to esti-

mate the covariance matrix for tensor datasets. Greenewald et al. (2019) used the

Kronecker sum representation for estimating the covariance matrix, and it would be

interesting to extend the MCCA to this and other covariance representations.

50



Acknowledgments

I would like to express my gratitude to my advisor, Associate Professor Shuichi

Kawano, for his careful and enthusiastic education. For three years, he has taught

me not only the way of conducting research, but the way of making presentations and

writing papers, and other knowledge necessary as a researcher. He also gave me the

opportunities to present my research at many conferences and conduct collaborative

research. I am grateful for the rich research experience through all the opportunities.

Finally, I would like to thank all the members of Ueno, Kawano, Nishiyama, and

Uto laboratories for their meaningful discussions and advice.

51



References

Allen, G. (2012). Sparse higher-order principal components analysis. In Proceedings

of the Fifteenth International Conference on Artificial Intelligence and Statistics,

volume 22 of Proceedings of Machine Learning Research, 27–36.

Badeau, R. and Boyer, R. (2008). Fast multilinear singular value decomposition for

structured tensors. SIAM Journal on Matrix Analysis and Applications, 30(3),

1008–1021.

Bensmail, H. and Celeux, G. (1996). Regularized gaussian discriminant analysis

through eigenvalue decomposition. Journal of the American Statistical Associa-

tion, 91(436), 1743–1748.

Boik, R. J. (2002). Spectral models for covariance matrices. Biometrika, 89(1),

159–182.

Carroll, J. D. and Chang, J.-J. (1970). Analysis of individual differences in multidi-

mensional scaling via an n-way generalization of “Eckart-Young” decomposition.

Psychometrika, 35(3), 283–319.

Flury, B. N. (1984). Common principal components in k groups. Journal of the

American Statistical Association, 79(388), 892–898.

Flury, B. N. (1986). Asymptotic theory for common principal component analysis.

The Annals of Statistics, 14(2), 418–430.

Flury, B. N. (1988). Common principal components & related multivariate models.

John Wiley & Sons, Inc.

Flury, B. N. and Gautschi, W. (1986). An algorithm for simultaneous orthogonal

transformation of several positive definite symmetric matrices to nearly diagonal

form. SIAM Journal on Scientific and Statistical Computing, 7(1), 169–184.

52



Greenewald, K., Zhou, S., and Hero III, A. (2019). Tensor graphical lasso (Ter-

alasso). Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 81(5), 901–931.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure : Models and

conditions for an “explanatory” multimodal factor analysis. UCLA Working Pa-

pers in Phonetics, 16(1), 84.

Harville, D. A. (1998). Matrix Algebra From a Statistician’s Perspective. Springer-

Verlag, New York.

Jolliffe, I. (2002). Principal Component Analysis. Springer-Verlag, New York.

Kermoal, J. P., Schumacher, L., Pedersen, K. I., Mogensen, P. E., and Frederiksen,

F. (2002). A stochastic mimo radio channel model with experimental validation.

IEEE Journal on Selected Areas in Communications, 20(6), 1211–1226.

Kiers, H. A. (2000). Towards a standardized notation and terminology in multiway

analysis. Journal of Chemometrics: A Journal of the Chemometrics Society, 14

(3), 105–122.

Kolda, T. G. (2006). Multilinear operators for higher-order decompositions (No.

SAND 2006-2081). Sandia National Laboratories.

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications.

SIAM review, 51(3), 455–500.

Lai, Z., Xu, Y., Chen, Q., Yang, J., and Zhang, D.Oct . (2014). Multilinear

sparse principal component analysis. IEEE Transactions on Neural Networks and

Learning Systems, 25(10), 1942–1950.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

53



Lu, H., Plataniotis, K. N., and Venetsanopoulos, A. N. (2008). MPCA: Multilinear

principal component analysis of tensor objects. IEEE transactions on Neural

Networks, 19(1), 18–39.

Manly, B. F. J. and Rayner, J. C. W. (1987). The comparison of sample covariance

matrices using likelihood ratio tests. Biometrika, 74(4), 841–847.

Martinez, A. and Benavente., R. (1998). The AR face database. CVC Technical

Report, 24.

Martinez, A. M. and Kak, A. C. (2001). PCA versus LDA. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 23(2), 228–233.

Park, H. and Konishi, S. (2018). Sparse common component analysis for multiple

high-dimensional datasets via noncentered principal component analysis. Statis-

tical Papers, 61(6), 2283–2311.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science, 2(11), 559–572.

Pourahmadi, M., Daniels, M. J., and Park, T. (2007). Simultaneous modelling of

the cholesky decomposition of several covariance matrices. Journal of Multivariate

Analysis, 98(3), 568–587.

R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, (2019).

Wang, H., Banerjee, A., and Boley, D. (2011). Common component analysis for mul-

tiple covariance matrices. In Proceedings of the 17th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 956–964.

54



Wang, S., Sun, M., Chen, Y., Pang, E., and Zhou, C.Nov . (2012). STPCA: Sparse

tensor Principal Component Analysis for feature extraction. In Proceedings of the

21st International Conference on Pattern Recognition (ICPR2012), 2278–2281.

Werner, K., Jansson, M., and Stoica, P. (2008). On estimation of covariance matrices

with kronecker product structure. IEEE Transactions on Signal Processing, 56

(2), 478–491.

Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., and Beach,

M. (2004). Modeling of wide-band mimo radio channels based on nlos indoor

measurements. IEEE Transactions on Vehicular Technology, 53(3), 655–665.

55


	和文要旨
	論文



