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 要  旨 

集約署名は、複数署名者により生成される異なる文書における個別署名を、小さいサイズの署

名に集約可能な暗号技術である。集約署名の概念は Boneh らによって提案された。同時に彼ら

はペアリングという特殊な代数構造を基にした集約署名方式を提案した。この方式は定数サイ

ズ署名長を達成可能であり、署名者間通信なしに集約可能である。一方で、安全性の基となる

計算困難性の仮定は、実用化された多くの暗号技術で用いられる離散対数仮定より強い仮定で

あり、実用時は少々大きいパラメタを取る必要がある。またペアリング計算は計算コストが高

い。このようにペアリングにはいくつかの欠点が存在する。Zhao は初めてのペアリングフリー

集約署名方式をビットコイン向けのアプリケーションとして提案した。この方式は、署名長が

署名者数に線形に依存するが、軽い計算のみで構成されており、鍵設定に特に仮定を必要しな

い。しかし、安全性は新しく提案された計算困難性の仮定を基にしている。以上より、ペアリ

ングフリーかつ信頼性の高い仮定に基づく安全性を担保可能な集約署名方式の構築は重要な課

題である。 

 本稿では、主に 3 つの研究成果について述べる。1 つ目は、Zhao 方式に対する任意の文書に

おける偽装を生成可能な準指数時間攻撃者を提案する。準指数時間であるため、理論的には致

命的ではないが、実装時のパラメタ設定に影響を与える。具体的には、我々の攻撃者の存在に

より、当初 Zhao が想定したパラメタより大きいパラメタが必要であることが明らかとなり、

これは Zhao 方式の利点を弱める。2 つ目は、新たな枠組みとして事前通信を用いる集約署名を

提案し、離散対数仮定を基にした安全性を担保可能な事前通信モデルにおけるペアリングフリ

ー集約署名方式を提案する。署名集約には署名者集約者間の通信が必要であるが、比較的小さ

い通信コストを達成可能である。一方で、鍵設定では各署名者が正当に鍵を生成したことを証

明する必要があり、署名長は署名者数に線形に依存するが、Zhao 方式より小さいサイズを達成

できる。また提案方式が Drijvers らの不可能性に抵触しないことの議論も行う。3 つ目は、One-

Time 集約方式の提案である。この方式は、一度の鍵生成で一度の集約署名生成が可能な方式で

ある。提案方式の安全性は One-More 離散対数仮定に基づいており、理論的な世界でしか存在

しないランダムオラクルを用いずに安全性を証明可能である。署名長は定数サイズを達成可能

であるが、信頼できる鍵生成が必要である。 
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Chapter 1

Introduction

Aggregate signatures are a cryptographic primitive, in which individual signatures on

different messages generated by multiple signers into one compact signature. The notion

of this was proposed by Boneh et al., and they proposed a pairing-based aggregate sig-

nature scheme [BGLS03]. Other aggregate signature schemes [BNN07, HKW15, Zha19]

and several special aggregate signatures, e.g., sequential aggregate signatures [LMRS04,

LOS+06, FLS12, LLY13, Nev08, BGR12, BMP16], identity-base aggregate signatures [XZF05,

GR06, BGOY07, BJ, HSW13], and synchronized aggregate signatures [GR06, HW18],

have been proposed so far.

The aggregate signature scheme [BGLS03] achieves the constant signature size and the

non-interactive aggregation because of the property of pairing. These achievements give

practical efficiency in terms of storage and communication. In contrast, the security of this

scheme is proved under the hardness of the pairing-based Diffie-Hellman problem, which is

defined on groups with bilinear maps. The assumption, that this problem is hard to solve

in polynomial-time, is stronger than the discrete logarithm (DL)assumption. Moreover,

deploying pairing-based aggregate signature schemes in existing applications is expensive

because it requires not only replacing the algorithms of a signature scheme with the those

of the pairing-based scheme but also replacing an elliptic curve (EC) with pairing friendly

ones. In addition, most pairing-based schemes have pairing computations that are still

relatively quite costly. Therefore aggregate signatures from general EC groups are more

attractive in terms of the computational complexity and the cost of deployment.

Zhao proposed the first pairing-free aggregate signature scheme from general EC [Zha19]

for the application to the Bitcoin [Nak08], by extending the Γ-signature [YZ13]. This

scheme achieves the security in the plain PK model [BN06], in which all signers generate

public keys without proving the validity of those, and the non-interactive aggregation.

The signature size depends on the number of signers linearly, but it achieves a smaller

size than the concatenation of the Schnorr signature [Sch89]. In contrast, the security
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Chapter 1 Introduction 4

is based on the non-standard hardness assumption, the non-malleable discrete logarithm

(NMDL) assumption, which is newly introduced by Zhao in the same paper. This means

that the security is not reliable.

Therefore, constructing an aggregate signature scheme with the following properties

is a very important open problem from the practical and theoretical points of view:

pairing-free, i.e., the scheme does not rely on pairing computations or pairing-based

assumption, and provably secure based on well-established standard assumptions, e.g.,

standard discrete logarithm problem.

1.1 Our Contribution

In this thesis, there are roughly three contributions.

Contribution 1. The first Contribution is that we show a sub-exponential time univer-

sal forger under a key-only attack in the knowledge of secret key (KOSK) model [Bol03,

LOS+06] against Zhao’s aggregate signature scheme. The KOSK model is a model where

an adversary is required to output the secret keys corresponding to the cosigners’ public

keys. Our universal forger can generate a forgery on arbitrary messages without making

signing queries. On the other hand, our proposed forger runs in the sub-exponential time

because it uses k-sum algorithm [Wag02]. Therefore, it is not fatal theoretically. But

it affects the practical performance of Zhao’s scheme. Specifically, in order to guarantee

the security against our attack, Zhao’s scheme requires the bit-length of the order of an

underlying group to be approximately log n times the security parameter where n is the

number of signers. This makes Zhao’s scheme lose its advantage.

The root of our attack is that the NMDL problem can be solved in sub-exponential

time by using k-sum algorithm. This analysis may help to prevent the some error when

we analyze the security of newly constructed schemes.

Contribution 2. The second contribution is that we introduce a new type of aggregate

signatures, aggregate signatures with pre-communication (PreCom), and a pairing-free

aggregate signature with PreCom scheme PCAS based on the well-established hardness

assumption by extending the Schnorr signature.

The pre-communication is an interaction protocol executed in the offline stage, not in

the signing stage. The offline stage is the phase between generating keys and deciding

the messages to be signed. The signing stage is the phase after deciding the messages

to be signed. The communication in the signing stage loses the significance of aggregate
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signatures because we can use the multi-signatures in such a situation, which allows com-

bining individual signatures on the same message, by sharing messages among signers.

The pre-communication of PCAS can still keep the most important feature of aggregate

signatures, i.e., any signer is allowed to choose their individual message to be signed

without interacting with other signers. Also the communication of PCAS is one-round

communication between signers and an aggregator, not among signers, and the commu-

nication complexity is smaller than the Bellare-Neven multi-signature scheme [BN06].

We prove PCAS secure under the hardness of the DL problem in the random oracle

model and the KOSK model. PCAS is similar to a multi-signature scheme CoSi [STV+16].

In [DEF+19], Drijvers et al. show the impossibility results and the sub-exponential

forger against CoSi and other multi-signature scheme built from the Schnorr signa-

ture [BCJ08, MWLD10, MPSW18], and Benhamouda et al. proposed the polynomial-

time forger against CoSi. To prevent these attacks, we introduce the random value t

technique. For more details of this technique, see the construction of PCAS and the ex-

planation in Section 4.4. Doe to this technique, the signature size depends on the number

of signers. However, PCAS achieves a smaller size than Zhao’s scheme. In practice, we

need the proof-of-possession because of the KOSK model.

Contribution 3. We proposed a pairing-free one-time aggregate signature scheme

OTAS by extending the Bellare-Shoup one-time signature scheme. In this protocol, one

key generation allows generating one aggregate signature. We prove OTAS tightly secure

based on the one-more discrete logarithm (OMDL) assumption [PV05] and the existence

the collision-resistance hash function in the KOSK model. OTAS achieves the constant

signature size and non-interactive aggregation, while the key size is larger than PCAS.

1.2 Related Works

Boneh et al. suggested the idea of aggregate signatures and proposed the first aggregate

signature scheme using pairing [BGLS03]. Bellare et al. showed that the aggregate signa-

ture scheme [BGLS03] is secure even if the restriction of different pairs of a public key and

a message between all signers is eliminated [BNN07]. There are many pairing-based ag-

gregate signature schemes [Nev08, LOS+06, BGOY07, MT07, AGH10, HKW15, HSW13].

Lysyanskaya et al. introduced a notion of sequential aggregate signatures, where signers

sequentially generate a signature on his message by using previous signers’ messages and

signatures and provided the first sequential aggregate signature scheme built from the

RSA assumption [LMRS04]. After that, pairing-based sequential aggregate signature
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schemes [LOS+06, FLS12, LLY13] and pairing-free sequential aggregate signature schemes

[Nev08, BGR12, BMP16] were proposed.

Gentry and Ramzan proposed the first aggregate signature in the synchronized set-

ting [GR06], and Ahn et al. formalized the synchronized aggregate signatures, in which

signatures generated in the same period can be compressed into an aggregate signa-

ture. Hohenberger and Waters provided an RSA-based synchronized aggregate signature

scheme [HW18]. We can implement an AS with PreCom scheme using a synchronized

aggregate signature scheme as follows. In a PreCom phase, the signers can agree on

the time period by pre-communication, and in the signing phase, each signer generates

a signature using the time period agreed on in the PreCom phase. A restriction of this

approach is that the number of the signatures the signers can issue is bounded at the

setup time. Our proposed scheme does not have such a restriction. Another drawback of

this approach is the difficulty in establishing the agreement on a time period. Namely,

a malicious participant may try to make the parties reuse a time period (Notice that

in the synchronized aggregate signature, the time period cannot be reused securely).

An obvious solution for preventing this type of attacks is to use a Byzantine agreement

protocol [LSP82], however, it removes the simplicity of the signature scheme.

Identity-based aggregate signatures [XZF05, GR06, BGOY07, BJ, HSW13] are the

aggregate signatures in which each signer is assigned an ID and creates a signature by

using a secret key that a private key generator generates by the master secret key and

the signer’s ID. This primitive is a type of aggregate signatures with a trusted key setup.

In this primitive, rogue-key attacks are ineffective. It requires a trusted third-party, who

is called the private key generator, for the management of all signers’ keys and secure

and authenticated channels for issuing a private key by the private key generator to each

signer.

Katz and Lindell proposed the notion of the aggregate message authentication codes

(MAC), which allows combining multiple MAC tags on multiple (possibly different) mes-

sages generated by different signers into one short tag [KL08]. They also formalized its

definition and its security notion and proposed a construction of a secure aggregate MAC

scheme from a secure MAC scheme by simply computing the XOR of all the individual

MAC tag values. It can generate aggregate tags without interactions between signers in

singing protocol. In Addition, rogue-key attacks are meaningless in this primitive since

the aggregate MAC is a symmetric-key cryptographic primitive. Instead, it requires each

signer to share his key with verifiers in secrecy by executing the key exchange protocols.

Bellare and Neven proposed a DL-based multi-signature scheme and mentioned the

applicability of multi-signatures to (interactive) aggregates signature [BN06]. This appli-
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cation presupposes that signers can share messages.

Zhao proposed an aggregate signature scheme for blockchain applications [Zha19]. This

scheme is asynchronous and constructed from general elliptic curves. He stated that

the proposed scheme is more applicable to blockchain applications than pairing-based

aggregate signatures for the system complexity and the verification speed. His scheme

is an extension of the Γ-signature [YZ13] to aggregate signatures. Though the signature

size linearly depends on the number of signers, this scheme is proved secure in the plain

PK model and requires no communication between signers for signing. The security of

this scheme is based on the non-malleable discrete logarithm (NMDL) assumption. This

assumption is only justified in the generic group model [Mau05] with random oracles,

where an adversary is allowed to query both of the random oracle and the generic group

oracle.

Boneh and Kim proposed a one-time aggregate signature scheme [BK20]. This scheme

achieves the security based on the DL assumption in the plain PK model, while there is

a large reduction loss.



Chapter 2

Preliminaries

In this chapter, we first show the notions and definitions of computational assumptions

and problems. Second, we review the Bellare-Neven general forking lemma [BN06]. Fi-

nally, we show the definitions of the standard aggregate signatures and one-time aggregate

signatures. Also, we show some security definitions for the above two primitives.

2.1 Notations

For a prime integer q, we denote the ring of integers modulo q by Zq and the multi-

plicative group of Zq by Z∗
q . Let G be a cyclic group of order q and let g be a generator

of G. In Chapter 3, we regard G as an additive group. In Chapters 4 and 5, we regard

G as a multiplicative group.

For a set A, we write a ←$ A to mean that a is chosen at uniformly random from A.

For a probabilistic algorithm B, we write b ← B(β1, . . . ; ρ) to mean that B on inputs

β1, . . . and random tape ρ outputs b, and b ←$ B(β1, . . .) to mean that ρ is chosen at

uniformly random and let b← B(β1, . . . ; ρ).

For strings a1, . . . , an, we denote the concatenation of them by a1|| . . . ||an.

2.2 Computational Assumptions and Problems

In this section, we show the definitions of computational problems and assumptions

which are used in this paper.

The discrete logarithm (DL) assumption is well-established. The security of many

cryptographic schemes is proved under this assumption.

Definition 2.2.1 (Discrete Logarithm Assumption) For (G, g, q), let E be a PPT

algorithm that is given y chosen at uniformly random from a multiplicative cyclic group

8
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G. We say that E (t, ε)-breaks DL if E runs in time at most t and outputs x such that

y = gx with probability at least ε.

One-more discrete logarithm (OMDL) assumption is a stronger assumption than the

DL assumption. However, no algorithm which can break this assumption is found so

far. Also, the lower bound on the complexity in the Generic Group Model (GGM) is

given [CDG18].

Definition 2.2.2 (One-More Discrete Logarithm Assumption [PV05]) Let DL(·)
be the discrete log oracle that on input y, outputs x such that y = gx. For (G, g, q), let E be

a PPT algorithm that is given y0, y1, . . . , yℓ chosen at uniformly random from multiplica-

tive cyclic group G and can access to DL(·) at most ℓ times. We say that E (t, ε)-breaks

(ℓ + 1)-OMDL if E runs in time at most t and outputs x0, x1, . . . , xℓ such that yi = gxi

for all i ∈ [1, ℓ] with probability at least ε.

The following is the definition of the collision resistance hash function.

Definition 2.2.3 (Collision-Resistant Hash Function) Let K be a hash key chosen

at uniformly random from {0, 1}k. For a hash function H : {0, 1}k × {0, 1}∗ → {0, 1}∗,
we define the advantage of a PPT algorithm A that finds a collision of H.

AdvH(A) = Pr[H(K, x1) = H(K, x2) ∧ x1 ̸= x2 : K ←$ {0, 1}k, (x1, x2)← A(K)]

A hash function H is called collision-resistant hash function if AdvH(A) is negligible for

all A.

We recall the definition of the k-sum problem.

Definition 2.2.4 (k-sum problem) The k-sum problem in group (Zq; +) for an arbi-

trary q provides k lists L1, . . . , Lk of equal sizes, each list containing sL elements sampled

uniformly and independently from Zq, and requires to find x1 ∈ L1, . . . , xk ∈ Lk s.t.∑k
i=1 xi ≡ 0 (mod q).

In [Wag02], Wagner proposed the k-tree algorithm which can solve the k-sum problem

for sL = 2log q/(1+log k) in time at most O(k2log q/(1+log k)) with non-negligible probability.

This algorithm is used to attack some cryptographic schemes, and we also exploit this

algorithm in Chapter 3.
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2.3 General Forking Lemma

We use the Bellare-Neven general forking lemma to prove the security of our proposed

scheme in Chapter 4.

Lemma 2.3.1 (General Forking Lemma) Fix an integer q ≥ 1 and a set H of size

h ≥ 2. Let A be a randomized algorithm that on input x, h1, . . . , hq returns a pair, the

first element of which is an integer in the range 0, . . . , q and the second element of which

we refer to as a side output. Let IG be a randomized algorithm that we call the input

generator. The accepting probability of A, denoted acc, is defined as the probability that

J ≥ 1 in the experiment

x←$ IG; h1, . . . , hq ←$ H; (J, σ)←$ A(x, h1, . . . , hq).

The forking algorithm FA associated to A is the randomized algorithm that takes input x

proceeds as follows:

Algorithm FA(x)

Pick coins ρ for A at random

h1, . . . , hq ←$ H

(I, σ)← A(x, h1, . . . , hq; ρ)

If I = 0 then return (0, ε, ε)

h′
I , . . . , h

′
q ←$ H

(I ′, σ′)←$ A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q; ρ)

If (I = I ′ ∧ hI ̸= h′
I) then return (1, σ, σ′)

Else return (0, ε, ε)

Let

frk = Pr[b = 1 : x←$ IG; (b, σ, σ′)←$ FA(x)] (2.1)

Then

frk ≥ acc ·
(
acc

q
− 1

h

)
(2.2)

2.4 Aggregate Signatures

Aggregate signatures (AS) is a cryptographic primitive which allows combining indi-

vidual signatures on different messages into a compact one. In this section, We show the

definitions of two types of aggregate signature schemes.
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2.4.1 Standard Aggregate Signatures

Boneh et al. introduced a notion of AS and proposed the first pairing-based AS

scheme [BGLS03]. In this paper, we call such AS the standard aggregate signatures

(sAS). The feature of this type is that all signers can generate individual signatures on

their messages without interactions. The definition of the sAS is as follows.

Definition 2.4.1 An sAS scheme consists of the following six algorithms. Let n be the

number of signers.

Setup(1λ)→ pp. The public parameter generation algorithm takes as input a security

parameter 1λ, then it outputs a public parameter pp.

KeyGen(pp)→ (pk , sk). The key generation algorithm takes as input a public parameter

pp, then it outputs a public key pk and a secret key sk.

Sign(pp, pk , sk ,m)→ σ. The signing algorithm takes as input a public parameter pp,

a public key pk, a secret key sk, and a message m, then it outputs a individual

signature σ.

Verify(pp, pk ,m, σ)→ {0, 1} The verification algorithm takes as input a public param-

eter pp, a public key pk, a message m, and a signature σ, then it outputs 0 (RE-

JECT) or 1 (ACCEPT).

Agg(pp, {(pk i,mi, σi)}ni=1)→ σa. The aggregation algorithm takes as input a public pa-

rameter pp, and a set of all signers’ public keys, messages, and signatures {(pk i,mi,

σi)}ni=1, then it outputs an aggregate signature σa.

AggVer(pp, {(pk i,mi)}ni=1, σa)→ {0, 1}. The aggregate signature verification algorithm

takes as input a public parameter pp, a set of all signers’ public keys and messages

{(pk i,mi)}ni=1, and an aggregate signature σa, then it outputs 0 (REJECT) or 1

(ACCEPT).

For any set of messages {mi}ni=1, if a public parameter pp, all signers’ public keys

{pk i}ni=1, and an aggregate signature σa are generated honestly by the above algorithms,

then we require that Pr[AggVer(pp, {(pk i,mi)}ni=1, σa) = 1] = 1.

Attacks and Key-Setup Model

Before showing the definition of security, we should describe the key-setup assumptions.

In aggregate signatures, one should consider an attack scenario which is called the rogue-

key attack. In rogue-key attacks, an attacker generates public keys dishonestly and tries
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to forge a combined signature involving such dishonest keys. In general, we can guarantee

the security of the scheme against the rogue-key attacks using the following two basic

strategies. The first is (i) to prove directly that there exists no rogue-key attack, and the

second is (ii) to exclude rogue-key attacks by a specific key registration protocol. These

two approaches are formally modeled by (i) the plain public-key (PK) model [BN06] and

(ii) the knowledge of secret keys (KOSK) model [Bol03, LOS+06], respectively.

(i) The plain PK model is the model without any assumption in the key setup. In

the security model, an adversary can freely choose all cosigners’ public keys excluding at

least one honest signer’s key.

(ii) The KOSK model is the model where all signers need to prove the validity of

their public key. In the security model, an adversary can freely pick all cosigners’ public

keys, but it must output the secret keys corresponding to these public keys. In prac-

tice, the KOSK model can be implemented using one of the following models: (1) a

trusted setup model [MOR01], in which a dedicated key registration protocol is needed

to be executed by each signer, (2) the key verification (KV) model [BCJ08], and (3) the

proof-of-possession (PoP) model [RY07], where each signer submits a certificate to prove

possession of a secret key.

Note that the KOSK model is a theoretical key-setup model and is a stronger assump-

tion than the plain PK model. The security definitions in this paper consider either the

plain PK model or the KOSK model.

Security Models for Standard Aggregate Signatures sAS

In this part, We show the two security model for sAS.

EUF-CMA in the Plain PK Model and the Random Oracle Model for sAS.

Below, we show the definition of existential unforgeability under the chosen-message at-

tack to sAS in the random oracle (RO) model and the plain PK model [BN06]. Existential

unforgeability is that there is no forger who can generate at least one pair of a message

and a forgery where a message has not been signed. A chosen-message attack is that

a forger can obtain signatures on messages which are chosen by a forger. Specifically,

in this model, a forger who corrupts an aggregator and signers except one honest signer

is given on honest signer’s public key and is allowed making signing queries. Finally, a

forger needs to output a forgery on a message which has never appeared in signing queries

and random oracle queries. Also, a forger can choose cosigners’ public keys freely without

proving the validity of keys.
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Formally, we consider the following game.

Setup. The challenger chooses the parameter pp ← $ Setup(1λ) and the key pair

(pk , sk)←$ KeyGen(pp). It runs a forger F on input pk and pp.

Signing Queries. The challenger receivesm′ as a signing query, computes σ′ ← Sign(pp,

pk , sk ,m) and return σ′ as an honest signer’s individual signature on m′.

Output. F outputs n public keys {pki}ni=1, a set of messages {m∗
i }ni=1, and a forgery σ∗

a

where the following holds.

• (pk1,m
∗
1), . . . , (pkn,m

∗
n) are mutually distinct.

• pk ∈ {pki}ni=1.

If AggVer(pp, {(pk i,m
∗
i )}ni=1, σ

∗
a) = 1 is true and m∗

i has never been queried to the

signing oracle where i is such that pki = pk, then F is said to succeed in forgery.

Definition 2.4.2 Let N be a maximum number of cosigners being involved in the forgery.

We say that F (t, qS, qH , N, ε)-break sAS scheme in the plain PK model if F runs in at

most t time, makes at most qS signing queries and at most qH random oracle queries,

and succeeds in forgery in the above game with probability at least ε. For an sAS scheme,

if there are no F that (t, qS, qH , N, ε)-breaks it in the plain PK model, we say the scheme

is (t, qS, qH , N, ε)-secure in the plain PK model.

UUF-KOA in the KOSK Model and the Random Oracle Model for sAS. For

sAS, we define universal unforgeability under key-only attacks [GMR88] in the RO model

and the KOSK model. Universal forgeability is that there is a forger who can generate a

forgery on an arbitrary message and is more serious than existential forgeability. A key-

only attack does not allow a forger to make a signing query. Specifically, in this security

model, a forger who corrupts an aggregator and signers except one honest signer is given

an honest signer’s public key and a message and is required to generate a forgery on the

given message by making random oracle queries. When outputting a forgery, it must

output cosigners’ secret keys corresponding to cosigners’ public keys which are chosen

arbitrarily.

If, for all m∗, a forger F wins the following game with non-negligible probability, then

we say that F is a universal forger under a key-only attack in the KOSK model.

Setup(1λ,m∗). The challenger chooses a public parameter pp ←$ Setup(1λ), an honest

signer’s key pair (pk , sk)←$ KeyGen(pp). It runs a forger F on input pp, pk and

a message m∗.
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Output. F outputs n key pairs {(pki, ski,m∗
i )}ni=1 and a forgery σ∗

a where the following

holds.

• (pk1,m
∗
1), . . . , (pkn,m

∗
n) are mutually distinct.

• (pk,m∗) ∈ {(pki,m∗
i )}ni=1.

• skl is ⊥ where l satisfies s.t. pkl = pk.

• ski is a correct secrete key corresponding to pki for i ∈ [1, n]\{l}.

If AggVer(pp, {(pk i,m
∗
i )}ni=1, σ

∗
a) = 1 holds, then F wins.

Definition 2.4.3 Let N be a maximum number of cosigners being involved in the forgery.

We say that F (t, qH , N, ε)-break sAS in the KOSK model if F runs in at most t time,

makes at most qH random oracle queries, and succeeds in forgery in the above game with

probability at least ε.

2.4.2 One-Time Aggregate Signatures

Here, we define the one-time aggregate signatures (OTAS). In a protocol of this prim-

itive, all signers are required to generate new key pairs each time they generate a new

aggregate signature.

Definition 2.4.4 (OTAS) OTAS consists of the following five algorithms. Let n be the

number of signers and let i be the index of a signer.

Setup(1λ)→ pp. The public parameter generation algorithm takes as input a security

parameter 1λ, then outputs a public parameter pp.

KeyGen(pp)→ (pk , sk). The key generation algorithm takes as input a public parameter

pp, then outputs a public key pk and a secret key sk.

Sign(pp, pk , sk ,m)→ σ. The signing algorithm takes as input a public parameter pp, a

public key pk, a secret key sk and a message m, then outputs a signature σ.

Agg(pp, {(pk i,mi, σi)}ni=1)→ σa. The aggregation algorithm takes as input a public pa-

rameter pp and a set of all signers’ public keys, messages, and signatures {(pk i,mi,

σi)}ni=1, then outputs an aggregate signature σa.

AggVer(pp, {(pk i,mi)}ni=1, σa)→ {0, 1}. The aggregate signature verification algorithm

takes as input a public parameter pp, a set of all signers’ public keys and mes-

sages {(pk i,mi)}ni=1 and an aggregate signature σa, then outputs 0 (REJECT) or 1

(ACCEPT).
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For any set of messages {mi}ni=1, if all signers and an aggregator behave honestly, then

Pr[AggVer(pp, {(pk i,mi)}ni=1, σa) = 1] = 1.

Security Models for OTAS

Below, we show a security models for OTAS. The important difference of the security

models of OTAS from ones of sAS is that the forger F is allowed to make only one signing

query.

EUF-CMA in the KOSK Model for OTAS. The following is the definition of

existential unforgeability under chosen-message attacks of OTAS in the KOSK model.

We should note that all signers’ public keys are mutually distinct, not their pairs of a

public key and a message, and this is not in the RO model. The security model here is

defined by the three-phase game of the following.

Setup. The challenger chooses the parameters pp ← $ Setup(1λ) and the key pair

(pk , sk)←$ KeyGen(pp). It runs the forger F on input pk and pp.

Signing Query. The challenger receivesm′ as a query, computes σ′ ← Sign(pp, pk , sk ,m′),

and returns σ′ to F . F is allowed to make only one query.

Output. After F terminates, it outputs (n−1) cosigners’ key pairs {(pki, ski)}ni=1, a set

of messages {m∗
i }ni=1, and a forgery σ∗

a where the following holds.

• pk 1, . . . , pkn are mutually distinct.

• pk ∈ {pki}ni=1.

• skk is ⊥ where k is such that pkk = pk.

If AggVer(pp, {(pk i,mi)}ni=1, σa) = 1 is true and m∗
i has never been queried where

i is such that pki = pk, then F is said to succeed in forgery.

Definition 2.4.5 (Unforgeability in KOSK Model for OTAS) Let N be a maxi-

mum number of cosigners being involved in the forgery, we say that F (t, N, ε)-breaks the

OTAS scheme in the KOSK model if F runs in at most t time and succeeds forgery in

the above game with probability at least ε. For an OTAS scheme, if there are no F that

(t, N, ε)-breaks it in the KOSK model, we say the scheme is (t, N, ε)-secure in the KOSK

model.



Chapter 3

Cryptanalysis of Aggregate

Γ-Signature

Zhao proposed a standard aggregate signature (sAS) scheme [Zha19], which is named

aggregate Γ-Signature Scheme, from general elliptic curve (EC) groups for application

to Bitcoin [Nak08]. However, a sub-exponential time universal forger under a key-only

attack in the plain PK model is proposed anonymously by ncklr. This forger executes

a rouge-key attack by exploiting a k-sum algorithm [Wag02], which is the cause of sub-

exponential time. Namely, this forger is effective only in the plain PK model, and we can

prevent this attack by using proof-of-possession [RY07].

Here, we show a stronger forger than the above one. Specifically, our forger is a sub-

exponential forger under a key-only attack in the KOSK model. We cannot this attack

even if a trusted key-setup is executed because our attack is effective in the KOSK model.

Note that our attack is not fatal theoretically since this is a sub-exponential time attack,

but a practical performance is damaged. For more detail, see Section 3.2.2.

3.1 Aggregate Γ-Signature Scheme

In [Zha19], the aggregate Γ-signature (AGS) scheme is proposed by Zhao. This scheme

is a standard aggregate signature scheme from general EC groups, while allows partially

combining individual signatures, namely the size of an aggregate signature depend on the

number of the signers lineally. AGS consists of the following six algorithms. Note that

we regard the underlying group G as an additive cyclic group.

Setup(1λ)→ (G, q, P,H0, H1). It chooses (G, q, P ), hash functionsH0 : G→ Zq andH1 :

G×M → Zq where M is the set of messages, then it outputs pp = (G, q, P,H0, H1).

KeyGen(pp)→ (X, x). It computes x ←$ Z∗
q and X ← xP , then it outputs a public

16
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key X and a secret key x.

Sign(pp, X, x,m)→ σ. It computes r ←$ Z∗
q , A← rP , d← H0(A), and e← H1(X,m).

It computes z ← rd− ex mod q, then it outputs σ = (z, d) as a signature.

Verify(pp, X,m, σ)→ {0, 1} It computes e ← H1(X,m) and A ← zd−1P + ed−1X. If

H0(A) ̸= d holds, then it outputs 0. Otherwise it outputs 1.

Agg(pp, {(Xi,mi, σi)}ni=1)→ (T̂ , Â, z). It initializes T̂ = ∅, Â = ∅, and z = 0. For

i = 1 to n, if Verify(pp, Xi,mi, σi) = 1 ∧ (Xi,mi) /∈ T̂ ∧ Ai /∈ Â holds, it sets

T̂ ← T̂ ∪ {(Xi,mi)} and Â← Â ∪ {Ai} and computes z ← z + zi mod q. Finally,

it outputs (T̂ , Â, z).

AggVer(pp, (T̂ , Â, z))→ {0, 1}. If the elements in T̂ are not mutually distinct, the ele-

ments in Â are not mutually distinct, or |T̂ | ̸= |Â| holds, then outputs 0. It sets

n′ ← |T̂ |, and for j = 1 to n′, it computes dj ← H0(Aj) and ej ← H1(Xj,mj). If∑n′

j=1 djAj = zP +
∑n′

j=1 ejXj holds, it outputs 1, Otherwise it outputs 0.

Zhao presented the ephemeral rouge-key attack against an intuitive AS scheme built

from the Schnorr signature which combines only the response components of the Σ-

protocol [Cra96] and showed that the above AS scheme can prevent this attack. Also the

security of this scheme is proved based on the non-malleable discrete logarithm (NMDL)

assumption. We review the definition of this assumption.

Definition 3.1.1 (Non-Malleable Discrete Logarithm (NMDL) Assumption) Let

H1, . . . , HK : {0, 1}∗ → Z∗
q be cryptographic hash functions, which may not be distinct.

On input (G,P, q,X) where X = xP for x ← Z∗
q a PPT algorithm A (called an NMDL

solver) succeeds in solving the NMDL problem, if it outputs ({bi, Yi,mi}Ki=1, z) satisfying:

• z ∈ Zq, and for any i, 1 ≤ i ≤ K, Yi ∈ G, mi ∈ {0, 1}∗ that can be the empty

string, and bi ∈ {0, 1}.

• For any 1 ≤ i, j ≤ K, it holds that (Yi,mi) ̸= (Yj,mj). It might be the case that

Yi = Yj or mi = mj.

• X ∈ {Yi}K1 , and zP =
∑K

i=1(−1)bieiYi where ei = Hi(Yi,mi).

The NMDL assumption means that there are no PPT algorithm which succeeds in solving

the NMDL problems with non-negligible probability in log q.

For more detail of this assumption, see Section 5.1 of [Zha19].
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3.2 Sub-Exponential Universal Forgery under a Key-

Only Attack against Aggregate Γ-Signature in

the KOSK Model

Here we present a sub-exponential universal forger under a key-only attack against the

aggregate Γ-signature in the KOSK model. The cause of this cryptanalysis is that there

is an algorithm that can solve the NMDL problem in sub-exponential time by using a

k-sum algorithm.

The input and the goal of a forger against aggregate Γ-signature in the security game

in Definition 2.4.3 are as follows:

Input: A challenge key X1 and a target message m∗
1.

Goal: To output a forgery (z∗, {Ai}ni=1) and a set of cosigners’ keys and messages

{(Xi, xi,m
∗
i )}ni=2 s.t. the following holds:

n∑
i=1

diAi = z∗P +
n∑

i=1

eiXi (3.1)

where Xi = xiP for i ∈ [2, n], di = H0(Ai), and ei = H1(Xi,m
∗
i ) for i ∈ [1, n].

Now, we explain an overview of our forger. To achieve the above goal, our forger

generates ephemeral rogue-keys by exploiting a n-sum algorithm. Specifically, it chooses

uniformly ri ←$ Z∗
q and computes an ephemeral rogue-key Ai ← riP +X1 for each signer,

respectively. In this case, for the equation (3.1), when we assume that (i)
∑n

i=1 di = e1

holds, the terms related to X1 are canceled out. Then this forger can compute a consistent

z∗ because it knows discrete logarithms corresponding to remaining terms. Thus, to

achieve the goal, it is sufficient for the forger to obtain a set of ephemeral rogue-keys

{Ai}ni=1 which make (i) hold. A n-sum algorithm is used for such a purpose. Concretely,

the forger prepares many ephemeral keys and finds a set of such keys {Ai}ni=1 by using

an n-sum algorithm.

Below, we show the procedure of our proposed forger F .

Main Procedure

1. Choose arbitrary cosigners’ secret keys {xi}ni=2 ∈ (Z∗
q )

(n−1) and assign the public keys

as follows:

X2 ← x2P, . . . , Xn ← xnP. (3.2)
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2. Launch an n-sum attack via n ·sL times hash computations to obtain {(di, ri, Ai)}ni=1

s.t. the following holds:

n∑
i=1

di ≡ e1 (mod q) (3.3)

where Ai = riP +X1, di = H0(Ai) for i ∈ [1, n] and e1 = H1(X1,m
∗
1).

3. Choose any messages {m∗
i }ni=2 and assign the followings:

e2 ← H1(X2,m
∗
2), . . . , en ← H1(Xn,m

∗
n), (3.4)

z∗ ← −
n∑

i=2

xiei +
n∑

i=1

ridi. (3.5)

4. Output (z∗, {Ai}ni=1) and {(Xi, xi,m
∗
i )}ni=2.

In Step 2 of the above, F executes the n-sum algorithm according to the following.

n-sum Attack Procedure

1. Choose {ri,j}n,sLi=1,j=1 ∈ (Z∗
q )

n×sL and computes {Ai,j}n,sLi=1,j=1 where

Ai,j = ri,jP +X1. (3.6)

2. Compute di,j ← H0(Ai,j) for i ∈ [1, n], j ∈ [1, sL].

3. Make lists as follows:

L1 ← {d1,j − e1}sLj=1,

and Li ← {di,j}sLj=1 for i ∈ [2, n].

4. Run the n-sum algorithm on input the n−1 lists {Li}ni=1 to obtain {di,ji}ni=1 s.t. Eq.

(3.3) holds.

5. Output {(di,ji , ri,ji , Ai,ji)}ni=1.

Correctness

Now we confirm the correctness of the above attack procedure. For an output of F ,
(z∗, {Ai}ni=1) and {(Xi, xi,m

∗
i )}ni=2, we have the following equations hold:
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z∗P +
n∑

i=1

eiXi

= (−
n∑

i=2

xiei +
n∑

i=1

ridi)P + e1X1 +
n∑

i=2

eixiP (from,Eq.(3.5))

=
n∑

i=1

ridiP + e1X1

=
n∑

i=1

ridiP +

(
n∑

i=1

di

)
X1 (from Eq.(3.3))

=
n∑

i=1

di(riP +X1)

=
n∑

i=1

diAi (from Eq.(3.6)).

3.2.1 Computational Complexity

By using Wagner’s k-tree algorithm, Step 4 of n-sum Attack Procedure takes at

most O
(
n2log q/(1+log n)

)
time. In addition, in Main Procedure, there are n − 1 expo-

nentiations and n computations of the hash function in Steps 1 and 3, respectively. Also,

in n-sum Attack Procedure, there are respectively n× sL exponentiations and n× sL

computations of the hash function in Steps 1 and 2 where sL is 2log q/(1+log n).

A value of n2log q/(1+log n) is minimized when n = 2
√
log q−1. In particular, assuming that

the bit-length of q is 256-bits, the running time of the above forger is minimized to O(231)

when n is approximately 215. In this parameter (i.e., n = 215), the number of cosigners

should be fixed to 215 − 1 and cannot be chosen flexibly. Instead, if we want to reduce

the number of cosigners, we can mount the above attack with a smaller n at the cost

of much time and space complexity. In the reality of the Bitcoin system, n is about 212

and the time complexity is about O(232). Note that this complexity is almost the same

as the optimal. Fig. 3.1 shows the relation between n2log q/(1+log n) and log n, namely, the

one between the complexity of an n-sum algorithm and the number of signers.

3.2.2 Impact in the Implementation

The sub-exponential time forger is not fatal theoretically. But our forger breaks the

primary advantage of sAS scheme from EC groups. Specifically, in order to guarantee the
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security against our attack, the aggregate Γ-signature scheme requires the bit-length of

the order of an underlying group to be approximately log n times the security parameter

where n is the number of signers. In contrast, for most other schemes based on general

EC groups, the bit-length of the order of the underlying group is only twice as long as

the security parameter (due to the ρ-method [Pol78]).

Figure 3.1: Complexity of an n-sum algorithm where log q = 256.

3.3 Inapplicability in Bitcoin System

In this section, we explain that our forger is not a threat in the Bitcoin system and

two countermeasures to obstruct our forger. First, we roughly describe the background

of Bitcoin and the blockchain. After that, we show the real impact of our forger in the

Bitcoin system and two countermeasures.

3.3.1 Blockchain

Blockchain is one of the technologies for realizing Bitcoin which is a cryptocurrency

scheme introduced by Satoshi Nakamoto [Nak08]. This allows managing a ledger, guaran-

teeing unforgeability, and achieving decentralization. Namely, nobody can tamper with

transactions that are managed by a publicly verifiable distributed ledger without reliable

administers. Blockchain is gathering attention globally in recent years due to the increas-

ing popularity of Bitcoin and is applied not only to a cryptocurrency but also to other

industries.



Chapter 3 Cryptanalysis of Aggregate Γ-Signature 22

In Bitcoin, the EC-DSA signature scheme [JMV01] over the secp256k1 curve [Res10]

is used to authenticate transactions. The size of signatures and verification time are

important terms for designing the Bitcoin system because Bitcoin nodes need to verify

all updates to the ledger. Because of the non-linearity of the EC-DSA signature, it

is hard to combine signatures into a compact one while keeping verifiability, and thus

transactions contain a concatenation of all individual signatures. Namely, the signature

size depends on the number of signatures and the signatures occupy a large part of the size

of Bitcoin transactions. Recently, there are interests in deploying the Schnorr signature

scheme [Sch01] in Bitcoin instead of the EC-DSA signature scheme in terms of linearity,

well-established security, and small computational complexity. Specifically, the linearity

of the Schnorr signature helps extensions to multi-signatures [BN06, MPSW18, BDN18].

AS can also overcome the above bottlenecks of blockchain, and to construct a sAS

scheme based on the Schnorr signature scheme is gathering attention. But most intuitive

schemes from such the scheme are cannot prove secure based on the standard computa-

tional assumption. Zhao showed the subtlety in constructing a secure sAS scheme from

general EC groups [Zha19].

3.3.2 Real Impact in Bitcoin System and Countermeasures

Our proposed forger is not fatal in the Bitcoin system because it can be detected easily.

The full nodes (where the miner is a special kind of full nodes) check the validity of all

individual signatures and transactions which are submitted and broadcast to all full nodes

by remitters and add pairs of individual signatures and transactions to the transaction

pool if that pairs are valid. Our forger can generate forgery of an aggregate signature,

however our forger cannot generate valid individual signatures. Thus in the case where the

remitter launches our attack, forgery is detected by full nodes and honest miners because

the remitter needs to send invalid individual signatures to all nodes. Also a mined block

is broadcasted to all full nodes by the miner who won the proof-of-work (PoW) hashing

and is verified the validity of the transactions and individual signatures contained in

the mined block by checking whether they appear in the transaction pool. Therefore, a

forgery and a victim transaction generated by a malicious miner can be detected easily by

full nodes. Also, the malicious miner needs to execute not only sub-exponential time our

attack but also the PoW hashing which requires high computational power to complete.

So, exploiting our forger in Bitcoin system is computationally expensive and infeasible.

We also prevent our attack by modifying the algorithms of the aggregate Γ-signature

scheme and Bitcoin system. More concretely, we add the nonce in the last confirmed
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block to the input of H0. Then, a forger needs to complete to generate a forgery in the

limited short time (e.g., ten minutes) since it requires obtaining such a nonce to launch

our attack.

For more detail of the real impact and countermeasures, see Section 5 in [HOS+20].



Chapter 4

Aggregate Signatures with

Pre-Communication

Boneh et al. proposed the first pairing-based sAS scheme. This scheme can achieve

a constant signature size and the non-interactive aggregation. On the other hand, it

requires the assumption in groups with the bilinear map and the costly computation

in the verification. Specifically, since the weakness of the pairing-based problems are

discovered [KB16, Gui20], we need to use the pairing group of which the size is the

75% larger than the initial recommendation of the parameter (e.g., 448-bit for 128-bit

security).

Zhao proposed an sAS scheme from general EC curves based on the hardness of the non-

standard computational problem, the non-malleable discrete logarithm (NMDL) prob-

lem [Zha19]. However, we present the cryptoanalysis of this scheme in the previous

chapter. Constructing pairing-free AS schemes with the security based on the standard

computational assumption is important from both practical and theoretical points of

view.

In this chapter, we propose an aggregate signature scheme with pre-communication

which is the interaction before deciding the messages to be signed. Also, we prove this

scheme secure based on the discrete logarithm assumption in the KOSK model. Due

to the pre-communication, our scheme has the offline-online feature, namely, the signing

algorithm consists of the only lightweight computation. The size of the aggregate signa-

ture depends on the number of the signers linearly. The linear component is the element

with the same bit-length as the security parameter. For more detail of the feature of our

scheme, see the comparison in Section 4.3.

24
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4.1 Aggregate Signatures with Pre-Communication

4.1.1 Definition

Particularly, we introduce a model where, before signing, each signer communicates

with the aggregator and shares information in advance, which we hereafter call helper

information. Note that the communication in this model is the n-to-one communication

between all signers and the aggregator where n is the number of signers. We now describe

the definition of aggregate signature (AS) with pre-communication (PreCom) below. We

illustrate pre-communication and aggregation in Fig.4.1.

Definition 4.1.1 (AS with PreCom) An AS with PreCom consists of the following

five algorithms and one protocol. Let n be the number of signers and let i be the index of

a signer.

Setup(1λ)→ pp. The public parameter generation algorithm takes as input a security

parameter 1λ, then it outputs a public parameter pp.

KeyGen(pp)→ (pk , sk). The key generation algorithm takes as input a public parameter

pp, then it outputs a public key pk and a secret key sk.

PreCom⟨S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}ni=1)⟩
→ (h̃1, . . . , h̃n, z).

The pre-communication proto-

col is executed between each signer Si with input a public key pk i and a secret key

sk i and an aggregator AG with input all the signers’ public keys {pk i}ni=1. After

the protocol terminates, each Si and AG obtain h̃i and z as helper information,

respectively.

Sign(pp, pk , sk , h̃,m)→ σ. The signing algorithm takes as input a public parameter pp,

a public key pk, a secret key sk, helper information h̃, and a message m, then it

outputs a signature σ.

Agg(pp, z, {(pk i,mi, σi)}ni=1)→ σa. The aggregation algorithm takes as input a public

parameter pp, helper information z, and a set of all signers’ public keys, messages,

and signatures {(pk i,mi, σi)}ni=1, then it outputs an aggregate signature σa.

AggVer(pp, {(pk i,mi)}ni=1, σa)→ {0, 1}. The aggregate signature verification algorithm

takes as input a public parameter pp, a set of all signers’ public keys and messages

{(pk i,mi)}ni=1, and an aggregate signature σa, then it outputs 0 (REJECT) or 1

(ACCEPT).
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For any set of messages {mi}ni=1, if all signers and an aggregator behave honestly, then

Pr[AggVer(pp, {(pk i,mi)}ni=1, σa) = 1] = 1 holds.

Figure 4.1: Aggregate Signature with Pre-Communication: The arrows that denote the

communication are simplified to one round communication as in the proposed scheme in

this paper. In our model, we do not restrict the number of rounds to one.

Security Model of AS with PreCom. Below, we show the definition of existential

unforgeability under the chosen-message attack to AS with PreCom in the RO model and

KOSK model. This security definition requires that it be infeasible to forge aggregate

signatures involving at least one honest signer. In the security model here, as a forger

F , we consider aggregators who corrupt signers except for one honest signer. Also the

forger F can execute the pre-communication and the aggregation protocols with an honest

signer several times, and after that, it tries to output a forgery. Then the forger F can

arbitrarily choose the corrupted cosigners’ public keys even though it must output secret

keys corresponding to these public keys.

Formally, the security model here is defined by the three-phase game of the following.

Setup. The challenger chooses the parameter pp ← $ Setup(1λ) and the key pair

(pk , sk)←$ KeyGen(pp). It runs a forger F on input pk and pp.
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Signing Queries. The challenger receives (j, ij) as a PreCom signing query. The chal-

lenger and F execute the pre-communication protocol PreCom⟨S1(pk1, sk1), . . . ,
Sn(pkn, skn),AG({pki}ni=1)⟩ → (h̃1, . . . , h̃n, z) where the challenger behaves as

Sij(pk , sk) and all the other parties are controlled by F . Then, the challenger

obtains the helper information h̃ij and stores this information with the PreCom

signing query. The challenger receives (j,m′) as a message signing query. It reads

out h̃ij and computes σ′
j ← Sign(pp, pk , sk , h̃ij ,m

′). The challenger returns σ′
j to

F . F is allowed to concurrently make any number of above queries where it is

allowed to make only one message signing query per one PreCom signing query.1

Output. After F terminates, it outputs n key pairs {(pki, ski)}ni=1, a set of messages

{m∗
i }ni=1, and a forgery σ∗

a where the following holds.

• {pki}ni=1 is distinct to each other.

• pk ∈ {pki}ni=1.

• skk is ⊥ where k is such that pkk = pk.

If AggVer(pp, {(pk i,m
∗
i )}ni=1, σ

∗
a) = 1 is true and m∗

i has never been queried where

i is such that pki = pk, then F is said to succeed in forgery.

Definition 4.1.2 Let N be a maximum number of cosigners being involved in the forgery.

We say that F (t, qS, qH , N, ε)-break AS with PreCom if F runs in at most t time, makes

at most qS signing queries and at most qH random oracle queries, and succeeds in forgery

in the above game with probability at least ε. For an AS scheme with PreCom, if there

are no F that (t, qS, qH , N, ε)-breaks it, we say the scheme is (t, qS, qH , N, ε)-secure.

4.2 Proposed Scheme PCAS and Security Proof

In this section, we propose the AS scheme with PreCom PCAS based on the discrete

logarithm assumption in the RO model and the KOSK model. This scheme is an ex-

tension of the Schnorr signature scheme to aggregate signatures. We introduce the pre-

communication to share information to aggregate between all signers and an aggregator

without the communication in the signing phase.

1This restriction is essential. If this restriction is omitted, there is an attack against our proposed

scheme. See Remark 4.2.1 for more detail.
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4.2.1 The Algorithms and Protocol of PCAS

Below, we now show the algorithms and protocol of PCAS.

Setup(1λ)→ pp. It chooses (G, q, g), a hash function H : {0, 1}∗ → Zq, and a parameter

κ, then it outputs pp = (G, q, g,H, κ).

KeyGen(pp)→ (pk , sk). It computes x←$ Zq and X ← gx, then it outputs the public

key pk = X and the secret key sk = x.

PreCom⟨S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}ni=1)⟩
→ (h̃1, . . . , h̃n, z).

For all i ∈ [1, n], firstly, each

signer Si computes ri ←$ Zq and Ri ← gri and sends Ri to the aggregator. The

aggregator generates R̃ ←
∏n

i=1 Ri from given {Ri}ni=1, and returns R̃ to all the

signers. Each signer Si and the aggregator store h̃i = (ri, R̃) and z = R̃ as the

helper information, respectively.

Sign(pp, pk , sk , h̃,m)→ σ. It chooses a value t ←$ {0, 1}κ at uniformly random, com-

putes c ← H(R̃,X, t,m) and s ← cx + r mod q, then it outputs σ = (s, t) as a

signature.

Agg(pp, z, {(pk i,mi, σi)}ni=1)→ σa. It computes s̃ ←
∑n

i=1 si mod q, then it outputs

the aggregate signature σa = (s̃, {ti}ni=1, R̃).

AggVer(pp, {(pk i,mi)}ni=1, σa)→ {0, 1}. If {pki}ni=1 are not distinct to each other, it

outputs 0. For all i ∈ [1, n], it computes ci ← H(R̃,Xi, ti,mi). If R̃ = gs̃
∏n

i=1 X
−ci
i

holds, then it outputs 1. Otherwise it outputs 0.

For the verification formula, it holds that gs̃
∏n

i=1 X
−ci
i = g

∑n
i=1 xici+rig−

∑n
i=1 xici = g

∑n
i=1 ri

= R̃. Thus, an aggregate signature is accepted with probability 1 when it is generated

honestly.

Remark 4.2.1 Note that already used helper information cannot be reused because the

adversary can obtain two distinct signatures generated from the same helper information

and extract a secret key by exploiting the special soundness property. Using a secure

channel in the pre-communication is not necessary to guarantee the unforgeability in

the security model in Section 4.1.1. This is because we suppose that any forger who

can corrupt all cosigners and execute the pre-communication maliciously. Moreover, in

the aggregation phase, if several signers fail to participate in this phase, the protocol

terminates, and it should be restarted from pre-communication.
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4.2.2 The Security of PCAS

The random value t is crucial to prove our scheme secure based on the DL assumption

in the RO model. Now we consider the scheme which is omitted t from the proposed

scheme. In a security proof, a reduction needs to simulate an honest signer whose public

key is Y . The intuitive way to simulate it is as follows: after receiving a PreCom signing

query, the simulator first generated (R′, s′, c′) by using the honest-verifier zero-knowledge

(HVZK) property, and returns R′ to a forger. Final of the pre-communication phase, the

simulator obtains and stores cosigners’ public keys and the information R̃ and (R′, s′, c′).

After that, it is given a message m′ as a message signing query from the forger and needs

to assign c′ to H(R̃′, Y,m′) in the RO table. However, a forger can prevent this simulate

from assigning c′ by making a RO query H(R̃′, Y,m′) between the pre-communication

phase and the signing phase because it can know all input (R̃′, Y,m′) of the hash function

H before the simulator. To circumvent this difficulty, we added the fresh nonce t in the

input of the hash function. For the case of PCAS, the simulator chooses the nonce t′ in

the signing phase and can assign c′ to H(R̃′, Y, t′,m′) in the RO table because a forger

can no longer guess t′ and cannot make the hash query H(R̃′, Y, t′,m′) between the two

phases.

Also, we use the KOSK model to compute the solution of the DL problem, namely the

discrete logarithm of Y . Specifically, the reduction obtains two forgeries by rewinding and

tries to extract the discrete log of Y by dividing those formulae satisfied such forgeries.

But the terms related to cosigners become the obstacle to extract the solution because

it does not know the cosigners’ secret keys corresponding to the cosigners’ public keys

which are chosen freely by a forger. By using the KOSK model, the reduction can obtain

the cosigners’ secret key and compute the solution of the DL problem.

The following theorem states that PCAS is secure under the discrete logarithm assump-

tion on the security model in Definition 4.1.2.

Theorem 4.2.1 If there is a forger F that (t, qS, qH , N, ε)-breaks PCAS in the model of

Definition 4.1.2, then there is an algorithm B that (t′, ε′)-breaks DL such that

ε′ ≥ ε2

qH + 1
− qS(2qH + qS − 1)

(qH + 1)2κ
− 1

q
,

t′ ≤ 2t+ 2qStexp +O(qH + qS + 1),

where texp is the time for an exponentiation in G and we assume that κ = λ.

Proof 4.2.1 We first show the construction of the algorithm B which can solve the DL

problem using the forger F . B is given an instance of the DL problem Y and a parameter
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(G, q, g).

To construct B, let A be the algorithm as follows. On inputs (G, q, g, Y ), h1, . . . ,

hqH+1 ∈ Zq, and a random tape ρ, A runs F on inputs (G, q, g) and Y as an honest

signer’s public key. It initializes counters ctr 1 = 1, ctr 2 = 0 and tables T [·], L[·] to be

empty, where T [·] is a random oracle table and L[·] is a table that stores helper information

of PreCom for signing queries. It responds to F ’s hash queries and signing queries as

follows.

Hash Query H(Q). A query Q is parsed as Q = (R̃,X, t,m). In the case where X = Y ,

A lets T [Q] = hctr1 and ctr1 ← ctr1 + 1 if T [Q] is undefined. In the case where

X ̸= Y , A lets c←$ Zq, T [Q]← c if T [Q] is undefined. It returns T [Q].

Signing Query. Firstly, when A receives the signal to start PreCom, it sets ctr 2 ←
ctr 2 + 1, chooses s′, c′ ←$ Zq, computes R′ ← gs

′
Y −c′ , and sends R′ to F . After

that, when A is given R̃′ from F , A assigns L[ctr 2]← (s′, c′, R̃′).

When receiving a query (m′, J), A sets M ′ ←M ′∪{m′} and reads L[J ]. It returns

⊥ to F if L[J ] is empty. A chooses t′ ←$ {0, 1}κ and sets Q′ = (R̃′, Y, t′,m′). It

sets bad ← true and halts with output ⊥ if T [Q′] is already defined. Otherwise it

assigns T [Q′]← c′, empties L[J ] and returns (s′, t′) to F .

Finally, F outputs {X∗
i }n

∗
i=1 which is the set of public keys including Y , {x∗

i }i∈[1,n∗]\{k}

which is the set of secret keys corresponding to the public keys except Xk such that Y =

Xk, the set of messages {m∗
i }n

∗
i=1, and a forgery (s̃∗, {t∗i }n

∗
i=1, R̃

∗). A checks whether m∗
k /∈

M ′ and AggVer(pp, {(X∗
i ,mi)}n

∗
i=1, (s̃

∗, {t∗i }n
∗

i=1, R̃
∗)) = 1 holds, and it outputs ⊥ if not.

Otherwise A outputs (I, {(Xi, xi)}i∈[1,n]\{k}, (s̃∗, {c∗i }n
∗

i=1, R̃
∗)) where c∗i = T [R̃∗, Xi, t

∗
i ,m

∗
i ]

and I is the index such that hI = T [R̃∗, Y, t∗k,m
∗
k].

B obtains the following two sequences by rewinding A according to the Bellare-Neven

general forking lemma in Lemma 2.3.1.

(I(1), {(X(1)
i , x

(1)
i )}i∈[1,n(1)]\{k(1)}, (s̃

(1), {c(1)i }n
(1)

i=1 , R̃
(1)))

(I(2), {(X(2)
i , x

(2)
i )}i∈[1,n(2)]\{k(2)}, (s̃

(2), {c(2)i }n
(2)

i=1 , R̃
(2)))

s.t. R̃(1) = R̃(2) ∧ I(1) = I(2) ∧ c
(1)

k(1)
̸= c

(2)

k(2)

Since the above sequences satisfy the verification formula, we have

R̃(1) = gs̃
(1)

n(1)∏
i=1

X
(1)
i

−c
(1)
i

and R̃(2) = gs̃
(2)

n(2)∏
i=1

X
(2)
i

−c
(2)
i
.
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By R̃(1) = R̃(2), dividing the above two equations gives

Y c
(1)
k −c

(2)
k

= gs̃
(1)−s̃(2)

∏
i∈[1,n(1)]\{k(1)}

X
(1)
i

−c
(1)
i

∏
i∈[1,n(2)]\{k(2)}

X
(2)
i

c
(2)
i
.

Therefore, finally B outputs

s̃(1) − s̃(2) −
∑

i∈[1,n(1)]\{k(1)}

x(1)

i c(1)i +
∑

i∈[1,n(2)]\{k(2)}

x(2)

i c(2)i

c(1)
k(1)
− c(2)

k(2)

mod q (4.1)

as the solution y to the instance Y of the DL problem.

B succeeds in outputting y if and only if it succeeds in forking A. Let frk be the

probability of succeeding in forking A, and then the success probability ε′ of B is equal

to frk . Let acc be the probability that A outputs the sequence. We have

acc = Pr[bad ̸= true ∧ Fsucceed ]

≥ Pr[Fsucceed ]− Pr[bad = true].

The event bad = true happens when A cannot set H(R̃′, Y, t′,m′) ← c′ in the random

oracle table due to a predefined H(R̃′, Y, t′,m′). F can cause this event by guessing t′

which is the part of a signature that the signing oracle returns. How F maximizes the

probability of causing this event is as follows. Firstly, for a hash query Q = (R̃′, Y, t′,m′),

F fixes R̃′, Y , and m′ and queries qH times with t′ different from each other. After that,

F makes qS signing queries by using R̃′ and m′. Let Hitf be the event that bad = true

is happened in the fth time signing query. Note that one new row in the random oracle

table is created every time F makes signing query. Then Pr[bad = true] is bounded as

follows.

Pr[bad = true]

= Pr[Hit1 ∨ Hit2 ∨ . . . ∨ HitqS ]

≤ Pr[Hit1] + Pr[Hit2] + . . .+ Pr[HitqS ]

≤ qH
2κ

+
qH + 1

2κ
+ . . .+

qH + qS − 1

2κ

=
qS(2qH + qS − 1)

2κ+1
.

Thus we obtain

acc ≥ ε− qS(2qH + qS − 1)

2κ+1
.
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By Lemma 2.3.1, we have

ε′ = frk ≥ acc

(
acc

qH + 1
− 1

q

)
≥ acc2

qH + 1
− 1

q

=
1

qH + 1

(
ε− qS(2qH + qS − 1)

2κ+1

)2

− 1

q

≥ ε2

qH + 1
− qS(2qH + qS − 1)

(qH + 1)2κ
− 1

q
.

The running time t′ of B is twice as the running time t of F plus O(qH + qS + 1) time

needed to answer hash queries plus 2qStexp time because each signing query involves two

exponentiation in G. 2

The Restriction on the Public Keys. For PCAS, all signers’ public keys need to

be distinct from each other. The reason is as follows. In the security proof, if several

cosigners are having the same public key as an honest signer, the denominator of Eq. (4.1)

is
∑

i∈[1,n(1)] s.t. Y=X
(1)
i

c
(1)
i −

∑
i∈[1,n(2)] s.t. Y=X

(2)
i

c
(2)
i . In this situation, we cannot know

whether this denominator is not equal to 0 only from condition c
(1)
1 ̸= c

(2)
1 .

4.2.3 The Attack against PCAS with t in the Plain PK Model

Unfortunately, there is a sub-exponential time rogue-key attack against PCAS in the

plain PK model. This forger is a universal forger under a key-only attack. In this sense,

the KOSK model is essential for the security of PCAS.

We now show a forger F on input pk = X1 as challenge key and a message m∗
1 who

succeeds in attacking PCAS in the plain PK model by using the k-sum algorithm. The

goal of this forger is to output a forgery on m∗
1 without making signing query. This will

be done by making at most k · sL hash queries, no signing query and running as follows.

1. F embeds X1 in the public key pk 1. For i ∈ [2, k], it chooses xi such that X2 =

X1g
x2 , . . . , Xk = X1g

xk which are distinct to each other, and it embeds Xi in the

cosigner’s public key pk i. F chooses r̃ ←$ Zq and compute R̃← gr̃.

2. For each i ∈ [1, k], F chooses mi and sL distinct nonces {ti,j}sLj=1, makes hash queries

(R̃,Xi, ti,j,mi) for all j ∈ [1, sL], and obtains {ci,j}sLj=1 from the hash oracle. After

that, it creates a list Li = {ci,j}sLj=1.

3. F calls the k-sum algorithm with input {Li}ki=1 and obtains {ji}ki=1 such that∑k
i=1 ci,ji ≡ 0 (mod q).

4. F computes s̃ ← r̃ +
∑k

i=2 ci,jixi mod q, then outputs the forgery σa = (s̃, R̃,

{ti,ji}ki=1), the set of public keys {pki}ki=1, and the set of massages {mi}ki=1.
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For the forgery σa = (s̃, R̃, {ti,ji}ki=1) on {mi}ki=1 where ci,ji = H(R̃,Xi, ti,ji ,mi), it holds

that

gs̃
k∏

i=1

X
−ci,ji
i = gr̃+

∑k
i=2 ci,jixiX

−c1,j1
1

k∏
i=2

(X1g
xi)−ci,ji

= gr̃+
∑k

i=2 ci,jixiX
−

∑k
i=1 ci,ji

1 g−
∑k

i=2 ci,jixi

= gr̃ = R̃.

The third equality holds because it holds that
∑k

i=1 ci,ji ≡ 0 (mod q). Hence the above

attack is valid for PCAS in the plain PK model. Note that, in the KOSK model, F must

output the secret keys corresponding to {pk i}ki=2, namely, it must extract the discrete

logarithms of {X1g
xi}ki=2. Because it is hard to do these extractions efficiently in general,

this attack dose not work well in the KOSK model.

4.2.4 On the KOSK Model and Its Implementation

We used the KOSK model in the security proof for simplicity and necessity. In practice,

a possible way to implement the KOSK model is to use a proof-of-possession (PoP). The

security of this implementation depends on the security of PoP. For example, we may

consider the case of using the Schnorr signature [Sch89] as PoP. More specifically, if a

signer is required to include the PoP signed by his secret key in his public key, then, in the

security game, a forger outputs the PoP signed by the secret keys behind the cosigners’

public keys, not the secret keys. Since the set of the cosigners’ secret keys is necessary

for the proof of Theorem 4.2.1, proving the security of PCAS with this PoP is not trivial.

A possible way to prove such a scheme secure is applying Bagherzandi-Cheon-Jarecki

generalized forking lemma [BCJ08].

4.3 Performance Comparison among Aggregate Sig-

nature Scheme and Related Schemes

In this section, we compare the proposed scheme PCAS with the Zhao’s aggregate

signature scheme [Zha19], the Bellare-Neven interactive aggregate signature scheme BN-

IAS [BN06] and the concatenation of the individual Schnorr signatures [Sch89].2 These

schemes are constructed based on the Schnorr signature scheme [Sch89]. Note that we

2This scheme has no communication between signers for signing, namely there is no open signing

query. This means that Drijvers et al.’s impossibility cannot be applied to this scheme.
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suppose the situation where these schemes are used for the same purpose of compressing

signatures on different messages into a compact signature. Then, we focus on sharing

messages, communication complexity, computational complexity, withdrawal, the key

setup model, assumptions, and the size of the aggregate signature for the comparison.

Table 4.1 summarizes this comparison.

Necessity of Sharing Messages. On the above purpose, BN-IAS is the multi-signature

scheme used as an aggregate signature scheme. More detail, this scheme generates a

combined signature on different messages by seeing a set of signers’ messages as one

message. Then, all players need to execute the interactive protocols before signing phase.

PCAS, Zhao’s scheme, and the concatenation of Schnorr signatures need not share

messages between all signers. Especially, PCAS requires interactive protocol as PreCom,

however, this interaction is executed in Stage I. Thus, it achieves no sharing messages.

Zhao’s scheme and the concatenation of Schnorr signatures have no interaction protocol.

Communication Complexity. Firstly, let n be the number of signers, and |M | be the

size of a message M . Moreover, we consider the communication complexity including the

cost of one-shot communication from signers to an aggregator for submitting a signature.

For BN-IAS, all signers need to share messages before the signing phase. Also, the sign-

ing protocol requires three-round communication between every two signers. Therefore,

this scheme requires n(n − 1)/2 channels, and the total communication complexity per

channel is 2|M | + 2l0 + 2|G| + 2|Zq| where l0 is the bit-length of the range of the hash

function to produce the commitment to commitment element on the Schnorr signature

scheme. The total communication complexity in aggregation protocol is n(n− 1)(|M |+
l0 + |G|+ |Zq|).
PCAS needs one bidirectional communication to share helper information between sign-

ers and the aggregator in the pre-communication phase. Hence this scheme requires n

channels, and the total communication complexity per channel is 2|G| + |Zq| + κ. Then

the total communication complexity is n(2|G|+ |Zq|+ κ).

Zhao’s scheme has no interactive protocol, so there are only communications for sub-

mitting signatures. Then this scheme requires n channels, and the total communication

complexity is 2n|Zq|.
In the case of the concatenation of Schnorr signatures, there are only communications

for submitting individual signatures. Thus, it requires n channels, and the total com-

munication complexity is 2n|Zq| because a Schnorr signature consists of two elements in

Zq.

The Size of an Aggregate Signature. The size of a signature of BN-IAS is |Zq|+ |G|,
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and hence it is independent of n. The signature size of PCAS is |Zq|+ |G|+ nκ and the

signature size of Zhao’s scheme is |Zq| + n|G|. The size of the concatenation of Schnorr

signatures is 2n|Zq|.

On Asymptotically Linear Signature Sizes of Ours and Zhao Scheme’s. Both ours and

Zhao scheme’s signature sizes depend on n linearly. However, note that both schemes

achieve smaller signature sizes than the size of the concatenation of Schnorr signatures.

Moreover, for the parameter of PCAS, we can pick κ to be equal to the security parameter

λ because we only needed to consider only target collisions for the hash function in the

proof of Theorem 4.2.1. Also, we can have κ ≤ |G| because the order of G is about 22λ

in general. Therefore PCAS can achieve a smaller signature size than Zhao’s scheme.

Computational Complexity. Let texp be the time for an exponentiation in G and let

be th be the time for the generation of one hash value.

Each signer of BN-IAS needs texp+(n+1)th time for signing, and it takes (n+1)texp+nth

time to verify. For Zhao’s scheme, each signer requires texp + 2th time for signing, and

a verifier requires (2n + 1)texp + 2nth time for the verification. PCAS needs texp + th

time for signing per one signer and (n + 1)texp + nth time for the verification. For the

Schnorr signature scheme, a signer requires texp+th time for signing, and a verifier requires

2texp+ th time. Therefore, for the verification of the concatenation of Schnorr signatures,

it requires n(2texp + th) time.

Key Setup Model, Assumptions, and Acceptable Condition. We proved PCAS

secure under the DL assumption in the KOSK model and the random oracle model. This

scheme needs to use a PoP to prove the correct generation of a public key in practical

due to the KOSK model. BN-IAS was proved secure under the DL assumption in the

random oracle model and the plain PK model. Zhao’s scheme was proved secure under

the NMDL assumption in the random oracle model and the plain PK model. Zhao also

showed the hardness of the NMDL problem in the generic group model [Mau05] and

the random oracle model. The Schnorr signature scheme was proved secure under the

DL assumption in the random oracle model. Also, rogue-key attacks are ineffective for

the concatenation of Schnorr signatures because the verification of it executes individual

verification for all individual signatures.

BN-IAS has no restrictions on public keys and messages, namely, we may include dupli-

cate public keys and messages in aggregation. In Zhao’s scheme, an aggregate signature

is not accepted when all signers’ pairs of a public key and a message are not distinct to

each other. In PCAS, the aggregate signature can be accepted at least every public keys

should be distinct.
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Withdrawal. BN-IAS must halt and restart a signing protocol when some signers disap-

pear in the signing phase. Also, PCAS must halt and restart a signing protocol when some

signers fail to participate in an aggregation phase. On the other hand, Zhao’s scheme

and the concatenation of Schnorr signatures can continue the process in such a situation

because each signer generates a signature without any communication.

Table 4.1: Performance Comparison among Aggregate Signature Scheme and Related

Schemes
Scheme BN-IAS [BN06] Zhao [Zha19] PCAS Schnorr [Sch89]

Type IAS standard AS AS with PreCom
concatenation of

individual signatures

No sharing Messages No Yes Yes Yes

Communication

Complexity

(|M |+ l0 + |G|+ |Zq|)
×n(n− 1)

2n|Zq| n(2|G|+ |Zq|+ κ) 2n|Zq|

Signature Size |Zq|+ |G| |Zq|+ n|G| |Zq|+ |G|+ nκ 2n|Zq|
Computational

Complexity for Signing
texp + (n+ 1)th texp + 2th texp + th texp + th

Computational

Complexity for Verifying
(n+ 1)texp + nth (2n+ 1)texp + 2nth (n+ 1)texp + nth n(2texp + th)

Assumption DL NMDL DL DL

Key Setup plain PK plain PK KOSK plain PK

Restriction

in Aggregation
No Restriction Distinct (pk ,m) Distinct pk No Restriction

Withdrawal No Yes No Yes

∗ The row 1 and 2 indicate pairing-free aggregate signature (AS) scheme and related schemes. In row 4 and 5, |M |, |Zq |

and |G| indicate the size of a element in |M |, Zq , and G. Also. n denotes the number of signers, and ℓ0 and κ are specific

parameters on each scheme. Especially, the bit-length of κ is as same as the security parameter in general. The row 6

and 7 show the computational complexity for signing and verifying focused on the time for the exponential in G and the

calculation of hash function. The row 8 and 9 show that the assumption and the key-setup model (cf., the notion of models

in Section 2.4.1) in which each scheme is proved secure, where DL and NMDL indicate the discrete logarithm assumption

and non-malleable DL assumption [Zha19]. The row 10 shows the restriction of all signers’ public keys and/or messages

to be accepted in the verification. The final row shows the possibility of a continuation of the procedure in the case where

signers disappear before the aggregation phase.

Trade-offs among the Four Schemes. We conclude this comparison by saying that

there are trade-offs among the four schemes. BN-IAS achieves the security based on the DL

assumption in the plain PKmodel and the constant signature size. Zhao’s scheme achieves

non-interactive aggregation and is proved secure in the plain PK model. PCAS achieves

the security is based on the DL assumption and a smaller communication complexity than

BN-IAS. The concatenation of the Schnorr signatures achieves the security based on the

DL assumption, and in this case, rogue-key attacks are not effective. As described above,

each scheme has different strong and weak points. Thus it is significant for us to choose



Chapter 4 Aggregate Signatures with Pre-Communication 37

a suitable scheme for an application, and our scheme PCAS provides a new candidate.

For example, for applications where we want no interaction or withdrawal, we should use

Zhao’s scheme or the Schnorr signature scheme. For applications where we can allow

communications and want the security on the well-established assumption, we can use

BN-IAS or PCAS. Especially, BN-IAS and PCAS are suitable if we attach importance to

efficiency in terms of the signature size and the communication complexity, respectively.

4.4 Circumventing of Drijvers et al.’s Impossibility

In this section, we discuss how we avoided Drijvers et al.’s attacks and impossibility

results [DEF+19]. The key to avoiding their attacks and impossibility, though the two-

round protocol is implemented as PCAS, is the use of random value t in the input to the

hash function. We explain this from two viewpoints. The one is that if t is omitted, we

have an attack by adopting Benhamouda et al.’s attack against CoSi [BLOR20], which

is an improvement of Drijvers et al.’s attack against the same scheme, but the existence

of t prevents such an attack (cf., Theorem 4.2.1 in Section 4.2.2). The other is that we

cannot extend the meta-reduction arguments to PCAS.

Review on Drijvers et al.’s and Benhamouda et al.’s Attacks. Here we review

Drijvers et al.’s and Benhamouda et al.’s attacks. While Drijvers et al.’s attacks use a

k-sum solver, Benhamouda et al.’s attack uses an ROS solver. A k-sum solver runs in

sub-exponential time, and their ROS solver runs in polynomial time. This improvement

in time complexity is obtained by allowing more degrees of freedom in the solution of

the problem. Given an integer c∗ and a list of integers, a k-sum solver can find integers

{ci}ℓ−1
i=0 from the given list satisfying

ℓ−1∑
i=0

ci = c∗.

In contrast, given a list of integers, their ROS solver can find integers {ai}ℓ−1
i=0 which

enables us, given an integer c∗, to find integers {ci}ℓ−1
i=0 from the given list satisfying

ℓ−1∑
i=0

aici = c∗.

Here, their ROS solver chooses {ai}ℓ−1
i=0 even from the outside of the set. This freedom in

the choice of {ai}ℓ−1
i=0 enables us to construct a polynomial-time ROS solver.

Note that in the ROS problem, c∗ is determined after {ai}ℓ−1
i=0 are chosen. This depen-

dence between variables complicates the construction of the solver. While this dependence
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among variables is one of the most important techniques of Benhamouda et al.’s ROS

solver [BLOR20], however, their attacks were presented in a monolithic manner. Con-

trasting, for the ease of understanding, we modularize their ROS solver and present our

attack against PCAS without t on top of this modularized ROS solver. This modularized

presentation can be of independent interest.

4.4.1 How to Break PCAS without t in the KOSK Model

We have already explained the necessity of the random value t in terms of the security

proof in Section 4.2.2. Here, we show it again in terms of an attack by constructing a

universal forger who succeeds in attacking PCAS without t in the KOSK model.

Recently, Benhamouda et al. presented an algorithm which can solve the ROS (Random

inhomogeneities in a Overdetermined Solvable system of linear equations) problem [Sch01]

in polynomial time for large enough dimensions, and they proposed polynomial-time forg-

ers against Schnorr blind signature scheme, a multi-signature scheme CoSi [STV+16], and

so on [BLOR20]. The construction of PCAS without t is very similar to CoSi. Therefore,

it is natural for us to apply the ROS attack to PCAS without t, and we will confirm that

it is possible. Below, we will present a concrete procedure of the polynomial-time forgery

in the case where the number of parallel signing sessions is larger than log q. This number

of sessions is essential for the attack.

Our attack employs as a subroutine the attack against the ROS assumption by Ben-

hamouda et al. In addition, our attack is in the KOSK model, and corrupts one cosigner.

These are similar to the attack against CoSi.

To motivate the necessity of the ROS attack, we first explain an overview of our attack

against PCAS without t.

We first specify the goal of this attack. Let F be a forger with input X0 as a challenge

key, and let X1 be the cosigner’s public key chosen by F . F tries to output (R̃∗, s̃∗),

(m∗
0,m

∗
1), and x1 s.t. X1 = gx1 and R̃∗ = gs̃

∗
X

−c∗0
0 X

−c∗1
1 , which is the verification equation,

where c∗0 = H(R̃∗, X0,m
∗
0) and c∗1 = H(R̃∗, X1,m

∗
1). Because F must open the cosigner’s

secret key x1 due to the KOSK model, it generates X1 honestly. Then, notice that, if F
can obtain (ŝ, R̃∗,m∗

0) s.t.

ŝ ≡ logg R̃
∗ + c∗0 logg X0 (mod q), (4.2)

it can compute s̃∗ ← ŝ+c∗1x1 and succeed in forgery. Thus, F aims at obtaining (ŝ, R̃∗,m∗
0)

s.t. Eq. (4.2).

Here, we review the process of the signing query. In the pre-communication phase, first
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F receives R′ from the signing oracle Σ and sends helper information R̃′ to Σ. In the

signing phase, F sends m′ as a query to Σ and finally obtains a valid signature s′ from

Σ s.t.

s′ ≡ logg R
′ + c′ logg X0 (mod q) (4.3)

where c′ = H(R̃′, X0,m
′). Note that, after receiving R′ from Σ, F can know a value c′

by making a hash query (R̃′, X0,m
′) before sending R̃′ to Σ in the pre-communication

phase, and it can force Σ to use c′ of F ’s choice through m′ and R̃′.3

In this attack, F executes ℓ signing queries in parallel. Let m′
i be a message queried in

ith message signing queries, and let s′i and R′
i be responses of ith signing query. For all

i ∈ [0, ℓ− 1], these satisfy

s′i ≡ logg R
′
i + c′i logg X0 (mod q) (4.4)

where c′i = H(R̃′
i, X0,m

′
i). From this equation, if F can find R̃∗ and m∗

0 that have some

a0, . . . , aℓ−1 satisfying

(i) R̃∗ =
ℓ−1∏
i=0

R′ai
i and

(ii) H(R̃∗, X0,m
∗
0) =

ℓ−1∑
i=0

aiH(R̃′
i, X0,m

′
i),

then by computing ŝ ←
∑ℓ−1

i=0 ais
′
i mod q, F can make Eq. (4.2) hold. Thus, to obtain

(ŝ, R̃∗,m∗
0) satisfying Eq. (4.2), it is sufficient for F to make both (i) and (ii) hold.

First, F makes the set of pairs of two distinct elements {(c′(0)i , c
′(1)
i )}ℓ−1

i=0 by making hash

queries c
′(0)
i = H(R̃

′(0)
i , X0,m

′
i) and c

′(1)
i = H(R̃

′(1)
i , X0,m

′
i) for each i ∈ [0, ℓ− 1]. Second,

it generates {ai}ℓ−1
i=0 satisfying the following property (P):

(P): for all c∗ ∈ Zq, one can efficiently find a set of bits {bi}ℓ−1
i=0 such that

ℓ−1∑
ℓ=0

aic
(bi)
i ≡ c∗ (mod q). (4.5)

F initiates ℓ signing queries and receives {R′
i}ℓ−1

i=0 from Σ in the pre-communication

phase. Third, F can makes (i) hold by computing R̃∗ ←
∏ℓ−1

i=0 R
′ai
i . F obtains c∗0 =

H(R̃∗, X0,m
∗
0) by querying the hash oracle. Exploiting the property (P), it obtains {bi}ℓ−1

i=0

such that c∗0 ≡
∑ℓ−1

i=0 aic
′(bi)
i (mod q), and then (ii) holds. Finally, F forces Σ to use c

′(bi)
i

3Here, we exploit open signing queries.



Chapter 4 Aggregate Signatures with Pre-Communication 40

by sending R̃
′(bi)
i , and obtains {s′i}ℓ−1

i=0 such that s′i ≡ logg R
′
i + c

′(bi)
i logg X0 (mod q) for

i ∈ [0, ℓ− 1]. The result shows that F obtains ŝ←
∑ℓ−1

i=0 ais
′
i mod q satisfying Eq. (4.2).

Therefore, F succeeds in forgery in the KOSK model.

To find {ai}ℓ−1
i=0 satisfying the property (P), we exploit the technique of the ROS attack

as follows. For ℓ > log q, when Benhamouda et al.’s ROS solver is given the set of pairs of

two distinct elements in Zq {(c(0)i , c
(1)
i )}ℓ−1

i=0 , it can obtain {ai}ℓ−1
i=0 satisfying the property

(P).

Below, we show the concrete procedure of F on input a challenge key X0, making ℓ

signing queries in parallel and 2(ℓ+ 1) hash queries.

1. F chooses {m′
i}ℓ−1

i=0 used for message signing queries.

2. For each i ∈ [0, ℓ − 1], F chooses distinct R̃
′(0)
i and R̃

′(1)
i , makes hash queries

(R̃
′(0)
i , X0,m

′
i) and (R̃

′(1)
i , X0,m

′
i), and obtains c

′(0)
i and c

′(1)
i . If c

′(0)
i = c

′(1)
i holds,

it starts over from choosing R̃
′(0)
i and R̃

′(1)
i .

3. F executes the subroutine ROS1({(c′(0)i , c
′(1)
i )}ℓ−1

i=0) and obtains {ai}ℓ−1
i=0 .

4. F initiates ℓ signing queries in parallel. Then it receives {R′
i}ℓ−1

i=0 from the oracle Σ

and sets R̃∗ ←
∏ℓ−1

i=0 R
′ai
i . Note that Eq. (i) holds.

5. F chooses any m∗
0 used as a forged message and obtains c∗0 by making a hash

query (R̃∗, X0,m
∗
0). Note that F is a universal forger. It executes the subrou-

tine ROS2({(c′(0)i , c
′(1)
i )}ℓ−1

i=0 , {ai}ℓ−1
i=0 , c

∗
0) and obtains {bi}ℓ−1

i=0 . From Eq. (4.5), F can

obtains {R̃′(bi)
i }ℓ−1

i=0 which makes Eq. (ii) hold.

6. For each i ∈ [0, ℓ− 1], F gives R̃
′(bi)
i and m′

i to Σ and obtains the valid signature s′i

satisfying s′i ≡ logg R
′
i + c

′(bi)
i logg X0 (mod q). Then, it sets ŝ ←

∑ℓ−1
i=0 ais

′
i mod q

and obtains ŝ satisfying Eq. (4.2).

7. F chooses cosigner’s secret key x1 and computes X1 ← gx1 . F chooses a message m∗
1

and obtains c∗1 by making the hash query (R̃∗, X1,m
∗
1). It computes s∗ ← ŝ + c∗1x1

mod q, and then outputs the forgery σa = (s∗, R̃∗), the set of keys {(X0,⊥), (X1, x1)},
and the set of massages {m∗

0,m
∗
1}.

The ROS solver by Benhamouda et al. [BLOR20] is consisted of the two subroutines

ROS1 and ROS2 with the review based on our modular treatments as follows.

ROS1 :

Input {(c(0)i , c
(1)
i )}ℓ−1

i=0 s.t. c
(0)
i , c

(1)
i ∈ Zq, c

(0)
i ̸= c

(1)
i for i ∈ [0, ℓ− 1].

Step 1 For i ∈ [0, ℓ− 1], compute ai ← 2i

c
(1)
i −c

(0)
i

mod q.

Step 2 Output {ai}ℓ−1
i=0 .
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ROS2 :

Input {(c(0)i , c
(1)
i )}ℓ−1

i=0 s.t. c
(0)
i , c

(1)
i ∈ Zq, c

(0)
i ̸= c

(1)
i for i ∈ [0, ℓ− 1], {ai}ℓ−1

i=0 , and c∗.

Step 1 Compute c← c∗ −
∑ℓ−1

i=0 aic
(0)
i mod q.

Step 2 Write c in binary as c =
∑ℓ−1

i=0 2
ibi.

Step 3 Output {bi}ℓ−1
i=0 .

Correctness The output {bi}ℓ−1
i=0 of the subroutine ROS2 satisfies the following equation

because of Step 2 of ROS2:

ℓ−1∑
i=0

2ibi = c.

Note that
c
(bi)
i −c

(0)
i

c
(1)
i −c

(0)
i

is equal to 0 or 1 if bi is equal to 0 or 1, respectively. By apply this

to the above equation and since c ≡ c∗ −
∑ℓ−1

i=0 aic
(0)
i (mod q), we obtain the following

equations:

ℓ−1∑
i=0

2i
c
(bi)
i − c

(0)
i

c
(1)
i − c

(0)
i

≡ c∗ −
ℓ−1∑
i=0

aic
(0)
i (mod q).

By the definition of ai, we obtain the following equation:

ℓ−1∑
i=0

aic
(bi)
i −

ℓ−1∑
i=0

aic
(0)
i ≡ c∗ −

ℓ−1∑
i=0

aic
(0)
i (mod q).

By deleting the same term in both sides, we obtain

ℓ−1∑
i=0

aic
(bi)
i ≡ c∗ (mod q).

Note that PCAS with t is secure against the above forger F . Let us consider applying

F to PCAS. In signing queries of this case, Σ returns (s′i, t
′
i) satisfying s′i ≡ logg R

′
i +

c
′(bi)
i logg X0 (mod q) where c

′(bi)
i = H(R̃

′(bi)
i , X0, t

′
i,m

′
i). Thus, F needs to make the hash

queries (R̃
′(bi)
i , X0, t

′
i,m

′
i) in Step 2 of the attack procedure. However, F cannot do this

Step because it obtains t′i in Step 6.

4.4.2 Why Meta-Reduction Does Not Work?

In this section, we will explain simply why PCAS can avoid the Drijvers et al. ’s
impossibility from the term of the meta-reduction arguments. For more details, see

Appendix A.
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Meta-reduction Arguments of Drijvers et al.’s Impossibility Result

Drijvers et al. proved that two-round MS schemes, e.g., CoSi [STV+16], BCJ [BCJ08],

MWLD [MWLD10] and MuSig [MPSW18], cannot be proved secure under the OMDL

assumption [PV05] even in the KOSK model. Specifically, they proved that there are

the meta-reductions who can solve the OMDL problem if there are a reductions who

proves the above schemes to be unforgeable in the KOSK model. In this proof, the

meta-reduction needs to solve the OMDL problem by running a black-box reduction and

simulate a forger in order to run such a reduction. The meta-reductions achieves it by

exploiting the open signing queries.

More concretely, the meta-reductions basically simulate a forger by using the DL oracle.

However, there are situations where a reduction force a forger to generate different forg-

eries on the same message and the same commitment element of Σ-protocol [Cra96], e.g.,

the situation where a reduction rewinds a forger. In such situations, if the meta-reduction

accesses the DL oracle for simulating a forger, it cannot solve the OMDL problem be-

cause the number of times to access to the DL oracle is a deficiency. To avoid this, the

meta-reduction exploits the open signing queries to extract a secret key corresponding to

a challenge key given to a forger.

Here, for simplicity, we suppose a black-box reduction R who proves PCAS without

t secure under the OMDL assumption in the KOSK model. Also, we assume that such

situations are caused by R who rewinds a forger F . Then, the meta-reductionM designs

F on input a challenge key X who executes signing queries as follows.

1. F initiates the pre-communication protocol by sending the signal to start PreCom.

F acts as a malicious aggregator and receives R from signing oracle simulated by R.
2. F makes two random oracle queries H(R̃0, X,m) and H(R̃1, X,m) where R̃0 ̸= R̃1

and m is a message used as a message signing query. It checks H(R̃0, X,m) =

H(R̃0, X,m). If it holds, it redoes this step.

3. F makes a random oracle query H(R̃∗, X,m∗) where R̃∗ is a part of a forgery and

m∗ is a message corresponding to a forgery.

4. F chooses b← {0, 1} and sends R̃b as the helper information.

5. F sends m as the message signing query and receives an individual signature s where

the tuple (R,H(R̃b, X,m), s) forms a valid transcript of the Schnorr protocol.

In this case, the rewind point is Step 3. Then, M can obtain two different transcripts

(R,H(R̃0, X,m), s0) and (R,H(R̃1, X,m), s1) on the same commitment element R by

choosing different b before and after rewinding. From these transcripts, M can extract
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the secret key corresponding to the challenge key by the special soundness property.

Inapplicability of Meta-reduction Arguments to PCAS

Now we simply explain why the meta-reduction argument is inapplicable to PCAS. For

PCAS, the different point from the case of PCAS without t is that R returns (s, t) s.t.

R = gsX−H(R̃b,X,t,m). Then, to extract the secret key corresponding to the challenge key,

in Step 2,M needs to guess the random value t chosen by R in Step 5. However, it can no

longer guess t. Therefore, the meta-reduction argument mentioned in the previous section

cannot be applied to PCAS. In terms of the reduction, the reduction can generate only

one transcript related to b = 0 or b = 1 in the case of PCAS without t. But the reduction

of PCAS can submit the answer to signing queries regardless of the helper information

R̃0 or R̃1 because of the random value t. Specifically, the reduction generates a tuple

(R, c, s), where c is the value assigned in the random oracle table, by using the honest-

verifier zero-knowledge property in Step 1. It needs to assign c to H(R̃b, X, t,m) in the

random oracle table in Step 5. H(R̃b, X, t,m) is undefined at the time of Step 5 with the

overwhelming probability because it is hard for the forger simulated by meta-reduction

to guess t. Therefore, by generating t freshly in Step 5, the reduction can assign the same

c before and after rewinding.
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One-Time Aggregate Signature

Bellare and Shoup proposed a one-time signature scheme [BS07]. This signature scheme

is a variant of the Schnorr signature scheme. More concretely, a commitment R is sent

to a verifier by including it to the public key.

In this chapter, we propose a one-time aggregate signature (OTAS) scheme. In the

protocol of the OTAS, all signers are required generating new key pairs each time they

generate a new aggregate signature. Our proposed one-time aggregate signature scheme

OTAS is an extension of the Bellare-Shoup one-time signature scheme. Our scheme

achieves non-interactive aggregation. We prove this scheme secure based on the one-more

discrete logarithm (OMDL) assumption [PV05] and the existence of a collision-resistant

hash function in the KOSK model and the standard model, which does not require the

random oracle.

Moreover, the Bellare-Shoup one-time signature [BS07] is proposed as two-tier signa-

tures. The keys of two-tier signatures consist of a primary key and a secondary key.

A signer can reuse a primary key, but it must regenerate a secondary key every time it

generates a signature. OTAS can be executed like two-tier signatures. In that case we call

it two-tier aggregate signatures. For simplicity, we propose OTAS as one-time aggregate

signatures.

Recently, Boneh and Kim proposed an OTAS scheme [BK20]. This scheme is built

from the Bellare-Shoup one-time signature scheme and achieves the security based on the

DL assumption in the plain PK model and the random oracle model. However, there is

a very large reduction loss, e.g., 1/|M | where |M | is the size of the set of messages. In

contrast, our proposed scheme achieves the tight security though this is in the KOSK

model.

44
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5.1 Proposed Scheme OTAS and Security Proof

The definition is described in Section 2.4.2. Notably, the algorithms constructed OTAS

is as same as conventional aggregate signatures. Below we show proposed OTAS scheme.

5.1.1 The Algorithms of OTAS

OTAS consists of the following algorithms.

Setup(1λ)→ pp. It chooses (G, q, g) and a hash key K ←$ {0, 1}λ, then outputs pp =

(G, q, g,K).

KeyGen(pp)→ (pk , sk). It chooses x ←$ Zq and r ←$ Zq, computes X ← gx and

R← gr, and outputs the public key pk = (X,R), then the secret key sk = (x, r).

Sign(pp, pk , sk ,m)→ σ. It computes c ← H(K,R,X,m) and s ← cx + r mod q, then

outputs σ = s as a signature.

Agg(pp, {(pk i,mi, σi)}ni=1, j)→ σa. It computes s̃a ←
∑n

i=1 si mod q, then outputs

σa = s̃a as an aggregate signature.

AggVer(pp, {(pk i,mi)}ni=1, σa)→ {0, 1}. If {pki} are not distinct to each other, it out-

puts 0. For i = 1, . . . , n, it computes ci ← H(K,Ri, Xi,mi). If
∏n

i=1 Ri =

gs̃a
∏n

i=1 X
−ci
i holds, it outputs 1. Otherwise, it outputs 0.

5.1.2 The Security of OTAS

We explain the security model of OTAS in Section 2.4.2. Note that a forger can make

only one signing query in that model. OTAS is unforgeable under the OMDL assumption

and the existence of a collision-resistant hash function in the KOSK model.

Theorem 5.1.1 If there is a forger F that (t, N, ε)-breaks OTAS, then there are an

algorithm B that (t′, ε′)-breaks 2-OMDL and an algorithm C that breaks the collision

resistance of H such that

ε ≤ ε′ +AdvH(C), t′ ≥ t+ texp +O(1), tC ≥ t+ 3texp +O(1),

where tC is the running time of C and texp is the computation time of a single exponenti-

ation in G.
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Here we use a collision-resistant hash function H : {0, 1}λ × {0, 1}∗ → Zq where the

hash key is K ←$ {0, 1}λ, instead of the random oracle model.

Proof 5.1.1 We first show the construction of the algorithm B which can solve the 2-

OMDL problem using the forger F . B is given a instances of the OMDL problem Y0 and

Y1, chooses K ∈ {0, 1}λ at uniformly random, and gives K and (X,R) = (Y0, Y1) to F as

a hash key and a public key, respectively.

B responds to F ’s signing query as follows.

Signing Query. When receiving a querym′, B computes c′ ← H(K,Y1||Y0||m′). B sends

Y1Y
c′
0 to the oracle DL(·), and after that, it receives s′ from the oracle. Finally, B

returns s′ to F .

When F terminates with a valid forgery, B obtains the set of public keys {(X∗
i , R

∗
i )}ni=1,

the set of secret keys {(xi, ri)}i∈[1,n]\{k}, and the set of messages ({m∗
i }ni=1, s̃

∗) where

(Y0, Y1) ∈ {(X∗
i , R

∗
i )}ni=1, k is the index such that (Y0, Y1) = (X∗

k , R
∗
k), m

∗
k ̸= m′, and

skk is (⊥,⊥). B computes c∗i ← H(K,Ri||Xi||m∗
i ), and it halts if c∗k = c′. Let HC be

the event that c∗k = c′ holds. When F succeeds in forging a signature and HC does not

happen, B computes the discrete logarithm of Y0 as

y0 ←
s̃∗ − s′J∗ −

∑
i∈[1,n]\{k} .(xic

∗
i + ri)

(c∗k − c′)
mod q.

Finally, B outputs (y0, s
′
1 − y0c

′
1) as the solution to the instance of the 2 OMDL prob-

lem. Let SuccF be the event that F succeeds in forging a signature. Then the probability

ε′ that B succeeds is bounded as follows.

ε′ ≥ Pr[SuccF ∧ HC].

Secondly, we show the construction of the algorithm C which can find a collision of

H using a forger F . C is given a hash key K, generates (pk , sk) by KeyGen and runs

F on input the public key pk = (X,R) and a hash key K. C responds to F ’s signing

query by using sk and the signing algorithm. When F terminates with a valid forgery,

C obtains a set of public keys {(X∗
i , R

∗
i )}ni=1, a set of secret keys {(xi, ri)}i∈[1,n]\{k}, and

the set of messages ({m∗
i }ni=1, s̃

∗) where (Y0, Y1) ∈ {(X∗
i , R

∗
i )}ni=1, k is the index such

that (Y0, Y1) = (X∗
k , R

∗
k), m

∗
k ̸= m′ and skk is (⊥,⊥). If SuccF ∧ HC happens, it holds

that H(K,Y1||Y0||m∗
k) = H(K,Y1||Y0||m′) and Y1||Y0||m∗

k ̸= Y1||Y0||m′. Hence C outputs

(Y1||Y0||m∗
k, Y1||Y0||m′) as collision of H when SuccF ∧ HC happens. Otherwise, C halts.

The advantage AdvH(C) is bounded as

AdvH(C) ≥ Pr[SuccF ∧ HC].
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Putting the above two bounds together, we have

ε = Pr[SuccF ] = Pr[SuccF ∧ HC] + Pr[SuccF ∧ HC] ≤ ε′ +AdvH(C).

The running time t′ of B is the running time t of F plus texp time for an exponentiation

in G in a signing query, plus O(1) time for some setup. The running time tC of C is

the running time t of F plus 3texp time for three exponentiations in a signing query and

generating keys, plus O(1) time for some setup. 2

5.2 The Rogue-Key Attack against OTAS

In above section, we proved OTAS secure under the OMDL assumption and the ex-

istence of a collision-resistant hash function in the KOSK model. The KOSK model is

essential for OTAS because there is an effective rogue-key attack. Zhao mentioned a

similar as an ephemeral rogue-key attack in [Zha19]. The procedure of this attack is as

follows. The forger F is given a challenge key pk0 = (X0, R0) and a hash key K.

1. F chooses a message m∗
0 and computes c∗0 ← H(K,R0||X0||m∗

0).

2. F chooses a cosigner’s key pk1 = (X1, R1) = (gx1 , (R0X
c∗0
0 )−1) and a message m∗

1,

and computes c∗1 ← H(K,R1||X1||m∗
1).

3. F computes sa ← x1c
∗
1 mod q, then outputs the set of the public keys {(X0, R0),

(X1, R1)}, the set of messages {m∗
0,m

∗
1}, and the forgery sa.

The above output of F is a valid forgery because it holds that c∗0 = H(K,R0||X0||m∗
0),

c∗1 = H(K,R1||X1||m∗
1), and

gsaX
−c∗0
0 X

−c∗1
1 = gx1c∗1X

−c∗0
0 X

−c∗1
1 R0R

−1
0 = R0R1.

This rogue-key attack is carried out by generating R dishonestly, which is a part of the

public key. In the KOSK model, F cannot apply this attack because it is hard for F to

output the discrete logarithm of R1 = (R0X
c∗0
0 )−1.

5.2.1 On the KOSK Model and Its Implementation

The public key of OTAS consists of two elements in G. Also, we used the KOSK model

to prove OTAS secure. In the implementation, the efficiency of the key-setup reduces

than PCAS because the proof of possession (PoP) is required for each element in the

public key. Moreover, since the security of OTAS is based on the OMDL assumption,
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we cannot rewind a forger in a security proof. Therefore, unfortunately, the security of

OTAS which uses the Schnorr signature as PoP is not clear because it is not necessarily

possible to extract all cosigners’ secret keys from PoP by the Bagherzandi-Cheon-Jarecki

generalized forking lemma [BCJ08] like PCAS. Furthermore, when a signature scheme

used as PoP is secure in the random oracle model, the advantage of proving the security

with the collision-resistant hash function fades out.

5.2.2 Variant Schemes

We can consider some variant schemes for OTAS by changing the input of the hash

function.

There is a rogue-key attack against OTAS by generating R dishonestly (we describe to

the detail in Section 5.2). OTAS can become robust against such an attack by changing

the input R of the hash function to R̃ which is the product of all signers’ R.

Unfortunately, for the above variant scheme, there is an attack in the plain PK model

by using a k-sum algorithm, which is similar to the attack in Section 4.4.1. To defend

against this attack, we can come up with one solution to add a random value to the input

of the hash function like PCAS. In this case, we should use the random oracle model,

not a collision-resistant hash function. This variant scheme is almost as same as PCAS,

and the difference is only the way to share R̃. Because sharing R̃ is required for every

time we generate an aggregate signature, signers need to regenerate Ri as a public key

in each signing. Then this variant is regarded as two-tier aggregate signatures. Also, we

can prove such a scheme secure under the DL assumption without extracting the secret

keys corresponding to all cosigners’ R though R is a part of a public key.



Chapter 6

Conclusion

First, we have shown a sub-exponential time universal forger under a key-only attack

in the KOSK model against a standard aggregate signature scheme [Zha19]. Also we

theoretically analyzed the computational complexity of the proposed forger and explain

the inapplicability in the Bitcoin system.

Next, we have proposed a new paradigm pre-communication and the PCAS scheme

which is constructed based on this new paradigm and proved secure under the standard

DL assumption and the KOSK model. By presenting the concrete rogue-key attack,

we stated that the KOSK model is essential for PCAS. Moreover, we explained that we

avoided Drijvers et al.’s attacks and impossibility results.

Finally, we also have proposed a one-time aggregate signature scheme that was built

from the Bellare-Shoup one-time signature scheme. This scheme was proved secure under

the OMDL assumption and the existence of a collision-resistant hash function in the

KOSK model.
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Future Works

Up to this date, there is still no secure standard aggregate signature scheme from

general elliptic curve groups. Constructing such schemes is an important open problem.

In [BK20], Boneh and Kim mentioned that the techniques of their proposed scheme can

be applied to the partial aggregate signature, which can partially combine individual

signatures like Zhao’s scheme. However, they did not specify the construction of such a

scheme and did not prove the security. Proving the security of such a partial aggregate

signature scheme is also worthwhile future work.

In practice, PCAS and OTAS need the proof-of-possession (PoP) because of their secu-

rity in the KOSK model. Therefore to analyze the security of schemes equipped with a

concrete PoP is also an important research direction.
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Appendix A

Detail of Circumventing the Drijvers

et al.’s Impossibility Results

Here we explain that, fortunately, Drijvers et al.’s impossibility results [DEF+19] fails

to apply to our PCAS scheme (with t).

A.1 Counterintuitiveness on Security of PCAS

The security of PCAS may be counterintuitive for the readers who know the Drijvers et

al.’s impossibility results because of the simplicity and round-efficiency of PCAS. Drijvers

et al. used a meta-reduction technique and argued that it is impossible to prove that many

of the known two-round multi-signature schemes [STV+16, MPSW18, MWLD10, BCJ08]

are secure. The range of the targets of their arguments seems broad enough to cover

PCAS, and thus one may wonder if it is impossible to prove PCAS secure. Moreover,

while Drijvers et al. provided a secure two-round multi-signature scheme named mBCJ,

it is extremely carefully designed to avoid every difficulty posed by their impossibility

results. In contrast to mBCJ, PCAS looks too simple to be secure at first glance. To make

matters even worse, PCAS is an aggregate signature scheme but not a multi-signature

scheme, which makes the situation more complicated. However, despite this impression,

PCAS is secure and avoids the impossibility results.

A.2 Resolving Counterintuitiveness

To resolve this counterintuitiveness, we will explain that PCAS without t is a target

of the impossibility results, and, contrary to this, PCAS itself is not a target. Such an

explanation, given later in Section A.2.2, not only resolves the counterintuitiveness but
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also provides a deeper understanding of the essential reason why our reduction works

correctly. One can argue that if we are convinced of the correctness of the security proof

of PCAS, it is obvious that the meta-reduction technique fails somewhere. However, this

superficial argument does not provide a better understanding of the security of PCAS.

We deepen our understanding by trying to apply the meta-reduction technique to PCAS

and pinpointing where the meta-reduction fails.

Before continuing this discussion, we remind readers of the common strategy of meta-

reduction arguments and how such an argument can be dismissed.

A.2.1 Reviewing Meta-reduction Argument

To observe the impossibility of a reduction-based proof, basically, it is sufficient to find

a carefully designed adversary1 whose queries cannot be responded to correctly by any

reduction. Concretely, if we can observe that simulation against such an adversary is

as hard as solving some assumed-to-be-hard problem, we can conclude that a reduction-

based security proof is impossible. To make this observation precise, a meta-reduction

argument first assumes an arbitrary reduction being able to simulate the oracle even

against the above adversary. Then it constructs a concrete algorithm which solves the

assumed-to-be-hard problem by exploiting the arbitrary reduction’s ability to simulating

the oracle. The point is that the reduction is fixed arbitrarily. By this arbitrariness, any

reduction is excluded from proving the security of the cryptographic scheme in question.

By this means, we can conclude that there is no reduction-based proof of the security of

the scheme.

A.2.2 Dismissing Meta-reduction Argument

Instead, if we want to dismiss the applicability of such an argument, we can provide

the following counterargument. Firstly, we construct a concrete reduction which can

simulate the oracle even against the above adversary (and can prove the security of the

cryptographic scheme in question). Then we confirm that the meta-reduction fails to do

that, if the meta-reduction tries to solving the assumed-to-be-hard problem by exploiting

this reduction’s ability to simulate the oracle. Furthermore, for a deeper understanding,

when we confirm that, it is important to pinpoint where the meta-reduction fails in

its procedure. Typically, it happens because this reduction is carefully designed not

only to correctly simulate the oracle, that is usual for reduction-based security proofs

1Remember the forger described in Section 4.4.1.
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but also to prevent the meta-reduction from exploiting the reduction’s ability to simulate

oracle. Then, the meta-reduction fails to be applied to this reduction, in other words, this

reduction constitutes a counterexample to the generality of the meta-reduction. In this

way, the impossibility argument is dismissed. We remark that for this counterargument,

it is sufficient to construct a certain reduction. This is in contrast to the situation

of arguing the impossibility of a reduction-based proof, where we need to focus on an

arbitrary reduction.

A.3 Case Studies Using PCAS

Below we provide case studies of the above general discussion in Sections A.2.1 and

A.2.2.

A.3.1 Security of PCAS without t Is Unprovable

For providing a case study, let us go back to the discussion on the applicability of the

meta-reduction arguments to PCAS. The explanation below follows the above strategy

mentioned in Section A.2.1.

Towards this end, we remind readers that the following basic (soundness) property of

the Schnorr protocol:

For a fixed commitment R, one not knowing the witness can obtain only a

single challenge c (with a valid response s) where (R, c, s) constitutes a valid

transcript.

Usually, this property is discussed for malicious provers (or forgers) to argue the soundness

of the protocol (or the unforgeability of its Fiat-Shamir transformation). However, in our

context, it is important to observe that this property is also true for reductions. This is

true for reductions because reductions do not know the witness, but can only simulate a

transcript of the Schnorr protocol by the honest-verifier zero-knowledge property.

For PCAS without t, the above property prevents any reduction from simulating the

signing oracle when the reduction interacts with the following carefully designed forger

F . We remind readers that to argue the impossibility, we focus on an arbitrary reduction

which tries to simulate the oracle and to prove the security. Let X be the public key of

the honest signer, and the carefully designed forger F works as follows.

1. The forger F initiates a pre-communication session, and as a malicious aggregator

it receives R from the honest signer;
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2. it queries (R̃0, X,m) and (R̃1, X,m) to the random oracle with R̃0 ̸= R̃1 and m ∈
{0, 1}∗, and confirms that H(R̃0, X,m) ̸= H(R̃1, X,m), which holds with overwhelm-

ing probability;

3. it chooses b← {0, 1}, and sends R̃b to the honest signer as the helper information;

4. it issues a signing query m (with respect to the above helper information R̃b) to

the honest signer and obtains a response s where (R,H(R̃b, X,m), s) forms a valid

transcript of the Schnorr protocol.

Notice that due to the above basic property of the Schnorr protocol, a reduction cannot

responds to this forger’s signing query at least with b = 0 or with b = 1. We remind that

we are considering a reduction which is arbitrarily given and emphasize that this is the

case regardless of how cleverly the reduction computes R submitted by the reduction in

Step 1. This is because otherwise the reduction can compute the discrete logarithm of X

without any help of the forger.

To construct a meta-reduction which solves an assumed-to-be-hard problem, this F is

essential. We make use of F and construct a concrete meta-reduction. The fundamental

observation for constructing the meta-reduction is as follows. If a reduction were able to

respond to the signing query from F (with high probability), the reduction would know

that the discrete logarithm of X; for the meta-reduction to exploit this observation, the

meta-reduction internally runs the reduction multiple times and obtains two transcripts

(R,H(R̃0, X,m), s0) and (R,H(R̃1, X,m), s1), from which the meta-reduction can extract

the discrete logarithm of X, the assumed-to-be-hard problem.

A.3.2 Meta-reduction Arguments Are Inapplicable to PCAS

Finally, we discuss the construction of a reduction for PCAS. We already constructed

such a reduction in the proof of Theorem 4.2.1, Besides, we also pinpoint where the

attempt to apply the meta-reduction arguments to PCAS fails, which corresponds to the

explanation in Section A.2.2.

To see why the meta-reduction fails, firstly, from the reduction’s perspective, let us

describe how our concrete reduction (in Theorem 4.2.1) works against the above F :

1. When F initiates a pre-communication session, the reduction simulates a transcript

(R, c, s) of the Schnorr protocol;

2. then F issues two random oracle queries (R̃0, X,m) and (R̃1, X,m); the reduction

responds to them by fresh hash values;

3. F submits a helper information R̃b where b← {0, 1};
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4. F issues a signing query m with respect to the helper information R̃b; the reduction

responds to it by setting H(R̃b, X, t,m) ← c where t ← {0, 1}κ and sending (t, s)

as the honest signer’s signature on m, where (R,H(R̃b, X, t,m), s) forms a valid

transcript of the Schnorr protocol.

This strategy can be seen as deferring the programming of the random oracle to the

point when F issues a signing query, namely, the point of Step 4. We say this strategy

“defers” the programming because without t in the hashed message, the reduction needs

to decide to program the random oracle as either H(R̃0, X,m)← c or H(R̃1, X,m)← c

at the point of the random oracle queries, namely, the point of Step 2. Contrary to this,

with t, the random oracle queries in Step 2. differs from (R̃b, X, t,m) (with overwhelming

probability), and thus the reduction can program the random oracle at Step 4. Another

important observation is that regardless of the helper information R̃0 or R̃1 that F uses,

the reduction uses the unique c that it knows for simulating the response to the signing

query.

From the meta-reduction perspective, the meta-reduction is unable to exploit this re-

duction for solving the assumed-to-be-hard problem. To see this, let us remind readers of

the above-mentioned meta-reduction’s strategy and pinpoint where this strategy fails. In

this strategy, the meta-reduction somehow “rewinds” the reduction to obtain two tran-

scripts (R,H(R̃0, X, t,m), s) and (R,H(R̃1, X, t′,m), s′). Using these transcripts, the

meta-reduction extracts the discrete logarithm of X, that is, it solves the assumed-to-

be-hard problem. This strategy in fact fails. It can be true that the meta-reduction

obtains two transcripts for both cases of b = 0 and b = 1, namely, (R,H(R̃0, X, t,m), s)

and (R,H(R̃1, X, t′,m), s′). However, even if it obtains, these transcripts have the same

challenge, which are not useful for solving the assumed-to-be-hard problem, This is the

point what we want to pinpoint. Notice that this equality happens because regardless

of whether b = 0 or b = 1, the reduction sets H(R̃b, X, t,m) ← c, where c is uniquely

c known to the reduction, and sends (t, s) in which (R, c, s) is a valid transcript as a

signature on m.


