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Abstract Teaching writing strategies based on writing processes has attracted
wide attention as a method for developing writing skills. The writing process
can be generally defined as a sequence of subtasks, such as planning, formu-
lation, and revision. Therefore, instructor feedback is often given based on
sequence patterns of those subtasks. For such feedback, instructors need to
analyze sequence patterns for all learners, which becomes problematic as the
number of learners increases. To resolve this problem, this study proposes a
new machine-learning method that estimates sequence patterns from keystroke
log data. Specifically, we propose an extension of the Gaussian hidden Markov
model that incorporates parameters representing temporal change in a subtask
appearance distribution for each learner. Furthermore, we propose a collapsed
Gibbs sampling algorithm as the parameter estimation method for the pro-
posed model. We demonstrate effectiveness of the proposed model by applying
it to actual keystroke log datasets.
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1 Introduction

Recently, the importance of nurturing writing skills in higher education has
been widely acknowledged (Uto & Ueno, 2015). A typical instruction method
for writing is an instructor providing feedback on a completed text. As another
approach, instruction methods that focus on the writing process have attracted
attention in recent years (Deane & Zhang, 2015; Leijten & Waes, 2013; Seow,
2002; Zhang, Hao, Li, & Deane, 2016; Bayat, 2014; Conijn, van der Loo, &
van Zaanen, 2018).

The writing process can be generally regarded as a sequence of subtasks,
such as planning, formulation, and revision (Flower & Hayes, 1981; Seow, 2002;
Bayat, 2014; Southavilay, Yacef, & Calvo, 2010). These processes are known
to be dependent on writing skills (Stevenson, Schoonen, & de Glopper, 2006;
Hayes & Flower, 1980; Sasaki, 2000, 2002; de Larios, Manchón, Murphy, &
Maŕın, 2008; Chan, 2017). For example, learners with advanced skills tend to
formulate faster but spend more time on revisions, as compared with those
with lower skills (Sasaki, 2000, 2002; de Larios et al., 2008). In addition, learn-
ers with advanced skills tend to make major edits in logical structures and
main arguments, while those with lesser skills primarily perform superficial
corrections such as expressions and typographical errors (Sasaki, 2000, 2002;
Lester & Witte, 1981; Barkaoui, 2016). Because there is a relation between
writing skills and writing processes, instruction based on the writing process
can be an effective approach toward improving writing skills (Bayat, 2014;
Conijn et al., 2018).

Instructions focused on the writing process are often based on the ap-
pearance pattern of the above-described subtasks (Bayat, 2014; Conijn et al.,
2018). As a method for analyzing appearance patterns of these subtasks, the
think-aloud technique and video playback stimulation method have been long
used (Stevenson et al., 2006; de Larios et al., 2008). In the think-aloud tech-
nique, learners sequentially utter their thoughts during the writing process.
The playback stimulation method presents learners with videos of their writ-
ing process and has learners discuss their thoughts. However, these methods
require considerable time for analysis, so they are impractical when there are
many learners.

To address this issue, writing process analysis methods using keystroke
log data recorded during composition on a computer have been recently pro-
posed (Deane & Zhang, 2015; Leijten & Waes, 2013; Zhang et al., 2016; Chan,
2017; Conijn et al., 2018). For example, Zhang et al. (2016) proposed a method
in which the writing process is categorized based on the distribution of intervals
between word inputs. However, while existing methods can categorize stages
in the writing processes, there is no method for estimating subtask appearance
patterns by learner.

We therefore propose a method for estimating subtask appearance patterns
by learner from keystroke log data. Specifically, we propose a method for con-
verting keystroke log data of each learner to time-series data with multiple fea-
tures that express writing characteristics for applying an unsupervised machine
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learning method. Feature extraction is based on a sliding window approach,
which divides keystroke log data into analytical frames with a small time-
width and extracts features from each frame. The Gaussian hidden Markov
model (GHMM) is well-known as a typical unsupervised machine learning
method for such time-series data. GHMM assumes that observational data
at an arbitrary point in time arise depending on a latent variable called the
state, and that the state sequence can be estimated from the data. Therefore,
by applying GHMM under an assumption of latent state for each analytical
frame as a subtask, a sequence of subtasks for each learner can be estimated
from keystroke log data. However, because this approach estimates a subtask
for each analytical frame with a small time-width, the variety of subtask se-
quences becomes extremely large, hindering interpretation of the writing pro-
cess for each learner. For educational application, knowing the subtask to be
performed each moment is not necessarily important. What we need, instead,
is to know the subtask appearance patterns by learner, as discussed earlier. The
information required to understand the patterns is the appearance ratios for
subtasks in a time interval with a certain time span and the temporal changes
in the ratios. For example, we wish to know the extent to which each learner
performs subtasks such as formulation, major edits, and superficial corrections
in every quarter of writing time. Information on temporal changes in the sub-
task appearance ratios will be helpful by allowing learners and instructors to
characterize the writing patterns of each learner quantitatively. Furthermore,
it will also be beneficial for instructors by allowing them to give appropriate
feedback and instruction toward improving learners’ writing activities.

For the above reasons, this paper proposes an extension of GHMM that
incorporates parameters representing temporal change in the subtask appear-
ance distribution for each learner. For the model, we first divide feature vector
sequences obtained from each learner’s keystroke data into a few time intervals.
We then incorporate parameters that express state appearance probabilities
for each learner in each time interval in the GHMM. The characteristics of the
proposed model are as follows:

1. Because the incorporated parameters represent temporal change in subtask
appearance patterns for each learner, by interpreting the parameters we can
understand the writing process of each learner.

2. By comparing differences in state appearance distributions between learn-
ers, we can quantitatively analyze between-learner differences in the writing
process.

3. The writing processes of learners can be categorized by applying typical
cluster analyses, taking differences in state appearance distributions be-
tween learners as the distance function.

As a method for estimating parameters for the proposed model, we pro-
pose a collapsed Gibbs sampling algorithm, which is a type of Markov-chain
Monte Carlo method. This paper demonstrates the effectiveness of the pro-
posed method through evaluation testing applied to actual keystroke log data.
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2 Related works

This section describes related works on keystroke data applications.
The most common application of keystroke data is user authentication in

the security domain. Many user authentication methods that use keystroke
data have been proposed (Karnan, Akila, & Krishnaraj, 2011; Teh, Teoh, &
Yue, 2013; Quraishi & Bedi, 2018). In these methods, users are identified by
using supervised classifiers trained on keystroke features. Various statistical
and probabilistic models and machine learning methods have been used for
classification (Karnan et al., 2011; Teh et al., 2013; Quraishi & Bedi, 2018).
Hidden Markov models (HMMs), which are used in this study, have also been
used for user authentication (Chen & Chang, 2004; Rodrigues et al., 2005; Ali,
Thakur, Tappert, & Qiu, 2016). In HMM-based authentication methods, an
HMM is trained for each user from sequences of keystroke timing features such
as the durations of key presses and the time elapsed between key presses. User
authentication is performed by checking how well a set of keystroke data from
an authentication attempt fits the pre-trained HMMs.

Another application of keystroke data is emotion recognition (Epp, Lip-
pold, & Mandryk, 2011; Salmeron-Majadas, Baker, Santos, & Boticario, 2018).
Emotion-estimation methods classify user emotion by applying a supervised
machine learning classifier trained from keystroke features for each emotion
class.

As approaches for general pattern recognition tasks including writing-
pattern recognition, temporal interval Bayesian networks (Zhang et al., 2013)
and a generative probabilistic model with Allen’s interval-based relations (Liu,
Cheng, Liu, Jia, & Rosenblum, 2016; Liu et al., 2018) have recently been pro-
posed. These methods can capture complex temporal relations among the oc-
currences of observable features (so-called atomic/primitive actions) by using
Allen’s interval algebra (Allen, 1983) and Bayesian networks. Such approaches
have been used for classification of sequential data, achieving state-of-the-art
accuracy for applications such as classifications of sports videos (Zhang et al.,
2013; Liu et al., 2016), human actions (Liu et al., 2018), and facial expres-
sion (Wang, Wang, & Ji, 2013).

It is important to note that the above-mentioned approaches focus on clas-
sification. The approaches are not suitable for our research objective because
the purpose of this study is to estimate the hidden processes underlying ob-
servable keystroke activities, not to classify the datasets.

For a method focused on estimation of the writing process, Southavilay,
Yacef, and Calvo (2010) proposed a method for estimating the process of col-
laborative writing activities by using an HMM. The proposed method collects
the versions of a document produced during collaborative writing and esti-
mates changes in semantic meaning for the next two versions according to
predefined heuristics (Southavilay et al., 2010). The process of collaborative
writing is then analyzed by an HMM trained on the sequences of semantic
meanings. The purpose and approaches are similar to those of our study, but
that method does not use keystroke data. Moreover, that study analyzes the
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Fig. 1 Interface of keystroke logging system (the writing task on the left side is hidden for
copyright reasons)

writing process by interpreting the parameters of an HMM trained for each
collaborative group. In this approach, we cannot compare writing processes
among groups because the means of the latent states will differ among the
groups. Although this approach might be extendable to writing process anal-
ysis for each learner, the interpretation of each process would be infeasible.

3 Keystroke logging system and log data

This study assumes that writing tasks are presented to learners, and that
keystroke log data are collected as learners compose their responses. To collect
keystroke log data, we developed a keystroke logging system similar to those
in previous studies (Deane & Zhang, 2015; Leijten & Waes, 2013; Salmeron-
Majadas et al., 2018). Figure 1 shows the interface of the developed system.
The system presents learners with a writing task in the left panel and a text
input area in the right panel. The system records information on typed charac-
ters, cursor position, and timestamps for each learner input made to the text
area using the keyboard or mouse. The time at which learners access the sys-
tem is recorded as the response start time. Therefore, keystroke log datasets
for each learner consist of a sequence of tuples in the format ⟨written text,
cursor position, timestamp⟩, with the number of tuples being the number of
keyboard operations plus one. The keystroke logging function is implemented
in Javascript and works on our e-testing platform, developed in Java. The
system stores obtained keystroke log data in an SQL database.

In this study, we use keystroke log data obtained in this manner to analyze
the writing process.
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Fig. 2 Feature extraction based on the sliding window approach

4 Feature extraction

Previous studies on analyses of keystroke log data analyzed the writing process
based on multiple features, such as the number of characters and keystroke in-
terval times as extracted from each learner’s keystroke series (Deane & Zhang,
2015; Leijten & Waes, 2013; Zhang et al., 2016; Chan, 2017). As described in
Section 1, previous studies extracted one set of feature values for each learner,
and used those features to categorize writing patterns. In contrast, the present
study aims to estimate temporal change in the subtasks of each learner. Thus,
keystroke log data for each learner must be defined as time-series feature data.

To extract feature sequences, we use a sliding window approach like that
widely used for image processing and speech recognition (Leijten & Waes,
2013). The sliding window approach extracts features with analytical frame
units by building frames with a small time-width from time-series data. The
width of each analytical frame W is called the frame width, and the movement
width of adjacent frames H is called the step width. If H < W , overlapping
of adjacent frames is permitted. Figure 2 shows the sliding window approach.

In this study, we apply the sliding window approach to keystroke log data
for each learner. We extract the seven features listed in Table 1 from each an-
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Table 1 Writing features

Index Feature
1. Average number of characters
2. Number of bursts (continuous inputs within a one-second interval)
3. Number of stops (no input for at least five seconds)
4. Number of character-adding operations
5. Number of character-subtracting operations
6. Mean relative cursor position (cursor position ÷ number of characters)
7. Number of times the cursor is moved

alytic frame (those features are designated as writing features). These features
are commonly used in similar studies (Deane & Zhang, 2015; Leijten & Waes,
2013; Zhang et al., 2016).

By extracting these features for each analytical frame, we can define keystroke
log data as series data for seven dimensions of writing features. Specifically, let-
ting Xijf ∈ R be feature f ∈ F = {1, · · · , F = 7} for the j ∈ J = {1, · · · , J}-th
analytical frame of learner i ∈ I = {1, · · · , I}, series data for writing features of
learner i are defined as Xi = {Xi1, · · · , XiJ} (where Xij = {Xij1, · · · , XijF }).

We expect that by applying a machine learning method to dataset X =
{X1, · · · , XI}, the subtask for each analytical frame of each learner can be es-
timated. We use an unsupervised machine learning method for this estimation,
because it is unclear what subtask types exist within the analytical frame.

5 Gaussian hidden Markov model–based writing process analysis

As discussed in Section 4, data Xi are time-series data, and there likely is a
dependency of subtasks between adjacent analytical frames. A typical unsuper-
vised classifier for such time-series data is the hidden Markov model (HMM).
Especially in the case where observed data have continuous values, as in the
present study, GHMM is generally used. The following provides details of
GHMM assuming application to our dataset X.

GHMM assumes a latent variable Sij ∈ S = {1, · · · , S}, called the state,
for each feature Xij . Each state Sij is obtained according to a transition
probability that is dependent on the state immediately before Si,j−1. Specifi-
cally, letting the transition probability from state s to state s′ be Ass′ (where
0 ≤ Ass′ ≤ 1,

∑S
s′=1 Ass′ = 1) and letting As be S-dimensional multinomial

distribution {As1, · · · , AsS}, the probability of state Sij being dependent on
state Si,j−1 = s can be written as P (Sij |Si,j−1 = s, As) = As,Sij

. The initial
state Si1 is obtained following p(Sn1|π) = πSn1 in accordance with the initial
probabilities, which are defined as the S-dimensional multinomial distribution
π = {π1, · · · , πS} (where 0 ≤ πs ≤ 1,

∑S
s=1 πs = 1).

The features for each analytic frame Xij follow a normal distribution de-
pendent on state Sij . In this study, given state Sij = s, we assume that the
f -th feature Xijf follows a normal distribution with values of mean µsf and
variance σ2

sf : p(Xijf |µsf , σ2
sf ) = N(µsf , σ2

sf ). Therefore, the emission proba-
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Fig. 3 State appearance distributions for each time interval

bility for features Xij can be obtained from the following equation when state
Sij = s:

p(Xij |Sij = s, µ, σ) =
F∏

f=1

p(Xijf |µsf , σ2
sf ), (1)

where µ = {µ11, · · · , µSF } and σ = {σ11, · · · , σSF }.
By applying GHMM under the assumption of latent states for each ana-

lytical frame as subtasks, a sequence of subtasks for each learner is expected
to be estimated. In this approach, however, a subtask is estimated for each
analytical frame, which is defined with a small time-width and which overlaps
adjacent multiple frames. Therefore, subtask sequence patterns become sig-
nificantly large, making it difficult to grasp temporal changes in subtasks for
each learner.

6 Proposed model

To address this issue, this study proposes an expanded GHMM model that
incorporates parameters representing temporal change in subtasks for each
learner. In this study, we divided series data for each learner into a small num-
ber of time intervals, and incorporated into the GHMM a parameter represent-
ing the subtask appearance probability for each time interval for each learner.
Specifically, time-series data are divided into T time intervals T = {1, · · · , T }
with a constant time span. We then incorporate a state appearance probability
ϕits that learner i is in state (subtask) s in time interval t ∈ T , as shown in Fig-
ure 3. In this figure, ϕit represents a state appearance distribution of learner
i in time interval t that is defined as S-dimensional multinomial distribution
{ϕit1, · · · , ϕitS}.

In the proposed model, state probabilities for individual analytical frames
are assumed to follow the product of the transition probability and the state
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appearance probability, as

P (Sij |Si,j−1 = s, As, ϕi) ∝ As,Sij · ϕi,tij ,Sij , (2)

where ϕi = {ϕi11 · · · , ϕiT S} and tij ∈ T is the time interval to which data Xij

belong.
Similarly, we assume that the initial probability is defined as

P (Si1|π, ϕi) ∝ πSi1 · ϕi,1,Si1 . (3)

The features are obtained using Equation (1) in the same manner as in
GHMM.

In the proposed model, the subtask appearance distribution ϕit can be
estimated in an arbitrary time interval for each learner. Thus, by interpreting
temporal change in the distribution, writing pattern trends of each learner
can be quantitatively grasped. Furthermore, by measuring differences in the
subtask appearance distributions ϕi between learners, using for example the
Kullback–Leibler divergence or the Jensen–Shannon divergence, differences
in the writing process between learners can be quantitatively evaluated. In
addition, categorizing writing processes becomes possible using typical cluster
methods with those divergence functions.

6.1 Parameter estimation algorithm

Representative parameter estimation methods for GHMM are maximum like-
lihood estimation using the Baum–Welch algorithm and Bayesian estimation
using Markov chain Monte Carlo (MCMC) (Bishop, 2006). For complex mod-
els, Bayesian estimation by MCMC would provide higher accuracy (Bishop,
2006; Brooks, Gelman, Jones, & Meng, 2011). This method estimates the pos-
terior distribution of each parameter and uses expected or maximum values
as a point estimate for parameters. MCMC approximates posterior distribu-
tions via sampling. This study proposes a collapsed Gibbs sampling (CGS)
algorithm for the proposed model. CGS has been widely used for learning-
topic modeling and HMM as a method to improve the efficiency of MCMC
by marginalizing out a part of the parameter set (Griffiths & Steyvers, 2004;
Griffiths, Steyvers, Blei, & Tenenbaum, 2004; Paisley & Carin, 2009).

CGS repeatedly samples parameter values from the conditional posterior
distribution for each parameter, approximating the posterior distribution of
parameters using the obtained samples. Conditional posterior distribution is
defined as a distribution in which all parameters other than those of interest are
given, after marginalizing a specific parameter set from the joint distribution.
In this study, we marginalize the initial probability π, transition probability
A, and state appearance probability ϕ, and sample the latent state S =
{S11, · · · , SIL} and emission distribution parameters ξ = {µ, σ}.

The remainder of this subsection presents the details of this algorithm.
Figure 4 shows a graphical representation of the proposed model for the fol-
lowing derivation. In the figure, α, β, and γ represent hyperparameters for
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Fig. 4 Graphical representation of time- and learner-dependent GHMM

the distributions of A, ϕ, and π, respectively, while µ0, n0, g1, and g2 are
hyperparameters for the emission distribution.

6.1.1 Conditional posterior distribution for sampling state Sij for j > 1

We first derive the conditional posterior distribution of state Sij for j > 1.
Letting X\ij = X\{Xij} and S\ij = S\{Sij}, the conditional posterior

distribution where Sij = s is obtained for j > 1 can be written as

p(Sij = s|Xij , X\ij , S\ij , ξ) ∝ p(Xij |Sij = s, ξ) · p(Sij = s|S\ij). (4)

The first term on the right side of Equation (4) is obtained using Equa-
tion (1). Furthermore, by omitting constant terms, the second term can be
written as

p(Sij = s|S\ij) ∝ p(Sij = s, Si,j+1|S\i,j,j+1) (5)
∝ p(Si,j+1|Sij = s, S\i,j,j+1) · p(Sij = s|Si,j−1, S\i,j−1,j,j+1),

where S\i,j,j+1 = S\{Sij , Si,j+1} and S\i,j−1,j,j+1 = S\{Si,j−1, Sij , Si,j+1}.
If Dirichlet priors with hyperparameters α and β are respectively used for

the transition probabilities As and the state appearance probabilities ϕit, then
by omitting constant terms, the first term on the right side of Equation (5)
can be reorganized as

p(Si,j+1|Sij = s, S\i,j,j+1)

∝
∫

p(Si,j+1|As) · p(As|S\i,j,j+1)dAs
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·
∫

p(Si,j+1|ϕi,ti,j+1) · p(ϕi,ti,j+1 |S\i,j,j+1)dϕi,tij+1

=
n

\i,j,j+1
s,Si,j+1

+ α∑S
s′=1

(
n

\i,j,j+1
s,s′ + α

) , (6)

where n
\i,j,j+1
s,s′ represents the frequency at which state s transitioned to state

s′ among S\i,j,j+1.
The second term on the right side of Equation (5) is similarly rewritten as

p(Sij = s|Si,j−1, S\i,j−1,j,j+1)

∝
∫

p(Sij = s|ASi,j−1) · p(ASi,j−1 |S\i,j−1,j,j+1)dASi,j−1

·
∫

p(Sij = s|ϕi,tij ) · p(ϕi,tij |S\i,j−1,j,j+1)dϕi,tij

=
n

\i,j−1,j,j+1
Si,j−1,s + α∑S

s′=1

(
n

\i,j−1,j,j+1
Si,j−1,s′ + α

) ·
n

\i,j−1,j,j+1
i,tij ,s + β∑S

s′=1

(
n

\i,j−1,j,j+1
i,tij ,s′ + β

)
∝ (n\i,j−1,j,j+1

Si,j−1,s + α) · (n\i,j−1,j,j+1
i,tij ,s + β). (7)

In these equations, n
\i,j−1,j,j+1
s,s′ represents the appearance frequency at which

state s transitioned to state s′ among S\i,j−1,j,j+1. Furthermore, n
\i,j−1,j,j+1
i,t,s

represents the appearance frequency of state s in a state set {Sij ∈ S\i,j−1,j,j+1|tij =
t} for learner i.

From the above, the conditional posterior distribution of Sij for j > 1 can
be described as

p(Sij = s|Xij , X\ij , S\ij , ξ) (8)

∝

 F∏
f=1

p(Xijf |µsf , σ2
sf )

 ·
n

\i,j,j+1
s,Si,j+1

+ α∑S
s′=1

(
n

\i,j,j+1
s,s′ + α

)
·(n\i,j−1,j,j+1

Si,j−1,s + α) · (n\i,j−1,j,j+1
i,tij ,s + β).

6.1.2 Conditional posterior distribution for sampling initial states

The conditional posterior distribution of initial state Si1 can be written as

p(Si1 = s|Xi1, X\i1, S\i1, ξ) ∝ p(Xi1|Si1 = s, ξ) · p(Si1 = s|S\i1). (9)

Here, the first term on the right side of Equation (9) is obtained using Equa-
tion (1), while the second term can be written as

p(Si1 = s|S\i1) ∝ p(Si2|Si1 = s, S\i,1,2) · p(Si1 = s|S\i,1,2). (10)

The first term on the left side of the above equation is calculable from
Equation (6). When the Dirichlet prior with hyperparameter γ is used for the
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initial distribution π, the second term can be expressed by omitting constant
terms as

p(Si1 = s|S\i,1,2)

∝
∫

p(Si1 = s|π) · p(π|S\i,1,2)dπ ·
∫

p(Si1 = s|ϕi) · p(ϕi|S\i,1,2)dϕ

= n
\i,1,2
s + γ∑S

s′=1

(
n

\i,1,2
s′ + γ

) ·
n

\i,1,2
i,1,s + β∑S

s′=1

(
n

\i,1,2
i,1,s′ + β

)
∝ (n\i,1,2

s + γ) · (n\i,1,2
i,1,s + β), (11)

where n
\i,1,2
s represents the appearance frequency of Si1 among S\i,1,2 becom-

ing state s, while n
\i,1,2
i,1,s represents the appearance frequency of state s in the

state set {Sij ∈ S\i,1,2|tij = 1} for learner i.
Thus, the sampling distribution of Si1 is obtained as

p(Si1 = s|Xi1, X\i1, S\i1, ξ) (12)

∝

 F∏
f=1

p(Xijf |µsf , σ2
sf )

 ·
n

\i,1,2
s,Si2

+ α∑S
s′=1

(
n

\i,1,2
s,s′ + α

) · (n\i,1,2
s + γ) · (n\i,1,2

i,1,s + β).

6.1.3 Conditional posterior distribution of emission probability parameters

The conditional posterior distributions of emission probability parameters µsf

and σ2
sf for feature f can be expressed as

p(µsf |X, S, ξ\s,f , σ2
sf ) ∝ p(µsf |Xs

f , σ2
sf ) (13)

p(σ2
sf |X, S, ξ\s,f , µsf ) ∝ p(σ2

sf |Xs
f , µsf ), (14)

where ξ\s,f = ξ\{µsf , σ2
sf } and Xs

f = {Xijf ∈ X|Sij = s, i ∈ I, j ∈ J }.
These equations are consistent with the conditional posterior distributions of
a typical normal distribution for a sample set Xs

f . The normal distribution
N(µ0, σ2

sf /n0) is generally used as the conjugate prior of the mean param-
eter µsf , where µ0 and n0 are hyperparameters. Concretely, the conditional
posterior probability of µsf is written as (Uto & Ueno, 2016; Fox, 2010)

p(µsf |Xs
f , σ2

sf ) = N(
n0µ0 + |Xs

f | · X̄s
f

n0 + |Xs
f |

,
σ2

sf

n0 + |Xs
f |

), (15)

where X̄s
f =

∑
x∈Xs

f

x
|Xs

f
| and |Xs

f | indicates the number of data points in Xs
f .

The inverse gamma distribution IG(g1/2, g2/2), a type of conjugate prior,
is often used as the prior distribution of normal distribution variance σ2

sf (Gelman,
2006), where g1 and g2 are hyperparameters and are generally small positive
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real numbers, such as g1 = g2 = 0.01. Specifically, the conditional posterior
distribution of variance σ2

sf can be expressed as (Uto & Ueno, 2016; Fox, 2010)

p(σ2
sf |Xs

f , µsf ) = IG(
g1 + |Xs

f |
2

,
σ2

0
2

), (16)

where

σ0 = g2 +
∑

x∈Xs
f

(x − X̄s
f )2 +

|Xs
f | · n0

|Xs
f | + n0

· (X̄s
f − µ0). (17)

The algorithm proposed by (Tanizaki, 2008) is useful for obtaining random
samples from an inverse gamma distribution.

6.1.4 Estimation of marginalized parameters

Given the obtained state samples, we can estimate the initial probabilities π,
transition probabilities A, and state appearance probabilities ϕ as follows:

πs = ns + γ∑S
s′=1 (ns′ + γ)

(18)

Ass′ = nss′ + α∑S
s′=1 (nss′ + α)

(19)

ϕits = nits + β∑S
s′=1 (nits′ + β)

(20)

In these equations, ns is the frequency at which initial state Si1 becomes state
s, nss′ is the frequency at which the state transitioned from s to s′, and nits

is the frequency of the state becoming s among a state set with time interval
t for learner i.

6.2 Algorithm

CGS of the proposed model repeatedly samples states S and the parameters
of the emission probability distribution ξ = {µ, σ} according to the equations
introduced in the previous subsection. Specifically, Eq. (8) is used to sample
{Sij ∈ S | j > 1, i ∈ I}, and Eq. (12) is used for {Si1 ∈ S | i ∈ I}.
Eqs. (15) and (16) are used to sample µ and σ, respectively. Additionally, in
the CGS algorithm, the initial probability π, transition probability A, and
state appearance probability ϕ are calculated from the obtained state samples
using Eqs. (18), (19), and (20), respectively. Finally, the expected values for
the obtained parameters are calculated. Algorithm 1 shows pseudocode for the
algorithm. A burn-in period is required to remove the effect of initial values.
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Algorithm 1 CGS for the proposed model

Initialize S, µ, σ.
for loop = 1 to M do

for i = 1 to I do
Sample Si1 from Eq. (12)
for j = 2 to J do

Sample Sij from Eq. (8)
end for

end for
for f = 1 to F do

for s = 1 to S do
Sample µsf from Eq. (15)
Sample σ2

sf from Eq. (16)
end for

end for
if loop > burn-in period then

Calculate π, A, and ϕ using Eqs. (18),(19),(20)
Store π, A, ϕ, µ and σ

end if
end for
return Average values of π, A, ϕ, µ and σ

7 Application and evaluation

In this section, we evaluate the effectiveness of the proposed model using actual
keystroke log data collected using the keystroke logging system introduced in
Section 3. In this experiment, we collected actual keystroke log data as follows.

We assigned a writing task to 72 subjects and collected keystroke log data
while the subjects composed their responses. The task was a reading-to-write
task in which the subjects read a short text and related material, then wrote
their opinion. This task required no prior knowledge. The subjects were 37
boys/men and 35 girls/women. The range of ages was 16–23, and the me-
dian age was 19 years. Of the subjects, 34 were high school students and 38
were university students. Among the university students, 18 were studying
arts/humanities and 20 were studying science of some kind. All subjects had
experience using a keyboard to create documents. We provided 45 min to re-
spond, and subjects were not allowed to finish before 45 min had elapsed. The
total number of keystroke operations obtained in the experiment was 184,916.
The mean and standard deviation of the number of keystroke operations by
learners were 2568.28 and 852.53, respectively. The mean and standard de-
viation values for the final number of characters by learner were 608.92 and
168.30.

Keystroke log data were transformed to writing feature vectors using the
sliding window approach, with frame width W = 30 s and step width H = 10 s.
W and H are the hyperparameters, as described in Section 4. W controls the
granularity of subtask estimation. A small W value enables the capture of
more detailed subtasks, although extremely small values of W increase the
number of frames with no or only a few keystroke operations, which makes the
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Table 2 Log-marginal likelihood values for each number of states and time interval

Number of states S
2 3 4 5 6 7 8 9 10

T=1 -366651 -344725 -328978 -336416 -317773 -309699 -309927 -307868 -308437
T=2 -366722 -352936 -332503 -328909 -319634 -310745 -309262 -304256 -308507
T=3 -366260 -352868 -331685 -329332 -318167 -311805 -310828 -304567 -307783
T=4 -366236 -352538 -331038 -325940 -317770 -308680 -311242 -304477 -301883
T=5 -366318 -357123 -330320 -326599 -320426 -309603 -307340 -300504 -307858
T=6 -366019 -352082 -329183 -323887 -320131 -309700 -306757 -302471 -309461
T=7 -365937 -352103 -329131 -327876 -317000 -309733 -309023 -302517 -305505
T=8 -366089 -352572 -329391 -319752 -316254 -307003 -308255 -300596 -301741
T=9 -366373 -357258 -329702 -320510 -313955 -307637 -304634 -302341 -301564
T=10 -365377 -351409 -332032 -320756 -324515 -309295 -311565 -297933 -303207
T=11 -365554 -351868 -327435 -319277 -315560 -309276 -304823 -299203 -300418
T=12 -412429 -351211 -329115 -324260 -313688 -305830 -303868 -301641 -302244
GHMM -364967 -347916 -328963 -320028 -315718 -311850 -312755 -310044 -310187

subtask estimation unstable. A small H value increases the smoothness of the
temporal change in the state appearance probabilities, although overlap among
the frames is increased by using a small H. Excessive overlap is not desirable
because the computational cost increases rapidly with overlap. Based on the
above-mentioned factors, W = 30 and H = 10 were selected by empirical
observation. As a result of this feature extraction, features Xi for learner i
were obtained as the seven previously described dimensional features at 268
timepoints. In the remainder of this section, we evaluate the proposed model
through application to this dataset X.

7.1 Model selection using information criteria

Writing process analysis using the proposed model depends on the number
of states S and the number of time intervals T . To select the state num-
ber in GHMM, the Akaike information criterion (AIC) (Akaike, 1974) and
the Bayesian information criterion (BIC) (Schwarz, 1978) have been widely
used. AIC and BIC assume asymptotic normality of maximum likelihood
estimates (Watanabe, 2010, 2013). However, GHMM does not satisfy this
assumption, so these information criteria are not theoretically appropriate.
When MCMC is used, a log-marginal likelihood (log-ML) that does not as-
sume asymptotic normality is approximately calculable (Newton & Raftery,
1994). In recent years, various studies have used the log-ML calculated using
MCMC for model selection (Uto, Louvigné, Kato, Ishii, & Miyazawa, 2017;
Griffiths & Steyvers, 2004; Wallach, Murray, Salakhutdinov, & Mimno, 2009;
Taddy, 2012; Uto & Ueno, 2018). Therefore, in this study, we use the log-ML to
select S and T . Specifically, we calculate the log-ML while changing the num-
ber of states S = {2, · · · , 10} and the number of time intervals T = {1, · · · , 12}.
Note that S = 1 is meaningless for writing process analysis because the same
writing process will be estimated for all learners. Thus, S = 1 was ignored in
this experiment. Furthermore, the upper limit values of S = 10 and T = 12
were selected because extremely large values make the interpretation of the
estimated writing process difficult. We discuss the appropriateness of the up-
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Fig. 5 Average log-ML value for each S Fig. 6 Average log-ML value for each T

per limit values later, using data for justification. For comparison, we also
calculated the log-ML for each state number with GHMM.

Table 2 shows the experimental results, where a larger value for log-ML
indicates increased appropriateness of the model. Table 2 shows that the pro-
posed model tends to produce higher values than does the GHMM when the
state number increases. This suggests that trends in subtask appearance differ
among learners and among time intervals, and that the proposed model rep-
resents them appropriately. Here, to confirm the appropriateness of the upper
limits for S and T , Figures 5 and 6 show, respectively, the average log-ML for
each S ∈ {1, · · · , 10} and for each T ∈ {1, · · · , 12}. Figure 5 shows that the log-
ML values rapidly increase until around S = 7, and the increase rate is slow
for S > 7. Furthermore, the value with S = 10 is smaller than that with S = 9.
Figure 6 shows that the log-ML values tend to increase until T = 11. When
T = 12, however, the value is sharply reduced. These results suggest that the
optimal values probably lie within S = {2, · · · , 10} and T = {1, · · · , 12}. In
these ranges, the proposed model with S = 9 and T = 10 had the highest indi-
cator value, so we used those values for S and T in the following experiments.

7.2 States interpretation

To analyze the writing patterns of each learner based on the proposed model,
we first need to interpret the characteristics of each state. For this interpre-
tation, Table 3 presents the mean and standard deviation parameters of the
emission distribution for each feature in each state. Furthermore, for ease of
interpretation, Figure 7 shows the mean feature values for each state, which
are normalized so that the maximum is 1 and the minimum is 0. From these
results, the characteristics of each state can be interpreted as follows:

State 1 can be interpreted as a waiting stage, because the number of stops
is the highest and there are no addition or subtraction operations.

States 2, 3, 7, and 9 can be interpreted as formulation stages, because the
cursor is at the end of the text, and some number of addition and subtrac-
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Table 3 Mean and standard deviation parameters of emission distributions for each state

State Char num Burst Stop Adding Subtracting Cursor Cursor
position move

1 335.62(307.17) 0.00(0.58) 6.00(0.09) 0.00(0.27) 0.00(0.24) 0.62(0.45) 0.00(0.14)
2 395.52(230.90) 102.55(23.04) 0.14(0.40) 41.96(13.71) 35.53(11.71) 0.79(0.25) 16.71(23.00)
3 267.00(175.32) 34.44(7.64) 0.72(0.62) 17.26(3.92) 15.50(3.78) 0.96(0.04) 2.37(1.68)
4 385.81(228.50) 2.54(3.30) 1.23(0.67) 1.17(1.51) 0.69(1.25) 0.60(0.34) 1.59(1.53)
5 415.18(234.54) 43.65(21.82) 1.02(0.75) 9.37(7.37) 7.97(6.53) 0.68(0.26) 24.67(16.46)
6 398.94(194.47) 21.82(9.00) 1.12(0.66) 10.09(4.66) 8.83(4.46) 0.57(0.25) 3.37(2.61)
7 221.21(154.32) 15.20(6.44) 1.18(0.56) 8.26(3.42) 6.89(3.20) 0.96(0.05) 1.36(1.27)
8 393.34(223.06) 49.91(11.24) 0.57(0.63) 23.84(5.74) 20.86(5.09) 0.62(0.22) 3.90(3.29)
9 326.69(213.41) 63.42(13.01) 0.42(0.56) 29.71(6.72) 26.09(5.64) 0.96(0.04) 4.15(3.15)

Fig. 7 Normalized mean values of emission distributions for each state.

tion operations can be seen. Here, the numbers of bursts, addition operations,
and subtraction operations exhibit the following relation: state 7 < state 3 <
state 9 < state 2. In other words, these four states can be differentiated by
keystroke speed.

States 4, 5, 6, and 8 can be interpreted as a revision stage, because the
cursor positions are relatively toward the beginning of the text, the numbers
of characters are relatively high, and there are a certain number of bursts,
addition operations, and subtraction operations. A characteristic of state 5 is
that the cursor moves often, while characteristics of state 6 are that the cursor
is positioned relatively toward the beginning of the text and there are few
cursor moves. Moreover, a characteristic of state 4 is that there are extremely
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Table 4 Interpretation of each state

Major division Subdivision States
Waiting — State 1
Formulation Fast writing States 2 and 9

Slow writing States 3 and 7
Revision Many edits State 8

Few edits State 4
Overall edits State 5
Individual edits State 6

few addition and subtraction operations. Conversely, there are many addition
and subtraction operations in state 8. From these analyses, we can interpret
state 4 as a revision state involving few edits, state 5 as a revision state in-
volving overall edits, state 6 as a revision state involving edits of specific parts
in the beginning and middle parts of the text, and state 8 as a revision state
with many edits.

Table 4 summarizes the characteristics based on the above analyses.
It is worth noting that we might be able to evaluate the appropriateness

of our state interpretation by comparing the interpretations with the subjects’
intentions. Subjects’ intentions can be investigated via traditional writing pro-
cess analysis methods, such as the video playback stimulation method. For this
analysis, however, we must create the subtask labels summarized in Table 4
in advance by estimating the proposed model parameters using data from all
subjects. Due to our experimental constraints, we could not gather the same
subjects after all the data had been collected. The evaluation of appropriate-
ness by comparison with subjects’ intentions remains for future work.

7.3 Interpretation of state appearance distribution

This section discusses interpretation of the state appearance distribution for
each learner based on the above interpretation of states. To that end, Figures 8
and 9 show the state appearance distribution ϕi for two learners. The hori-
zontal axes in these figures show the time interval, while vertical axes show
the appearance probability of each state. Line types show individual states.
The figures lead to the following interpretations of the writing process for each
learner.

Writer 1 (Figure 8) has a high ratio of waiting states in the first time
interval, which we interpret as the learner reading the task and planning.
As time progresses, the appearance ratio increases in the order of state 9
(formulation stage with fast writing), state 8 (revision stage with many edits),
and state 5 (revision of overall text). The learner returns to the waiting state
in later time intervals, suggesting that this learner has an ideal writing process.

In contrast, learner 2 (Figure 9) shows high appearance ratios for states 3
and 7, representing slow writing formulation stages across all time intervals.
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Fig. 8 State appearance distribution
of learner 1

Fig. 9 State appearance distribution
of learner 2

The appearance ratio of revision states is low. This learner might not have
been spending enough time on revisions.

The above analysis shows that the proposed model allows quantitative
analysis of temporal changes in subtask appearance patterns for each learner.

7.4 Validity evaluation of state appearance distributions

This subsection evaluates the validity of subtask appearance distribution esti-
mations by the proposed method.

For this experiment, we randomly selected ten learners from among the
subjects. Then we showed a replay of their keystrokes to two experts (evalua-
tors A and B, below). We asked the evaluators to assess the appearance ratio
of nine states for each time interval for each learner. However, it might be diffi-
cult for humans to directly differentiate between the nine states. Therefore, we
first asked the evaluators to assess ratios of waiting, formulation, and revision,
which are presented as major divisions for the nine states for individual time
intervals of each learner using five categories: 5. appears very often, 4. appears
often, 3. appears relatively often, 2. appears somewhat, and 1. does not appear.
If revision was scored 2 or higher in this assessment, the range and amount of
revision were evaluated as 2. wide or 1. narrow, and 2. large amount or 1. small
amount. Furthermore, keystroke speed was scored as 2. fast or 1. slow for all
learners.

In this experiment, we calculated subtask distributions for each learner
from these evaluation data (hereinafter called the correct distribution). To cre-
ate the correct distribution, we calculated scores for each subtask subdivision
in Table 4, based on each evaluator’s assessment data. Concretely, for each
time interval for each learner, the scores for the seven subtask subdivisions
were calculated as follows:
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Table 5 JS divergence between methods.

Evaluator A Evaluator B Uniform
Proposed 0.695 (0.297) 0.796 (0.335) 1.361 (0.319)

Evaluator A - 0.379 (0.207) 1.615 (0.409)
Evaluator B - - 1.542 (0.435)

Table 6 Results of statistical tests.
A/Proposed B/Proposed A/Uniform B/Uniform Proposed/Uniform

A/B 0.829 0.187 < 0.001 < 0.001 < 0.001
A/Proposed - 1.000 < 0.001 < 0.001 < 0.010
B/Proposed - - < 0.001 < 0.001 < 0.050
A/Uniform - - - 1.000 1.000
B/Uniform - - - - 1.000

Waiting : Use the evaluation score for waiting.
Formulation (Fast writing): If input speed is 2. fast, use the evaluation

score for formulation. If not, use half of the score.
Formulation (Slow writing): If input speed is 1. slow, use the evaluation

score for formulation. If not, use half of the score.
Revision (Many edits): If the number of edits is 2. large amount, use the

evaluation score for revision. If not, use half of the score.
Revision (Few edits): If the number of edits is 1. small amount, use the

evaluation score for revision. If not, use half of the score.
Revision (Overall edits): When edit range is 2. wide, use the evaluation

score for revision. If not, use half of the score.
Revision (Individual edits): When edit range is 1. narrow, use the evalu-

ation score for revision. If not, use half of the score.

The correct distribution was created by normalizing those scores for each eval-
uator. Note that this experiment did not distinguish between states 2 and 9
or between states 3 and 7, because those pairs are difficult for humans to
differentiate.

We evaluated the validity of the proposed model by comparing the correct
distribution with state appearance distributions from the proposed model. To
evaluate these differences, we used the Jensen–Shannon (JS) divergence, which
is widely used to evaluate differences in probability distributions. The JS di-
vergence is zero when the distributions are completely consistent and increases
with increasing differences. To discuss the degree of differences between correct
distributions and state appearance distributions from the proposed model, we
also calculated JS divergence between the uniform distribution and each dis-
tribution. Here, because the correct distribution combined states 2 and 9 and
states 3 and 7 as described above, the JS divergence was calculated after the
state appearance probabilities for those state pairs were summed.

Table 5 shows the mean and standard deviation for the JS divergence calcu-
lated between each distribution. These results demonstrate that the difference
between the state appearance distribution from the proposed model and each
correct distribution is smaller than differences between the uniform distribu-
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Fig. 10 Average state appearance
probabilities of cluster 1

Fig. 11 Average state appearance
probabilities of cluster 2

tion and each correct distribution. We performed paired multiple comparison
using the Bonferroni method to evaluate whether significant differences are
confirmed for those JS divergence means. Table 6 shows the results. In that
table, A (or B) indicates evaluator A (or B), X/Y refers to the JS divergence
between distributions of methods X and Y, and values in each cell are the
p-value for the mean difference of the JS divergences. For example, the cell
in the first row and first column shows the p-value of the mean difference be-
tween the JS divergences of A/B and those of A/Proposed. The results show
that JS divergences between state appearance distributions from the proposed
model and the correct distributions as calculated by both evaluators present no
significant differences, while those between uniform and correct distributions
reveal significant differences.

These results indicate that state appearance distributions from the pro-
posed model have trends similar to the interpretations by the expert evalua-
tors. This suggests that using the proposed model to analyze subtask appear-
ance patterns for each learner is appropriate.

7.5 Analysis of the relation between skills and the writing process

As discussed in Section 1, the writing process and writing skills are known to
be related. Therefore, if analyses of this relation based on the proposed model
are consistent with findings from existing studies, the validity of analyses using
the proposed model can be confirmed.

For this evaluation, we classified learners with similar processes and ana-
lyzed relations between these clusters and writing skills. Specifically, we per-
formed hierarchical clustering using the JS divergence of the state appearance
distribution between learners as the distance function. We used the pseudo-F
criterion to determine the optimum cluster number, and two clusters were sup-
ported. Therefore, in this experiment we classified learners into two clusters,
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Table 7 Scores for each cluster
Organization Readability Total score

Cluster 1 2.673 (.114) 3.615 (.198) 6.288 (.484)
Cluster 2 2.467 (.146) 3.065 (.431) 5.533 (.917)
p-value .027 <.001 <.001

Table 8 Scores for each attribute of subjects.

Gender Background
Men 5.71 (1.04) Arts/Humanities 6.02 (0.86)
Women 5.92 (0.84) Scientific 5.85 (1.01)
p-value 0.35 0.56

with 26 learners in one group and 46 learners in another. Figures 10 and 11
show mean values of state appearance probabilities for learners belonging to
each cluster. Those figures show the following characteristics for each cluster.

Writers in cluster 1 wait for a certain amount of time, followed by a fast-
writing formulation stage (states 9 and 2) and then, in the latter half, transition
to the waiting state with a certain ratio of overall revision (state 5) and minor
edits (state 4). This can be considered as a good writing process, because there
is good balance between planning, formulation, and revision, and writing is
completed with time to spare.

Writers in cluster 2 are relatively slow to start writing, and the start of
writing is was followed by slow-writing formulation (states 7 and 3) for a
long time, with minor edits (state 4) and edits at specific locations (state 6)
conducted just before the end of the writing period. This can be seen as a
cluster of learners who formulate slowly and cannot secure sufficient time for
revisions.

Learners who write fast and spend more time performing revisions are
generally known to have high writing skills (Sasaki, 2000, 2002; de Larios et
al., 2008). Therefore, if the product quality in cluster 1 is high, analyses based
on the proposed model are validated.

To evaluate the quality of writing products, we had two experts score the
writing of each learner by two perspectives: 1) organization, and 2) readabil-
ity. Organization was evaluated using five scores: 1. extremely poor, 2. poor,
3. neither poor nor skilled, 4. skilled, and 5. extremely skilled. Readability was
evaluated using four categories: 1. very difficult to read and understand, 2. dif-
ficult to read and understand, 3. somewhat difficult to read and understand,
and 4. no problem with readability. Evaluators were not informed of which
cluster learners belonged to. The average of the scores by the two experts was
used as the final score. We conducted the Wilcoxon rank-sum test to examine
differences in mean score between clusters for each evaluation point. We also
performed the same calculation for the total score of the two evaluation points.

Table 7 shows the results. The experimental result shows that the score
for cluster 1 is higher than that for cluster 2 for each evaluation point. In
addition, the readability and total scores are significantly different. Here, we
also confirmed the relations between the attributes of the subjects and their
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Fig. 12 State appearance probabilities of subjects with top 3 scores

Fig. 13 State appearance probabilities of subjects with bottom 3 scores

scores. Concretely, Table 8 shows the averaged total scores (standard devia-
tions) and p-values of the Wilcoxon rank-sum test for different genders and
different backgrounds. These tests found no significant difference for gender or
background. In addition, the correlation between age and total score was 0.17,
with no significance (p = 0.15). These results show that the effects of subjects’
attributes did not significantly affect the outcome of this experiment.

From the experimental results, we can confirm that the product quality
in cluster 1 was higher than that in cluster 2, as expected. This suggests
that writing process analyses based on the proposed model derive findings
consistent with those of previous studies (e.g., (Sasaki, 2000, 2002; de Larios
et al., 2008)), suggesting that such analyses are appropriate.

Finally, to show some examples of the writing process of subjects with ad-
vanced skills and those with lesser skills, Figures 12 and 13 depict the state
appearance probabilities of the subjects with the top 3 and bottom 3 scores,
respectively. Figure 12 shows that high-performing subjects have high ratios of
formulation stages (State 2, 3, 7, 9) in the first half of the total writing time. In
the second half, the ratios of waiting (State 1) and revision actions (States 4,
5, 6, 8) increase. Although the time allocated to each stage differs among the
subjects, they tend to divide the formulation and revision phases consciously.
In contrast, Figure 13 shows that low-performing subjects have a low ratio
of waiting (State1) across all time intervals, meaning that they continued to
write until just before the end of the writing period. Concretely, the subject
shown in the center of Figure 13 has high ratios of formulation stages (State
3, 7, 9) overall, and the subjects shown in the left and right of Figure 13 have












