論文の内容の要旨

<table>
<thead>
<tr>
<th>論文題目</th>
<th>変換係数とControl Lyapunov Functionを用いた非線形システムの準最適適応制御則及び\mathcal{L}_2ゲイン保証ロバスト制御則設計法</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位申請者</td>
<td>岡野 恵三</td>
</tr>
</tbody>
</table>

ブレーキの摩擦、振動器の飽和、セミアクティブサスペンション、アーム型ロボットをはじめとする我々のまわりに実存するシステムは、そのほとんどが何らかの非線形要素を含む非線形システムである。非線形制御理論は、非線形システムに対する制御系設計理論で、1960年代にPopovらの研究を契機に、制御系の安定性に関する研究成果が数多く報告され、非線形システムの最適制御問題に関する研究成果も報告されている。非線形最適制御系設計法に関しては、FreemanとKokotovicによって提案されたControl Lyapunov Function (CLF)に基づく逆最適制御系の構成法が代表的なもののである。逆最適制御系の構成法とは、非線形偏微分方程式で表されるHamilton-Jacobi-Bellman (HJB)方程式を解くことなく、最適制御系を構成する設計手法である。本論文で提案する非線形最適制御系設計法もCLFに基づいたものであるという意味で、FreemanとKokotovicの方法に関連している。

本論文の目的は、CLFの設計が可能な非線形システムに対して、設計者の意図した評価関数を小さくする準最適適応制御系設計法の構築と適応制御系への拡張、および\mathcal{L}_2ゲインを保証するロバスト制御系設計法の構築である。

具体的な非線形最適制御系設計法は、変換係数という新たな変数を導入し、変換係数とCLFを用いてHJB方程式を大域的に満たすようにCLFを変換した後、変換したCLF（改良CLF）を用いて非線形最適適応制御系の設計を行う。非線形適応制御系設計への拡張では、変換係数とAdaptive Control Lyapunov Function (ACLF)を用いてHJB方程式を大域的に満たすようにACLFを変換した後、変換したACLF（改良ACLF）を用いて非線形最適適応制御系の設計を行う。非線形ロバスト制御系設計への拡張では、変換係数とCLFを用いてHamilton-Jacobi-Isaacs (HJI)方程式を満たす改良CLFの設計を行う。改良CLFは、Input-to-State Stability Control Lyapunov Function (ISS-CLF)となり、そのISS-CLFを用いて非線形ロバスト制御系の設計を行う。
本論文で導入した変換係数は、2次方程式を解くという非常にシンプルなアイデアによって決定されており、従来から提案されているような複雑な設計手順を必要としない点で提案手法が有用である。また、変換係数法を用いることでHJB方程式を大域的に満たす関数の設計が可能であり、HJB方程式は設計者の意図した評価関数を陽に考慮している点が従来の制御系設計法とは異なる利点である。さらに、従来はL₂ゲインを有する制御系設計は困難であったが、HJI方程式に基づいて変換係数を導入することによって、容易にL₂ゲイン性能を有する制御系設計を行うこともできる。以上のように、非線形最適制御系設計、あるいはL₂ゲイン性能を有する非線形ロバスト制御系設計のいずれにおいても、CLFの設計が可能な非線形システムであれば、提案する手法を適用することができる。

本論文は以下に示す全7章から構成した。
第1章では、本論文の研究背景、目的と意義、および全体の構成を記述した。研究背景で、いままでに提案されている非線形最適制御系の設計法を述べ、従来法の基本的な問題点と、本論文で新たに提案する変換係数法と、変換係数法を用いた非線形制御系設計の利点を記述した。
第2章では、本論文で対象とするシステム、ならびにCLFをはじめとする非線形システムに関する従来の結果についてまとめた。
第3章では、本論文で提案する制御系設計法で重要な役割を果たす変換係数法について述べ、変換係数法を用いることで偏微分方程式を満たす関数が設計できることを述べた。次に、HJB方程式に変換係数法を適用し、HJB方程式を満たす関数の設計法について述べた。
第4章では、CLFと変換係数法を用いることで、HJB方程式を大域的に満たす改良CLFの設計が可能であることを示した。CLFを用いることで変換係数が大域的に存在し、かつ安定関数となること、改良CLFを用いて得られる非線形最適制御則がシステムを大域的に漸近安定化することを述べた。次に、変換係数法によって得られる非線形次最適制御則、設計者の意図した評価関数を小さくし、CLFに基づく制御則の中で評価関数を最小化することを示した。また、変換係数が連続となる条件についても述べた。
第5章では、変換係数法を適応制御系へ拡張した。変換係数とACLが用いることで、改良ACLがHJB方程式を大域的に満たすこと、変換係数が大域的である存在し、かつ安定関数となること。改良ACLを用いて非線形最適適応制御系の設計が可能であり、その制御則が未知パラメータを含むシステムを大域的に漸近安定化することを述べた。
第6章では、変換係数法をロバスト制御へ拡張した。変換係数とCLFを用いてHJI方程式を満たす改良CLFの設計を行い、同時にL₂ゲインの下界条件を与え、L₂ゲイン設計可能であることを、改良CLFがISS-CLFとなることを示した。ISS-CLFを用いてL₂ゲイン性能を有する非線形ロバスト制御則の設計を行い、外乱が存在する場合でも非線形システムが安定となること、得られる非線形ロバスト制御則が評価関数の鞍点を与えることも述べた。また、変換係数が連続となる条件についても第4章とは異なるアプローチで述べた。
最後に第7章において、本論文で得られた成果についてまとめるとともに、今後の展望について述べた。
論文審査の結果の要旨

学位申請者氏名　岡野 恵三
審査委員主査　板倉 直明
委員　新 誠一
委員　内海 彰
委員　本多 中二
委員　大屋 英稔

本論文は、「変換係数とControl Lyapunov Functionを用いた非線形システムの準最適制御則及びL₂ゲイン保証ロバスト制御則設計法」と題して、以下に示す全7章から構成されている。

第1章『序論』では、本論文の研究背景、目的と意義、および全体の構成が記述されている。まず、研究背景で今までに提案されている非線形最適制御系の設計法を述べ、その具体的な問題点を挙げている。そして本論文で導入した変換係数は、2次方程式を解くという非常にシンプルなアイデアによって決定されており、従来手法で必要であった複雑な設計手順を必要としない点で提案手法が有用であると記述している。また、変換係数法を用いることで、Hamilton-Jacobi-Bellman(HJB)方程式を大域的に満たす関数の設計が可能である点でも有意であると記述している。

第2章『基礎理論』では、本論文で対象とするシステム、制御理論で一般に知られている各種定義、非線形最適制御問題と非線形H₂制御問題、そして従来手法の代表例として、Backstepping手法を用いたControl Lyapunov Function(CLF)の設計を記述している。これらの記述により第3章以降の提案手法の説明が分かり易くなっている。

第3章『変換係数法』では、本論文で提案する制御系設計法で重要な役割を果たす変換係数法について記述している。まず、変換係数を用いることで偏微分方程式を満たす関数が設計できることを記述している。次に、HJB方程式に変換係数法を適用した場合において、HJB方程式を満たす関数の設計法を詳細に記述している。
第4章『変換係数とCLFを用いた非線形最適制御則』では、変換係数とCLFを用いることで、HJB方程式を大域的に満たす改良CLFの設計が可能であることを記述している。また、CLFを用いることで変換係数が大域的に存在し、かつ正定関数となることや、改良CLFを用いて得られる非線形最適制御則がシステムを大域的に漸近安定化することが明確に記述されている。そして、変換係数法によって得られる非線形最適制御則は、設計者の意図した評価関数を小さくすることが可能で、CLFに基づく制御則の中で評価関数を最小化できる利点を記述している。さらに、変換係数が連続となる条件についても記述している。

第5章『変換係数とACL法を用いた非線形最適制御則』では、変換係数の適応制御系への拡張を行っている。適応制御系への拡張した場合、変換係数とAdaptive Control Lyapunov Function (ACL法)を用いることで、改良ACL法がHJB方程式を大域的に満たすことを記述している。また、変換係数が大域的に存在し、かつ正定関数となることや、改良ACL法を用いて非線形最適制御則の設計が可能となり、その制御則が未知パラメータを含むシステムを大域的に漸近安定化することが明確に記述されている。

第6章『変換係数とCLFを用いたL2ゲイン性能を保証する非線形ロバスト制御則』では、変換係数法のロバスト制御への拡張を行っている。ロバスト制御への拡張した場合、CLFと変換係数を用いてHamilton-Jacobi-Isaacs (HJI)方程式を満たす改良CLFの設計を行い、同時にL2ゲインの下界条件を与え、L2ゲインが設計可能であることと、改良CLFがInput-to-State Stability Control Lyapunov Function (ISS-CLF)となることを記述している。そして、ISS-CLFを用いてL2ゲイン性能を保証する非線形ロバスト制御則の設計を行い、外乱が存在する場合でも非線形システムが安定となることが明確に記述されている。また、得られる非線形ロバスト制御則が評価関数の鞍点を与えることや、変換係数が連続となる条件についても、第4章とは異なるアプローチで記述している。

第7章『結言』では、本論文で得られた成果についてまとめるとともに、今後の展開について記述している。本論文の成果については、新たな概念である変換係数法を導入し、HJB方程式やHJI方程式の偏微分方程式を満たす解を構成し、非線形最適適応制御則、非線形ロバスト制御則設計への拡張を行った結果、CLFを設計できる全ての非線形システムにおいて、変換係数法が従来手法よりも、最適性、ロバスト性を向上させることを明らかにしている。また、今後の展望については、変換係数法は非常にシンプルであることから、離散時間システムへの適用など、適用範囲の拡張が容易に行える可能性を明らかにしている。

このように本論文は、新たに提案した変換係数法を用いた非線形制御則設計の利点が明確に記述されており、非線形制御則設計分野の発展に大きく寄与する優れた研究であると評価できる。

以上により、本論文は博士（工学）の学位論文として十分な価値を有するものと認める。