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We report on a high Quality-Factor Kerr-lens mode-locked Tm:Sc2O3 laser 

operating around 2.1 µm. Using a simple four mirror Z-shaped cavity consisting 

of an output coupler of 0.5% transmittance, two folding mirrors, and a chirped 

mirror, pulses as short as 72 fs with an average power of 130 mW were obtained 

at a center wavelength of 2108 nm. By replacing the 0.5% output coupler with a 

~0.3% one, we observed anomalous broadening of the spectrum into the range 

between ~2250 and 2350 nm where Tm:Sc2O3 shows no gain. 
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Ultra-short pulse 2 µm lasers are attracting great interest for various applications, including 

wavelength conversion. This does not only include conversion to longer wavelengths from 

the mid-infrared to the terahertz region by supercontinuum generation1) or optical-parametric 

processes2-4) in non-oxide nonlinear materials. It also covers the shorter wavelength range, 

e.g. up to the soft X-ray region by high-harmonic generation5). In the last decade, there were 

many efforts to shorten the available pulse duration directly from Tm3+-doped solid state 

bulk oscillators6,7) and in the last few years, sub-100-fs operation was successfully achieved 

by the combinations of new gain media and saturable absorbers. As an example, 76 fs pulses 

were obtained from a single-walled carbon nanotube saturable absorber (SWCNSA) mode-

locked Tm:MgWO4 laser 8). Employing Tm:Ho co-doped disordered materials, pulses as 

short as 52 fs were obtained from a GaSb-based semiconductor saturable absorber mirror 

(SESAM) mode-locked Tm,Ho:CaYAlO4 
9). Among the Tm3+ doped laser materials, 

Tm:RE2O3(RE=Sc, Lu or Y) materials are promising gain media for high power short pulse 

2 µm lasers due to their superior spectroscopic, thermo-optical and thermo-mechanical 

properties10). Their strong crystal field results in fluorescence bands located at wavelengths 

beyond 1950 nm, enabling laser operation in the wavelength range between 1.95 µm and 2.2 

µm. This operation wavelength range suffers less atmospheric water vapor absorption and 

ground state absorption, which allows for a broad effective gain bandwidth in mode-locked 

operation. The high thermal-conductivity of these materials can mitigate undesirable thermal 

influence during high power laser operation. The available pulse duration from pure 

Tm:RE2O3, however, was limited so far. Using an InGaAsSb quantum-well SESAM mode-

locked Tm:Sc2O3 single crystal laser, the pulse duration was limited to 218 fs11), whereas 

175 fs pulses were reported from an SWCNSA mode-locked Tm:Lu2O3 single crystal laser12). 

Very recently, much shorter pulses were generated with mixed ceramics. Pulses as short as 

63 fs were demonstrated using an InGaAsSb quantum-well SESAM mode-locked 

Tm:(LuSc)2O3 mixed ceramic laser13) and even shorter pulses of 57 fs durations were 

demonstrated using a SWCNSA mode-locked Tm:(LuY)2O3 mixed ceramic laser14). Due to 

their disordered structure, mixed Tm:RE2O3 materials exhibit broader gain bandwidths at 

the cost of a reduced thermal conductivity and often higher scattering losses. 

With the aim of the generation of ultrashort pulses at a high average output power, we 

previously developed a Kerr-lens mode-locked (KLM) Tm:Sc2O3 laser and obtained pulses 

as short as 166 fs with an average output power of 0.44 W15). The main advantages of KLM 

over other mode locking techniques is, that the Kerr lens acts as a fast saturable absorber 

enabling a large modulation depth and a broad spectral bandwidth at the same time without 
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the penalty of large nonsaturable losses. This advantage is crucial to obtain the shortest pulse 

durations16). In addition, KLM can be very useful to increase the Q-factor of mode-locked 

laser cavities. In 2019, Kimura et al. reported 22 fs pulse duration from a high Q-factor KLM 

Yb:CALGO laser with anomalous spectral broadening17). The spectral broadening overcome 

the gain bandwidth limitation of Yb lasers. In 19), This broadening was attributed to Raman-

assisted spectral broadening that requires a KLM cavity with a high Q-factor.  

  Here, aiming to further decrease the pulse durations of 2 µm Tm solid state lasers, we 

developed a simple 4 mirror high Q-factor Kerr-lens mode-locked Tm:Sc2O3 single crystal 

laser. The cavity consisted of an output coupler, two folding mirrors, and a chirped mirror. 

With an output coupler of 0.5% transmittance, pulses as short as 72 fs with an average power 

of 130 mW were obtained at a center wavelength of 2108 nm. By further increasing the 

cavity Q-factor with an output coupler of less than 0.3% transmittance, we observed 

anomalous spectral broadening into the range from ~2250 to 2350 nm, where Tm:Sc2O3 

shows no gain. The phenomenon was similar to the result reported by Kimura et al.17) and 

should allow further pulse shortening of KLM ultrafast Tm solid state oscillators. 

  The experimental configuration is shown in Fig. 1. The cavity consisted of an output 

coupler (OC), two folding mirrors (M1 and M2), and a chirped mirror (CM). The gain 

medium was a Tm3+:Sc2O3 single crystal with a doping concentration of 1%, a thickness of 

3.7 mm and a group delay dispersion (GDD) of -250 fs2 per pass. It was mounted in a water-

cooled copper heatsink and placed between two folding mirrors at Brewster’s angle. We used 

in-band pumping at 1611 nm (3H4 → 3F4) with a home-built Er:Yb fiber MOPA pump 

source18). The folding mirror’s reflectivity in the wavelength range from 1850 to 2200 nm 

was >99.8%, and the radius of curvature was 100 mm. The pump light was imaged into the 

gain medium through one of the folding mirrors, which provided a transmittance of 90% for 

the pump wavelength. The estimated diameters of the pump laser mode and the cavity 

fundamental mode at the position of the gain medium were 47 × 47 µm2 and 55 ×57 µm2 

(sagittal × tangential), respectively. The chirped mirror (GDD was -1000 fs2 from 2000 to 

2200 nm, reflectivity was R>99.9% from 1900 to 2200 nm, UltraFast Innovations LLC) was 

placed at the end of cavity. We used various OCs with different transmittance, 1% (2000-

2300 nm), 0.5%(1900-2100 nm) and ~0.3%(1900-2250 nm, GDD~-200 fs2, 2000-2250 nm). 

A 3 mm thick silicon plate was employed for external pulse compression. 

KLM was obtained with all three different OCs. With the 1% OC, the highest average 

power of 222 mW with a pulse duration of 80 fs was obtained [Fig. 2(a)] The center 

wavelength and spectral bandwidth were 2141 nm and 65 nm, respectively [Fig. 2(b)] The 
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repetition rate was 93.8 MHz which is in good agreement with the cavity length [Fig. 2(c)] 

The maximum pulse energy and peak power were 2.37 nJ and 29.6 kW, respectively. The 

average output power as a function of the pump power is shown in Fig. 2(d). The KLM was 

initiated at a pump power of 580 mW by moving the M2. At the onset of KLM the average 

power doubled, which indicates a large modulation depth. We did not use any hard aperture 

inside the cavity so the KLM was achieved only by the soft aperture effect. 

 With the 0.5% OC, the shortest pulse duration of 72 fs with an average output power of 130 

mW was obtained [Fig. 3(a)]. The center wavelength and the spectral bandwidth were 2108 

nm and 67 nm [Fig. 3(b)] respectively. Due to the narrower bandwidth of the 0.5% OC 

covering only the range from 1900 to 2100 nm, the center wavelength shifted 33 nm into the 

shorter wavelength range compared to the 1% OC. The narrow spectral peaks around 2250 

nm in Fig. 3(b) are Kelly sidebands. The time-bandwidth product was 0.325, indicating sech2 

pulse shape. Pulse energy and peak power were 1.38 nJ and 19.2 kW, respectively. 

  Using the 0.3% OC, the broadest spectral bandwidth of 75 nm was obtained at a soliton 

peak wavelength of 2164 nm (Fig. 4 red dashed curve) with a maximum average power of 

50 mW. In addition, we found anomalous spectral broadening into the range between ~2250 

and 2350 nm. This region is outside of the gain band of the 3F4 → 3H6 transition of  

Tm:Sc2O3. The 3H4 → 3H5 transition could have emission in this range, when pumping with 

a wavelength of ~800 nm19-21) or an upconversion pumping process22) are applied. However, 

we are using in-band pumping and the measured fluorescence spectrum under pumping at 

1611 nm indicates no fluorescence at wavelengths above 2250 nm (Fig.4 green solid curve). 

The threshold pump power for this spectral broadening was as low as 500 mW. When the 

pump power was increased, only the spectral components around 2250-2350 nm grew and 

the peak intensity around 2164 nm was clipped (Fig. 4). The phenomenon and the spectral 

shape were similar to the result of the 22 fs Yb:CALGO laser reported by Kimura et al.17). 

Therefore we attribute the broadening observed here also to Raman assisted spectral 

broadening. The calculated Raman gain spectrum of our Tm:Sc2O3 mode-locked laser is also 

shown in Fig. 4(black dashed curve). The spectral component around 2250-2350 nm is 

located inside the Raman gain band but not at the Raman gain maximum position. The 

mismatch can be explained by the reflectivity and GDD of the cavity. The designed 

reflectivity and GDD of the chirped mirrors used in our experiment are shown in Fig. 5(a). 

The reflectivity suddenly decreases at wavelengths longer than 2300 nm and the GDD shows 

strong high order dispersion above 2250 nm that must be also the origin of the dense Kelly 

sidebands around 2250 nm. The Raman gain decreases when the group velocity (GV) of the 
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pump pulse and the Raman pulse do not match, because in that case they do not overlap in 

the gain crystal during the cavity round trip. So the position of the anomalous spectral 

broadening component was governed by a balance of GV and reflectivity. It’s worth noting 

that the main sech2 shape spectral component of our KLM laser was much broader than the 

fluorescence bandwidth (Fig. 4) and this is the shortest pulse operation mod mode-locked 

non-disordered Tm solid state laser to our knowledge. Furthermore, assuming the whole 

spectrum including the Raman gain band at 2250-2350 nm, the corresponding transform 

limited pulse duration would be ~38 fs [Fig. 5(b)] and thus nearly a factor of two shorter 

than without the 2250-2350 nm spectral component (~65 fs). 

 We also tried to measure the pulse duration by intensity autocorrelation. However, the 

measured autocorrelation trace with the spectral broadening effect was not stable. We explain 

the unstable autocorrelation trace as follows: The spectral broadening takes place inside the 

cavity with the very short crystal length. Under these conditions, the coherence of the whole 

spectrum can be conserved23). However, the GDD value of our cavity around 2300 nm was 

strongly positive and not flat, and therefore the spectral component around 2300 nm was 

strongly chirped and/or the phase relationship between the main soliton spectral component 

and the spectral component around 2300 nm was rapidly changing per round trip. Therefore, 

the Raman band cannot contribute to pulse shortening. This issue can be solved by using a 

broader bandwidth chirped mirror, which should then result in close to Fourier limited pulse 

durations utilizing the whole bandwidth of the oscillator. Furthermore, with a proper GDD 

mirror, the shape of the Raman component should become smoother and the threshold for 

the spectral broadening should decrease that mitigates the requirement of a high Q-factor 

cavity and increases an average output power because the effective Raman gain also 

broadens and increases with a proper GDD mirror. The other requirements to obtain a short 

pulse duration with this phenomenon would be following: First the cavity should have broad 

reflectivity bandwidth to fully cover all spectral components. Second the cavity should have 

a large modulation depth and/or a high Q-factor as the spectral components outside the gain 

bandwidth of the gain medium does not contribute to stimulated emission and therefore the 

gain saturation becomes weaker, which can easily lead to multi-pulse operation or the 

appearance of narrow CW spectral components16,24). 

 In conclusion, we developed a high Q-factor 4 mirror KLM Tm:Sc2O3 laser. With an 

output coupler of 0.5% transmittance, the shortest pulse duration of 72 fs with an average 

output power of 130 mW was obtained at a center wavelength of 2108 nm. By further 

increasing the cavity Q-factor by using the output coupler of less than 0.3% transmittance, 
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we observed anomalous spectral broadening into the range between 2250 and 2350 nm, 

where Tm:Sc2O3 shows no gain. This phenomenon is attribute to Raman assisted spectral 

broadening. With proper design of the total cavity dispersion and reflectivity bandwidths, 

the additional spectral component can contribute to pulse shortening and the spectrum should 

support sub-40-fs pulse duration. 
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Figure Captions 

Fig. 1. Cavity configuration of 4 mirror Tm:Sc2O3 Kerr-lens mode-locked laser  

 

Fig. 2. (a) Autocorrelation trace, (b) spectrum of the mode-locked pulses, (c) RF spectrum, 

and (d) average power as a function of pump power using a 1% OC. 

 

Fig. 3. (a) Autocorrelation trace, (b) spectrum of the mode-locked pulses using a 0.5% OC. 

 

Fig. 4. Spectra of pulses with a 0.3% OC under the pump power of 0.5 W (blue solid curve) 

and 1W (red dashed curve) in log scale, and the fluorescence spectrum of Tm3+:Sc2O3 (green 

solid curve) and calculated Raman gain (black dashed curve) in linear scale are shown. 

 

Fig. 5. (a) Mode-locked pulse spectrum (black solid curve), reflectivity (red dashed curve) 

and GDD (blue dotted curve) of the chirped mirrors. (b) Calculated transform limited pulse 

with (blue dashed curve) and without (red solid curve) the 2250-2350 nm spectral 

components. 
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Fig. 2.  
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Fig. 3. 
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Fig. 5 


