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Abstract—This paper presents a new sum-of-squares (SOS, for
brevity) design framework for robust control of polynomial fuzzy
systems with uncertainties. Two kinds of robust stabilization
conditions are derived in terms of SOS. One is global SOS
robust stabilization conditions that guarantee the global and
asymptotical stability of polynomial fuzzy control systems. The
other is semi-global SOS robust stabilization conditions. The
latter is available for very complicated systems that are difficult
to guarantee the global and asymptotical stability of polynomial
fuzzy control systems. The main feature of all the SOS robust
stabilization conditions derived in this paper are to be expressed
as non-convex formulations with respect to polynomial Lyapunov
function parameters and polynomial feedback gains. Since a
typical transformation from non-convex SOS design conditions to
convex SOS design conditions often results in some conservative
issues, the new design framework presented in this paper gives
key ideas to avoid the conservative issues. The first key idea is
that we directly solve non-convex SOS design conditions without
applying the typical transformation. The second key idea is that
we bring a so-called copositivity concept. These ideas provide
some advantages in addition to relaxations. To solve our SOS
robust stabilization conditions efficiently, we introduce a gradient
algorithm formulated as a minimizing optimization problem of
the upper bound of the time derivative of an SOS polynomial
that can be regarded as a candidate of polynomial Lyapunov
functions. Three design examples are provided to illustrate the
validity and applicability of the proposed design framework.
The examples demonstrate advantages of our new SOS design
framework for the existing LMI approaches and the existing
convex SOS approach.

Index Terms—copositivity, polynomial Lyapunov function,
polynomial fuzzy system with uncertainty, robust stabilization,
sum of squares.

I. INTRODUCTION

TODAY there exists a large body of literature on Takagi-
Sugeno (T-S) fuzzy model-based control [1]. Especially,

linear matrix inequalities (LMIs) based designs, e.g., [2], [3],
have been paid a lot of attention after LMI-based designs have
been discussed in [4]-[6]. A key feature of the approach is that
it renders simple, natural and effective design procedures as al-
ternatives or supplements to other nonlinear control techniques
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(e.g., [7]) that require special and rather involved knowledge.
The LMI-based design approaches entail obtaining numerical
solutions by convex optimization methods such as the interior
point method [8].

Though LMI-based approaches have enjoyed great success
and popularity, there still exist a large number of design
problems that either cannot be represented in terms of LMIs,
or the results obtained through LMIs are sometimes conser-
vative. Recently, as a post-LMI framework, an SOS based
approach has received a great deal of attention in control of
nonlinear systems using polynomial fuzzy systems and con-
trollers, which includes the well-known Takagi-Sugeno fuzzy
systems and controllers as special cases. An SOS approach to
polynomial fuzzy control system designs has first presented
in [9]-[13]. It can be seen that SOS approaches [9]-[22]
provide more extensive and/or relaxed results for the existing
LMI approaches [2], [3], [23]-[35] to T-S fuzzy model and
control. However, there exists a very few literature on SOS-
based robust control designs for polynomial fuzzy systems
with uncertainties. To the best of our knowledge, an SOS-
based robust control design for polynomial fuzzy systems
with uncertainties has been discussed only in [36]. The most
important point of SOS-based design conditions is that, to
obtain convex SOS design conditions, the existing SOS-based
design conditions [9]-[20] utilize a typical transformation from
non-convex SOS design conditions to convex SOS design
conditions. However, the transformation often results in some
conservative issues although no such conservatism exists in
LMI transformation cases. In [36], the typical transformation
is employed to obtain convex SOS robust stabilization condi-
tions. Furthermore, not only the conservative issues but also
other two difficulties are found in the existing SOS approach.
One is a restrictive polynomial Lyapunov function setting that
leads to conservative stability results. The other is that the
stability does not generally hold globally in the existing SOS
approach. These will be concretely discussed in Remarks 2
and 3. This paper gives new ideas to solve the conservative
issues and the difficulties in the existing SOS approach.

This paper presents a new SOS design framework for robust
control of polynomial fuzzy systems with uncertainties. The
framework gives key ideas to avoid the conservative issues.
The first key idea is that we directly solve non-convex SOS
design conditions without applying the typical transformation.
The second key idea is that we bring a so-called copositivity
concept. These ideas provide some advantages in addition to
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relaxations. To solve our SOS robust stabilization conditions
efficiently, we introduce a gradient algorithm formulated as a
minimizing optimization problem of the upper bound of the
time derivative of an SOS polynomial that can be regarded as
a candidate of polynomial Lyapunov functions.

The rest of the paper is organized as follows. Section II
recalls a polynomial fuzzy system defined in [9]-[13] and
defines a polynomial fuzzy system with uncertainty. Sections
III and IV give a new SOS framework for robust control,
i.e., robust stabilization conditions to design a robust fuzzy
controller and an algorithm to solve them, respectively. Section
V entails two design examples to demonstrate the validity and
applicability of the proposed design framework. The examples
demonstrate advantages of our SOS robust stabilization condi-
tions for the existing LMI approaches and the existing convex
SOS approach. Sections VI and VII present semi-global robust
stabilization conditions and their design example, respectively.
The design example deals with a kind of unmanned aerial
vehicles (UAVs) that is a very complicated system with high
nonlinearity.

It is assumed that all the matrices and vectors in this paper
have appropriate dimensions. P � 0 (P � 0) means that P
is a positive definite matrix (positive semi-definite matrix).

II. POLYNOMIAL FUZZY SYSTEM WITH UNCERTAINTIES

Consider the following nonlinear system:

ẋ(t) = f(x(t),u(t)), (1)

where f is a smooth nonlinear function such that f(0,0) =
0. x(t) = [x1(t) x2(t) · · · xn(t)]T is the state vector and
u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector. Based
on the sector nonlinearity concept [2], we can exactly represent
(1) with the following T-S fuzzy model [37] (globally or at
least semi-globally).

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Aix(t) +Biu(t) i = 1, 2, · · · , r, (2)

where zj(t) (j = 1, 2, · · · , p) is the premise variable. The
membership function, Mij , denotes the jth premise variable
component in the ith Model Rule. r denotes the number
of Model Rules. Each zj(t) is a measurable time-varying
quantity that may be states, measurable external variables
and/or time.

The overall dynamics of the system is represented by
fuzzy blending of the linear system models. That is, the
defuzzification process of the T-S model (2) can be represented
as

ẋ(t) =

r∑
i=1

wi(z(t)){Aix(t) +Biu(t)}
r∑
i=1

wi(z(t))

=

r∑
i=1

hi(z(t)){Aix(t) +Biu(t)}, (3)

where
z(t) = [z1(t) · · · zp(t)]

and

wi(z(t)) =

p∏
j=1

Mij(zj(t)).

Since the number of Model Rule that fire for all t is larger
than or equal to one in general, the following relations hold.

r∑
i=1

wi(z(t)) > 0, wi(z(t)) ≥ 0, i = 1, 2, · · · , r.

Hence,

hi(z(t)) =
wi(z(t))
r∑
i=1

wi(z(t))

≥ 0,

r∑
i=1

hi(z(t)) = 1.

In [9] and [12], we proposed a new type of fuzzy model
with polynomial model consequence, i.e., fuzzy model whose
consequent parts are represented by polynomials. Using the
sector nonlinearity concept [2], we exactly represent (1) with
the following polynomial fuzzy model (4) even if the nonlinear
system (1) contains polynomial elements. The main difference
between the T-S fuzzy model [37] and the polynomial fuzzy
model is consequent part representation. The fuzzy model (4)
has a polynomial model consequence.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai(x(t))x̂(x(t)) +Bi(x(t))u(t), (4)

where i = 1, 2, · · · , r. r denotes the number of Model Rules.
x̂(x(t)) is a column vector whose entries are all monomials
in x(t). That is, x̂(x(t)) ∈ RN is an N × 1 vector of
monomials in x(t). A monomial in x(t) is a function of the
form xα1

1 xα2
2 · · ·xαn

n , where α1, α2, · · · , αn are nonnegative
integers. Ai(x(t)) ∈ Rn×N and Bi(x(t)) ∈ Rn×m are
polynomial matrices in x(t). Therefore, Ai(x(t))x̂(x(t)) +
Bi(x(t))u(t) is a polynomial vector. Thus, the polynomial
fuzzy model (4) has a polynomial in each consequent part.
We assume that

x̂(x(t)) = 0 iff x(t) = 0
throughout this paper.

The defuzzification process of the model (4) can be repre-
sented as

ẋ(t) =

r∑
i=1

hi(z(t)){Ai(x(t))x̂(x(t)) +Bi(x(t))u(t)}. (5)

The polynomial fuzzy model is an extension of the T-S fuzzy
model. The extension bring us some advantages [12]. One
is that SOS stabilization conditions provides more relaxed
results than the existing LMI stabilization conditions. Another
advance is that original nonlinear systems with polynomial
terms can be exactly and globally represented by polynomial
fuzzy models although the T-S fuzzy models are sometimes
not global models for the original nonlinear systems with
polynomial terms.
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Remark 1. Stability conditions for the T-S fuzzy system have
been mainly represented in terms of LMIs [2]. Hence, the LMI
stability conditions can be solved numerically and efficiently
by interior point algorithms, e.g., by LMI solvers. On the
other hand, the convex SOS conditions in [9]-[20], [36]
for polynomial fuzzy systems are represented as convex SOS
problems. Clearly, the problems can not be directly solved
by LMI solvers, but they can be solved via an SOS solver
(SOSOPT [38], SOSTOOLS [39], etc.) and an SDP solver
[40], [41].

This paper focuses on stabilization of the polynomial fuzzy
model with uncertainties. Hence, we define a polynomial fuzzy
model with uncertainties as follows.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then

ẋ(t) = {Ai(x(t))

+Dai(x(t))Δai(x(t))Eai(x(t))}x̂(x(t))
+{Bi(x(t))

+Dbi(x(t))Δbi(x(t))Ebi(x(t))}u(t), (6)

where i = 1, 2, · · · , r. Dai(x(t)), Dbi(x(t)), Eai(x(t)) and
Ebi(x(t)) are polynomial matrices in x(x(t)). Δai(x(t)) and
Δbi(x(t)) denote uncertain matices in x(t) and satisfy

‖ Δai(x(t)) ‖≤ βai(x(t)), (7)

‖ Δbi(x(t)) ‖≤ βbi(x(t)), (8)

where βai(x(t)) and βbi(x(t)) denote the upper bound of the
norm of the uncertainties.

The defuzzification process of the model (6) can be repre-
sented as

ẋ(t) =

r∑
i=1

hi(z(t)){Ai(x(t))x̂(x(t)) +Bi(x(t))u(t)

+Dai(x(t))Δai(x(t))Eai(x(t))x̂(x(t))

+Dbi(x(t))Δbi(x(t))Ebi(x(t)))u(t)}. (9)

From now, to lighten the notation, we will drop the notation
with respect to time t. For instance, we will employ x and
x̂(x) instead of x(t) and x̂(x(t)), respectively. Thus, we drop
the notation with respect to time t, but it should be kept in
mind that x and x̂(x) means x(t) and x̂(x(t)), respectively.

For the model (9), we design the following fuzzy controller.

u = −
r∑
i=1

hi(z)Fi(x)x̂(x) (10)

A convex SOS robust design condition for the control system
consisting of (9) and (10) was presented in [36]. However, as
will be mentioned in Remarks 2 and 3, some disadvantages
exist in the existing SOS approaches [9]-[20] [36].

Remark 2. In [9]-[20] and [36], the Lyapunov function
candidate (11) is used.

V (x) = x̂T (x)X−1(x̃)x̂(x), (11)

where X(x̃) is a polynomial matrix in x̃. If x̂(x) = x and
X−1(x̃) is a constant matrix, then (11) reduces to the quadrat-
ic Lyapunov function. The zero equilibrium is asymptotically
stable when the Lyapunov function exists. However, the glob-
ality is not guaranteed. The stability holds globally only if
X−1(x̃) is a constant matrix. The important point is that, to
avoid introducing non-convex condition, x̃ in the polynomial
matrix X(x̃) is defined as follows. Let K = {k1, k2, · · · , km}
denote the row indices of Bi(x) whose corresponding row is
equal to zero, and define x̃ = (xk1 , xk2 , · · · , xkm) using the
K. In other words, to avoid introducing non-convex condition,
it is assumed in the literature that X(x̃) only depends on
states x̃ whose dynamics is not directly affected by the control
input, namely states whose corresponding rows in Bi(x) are
zero. The restriction caused by x̃ depends on the Bi(x)
matrices and it leads to some conservative stability results.
A new SOS framework that will be presented in Section
III permits a non-restrictive polynomial Lyapunov function
setting.

Remark 3. As mentioned in Remark 2, (11) is employed
as a candidate Lyapunov function. The transformation from
non-convex conditions to convex conditions is carried out as
follows. The time derivative of V (x) along the feedback system
trajectory, that consists of (5) and (10), can be represented by
the general form.

V̇ (x) = x̂T (x)S(x)x̂(x) < 0, (12)

where S(x) is a non-convex polynomial matrix since it has
cross terms with respect to X−1(x̃) and Fi(x). The transfor-
mation is carried out by dropping x̂(x) off from both side of
the inequality and by multiplying the dropped inequality on
the left and right by X(x̃). As a result of the transformation,
we have the following convex condition with respect to X(x̃)
and Mi(x), where Mi(x) = Fi(x)X(x̃).

−X(x̃)S(x)X(x̃) � 0.

Finally, we arrive at the convex SOS condition,

−vT {X(x̃)S(x)X(x̃) + ε(x)I}v is SOS,

where ε(x) is a slack variable (a radially unbounded positive
definite polynomial) to keep the positivity of the SOS condition.
In the transformation, we utilize the fact that −S(x) � 0 ⇒
−x̂T (x)S(x)x̂(x) > 0. However, it should be emphasized
that this is a sufficient condition, i.e., in general, it is not
always satisfied that −x̂T (x)S(x)x̂(x) > 0 ⇒ −S(x) � 0.
It becomes a necessary and sufficient condition only if S(x)
is a constant matrix and x̂(x) = x. Only in the case, no
conservatism exists. In the LMI case [2], this path is always
equivalent since S(x) is a constant matrix and x̂(x) = x.
Thus, this conservative path in the convex SOS transformation
often causes conservative results although this path is always
equivalent in the LMI case. In [36], the same transformation is
employed to obtain convex SOS robust stabilization conditions.
A new SOS framework that will be presented in Section III can
avoid this main problem.

A new SOS framework that will be presented in Section III
can completely avoid the two problems mentioned in Remarks
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2 and 3. The utility of the new SOS design framework will
be demonstrated in design examples.

III. SOS STABILIZATION CONDITIONS

Section III presents SOS stabilization conditions based on
copositivity concept.

If (13) holds, the matrix J = [Jij ] ∈ R�×� is copositive.

yTJy =

�∑
i=1

�∑
j=1

yiyjJij ≥ 0, (13)

where y = [y1, y2, . . . , y�]
T ∈ R� and yi ≥ 0. Since checking

copositivity of a matrix is a co-NP complete problem, we take
a technique for copositivity checking relaxation [39].

Corollary 1. [39]
A relaxation is to introduce yi = ŷ2i and to check whether

(14) is satisfied or not.

Qs(ŷ) = (

�∑
k=1

ŷ2k)
s

�∑
i=1

�∑
j=1

ŷ2i ŷ
2
jJij is SOS, (14)

where ŷ = [ŷ1, ŷ2, . . . , ŷ�]
T and s is a nonnegative integer.

By using the copositivity checking relaxation, we derive
SOS robust stabilization conditions that are different from
the SOS robust stabilization conditions in [36]. Theorem 1
presents the SOS robust stabilization conditions.

Theorem 1. If there exist a polynomial V (x), polynomial
matrices Fj(x) and polynomials ḡij(x) such that (15) ∼ (17)
are satisfied with α < 0 and λ > 0, the polynomial fuzzy
controller (10) stabilizes the system (9), and V (x) becomes a
Lyapunov function.

V (x)− ε(x) is SOS, (15)

(

r∑
k=1

ĥ2k)
s

r∑
i=1

r∑
j=1

ĥ2i ĥ
2
j{−Λ̄ij(x) + αV (x)} is SOS, (16)

vT1 Lij(λ,x)v1 is SOS, (17)

where v1 denotes vector that is independent of x. ε(x) is a
radially unbounded positive definite polynomial and s is a
non-negative integer.

Λ̄ij(x) =
∂V (x)

∂x
{Ai(x)−Bi(x)Fj(x)}x̂(x)

+ḡij(x), (18)

Lij(λ,x) =⎡
⎢⎢⎢⎢⎣

λḡij(x) ∗ ∗ ∗ ∗
λDT

ai(x)(
∂V (x)
∂x )T 2I 0 0 0

λDT
bi(x)(

∂V (x)
∂x )T 0 2I 0 0

βai(x)Eai(x)x̂(x) 0 0 2I 0
βbi(x)Ebi(x)Fj(x)x̂(x) 0 0 0 2I

⎤
⎥⎥⎥⎥⎦ . (19)

The asterisk ∗ denotes the transposed elements (matrices)
for symmetric positions.

Proof:
Consider a candidate of Lyapunov functions V (x). The time

derivative of V (x) is given as

V̇ (x) =
∂V (x)

∂x
ẋ. (20)

By subsitituting the closed loop dynamics consisting of (9) and
(10) into (20), the time derivative of V (x) along the trajectory
becomes

V̇ (x)=

r∑
i=1

r∑
j=1

hihj
∂V (x)

∂x
{Ai(x)−Bi(x)Fj(x)

+Dai(x)Δai(x)Eai(x)

−Dbi(x)Δbi(x)Ebi(x)Fj(x)}x̂(x)

=

r∑
i=1

r∑
j=1

hihj{∂V (x)

∂x
(Ai(x)

−Bi(x)Fj(x))x̂(x) + ζi(x)ηij(x)},
where

ζi(x) =
[

∂V (x)
∂x Dai(x)

∂V (x)
∂x Dbi(x)

]
,

ηij(x) =

[
Δai(x)Eai(x)x̂(x)

−Δbi(x)Ebi(x)Fj(x)x̂(x)

]
.

Note that

λζi(x)ζ
T
i (x) +

1

λ
ηTij(x)ηij(x)

≥ ζi(x)ηij(x) + ηTij(x)ζ
T
i (x)

for any λ > 0. In addition, since ζi(x)ηij(x) = ηTij(x)ζ
T
i (x),

we have the following relation.

λζi(x)ζ
T
i (x) +

1

λ
ηTij(x)ηij(x) ≥ 2ζi(x)ηij(x).

Hence

ζi(x)ηij(x)

≤ λ

2
ζi(x)ζ

T
i (x) +

1

2λ
ηTij(x)ηij(x)

=
λ

2

∂V (x)

∂x
Dai(x)D

T
ai(x)(

∂V (x)

∂x
)T

+
λ

2

∂V (x)

∂x
Dbi(x)D

T
bi(x)(

∂V (x)

∂x
)T

+
1

2λ
x̂T (x)ET

ai(x)Δ
T
ai(x)Δai(x)Eai(x)x̂(x)

+
1

2λ
x̂T (x)F T

j (x)ET
bi(x)Δ

T
bi(x)

×Δbi(x)Ebi(x)Fj(x)x̂(x)

≤ Πij(λ,x),

where

Πij(λ,x) =
λ

2

∂V (x)

∂x
Dai(x)D

T
ai(x)(

∂V (x)

∂x
)T

+
λ

2

∂V (x)

∂x
Dbi(x)D

T
bi(x)(

∂V (x)

∂x
)T

+
1

2λ
β2
ai(x)x̂

T (x)ET
ai(x)Eai(x)x̂(x)

+
1

2λ
β2
bi(x)x̂

T (x)F T
j (x)ET

bi(x)Ebi(x)Fj(x)x̂(x).
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From the above inequality, we have

V̇ (x) =
r∑
i=1

r∑
j=1

hihj{∂V (x)

∂x
(Ai(x)

−Bi(x)Fj(x))x̂(x) + ζi(x)ηij(x)}

≤
r∑
i=1

r∑
j=1

hihj{∂V (x)

∂x
(Ai(x)

−Bi(x)Fj(x))x̂(x) +Πij(λ,x)}.
We introduce a polynomial ḡij(x) satisfying

r∑
i=1

r∑
j=1

hihjΠij(λ,x) ≤
r∑
i=1

r∑
j=1

hihj ḡij(x). (21)

Then, we have

V̇ (x) ≤
r∑
i=1

r∑
j=1

hihj{∂V (x)

∂x
(Ai(x)

−Bi(x)Fj(x))x̂(x) + ḡij(x)}. (22)

To show that V̇ (x) < 0 at x �= 0, we consider the condition
satisfying V̇ (x) ≤ αV (x), where α < 0. That is,

r∑
i=1

r∑
j=1

hihj{∂V (x)

∂x
(Ai(x)−Bi(x)Fj(x))x̂(x)

+ḡij(x)} − αV (x) ≤ 0.

By applying the copositivity presented in Lemma 1, we obtain
(16).

On the other hand, from the inequality (21) and λ > 0 , we
obtain

r∑
i=1

r∑
j=1

hihj{λḡij(x)− λΠij(λ,x)} ≥ 0. (23)

Using schur complement, (23) can be converted to
r∑
i=1

r∑
j=1

hihjLij(λ,x) ≥ 0, (24)

where

Lij(λ,x) =⎡
⎢⎢⎢⎢⎣

λḡij(x) ∗ ∗ ∗ ∗
λDT

ai(x)(
∂V (x)
∂x )T 2I 0 0 0

λDT
bi(x)(

∂V (x)
∂x )T 0 2I 0 0

βai(x)Eai(x)x̂(x) 0 0 2I 0
βbi(x)Ebi(x)Fj(x)x̂(x) 0 0 0 2I

⎤
⎥⎥⎥⎥⎦ .

The condition (24) holds if (17) is satisfied.

Theorem 2. Assume that Δbi(x) = 0 for all i, i.e., there
are no uncertainties with respect to the input terms. Then,
the SOS robust stabilization conditions in Theorem 1 become
simple. If there exist a polynomial function V (x), polynomial
matrices Fj(x) and polynomials ḡi(x) such that (25) ∼ (27)
are satisfied with α < 0 and λ > 0, the polynomial fuzzy
controller (10) stabilizes the system (9).

V (x)− ε(x) is SOS, (25)

(
r∑

k=1

ĥ2k)
s

r∑
i=1

r∑
j=1

ĥ2i ĥ
2
j{−Λ̄ij(x) + αV (x)} is SOS, (26)

vT1

⎡
⎣ λḡi(x) ∗ ∗
λDT

ai(x)(
∂V (x)
∂x )T 2I 0

βai(x)Eai(x)x̂(x) 0 2I

⎤
⎦v1 is SOS, (27)

where ε(x) is a radially unbounded positive definite polyno-
mial, s is a non-negative integer, and

Λ̄ij(x)=
∂V (x)

∂x
{Ai(x)−Bi(x)Fj(x)}x̂(x)

+ḡi(x). (28)

Proof: The proof is omitted since it is directly obtained
from Theorem 1. In this case, (17) is reduced to (27).

IV. ALGORITHM TO SOLVE SOS CONDITIONS

Section IV presents an algorithm to solve the SOS robust
stabilization conditions given in Section III. The algorithm
is based on a gradient algorithm formulated as a minimizing
optimization problem of the upper bound of the time derivative
of an SOS polynomial that can be regarded as a candidate of
polynomial Lyapunov functions.

We first explain the outline of its key idea below.

A. Key Idea

Consider the non-convex condition

φg(x)φh(x) ≺ 0, (29)

where φg(x) and φh(x) are polynomial matrices in x and
both of them are decision variables (matrices). The problem
is to find a solution satisfying (29). With a positive definite
polynomial matrix ψ(x) in x, the problem (29) may be
converted as

−φg(x)φh(x) + αψ(x) � 0. (30)

If we get a solution of (30) with α < 0, the problem (29) is
feasible. Regularly, (30) can be converted as

‘−vT {φg(x)φh(x)− αψ(x)}v is SOS’,
where v denotes a vector that is independent of x. Note that
the SOS condition is bilinear (not convex) with respect to de-
cision variables since there exists the term φg(x)φh(x). Now
consider very small perturbations δφg(x), δφh(x) and δψ(x)
as in [42], [43]. Since δφg(x) and δφh(x) are very small
perturbations, it can be noted with a reasonable approximation
that

φg(x)φh(x)  (φg(x) + δφg(x))(φh(x) + δφh(x))

= φg(x)φh(x) + δφg(x)φh(x)

+φg(x)δφh(x) + δφg(x)δφh(x).

Note that the term, δφg(x)δφh(x), is an extremely small in
comparison with other terms since it is the product term of
these small perturbations. Then, (φg(x) + δφg(x))(φh(x) +
δφh(x)) can be represented as φg(x)φh(x)+δφg(x)φh(x)+
φg(x)δφh(x). From this fact, we transform
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‘−φg(x)φh(x) + αψ(x) � 0’
to

‘− vT {φg(x)φh(x) + δφg(x)φh(x) + φg(x)δφh(x)

−αψ(x)− αδψ(x)}v is SOS′. (31)

Now we can formulate (31) as a minimizing optimization
problem based on convex SOS with respect to δφg(x), δφh(x)
and δψ(x).

min
δφg(x),δφh(x),δψ(x)

α

subject to

vT1 {ψ(x) + δψ(x)− ε(x)}v1 is SOS, (32)
−vT2 {φg(x)φh(x) + δφg(x)φh(x) + φg(x)δφh(x)

−αψ(x)− αδψ(x)}v2 is SOS, (33)

vT3

[
εGφ

T
g (x)φg(x) δφg(x)
δφg(x) I

]
v3 is SOS, (34)

vT4

[
εHφ

T
h (x)φh(x) δφh(x)
δφh(x) I

]
v4 is SOS, (35)

vT5

[
εψψ

T (x)ψ(x) δψ(x)
δψ(x) I

]
v5 is SOS, (36)

where v1 - v5 denote vectors that are independent of x. εG,
εH and εψ are very small positive values. ε(x) is a radially
unbounded positive definite polynomial. (34), (35) and (36)
guarantee to keep the assumption that δφg(x), δφh(x) and
δψ(x) are very small perturbations, respectively.

Note that the decision variables are δφg(x), δφh(x) and
δψ(x) in the minimizing optimization. The minimizing opti-
mization is iteratively performed by substituting the solutions
δφg(x), δφh(x) and δψ(x)

obtained at the N th iteration into the iteration law

φN+1
g (x) = φNg (x) + δφg(x),

φN+1
h (x) = φNh (x) + δφh(x),

ψN+1(x) = ψN (x) + δψ(x).

Thus, the decision variables are updated so as to minimize
the minimizing parameter α. As a result, φg(x), φh(x) and
ψ(x) are iteratively updated from the initial setting (φ0g(x),
φ0h(x) and ψ0(x)) so as to minimize the minimizing parameter
α. The initial setting of φ0g(x) φ0h(x) and ψ0(x) should
be sometimes carefully selected. So the grid search will
be employed to select the initial setting. If the minimizing
optimization problem is feasible with α < 0, it is a solution
of (29), i.e., φg(x)φh(x) ≺ 0.

B. Algorithm

We can consider

V (x) = x̄T (x)P x̄(x),

where P ∈ Rρ×ρ is a positive definite matrix and x̄(x) ∈ Rρ

is a column vecrtor whose entries are all monomials in x such
that x̄(x) = 0 iff x = 0 and ||x̄(x)|| → ∞ for ||x(x)|| → ∞.
For example, if we choose the vector x̄(x) = [x1 x2] in the
case of x = [x1 x2], V (x) becomes a quadratic Lyapunov

Step 2: Initial setting in minimizing optimization problem

Step 3: Minimizing optimization

Step 4: Decision of Iteration (Find a feasible solution or go to Step 3 iteratively)

Key idea presented
in Section IV-A

Theorem 1

Step 1: Parameter selection

Fig. 1. Outline of algorithm.

function. If x̄(x) = [x21 x1x2 x22] is chosen, V (x) becomes
a 4th-order polynomial Lyapunov function.

The algorithm to solve the SOS conditions consists of four
steps. Fig. 1 shows the outline of the algorithm. The key
idea mentioned in Section IV-A will be used in Step 3. We
check whether the SOS conditions given in Theorem 1 are
strictly and exactly feasible or not in Step 4. This algorithm
can be regarded as a gradient algorithm formulated as a
minimizing optimization problem of the upper bound of the
time derivative of the polynomial V (x). Table I summarizes
main variables and parameters in the minimizing optimization
algorithm, where pi is the i-th diagonal element of the positive
definite matrix P . For simplicity, all the non-diagonal elements
of the positive definite matrix P are set to zero in the initial
setting. However, note that, after performing the algorithm, the
nondiagonal elements of the matrix P can become non-zero.
In fact, the complicated example in Section VII obtains the
matrix P whose nondiagonal elements are non-zero although
the nondiagonal elements of the matrix P are set to zero in
the initial setting.

TABLE I
LIST OF MAIN VARIABLES AND PARAMETERS IN MINIMIZING

OPTIMIZATION ALGORITHM.

N number of iteration
λmin, λmax lower and upper bounds of λ

satisfying 0 < λmin ≤ λ ≤ λmax

pmin
i , pmax

i lower and upper bounds of pi
satisfying 0 < pmin

i ≤ pi ≤ pmax
i

qλ, Δλ number of divided segments and interval
such that qλΔλ = λmax − λmin

qpi, Δpi number of divided segments and intervals
such that qpiΔpi = pmax

i − pmin
i

Step 1: Set N = 0. Select positive scalars λmin, λmax, Δλ
and Δpi (i = 1, 2, · · · ρ) satisfying the relations defined in
Table I.

Step 2: For all the combinations (λ, p1, p2, · · · , pρ) on all
the grid points [λmin λmax]×[pmin1 pmax2 ]×· · ·×[pminρ pmaxρ ]
with the intervals Δλ, Δp1, Δp2, · · · Δpρ, solve

min
Fj(x),ḡij(x)

α subject to (15), (16) and (17) (37)

and find the grid point with the minimum α. If a grid point
with α < 0 is found, it is a strict solution of Theorem 1. If any
feasible solutions with α < 0 are not obtained, then substitute
Fj(x), ḡij(x), V (x) and λ obtained at the minimum grid
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point into FN
j (x), ḡNij (x), V

N (x) and λN , respectively, and
go to Step 3.

Step 3: Set Fj(x) = FN
j (x), ḡij(x) = ḡNij (x), V (x) =

V N (x) and λ = λN . For the given Fj(x), ḡij(x), V (x), and
λ, solve the following SOS optimization problem.

min
δFj(x),δV (x),δḡij(x),δλ

α subject to (38) ∼ (44)

The SOS conditions (38) ∼ (44) are derived by applying the
key idea to Theorem 1.

V (x) + δV (x)− ε(x) is SOS, (38)

(

r∑
k=1

ĥ2k)
s

r∑
i=1

r∑
j=1

ĥ2i ĥ
2
j{−(Λ̄ij(x) + δΛ̄ij(x))

+α(δV (x) + V (x))} is SOS, (39)

(

r∑
k=1

ĥ2k)
s

r∑
i=1

r∑
j=1

ĥ2i ĥ
2
j ×

vT1

⎡
⎢⎢⎢⎢⎣

λḡij(x) + δλḡij(x) + λδḡij(x)
DT
ai(x)μ

T (x)
DT
bi(x)μ

T (x)
βai(x)Eai(x)x̂(x)

βbi(x)Ebi(x)(Fj(x) + δFj(x))x̂(x)

∗ ∗ ∗ ∗
2I 0 0 0
0 2I 0 0
0 0 2I 0
0 0 0 2I

⎤
⎥⎥⎥⎥⎦v1 is SOS, (40)

vT2

[
εV V

2(x) δV (x)
δV (x) I

]
v2 is SOS, (41)

vT3

[
εFF

T
j (x)Fj(x) δFj(x)
δF T

j (x) I

]
v3 is SOS, (42)

vT4

[
εg ḡ

2
ij(x) δḡij(x)

δḡij(x) I

]
v4 is SOS, (43)

vT5

[
εLλ

2 δλ
δλ I

]
v5 is SOS, (44)

where

δΛ̄ij(x)=
∂δV (x)

∂x
{Ai(x)−Bi(x)Fj(x)}x̂(x)

−∂V (x)

∂x
Bi(x)δFj(x)x̂(x) + δḡij(x),

μ(x) = λ(
∂V (x)

∂x
) + δλ(

∂V (x)

∂x
) + λ(

∂δV (x)

∂x
).

v1 - v5 denote vectors that are independent of x. εV , εF , εg
and εL are very small positive values and s is a non-negative
integer.

Step 4: For δV (x) and δλ obtained by solving the SOS
optimization problem in Step 3, let V N+1(x) = V N (x) +
δV (x) and λN+1 = λN + δλ, respectively. Then set N =
N + 1. Next, set V (x) = V N (x) and λ = λN . For the given
V (x) and λ, solving the minimizing SOS problem (45).

min
Fj(x),ḡij(x)

α subject to (15), (16) and (17) (45)

If a feasible solution with α < 0 is obtained, it is a strict
solution of Theorem 1. If any feasible solutions with α < 0

are not obtained, then substitute Fj(x) and ḡij(x) obtained
by solving (45) into FN

j (x) and ḡNij (x), respectively, and go
to Step 3.

Remark 4. Assume that Δbi(x) = 0 for all i, i.e., there are
no uncertainties with respect to the input terms. Then, (40)
and (43) can be simplified as (46) and (47), respectively.

(

r∑
k=1

ĥ2k)
s

r∑
i=1

r∑
j=1

ĥ2i ĥ
2
j ×

vT1

⎡
⎣ λḡi(x) + δλḡi(x) + λδḡi(x)

DT
ai(x)μ

T (x)
βai(x)Eai(x)x̂(x)

∗ ∗
2I 0
0 2I

⎤
⎦v1 is SOS, (46)

vT4

[
εg ḡ

2
i (x) δḡi(x)

δḡi(x) I

]
v4 is SOS. (47)

Remark 5. We need to carefully deal with SOS solutions since
some numerical reliability options exist in the SOS solvers and
their feasible results might be changed very slightly according
to the options, particularly, for complicated systems. In other
words, feasible area plots (, e.g., such as Figs. 4 and 5)
might change very slightly according to the options. To obtain
more reliable solutions for SOS conditions, we perform the
following double checking throughout this paper. After getting
a feasible solution in the algorithm, we carefully perform the
so-called SOS test (, e.g., ’issos’ command in SOSOPT) for
the polynomials calculated by substituting the feasible solution
into the considered SOS conditions. That is, with one of most
reliable options, we check whether the polynomials (calculated
by substituting the feasible solution into the considered SOS
conditions) are judged as SOS polynomials or not. If the check
returns an infeasible result, we strictly judge ‘infeasible’. This
double checking is important to have reliable solutions in the
use of SOSOPT[38] or SOSTOOLS [39] and an SDP solver
[40], [41]

V. DESIGN EXAMPLES

A. Design Example I
Consider the following nonlinear system with an uncertain-

ty.

ẋ1 = (−1 + Δ(t) + x1 + x21 + x1x2 − x22)x1
+x2 + x1u,

ẋ2 = −2 sin(x1)− 6x2 + 7u,
(48)

where Δ(t) is the uncertainty satisfying |Δ(t)| ≤ c for all
t. All the simulation results given in this design example are
carried out for Δ(t) = c sin(200πt). However, it should be
noted that Δ(t) is the uncertain term and only its upper bound,
i.e. c, is known as well as the standard robust control setting.

Using the sector nonlinearity technique [2], the nonlinear
system with the uncertainty is exactly converted into the fol-
lowing two-rule polynomial fuzzy system with uncertainties:

ẋ =

r∑
i=1

hi(z){(Ai(x) +Dai(x)Δai(x)Eai(x))x

+Bi(x)u)},
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where r=2, x̂(x) = x = [x1, x2], z = x1, and

A1(x) =

[ −1 + x1 + x21 + x1x2 − x22 1
−2 −6

]
,

A2(x) =

[ −1 + x1 + x21 + x1x2 − x22 1
0.4344 −6

]
,

B1(x) = B2(x) =

[
x1
7

]
,

Da1(x) = Da2(x) =

[
c
0

]
,

Δa1(x) = Δa2(x) = Δ(t)/c,

Ea1(x) = Ea2(x) =
[
1 0

]
,

h1(z) =
sin(x1) + 0.2172x1

1.2172x1
, h2(z) =

x1 − sin(x1)

1.2172x1
.

Since ||Δa1(x)|| = ||Δa2(x)|| = ||Δ(t)/c|| ≤ 1, we have
βa1 = βa2 = 1. Moreover, the algorithm presented in Section
IV is carried out with the initial setting s = 0, εg = 0.001,
εF = 0.001, εV = 0.001, εL = 0.001, λmin = 0.2,
λmax = 5, Δλ = 0.8, pmini = 0.2, pmaxi = 1, Δpi = 0.2
for i = 1, 2. To show the validity of derived conditions,
we compare the feasible values of c for the proposed robust
control design method and the SOS-based design method of
[36]. The proposed robust control design method is feasible
for c ≤ 0.76, and the method of [36] is feasible for c ≤ 0.39. It
shows that the proposed robust design method provides more
relaxed results than the method of [36].

TABLE II
FEASIBLE AREAS FOR c.

Convex SOS robust [36] c ≤ 0.39
Our SOS robust c ≤ 0.76

For c = 0.76, Fig. 2 shows the behavior of the nonlinear
system (48) with u = 0. Thus, the system is unstable when
u = 0. By solving the conditions in Theorem 2, a feasible
solution for c = 0.76 can be obtained as

λ = 0.6811,

V (x) = 1.0524x21 + 0.1361x22

F1(x) =

[
1.6566x1 + 0.2669x2 + 0.8952

0.2669x1 − 0.1902

]T
,

F2(x) =

[
1.6314x1 + 0.2696x2 + 1.0418

0.2696x1 − 0.2061

]T
,

ḡ1(x) = 0.6850x41 − 0.5481x31x2 + 1.1416x21x
2
2

− 0.0932x31 + 1.4081x21x2 + 0.5751x1x
2
2

+ 1.8407x21 + 0.0615x1x2 + 0.6297x22,

ḡ2(x) = 0.6797x41 − 0.5397x31x2 + 1.1377x21x
2
2

+ 0.0217x31 + 1.3704x21x2 + 0.5679x1x
2
2

+ 1.8395x21 − 0.0914x1x2 + 0.6296x22.

Fig. 3 shows the controlled behavior for six different initial
conditions. It can be seen from Fig. 3 that the design fuzzy
controller stabilizes the system from all the initial conditions
although the system has uncertainties.
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Fig. 2. Behavior of the nonlinear system (48) with u = 0.
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Fig. 3. Controlled behavior of the nonlinear system (48).

Based on the sector nonlinearity technique [2], the nonlinear
system (48) can be exactly represented by a T-S fuzzy model
for x1 ∈ [−d1 d1] and x2 ∈ [−d2 d2], where d1 and d2 are
constant satisfying 0 < d1 < ∞ and 0 < d2 < ∞. The T-S
fuzzy model is obtained as

8∑
i=1

hi(z){(Ai +DaiΔai(t)Eai)x+Biu}, (49)

where

A1 =

[
kmax 1
−2 −6

]
, A2 =

[
kmax 1
−2 −6

]
,

A3 =

⎡
⎣ kmax 1
−2 sin(d1)

d1
−6

⎤
⎦ , A4 =

⎡
⎣ kmax 1
−2 sin(d1)

d1
−6

⎤
⎦ ,

A5 =

[
kmin 1
−2 −6

]
, A6 =

[
kmin 1
−2 −6

]
,

A7 =

⎡
⎣ kmin 1
−2 sin(d1)

d1
−6

⎤
⎦ , A8 =

⎡
⎣ kmin 1
−2 sin(d1)

d1
−6

⎤
⎦ ,
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Fig. 4. Feasible area of the LMI-based robust control design conditions
proposed in [2] for the T-S fuzzy model (49) with c = 0.76.

B1 = B3 = B5 = B7 =

[
d1
7

]
,

B2 = B4 = B6 = B8 =

[−d1
7

]
,

Dai =

[
c
0

]
, i = 1, · · · , 8,

Δai = Δ(t)/c, i = 1, · · · , 8,
Eai =

[
1 0

]
, i = 1, · · · , 8,

kmax = max
|x1|<d1,|x2|<d2

(−1 + x1 + x21 + x1x2 − x22),

kmin = min
|x1|<d1,|x2|<d2

(−1 + x1 + x21 + x1x2 − x22).

The membership functions are given as follows.

h1(z) =
k − kmin

kmax − kmin
.
sinx1 − (sin d1/d1)x1
(1− (sin d1/d1))x1

.
x1 + d1
2d1

h2(z) =
k − kmin

kmax − kmin
.
sinx1 − (sin d1/d1)x1
(1− (sin d1/d1))x1

.
d1 − x1
2d1

h3(z) =
k − kmin

kmax − kmin
.

x1 − sinx1
(1− (sin d1/d1))x1

.
x1 + d1
2d1

h4(z) =
k − kmin

kmax − kmin
.

x1 − sinx1
(1− (sin d1/d1))x1

.
d1 − x1
2d1

h5(z) =
kmax − k

kmax − kmin
.
sinx1 − (sin d1/d1)x1
(1− (sin d1/d1))x1

.
x1 + d1
2d1

h6(z) =
kmax − k

kmax − kmin
.
sinx1 − (sin d1/d1)x1
(1− (sin d1/d1))x1

.
d1 − x1
2d1

h7(z) =
kmax − k

kmax − kmin
.

x1 − sinx1
(1− (sin d1/d1))x1

.
x1 + d1
2d1

h8(z) =
kmax − k

kmax − kmin
.

x1 − sinx1
(1− (sin d1/d1))x1

.
d1 − x1
2d1

Fig. 4 shows the feasible area of the LMI-based robust
control design conditions proposed in [2] for the T-S fuzzy
model (49) with c = 0.76.

Remark 6. For nonlinear systems with polynomial terms, it
is impossible to exactly construct a global T-S fuzzy model.
In this example, a local T-S fuzzy model with 8 rules can

be constructed by assuming the ranges of x1 and x2, e.g.,
|x1| < d1 and |x2| < d2, where d1 and d2 are nonnegative
values. If we select huge values for d1 and d2, the local T-
S fuzzy model could be a global model, however, it becomes
much harder to guarantee the stability for larger values of d1
and d2. In other words, smaller values of d1 and d2 becomes
easier to guarantee the stability of the local T-S fuzzy model.
However, the LMI robust conditions for T-S fuzzy models are
infeasible even for very small values, e.g., d1 > 0.96 when
c = 0.76.

B. Design example II

Consider the following nonlinear system with uncertainties.

ẋ1 = (−1 + Δa(t) + x1 + x21 + x1x2 − x22)x1
+x2 + x1u,

ẋ2 = −2 sin(x1)x1 − 6x2 − 4 sin(x1)(1 + Δb(t))u,
(50)

where Δa(t) and Δb(t) are the uncertainties satisfying
|Δa(t)| ≤ ca and |Δb(t)| ≤ cb for all t. All the simulation
results given in this design example are carried out for
Δa(t) = ca sin(200πt) and Δb(t) = cb sin(200πt). However,
it should be noted that Δa(t) and Δb(t) are the uncertain terms
and only their upper bounds, i.e. ca and cb, are known as well
as the standard robust control setting.

Using the sector nonlinearity technique [2], the nonlinear
system with the uncertainties is exactly converted into the
polynomial fuzzy system (9) with r=2, x̂(x) = x = [x1, x2],
z = x1 and

A1(x) =

[ −1 + x1 + x21 + x1x2 − x22 1
−2 −6

]
,

A2(x) =

[ −1 + x1 + x21 + x1x2 − x22 1
2 −6

]
,

B1(x) =

[
x1
−4

]
, B2(x) =

[
x1
4

]
,

Da1(x) = Da2(x) =

[
ca
0

]
,

Δa1(x) = Δa2(x) = Δa(t)/ca,

Ea1(x) = Ea2(x) =
[
1 0

]
Db1(x) =

[
0

−4cb

]
, Db2(x) =

[
0
4cb

]
,

Δb1(x) = Δb2(x) = Δb(t)/cb,

Eb1(x) = Eb2(x) = 1,

h1(z) =
sin(x1) + 1

2
, h2(z) =

1− sin(x1)

2
.

Since ||Δa1(x)|| = ||Δa2(x)|| = ||Δa(t)/ca|| ≤ 1 and
||Δb1(x)|| = ||Δb2(x)|| = ||Δb(t)/cb|| ≤ 1, we have
βa1 = βa2 = βb1 = βb2 = 1. Moreover, the algorithm
presented in Section IV is carried out with the initial setting
s = 0, εg = 0.001, εF = 0.001, εV = 0.001, εL = 0.001,
λmin = 0.2, λmax = 5, Δλ = 0.8, pmini = 0.2, pmaxi = 1,
Δpi = 0.2 for i = 1, 2. To show the validity of derived
conditions, we compare the feasible areas in the region (0.01 ≤
ca ≤ 0.12 and 0.01 ≤ cb ≤ 0.26 ) for the proposed robust
control design method and the SOS-based design method of
[36] as shown in Fig. 5. It shows that the proposed robust



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 10

design method provides more relaxed results than the method
of [36].

For ca = cb = 0.1, Fig. 6 shows the behavior of the
nonlinear system (50) with u = 0. By solving the conditions
in Theorem 1, a feasible solution for ca = cb = 0.1 can be
obtained as

λ = 6.806,

V (x) = 1.3643x21 + 0.1451x22

F1(x) =

[
1.6015x1 + 0.3447x2 + 0.7279

0.3447x1 + 0.0207

]T
,

F2(x) =

[
1.6672x1 + 0.3119x2 + 0.7391

0.3119x1 − 0.0983

]T
,

ḡ1,1(x) = 0.4911x41 + 0.0476x31x2 + 0.3544x21x
2
2

+ 0.0276x31 − 0.1997x21x2 − 0.1470x1x
2
2

+ 0.6121x21 − 0.2999x1x2 + 0.2630x22,

ḡ1,2(x) = 0.5928x41 + 0.1080x31x2 + 0.4294x21x
2
2

+ 0.1331x31 − 0.0122x21x2 − 0.0341x1x
2
2

+ 0.7168x21 − 0.1211x1x2 + 0.4064x22,

ḡ2,1(x) = 0.5621x41 + 0.1221x31x2 + 0.4267x21x
2
2

+ 0.1256x31 + 0.0282x21x2 − 0.0193x1x
2
2

+ 0.7251x21 − 0.1052x1x2 + 0.3879x22,

ḡ2,2(x) = 0.5316x41 + 0.0840x31x2 + 0.3902x21x
2
2

+ 0.1579x31 + 0.1456x21x2 + 0.0557x1x
2
2

+ 0.6790x21 − 0.1412x1x2 + 0.3752x22.

Fig. 7 shows the controlled behavior for six different initial
conditions. It can be seen from Fig. 7 that the design fuzzy
controller stabilizes the system from all the initial conditions
although the system has uncertainties.

Remark 7. Design Examples I and II show that our approach
provides more relaxed results than the existing LMI approach
and the existing SOS approach. In addition, as mentioned in
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Fig. 5. Feasible areas for proposed robust control design method (�) and
the SOS-based design method of [36] (*).
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Fig. 6. Behavior of the nonlinear system (50) with u = 0.
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Fig. 7. Controlled behavior of the nonlinear system (50).

Remark 6, the LMI-based approach for the T-S fuzzy model
does not guarantte the global stability of the nonlinear system.

VI. SEMI-GLOBAL ROBUST STABILIZATION CONDITIONS
WITH CONSIDERING INPUT CONSTRAINTS

Sections III and V gave global robust stabilization condi-
tions and their design examples. It is known that the global sta-
bilization is sometimes difficult to be achieved for complicated
systems, e.g., unmanned aerial vehicles (UAVs), in practical.
Moreover, it is usually the case that the input constraints
exist in practical systems. Therefore, Section VI proposes a
semi-global robust control design method with considering the
input constraints. Section VII will show altitude control of a
paraglider-type UAV as a design example of the semi-global
robust stabilization with considering the input constraints.

Consider the operation domain

Do = {x : xminβ ≤ xβ ≤ xmaxβ , β = 1, · · · , n} (51)

and input constraints

umin� ≤ u� ≤ umax� , � = 1, · · · , m. (52)
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For the operation domain (51), the semi-global robust control
satisfying the input constrains (52) can be designed by the
following theorem.

Theorem 3. The polynomial controller (10) satisfying the
input constraints (52) stabilizes the system (9) and the outmost
Lyapunov function level set ΩV,γ = {x : V (x) ≤ γ} con-
tained in the operation domain (51) is a contractively invariant
set if there exist a polynomial function V (x), polynomial
matrices Fj(x), polynomials ḡij(x), Qβ(x), τβ(x), ϕβ(x)
and a scalar α < 0 such that (17) and the following conditions
hold:

V (x)− ε(x) is SOS, (53)

(

r∑
k=1

ĥ2k)
s

r∑
i=1

r∑
j=1

ĥ2i ĥ
2
j{−Υij(x) + αV (x)} is SOS, (54)

Qβ(x) is SOS, β = 1, · · · , n, (55)
n∑
β=1

ϕβ(x)(xβ − xminβ )(xβ − xmaxβ )− d�Fi(x)x̂(x)

− umin� is SOS, i = 1, · · · , r, � = 1, · · · ,m, (56)
n∑
β=1

τβ(x)(xβ − xminβ )(xβ − xmaxβ ) + d�Fi(x)x̂(x)

+ umax� is SOS, i = 1, · · · , r, � = 1, · · · ,m, (57)
ϕβ(x) is SOS, β = 1, · · · , n, (58)
τβ(x) is SOS, β = 1, · · · , n, (59)

where ε(x) is a radially unbounded positive definite polyno-
mial. d� = [d�1 d

�
2 · · · d�m] with d�� = 1 and d�j = 0 ∀j �= �. s

is a nonnegative integer, and

Υij(x) =
∂V (x)

∂x
(Ai(x)−Bi(x)Fj(x))x̂(x) + ḡij(x)

−
n∑
β=1

Qβ(x)(xβ − xminβ )(xβ − xmaxβ ).

If a solution satisfying the conditions (17), (53)∼(59) is
found, the outmost Lyapunov function level set ΩV,γ = {x :
V (x) ≤ γ} contained in the operation domain (51), i.e. the
contractively invariant set, can be obtained by solving the
following optimization problem.

max
φβ(x)

γ subject to

φβ(x)(V (x)− γ)− (xβ − xminβ )(xβ − xmaxβ )

is SOS, β = 1, · · · , n, (60)
φβ(x) is SOS, β = 1, · · · , n. (61)

Proof: In the proof, we need to show that
1) If the conditions (17), (53)∼(55) hold, then the outmost

Lyapunov function level set ΩV,γ = {x : V (x) ≤ γ}
contained in the operation domain (51) is a contractively
invariant set;

2) If the conditions (56)∼(59) hold, then the input con-
straints (52) are satisfied in the operation domain (51).

1) For the operation domain (51), the following condition
holds:

n∑
β=1

Qβ(x)(xβ − xminβ )(xβ − xmaxβ ) ≤ 0 (62)

where Qβ(x) ≥ 0 that is guaranteed by (55). From (21) and
(22), if (17) holds, then

V̇ (x) ≤
r∑
i=1

r∑
j=1

hihj{∂V (x)

∂x
(Ai(x)

−Bi(x)Fj(x))x̂(x) + ḡij(x)}. (63)

It can be obtained from (62) and (63) that V̇ (x) ≤ αV (x) < 0
for Do − {0} if there exist α < 0 such that

r∑
i=1

r∑
j=1

hihj{∂V (x)

∂x
(Ai(x)−Bi(x)Fj(x))x̂(x)

+ ḡij(x)− αV (x)

−
n∑
β=1

Qβ(x)(xβ − xminβ )(xβ − xmaxβ )} ≤ 0. (64)

By applying the copositivity presented in Corollary 1, the
condition (64) holds if (54) is satisfied. Furthermore, if (53)
holds, then V (x) is a positive definite and radially unbounded
function which means that the level set ΩV,γ is bounded for
any value of γ > 0. Consequently, if the conditions (17),
(53)∼(55) hold, then the outmost Lyapunov function level set
ΩV,γ contained in the operation domain (51) is a contractively
invariant set. Moreover, by applying polynomial S-procedure,
Ωv ⊆ Do is carried out by (60) and (61).

2) For the operation domain (51), the following two condi-
tions hold:

−
n∑
β=1

ϕβ(x)(xβ − xminβ )(xβ − xmaxβ ) ≥ 0, (65)

−
n∑
β=1

τβ(x)(xβ − xminβ )(xβ − xmaxβ ) ≥ 0, (66)

where ϕβ(x) ≥ 0 and τβ(x) ≥ 0 that are guaranteed by (58)
and (59) respectively. By applying the vector d�, the l-th input
can be represented as

u� = d�u = −
r∑
i=1

hid�Fi(x)x̂(x). (67)

It can be obtained from (65) and (67) that u� − umin� ≥ 0 for
the operation domain (51) if the following condition holds:

−
r∑
i=1

hid�Fi(x)x̂(x)− umin�

≥ −
n∑
β=1

ϕβ(x)(xβ − xminβ )(xβ − xmaxβ ). (68)

It is obviously that (68) holds if (56) is satisfied. On the other
hand, it can be obtained from (66) and (67) that umax� −u� ≥ 0
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for the operation domain (51) if the following condition holds:

umax� +
r∑
i=1

hid�Fi(x)x̂(x)

≥ −
n∑
β=1

τβ(x)(xβ − xminβ )(xβ − xmaxβ ). (69)

It is obviously that (69) holds if (57) is satisfied.

Theorem 4. Assume that Δbi(x) = 0 ∀i, i.e. there are
no uncertainties with respect to input terms. The polynomial
controller (10) satisfying the input constraints (52) stabilizes
the system (9) and the outmost Lyapunov function level set
ΩV,γ = {x : V (x) ≤ γ} contained in the operation domain
(51) is a contractively invariant set if there exist a polyno-
mial function V (x), polynomial matrices Fj(x), polynomials
ḡi(x), Qβ(x), τβ(x), ϕβ(x) and a scalar α < 0 such that
(55)∼(59) and the following conditions hold:

V (x)− ε(x) is SOS, (70)

(

r∑
k=1

ĥ2k)
s

r∑
i=1

r∑
j=1

ĥ2i ĥ
2
j{−Ῡij(x) + αV (x)} is SOS, (71)

vT1

⎡
⎣ λḡi(x) ∗ ∗
λDT

ai(x)(
∂V (x)
∂x )T 2I 0

βai(x)Eai(x)x̂(x) 0 2I

⎤
⎦v1 is SOS, (72)

where ε(x) is a radially unbounded positive definite polyno-
mial. s is a nonnegative integer, and

Ῡij(x) =
∂V (x)

∂x
(Ai(x)−Bi(x)Fj(x))x̂(x) + ḡi(x)

−
n∑
β=1

Qβ(x)(xβ − xminβ )(xβ − xmaxβ ).

Proof: The proof is omitted since it is directly obtained
from Theorem 3. In this case, (17) is reduced to (72).

Theorem 5. Assume that Bi(x) = B(x), Dbi(x) = Db(x),
Δbi(x) = Δb(x) and Ebi(x) = Eb(x) for all i. The
polynomial controller (10) satisfying the input constraints (52)
stabilizes the system (9) and the outmost Lyapunov function
level set ΩV,γ = {x : V (x) ≤ γ} contained in the
operation domain (51) is a contractively invariant set if there
exist a polynomial function V (x), polynomial matrices Fi(x),
polynomials ḡi(x), Qβ(x), τβ(x), ϕβ(x) and a scalar α < 0
such that (55)∼(59) and the following conditions hold:

V (x)− ε(x) is SOS, (73)
r∑
i=1

ĥ2i {−Ῡi(x) + αV (x)} is SOS, (74)

vT1 Li(λ,x)v1 is SOS, (75)

where ε(x) is a radially unbounded positive definite polyno-

mial. s is a nonnegative integer, and

Ῡi(x) =
∂V (x)

∂x
(Ai(x)−B(x)Fi(x))x̂(x) + ḡi(x),

−
n∑
β=1

Qβ(x)(xβ − xminβ )(xβ − xmaxβ ),

Li(λ,x) =⎡
⎢⎢⎢⎢⎣

λḡi(x) ∗ ∗ ∗ ∗
λDT

ai(x)(
∂V (x)
∂x )T 2I 0 0 0

λDT
b (x)(

∂V (x)
∂x )T 0 2I 0 0

βai(x)Eai(x)x̂(x) 0 0 2I 0
βb(x)Eb(x)Fi(x)x̂(x) 0 0 0 2I

⎤
⎥⎥⎥⎥⎦ .

Proof: The proof is omitted since it is directly obtained
by the same fashion as in the proof of Theorem 3.

VII. DESIGN EXAMPLE OF SEMI-GLOBAL ROBUST
STABILIZATION WITH CONSIDERING INPUT CONSTRAINTS

Section VII gives a design example of the semi-global
robust stabilization for a paraglider-type UAV. Under some
assumptions, the altitude error dynamics of a paraglider-type
UAV around the trimmed equilibrium are given as

ë(t) = 0.1336(1 + Δθ(t))u(t)

+ p1(ė(t))(1 + Δα(t)) cos(0.2ė(t))ė(t)

+ p2(ė(t))(1 + Δα(t)) sin(0.2ė(t))ė(t), (76)

where e(t) denotes the altitude error between the altitude of
the UAV and a constant desired altitude, and u(t) is the throttle
input difference from the trimmed equilibrium throttle input.
p1(ė(t)) and p2(ė(t)) are polynomial elements including the
aerodynamics generated by the canopy of the UAV and are
described as

p1(ė(t)) = 6.270 · 10−4 · ė2(t) + 7.271 · 10−2ė(t),

p2(ė(t)) = 1.188 · 10−4 · ė2(t)− 7.358 · 10−3ė(t).

We consider two kinds of uncertainties. The first uncertainty
is aerodynamics uncertainty, i.e., Δα(t), since it is very
difficult to exactly obtain the real aerodynamics of the canopy.
The second uncertainty is input uncertainty, i.e., Δθ(t), since
the thrust force generated by a motor is influenced by battery
condition, wind conditions, and so on.

Using the sector nonlinearity technique [2], the nonlinear
system (76) with the uncertainties is exactly converted into
the following four-rule polynomial fuzzy system with uncer-
tainties:

ẋ =

r∑
i=1

hi(z){(Ai(x) +Dai(x)Δai(x)Eai(x))x

+(B(x) +Db(x)Δb(x)Eb(x))u},
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where r=4, x̂(x) = x = [ė, e], z = ė and

A1(x) =

[
p1(ė(t)) + p2(ė(t)) 0

1 0

]
,

A2(x) =

[
p1(ė(t))− p2(ė(t)) 0

1 0

]
,

A3(x) =

[ −p1(ė(t)) + p2(ė(t)) 0
1 0

]
,

A4(x) =

[ −p1(ė(t))− p2(ė(t)) 0
1 0

]
,

B(x) =

[
0.1336

0

]
,

Da1(x) =

[
c2p1(ė(t)) c2p2(ė(t))

0 0

]
,

Da2(x) =

[
c2p1(ė(t)) −c2p2(ė(t))

0 0

]
,

Da3(x) =

[ −c2p1(ė(t)) c2p2(ė(t))
0 0

]
,

Da4(x) =

[ −c2p1(ė(t)) −c2p2(ė(t))
0 0

]
,

Δa1(x) = Δa2(x) = Δa3(x) = Δa4(x)

=
1

c2

[
Δα(t) 0

0 Δα(t)

]
,

Ea1(x) = Ea2(x) = Ea3(x) = Ea4(x) =

[
1 0
1 0

]
,

Db(x) =

[
0.1336c1

0

]
,

Δb(x) = Δθ(t)/c1,

Eb(x) = 1,

h1(z) =
(cos(0.2ė) + 1)(sin(0.2ė) + 1)

4
,

h2(z) =
(cos(0.2ė) + 1)(1− sin(0.2ė))

4
,

h3(z) =
(1− cos(0.2ė))(sin(0.2ė) + 1)

4
,

h4(z) =
(1− cos(0.2ė))(1− sin(0.2ė))

4
.

Since ||Δai(x)|| ≤ 1 for i = 1, · · · , 4 and ||Δb(x)|| ≤ 1
as well as in the previous two examples, we have βai = 1
for i = 1, · · · , 4 and βb = 1. For any situation satisfying
c1 > 0 and c2 > 0, no solutions can be obtained by applying
the globally robust control design proposed in [36]. Also, no
solutions can be found by applying the globally robust control
design of the proposed Theorem 1.

Assume that the operation domain for the UAV system is
Do = {ė : −1.5 ≤ ė ≤ 1.5 and e : −10 ≤ e ≤ 10}, the input
constraint is −5 ≤ u ≤ 5, and c1 = c2 = 0.1. Moreover, the
algorithm for solving Theorem 5 is carried out with the initial
setting εg = 0.005, εF = 0.005, εV = 0.005, εL = 0.005,
λmin = 0.5, λmax = 2, Δλ = 0.5, pmini = 0.2, pmaxi = 1,
Δpi = 0.4 for i = 1, 2. By solving the conditions in Theorem
5, a feasible solution is found as

α = −0.0027, λ = 5.8979,

V (x) = 2.8789x21 + 0.1894x1x2 + 0.0683x22

F1(x) = [F 11
1 (x) F 12

1 (x)],

F 11
1 (x) = 0.2919x21 − 0.02140x1x2 + 0.0016x22

+ 0.2850x1 + 0.0073x2 + 1.2042,

F 12
1 (x) = −0.0214x21 + 0.0016x1x2 − 0.0002x22

+ 0.0073x1 + 1.3281× 10−5x2 + 0.18254,

F2(x) = [F 11
2 (x) F 12

2 (x)],

F 11
2 (x) = 0.2677x21 − 0.0231x1x2 + 0.0012x22

+ 0.3501x1 + 0.0125x2 + 1.3162,

F 12
2 (x) = −0.0231x21 + 0.0012x1x2 − 0.0002x22

+ 0.0125x1 + 6.3453× 10−5x2 + 0.1877,

F3(x) = [F 11
3 (x) F 12

3 (x)],

F 11
3 (x) = 0.266x21 − 0.02187x1x2 + 0.0012x22

− 0.3234x1 − 0.0116x2 + 1.3234,

F 12
3 (x) = −0.0219x21 + 0.0012x1x2 − 0.0002x22

− 0.0116x1 − 0.0002x2 + 0.1868,

F4(x) = [F 11
4 (x) F 12

4 (x)],

F 11
4 (x) = 0.2813x21 − 0.0212x1x2 + 0.0016x22

− 0.2650x1 − 0.0078x2 + 1.2181,

F 12
4 (x) = −0.0212x21 + 0.0016x1x2 − 0.0002x22

− 0.0078x1 − 0.0002x2 + 0.18,

etc. Moreover, by solving the optimization problem of (60)
and (61), the outmost Lyapunov function level set contained
in the operation domain is obtained as ΩV,6.1822 = {x :
V (x) ≤ 6.1822}, and the SOS multipliers are obtained
as φ1(x) = 0.3640 and φ2(x) = 15.676. Fig. 8 shows
the outmost Lyapunov function level set (the contractively
invariant set) and the controlled results for six cases of initial
states. From Fig. 8, the control system is asymptotically stable
and the ΩV,6.1822 = {x : V (x) ≤ 6.1822} is a contractively
invariant set. Fig. 9 shows the control inputs for the six cases. It
can be seen from Fig. 9 that all control inputs satisfy the input
constraint −5 ≤ u(t) ≤ 5. Fig. 10 shows the time response
for Case 1. Fig. 11 shows the control input for Case 1.

VIII. CONCLUSIONS

This paper has presented a new SOS design framework for
robust control of polynomial fuzzy systems with uncertainties.
Two kinds of robust stabilization conditions, i.e., global SOS
robust stabilization conditions and semi-global SOS robust
stabilization conditions, are derived in terms of SOS. The new
design framework has given key ideas to avoid conservative
issues. The first key idea is that we directly solve non-convex
SOS design conditions without applying the typical transfor-
mation. The second key idea is that we bring a so-called
copositivity concept. These ideas provide some advantages in
addition to relaxations. To solve our SOS robust stabilization
conditions efficiently, we have introduced a gradient algorithm
formulated as a minimizing optimization problem of the upper
bound of the time derivative of polynomial Lyapunov function-
s. Three design examples have been provided to illustrate the
validity and applicability of the proposed design framework.
The examples have demonstrated advantages of the new SOS
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design framework for the existing LMI approaches and the
existing convex SOS approach. Our next subjects are to apply
the advanced SOS robust stabilization conditions to more
complex systems, e.g., [44], [45], [46].

ACKNOWLEDGMENT

The authors would like to thank Mr. Takahiro Endo, The
University of Electro-Communications, Tokyo, Japan, for his
support of this research.

REFERENCES

[1] K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy
Control Systems,” FUZZY SETS AND SYSTEMS 45, no. 2, pp. 135-
156, Jan. 1992.

[2] K. Tanaka and H. O. Wang: Fuzzy Control Systems Design and
Analysis: A Linear Matrix Inequality Approach, JOHN WILEY &
SONS, INC, 2001

[3] G. Feng, “A Survey on Analysis and Design of Model-Based Fuzzy
Control Systems,” IEEE Trans. on Fuzzy Systems, Vol.14, no.5, pp.676-
697, Oct. 2006.

[4] H. O. Wang, K. Tanaka and M. F. Griffin, “An Analytical Framework
of Fuzzy Modeling and Control of Nonlinear Systems,” 1995 American
Control Conference, Seattle, June 1995, pp.2272 - 2276.

[5] H. O. Wang, K. Tanaka and M. F. Griffin, “An Approach to Fuzzy
Control of Nonlinear Systems”, IEEE Transactions on Fuzzy Systems,
Vol.4, No.1, pp.14-23, Feb. 1996.

[6] K. Tanaka, T. Ikeda and H. O. Wang, “Robust Stabilization of a Class
of Uncertain Nonlinear Systems via Fuzzy Control”, IEEE Transactions
on Fuzzy Systems, Vol.4, No.1, pp.1-13, Feb. 1996.

[7] R. Sepulcher, M. Jankovic and P. Kokotovic: Constructive Nonlinear
Control, Springer, 1997

[8] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms
in Convex Programming, Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1994.

[9] K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang “A Sum of Squares
Approach to Stability Analysis of Polynomial Fuzzy Systems”, 2007
American Control Conference, New York, July, 2007, pp.4071-4076.

[10] K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, “Stabilization of
Polynomial Fuzzy Systems via a Sum of Squares Approach”, 2007 IEEE
International Symposium on Intelligent Control, Singapore, October
2007, pp.160-165.

[11] K. Tanaka, K. Yamauchi, H. Ohtake and H. O. Wang, “Guaranteed Cost
Control of Polynomial Fuzzy Systems via a Sum of Squares Approach”,
2007 IEEE International Conference on Decision and Control, New
Orleans, Dec. 2007, pp. 5954-5959.

−1.5 −1 −0.5 0 0.5 1 1.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

Ω
V, 6.1822Case 1

Case 2

Case 3

Case 4
Case 5

Case 6

Fig. 8. The controlled results for six cases of initial states.

0 10 20 30 40 50 60 70
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

u(
t)

 

 

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6

Fig. 9. The control inputs for the six cases.

0 10 20 30 40 50 60 70
−1

0

1

2

3

4

5

6

7

8

t

 

 

x
1

x
2

Fig. 10. Time response for Case 1.

0 10 20 30 40 50 60 70
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

u(
t)

Fig. 11. The control input for Case 1.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 15

[12] K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, “A Sum of Squares
Approach to Modeling and Control of Nonlinear Dynamical Systems
with Polynomial Fuzzy Systems”, IEEE Transactions on Fuzzy Systems,
vol.17, no.4, pp.911-922, August 2009.

[13] K. Tanaka, H. Ohtake and H. O. Wang, “Guaranteed Cost Control of
Polynomial Fuzzy Systems via a Sum of Squares Approach,” IEEE
Transactions on Systems, Man and Cybernetics Part B, Vol.39, No.2,
pp.561-567, April 2009.

[14] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka and H. O. Wang, “Poly-
nomial Fuzzy Observer Designs:A Sum of Squares Approach,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, Vol.42, No.5,
pp.1330-1342, Oct. 2012.

[15] K. Tanaka, T. Komatsu, H. Ohtake and H. O. Wang, “Micro Helicopter
Control:LMI Approach vs SOS Approach,” 2008 IEEE International
Conference on Fuzzy Systems, Hong Kong, June 2008, pp. 347-353.

[16] M. Narimani, and H. K. Lam, “SOS-Based Stability Analysis of Polyno-
mial Fuzzy-Model-Based Control Systems Via Polynomial Membership
Functions,” IEEE Transactions on Fuzzy Systems, vol.18, no.5, pp.862-
871, Oct. 2010.

[17] H. K. Lam, “Polynomial fuzzy-model-based control systems: stability
analysis via piecewise-linear membership functions,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 3, pp. 588-593, Jun. 2011.

[18] J. -C. Lo, Y. -T. Lin, W. -S. Chang and F. -Y. Lin, “SOS-based
Fuzzy Stability Analysis via Homogeneous Lyapunov Functions,” 2014
IEEE International Conference on Fuzzy Systems, Beijing, July 2014,
pp.2300- 2305.

[19] G. -R. Yu and H. -T. Huang “A Sum-of-Squares Approach to Syn-
chronization of Chaotic Systems with Polynomial Fuzzy Systems,”
Proceedings of 2012 International Conference on Fuzzy Theory and Its
Applications, Taichung, Nov. 2012, pp.175-180.

[20] H. K. Lam, M. Narimani, H. Li, and H. Liu, “Stability analysis of
polynomial-fuzzy-model-based control systems using switching polyno-
mial Lyapunov function,” IEEE Trans. Fuzzy Syst., vol. 21, no. 5, pp.
800-813, Oct. 2013.

[21] A. Sala and C. Arino, “Polynomial fuzzy models for nonlinear control:
A Taylor series approach,” IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp.
1284-1295, Dec. 2009.

[22] A. Schwung, T. Guβner, and J. Adamy, “Stability Analysis of Recurrent
Fuzzy Systems: A Hybrid System and SOS Approach,” IEEE Trans.
Fuzzy Syst., vol. 19, no. 3, pp.423-431, June 2011.

[23] K. Tanaka, T. Ikeda, H. O. Wang, “Fuzzy Regulators and Fuzzy
Observers: Relaxed Stability Conditions and LMI-Based Designs,” IEEE
Transactions on fuzzy systems, vol. 6, no. 2, pp.250-265, May 1998.

[24] S. Hong and R. Langari, “Synthesis of an LMI-based Fuzzy Control
System with guaranteed Optimal H∞ Performance,” Proc. of FUZZ-
IEEE’98, Anchorage, AK, May 1998, pp. 422-427.

[25] M. Sugeno, “On Stability of Fuzzy Systems Expressed by Fuzzy Rules
with Singleton Consequents,” IEEE Transactions on Fuzzy Systems, vol.
7, no. 2, pp. 201-224 April, 1999.

[26] R. -J. Wang, W. -W. Lin and W. -J. Wang, “Stabilizability of linear
quadratic state feedback for uncertain fuzzy time-delay systems,” IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 34, no.2,
pp.1288-1292, April 2004.

[27] W. -J. Wang and C, -H. Sun, “A relaxed stability criterion for T-S fuzzy
discrete systems,” IEEE Transactions on Systems, Man and Cybernetics,
Part B, vol. 34, no.5, pp.2155-2158, Oct. 2004.

[28] S. -S. Chen, Y. -C. Chang, S. -F. Su, S. -L. Chung and T. -T. Lee,
“Robust static output-feedback stabilization for nonlinear discrete-time
systems with time delay via fuzzy control approach,” IEEE Transactions
on Fuzzy Systems, vol. 13, no.2, pp.263-272, April 2005.

[29] C. -C. Hsiao, S. -F. Su, T. -T. Lee and C. -C. Chuang, “Hybrid
compensation control for affine TSK fuzzy control systems,” IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 34, no.4,
pp.1865-1873 August 2004.

[30] P. Baranyi, et al., “SVD-based complexity reduction to TS fuzzy
models,” IEEE Transaction on Industrial Electronics, vol. 49, no. 2,
pp.433-443, April 2002.

[31] P. Baranyi, “TP model transformation as a way to LMI based controller
design,” IEEE Transaction on Industrial Electronics, vol. 51, no. 2,
pp.387-400, April 2004.

[32] P. Baranyi, et al., ,“Numerical Reconstruction of the HOSVD-based
Canonical Form of Polytopic Dynamic Models,” Proc. of 10th Int.
Conf. on Intelligent Engineering Systems (INES 2006), London, United
Kingdom, June 2006, pp.196-201.

[33] K. Tanaka, H. Ohtake and H. O. Wang: “A Descriptor System Approach
to Fuzzy Control System Design via Fuzzy Lyapunov Functions,” IEEE
Transactions on Fuzzy Systems, vol.15, no. 3, pp.333 - 341, June 2007.

[34] H.-N Wu and H.-X. Li: “New Approach to Delay-Dependent Stability
Analysis and Stabilization for Continuous-Time Fuzzy Systems With
Time-Varying Delay,” IEEE Transactions on Fuzzy Systems, vol. 15,
no. 3, pp.482 - 493, June 2007.

[35] J. -C. Lo and M. -L. Lin: “Existence of Similarity Transformation
Converting BMIs to LMIs,” IEEE Transactions on Fuzzy Systems, vol.
15, no.5, pp.840 - 851, Oct 2007.

[36] K. Cao, X. Z. Gao, T. Vasilakos, W. Pedrycz, “Analysis of stability and
robust stability of polynomial fuzzy model-based control systems using
a sum-of-squares approach,” Journal of soft comput, vol. 18, issue 3,
pp.433-442, June 2013.

[37] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its
Applications to Modeling and Control,” IEEE Trans. on SMC 15, no.
1, pp.116-132, Jan.-Feb. 1985.

[38] G. Balas, A. Packard, P. Seiler, U. Topcu, “Robustness analysis of
nonlinear systems,” 2009, Available at: http://www.aem.umn.edu/∼
AerospaceControl/, accessed July 2013.

[39] S. Prajna, A. Papachristodoulou, P. Seiler and P. A. Parrilo, “SOSTOOL-
S:Sum of Squares Optimization Toolbox for MATLAB, Version 2.00,”
2004.

[40] J. F. Sturm, “Using SeDUMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11 &
12, pp.625-653, August 1999.

[41] K. C. Toh, R. H. Tutuncu and M. J. Todd, “On the implement of SDPT3
(version 3.1) - A MATLAB software package for semidefinite-quadratic-
linear programming,” 2004 IEEE International Conference on Computer
Aided Control System Designs, Taipei, Sept. 2001, pp.290-296.

[42] Y.-J. Chen, H. Ohtake, K. Tanaka, and H. O. Wang, “Relaxed Stabi-
lization Criterion for T-S Fuzzy Systems by Minimum-Type Piecewise-
Lyapunov-Function-Based Switching Fuzzy Controller,” IEEE Transac-
tions on Fuzzy Systems, Vol.20, No.6, pp.1166-1173, Dec. 2012.

[43] T. Hu, “Nonlinear control design for linear differential inclusions via
convex hull of quadratics,” Automatica, vol. 43, no. 4, pp. 685-692,
2007.

[44] R. Sakthivel, S. Santra, K. Mathiyalagan, S. Anthoni, “Robust reliable
sampled-data control for offshore steel jacket platforms with nonlinear
perturbations,” Nonlinear Dynamics, vol. 78, issue 2, pp.1109-1123, Oct.
2014.

[45] R. Sakthivel, P. Vadivel, K. Mathiyalagan and A. Arunkumar “Fault-
Distribution Dependent Reliable H∞ Control for Takagi-Sugeno Fuzzy
Systems,” Journal of Dynamic Systems, Measurement, and Control,
Vol.136, Issue 2, 021021, Jan. 2014.

[46] K. Mathiyalagan, H. Su, P. Shi, R. Sakthivel, “Exponential H∞ Filtering
for Discrete-Time Switched Neural Networks With Random Delays,”
IEEE Transactions on Cybenetics, Accepted.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 16

Kazuo Tanaka (S’87 - M’91 - SM’09 - F’14)
received the B.S. and M.S. degrees in Electrical
Engineering from Hosei University, Tokyo, Japan, in
1985 and 1987, and Ph.D. degree, in Systems Sci-
ence from Tokyo Institute of Technology, in 1990,
respectively.

He is currently a Professor in Department of
Mechanical Engineering and Intelligent Systems at
The University of Electro-Communications. He was
a Visiting Scientist in Computer Science at the
University of North Carolina at Chapel Hill in 1992

and 1993. He received the Best Young Researchers Award from the Japan
Society for Fuzzy Theory and Systems in 1990, the Outstanding Papers
Award at the 1990 Annual NAFIPS Meeting in Toronto, Canada, in 1990,
the Outstanding Papers Award at the Joint Hungarian-Japanese Symposium
on Fuzzy Systems and Applications in Budapest, Hungary, in 1991, the Best
Young Researchers Award from the Japan Society for Mechanical Engineers in
1994, the Outstanding Book Awards from the Japan Society for Fuzzy Theory
and Systems in 1995, 1999 IFAC World Congress Best Poster Paper Prize in
1999, 2000 IEEE Transactions on Fuzzy Systems Outstanding Paper Award
in 2000, the Best Paper Selection at 2005 American Control Conference in
Portland, USA, in 2005, the Best Paper Award at 2013 IEEE International
Conference on Control System, Computing and Engineering in Penang,
Malaysia, in 2013, the Best Paper Finalist at 2013 International Conference
on Fuzzy Theory and Its Applications, Taipei, Taiwan in 2013. His research
interests include intelligent systems and control, nonlinear systems control,
robotics, brain-machine interface and their applications. He co-authored (with
Hua O. Wang) the book Fuzzy Control Systems Design and Analysis: A
Linear Matrix Inequality Approach (Wiley-Interscience, 2001).

He has served as an Associate Editor for Automatica and for the IEEE
Transactions on Fuzzy Systems, and is on the IEEE Control Systems Society
Conference Editorial Board. He is a fellow of IEEE and IFSA.

Motoyasu Tanaka (S’05 - M’12) received his B.E.,
M.S., and Ph.D. degrees in Engineering from the
Department of Mechanical Engineering and Intelli-
gent Systems at the University of Electro- Commu-
nications, Japan in 2005, 2007, and 2009, respec-
tively. From 2009 to 2012, he worked at Canon,
Inc., Tokyo, Japan. He is currently an Assistant
Professor in the Department of Mechanical Engi-
neering and Intelligent Systems at the University
of Electro-Communications. His research interests
include biologically inspired robotics and dynamic

based nonlinear control. He received the IEEE Robotics and Automation
Society Japan Chapter Young Award from the IEEE Robotics and Automation
Society Japan Chapter in 2006. He is a member of the IEEE, SICE, and RSJ.

Ying-Jen Chen (M’12) received the B.S. degree
in electrical engineering from the National Tai-
wan Ocean University, Keelung, Taiwan, in 2002,
the M.S. degree in electrical engineering from the
Lunghwa University of Science and Technology,
Taoyuan, Taiwan, in 2004 and the Ph.D. degree
in electrical engineering from the National Central
University, Jhongli, Taiwan, in 2011. He is currently
a postdoctoral researcher with the Department of
Mechanical Engineering and Intelligent Systems,
the University of Electro-Communications, Tokyo,

Japan. His current research interests are in the areas of fuzzy control system,
neural networks, and pattern recognition.

Hua O. Wang (M’94-SM’01) received the B.S.
degree from the University of Science and Tech-
nology of China (USTC), Hefei, China, in 1987,
the M.S. degree from the University of Kentucky,
Lexington, KY, in 1989, and the Ph.D. degree from
the University of Maryland, College Park, MD, in
1993, all in Electrical Engineering.

He has been with Boston University where he is
currently an Associate Professor of Aerospace and
Mechanical Engineering since September 2002. He
was with the United Technologies Research Center,

East Hartford, CT, from 1993 to 1996, and was a faculty member in the
Department of Electrical and Computer Engineering at Duke University,
Durham, NC, from 1996 to 2002. Dr. Wang served as the Program Manager
(IPA) for Systems and Control with the U.S. Army Research Office (ARO)
from August 2000 to August 2002. During 2000 - 2005, he also held the
position of Cheung Kong Chair Professor and Director with the Center for
Nonlinear and Complex Systems at Huazhong University of Science and
Technology, Wuhan, China.

Dr. Wang is a recipient of the 1994 O. Hugo Schuck Best Paper Award
of the American Automatic Control Council, the 14th IFAC World Congress
Poster Paper Prize, the 2000 IEEE Transactions on Fuzzy Systems Outstanding
Paper Award. His research interests include control of nonlinear dynamics, in-
telligent systems and control, networked control systems, robotics, cooperative
control, and applications. He co-authored (with Kazuo Tanaka) the book Fuzzy
Control Systems Design and Analysis: A Linear Matrix Inequality Approach
(Wiley-Interscience, 2001). Dr. Wang has served as an Associate Editor for
the IEEE Transactions on Automatic Control and was on the IEEE Control
Systems Society Conference Editorial Board. He is an Editor for the Journal
of Systems Science and Complexity. He is an appointed member of the 2006
Board of Governors of the IEEE Control Systems Society and a senior member
of IEEE.


