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Abstract. The magnetoresistance (MR) in semimetals with Dirac (or Weyl)
electrons and free holes is investigated on the basis of the Boltzmann theory. The
MR is modified from the conventional results with free electron and holes in a
very complex way due to the correction of the Dirac dispersion. The obtained
formula explicitly includes the magnetic field dependence, which is very useful for
the analysis of experimental results. In order to verify the validity of our results,
the results obtained by the Boltzmann approach are compared with those by the
Kubo theory. It is revealed that, by taking into account the field dependence
of carrier density, the MR obtained by the Boltzmann theory almost perfectly
agrees with that based on the Kubo theory even in the high-field region (in the
quantum limit) except for the quantum oscillations. It is also shown that the MR
in semimetals increases linearly with respect to the field in the quantum limit due
to the drastic change of the carrier density, which is a significant characteristic of
semimetals.
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1. Introduction

Large and non-saturating magnetoresistance (MR) was
first reported in semimetal bismuth by Kapitza in 1928
[1]. According to the Kapitza’s report, the MR in
bismuth keeps increasing linearly with respect to a
magnetic field. In the last few years, the large and non-
saturating MR has been attracting renewed interest
since the observation in semimetal WTe2, where the
MR increases quadratically [2]. The interests are
rapidly expanding related to the unusual transport
phenomena in topological materials, such as in Cd3As2
[3], WP2 [4], NbP [5], and LaBi [6]. A remarkable
characteristic of these semimetals is that the Dirac (or
Weyl) electrons of linear dispersion coexist with the
nearly free holes of quadratic dispersion (figure 1).

For the analysis of the experimental data of
MR, the semiclassical theory based on the Boltzmann
equation is very useful and powerful even for the
leading-edge MR studies [2, 6, 7, 8, 9]. What
makes the analysis of MR very complex is the fact
that the experimentally obtained physical quantity
is the magnetoresistivity, ρ̂, which is given in the
tensor form. Theoretically, on the other hand, the
conductivity tensor, σ̂, is first calculated, and then, we
have to calculate the inverse tensor of σ̂ to compare
with experiments. Therefore, in order to analyze
experimental data of MR, it is of the prime importance
to obtain a formula where the field dependence is
clearly indicated not in σ̂ but in ρ̂. For this purpose,
the approach based on the Boltzmann equation is
appropriate and convenient. Note that the approach
based on the Kubo formula is difficult to see the explicit
field dependence of ρ̂. This is why the Kubo formula
is not so useful to analyze the experimental data, even
though the result is rigorous.

However, the Boltzmann theory used in the
previous analysis is basically for the semimetals with
free electrons and holes, both of which have quadratic
dispersions; the situation is different from the materials
of current interest. The validity of the conventional

Figure 1. Schematic illustration of the band structure of
semimetals with free holes and (left) Dirac electrons; (right)
Weyl electrons. Cd3As2, the so-called Dirac semimetal, is not
covered in the present paper since it has only one type of
carrier.

Boltzmann theory with quadratic carriers is not well
established for such systems. For example, it is well
known that, when the electron (n) and hole (p) carriers
with parabolic dispersions are perfectly compensated,
n = p, the MR increases with the square of the
magnetic field and does not saturate in the strong
field limit [10]. When the compensation is not perfect,
n ̸= p, the MR saturates at a certain value of magnetic
field. Then, what will happen if the system has Dirac
electrons? It is not so straightforward to predict the
property of MR in semimetals where Dirac electrons
with linear dispersion and free holes with quadratic
dispersion coexist since the symmetry between electron
and hole carriers is broken.

In this paper, we obtain the analytic formula of
MR in the system with Dirac (or Weyl) electrons
and free holes based on the Boltzmann theory. The
magnetoconductivity of Dirac electrons needs to be
corrected from the conventional magnetoconductivity
for the quadratic dispersion. The correction λεF

appears in a complex way in the magnetoresistivity
ρxx and the Hall resistivity ρxy depending on the
magnitude of magnetic field.

It is also the purpose of this paper to establish
the validity of the Boltzmann theory in the strong
field region by comparing with the results obtained
by the Kubo theory. When the magnetic field is
sufficiently large, whole carriers are confined into the
lowest Landau level, the so-called quantum limit. At
such high fields, the effect of the Landau quantization
plays a crucial role, which cannot be taken into account
by the semiclassical Boltzmann theory in principle.
Especially, in the case of semimetals, the carrier density
changes drastically in the quantum limit due to the
charge neutrality. (For example, the carrier density of
bismuth changes five times larger at high fields [11].)
This drastic change of carriers must affect the MR
directly. Naively, the Boltzmann theory cannot be
valid in such a high-field region. However, here we
show that the approach based on the Boltzmann theory
gives results almost perfectly agree (except for the
quantum oscillation in ρxx) with the results obtained
by the Kubo theory, where the Landau quantization
and quantum effect on the transport coefficients are
rigorously taken into account, only by considering the
field dependence of carrier density. Based on this
approach, it reveals that the MR increases linearly,
ρxx ∝ B1, in the quantum limit.

The rest of this paper is organized as follows.
Section 2 describes the formulation of the conductivity
for the Dirac electrons. In section 3, we compare
the MR with and without the correction of the
Dirac dispersion in the two-band model. The
magnetoconductivity near and beyond the quantum
limit is described in section 4. We present the result of
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Figure 2. Relation between the band dispersion of the Dirac
electron and the Fermi-energy.

the magnetoconductivity by considering the magnetic
field dependence of carrier density in this section. The
linear MR is obtained based on the theory introduced
in section 4. Our conclusion is presented in section 5.

2. Magnetoconductivity in the Dirac (or
Weyl) electrons

We derive the conductivity σ̂D for the anisotropic Wolff
model, which is the common Hamiltonian to the system
with strong spin-orbit coupling [12, 13]. The Wolff
Hamiltonian is given by

H = ∆γ4 + iℏk ·

[
3∑

i=1

W (i)γ4γi

]
, (1)

where k is the wave vector measured from an extremum
of the dispersion. ∆ is the half of the band gap
(figure 2). γi is the 4× 4 Dirac matrix of the form

γi=1,2,3 =

(
0 σi

σi 0

)
, (2)

γ4 =

(
I 0
0 −I

)
, (3)

where σi is the Pauli spin matrix. W (i) is related to
the matrix elements of the velocity operator for the
same spin, t, and for the opposite spin, u, as

W (1) = Im(u), (4)

W (2) = Re(u), (5)

W (3) = Im(t). (6)

The information of the strong spin-orbit coupling
is included in W (i). Because of this strong spin-
orbit couplings, the Dirac electrons exhibit specific
properties, such as the large anisotropic g-factor [14,
15] and the spin transport phenomena [16, 17, 18]. On
the other hand, for the electric conductivity and the
Hall conductivity, the effect of spin-orbit coupling is
negligibly small [19]. Therefore, the spin-orbit coupling

does not affect directly the magnetoresistance except
for the modification of the energy dispersion. The
modification of the energy dispersion is appropriately
considered in the present Boltzmann approach as
follows.

The energy of the anisotropic Wolff model
(equation (1)) is

±εD = ±
√

∆2 +∆ℏ2k · α̂ · k, (7)

where α̂ is the inverse mass tensor given by αij =[∑
µ Wi(µ)Wj(µ)

]
/∆. The velocity of εD, i.e., the

velocity of the Dirac electron (vD) is given as

vD =
1

ℏ
∂εD

∂k
= λεv

Q, (8)

λε =
∆

εD
. (9)

Here, vQ is the velocity of the carriers with quadratic
dispersion defined by

vQ = α̂ · ℏk. (10)

The dimensionless parameter λε expresses the correc-
tion for the Dirac electrons. In this paper, the values
for the Dirac electrons are denoted by “D”, and these
for the free holes with the quadratic dispersions are
denoted by “Q”.

The Boltzmann equation under an electric field E
and a magnetic field B is given as,

− e

ℏ
(E + v ×B) · ∇kf = −f − f0

τ
, (11)

by introducing the relaxation time τ , which is assumed
to be constant throughout the paper. Here, e is
the elementary charge (e > 0). f is the Fermi-
Dirac distribution function which is represented by the
thermal equilibrium distribution f0 and vk as [20, 21]

f = f0 + F · vk
∂f0
∂ε

. (12)

F is the vector which depends on E, B, and the energy
ε. From equations (7)-(12), F can be obtained as
[20, 21]

FD = eτ
(
1̂− eτλεB̂ · α̂

)−1

·E (13)

by introducing the magnetic field in terms of the 3× 3
matrix [22, 23]:

B̂ =

 0 −Bz By

Bz 0 −Bx

−By Bx 0

 . (14)

The current density j = −(e/4π3)
∫
vkfdk is

described as follows:

jD = − e

4π3

∫
vk

D
(
FD · vk

D
) ∂f0
∂ε

dk

=
e2τ

4π3

∫
dk

(
−∂f0

∂ε

)
vk

D

×
[(

1̂− eτλεB̂ · α̂
)−1

· vk
D

]
·E. (15)
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In the low-temperature limit, −∂f0/∂ε becomes δ(ε−
εF), where εF is the Fermi energy. From equations (8)-
(10) and (15) becomes

jD = λεFne
(
µ̂−1 − λεFB̂

)−1

·E, (16)

where n is the carrier density and µ̂ = eτα̂ is the
mobility tensor. Finally, the magnetoconductivity σ̂D

for the Dirac electrons is obtained from equation (16)
in the form:

σ̂D = λεFne
(
µ̂−1 − λεFB̂

)−1

. (17)

This is the core formula of our work, including the
correction of λεF . Note that the magnetoconductivity
for the free electrons is described as [22, 23]

σ̂Q = ne
(
µ̂−1 − B̂

)−1

. (18)

Equation (17) becomes equivalent to equation (18) in
the limit of λεF → 1 (εF → ∆), i.e., the so-called non-
relativistic limit, where equation (7) becomes quadratic
in k as is depicted in figure 2,

εD → εQ = ∆+
ℏ2

2
k · α̂ · k. (19)

Equation (17) is also valid for the Weyl electrons by
replacing λεFµ as follows (the energy of Weyl electron
is εw = ±ℏvF|k|):

λεFµ → eτvF
ℏkF

(20)

Hereafter, although we show results only for the Dirac
electrons, they are also valid for the Weyl electrons only
by considering the above transformation. The explicit
forms for Weyl electrons are given in Appendix A.

3. MR with the fixed carrier densities

In this section, we discuss the MR in semimetals,
especially, the case of the two-band model which has
the Dirac electrons and the free holes, σ̂D+Q = σ̂D

e +σ̂Q
h .

Note that the so-called Dirac semimetals, e.g. Cd3As2
[24], are not covered in the present paper since the
Dirac semimetals have only one type of carrier at
zero temperature. We assume the isotropic mobility
tensor for electron and hole carriers µij = µ0δij and
νij = ν0δij , respectively. The elements of equation (17)
are

σD
xx = (µ0 + λ2

εFηB
2
x)g

D, (21)

σD
yy = (µ0 + λ2

εFηB
2
y)g

D, (22)

σD
zz = (µ0 + λ2

εFηB
2
z )g

D, (23)

σD
yx = (λεFµ

2
0Bz + λ2

εFηByBx)g
D, (24)

σD
zy = (λεFµ

2
0Bx + λ2

εFηBzBy)g
D, (25)

σD
xz = (λεFµ

2
0By + λ2

εFηBzBx)g
D, (26)

gD = λεFne
[
1 + λ2

εFµ
2
0

(
B2

x +B2
y +B2

z

)]−1
, (27)

η = det(µ̂) = µ3
0. (28)

The other elements of σ̂D can be easily obtained from
the Onsager relation, σD

ij(B) = σD
ji(−B).

From these equations, the magnetoconductivity
σD+Q
xx = σD

exx+σQ
hxx and the Hall conductivity σD+Q

yx =

σD
eyx + σQ

hyx are obtained in the forms:

σD+Q
xx = σD+Q

yy

=
e
[
nλεFµ0 + pν0 + (pλεFµ0 + nν0)λεFµ0ν0B

2
]

(1 + λ2
εFµ

2
0B

2)(1 + ν20B
2)

,

(29)

σD+Q
yx = −

e
[
(pν20 − nλ2

εFµ
2
0)B + (p− n)λ2

εFµ
2
0ν

2
0B

3
]

(1 + λ2
εFµ

2
0B

2)(1 + ν20B
2)

.

(30)

Here, the magnetic field is set to be parallel to
the z-axis (B = (0, 0, B)). Correspondingly, the
magnetoresistivity ρD+Q

xx and the Hall resistivity ρD+Q
yx

are obtained:

ρD+Q
xx = ρD+Q

yy

=
1

e

nλεFµ0 + pν0 + λεFµ0ν0B
2(nν0 + pλεFµ0)

(nλεFµ0 + pν0)2 + λ2
εFµ

2
0ν

2
0B

2(p− n)2
,

(31)

ρD+Q
yx = −ρD+Q

xy

=
1

e

(pν20 − nλ2
εFµ

2
0)B + λ2

εFµ
2
0ν

2
0B

3(p− n)

(nλεFµ0 + pν0)2 + λ2
εFµ

2
0ν

2
0B

2(p− n)2
.

(32)

We obtain the analytic forms of ρxx(B) and ρyx(B),
where their field dependences are clearly indicated.
(See also Appendix A where we described the case with
the Weyl electrons and the free holes.)

Figures 3(a) and 3(b) show the magnetic field
dependences of ρD+Q

xx and ρD+Q
yx for λεF = 0.20 (solid

line), 1.00 (broken line) with n = p = 1.0× 1017cm−3,
µ0 = 100T−1 and ν0 = 10T−1. It is clarified that
the properties of ρD+Q

xx for λεF = 1.00 and 0.20 are
qualitatively the same, but quantitatively different. At
weak fields (B < 0.5T), they are independent of the
field (figure 3(a)). The magnitude of ρD+Q

xx (λεF = 0.20)
is about three times “larger” than that of ρD+Q

xx (λεF =
1.00) (the insets of figures 3(a) and 3(c)). This
quantitative difference should be crucial when one
analyzes the experimental data. The magnitude of
ρD+Q
yx (λεF = 0.20) is about twice “smaller” than that

of ρD+Q
yx (λεF = 1.00) (the insets of figures 3(b) and

3(d)). This difference can be seen in the whole region
of the field for n = p, while it can be seen only in the
weak field region for n ̸= p (the inset of figure 3(d)).
Note that, in the case of n/p = 0.98, the signs of
ρD+Q
yx are inverted at B ∼ 0.6T for λεF = 0.20 and

at B ∼ 0.7T for λεF = 1.00. After the sign change,
ρD+Q
yx (λεF = 0.20) takes almost the same value as

ρD+Q
yx (λεF = 1.00). The behaviors of ρD+Q

xx and ρD+Q
yx
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Figure 3. Field dependence of (a,c) the magnetoresistivity ρD+Q
xx , (b,d) the Hall resistivity ρD+Q

yx , with the correction λεF = 0.20
(solid line) and without the correction λεF =1.0 (broken line). The insets show the ratio of the results for λεF = 0.20 to those for
λεF = 1.0. The electron carrier n is 1.00× 1017cm−3 (a, b) and 0.98× 1017cm−3 (c, d). The hole carrier (p) is 1.0× 1017cm−3 µ0, ν0
are 100T−1, 10T−1, respectively.

can be understood more clearly if we take the limit of
weak and strong fields.

At weak fields (λ2
εFµ

2
0B

2 ≪ 1, ν20B
2 ≪ 1),

equations (31) and (32) become

ρD+Q
xx =

1

eν0

1

(nλεFκ+ p)
, (33)

ρD+Q
yx =

1

e

(
p− nλ2

εFκ
2
)
B

(p+ nλεFκ)
2

, (34)

where κ expresses the ratio of the electron mobility
to the hole mobility, κ = µ0/ν0. It is clear from
equations (33) and (34) that the quantitative change
due to the correction λεF is enhanced both by κ and
the deviation from the perfect compensation. From
equation (34), the Hall coefficient RD+Q

H is obtained:

RD+Q
H =

1

e

p− λ2
εFnκ

2

(p+ λεFnκ)
2 . (35)

Equation (35) is similar to the Hall coefficient of a
system with electrons and holes as a free electron, given
by [25]:

RQ+Q
H =

1

e

p− nκ2

(p+ nκ)
2 . (36)

It should be emphasized here that the Hall coefficient
RD+Q

H includes the correction for the Dirac electron
λεF , while RD

H does not for the one-band model. (See
Appendix B.)

At strong fields (λ2
εFµ

2
0B

2, ν20B
2 ≫ 1), equa-

tions (31) and (32) become as follows:

ρD+Q
xx =


ν0
ne

λεFκB
2

1 + λεFκ
for n = p

1

eν0

n+ pλεFκ

(n− p)2λεFκ
for n ̸= p

(37)

ρD+Q
yx =


1

neν0

(1− λεFκ)B

1 + λεF

for n = p

− B

(n− p)e
for n ̸= p

(38)

ρD+Q
xx increases as ρD+Q

xx ∝ B2 when n and p are
completely equal n = p (figure 3(a)). Despite the
fact that Dirac electron and free hole have different
band dispersions, ρD+Q

xx and ρQ+Q
xx increase with B2 for

n = p. When n ̸= p, ρD+Q
xx is saturated (figure 3(c))

and the form of ρD+Q
yx is the same as ρQ+Q

yx [25]. The

λεF dependences of the magnetoresistivities ρD+Q
ij and
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Table 1. Summary of the formulae of magnetoresistivity. ρDij is the magnetoresistivity for Dirac electrons, and ρD+Q
ij is that for

semimetals with Dirac electrons and quadratic holes. λεF = ∆/εF is the correction due to the Dirac dispersion. When λεF → 1, the

results of ρD+Q
ij become consistent with the conventional results with quadratic electrons and holes, ρQ+Q

ij . κ = µ0/ν0 expresses the
asymmetry between the electron mobility µ0 and the hole mobility ν0.

One band model Two band model
n ̸= p n = p

ρDxx ρDyx ρD+Q
xx ρD+Q

yx ρD+Q
xx ρD+Q

yx

Weak fields
1

neλεFµ0
−

B

ne

1

eν0

1

p+ nλεFκ

1

e

(p− nλ2
εF

κ2)B

(p+ nλεFκ)
2

1

neν0

1

1 + λεFκ

1

ne

(1− λεFκ)B

1 + λεFκ

Strong fields
1

neλεFµ0
−

B

ne

1

eν0

n+ pλεFκ

(n− p)2λεFκ
−

B

(n− p)e

ν0

ne

λεFκB
2

1 + λεFκ

1

neν0

(1− λεFκ)B

1 + λεF

Table 2. Corrected mobilities and relaxation times of bismuth at 4.23 K. The upper line is the values obtained by Hartman using
the conventional formula for the quadratic dispersion, and the lower line is the corrected values with λεF = 0.215.

µ1(T−1) µ2(T−1) µ3(T−1) τ1 × 10−10(s) τ2 × 10−10(s) τ3 × 10−10(s)
Hartman [26] 11000 220 6780 4.4 21.6 4.4

Corrected value 51000 1390 31000 20 100 19

the Hall coefficient RD+Q
H are summarized in table 1.

It should be emphasized here that the correction
λεF is a correction to the conventional formula of
magnetoresistance expressed in terms of the mobility
since the mobility is introduced assuming the quadratic
dispersion. If the formula is expressed in terms of the
values at the Fermi surface, such as the Fermi velocity
vF and the Fermi wavenumber kF , we do not need
to correct the formula (cf. Appendix A). In addition,
the experimentally observed magnetoresistance at low
enough temperature is not directly affected by the
existence of the Dirac point away from the Fermi level.

The correction λεF will be crucial when one
estimates the mobility or the relaxation time from the
experimentally obtained data of magnetoresistance. In
most cases, the mobility is estimated by using the
conventional formula like equation (18). However, in
the case of semimetal with Dirac electrons, we should
use equation (17). Consequently, the mobility should
be corrected by a factor of 1/λεF . In the case of
bismuth, λεF = 0.215 (∆ = 7.65 meV and εF = 35.5
meV [11]). Then, the “true” mobilities should be
1/λεF = 4.65 times larger than the mobility estimated
by the conventional formula. As an example, we listed
the corrected mobilities and relaxation times for the
experimental data by Hartman [26]. In the case of
WTe2, which has the Dirac holes [2, 27], the correction
is λεF ≃ 0.083 (∆ ≃ 2.5 meV and εF ≃ 30 meV by the
Supplemental Material of [28]). Thus, the mobilities
and the relaxation times should be corrected by a factor
of 1/λεF ≃ 12.0 as well.

4. MR with the field dependence of the carrier
densities

At weak magnetic fields, the Fermi energy εF and
carrier densities n and p do not change in three-
dimensional systems. This is because carrier energy
is not quantized clearly. At magnetic fields near the
quantum limit, on the other hand, the carrier energies
are clearly quantized in the Landau levels. εF, n and p
of semimetals drastically change with magnetic field in
order to keep the charge neutrality [11, 29, 30, 31]. This
tendency becomes more significant when the difference
between electron and hole mobilities becomes large,
such as in bismuth. In this section, we extend the
approach adopted in the last section by considering
the field dependence of carrier densities n(B) and
p(B), and also calculate the magnetoconductivity
based on the Kubo formula for Dirac electrons, which
is represented as σ̂KD, to check the validity of the
Boltzmann approach.

4.1. Field dependence of the carrier

The eigenenergies of the Wolff model under magnetic
fields and of holes in free electrons with the Zeeman
splitting are [11, 13, 12, 30]

εD =

√
∆2 + 2∆

[(
l +

1

2
+

σ

2

)
ℏωc +

ℏ2k2z
2mz

]
, (39)

ε0 +∆− εQ =

(
l +

1

2

)
ℏΩc +

ℏ2k2z
2Mz

+ σ
g

2
µBB, (40)

where l is an index of the Landau levels and σ is the
sign of the spin (σ = ±1). kz is the wavenumber
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Figure 4. Field dependence of (a) the energies, and (b) the electron and hole carriers (n(B), p(B)). l± on the left is the Landau
index. The solid line and broken line represent the Landau level of the electron and the hole, respectively. The solid thick line is
the Fermi-energy εF.

parallel to the magnetic field. ε0 is the energy
difference between the bottom of the Dirac electron
band and the top of the hole band, g is the g-factor
for the hole. mz(Mz) and ωc(Ωc) are the effective
mass parallel to the magnetic field and the cyclotron
frequency for electrons (holes), respectively. In the
following, we set ∆ = 7.5meV, ε0 = 2∆, g = 5,
mc/m0 = mz/m0 = 0.01 and Mc/m0 = Mz/m0 = 0.2.
The formula of carrier density under a magnetic field
is represented as

n(B) =
eB

2π2

∑
lσ

ℏkF(l, σ). (41)

The charge neutrality condition (n = p) is given by∑
lσ

keF(l, σ) =
∑
l′σ′

khF(l
′, σ′), (42)

where keF(k
h
F) is the Fermi wavenumber of electrons

(holes). All carriers occupy the lowest Landau level
in the quantum limit (l, σ) = (0,−1), so that
equation (42) is changed as

keF = khF. (43)

Figure 4(a) shows the magnetic field dependence of
the Fermi-energy εF and figure 4(b) shows the carrier
densities n(B) and p(B). The electrons and holes
reach the quantum limit at B ≃ 7T and B ≃
12.5T, respectively. εF decreases by conserving the
charge neutrality condition (n = p). In contrast, the
carrier densities n(B) and p(B) increase linearly as the
Landau degeneracy eB/2π2 increases (figure 4(b)).

Finally, we replace the carrier density n which is
independent of the magnetic field in equations (21) and
(24) with the field-dependent carrier density n(B) so
obtained (equation (41)). Then the results considered
the magnetic field-dependence of the carrier density
are obtained as shown in figure 5 (Here we used

the relations: ρDxx = σD
xx/[(σ

D
xx)

2 + (σD
yx)

2], ρDyx =

−σD
yx/[(σ

D
xx)

2 + (σD
yx)

2)]).

4.2. Verification by the Kubo theory

The validity of the above procedure can be verified
by comparing the calculation based on the Kubo
theory [32], where the transport coefficients can be
calculated in a fully quantum way together with the
Landau quantization. For the Dirac electrons, the
magnetoconductivity (σKD

µν , “K” denotes the Kubo
formula) is given by [13, 16]

σKD
µν =

1

iω

[
ΦD

µν(ω)− ΦD
µν(0)

]
, (44)

ΦD
xx =

e2v4NL

8

∑
lkσ

(fD
1 + fD

2 + fD
3 ) + fD

4 , (45)

ΦD
yx =

e2v4NL

8

∑
lkσ

(fD
1 − fD

2 − σfD
3 ) + fD

4 . (46)

Here, the Landau degeneracy is NL = eB/2πℏ and the
functions fD

1→4 are given by

fD
1 = Ξ(ω, εlσ, εl+1σ)

(
Λl+1σ
lσ

)2
mcℏωc(l + 1)

× [(εl+1σ + εlσ + 2∆) + σ(εl+1σ − εlσ)]
2, (47)

fD
2 = Ξ(ω, εlσ, εl−1σ)

(
Λl−1σ
lσ

)2
mcℏωcl

× [(εl−1σ + εlσ + 2∆)− σ(εl−1σ − εlσ)]
2, (48)

fD
3 = 2Ξ(ω, εlσ, εl−σ)

(
Λl−σ
lσ

)2 ℏ2k2z(εl−σ − εlσ)
2, (49)

fD
4 =

e2v2NL

2
Ξ(ω)

ε0+ − ε0−
ε0+

, (50)

Λb
a(εa, εb) = [εaεb(εa +∆)(εb +∆)]

−1/2
. (51)

The terms f1 and f2 originate from the “orbital
transition” and f3 from the “spin transition”. f4
is the contribution from (l, k, σ) = (0, 0,−1).
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Figure 5. Field dependence of (a) the magnetoconductivity σD
xx, (b) the Hall conductivity σD

yx, (c) the magnetoresistivity ρDxx and

(d) the Hall resistivity ρDyx for the Dirac electrons. The symbols are the results based on the Kubo theory (σKD
ij , ρKD

ij ) and the solid

lines are these based on the Boltzmann theory (σD
ij , ρ

D
ij). The parameters are set to be ∆ = 7.5meV, mc/m0 = 0.01, µ0 = 100T−1.

The longitudinal mass is equal to cyclotron mass (mc = mz).

The contribution from the two one-particle Green’s
functions Ξ becomes as follows [13]:

Ξ(ω, εa, εb) =
i

2π

×

{
1

ω + εb − εa + iΓ

[
ln(εF − εb − iΓ)

− ln(εF − ω − εb − iΓ)

+ ln(εF − εa + iΓ)

− ln(εF + ω − εa + iΓ)
]

− 1

ω + εb − εa

[
ln(εF − εb + iΓ)

− ln(εF − ω − εb − iΓ)

+ ln(εF − εa − iΓ)

− ln(εF + ω − εa + iΓ)
]}

, (52)

where Γ is related to τ and µ in the form

Γ =
ℏ
2τ

=
eℏ
2mµ

. (53)

We set the value of Γ for electrons to be consistent
with the calculations in the previous sections. The field

dependence of energy is identical to figure 4(a). The
magnetoconductivities so obtained, σKD

ij , are plotted
in figure 5 together with the results based on the
Boltzmann theory plus field-dependent n(B). Here we
set the following parameters: ∆ = 7.5meV, mc/m0 =
mz/m0 = 0.01, µ0 = 100T−1. Figure 5(b) clearly
shows that the Hall conductivity by the Boltzmann
approach with the correction λεF and n(B), σD

yx (solid
line), agrees perfectly with that based on the Kubo
formula σKD

yx (circles) even in the quantum limit: a
rather surprising result. For the magnetoconductivity,
it also agrees quantitatively with σKD

xx in the strong
field region, although σD

xx does not exhibit the quantum
oscillations. Consequently, we can conclude that
the Boltzmann approach with the correction for the
Dirac electrons, λεF , and the field dependence of
carriers, n(B), can give correct results even in the
quantum limit except for the quantum oscillations.
It should be noted here that the amplitude of the
quantum oscillation in the actual measurements is
indistinct and not so clear as in figure 5(a) because of
the smearing by the temperature or electron-electron,
electron-phonon, and impurity scatterings [1, 33, 34].
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Figure 6. Field dependence of (a) the magnotoresistivity, ρD+Q
xx , (b) the Hall resistivity, ρD+Q

yx . The solid line is the result with
the field dependence of carrier densities n(B), p(B) and λεF . The broken line is the result without the field dependence of n, p
and λεF = 0.2119 (n = p = 1.0 × 1017cm−3). The insets are the logarithmical plot of each figure. The electron and hole carriers
are n(B) = p(B) at any magnetic fields. The mobilities µ0 and ν0 are 100T−1 and 10T−1, respectively.

Therefore, the present Boltzmann approach should be
useful in the practical analysis of the experimental
data, even though it does not indicate the quantum
oscillations.

One may think that, if we have the rigorous
results by the Kubo theory, the results based on the
Boltzmann approach are needless. However, it is very
hard to understand the field dependence of MR and
the effect of the correction due to the Dirac dispersion
directly from the formula by the Kubo theory. On the
other hand, it is very easy and simple to understand
them from the formula by the Boltzmann approach.
This is the merit of the Boltzmann approach for the
analysis of the experimental results. An example of
such an easy and transparent treatment is given in the
next sub-section.

4.3. Linear magnetoresistance in the quantum limit

In this sub-section, we argue the properties of MR in
the quantum limit based on our Boltzmann approach
with the Dirac correction λεF and the field-dependence
of carriers n(B). As is discussed in the last section,
the carrier density of semimetals drastically changes
in the quantum limit. Because of this, the MR
changes its property in the quantum limit as is shown
in figure 6. ρD+Q

xx increases linearly with respect to
B in the quantum limit of the electron (B > 7T)
(figure 6(a)) and the magnetic field dependence of
ρD+Q
yx becomes very small (figure 6(b)). The origin

of these properties can be easily understood based on
our results of equations (37) and (38) as follows. ρD+Q

xx

and ρD+Q
yx have the following dependence:

ρD+Q
xx =

µ0

n(B)e

λεFB
2

1 + λεFκ
, (54)

ρD+Q
yx =

1

n(B)e

(1− λεFκ)B

1 + λεFκ
. (55)

The carrier density n(B) has linear dependence n(B) ∝
B1 in the quantum limit (B > 7T), so ρD+Q

xx and ρD+Q
yx

become

ρD+Q
xx ∝ B2

n(B)
= B1, (56)

ρD+Q
yx ∝ B1

n(B)
= B0. (57)

What we show here is simply that the MR
in semimetals increases linearly with respect to the
magnetic field in the quantum limit if we assume the
relaxation time is constant. This conclusion would be
common to semimetals with Dirac (or Weyl) electrons
and nearly free holes since n(B) ∝ B is quite general in
the quantum limit of semimetals. Of course, however,
we should further consider the various effects, such as
the energy and the field dependence of relaxation time,
into our theory in order to resolve the longstanding
problem of linear MR, which is one of the recent hot
topics [35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

5. Summary

We studied the magnetoresistance (MR) in semimetals
with Dirac (or Weyl) electrons and nearly free holes.
It is shown that the magnetoconductivity of Dirac
electrons is corrected by the factor λεF = ∆/εF which
does not appear in the formula for the free electrons.
Due to this correction λεF , the magnetoresistivity
and the Hall resistivity with the Dirac electrons and
quadratic holes are modified qualitatively from the
conventional results with quadratic electrons and holes.
This qualitative correction should play a crucial role in
the analysis of the experimental data. In our formula of
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magnetoconductivity based on the Boltzmann theory,
the correction due to the Dirac dispersion and the
field dependence is clearly indicated, which makes
the analysis of experimental data easier and more
transparent than the usage of the Kubo formula.

The gap between the semi-classical and quantum
approaches for the magnetoconductivities of Dirac
electrons is removed. The validity of our approach
based on the Boltzmann theory including the field
dependence of carrier is verified by the calculation
based on the Kubo formula for Dirac electrons. It is
rather surprising that the magnetoconductivity by the
Boltzmann approach perfectly agrees with that by the
Kubo formula even in the quantum limit only by taking
into account the field dependence of carrier, except
for the quantum oscillations. By this verification, we
can safely utilize our semiclassical formula even for
the semimetals with Dirac electrons in the quantum
limit. In the previous studies [7, 29, 45], the MR of
bismuth has been analyzed by using the formula of free
electron carriers for two bands. The analysis can be
quantitatively corrected by considering the correction
(λεF) found in the present work. In order to obtain the
quantitative evaluation of MR in actual semimetals, we
further need to take into account the anisotropy and
the field dependence of the mobility.

With our formula considering the field-dependent
carriers, it is revealed that the MR in semimetals
increases linearly with respect to the magnetic field
in the quantum limit. The origin of this linear MR
is the fact that the carrier density is proportional to
the magnetic field in the quantum limit of semimetals;
ρD+Q
xx ∝ B2/n(B) ∝ B1. This result is obtained by

assuming the relaxation time to be constant. It is
known that the relaxation time depends on the energy
and the magnetic field, which should be taking into
account to resolve the longstanding problem of linear
MR. Nevertheless, the simple understanding for the
linear MR obtained in the present work would give a
good starting point of the future investigation.
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Appendix A. MR of Weyl electrons and free
holes

By replacing λεFµ0 → eτvF/ℏkF, we obtain the
conductivity and resistivity for the Weyl electron and
the free hole from equations (29)-(32), as follows:

σW+Q
xx = σW+Q

yy

=
e
[
nµw + pν0 + (pµw + nν0)µwν0B

2
]

(1 + λ2
εFµ

2
0B

2)(1 + ν20B
2)

,

(A.1)

σW+Q
yx = −

e
[
(pν20 − nµ2

w)B + (p− n)µ2
wν

2
0B

3
]

(1 + µ2
wB

2)(1 + ν20B
2)

.

ρW+Q
xx = ρD+Q

yy

=
1

e

nµw + pν0 + µwν0B
2(nν0 + pµw)

(nµw + pν0)2 + µ2
wν

2
0B

2(p− n)2
, (A.2)

ρW+Q
yx = −ρD+Q

xy

=
1

e

(pν20 − nµ2
w)B + µ2

wν
2
0B

3(p− n)

(nµw + pν0)2 + µ2
wν

2
0B

2(p− n)2
, (A.3)

µw =
eτvF
ℏkF

. (A.4)

In the case of the Weyl semimetal, we cannot define the
mobility in principle since the effective mass is exactly
zero. That’s why we redefined the mobility of Weyl
semimetal µw only by using vF and kF.

Lastly, we comment on the experimentally
obtained mobility of NbP, which is known as Weyl
semimetal. In the previous work [5], they estimate the
mobility by using the relation µ = RH/ρxx, assuming
the single carrier of Weyl electron. From a viewpoint
of our correct formula of (A.1)-(A.4), this evaluation
is correct if one assumes ν0 = 0. Therefore, their
estimated value of the mobility is not needed to be
corrected. Furthermore, they evaluate both kF and
the cyclotron mass mc from the frequency of the
Shubnikov-de Haas oscillation and defined the Fermi
velocity as vF = ℏkF/mc. With these definitions,
the conventional formula of mobility µ = eτ/m∗

corresponds to the correct mobility µw if we assume
m∗ = mc. Therefore, the evaluated values of µw,
kF and vF (table A1) are totally consistent with each
other. In fact, the relaxation time evaluated from
τ = ℏkF/evF = 2.13 × 10−10s is consistent with that
from τ = µmc/e = 2.16× 10−10s.

Appendix B. MR of the one band model with
the Dirac electrons

From equations (21)-(26), the magnetoresistivity ρDxx
and the Hall resistivity ρDyx are obtained as follows
(B = (0, 0, B)):

ρDxx = ρDyy =
σD
xx

(σD
xx)

2 + (σD
yx)

2
=

1

neλεFµ0
, (B.1)

Table A1. Parameters of NbP obtained in [5], which are
consistent with our modified definition of mobility for Weyl
electrons µw. m0 is the bare mass of the electron.

kF(Å
−1) mc/m0 vF × 105(m/s) µ(T−1)

0.0312 0.076 4.8 500
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ρDyx = −
σD
yx

(σD
xx)

2 + (σD
yx)

2
= − B

ne
. (B.2)

One can clearly see the field dependences of ρDxx and
ρDyx, which are what we desired to obtain. It is found

that ρDxx does not depend on B but its amplitude is
modified by the factor of λεF (figure B1), whereas ρDyx is
proportional to B but not modified by λεF . The ratios

of ρDxx to ρQxx and ρDyx to ρQyx are (ρDij(λεF → 1) = ρQij):

ρDxx

ρQxx
=

ρDyy

ρQyy
=

1

λεF

, (B.3)

ρDyx

ρQyx
= 1. (B.4)

In addition, the Hall coefficient for the Dirac electron
RD

H is obtained as

RD
H = − 1

ne
, (B.5)

for the Dirac electron. Therefore, the Hall coefficient
RD

H is exactly the same as the Hall coefficient for the

free electron, RQ
H. This is consistent with the result for

graphene (massless Dirac ∆ = 0)[46].

10-5

10-4

10-3

10-2 10-1 100 101

ρ x
x
  

B(T)

Figure B1. Field dependence of the magnetoresistivity ρDxx
with the different correction factor λεF = 0.2, 0.4, 0.6, 0.8, 1.0. n
and µ0 are set to be 1.0× 1017cm−3 and 100T−1, respectively.
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[31] Zhu Z, Fauqué B, Malone L, Antunes A B, Fuseya Y and

Behnia K 2012 Proc. Natl. Acad. Sci. U. S. A. 109 14813
[32] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[33] De Haas W J, Blom J W and Schubnikow L 1935 Physica

2 907
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